WO2021070677A1 - 半導体製造装置およびそれを用いた半導体装置の製造方法ならびに半導体装置 - Google Patents

半導体製造装置およびそれを用いた半導体装置の製造方法ならびに半導体装置 Download PDF

Info

Publication number
WO2021070677A1
WO2021070677A1 PCT/JP2020/036886 JP2020036886W WO2021070677A1 WO 2021070677 A1 WO2021070677 A1 WO 2021070677A1 JP 2020036886 W JP2020036886 W JP 2020036886W WO 2021070677 A1 WO2021070677 A1 WO 2021070677A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
sealing material
resin
cavity
reservoir
Prior art date
Application number
PCT/JP2020/036886
Other languages
English (en)
French (fr)
Inventor
貴雅 岩井
裕一郎 鈴木
明稔 白尾
祥 小杉
藤野 純司
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN202080069138.0A priority Critical patent/CN114514599A/zh
Priority to US17/636,650 priority patent/US20220293434A1/en
Priority to JP2021551305A priority patent/JP7269362B2/ja
Priority to DE112020004809.8T priority patent/DE112020004809T5/de
Publication of WO2021070677A1 publication Critical patent/WO2021070677A1/ja
Priority to JP2023069540A priority patent/JP2023083481A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49575Assemblies of semiconductor devices on lead frames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14639Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles for obtaining an insulating effect, e.g. for electrical components
    • B29C45/14655Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles for obtaining an insulating effect, e.g. for electrical components connected to or mounted on a carrier, e.g. lead frame
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/2602Mould construction elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/2608Mould seals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/561Batch processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/565Moulds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67126Apparatus for sealing, encapsulating, glassing, decapsulating or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3142Sealing arrangements between parts, e.g. adhesion promotors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/315Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed the encapsulation having a cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49562Geometry of the lead-frame for devices being provided for in H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49861Lead-frames fixed on or encapsulated in insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4821Flat leads, e.g. lead frames with or without insulating supports
    • H01L21/4839Assembly of a flat lead with an insulating support, e.g. for TAB
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45139Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49503Lead-frames or other flat leads characterised by the die pad
    • H01L23/49513Lead-frames or other flat leads characterised by the die pad having bonding material between chip and die pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49548Cross section geometry
    • H01L23/49551Cross section geometry characterised by bent parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49568Lead-frames or other flat leads specifically adapted to facilitate heat dissipation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1811Structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/182Disposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/183Connection portion, e.g. seal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/186Material

Definitions

  • the present disclosure relates to a semiconductor manufacturing apparatus, a method for manufacturing a semiconductor apparatus using the same, and a semiconductor apparatus.
  • Power semiconductor devices are becoming widespread in all products, from industrial equipment to home appliances and information terminals. There is a particular need for miniaturization of modules installed in home appliances. Power semiconductor devices generate a large amount of heat because they handle high voltage and large current, and in order to energize a current with a fixed capacity, it is necessary to efficiently dissipate heat to the outside and maintain electrical insulation from the outside. There is.
  • a lead frame including a die pad on which a power semiconductor element or the like is mounted is sealed with a sealing material together with the power semiconductor element or the like.
  • the transfer molding method is applied.
  • a lead frame is arranged in a mold mold, and a power semiconductor element or the like is sealed by injecting a sealing material into the mold mold.
  • the thickness of the sealing material covering the side opposite to the side on which the power semiconductor element is mounted is the thickness of the sealing material covering the side on which the power semiconductor element is mounted. It is arranged so that it is thinner than the thickness of.
  • the distance (height) of the lower region from the side of the die pad opposite to the side on which the power semiconductor element is mounted to the lower mold (bottom surface of the cavity) is , It is shorter than the distance (height) of the upper region from the side of the die pad on which the power semiconductor element is mounted to the upper mold (upper surface of the cavity).
  • Voids may remain in the encapsulant. If the voids remain, the electrical insulation of the encapsulant may decrease, and the reliability of the power semiconductor device may decrease, and countermeasures have been taken (for example, Patent Document 1).
  • the present disclosure has been made in view of such a situation, and one object is to provide a semiconductor manufacturing apparatus for suppressing voids from remaining in a sealing material, and another object is to provide a semiconductor manufacturing apparatus. It is to provide a method of manufacturing a semiconductor device to which such a semiconductor manufacturing device is applied, and yet another object is to provide a semiconductor device manufactured by such a manufacturing method.
  • a cavity extending in the first direction is formed by a mold including a lower mold and an upper mold, and a lead frame on which a semiconductor element is mounted is arranged in the cavity.
  • a semiconductor manufacturing device that seals a lead frame together with a semiconductor element by injecting a sealing material into the semiconductor, and is a sealing material injection gate portion, one or more sealing material reservoirs, and a sealing material reservoir gate portion. And have.
  • the sealing material injection gate portion injects the sealing material toward the cavity.
  • One or more sealing material reservoirs are provided on the other side separated from one side where the sealing material injection gate portion is arranged with the cavity in the first direction, and the sealing material flows through the cavity. Collect the stop material.
  • the sealing material storage gate portion communicates between the cavity and the sealing material storage portion.
  • the sealing material injection gate portion has a first opening cross-sectional area.
  • the sealing material storage gate portion has a second opening cross-sectional area. The second opening cross-sectional area is smaller than the first opening cross-sectional area.
  • the method for manufacturing a semiconductor device includes the following steps. Prepare a lead frame. A semiconductor element is mounted on the lead frame. A mold mold including a lower mold and an upper mold, in which a cavity is formed by the lower mold and the upper mold, is prepared. A lead frame on which a semiconductor element is mounted is arranged in a mold. Inject the encapsulant into the cavity. Remove the mold mold.
  • the step of preparing the mold mold includes a step of preparing a mold mold including a sealing material injection gate portion, one or more sealing material storage portions, and a sealing material storage gate portion. The sealing material injection gate portion injects the sealing material toward the cavity.
  • One or more encapsulant reservoirs are provided on the second side opposite to the first side on which the encapsulant injection gate is arranged with the cavity in between, and accumulate the encapsulant flowing through the cavity.
  • the sealing material storage gate portion communicates between the cavity and the sealing material storage portion.
  • the step of injecting the sealing material into the cavity includes a step of injecting the sealing material until the sealing material filled in the cavity flows into the sealing material reservoir.
  • the semiconductor device includes a lead terminal, a die pad, a semiconductor element, and a sealing material.
  • the die pad is connected to the lead terminal.
  • the semiconductor element is mounted on the die pad.
  • the sealing material seals the die pad and the semiconductor element in such a manner that a part of the lead terminal is exposed.
  • the encapsulant has a first side portion and a second side portion facing each other at a distance in the first direction. There is a first sealing material mark on the first side portion. There is one or more second encapsulant marks on the second side.
  • the mold mold includes a sealing material injection gate portion, one or more sealing material storage portions, and a sealing material storage gate portion. As a result, it is possible to prevent voids from remaining in the encapsulant injected into the cavity.
  • a mold having a sealing material injection gate portion, one or more sealing material storage portions, and a sealing material storage gate portion is used for sealing. It is possible to prevent voids from remaining in the stop material.
  • the semiconductor device by using the semiconductor manufacturing device provided with the above-mentioned mold, voids remaining in the encapsulant are suppressed and electrical insulation is improved.
  • FIG. 5 is a cross-sectional view showing a mold mold provided with a lower mold and an upper mold in the same embodiment.
  • it is a partially enlarged cross-sectional perspective view which shows the resin injection gate part in a mold mold.
  • it is the first partially enlarged sectional perspective view which shows the resin storage gate part in the mold mold.
  • it is the 2nd partial enlarged cross-sectional perspective view which shows the resin storage gate part in the mold mold.
  • it is a partially enlarged sectional view which shows the resin storage gate part in a mold mold.
  • FIG. 28 it is a top view which shows the structure of the lower mold in the mold mold which concerns on 2nd modification. It is a top view which shows one step of the manufacturing method of the semiconductor device using the mold mold shown in FIG. 28 in the same embodiment.
  • sectional drawing which shows one step of the manufacturing method of the semiconductor device using the mold mold which concerns on 3rd modification.
  • it is a partially enlarged sectional view which shows the resin storage gate part in the mold mold which concerns on 4th modification.
  • it is a partial cross-sectional view of the cross-sectional line XXXIII-XXXIII shown in FIG.
  • FIG. 37 It is a top view which shows the structure of the lower mold in the mold mold which concerns on Embodiment 2.
  • FIG. It is a top view which shows one step of the manufacturing method of the semiconductor device using the mold mold shown in FIG. 34 in the same embodiment.
  • FIG. 5 is a plan view showing another example of the appearance of the semiconductor device in each embodiment.
  • FIG. 5 is a plan view showing still another example of the appearance of the semiconductor device in each embodiment.
  • FIG. 5 is a partially enlarged cross-sectional view showing a resin reservoir gate portion in the mold mold according to the fourth embodiment.
  • it is a 1st side view including a partial cross section which shows the state which the semiconductor device formed by the mold mold is mounted on an electronic circuit board.
  • it is a second side view including a partial cross section which shows the state which the semiconductor device formed by the mold mold is mounted on an electronic circuit board.
  • It is a top view which shows the structure of the lower mold in the mold mold which concerns on embodiment 5. It is a top view which shows one step of the manufacturing method of the semiconductor device using the mold mold shown in FIG. 50 in the same embodiment.
  • Embodiment 1 The semiconductor device, the semiconductor manufacturing device, and the like according to the first embodiment will be described.
  • the semiconductor device manufactured by the semiconductor manufacturing device will be described.
  • the semiconductor device 1 as a power semiconductor device the power semiconductor element 21 and the IC element 29 as semiconductor elements are mounted on the lead frame 45, respectively.
  • the lead frame 45 is sealed with a mold resin 33 as a sealing material together with the power semiconductor element 21 and the like.
  • the mold resin 33 has a first side portion 33a, a second side portion 33b, a third side portion 33c, a fourth side portion 33d, a first main surface 33e, and a second main surface 33f.
  • the first side portion 33a and the second side portion 33b face each other with a distance in the X-axis direction and extend in the Y-axis direction, respectively.
  • the third side portion 33c and the fourth side portion 33d face each other with a distance in the Y-axis direction and extend in the X-axis direction, respectively.
  • the first main surface 33e and the second main surface 33f face each other with a distance in the Z-axis direction.
  • the first side portion 33a has a resin injection mark 34a as a first sealing material mark.
  • the resin injection mark 34a is a resin mark that remains at a position corresponding to the resin injection gate portion for injecting the mold resin (fluid resin).
  • the second side portion 33b has a resin reservoir mark 34b as a second sealing material mark.
  • the resin reservoir mark 34b is a resin mark that remains at a position corresponding to the resin reservoir gate portion.
  • the resin reservoir mark 34b is located at a position on the second side portion facing the resin injection mark 34a in the X-axis direction.
  • the area of the resin reservoir mark 34b is smaller than the area of the resin injection mark 34a.
  • FIG. 1 shows a convex resin mark 34 protruding from the surface of the mold resin 33.
  • a concave resin mark 34 recessed from the surface of the mold resin 33 may be formed depending on how the mold resin 33 is removed from the mold.
  • a concave resin injection mark 34a remains on the first side portion 33a.
  • a concave resin reservoir mark 34b remains on the second side portion 33b.
  • a concave resin injection mark 34a may remain on the first side portion 33a
  • a convex resin reservoir mark 34b may remain on the second side portion 33b.
  • a convex resin injection mark 34a remains and a concave resin reservoir mark 34b remains (not shown).
  • the lead frame 45 includes a power lead terminal 5, a power lead 3, a lead step portion 7, a large die pad 9, a small die pad 15 (15a, 15b, 15c), an IC lead 23, an IC lead terminal 25, and the like.
  • the small die pad 15 includes three small die pads 15a, 15b and 15c.
  • the large die pad 9 or the like on which the power semiconductor element 21 is mounted is arranged at a position lower than the position (height) of the power lead 3 in the Z-axis direction.
  • the large die pad 9 and the like are arranged on the first main surface 11e side of the mold resin 33 with respect to the position of the power lead 3 in the Z-axis direction.
  • the distance from the large die pad 9 to the first main surface 11e is defined as the distance L1.
  • the distance from the large die pad 9 to the second main surface 11f is defined as the distance L2.
  • the distance L1 is shorter than the distance L2. That is, the thickness of the portion of the mold resin 33 that covers the side (first surface) of the large die pad 9 opposite to the side on which the power semiconductor element 21 is mounted is such that the power semiconductor element 21 of the large die pad 9 is mounted. It is thinner than the thickness of the portion of the mold resin 33 that covers the side (second surface).
  • the mold mold is provided with a resin reservoir gate portion and a resin reservoir portion so as not to generate voids in the portion of the mold resin 33 that covers the first surface of the large die pad 9.
  • three power semiconductor elements 21 are mounted on the large die pad 9. Each of the three power semiconductor elements 21 is bonded to the large die pad 9 by the conductive adhesive 19. For example, one power semiconductor element 21 is mounted on each of the small die pads 15a, 15b, and 15c. One power semiconductor element 21 is bonded to each of the small die pads 15a, 15b, and 15c by a conductive adhesive (not shown).
  • the power semiconductor element 21 is, for example, an IGBT (Insulated Gate Bipolar Transistor) or a MOSFET (Metal Oxide Semiconductor Field Effect Transistor) or the like.
  • the large die pad 9 is connected to the power lead 3 via the lead step portion 7.
  • Each of the small die pads 15a, 15b, 15c has a bent portion 13.
  • the bent portion 13 has an X-direction component and a Y-direction component and extends obliquely.
  • the X coordinate value of the tip 17a of the small die pad 15a is larger than the X coordinate value of the end portion 11a of the lead step portion 7. It is desirable that the X-coordinate value of the tip 17b of the small die pad 15b is larger than the X-coordinate value of the end portion 11b of the lead step portion 7. It is desirable that the X-coordinate value of the tip 17c of the small die pad 15c is larger than the X-coordinate value of the end portion 11c of the lead step portion 7.
  • the large die pad 9 is mounted with the three power semiconductor elements 21 and the three small die pads 15a are mounted.
  • 15b and 15c can each be equipped with one power semiconductor element 21.
  • the power semiconductor element 21 can be efficiently arranged within the limited volume in the semiconductor device 1, which can contribute to the miniaturization of the semiconductor device 1.
  • Each of the small die pads 15a, 15b, and 15c is connected to the power lead 3 via the bent portion 13 of the small die pad 15 and the lead stepped portion 7.
  • the power lead 3 is connected to the power lead terminal 5.
  • the power lead terminal 5 projects outward from the third side portion 33c of the mold resin 33.
  • IC elements 29 are mounted on the IC lead 23.
  • Each of the two IC elements 29 is bonded to the IC lead 23 by a conductive adhesive 27.
  • the IC lead 23 is connected to the IC lead terminal 25.
  • the IC lead terminal 25 projects outward from the fourth side portion 33d of the mold resin 33.
  • the corresponding power semiconductor element 21 and the IC element 29 are electrically connected by a wire 31.
  • the corresponding power semiconductor element 21 and the power lead 3 are electrically connected by a wire 31.
  • the corresponding IC element 29 and the IC lead 23 are electrically connected by a wire 31.
  • the wire 31 is formed of, for example, a metal such as gold, silver, copper or aluminum. In this way, an electric circuit is formed on the lead frame 45.
  • the material or thickness of the wire 31 may be appropriately changed depending on the portion to be connected. Further, the portion to which the wire 31 is connected may be subjected to a treatment such as a coating for increasing the bonding force of the wire 31.
  • the semiconductor device 1 a structure in which the power lead terminal 5 and the IC lead terminal 25 protrude from the mold resin 33 is given as an example.
  • the semiconductor device 1 may have a structure in which the power lead terminal 5 and the IC lead terminal 25 are exposed on the surface of the mold resin 33 so as not to protrude from the mold resin 33.
  • the lead step portion 7 connected to the large die pad 9 has two stages of the lead step portion 7a and the lead step portion 7b.
  • the position of the power lead terminal 5 in the height direction is in the height direction of the large die pad 9. It may be the same position as the position.
  • the case where the voltage applied to the power lead terminal 5 is relatively low is, for example, the case of 24V or the like. In this case, the step of forming the lead step portion 7 on the lead frame becomes unnecessary, which can contribute to the reduction of the production cost.
  • the mold mold has a plurality of cavities into which the mold resin is injected.
  • the cavity for example, there is a mold mold provided with a first cavity and a second cavity. The first cavity and the second cavity are connected by a runner. The mold resin injected into the first cavity is injected into the second cavity via the runner. A part of the molded resin injected into the second cavity flows into the resin reservoir through the resin reservoir gate.
  • resin marks caused by the resin injection gate portion and resin marks caused by the runner are left.
  • the resin injection mark 34a is left as the resin mark 34 caused by the resin injection gate portion.
  • the runner mark 34c is left as the resin mark 34 caused by the runner.
  • the area of the resin injection mark 34a and the area of the runner mark 34c are substantially the same.
  • Resin marks caused by the runner and resin marks caused by the resin reservoir gate are left on the surface of the semiconductor device sealed with the mold resin injected into the second cavity. As shown in FIG. 1, the resin injection mark 34a is left as the resin mark 34 caused by the runner mark. As the resin mark 34 caused by the resin storage gate portion, the resin storage mark 34b is left.
  • the runner mark 34c By injecting the mold resin into the second cavity from the runner, the runner mark 34c can be regarded as the resin injection mark 34a.
  • the area of the resin reservoir mark 34b is smaller than the area of the runner mark 34c (resin injection mark 34a).
  • the mold mold 51 has a lower mold 53 and an upper mold 55.
  • a cavity 52 is formed in the mold mold 51.
  • the cavity 52 extends in the X-axis direction as the first direction.
  • the cavity 52 includes, for example, a first cavity 52a and a second cavity 52b.
  • the mold mold 51 is formed with a resin injection gate portion 59 for injecting the mold resin into the first cavity 52a.
  • the mold mold 51 is formed with a runner 61 that communicates between the first cavity 52a and the second cavity 52b. The mold resin injected into the first cavity 52a is injected into the second cavity 52b via the runner 61.
  • the mold mold 51 is formed with a resin reservoir 63 into which a part of the fluid resin to be the mold resin injected into the second cavity 52b flows.
  • the mold mold 51 is formed with a resin reservoir gate portion 65 that communicates the second cavity 52b and the resin reservoir portion 63.
  • the resin reservoir 63 and the resin reservoir gate 65 are formed in, for example, the lower mold 53.
  • the resin reservoir 63 is arranged on the other side separated from the one side on which the resin injection gate portion 59 is arranged with the cavity 52 interposed therebetween.
  • the resin reservoir gate portion 65 includes an inclined portion 67 and a movable pin 69 as a shutter portion.
  • the movable pin 69 is movable in the vertical direction (Z-axis direction).
  • the opening cross-sectional area (for example, width LY2 ⁇ height LZ2) as the second opening cross-sectional area of the portion of the resin reservoir gate portion 65 where the inclined portion 67 is located is the resin injection gate portion. It is set to be smaller than the opening cross-sectional area (for example, width LY1 ⁇ height LZ1) as the first opening cross-sectional area of 59.
  • the tip portion of the movable pin 69 is at the same position as the surface of the lower mold 53.
  • the movable pin 69 is movable in a manner of projecting in the height direction (Z-axis direction) from the state of being housed in the lower mold 53.
  • the movable pin 69 is required to be prevented from being worn by moving in the Z-axis direction.
  • the movable pin 69 is required to function as a shutter portion for preventing the mold resin from flowing. Therefore, it is desirable that the tip portion of the movable pin 69 is separated from the frame 37 (lower surface) by, for example, about 50 ⁇ m in the protruding state.
  • FIG. 10 in a state where the frame 37 in the lead frame is sandwiched between the lower mold 53 and the upper mold 55, the lower mold 53 (upper surface 53a) and the upper mold (lower surface 55a) are sandwiched between the lower mold 53 and the upper mold 55.
  • a mold mold 51 is shown in which a gap corresponding to the thickness of the frame 37 is formed.
  • the mold mold 51 is not limited to such a mode, and as shown in FIG. 11, for example, a mold mold 51 having a portion in which the lower mold 53 (upper surface 53a) and the upper mold 55 (lower surface 55a) come into contact with each other.
  • the mold mold 51 may be used.
  • the inclined portion 67 is inclined so as to descend from the top portion 67a toward the resin reservoir portion 63.
  • the opening cross-sectional area (for example, LY3 ⁇ LZ3) as the third opening cross-sectional area immediately before flowing into the resin reservoir 63 of the resin reservoir gate portion 65 is the opening cross-sectional area of the portion of the resin reservoir gate 65 where the inclined portion 67 is located. It is set to be larger than (for example, LY2 ⁇ LZ2). As will be described later, by providing the inclined portion 67, the cured mold resin can be easily released from the lower mold 53.
  • the portion 66a having the second opening cross-sectional area (LY2 ⁇ LZ2) corresponds to the first portion of the sealing material storage gate portion.
  • the portion 66b having the third opening cross-sectional area (LY3 ⁇ LZ3) corresponds to the second portion of the sealing material storage gate portion.
  • the height LZ2 (see FIG. 10) of the portion where the inclined portion 67 is located is preferably about 300 to 500 ⁇ m, for example. It is desirable that the height LZ3 (see FIG. 10) of the resin reservoir gate portion 65 immediately before the mold resin flows into the resin reservoir 63 has a height of about twice the height LZ2, for example. About 600 to 1000 ⁇ m is desirable.
  • the movable pin 69 is required to reduce sliding friction with the lower mold 53 when moving in the vertical direction. Therefore, as shown in FIG. 13, the cross-sectional shape (XY plane) of the movable pin 69 is preferably circular or elliptical, for example.
  • the diameter D of the movable pin 69 is larger than the width W in the Y direction of the resin reservoir gate portion 65 so that the mold resin does not flow when the movable pin 69 protrudes to the height immediately before the contact with the frame. Also, for example, it is desirable that it is as small as about 30 ⁇ m.
  • the distance L18 from the top 67a of the inclined portion 67 to the center of the movable pin 69 in the resin reservoir gate portion 65 is preferably as short as possible so that the movable pin 69 does not overlap with the inclined portion 67.
  • the movable pin 69 has a smaller diameter of the movable pin 69 and a circular cross-sectional shape, so that sliding friction can be reduced and the movable pin 69 is damaged. It becomes difficult to do.
  • the width LY3 of the resin injection gate portion 59 needs to secure a certain cross-sectional area in order to release the mold resin that has flowed into the resin reservoir 63 from the lower mold 53. For example, about 0.5 to About 1.5 mm is desirable.
  • the width W of the resin reservoir gate portion 65 is preferably 500 ⁇ m or more so that the mold resin that has flowed into the resin reservoir 63 does not remain in the lower mold 53.
  • the mold resin is suppressed from flowing into the resin reservoir 63, and the mold resin flows into the resin reservoir 63.
  • the mold resin can be reliably filled in the cavity 52 while minimizing the amount of resin.
  • the volume of the resin reservoir 63 is adjusted by the length L11 (X-axis direction), the length L10 (Y-axis direction), and the length L12 (Z-axis direction).
  • the resin reservoir gate portion 65 and the resin reservoir portion 63 are formed in the lower mold 53 .
  • the resin reservoir gate portion 65 and the resin reservoir portion 63 may be formed on the upper mold 55.
  • the movable pin 69 protrudes from the state of being housed in the upper mold 55 to the position immediately before contacting the frame.
  • the lead frame 45 (see FIG. 15) is formed by etching the metal plate or punching the metal plate. A large die pad 9, a small die pad 15, an IC lead 23, and the like are formed on the lead frame 45. Next, the lead step portion 7 (see FIG. 15) is formed by bending the lead frame 50 using a bending die.
  • the power semiconductor element 21 is bonded to each of the large die pad 9 and the small die pad 15 with a conductive adhesive (see FIG. 15). Further, the IC element 29 is bonded to the IC lead 23 with a conductive adhesive (see FIG. 15). Next, the wire 31 is connected. In this way, as shown in FIG. 15, a plurality of semiconductor devices including the lead frame 45 on which the power semiconductor element 21 and the like are mounted are formed before being sealed by the mold resin. One semiconductor device (the part on the left side of the lead frame 45) and the other semiconductor device (the part on the right side of the lead frame 45) arranged in the X-axis direction are connected by a tie bar 35.
  • the semiconductor device is sealed in the mold resin by the transfer molding method.
  • a mold mold 51 including a lower mold 53 and an upper mold 55 is prepared.
  • a lead frame 45 (see FIG. 15) on which a power semiconductor element 21 or the like is mounted is arranged between the lower mold 53 and the upper mold 55. It is desirable that the resin injection gate portion 59 is located closer to the large die pad 9 than the small die pad 15 in the lead frame 45.
  • the area of the large die pad 9 is larger than the area of the small die pad 15. Therefore, it may be difficult to fill the region between the large die pad 9 and the lower mold 53 (bottom surface of the cavity 52) with the mold resin. Therefore, by arranging the resin injection gate portion 59 near the large die pad 9, the flow of the molded resin in a low viscosity state in the region between the large die pad 9 and the lower mold 53 (bottom surface of the cavity 52). The resin can be reliably filled.
  • the position of the resin injection gate portion 59 (Y-axis direction) and the position of the runner 61 (Y-axis direction) are the positions of the large die pad 9. It is desirable that it is closer to the center position (Y-axis direction).
  • the position of the resin injection gate portion 59 (Y-axis direction) and the position of the runner 61 (Y-axis direction) are substantially the same.
  • the resin reservoir 63 and the second cavity 52b are connected to each other via the resin reservoir gate 65.
  • the movable pin 69 is located above, and the resin reservoir gate portion 65 is in a closed state.
  • the tablet resin 81 is loaded into the plunger 57.
  • the plunger 57 is raised while melting the tablet resin 81, so that the molten fluid resin that becomes the mold resin is released from the resin injection gate portion 59 to the cavity 52. It is injected into (52a). The injected fluid resin is filled in the first cavity 52a and then reaches the runner 61.
  • the fluidized resin that has reached the runner 61 flows through the runner 61 and is injected into the second cavity 52b.
  • the distance from the large die pad 9 and the small die pad 15 to the upper mold 55 (the upper surface of the second cavity 52b) is larger than the distance from the large die pad 9 and the small die pad 15 to the lower mold 53 (the bottom surface of the second cavity 52b). long.
  • the fluidized resin 83 is more likely to flow toward the region RC1 of the cavity 52 above the large die pad 9 and the small die pad 15 than the region RC2 of the cavity 52 below the large die pad 9 and the small die pad 15.
  • the fluidized resin 83 that has flowed through the region RC1 finally flows from the region RC1 to the region RC2, and the fluidized resin 83 that has flowed through the region RC2 is at a position 87 below the small die pad 15 (15C) (region 85). ) Will eventually join.
  • the air in the cavity 52 is discharged from the air vent 79 provided in the cavity 52.
  • the air vent 79 is arranged around the cavity 52.
  • the air vent 79 is composed of recesses provided in the upper mold 55 or the lower mold 53, for example, having a depth of about 100 ⁇ m. The air vent 79 will be described in a little more detail later.
  • a process that does not leave voids in the fluidized resin 83 is performed.
  • the movable pin 69 is lowered to open the resin reservoir gate portion 65.
  • the fluidized resin 83 in the second cavity 52b tends to flow into the resin reservoir portion 63 via the resin reservoir gate portion 65.
  • the portion of the frame 37 is shown by a chain double-dashed line. Also in the following drawings, the portion of the frame 37 is indicated by a chain double-dashed line as needed.
  • the portion of the fluidized resin 83 located in the region 85 below the small die pad 15 (15C) also flows toward the resin reservoir gate portion 65.
  • the void is excluded from the region RC2. In this way, the electrical insulation of the mold resin 33 (see FIG. 3 and the like) on the first main surface 33e side can be ensured.
  • a process (process) for removing the mold mold 51 is performed. As shown in FIG. 22, the plunger 57 is pushed upward (see arrow). As a result, the mold resin 33 that seals the power semiconductor element 21 and the like is separated from the lower mold 53. At this time, it is assumed that the mold resin 99 that has flowed into the resin reservoir 63 and has been cured does not come off from the lower mold 53.
  • the movable pin 69 is also pushed upward (see the arrow).
  • the mold resin 99 can be reliably removed from the lower mold 53.
  • the mold resin 99 removed from the lower mold 53 is removed from the frame 37 by a mold punch (not shown). Further, the mold resin portion located at the runner and the mold resin portion located at the resin injection gate portion are separated by a mold punch (not shown). In this way, the semiconductor device 1 sealed with the mold resin 33 shown in FIGS. 1 to 3 and the like is manufactured.
  • the electrical insulation of the mold resin 33 (see FIG. 3 and the like) on the first main surface 33e side can be ensured. This will be described in comparison with the method for manufacturing a semiconductor device according to a comparative example.
  • an air vent 79 is located at a portion of the mold mold 51 facing the runner 61 with the second cavity 52b interposed therebetween.
  • the air vent 79 is one of a plurality of air vents arranged around the cavity 52.
  • the same members as the mold mold 52 and the like according to the embodiment are designated by the same reference numerals, and the description thereof will not be repeated unless necessary.
  • the fluid resin 83 injected from the resin injection gate portion 59 into the first cavity 52a is injected into the second cavity 52b via the runner 61.
  • the fluid resin 83 flowing through the region RC1 and the fluid resin 83 flowing through the region RC2 merge in the region 85 (position 87) below the small die pad 15 (15C).
  • air is likely to be caught in the fluidized resin 83.
  • a plurality of air vents including the air vent 79 are arranged in the mold mold 51, and the air in the fluidized resin 83 is discharged from the air vent.
  • the air caught in the fluidized resin 83 is difficult to be discharged.
  • the air entrained may not be discharged from the air vent and may remain as voids in the fluidized resin 83. Therefore, in the completed semiconductor device, it is assumed that the remaining voids deteriorate the electrical insulation of the mold resin 33 (see FIG. 3 and the like) on the first main surface 33e side.
  • the fluid resin 83 flowing through the region RC1 and the fluidized resin 83 flowing through the region RC2 are in the region 85 (position 87). ),
  • the fluidized resin 83 tries to flow from the resin reservoir gate portion 65 into the resin reservoir portion 63.
  • the void is excluded from the region RC2.
  • the electrical insulation of the mold resin 33 (see FIG. 3 and the like) on the first main surface 33e side can be ensured.
  • the molded resin portions located at the resin injection gate portion 59, the runner 61, and the resin reservoir gate portion 65 were separated, as described at the beginning.
  • resin marks 34 On the surface of the mold resin 33 of the semiconductor device 1, resin marks 34 (see FIGS. 1 and 6) whose surface roughness is coarser than that of other portions remain.
  • a runner mark 34c remains on the first side portion 33a, and a resin reservoir mark 34b remains on the second side portion 33b. Since the cross-sectional area of the runner and the cross-sectional area of the resin injection gate portion are the same and the fluid resin is injected from the runner, the runner mark 34c can be regarded as the resin injection mark 34a.
  • the resin injection mark 34a remains on the first side portion 33a and the runner mark 34c remains on the second side portion 33b.
  • the area of the resin injection mark 34a and the area of the resin reservoir mark 34b are substantially the same.
  • the mold resin 99 removed from the lower mold 53 is removed from the frame 37 and the mold resin 33 serving as the semiconductor device by a mold punch. explained.
  • the frame 37 may be provided with a notch 39 as shown in FIG. 25.
  • the cutout portion 39 is formed in such a manner that the resin reservoir portion 63 is exposed while the lead frame 45 is arranged in the mold mold 51 (lower mold 53). As a result, when the mold resin 99 is removed from the mold resin 33 by the mold punch, the mold punch can be brought into direct contact with the mold resin 99 to be efficiently removed.
  • the tip of the movable pin 69 is separated from the lower surface of the upper mold 55 by about 50 ⁇ m when the resin reservoir gate 65 is closed. It is desirable that it protrudes to the position.
  • the resin reservoir gate portion 65 is arranged at the position closest to the resin injection gate portion 59.
  • the mold mold 51 in which the position of the resin reservoir gate portion 65 (Y-axis direction) and the position of the runner 61 (resin injection gate portion 59) (Y-axis direction) are the same has been described.
  • the resin reservoir gate portion 65 may be arranged at a position (Y-axis direction) away from the position (Y-axis direction) of the runner 61 (resin injection gate portion 59).
  • the mold mold 51 (lower metal) in which the resin reservoir gate portion 65 is arranged at a position (Y-axis direction) away from the position of the runner 61 (Y-axis direction) in the positive Y-axis direction (Y-axis direction).
  • Type 53 may be applied. In this case, the time required for the fluidized resin 83 injected from the runner 61 to reach the resin reservoir gate portion 65 becomes longer.
  • the fluid flows.
  • the void is removed from the region 85 (region RC2) until the resin 83 reaches the resin reservoir gate portion 65 and tries to flow into the resin reservoir portion 63.
  • the electrical insulation of the mold resin 33 (see FIG. 3 and the like) on the first main surface 33e side can be ensured.
  • the volume of the resin reservoir 63 is large.
  • the length L11 of the resin reservoir 63 in the X-axis direction is maintained and the length L10 in the Y-axis direction is set long, as shown in FIG. 28. Is desirable.
  • the fluid flows. While the resin 83 flows into the resin reservoir 63, the voids are reliably removed from the region 85 (region RC2). As a result, the electrical insulation of the mold resin 33 (see FIG. 3 and the like) on the first main surface 33e side can be reliably ensured.
  • the length of the resin reservoir in the Y-axis direction is set in the Y-axis direction. It is desirable to set the length so that it does not exceed the length of the cavities lined up, and to increase the length in the X-axis direction. It is assumed that such a mold mold 51 is used to apply a lead frame 45 (see FIG. 25) including a frame 37 provided with a notch 39. In this case, it is desirable that the length of the resin reservoir 63 in the X-axis direction does not exceed the width of the frame (the length in the X-axis direction).
  • the length L11 of the resin reservoir 63 in the X-axis direction exceeds the width of the frame 37.
  • the bottom of the resin reservoir 63 is at a position (height) equal to or higher than the bottom surface of the cavity 52.
  • the upper mold 55 of the mold mold 51 may also be provided with a resin storage portion 63 in which a region for storing the fluid resin is secured.
  • the upper surface of the resin reservoir 63 must be at a position (height) that does not exceed the upper surface of the cavity 52. Is desirable.
  • a sufficient volume of the resin reservoir 63 can be secured, and even if voids remain in the fluid resin 83 portion located in the region 85 (see FIG. 18 and the like).
  • the voids can be reliably removed from the region 85 while the fluidized resin 83 attempts to flow into the resin reservoir 63.
  • the fluidized resin 83 tries to flow from the resin reservoir gate portion 65 into the resin reservoir portion 63, so that the fluidized resin 83 is tentatively located in the region 85. Even if the void remains in the portion, the void will be excluded from the region RC2. As a result, the electrical insulation of the mold resin 33 (see FIG. 3 and the like) on the first main surface 33e side can be ensured.
  • the thickness of the mold resin 33 corresponding to the distance L1 (see FIG. 3) from the large die pad 9 to the first main surface 11e is set to about 500 ⁇ m.
  • the thickness of the mold resin 33 of the semiconductor device 1 in the Z-axis direction is about 3.5 mm.
  • the volume of the resin reservoir 63 is used. Therefore, a volume of about one-third of the volume of the mold resin 33 of the semiconductor device 1 is required.
  • the mold mold 51 is provided with a resin reservoir gate portion 65.
  • the opening cross-sectional area of the resin reservoir gate portion 65 is smaller than the opening cross-sectional area of the resin injection gate portion 59.
  • the resin storage gate portion 65 is provided with a movable pin 69 that controls the flow of the flowing resin into the resin storage portion 63.
  • the movable pin 69 may simply have a function of reliably removing the mold resin 99 from the lower mold 53.
  • the fluidized resin 83 injected into the first cavity 52a from the resin injection gate portion 59 flows through the runner 61 and is injected into the second cavity 52b.
  • the cross-sectional shape of the resin injection gate portion 59 and the cross-sectional shape of the runner 61 are different. , It is desirable that they have the same cross-sectional shape.
  • the cross-sectional shape of the resin reservoir gate portion 65 is smaller than the cross-sectional shape of the resin injection gate portion 59 (runner 61).
  • the area of the resin injection mark 34a and the area of the runner mark 34c left on the surface of the semiconductor device 1 sealed in the first cavity 52a become substantially the same area (see FIG. 6). ).
  • the area of the resin reservoir mark 34b left on the surface of the semiconductor device 1 sealed in the second cavity 52b is smaller than the area of the runner mark 34c (resin injection mark 34a) (see FIG. 1).
  • the resin mark 34 including the resin reservoir mark 34b remains on the surface of the semiconductor device 1, and can be easily confirmed from the appearance (mold resin 33) of the semiconductor device 1.
  • Air vent in mold mold As described above, while the fluidized resin 83 is gradually filled in the cavity 52, the air in the cavity 52 is discharged from the air vent 79 formed in the mold mold 51 (see FIG. 18). ..
  • FIG 32 and 33 show an air vent 79 located near the resin reservoir 63 in the mold mold 51 as an example of the air vent 79.
  • the upper mold 55 is provided with an air vent 79a.
  • the lower mold 53 is provided with an air vent 79b.
  • the air vent 79b communicates with the resin reservoir 63.
  • the gap as the air vent 79 In order to efficiently discharge the air in the cavity 52, it is necessary to increase the gap as the air vent 79. However, for example, if the height LZ4 of the gap as the air vent 79a provided in the upper mold 55 is increased, there is a high possibility that the fluid resin leaks excessively. Therefore, by providing the air vent 79b on the lower mold 53 so as to face the air vent 79a in the height direction (Z axis), the height of the gap as the air vent 79 can be secured.
  • the resin reservoir 63 since the resin reservoir 63 is provided, the curing of the fluid resin flowing into the resin reservoir 63 is promoted, and the leakage of the fluid resin from the air vent 79b communicating with the resin reservoir 63 is suppressed. Will be done. As a result, the height LZ5 of the gap as the air vent 79b can be increased as compared with the case where the resin reservoir 63 is not provided. As a result, the air in the cavity 52 can be more efficiently discharged to the outside of the mold mold 51.
  • the air vent 79a and the air vent 79b are arranged at positions facing each other in the height direction.
  • the width LY1 of the air vent 79a and the width LY2 of the air vent 79b may be the same width or different widths from each other. Further, the center position of the air vent 79a in the width direction (Y-axis direction) and the center position of the air vent 79b in the width direction (Y-axis direction) may be the same position or may be offset from each other.
  • Embodiment 2 The semiconductor manufacturing apparatus and the like according to the second embodiment will be described.
  • a semiconductor manufacturing apparatus or the like to which a mold mold provided with a plurality of resin reservoirs is applied to one cavity will be described.
  • the mold mold 51 (lower mold 53) is formed with, for example, a resin reservoir 63a and a resin reservoir 63b as the resin reservoir 63.
  • a resin reservoir gate portion 65a that communicates the second cavity 52b and the resin reservoir portion 63a is formed.
  • a resin reservoir gate portion 65b that communicates the second cavity 52b and the resin reservoir portion 63b is formed.
  • the resin reservoir gate portion 65a is arranged at a position (Y-axis direction) separated from the position of the runner 61 (Y-axis direction) in the positive direction of the Y-axis.
  • the resin reservoir gate portion 65b is arranged at a position (Y-axis direction) away from the position of the runner 61 (Y-axis direction) in the negative Y-axis direction. Since the other configurations are the same as the configurations of the mold mold 51 shown in FIGS. 7 and 8, the same members are designated by the same reference numerals, and the description thereof will not be repeated unless necessary. ..
  • a plurality of semiconductor devices including a lead frame on which a power semiconductor element or the like is mounted are formed before being sealed with a mold resin.
  • the semiconductor device is sealed in the mold resin by the transfer molding method.
  • the lead frame 45 on which the power semiconductor element 21 and the like are mounted is arranged in the mold mold 51.
  • the fluidized resin 83 is injected into the cavity 52 (52a) from the resin injection gate portion 59.
  • the fluidized resin 83 injected into the first cavity 52a flows through the runner 61, is injected into the second cavity 52b, and is gradually filled in the second cavity 52b.
  • the fluidized resin 83 that has flowed through the region RC1 finally flows from the region RC1 to the region RC2, and the fluidized resin 83 that has flowed through the region RC2 is below the small die pad 15 (15C). It will eventually merge in region 85 (position 87) (see FIGS. 17 and 19).
  • the resin reservoir gate portions 65 (65a, 65b) are opened in the same manner as in the process shown in FIG.
  • the resin reservoir gate portions 65 (65a, 65b) are opened, the fluidized resin 83 in the second cavity 52b tends to flow into the resin reservoir portion 63a via the resin reservoir gate portion 65a, or the resin reservoir gate It tries to flow into the resin reservoir 63b via the portion 65b.
  • the portion of the fluidized resin 83 located in the region 85 also flows toward the resin reservoir gate portion 65. As a result, even if the void remains in the portion of the fluidized resin 83 located in the region 85, the void is excluded from the region 85.
  • each of the resin reservoir gate portions 65 (65a, 65b) is located away from the position of the runner 61 (Y-axis direction) in the Y-axis direction (positive or negative) (Y-axis direction). Is located in. Therefore, as in the case of the mold mold 51 shown in FIG. 26, the time required for the fluidized resin 83 injected from the runner 61 to reach the resin reservoir gate portion 65 becomes longer.
  • the lead frame may have positioning holes for the mold. In such a case, it is assumed that the length of the resin reservoir in the Y direction is limited, and the volume of the resin reservoir cannot be sufficiently secured.
  • a sufficient volume as the resin reservoir 65 is secured by providing the two resin reservoirs 65a and 65b while avoiding such frame positioning holes (not shown). Can be done. By ensuring a sufficient volume of the resin reservoir 65, even if voids remain in the region 85 (see FIG. 19 and the like), the voids can be reliably eliminated.
  • the mold mold 51 it is possible to suppress wear of the mold punch that flows into the resin reservoir 65 and removes the cured mold resin portion.
  • the mold mold 51 is formed with two resin reservoirs 65a and 65b as resin reservoirs 65.
  • the cross-sectional area of the mold punch that flows into each of the resin reservoirs 65a and 65b and removes the cured mold resin portion can be reduced.
  • wear of the die punch can be suppressed as compared with one die punch having a large cross-sectional area, which can contribute to reduction of production cost.
  • Embodiment 3 The semiconductor manufacturing apparatus and the like according to the third embodiment will be described.
  • a resin reservoir 63a and a resin reservoir 63b are formed as a resin reservoir 63.
  • a resin reservoir gate portion 65a that communicates the second cavity 52b and the resin reservoir portion 63a is formed.
  • a resin reservoir gate portion 65b that communicates the second cavity 52b and the resin reservoir portion 63b is formed.
  • a movable pin as a shutter portion is not arranged in each of the resin reservoir gate portion 65a and the resin reservoir gate portion 65b.
  • the lower mold 53 is formed with a projecting portion 93a projecting toward the resin reservoir 63a and a projecting portion 93b projecting toward the resin reservoir 63b.
  • the frame 37 is supported from below by the portion of the lower mold 53 including the protruding portions 93a and 93b.
  • the length of the resin reservoir 63a where the protrusion 93a is located in the X-axis direction is defined as the length L16a in the Y-axis direction.
  • the length of the resin reservoir 63a in which the protrusion 93a is not located in the X-axis direction in the Y-axis direction is defined as the length L15a. It is desirable that the length L16a is shorter than the length L15a.
  • the length of the resin reservoir 63b where the protrusion 93b is located in the X-axis direction is defined as the length L16b in the Y-axis direction.
  • the length of the resin reservoir 63b in which the protrusion 93b is not located in the X-axis direction in the Y-axis direction is defined as the length L15b. It is desirable that the length L16b is shorter than the length L15b.
  • length L15a and the length L15b may have different lengths or may have the same length.
  • the length L16a and the length L16b may have different lengths or may have the same length.
  • the length of the resin reservoir 63a in which the protrusion 93a is not located in the Y-axis direction is defined as the length L14a in the X-axis direction.
  • the length of the resin reservoir 63b in which the protrusion 93b is not located in the Y-axis direction is defined as the length L14b in the X-axis direction. It is desirable that the length L14a and the length L14b be set to a length of about half the width of the frame 37. As a result, a region for pressing the frame 37 can be secured when the molded resin portion that has flowed into the resin reservoir 63 and is cured is removed by the mold punch.
  • the resin reservoir gate portion 65a is arranged at a position (Y-axis direction) separated from the position of the runner 61 (Y-axis direction) in the positive direction of the Y-axis.
  • the resin reservoir gate portion 65b is arranged at a position (Y-axis direction) away from the position of the runner 61 (Y-axis direction) in the negative Y-axis direction.
  • Each of the resin reservoir gate portion 65a and the resin reservoir gate portion 65b is a small die pad 15 (15C) (see FIG. 19 and the like) in which the fluid resin is finally filled when the lead frame is arranged in the mold mold 51. ) Is located as far as possible from the area 85 (position 87) below.
  • the resin reservoir gate portion 65a is arranged at a position separated from the portion extending in the X-axis direction (upper portion toward the paper surface) of the second cavity 52b in the negative direction of the Y-axis by about 0.5 to 2.0 mm. Is desirable.
  • the resin reservoir gate portion 65b is arranged at a position about 0.5 to 2.0 mm in the positive direction of the Y axis from the portion of the second cavity 52b extending in the X-axis direction (lower portion toward the paper surface). It is desirable to be there. As a result, when the portion of the mold resin that has flowed into the resin reservoir 63 and is cured is removed by the mold punch, it is possible to prevent the mold resin of the semiconductor device from being chipped.
  • the length of the resin reservoir gate portion 65a in the Y-axis direction is defined as the width Wa.
  • the length of the resin reservoir gate portion 65b in the Y-axis direction is defined as the width Wb.
  • the width Wa and the width Wb are preferably, for example, about 0.5 to 1.5 mm so that the molded resin portion that has flowed into the resin reservoir 63 and is cured can easily come off from the lower mold 53.
  • each of the resin reservoir gate portion 65a and the resin reservoir gate portion 65b in the Z direction is short.
  • the length in the Z direction is preferably, for example, about 0.2 to 0.6 mm so that the portion of the molded resin that has flowed into the resin reservoir 63 and is cured can easily come off from the lower mold 53.
  • the length of each of the resin reservoir gate portion 65a and the resin reservoir gate portion 65b in the X-axis direction is defined as the length L17.
  • the length L17 is set to an appropriate length in consideration of the opening cross-sectional area of the resin reservoir gate portion 65 and the like.
  • the semiconductor device is sealed in the mold resin by the transfer molding method.
  • the lead frame 45 on which the power semiconductor element 21 and the like are mounted is arranged in the mold mold 51.
  • notches 41a and 41b are formed in the frame 37 of the lead frame 45.
  • the cutout portion 41a is formed so as to expose the resin reservoir portion 39a.
  • the cutout portion 41b is formed so as to expose the resin reservoir portion 39b.
  • the lead frame 45 is provided with the IC lead 23 and the frame 37.
  • a hanging lead 43 for connecting is arranged.
  • the fluidized resin 83 is injected into the cavity 52 (52a) from the resin injection gate portion 59.
  • the fluidized resin 83 injected into the first cavity 52a flows through the runner 61, is injected into the second cavity 52b, and is gradually filled in the second cavity 52b.
  • the fluidized resin 83 that has flowed through the region RC1 finally flows from the region RC1 to the region RC2, and the fluidized resin 83 that has flowed through the region RC2 is below the small die pad 15 (15C). It will eventually merge in region 85 (position 87) (see FIGS. 17 and 19).
  • the fluidized resin 83 in the second cavity 52b tends to flow into the resin reservoir 63a via the resin reservoir gate 65a, or the resin reservoir It tries to flow into the resin reservoir 63b via the gate 65b.
  • the portion of the fluidized resin 83 located in the region 85 also flows toward the resin reservoir gate portion 65. As a result, even if the void remains in the portion of the fluidized resin 83 located in the region 85, the void is excluded from the region RC2.
  • each of the resin reservoir gate portions 65 is located away from the position of the runner 61 (Y-axis direction) in the Y-axis direction (positive or negative) (Y-axis direction). Is located in.
  • the fluidized resin 83 will flow from the resin reservoir gate portion 65 into the resin reservoir portion 63.
  • the void will be excluded from region 85 (position 87).
  • the electrical insulation of the first main surface 33e side (see FIG. 3) of the mold resin 33 can be reliably ensured.
  • the frame 37 is formed with notches 41a and 41b.
  • the cutout portion 41a is formed so as to expose the resin reservoir portion 39a.
  • the cutout portion 41b is formed so as to expose the resin reservoir portion 39b.
  • the volume of the cutout portions 41a and 41b (the area of the cutout portions 41a and 41b in the XY plane) is used as the volume of the resin reservoir portions 63a and 63b. ⁇ The volume corresponding to the thickness of the frame 37) can be increased.
  • the cutout portions 41a and 41b are formed in the frame 37, the cross-sectional area of the portion connected to the air vent (not shown) becomes larger than that in the case where the notch portion is not formed. As a result, more air can be guided to the air vent, the amount of air taken into the fluidized resin can be reduced, and voids can be suppressed from remaining.
  • the lower mold 53 is formed with a protruding portion 93a and a protruding portion 93b.
  • the mold 53 secures an area for supporting the frame 37. As a result, the hanging lead 43 can be reliably removed.
  • the mold mold 51 may be a mold mold 51 in which the protruding portion 93a and the protruding portion 93b are not formed.
  • the direction in which the resin reservoir gate portions 65 (65a, 65b) extend may be inclined in a direction intersecting the X-axis direction.
  • the resin reservoir gate portion 65a may be tilted in the Y-axis direction (negative direction) by an angle AL1 with respect to the X-axis direction, for example.
  • the resin reservoir gate portion 65b may be inclined in the Y-axis direction (positive direction) by an angle AL2 with respect to the X-axis direction, for example.
  • the flow resistance when the fluid resin flows through the resin reservoir gates 65a and 65b becomes high, and the voids are suppressed while suppressing the amount of the fluid resin flowing into the resin reservoirs 63a and 63b. Can be suppressed from remaining.
  • a step portion 97 may be provided together with the inclined portion 67 on the side of the resin reservoir gate portion 65 in the portion of the resin reservoir portion 63.
  • the mold mold 51 does not necessarily have to be provided with a stepped portion from the viewpoint of securing the volume of the resin reservoir 63 as much as possible. Further, in each of FIGS. 42 and 44, the inclined portion 64 provided in the portion of the resin reservoir 63 where the resin reservoir gate 65 is not located is shown by a dotted line.
  • the resin reservoir 63 of the mold mold 51 described above, by providing the resin reservoir gate 65 having a narrow opening cross-sectional area communicating with the resin reservoir 63, the resin is compared with the method of Comparative Example (Patent Document 1). The flow of the fluidized resin 83 into the reservoir 63 is suppressed. Further, by providing the resin storage gate portion 65a and the resin storage gate portion 65b as the resin storage gate portion 65, the flow of the flowing resin toward the resin storage gate portion 65 is dispersed.
  • the time until the fluidized resin 83 flows into the resin reservoir 63 can be extended. ..
  • the void is formed in the region 85 (by the time the fluidized resin 83 flows into the resin reservoir 63). It can be excluded from position 87). Further, the amount of the fluidized resin 83 flowing into the resin reservoir 63 can be reduced, which can contribute to the reduction of the production cost.
  • resin injection marks 34a and runner marks 34c remain on the surface of the semiconductor device 1 sealed in the first cavity 52a.
  • the area of the resin injection mark 34a and the area of the runner mark 34c are substantially the same (see FIG. 6).
  • a runner mark 34c and a resin reservoir mark 34b remain on the surface of the semiconductor device 1 sealed in the second cavity 52b.
  • the area of the resin reservoir mark 34b is smaller than the area of the runner mark 34c (see FIG. 1).
  • the surface of the resin mark 34 including the resin reservoir mark 34b is rough and can be easily confirmed from the appearance of the semiconductor device 1 (mold resin 33).
  • Embodiment 4 The semiconductor manufacturing apparatus and the like according to the fourth embodiment will be described.
  • a semiconductor manufacturing apparatus or the like to which a mold resin that can be used for mounting the molded resin that has flowed into the resin reservoir 63 and is cured will be described.
  • the mold mold will be explained. As shown in FIG. 47, in the mold mold 51, the resin reservoir gate portion 65 and the resin reservoir portion 63 are formed in the upper mold 55. The position of the ceiling of the resin reservoir 63 (Z-axis direction) is higher than the position of the ceiling of the cavity 52 (Z-axis direction).
  • the distance from the lower end of the upper mold 55 to the ceiling of the cavity 52 is defined as the distance L19a, and the distance from the lower end of the upper mold 55 to the ceiling of the resin reservoir 63 is defined as the distance L19b.
  • the resin reservoir 63 is formed in the upper mold 55 so that the distance L19b is longer than the distance L19a.
  • a lead frame 45 on which a power semiconductor element 21 or the like is mounted is formed in the same manner as in the method for manufacturing a semiconductor device described in the first embodiment (see FIG. 15).
  • the lead frame 45 (see FIG. 15) is arranged in the mold mold 51 shown in FIG. 47.
  • the fluid resin is gradually filled in the cavity 52 in the same manner as in the steps shown in FIGS. 16 to 21.
  • the resin reservoir 63 the fluid resin that has flowed into the resin reservoir 63 is cured.
  • the mold mold 51 is removed.
  • the mold resin 99 (see FIG. 48) that has flowed into the resin reservoir 63 and has been cured is not removed, and the mold resin 99 is left connected to the mold resin 33.
  • the semiconductor device 1 in which the mold resin 99 as the encapsulant mass is connected to the mold resin 33 is completed.
  • the semiconductor device 1 is mounted on the electronic circuit board 101.
  • the semiconductor device 1 is arranged on the electronic circuit board 101 with the conductive adhesive 103 interposed therebetween.
  • the mold resin 99 is fitted into the opening 101a provided in advance in the electronic circuit board 101.
  • the conductive adhesive 103 for example, cream solder or the like is used.
  • the conductive adhesive 103 is melted by a reflow step, and then cooled to cure the conductive adhesive 103, so that the semiconductor device 1 is mounted on the electronic circuit board 101.
  • the above-mentioned semiconductor device 1 can prevent the semiconductor device 1 from being displaced in the reflow process when it is mounted on the electronic circuit board 101. This will be described.
  • the weight of the semiconductor device 1 on which the power semiconductor element or the like is mounted is heavier than the weight of the conventional surface mount component mounted on the electronic circuit board. Further, the adhesive strength of the conductive adhesive 103 before the conductive adhesive 103 is cured is weaker than the bonding strength after the conductive adhesive 103 is cured.
  • the semiconductor device 1 cannot be fixed on the electronic circuit board 101 due to the adhesive force of the conductive adhesive 103, and the semiconductor device It is assumed that 1 is displaced from the mounting position of the electronic circuit board 101.
  • the mold resin 99 is connected to the mold resin 33.
  • the electronic circuit board 101 is formed with an opening 101a into which the mold resin 99 is fitted.
  • the mold resin 99 is fitted into the opening 101a provided in the electronic circuit board 101.
  • the semiconductor device 1 is positioned on the electronic circuit board 101. As a result, it is possible to prevent the semiconductor device 1 from being displaced from the mounting position of the electronic circuit board 101 in the reflow process. Further, the amount of the conductive adhesive 103 can be suppressed to the minimum necessary by suppressing the deviation of the semiconductor device 1 from the mounting position on the electronic circuit board 101.
  • Embodiment 5 The semiconductor manufacturing apparatus and the like according to the fifth embodiment will be described. Here, a semiconductor manufacturing apparatus or the like to which a mold mold provided with a plurality of resin reservoirs is applied will be described.
  • the mold mold 51 (lower mold 53) is formed with, for example, a resin reservoir 63c, a resin reservoir 63d, and a resin reservoir 63e as the resin reservoir 63.
  • the resin reservoir 63c, the resin reservoir 63d, and the resin reservoir 63e are connected in series.
  • a resin reservoir gate portion 65 that communicates the resin reservoir portion 63c and the second cavity 52b is formed.
  • a gate portion 70 between the resin reservoirs is formed as a gate portion between the sealing material reservoirs communicating between the resin reservoirs 63.
  • a gate portion 70a between the resin reservoirs is formed as a gate portion 70 between the resin reservoirs that communicates the resin reservoir 63c and the resin reservoir 63d.
  • a gate portion 70b between the resin reservoirs is formed as a gate portion 70 between the resin reservoirs that communicates the resin reservoir 63d and the resin reservoir 63e.
  • the cross-sectional areas of the resin reservoir gate portion 65 and the gate portions 70a and 70b between the resin reservoir portions may be the same cross-sectional area or different cross-sectional areas, but it is desirable that the cross-sectional areas are smaller than the cross-sectional area of the resin injection gate portion 59.
  • a lead frame 45 on which a power semiconductor element 21 or the like is mounted is formed in the same manner as in the method for manufacturing a semiconductor device described in the first embodiment (see FIG. 15).
  • the lead frame 45 is arranged on the mold mold 51.
  • the fluid resin is gradually filled in the cavity 52 in the same manner as in the steps shown in FIGS. 16 to 21.
  • the fluidized resin in the second cavity 52b flows into the resin reservoir 63c through the resin reservoir gate 65.
  • the resin reservoir 62 is filled with the fluid resin, it flows into the resin reservoir 63d through the gate 70a between the resin reservoirs.
  • the fluidized resin that has flowed into the resin reservoir 63d flows into the resin reservoir 63e via the gate 70b between the resin reservoirs.
  • the mold mold 51 is removed to complete the semiconductor device sealed with the mold resin.
  • the mold mold 51 is formed with a resin reservoir 63c, a resin reservoir 63d, and a resin reservoir 63e as the resin reservoir 63.
  • the resin reservoir 63c, the resin reservoir 63d, and the resin reservoir 63e are connected in series by a gate 70 between the resin reservoirs.
  • the resin reservoir 63c As compared with the case of using a mold mold in which one resin reservoir having the same volume as the combined volume of the resin reservoir 63c, the resin reservoir 63d, and the resin reservoir 63e is used, the resin reservoir 63c , The speed of the fluid resin that is sequentially filled in the resin reservoir 63d and the resin reservoir 63e is reduced.
  • a power semiconductor element is taken as an example as a semiconductor element, but it can also be applied to a semiconductor element other than the power semiconductor element.
  • the semiconductor device includes the following aspects.
  • the semiconductor element mounted on the die pad and It has a die pad and a sealing material for sealing the semiconductor element in a manner in which a part of the lead terminal is exposed.
  • the sealing material has a first side portion and a second side portion facing each other with a distance in the first direction. There is a sealant mark on the first side portion, A semiconductor device in which a lump of encapsulant protrudes from the second side portion.
  • Appendix 2 Equipped with an electronic circuit board with an opening formed The semiconductor device according to Appendix 1, wherein the encapsulant mass is mounted on an electronic circuit board in a state of being fitted into the opening.
  • the present disclosure is effectively used for semiconductor devices manufactured by the transfer molding method and methods for manufacturing the semiconductor devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

モールド金型(51)は、キャビティ(52)へ向けてモールド樹脂となる流動樹脂を注入する樹脂注入ゲート部(59)と、キャビティ(52)を流れてきた流動樹脂を溜める樹脂溜め部(63)と、樹脂溜めゲート部(65)とを備えている。樹脂溜め部(63)は、キャビティ(52)を挟んで樹脂注入ゲート部(59)が配置されている側とは反対の側に設けられている。樹脂溜めゲート部(65)は、キャビティ(52)と樹脂溜め部(63)との間を連通する。樹脂溜めゲート部(65)の開口断面積は、樹脂注入ゲート部(59)の開口断面積よりも小さい。

Description

半導体製造装置およびそれを用いた半導体装置の製造方法ならびに半導体装置
 本開示は、半導体製造装置およびそれを用いた半導体装置の製造方法ならびに半導体装置に関する。
 産業機器から家電・情報端末に至るまで、あらゆる製品にパワー半導体装置が普及しつつある。家電に搭載されるモジュールについては、小型化が特に求められている。パワー半導体装置は、高電圧・大電流を扱うため発熱量が大きく、定まった容量の電流を通電させるためには、外部に効率的に放熱するとともに、外部との電気的な絶縁性を保つ必要がある。
 パワー半導体装置では、パワー半導体素子等を搭載したダイパッドを含むリードフレームが、パワー半導体素子等とともに封止材によって封止される。封止材によって封止する際には、トランスファーモールド法が適用される。トランスファーモールド法では、リードフレームが、モールド金型内に配置され、そのモールド金型内に封止材を注入することによって、パワー半導体素子等が封止される。
 パワー半導体装置では、パワー半導体素子から発生する熱を効率的に外部へ放熱する必要がある。このため、パワー半導体素子が搭載されるダイパッドは、パワー半導体素子が搭載されている側とは反対側を覆う封止材の厚さが、パワー半導体素子が搭載されている側を覆う封止材の厚さよりも薄くなるように配置されている。
 モールド金型内にリードフレームが配置される際には、ダイパッドにおけるパワー半導体素子が搭載されている側とは反対側から下金型(キャビティの底面)までの下方領域の距離(高さ)が、ダイパッドにおけるパワー半導体素子が搭載されている側から上金型(キャビティの上面)までの上方領域の距離(高さ)よりも短くなる。
特開平5-326594号公報
 モールド金型内に封止材を注入する際に、高さ方向の距離が相対的に短い下方領域では、高さ方向の距離が相対的に長い上方領域に比べて、気泡が巻き込まれやすく、封止材中にボイドが残存することがある。ボイドが残存すると封止材の電気的な絶縁性が低下し、パワー半導体装置としての信頼性が低下するおそれがあり、対策が講じられている(たとえば、特許文献1)。
 本開示は、このような状況に鑑みてなされたものであり、一つの目的は、封止材中にボイドが残存するのを抑制する半導体製造装置を提供することであり、他の目的は、そのような半導体製造装置を適用した半導体装置の製造方法を提供することであり、さらに、他の目的は、そのような製造方法によって製造された半導体装置を提供することである。
 本開示に係る半導体製造装置は、下金型と上金型とを含むモールド金型によって第1方向に延在するキャビティが形成され、キャビティ内に半導体素子を搭載したリードフレームを配置し、キャビティ内に封止材を注入することによって、リードフレームを半導体素子とともに封止する半導体製造装置であって、封止材注入ゲート部と一つ以上の封止材溜め部と封止材溜めゲート部とを備えている。封止材注入ゲート部は、キャビティへ向けて封止材を注入する。一つ以上の封止材溜め部は、キャビティを挟んで封止材注入ゲート部が配置されている一方側とは第1方向に距離を隔てられた他方側に設けられ、キャビティを経て流れ込む封止材を溜める。封止材溜めゲート部は、キャビティと封止材溜め部との間を連通する。封止材注入ゲート部は、第1開口断面積を有する。封止材溜めゲート部は、第2開口断面積を有する。第2開口断面積は第1開口断面積よりも小さい。
 本開示に係る半導体装置の製造方法は、以下の工程を備えている。リードフレームを用意する。リードフレームに半導体素子を搭載する。下金型および上金型を含み、下金型と前記上金型とによってキャビティが形成されるモールド金型を用意する。半導体素子が搭載されたリードフレームを、モールド金型内に配置する。キャビティ内に封止材を注入する。モールド金型を取り外す。モールド金型を用意する工程は、封止材注入ゲート部と一つ以上の封止材溜め部と封止材溜めゲート部とを備えたモールド金型を用意する工程を備えている。封止材注入ゲート部は、キャビティへ向けて封止材を注入する。一つ以上の封止材溜め部は、キャビティを挟んで封止材注入ゲート部が配置されている第1側とは反対の第2側に設けられ、キャビティを経て流れ込む封止材を溜める。封止材溜めゲート部は、キャビティと封止材溜め部との間を連通する。キャビティ内に封止材を注入する工程は、キャビティ内に充填される封止材が封止材溜め部へ流れ込むまで封止材を注入する工程を備えている。
 本開示に係る半導体装置は、リード端子とダイパッドと半導体素子と封止材とを備えている。ダイパッドは、リード端子に接続されている。半導体素子は、ダイパッドに搭載されている。封止材は、リード端子の一部を露出する態様で、ダイパッドおよび半導体素子を封止する。封止材は、第1方向に距離を隔てて互いに対向する第1側部と第2側部とを有する。第1側部には、第1封止材痕がある。第2側部には、一つ以上の第2封止材痕がある。
 本開示に係る半導体製造装置によれば、モールド金型が、封止材注入ゲート部と一つ以上の封止材溜め部と封止材溜めゲート部とを備えている。これにより、キャビティ内に注入される封止材中に、ボイドが残存するのを抑制することができる。
 本開示に係る半導体装置の製造方法によれば、封止材注入ゲート部と一つ以上の封止材溜め部と封止材溜めゲート部とを備えたモールド金型を使用することで、封止材中にボイドが残存するのを抑制することができる。
 本開示に係る半導体装置によれば、上記モールド金型を備えた半導体製造装置を使用することで、封止材中に残存するボイドが抑制されて、電気的な絶縁性が向上する。
実施の形態1に係る半導体装置の外観の一例を示す第1の平面図である。 同実施の形態において、図1に示す半導体装置の内部の構造を示す平面図である。 同実施の形態において、図1に示す断面線III-IIIにおける断面図である。 同実施の形態において、第1の変形例に係る半導体装置を示す断面図である。 同実施の形態において、第2の変形例に係る半導体装置を示す断面図である。 同実施の形態において、半導体装置の外観を示す第2の平面図である。 同実施の形態において、下金型と上金型とを備えたモールド金型を示す断面図である。 同実施の形態において、下金型の構造を示す平面図である。 同実施の形態において、モールド金型における樹脂注入ゲート部を示す部分拡大断面斜視図である。 同実施の形態において、モールド金型における樹脂溜めゲート部を示す第1の部分拡大断面斜視図である。 同実施の形態において、モールド金型における樹脂溜めゲート部を示す第2の部分拡大断面斜視図である。 同実施の形態において、モールド金型における樹脂溜めゲート部を示す部分拡大断面図である。 同実施の形態において、モールド金型における樹脂溜めゲート部を示す部分拡大平面図である。 同実施の形態において、変形例に係るモールド金型における樹脂溜めゲート部を示す部分拡大断面図である。 同実施の形態において、半導体装置の製造方法の一工程を示す平面図である。 同実施の形態において、図15に示す工程の後に行われる工程を示す断面図である。 同実施の形態において、図16に示す工程の後に行われる工程を示す断面図である。 同実施の形態において、エアベントの配置構造の一例を示す平面図である。 同実施の形態において、図17に示す工程の後に行われる工程を示す断面図である。 同実施の形態において、図19に示す工程の後に行われる工程を示す断面図である。 同実施の形態において、図20に示す工程における平面図である。 同実施の形態において、図20および図21に示す工程の後に行われる工程を示す断面図である。 同実施の形態において、図22に示す工程の後に行われる工程を示す断面図である。 比較例に係る半導体装置の製造方法の一工程を示す断面図である。 同実施の形態において、変形例に係る半導体装置の製造方法の一工程を示す平面図である。 同実施の形態において、第1の変形例に係るモールド金型における下金型の構造を示す平面図である。 同実施の形態において、図26に示すモールド金型を使用した半導体装置の製造方法の一工程を示す平面図である。 同実施の形態において、第2の変形例に係るモールド金型における下金型の構造を示す平面図である。 同実施の形態において、図28に示すモールド金型を使用した半導体装置の製造方法の一工程を示す平面図である。 同実施の形態において、第3の変形例に係るモールド金型を使用した半導体装置の製造方法の一工程を示す断面図である。 同実施の形態において、第4の変形例に係るモールド金型における樹脂溜めゲート部を示す部分拡大断面図である。 同実施の形態において、モールド金型に設けられたエアベントの一例を示す部分平面図である。 同実施の形態において、図32に示す断面線XXXIII-XXXIIIにおける部分断面図である。 実施の形態2に係るモールド金型における下金型の構造を示す平面図である。 同実施の形態において、図34に示すモールド金型を使用した半導体装置の製造方法の一工程を示す平面図である。 同実施の形態において、図34に示すモールド金型を使用して製造された半導体装置の外観を示す平面図である。 実施の形態3に係るモールド金型における下金型の構造を示す平面図である。 同実施の形態において、図37に示す下金型の部分拡大平面図である。 同実施の形態において、図37に示すモールド金型を使用した半導体装置の製造方法の一工程を示す平面図である。 同実施の形態において、第1の変形例に係るモールド金型における下金型の部分拡大平面図である。 同実施の形態において、第2の変形例に係るモールド金型における下金型の部分拡大平面図である。 同実施の形態において、第3の変形例に係るモールド金型の部分拡大断面図である。 同実施の形態において、図42に示すモールド金型から外された半導体装置を示す部分拡大斜視図である。 同実施の形態において、第4の変形例に係るモールド金型の部分拡大断面図である。 各実施の形態において、半導体装置の外観の他の例を示す平面図である。 各実施の形態において、半導体装置の外観のさらに他の例を示す平面図である。 実施の形態4に係るモールド金型における樹脂溜めゲート部を示す部分拡大断面図である。 同実施の形態において、モールド金型によって形成された半導体装置を電子回路基板に実装した状態を示す、一部断面を含む第1側面図である。 同実施の形態において、モールド金型によって形成された半導体装置を電子回路基板に実装した状態を示す、一部断面を含む第2側面図である。 実施の形態5に係るモールド金型における下金型の構造を示す平面図である。 同実施の形態において、図50に示すモールド金型を使用した半導体装置の製造方法の一工程を示す平面図である。
 実施の形態1.
 実施の形態1に係る半導体装置および半導体製造装置等について説明する。
 (半導体装置)
 はじめに、半導体製造装置によって製造された半導体装置について説明する。図1、図2および図3に示すように、パワー半導体装置としての半導体装置1では、リードフレーム45に、半導体素子としてのパワー半導体素子21およびIC素子29がそれぞれ搭載されている。リードフレーム45は、パワー半導体素子21等とともに、封止材としてのモールド樹脂33によって封止されている。
 モールド樹脂33は、第1側部33a、第2側部33b、第3側部33c、第4側部33d、第1主面33eおよび第2主面33fを有する。第1側部33aと第2側部33bとは、X軸方向に距離を隔てて互いに対向するとともに、Y軸方向にそれぞれ延在する。第3側部33cと第4側部33dとは、Y軸方向に距離を隔てて対向するとともに、X軸方向にそれぞれ延在する。第1主面33eと第2主面33fとは、Z軸方向に距離を隔てて互いに対向する。
 モールド樹脂33の表面には、モールド樹脂33となる流動樹脂をモールド金型内に注入することに伴う樹脂痕34が残されている。第1側部33aには、第1封止材痕としての樹脂注入痕34aがある。後述するように、樹脂注入痕34aは、モールド樹脂(流動樹脂)を注入する樹脂注入ゲート部に対応する位置に残る樹脂痕である。
 第2側部33bには、第2封止材痕としての樹脂溜め痕34bがある。後述するように、樹脂溜め痕34bは、樹脂溜めゲート部に対応する位置に残る樹脂痕である。ここでは、樹脂溜め痕34bは、第2側部における、樹脂注入痕34aとはX軸方向に対向する位置にある。樹脂溜め痕34bの面積は、樹脂注入痕34aの面積よりも小さい。
 なお、図1では、モールド樹脂33の表面から突出した凸状の樹脂痕34が示されている。樹脂痕34としては、モールド樹脂33をモールド金型から取り外す際の取り外し方によっては、モールド樹脂33の表面から凹んだ凹状の樹脂痕34が形成される場合もある。この場合には、図45に示すように、第1側部33aには、凹状の樹脂注入痕34aが残る。第2側部33bには、凹状の樹脂溜め痕34bが残る。さらに、図46に示すように、たとえば、第1側部33aには、凹状の樹脂注入痕34aが残り、第2側部33bには、凸状の樹脂溜め痕34bが残る場合もある。また、凸状の樹脂注入痕34aが残り、凹状の樹脂溜め痕34bが残る場合(図示せず)もある。
 リードフレーム45は、パワーリード端子5、パワーリード3、リード段差部7、大ダイパッド9、小ダイパッド15(15a、15b、15c)、ICリード23およびICリード端子25等を備えている。小ダイパッド15は、3つの小ダイパッド15a、15b、15cを含む。パワー半導体素子21が搭載される大ダイパッド9等は、パワーリード3のZ軸方向の位置(高さ)よりも低い位置に配置されている。大ダイパッド9等は、パワーリード3のZ軸方向の位置に対して、モールド樹脂33における第1主面11e側に配置されている。
 大ダイパッド9から第1主面11eまでの距離を距離L1とする。大ダイパッド9から第2主面11fまでの距離を距離L2とする。距離L1は距離L2よりも短い。すなわち、大ダイパッド9におけるパワー半導体素子21が搭載されている側とは反対側(第1面)を覆うモールド樹脂33の部分の厚さは、大ダイパッド9におけるパワー半導体素子21が搭載されている側(第2面)を覆うモールド樹脂33の部分の厚さよりも薄い。後述するように、大ダイパッド9の第1面を覆うモールド樹脂33の部分にボイドを生じさせないように、モールド金型には樹脂溜めゲート部と樹脂溜め部とが設けられている。
 大ダイパッド9には、たとえば、3つのパワー半導体素子21が搭載されている。3つのパワー半導体素子21のそれぞれは、導電性接着剤19によって大ダイパッド9に接合されている。小ダイパッド15a、15b、15cのそれぞれには、たとえば、一つのパワー半導体素子21が搭載されている。一つのパワー半導体素子21は、導電性接着剤(図示せず)によって小ダイパッド15a、15b、15cのそれぞれに接合されている。
 パワー半導体素子21は、たとえば、IGBT(Insulated Gate Bipolar Transistor)またはMOSFET(Metal Oxide Semiconductor Field Effect Transistor)等である。導電性接着剤19として、たとえば、はんだまたは銀ペースト等が適用される。
 大ダイパッド9は、リード段差部7を介してパワーリード3に繋がっている。小ダイパッド15a、15b、15cのそれぞれは、屈曲部13を有する。屈曲部13は、X方向成分とY方向成分とを有して斜めに延在する。
 小ダイパッド15aの先端17aのX座標の値は、リード段差部7の終端部11aのX座標の値よりも大きいことが望ましい。小ダイパッド15bの先端17bのX座標の値は、リード段差部7の終端部11bのX座標の値よりも大きいことが望ましい。小ダイパッド15cの先端17cのX座標の値は、リード段差部7の終端部11cのX座標の値よりも大きいことが望ましい。
 屈曲部13を有することで、大ダイパッド9の側方(X軸負方向)のスペースが比較的狭い場合でも、大ダイパッド9に3つのパワー半導体素子21を搭載したうえで、3つの小ダイパッド15a、15b、15cのそれぞれに1つのパワー半導体素子21を搭載することができる。これにより、半導体装置1内の限られた容積内で、効率よくパワー半導体素子21を配置することができ、半導体装置1の小型化に寄与できる。
 小ダイパッド15a、15b、15cのそれぞれは、小ダイパッド15の屈曲部13とリード段差部7とを介してパワーリード3に繋がっている。パワーリード3は、パワーリード端子5に繋がっている。パワーリード端子5は、モールド樹脂33の第3側部33cから外へ向かって突出している。
 ICリード23には、たとえば、2つのIC素子29が搭載されている。2つのIC素子29のそれぞれは、導電性接着剤27によってICリード23に接合されている。ICリード23はICリード端子25に繋がっている。ICリード端子25は、モールド樹脂33の第4側部33dから外へ向かって突出している。
 対応するパワー半導体素子21とIC素子29とが、ワイヤ31によって電気的に接続されている。対応するパワー半導体素子21とパワーリード3とが、ワイヤ31によって電気的に接続されている。対応するIC素子29とICリード23とが、ワイヤ31によって電気的に接続されている。
 ワイヤ31は、たとえば、金、銀、銅またはアルミニウム等の金属から形成されている。このようにして、リードフレーム45に電気回路が形成されている。なお、ワイヤ31としては、接続する部分に応じて、材質または太さ等を適宜変えてもよい。また、ワイヤ31が接続される部分には、ワイヤ31の接合力を高めるためのコーティング等の処理が施されていてもよい。
 なお、上述した半導体装置1では、パワーリード端子5とICリード端子25とがモールド樹脂33から突出した構造を例に挙げた。図4に示すように、半導体装置1としては、パワーリード端子5とICリード端子25とを、モールド樹脂33から突出させない態様で、モールド樹脂33の表面に露出させた構造でもよい。この場合には、ワイヤ31を接続させるために、大ダイパッド9に繋がるリード段差部7として、リード段差部7aとリード段差部7bとの2段階にすることが望ましい。
 また、図5に示すように、パワーリード端子5に比較的低い電圧が印可される半導体装置1の場合には、パワーリード端子5の高さ方向の位置が、大ダイパッド9の高さ方向の位置と同じ位置でもよい。パワーリード端子5に印可する電圧が比較的低い場合とは、たとえば、24V等の場合である。この場合には、リードフレームにリード段差部7を形成する工程が不要になり、生産コストの低減に寄与することができる。
 後述するように、モールド金型には、モールド樹脂が注入される複数のキャビティが形成されている。キャビティとして、たとえば、第1キャビティと第2キャビティとを備えたモールド金型がある。第1キャビティと第2キャビティとは、ランナーで繋がっている。第1キャビティに注入されたモールド樹脂は、ランナーを経て第2キャビティに注入される。第2キャビティに注入されたモールド樹脂の一部が、樹脂溜めゲート部を経て樹脂溜め部へ流れ込むことになる。
 第1キャビティに注入されたモールド樹脂によって封止された半導体装置の表面には、樹脂注入ゲート部に起因する樹脂痕と、ランナーに起因する樹脂痕とが残される。図6に示すように、樹脂注入ゲート部に起因する樹脂痕34として、樹脂注入痕34aが残されている。ランナーに起因する樹脂痕34として、ランナー痕34cが残されている。樹脂注入痕34aの面積とランナー痕34cの面積とは、ほぼ同じ面積である。
 第2キャビティに注入されたモールド樹脂によって封止された半導体装置の表面には、ランナーに起因する樹脂痕と、樹脂溜めゲート部に起因する樹脂痕とが残される。図1に示すように、ランナー痕に起因する樹脂痕34として樹脂注入痕34aが残されている。樹脂溜めゲート部に起因する樹脂痕34として、樹脂溜め痕34bが残されている。
 なお、ランナーからモールド樹脂が第2キャビティ内に注入されることで、ランナー痕34cは、樹脂注入痕34aと捉えることもできる。樹脂溜め痕34bの面積は、ランナー痕34c(樹脂注入痕34a)の面積よりも小さい。次に、半導体製造装置としてのモールド金型について説明する。
 (モールド金型)
 図7および図8に示すように、モールド金型51は、下金型53と上金型55とを有する。モールド金型51には、キャビティ52が形成されている。キャビティ52は、第1方向としてのX軸方向に延在する。キャビティ52は、たとえば、第1キャビティ52aと第2キャビティ52bとを含む。図7および図9に示すように、モールド金型51には、第1キャビティ52aにモールド樹脂を注入する樹脂注入ゲート部59が形成されている。モールド金型51には、第1キャビティ52aと第2キャビティ52bとの間を連通するランナー61が形成されている。第1キャビティ52aに注入されたモールド樹脂は、ランナー61を経て第2キャビティ52bに注入される。
 図7および図10に示すように、モールド金型51には、第2キャビティ52bに注入されたモールド樹脂となる流動樹脂の一部が流れ込む樹脂溜め部63が形成されている。モールド金型51には、第2キャビティ52bと樹脂溜め部63とを連通する樹脂溜めゲート部65が形成されている。図8等に示すように、樹脂溜め部63および樹脂溜めゲート部65は、たとえば、下金型53に形成されている。
 樹脂溜め部63は、キャビティ52を挟んで樹脂注入ゲート部59が配置されている一方側とは、X軸方向に距離を隔てられた他方側に配置されている。樹脂溜めゲート部65は、傾斜部67とシャッター部としての可動ピン69とを含む。可動ピン69は上下方向(Z軸方向)に可動する。
 図9および図10に示すように、樹脂溜めゲート部65における傾斜部67が位置する部分の第2開口断面積としての開口断面積(たとえば、幅LY2×高さLZ2)は、樹脂注入ゲート部59の第1開口断面積としての開口断面積(たとえば、幅LY1×高さLZ1)よりも小さく設定されている。
 可動ピン69は下金型53に収容された状態では、可動ピン69の先端部分は、下金型53の表面と同じ位置にある。可動ピン69は、下金型53に収容された状態から高さ方向(Z軸方向)に突出する態様で可動する。可動ピン69には、Z軸方向に可動することによって摩耗するのを抑制することが求められる。また、可動ピン69は、モールド樹脂が流れるのを阻止するシャッター部としての機能が求められる。このため、可動ピン69の先端部分は、突出した状態において、フレーム37(下面)とは、たとえば、約50μm程度離れていることが望ましい。
 なお、図10では、下金型53と上金型55とで、リードフレームにおけるフレーム37を挟み込んだ状態において、下金型53(上面53a)と上金型(下面55a)との間に、フレーム37の厚さに相当する隙間が形成される態様のモールド金型51が示されている。モールド金型51としては、このような態様に限られず、図11に示すように、たとえば、下金型53(上面53a)と上金型55(下面55a)とが当接する部分を有する態様のモールド金型51であってもよい。
 樹脂溜めゲート部65等の構造について、もう少し詳しく説明する。図10および図12に示すように、傾斜部67は、頂部67aから樹脂溜め部63へ向かって下がる態様で傾斜している。樹脂溜めゲート部65における樹脂溜め部63に流れ込む直前の第3開口断面積としての開口断面積(たとえば、LY3×LZ3)は、樹脂溜めゲート部65における傾斜部67が位置する部分の開口断面積(たとえば、LY2×LZ2)よりも大きく設定されている。後述するように、傾斜部67を設けることによって、硬化したモールド樹脂を下金型53から離型させやすくなる。
 なお、第2開口断面積(LY2×LZ2)を有する部分66aは、封止材溜めゲート部の第1部に対応する。第3開口断面積(LY3×LZ3)を有する部分66bは、封止材溜めゲート部の第2部に対応する。
 モールド樹脂によって封止する工程では、樹脂溜め部63に流れ込もうとするモールド樹脂(流動樹脂)が樹脂溜め部63に残らないようにする必要がある。また、可動ピン69の摩耗または破損を抑制するために、可動ピン69が下金型53に対して摺動する距離を短くする必要がある。具体的には、傾斜部67が位置する部分の高さLZ2(図10参照)は、たとえば、300~500μm程度が望ましい。モールド樹脂が樹脂溜め部63に流れ込む直前の樹脂溜めゲート部65の部分の高さLZ3(図10参照)は、高さLZ2の2倍程度の高さを有していることが望ましく、たとえば、600~1000μm程度が望ましい。
 可動ピン69には、上下方向に可動する際に下金型53との摺動摩擦を低減することが求められる。このため、図13に示すように、可動ピン69の断面形状(X-Y平面)としては、たとえば、円形または楕円形が望ましい。可動ピン69がフレームに当接する直前の高さまで突出した際に、モールド樹脂が流れるのを最小限になるように、可動ピン69の直径Dは、樹脂溜めゲート部65のY方向の幅Wよりも、たとえば、30μm程度小さいことが望ましい。
 樹脂溜めゲート部65における傾斜部67の頂部67aから可動ピン69の中心までの距離L18は、可動ピン69が傾斜部67と重ならない距離で、できる限り短い方が望ましい。可動ピン69は、特許文献1に記載された突き上げ弁と比べると、可動ピン69の直径が細く、断面形状が円形等であることで、摺動摩擦を低減することができ、可動ピン69は破損しにくくなる。
 樹脂溜めゲート部65の幅LY3(Y方向)は、狭いほど望ましく、樹脂注入ゲート部59の幅LY1(図9参照)およびランナー61の幅の2分の1以下であることが望ましい。樹脂注入ゲート部59の幅LY3は、樹脂溜め部63に流れ込んだモールド樹脂を下金型53から離型させるために、ある程度断面積を確保しておく必要があり、たとえば、約0.5~1.5mm程度が望ましい。一方、樹脂溜めゲート部65の幅Wは、樹脂溜め部63に流れ込んだモールド樹脂を下金型53に残らないように、500μm以上であることが望ましい。
 樹脂溜めゲート部に対応する幅が、半導体装置の幅と同じである比較例に係る構造と比べると、樹脂溜め部63へモールド樹脂が流れ込むのが抑制されて、樹脂溜め部63に流れ込むモールド樹脂を最小限に抑えながら、キャビティ52内にモールド樹脂を確実に充填することができる。なお、樹脂溜め部63の容積は、長さL11(X軸方向)、長さL10(Y軸方向)および長さL12(Z軸方向)によって調整される。
 上述したモールド金型51では、下金型53に樹脂溜めゲート部65および樹脂溜め部63が形成された場合について説明した。図14に示すように、モールド金型51としては、上金型55に樹脂溜めゲート部65および樹脂溜め部63が形成されていてもよい。この場合には、可動ピン69は上金型55に収容された状態からフレームに接触する直前の位置にまで突出することになる。
 (半導体装置の製造方法)
 次に、上述したモールド金型を適用した半導体装置の製造方法について説明する。まず、金属板のエッチングまたは金属板の打ち抜きによってリードフレーム45(図15参照)が形成される。リードフレーム45には、大ダイパッド9、小ダイパッド15、ICリード23等が形成される。次に、曲げ金型を用いてリードフレーム50に曲げ加工を施すことにより、リード段差部7(図15参照)が形成される。
 大ダイパッド9および小ダイパッド15のそれぞれに、導電性接着剤によって、パワー半導体素子21が接合される(図15参照)。また、ICリード23に、導電性接着剤によって、IC素子29が接合される(図15参照)。次に、ワイヤ31が接続される。こうして、図15に示すように、モールド樹脂によって封止される前の、パワー半導体素子21等が搭載されたリードフレーム45を含む複数の半導体装置が形成される。X軸方向に配置された一の半導体装置(リードフレーム45の向かって左側の部分)と他の半導体装置(リードフレーム45の向かって右側の部分)とは、タイバー35によって接続されている。
 次に、トランスファーモールド法によって、半導体装置がモールド樹脂に封止される。図16に示すように、下金型53と上金型55とを含むモールド金型51が用意される。下金型53と上金型55との間に、パワー半導体素子21等が搭載されたリードフレーム45(図15参照)が配置される。樹脂注入ゲート部59は、リードフレーム45における小ダイパッド15よりも、大ダイパッド9に近い側に位置していることが望ましい。
 大ダイパッド9の面積は、小ダイパッド15の面積よりも大きい。このため、大ダイパッド9と下金型53(キャビティ52の底面)との間の領域にモールド樹脂が充填されにくくなることがある。そこで、樹脂注入ゲート部59を大ダイパッド9の近くに配置させることで、大ダイパッド9と下金型53(キャビティ52の底面)との間の領域に、低粘度な状態のモールド樹脂となる流動樹脂を確実に充填させることができる。
 また、その領域に効率的にモールド樹脂(流動樹脂)を充填するためには、樹脂注入ゲート部59の位置(Y軸方向)とランナー61の位置(Y軸方向)とは、大ダイパッド9の中心位置(Y軸方向)に近い方が望ましい。樹脂注入ゲート部59の位置(Y軸方向)とランナー61の位置(Y軸方向)とは、ほぼ同じ位置にある。
 樹脂溜め部63と第2キャビティ52bとは、樹脂溜めゲート部65を介して繋がることになる。なお、この時点では、可動ピン69は上方に位置しており、樹脂溜めゲート部65は閉じられた状態にある。
 次に、プランジャ57にタブレット樹脂81が装填される。下金型53と上金型55とが型閉めされた後、タブレット樹脂81を溶融させながらプランジャ57を上昇させることによって、モールド樹脂となる溶融した流動樹脂が、樹脂注入ゲート部59からキャビティ52(52a)内へ注入される。注入された流動樹脂は、第1キャビティ52a内に充填され、次に、ランナー61に到達する。
 図17に示すように、ランナー61に達した流動樹脂は、ランナー61を流れて、第2キャビティ52b内へ注入される。大ダイパッド9および小ダイパッド15から上金型55(第2キャビティ52bの上面)までの距離は、大ダイパッド9および小ダイパッド15から下金型53(第2キャビティ52bの底面)までの距離よりも長い。
 このため、流動樹脂83は、大ダイパッド9および小ダイパッド15より下方のキャビティ52の領域RC2よりも、大ダイパッド9および小ダイパッド15より上方のキャビティ52の領域RC1の方へ流れやすくなる。これにより、領域RC1を流れた流動樹脂83は、最終的には領域RC1から領域RC2へ流れ込み、領域RC2を流れた流動樹脂83とは、小ダイパッド15(15C)の下方の位置87(領域85)において最終的に合流することになる。
 キャビティ52内に流動樹脂83が徐々に充填される間に、キャビティ52内の空気がキャビティ52に設けられたエアベント79から排出されることになる。図18に示すように、エアベント79は、キャビティ52の周囲に配置されている。エアベント79は、上金型55または下金型53に設けられた、たとえば、深さ約100μm程度の凹部によって構成される。なお、エアベント79については、後で、もう少し詳しく説明する。
 図19に示すように、小ダイパッド15(15C)の下方の領域85において、領域RC1を流れた流動樹脂83と領域RC2を流れた流動樹脂83とが合流する際には、流動樹脂83に空気が巻き込まれやすい。流動樹脂83が領域85(位置87)において合流するまで、可動ピン69は上方に位置しており、樹脂溜めゲート部65は閉じられた状態にある。巻き込まれた空気が潰れない場合には、流動樹脂83(モールド樹脂)中にボイドとして残存することがある。
 そこで、次に、流動樹脂83内にボイドを残存させない処理(工程)が行われる。図20および図21に示すように、可動ピン69が下降して、樹脂溜めゲート部65が開けられる。樹脂溜めゲート部65が開くことで、第2キャビティ52b内の流動樹脂83は、樹脂溜めゲート部65を経て樹脂溜め部63へ流れ込もうとする。なお、図21では、下金型53の構造を示すために、フレーム37の部分を二点鎖線で示す。以下の図面においても、必要に応じてフレーム37の部分を二点鎖線で示す。
 このとき、小ダイパッド15(15C)の下方の領域85に位置する流動樹脂83の部分も、樹脂溜めゲート部65へ向かって流動することになる。これにより、仮に、領域85に位置する流動樹脂83の部分にボイドが残存していたとしても、ボイドは領域RC2から排除されることになる。こうして、モールド樹脂33(図3等参照)における第1主面33e側の電気的な絶縁性を確保することができる。
 次に、モールド金型51を取り外す処理(工程)が行われる。図22に示すように、プランジャ57が上方(矢印参照)に突き上げられる。これにより、パワー半導体素子21等を封止したモールド樹脂33が、下金型53から分離される。このとき、樹脂溜め部63に流れ込んで硬化したモールド樹脂99が下金型53から外れないことが想定される。
 そこで、プランジャ57とともに、可動ピン69も上方(矢印参照)へ突き上げられる。可動ピン69を上方に突き出すことによって、モールド樹脂99を下金型53から確実に外すことができる。次に、図23に示すように、下金型53から外されたモールド樹脂99は、金型パンチ(図示せず)によって、フレーム37から外される。さらに、ランナーに位置していたモールド樹脂の部分と、樹脂注入ゲート部に位置していたモールド樹脂の部分とが、金型パンチ(図示せず)によって分離される。こうして、図1~図3等に示す、モールド樹脂33によって封止された半導体装置1が製造される。
 上述した半導体装置1では、モールド樹脂33(図3等参照)における第1主面33e側の電気的な絶縁性を確保することができる。これについて、比較例に係る半導体装置の製造方法と比べて説明する。
 図24に示すように、比較例に係る半導体装置の製造方法では、モールド金型51における、第2キャビティ52bを挟んでランナー61と対向する部分には、エアベント79が位置する。エアベント79は、キャビティ52の周囲に配置されている複数のエアベントのうちの一つのエアベントである。なお、実施の形態に係るモールド金型52等と同一部材については同一符号を付し、必要である場合を除きその説明を繰り返さないこととする。
 樹脂注入ゲート部59から第1キャビティ52aに注入された流動樹脂83は、ランナー61を経て第2キャビティ52bへ注入される。第2キャビティ52bでは、小ダイパッド15(15C)の下方の領域85(位置87)において、領域RC1を流れた流動樹脂83と領域RC2を流れた流動樹脂83とが合流する。このとき、流動樹脂83に空気が巻き込まれやすい。モールド金型51には、エアベント79を含む複数のエアベントが配置されており、そのエアベントから流動樹脂83中の空気が排出されることになる。
 しかしながら、流動樹脂83が合流する領域85では、流動樹脂83に巻き込まれた空気は排出されにくい。特に、巻き込まれる空気の量が多い場合には、巻き込まれた空気がエアベントから排出されず、ボイドとなって流動樹脂83に残存することがある。このため、完成した半導体装置では、ボイドの残存によって、モールド樹脂33(図3等参照)の第1主面33e側の電気的な絶縁性が悪化することが想定される。
 比較例に係る半導体装置の製造方法に対して、実施の形態1に係る半導体装置の製造方法では、領域RC1を流れた流動樹脂83と領域RC2を流れた流動樹脂83とが領域85(位置87)において合流した後、流動樹脂83は、樹脂溜めゲート部65から樹脂溜め部63へ流れ込もうとする。これにより、仮に、領域85に位置する流動樹脂83の部分にボイドが残存していたとしても、ボイドは領域RC2から排除されることになる。その結果、モールド樹脂33(図3等参照)の第1主面33e側の電気的な絶縁性を確保することができる。
 完成した半導体装置では、樹脂注入ゲート部59、ランナー61および樹脂溜めゲート部65(図7等参照)にそれぞれ位置していたモールド樹脂の部分が分離されたことで、冒頭で述べたように、半導体装置1のモールド樹脂33の表面には、表面の粗さが他の部分に比べて粗い樹脂痕34(図1および図6参照)が残ることになる。
 特に、第2キャビティにおいて52bにおいて封止された半導体装置(図1参照)では、第1側部33aにランナー痕34cが残り、第2側部33bに樹脂溜め痕34bが残る。ランナーの断面積と樹脂注入ゲート部の断面積とは同じであり、ランナーから流動樹脂が注入されることから、ランナー痕34cは樹脂注入痕34aと捉えることができる。
 一方、第1キャビティ52aにおいて封止された半導体装置(図6参照)では、第1側部33aに樹脂注入痕34aが残り、第2側部33bにランナー痕34cが残る。樹脂注入痕34aの面積と樹脂溜め痕34bの面積とは、ほぼ同じ面積である。
 なお、上述した半導体装置の製造方法では、図23に示す工程において、下金型53から外されたモールド樹脂99を、金型パンチによってフレーム37と半導体装置となるモールド樹脂33とから外す場合について説明した。モールド樹脂99をモールド樹脂33から効率的に外すために、図25に示すように、フレーム37に切り欠き部39を設けてもよい。
 切り欠き部39は、リードフレーム45がモールド金型51(下金型53)に配置された状態で、樹脂溜め部63を露出する態様で形成されている。これにより、金型パンチによってモールド樹脂99をモールド樹脂33から外す際に、モールド樹脂99に金型パンチを直接当接させて効率的に外すことができる。
 なお、このような切り欠き部39を設けたリードフレーム45を適用する場合、樹脂溜めゲート部65が閉じられた状態では、可動ピン69の先端は、上金型55の下面から50μm程度離れた位置まで突き出していることが望ましい。
 また、上述した半導体装置の製造方法では、樹脂溜めゲート部65が樹脂注入ゲート部59から最も近い位置に配置された場合について説明した。具体的には、樹脂溜めゲート部65の位置(Y軸方向)とランナー61(樹脂注入ゲート部59)の位置(Y軸方向)とは、同じ位置にあるモールド金型51について説明した。樹脂溜めゲート部65を、ランナー61(樹脂注入ゲート部59)の位置(Y軸方向)から離れた位置(Y軸方向)に配置してもよい。
 図26に示すように、樹脂溜めゲート部65が、たとえば、ランナー61の位置(Y軸方向)からY軸正方向に離れた位置(Y軸方向)に配置されたモールド金型51(下金型53)を適用してもよい。この場合には、ランナー61から注入された流動樹脂83が樹脂溜めゲート部65に到達するまでの時間がより長くなる。
 このため、図27に示す、キャビティ52内に流動樹脂83を注入する工程では、仮に、領域85(図18等参照)に位置する流動樹脂83の部分にボイドが残存していたとしても、流動樹脂83が樹脂溜めゲート部65に到達して樹脂溜め部63に流れ込もうとするまでの間に、ボイドは領域85(領域RC2)から排除されることになる。その結果、モールド樹脂33(図3等参照)における第1主面33e側の電気的な絶縁性を確保することができる。
 さらに、領域85(図18等参照)に流動樹脂83を確実に充填させるためには、樹脂溜め部63の容積は大きい方が望ましい。樹脂溜め部63の容積を大きくするには、図28に示すように、たとえば、樹脂溜め部63のX軸方向の長さL11を維持して、Y軸方向の長さL10を長く設定することが望ましい。
 これにより、図29に示す、キャビティ52内に流動樹脂83を注入する工程では、仮に、領域85(図18等参照)に位置する流動樹脂83の部分にボイドが残存していたとしても、流動樹脂83が樹脂溜め部63に流れ込む間に、ボイドは領域85(領域RC2)から確実に排除される。その結果、モールド樹脂33(図3等参照)における第1主面33e側の電気的な絶縁性を確実に確保することができる。
 なお、流動樹脂(モールド樹脂)を、たとえば、Y軸方向にも複数配列されたキャビティに充填する場合(図示せず)には、樹脂溜め部のY軸方向の長さは、Y軸方向に並ぶキャビティの長さを超えない長さに設定し、X軸方向の長さを長くすることが望ましい。このようなモールド金型51を用いて、切り欠き部39を設けたフレーム37を含むリードフレーム45(図25参照)を適用する場合を想定する。この場合には、樹脂溜め部63のX軸方向の長さは、フレームの幅(X軸方向の長さ)を超えないことが望ましい。
 一方、樹脂溜め部63のX軸方向の長さL11が、フレーム37の幅を超える場合も想定される。この場合には、図30に示すように、樹脂溜め部に流れ込んで硬化したモールド樹脂99を上方から押圧することによって、モールド樹脂99をモールド樹脂33から外す機構を設けることが望ましい。
 また、樹脂溜め部63の深さ方向の長さL12(図12参照)は長いほど望ましい。樹脂溜め部63に流れ込んで硬化したモールド樹脂99を下金型から良好に外すために、樹脂溜め部63の底は、キャビティ52の底面以上の位置(高さ)にあることが望ましい。
 さらに、図31に示すように、たとえば、モールド金型51の上金型55にも、流動樹脂を溜める領域が確保された樹脂溜め部63を設けてもよい。この場合、樹脂溜め部63に流れ込んで硬化したモールド樹脂99を上金型55から良好に外すために、樹脂溜め部63の上面は、キャビティ52の上面を超えない位置(高さ)にあることが望ましい。
 このようなモールド金型51では、樹脂溜め部63の容積を十分に確保することができ、領域85(図18等参照)に位置する流動樹脂83の部分にボイドが残存していたとしても、流動樹脂83が樹脂溜め部63に流れ込もうとする間に、ボイドを領域85から確実に排除することができる。
 上述した半導体装置の製造方法では、すでに説明したように、流動樹脂83は、樹脂溜めゲート部65から樹脂溜め部63へ流れ込もうとすることで、仮に、領域85に位置する流動樹脂83の部分にボイドが残存していたとしても、ボイドは領域RC2から排除されることになる。その結果、モールド樹脂33(図3等参照)の第1主面33e側の電気的な絶縁性を確保することができる。
 ここで、大ダイパッド9から第1主面11eまでの距離L1(図3参照)に相当するモールド樹脂33の厚さを500μm程度とする。半導体装置1のモールド樹脂33のZ軸方向の厚さを3.5mm程度とする。
 このような半導体装置を製造する際に、仮に、領域85に位置する流動樹脂83の部分にボイドが残存していた場合に、そのボイドを領域RC2から排除するには、樹脂溜め部63の体積として、半導体装置1のモールド樹脂33の体積の約3分の1程度の体積が必要とされる。
 上述した半導体装置の製造方法では、モールド金型51には樹脂溜めゲート部65が設けられている。樹脂溜めゲート部65の開口断面積は、樹脂注入ゲート部59の開口断面積よりも小さい。また、樹脂溜めゲート部65には、流動樹脂が樹脂溜め部63に流れ込むのを制御する可動ピン69が設けられている。
 これにより、樹脂溜め部63に流れ込む流動樹脂83の量を最小限にすることができるとともに、流動樹脂83に残存するボイドを排出することができる。その結果、廃棄するモールド樹脂99(流動樹脂83)の量を最小限に抑えながら、モールド樹脂33の電気的な絶縁性を確保することができる。なお、可動ピン69としては、単に、モールド樹脂99を下金型53から確実に取り外す機能だけを有しているものでもよい。
 また、上述した半導体装置の製造方法では、樹脂注入ゲート部59から第1キャビティ52a内に注入された流動樹脂83は、ランナー61を流れて第2キャビティ52b内に注入されることになる。第1キャビティ52aにおける流動樹脂83の流れと、第2キャビティ52bにおける流動樹脂83の流れとを、ほぼ同じ流れにするためには、樹脂注入ゲート部59の断面形状とランナー61の断面形状とは、同じ断面形状であることが望ましい。一方、樹脂溜めゲート部65の断面形状は、樹脂注入ゲート部59(ランナー61)の断面形状よりも小さいことが望ましい。
 これにより、すでに説明したように、第1キャビティ52aにおいて封止された半導体装置1の表面に残される樹脂注入痕34aの面積とランナー痕34cの面積とは、ほぼ同じ面積になる(図6参照)。第2キャビティ52bにおいて封止された半導体装置1の表面に残される樹脂溜め痕34bの面積は、ランナー痕34c(樹脂注入痕34a)の面積よりも小さくなる(図1参照)。このように、半導体装置1の表面には、樹脂溜め痕34bを含む樹脂痕34が残ることになり、半導体装置1の外観(モールド樹脂33)から容易に確認することができる。
 (モールド金型におけるエアベント)
 上述したように、キャビティ52内に流動樹脂83が徐々に充填される間に、キャビティ52内の空気は、モールド金型51に形成されたエアベント79から排出されることになる(図18参照)。
 図32および図33に、エアベント79の一例として、モールド金型51における樹脂溜め部63付近に位置するエアベント79を示す。上金型55には、エアベント79aが設けられている。下金型53には、エアベント79bが設けられている。エアベント79bは、樹脂溜め部63に連通している。
 キャビティ52内の空気を効率的に排出するには、エアベント79としての隙間を大きくする必要がある。ところが、たとえば、上金型55に設けられるエアベント79aとしての隙間の高さLZ4を高くすると、流動性樹脂が過剰に漏れ出すおそれが高くなる。そこで、エアベント79aと高さ方向(Z軸)に対向するように、下金型53にエアベント79bを設けることで、エアベント79としての隙間の高さを確保することができる。
 また、樹脂溜め部63が設けられていることで、樹脂溜め部63に流れ込む流動性樹脂の硬化が促進されて、樹脂溜め部63に連通するエアベント79bから、流動性樹脂が漏れ出るのが抑制される。これにより、樹脂溜め部63が設けられていない場合と比べて、エアベント79bとしての隙間の高さLZ5を高くすることができる。その結果、キャビティ52内の空気を、より効率的にモールド金型51の外へ排出することができる。
 上金型55と下金型53とによって、リードフレーム45を挟み込む領域(面積)を確保するために、エアベント79aとエアベント79bとは、高さ方向で対向する位置に配置することが望ましい。
 エアベント79aの幅LY1とエアベント79bの幅LY2とは同じ幅であってもよいし、互いに異なる幅であってもよい。また、エアベント79aの幅方向(Y軸方向)の中心位置と、エアベント79bの幅方向(Y軸方向)の中心位置とは、同じ位置であってもよし、互いにずれていてもよい。
 実施の形態2.
 実施の形態2に係る半導体製造装置等について説明する。ここでは、一つのキャビティに対して、複数の樹脂溜め部を備えたモールド金型を適用した半導体製造装置等について説明する。
 (モールド金型)
 半導体製造装置としてのモールド金型について説明する。図34に示すように、モールド金型51(下金型53)には、たとえば、樹脂溜め部63として、樹脂溜め部63aと樹脂溜め部63bとが形成されている。第2キャビティ52bと樹脂溜め部63aとを連通する樹脂溜めゲート部65aが形成されている。第2キャビティ52bと樹脂溜め部63bとを連通する樹脂溜めゲート部65bが形成されている。
 樹脂溜めゲート部65aは、ランナー61の位置(Y軸方向)からY軸正方向に離れた位置(Y軸方向)に配置されている。樹脂溜めゲート部65bは、ランナー61の位置(Y軸方向)からY軸負方向に離れた位置(Y軸方向)に配置されている。なお、これ以外の構成については、図7および図8に示すモールド金型51の構成と同様なので、同一部材には同一符号を付し、必要である場合を除きその説明を繰り返さないこととする。
 (半導体装置の製造方法)
 次に、上述したモールド金型を使用した半導体装置の製造方法について説明する。
 まず、前述した半導体装置の製造方法と同様にして、モールド樹脂によって封止される前の、パワー半導体素子等が搭載されたリードフレームを含む複数の半導体装置が形成される。次に、トランスファーモールド法によって、半導体装置がモールド樹脂に封止される。図35に示すように、パワー半導体素子21等が搭載されたリードフレーム45がモールド金型51に配置される。
 下金型53と上金型(図示せず)とが型締閉めされた後、流動樹脂83が樹脂注入ゲート部59からキャビティ52(52a)内へ注入される。第1キャビティ52aに注入された流動樹脂83は、ランナー61を流れて第2キャビティ52b内へ注入されて、第2キャビティ52bに徐々に充填される。
 この間に、前述したように、領域RC1を流れた流動樹脂83は、最終的には領域RC1から領域RC2へ流れ込み、領域RC2を流れた流動樹脂83とは、小ダイパッド15(15C)の下方の領域85(位置87)において最終的に合流することになる(図17および図19参照)。
 領域85において、領域RC1を流れた流動樹脂83と領域RC2を流れた流動樹脂83とが合流する際には、流動樹脂83に空気が巻き込まれやすく、巻き込まれた空気が潰れない場合には、流動樹脂83(モールド樹脂)中にボイドとして残存することがある。
 次に、図20に示す工程と同様にして、樹脂溜めゲート部65(65a、65b)が開けられる。樹脂溜めゲート部65(65a、65b)が開くことで、第2キャビティ52b内の流動樹脂83は、樹脂溜めゲート部65aを経て樹脂溜め部63aへ流れ込もうとするか、または、樹脂溜めゲート部65bを経て樹脂溜め部63bへ流れ込もうとする。
 このとき、領域85に位置する流動樹脂83の部分も、樹脂溜めゲート部65へ向かって流動することになる。これにより、仮に、領域85に位置する流動樹脂83の部分にボイドが残存していたとしても、ボイドは領域85から排除されることになる。
 その後、図22および図23に示す工程と同様にして、モールド金型が取り外されて、モールド樹脂によって封止された半導体装置が製造される。図36に示すように、完成した半導体装置1では、特に、第2側部33bには2つの樹脂溜め痕34bが残ることになる。
 上述した半導体装置の製造方法では、樹脂溜めゲート部65(65a、65b)のそれぞれは、ランナー61の位置(Y軸方向)からY軸方向(正または負)に離れた位置(Y軸方向)に配置されている。そのため、図26に示すモールド金型51の場合と同様に、ランナー61から注入された流動樹脂83が樹脂溜めゲート部65に到達するまでの時間がより長くなる。
 これにより、仮に、領域85に位置する流動樹脂83の部分にボイドが残存していたとしても、流動樹脂83が樹脂溜めゲート部65に到達して樹脂溜め部に流れ込もうとする間に、ボイドは領域85(位置87)から排除されることになる。その結果、モールド樹脂33における第1主面33e側(図3参照)の電気的な絶縁性を確実に確保することができる。
 また、上述したモールド金型51では、樹脂溜め部63の体積を十分に確保することができる。半導体装置の製造において、リードフレームに、モールド金型に対する位置決め穴が存在する場合がある。このような場合には、樹脂溜め部のY方向の長さが制限されてしまい、樹脂溜め部の容積を十分に確保できないことが想定される。
 上述したモールド金型では、そのようなフレームの位置決め穴(図示せず)を回避しながら、2つの樹脂溜め部65a、65bを設けることで、樹脂溜め部65としての十分な容積を確保することができる。樹脂溜め部65の容積が十分に確保されることで、領域85(図19等参照)にボイドが残存するような場合であっても、そのボイドを確実に排除することができる。
 さらに、上述したモールド金型51では、樹脂溜め部65に流れ込んで硬化したモールド樹脂の部分を取り除く金型パンチの摩耗を抑制することができる。モールド金型51には、樹脂溜め部65として、2つの樹脂溜め部65a、65bが形成されている。これにより、樹脂溜め部65a、65bのそれぞれに流れ込んで硬化したモールド樹脂の部分を取り除く金型パンチの断面積を小さくすることができる。これにより、断面積の大きな一つの金型パンチと比べて、金型パンチの摩耗を抑制することができ、生産コストの削減に寄与することができる。
 実施の形態3.
 実施の形態3に係る半導体製造装置等について説明する。
 (モールド金型)
 図37に示すように、半導体製造装置としてのモールド金型51(下金型53)には、たとえば、樹脂溜め部63として、樹脂溜め部63aと樹脂溜め部63bとが形成されている。第2キャビティ52bと樹脂溜め部63aとを連通する樹脂溜めゲート部65aが形成されている。第2キャビティ52bと樹脂溜め部63bとを連通する樹脂溜めゲート部65bが形成されている。樹脂溜めゲート部65aおよび樹脂溜めゲート部65bのそれぞれでは、シャッター部としての可動ピンは配置されていない。
 図38に示すように、下金型53には、樹脂溜め部63aへ向かって突出した突出部93aと、樹脂溜め部63bへ向かって突出した突出部93bとが形成されている。樹脂溜め部63に流れ込んで硬化したモールド樹脂の部分を金型パンチによって外す際に、フレーム37が、突出部93a、93bを含む下金型53の部分によって下方から支持されることになる。
 樹脂溜め部63aにおいて、X軸方向に突出部93aが位置する樹脂溜め部63aの部分のY軸方向の長さを長さL16aとする。X軸方向に突出部93aが位置していない樹脂溜め部63aの部分のY軸方向の長さを長さL15aとする。長さL16aは、長さL15aよりも短いことが望ましい。
 樹脂溜め部63bにおいて、X軸方向に突出部93bが位置する樹脂溜め部63bの部分のY軸方向の長さを長さL16bとする。X軸方向に突出部93bが位置していない樹脂溜め部63bの部分のY軸方向の長さを長さL15bとする。長さL16bは、長さL15bよりも短いことが望ましい。
 なお、長さL15aと長さL15bとは、異なる長さであってもよいし、同じ長さであってもよい。長さL16aと長さL16bとは、異なる長さであってもよいし、同じ長さであってもよい。
 樹脂溜め部63aにおいて、Y軸方向に突出部93aが位置していない樹脂溜め部63aの部分のX軸方向の長さを長さL14aとする。樹脂溜め部63bにおいて、Y軸方向に突出部93bが位置していない樹脂溜め部63bの部分のX軸方向の長さを長さL14bとする。長さL14aおよび長さL14bは、フレーム37の幅の約2分の1程度の長さに設定することが望ましい。これにより、樹脂溜め部63に流れ込んで硬化したモールド樹脂の部分を金型パンチによって外す際に、フレーム37を押さえる領域を確保することができる。
 図37に示すように、樹脂溜めゲート部65aは、ランナー61の位置(Y軸方向)からY軸正方向に離れた位置(Y軸方向)に配置されている。樹脂溜めゲート部65bは、ランナー61の位置(Y軸方向)からY軸負方向に離れた位置(Y軸方向)に配置されている。樹脂溜めゲート部65aおよび樹脂溜めゲート部65bのそれぞれは、モールド金型51にリードフレームが配置された際に、最終的に流動樹脂が充填される、小ダイパッド15(15C)(図19等参照)の下方の領域85(位置87)からできるだけ離れた位置に配置されていることが望ましい。
 樹脂溜めゲート部65aは、第2キャビティ52bにおけるX軸方向に延在する部分(紙面に向かって上側部分)からY軸負方向に0.5~2.0mm程度離れた位置に配置されていることが望ましい。樹脂溜めゲート部65bは、第2キャビティ52bにおけるX軸方向に延在する部分(紙面に向かって下側部分)からY軸正方向に0.5~2.0mm程度離れた位置に配置されていることが望ましい。これにより、樹脂溜め部63に流れ込んで硬化したモールド樹脂の部分を金型パンチによって外す際に、半導体装置のモールド樹脂に欠けが生じるのを抑制する。
 樹脂溜めゲート部65aのY軸方向の長さを幅Waとする。樹脂溜めゲート部65bのY軸方向の長さを幅Wbとする。幅Waおよび幅Wbは、狭いほど望ましい。幅Waおよび幅Wbは、樹脂注入ゲート部59の幅LY1(図9参照)およびランナー61の幅の2分の1程度以下であることが望ましい。幅Waおよび幅Wbは、樹脂溜め部63に流れ込んで硬化したモールド樹脂の部分が下金型53から外れやすくなるように、たとえば、0.5~1.5mm程度が望ましい。
 樹脂溜めゲート部65aおよび樹脂溜めゲート部65bのそれぞれのZ方向の長さ(高さ)は、短い方が望ましい。Z方向の長さは、樹脂溜め部63に流れ込んで硬化したモールド樹脂の部分が下金型53から外れやすくなるように、たとえば、0.2~0.6mm程度が望ましい。樹脂溜めゲート部65aおよび樹脂溜めゲート部65bのそれぞれのX軸方向の長さを長さL17とする。長さL17は、樹脂溜めゲート部65の開口断面積等を考慮して適切な長さが設定される。
 (半導体装置の製造方法)
 次に、上述したモールド金型を使用した半導体装置の製造方法について説明する。まず、前述した半導体装置の製造方法と同様にして、モールド樹脂によって封止される前の、パワー半導体素子等が搭載されたリードフレームを含む複数の半導体装置が形成される。
 次に、トランスファーモールド法によって、半導体装置がモールド樹脂に封止される。図39に示すように、パワー半導体素子21等が搭載されたリードフレーム45がモールド金型51に配置される。ここでは、リードフレーム45のフレーム37には、切り欠き部41a、41bが形成されている。切り欠き部41aは、樹脂溜め部39aを露出する態様で形成されている。切り欠き部41bは、樹脂溜め部39bを露出する態様で形成されている。
 また、流動樹脂を注入する際に、キャビティ52内でICリード23の位置が上下(Z軸方向)に変動するのを抑制するために、リードフレーム45には、ICリード23とフレーム37とを繋ぐ吊りリード43が配置されている。
 下金型53と上金型(図示せず)とが型締閉めされた後、流動樹脂83が樹脂注入ゲート部59からキャビティ52(52a)内へ注入される。第1キャビティ52aに注入された流動樹脂83は、ランナー61を流れて第2キャビティ52b内へ注入されて、第2キャビティ52bに徐々に充填される。
 この間に、前述したように、領域RC1を流れた流動樹脂83は、最終的には領域RC1から領域RC2へ流れ込み、領域RC2を流れた流動樹脂83とは、小ダイパッド15(15C)の下方の領域85(位置87)において最終的に合流することになる(図17および図19参照)。
 領域85において、領域RC1を流れた流動樹脂83と領域RC2を流れた流動樹脂83とが合流する際には、流動樹脂83に空気が巻き込まれやすく、巻き込まれた空気が潰れない場合には、流動樹脂83(モールド樹脂)中にボイドとして残存することがある。
 次に、ランナー61から流動樹脂83が注入されることで、第2キャビティ52b内の流動樹脂83は、樹脂溜めゲート部65aを経て樹脂溜め部63aへ流れ込もうとするか、または、樹脂溜めゲート部65bを経て樹脂溜め部63bへ流れ込もうとする。
 このとき、領域85に位置する流動樹脂83の部分も、樹脂溜めゲート部65へ向かって流動することになる。これにより、仮に、領域85に位置する流動樹脂83の部分にボイドが残存していたとしても、ボイドは領域RC2から排除されることになる。
 その後、図22および図23に示す工程と同様にして、モールド金型が取り外されて、モールド樹脂によって封止された半導体装置が製造される。完成した半導体装置1では、図36に示す半導体装置1と同様に、第2側部33bには2つの樹脂溜め痕34bが残ることになる。
 上述した半導体装置の製造方法では、樹脂溜めゲート部65(65a、65b)のそれぞれは、ランナー61の位置(Y軸方向)からY軸方向(正または負)に離れた位置(Y軸方向)に配置されている。これにより、前述したのと同様に、仮に、領域85に位置する流動樹脂83の部分にボイドが残存していたとしても、流動樹脂83が樹脂溜めゲート部65から樹脂溜め部63に流れ込もうとする間に、ボイドは領域85(位置87)から排除されることになる。その結果、モールド樹脂33における第1主面33e側(図3参照)の電気的な絶縁性を確実に確保することができる。
 また、フレーム37には、切り欠き部41a、41bが形成されている。切り欠き部41aは、樹脂溜め部39aを露出する態様で形成されている。切り欠き部41bは、樹脂溜め部39bを露出する態様で形成されている。これにより、樹脂溜め部63a、63bのそれぞれに流れ込んで硬化したモールド樹脂の部分を金型パンチによって外す際に、フレームに金型パンチをフレーム37に接触させることなくモールド樹脂の部分に接触させて効率的に外すことができる。
 さらに、フレーム37に切り欠き部41a、41bが形成されていることで、樹脂溜め部63a、63bの容積として、その切り欠き部41a、41bの体積(切り欠き部41a、41bのXY平面における面積×フレーム37の厚さ)に相当する容積分を増加させることができる。
 また、フレーム37に切り欠き部41a、41bが形成されていることで、切り欠き部が形成されていない場合と比べると、エアベント(図示せず)に繋がる部分の断面積が大きくなる。これにより、より多くの空気をエアベントへ導くことができ、流動樹脂中に取り込まれる空気の量を減らして、ボイドが残存するのを抑制することができる。
 さらに、上述した半導体装置の製造方法では、吊りリード43を金型パンチ(図示せず)によって除去する際に、下金型53に突出部93aおよび突出部93bが形成されていることで、下金型53によってフレーム37を支持する面積が確保される。これにより、吊りリード43を確実に除去することができる。
 なお、上述した半導体製造装置では、モールド金型51(下金型53)に突出部93aおよび突出部93bが形成されている場合について説明した。図40に示すように、モールド金型51としては、突出部93aおよび突出部93bが形成されていないモールド金型51でもよい。この場合には、樹脂溜め部63a、63bのそれぞれに流れ込んで硬化したモールド樹脂の部分と吊りリード43とを、金型パンチ(図示せず)によって同時に外すことが望ましい。
 また、上述した半導体製造装置では、樹脂溜めゲート部65(65a、65b)が、X軸方向に延在する場合について説明した。図41に示すように、モールド金型51としては、樹脂溜めゲート部65(65a、65b)が延在する方向は、X軸方向と交差する方向に傾いていてもよい。
 樹脂溜めゲート部65aは、たとえば、X軸方向に対して角度AL1だけY軸方向(負方向)に傾いていてもよい。樹脂溜めゲート部65bは、たとえば、X軸方向に対して角度AL2だけY軸方向(正方向)に傾いていてもよい。
 このようなモールド金型51を適用することで、流動樹脂が樹脂溜めゲート部65a、65bを流れる際の流動抵抗が高くなり、樹脂溜め部63a、63bに流れ込む流動樹脂の量を抑えながら、ボイドが残存するのを抑制することができる。
 また、図42に示すように、樹脂溜め部63の部分における樹脂溜めゲート部65の側に傾斜部67とともに、段差部97を設けるようにしてもよい。このような段差部97を設けることで、図43(点線枠S)に示すように、モールド樹脂33と、樹脂溜め部63に流れ込んで硬化したモールド樹脂99との間の隙間を広げることができる。これにより、金型パンチ(図示せず)によって、硬化したモールド樹脂99をモールド樹脂33から容易に外すことができる。
 なお、図44に示すように、モールド金型51としては、樹脂溜め部63の容積をできるだけ確保する観点から、必ずしも段差部を設ける必要はない。また、図42および図44のそれぞれでは、樹脂溜めゲート部65が位置していない樹脂溜め部63の部分に設けられている傾斜部64が点線で示されている。
 上述したモールド金型51の樹脂溜め部63では、樹脂溜め部63に連通する、開口断面積が狭い樹脂溜めゲート部65を設けることで、比較例(特許文献1)の手法と比べると、樹脂溜め部63に流動樹脂83が流れ込むのが抑制される。また、樹脂溜めゲート部65として、樹脂溜めゲート部65aと樹脂溜めゲート部65bとを設けることで、樹脂溜めゲート部65に向かう流動樹脂の流れが分散される。
 これにより、樹脂溜め部63の容積として、半導体装置1の体積の約10分の1程度に相当する容積であっても、樹脂溜め部63に流動樹脂83が流れ込むまでの時間を引き延ばすことができる。その結果、仮に、領域85(図19参照)に位置する流動樹脂83の部分にボイドが残存していたとしても、樹脂溜め部63に流動樹脂83が流れ込むまでの間に、ボイドを領域85(位置87)から排除することができる。また、樹脂溜め部63に流れ込む流動樹脂83の量を減らすことができ、生産コストの低減に寄与することができる。
 完成した半導体装置1のうち、第1キャビティ52aにおいて封止された半導体装置1の表面には、樹脂注入痕34aとランナー痕34cとが残る。樹脂注入痕34aの面積とランナー痕34cの面積とは、ほぼ同じ面積である(図6参照)。一方、第2キャビティ52bにおいて封止された半導体装置1の表面には、ランナー痕34cと樹脂溜め痕34bとが残る。樹脂溜め痕34bの面積は、ランナー痕34cの面積よりも小さい(図1参照)。樹脂溜め痕34bを含む樹脂痕34の表面は粗く、半導体装置1の外観(モールド樹脂33)から容易に確認することができる。
 実施の形態4.
 実施の形態4に係る半導体製造装置等について説明する。ここでは、樹脂溜め部63に流れ込んで硬化したモールド樹脂を、実装に使用することができるモールド金型を適用した半導体製造装置等について説明する。
 まず、モールド金型について説明する。図47に示すように、モールド金型51では、上金型55に樹脂溜めゲート部65および樹脂溜め部63が形成されている。樹脂溜め部63の天井の位置(Z軸方向)は、キャビティ52の天井の位置(Z軸方向)よりも高い位置に配置されている。
 上金型55の下端部からキャビティ52の天井までの距離を距離L19aとし、上金型55の下端部から樹脂溜め部63の天井までの距離を距離L19bとする。モールド金型51では、樹脂溜め部63は、距離L19bが距離L19aよりも長くなるように、上金型55に形成されている。
 次に、上述したモールド金型51を使用した半導体装置の製造方法について説明する。実施の形態1において説明した半導体装置の製造方法と同様にして、パワー半導体素子21等が搭載されたリードフレーム45が形成される(図15参照)。次に、図47に示されるモールド金型51に、リードフレーム45(図15参照)が配置される。
 次に、図16~図21に示す工程と同様にして、流動樹脂がキャビティ52内に徐々に充填される。樹脂溜め部63では、樹脂溜め部63に流れ込んだ流動樹脂が硬化する。その後、モールド金型51が取り外される。このとき、樹脂溜め部63に流れ込んで硬化したモールド樹脂99(図48参照)を取り除くことなく、モールド樹脂99がモールド樹脂33に繋がった状態のままにしておく。こうして、封止材塊部としてのモールド樹脂99がモールド樹脂33に繋がった状態の半導体装置1(図48参照)が完成する。
 次に、図48および図49に示すように、半導体装置1を電子回路基板101に実装する。電子回路基板101に、導電性接着剤103を介在させて半導体装置1を配置する。このとき、電子回路基板101にあらかじめ設けられた開口部101aに、モールド樹脂99を嵌め込む。なお、導電性接着剤103として、たとえば、クリームはんだ等が使用される。
 次に、リフロー工程によって導電性接着剤103を溶融させ、その後、冷却することで導電性接着剤103が硬化し、半導体装置1が電子回路基板101に実装されることになる。
 上述した半導体装置1では、電子回路基板101へ実装する際に、リフロー工程における半導体装置1の位置ずれを防止することができる。このことについて説明する。
 パワー半導体素子等が搭載された半導体装置1の重量は、電子回路基板に実装される従来の表面実装部品の重量に比べて重い。また、導電性接着剤103が硬化する前の導電性接着剤103の粘着力は、導電性接着剤103が硬化した後の接合力に比べて弱い。
 このため、リフロー工程では、たとえば、電子回路基板101を搬送させる際に、導電性接着剤103の粘着力では、半導体装置1を電子回路基板101上に固定させておくことができず、半導体装置1が、電子回路基板101の実装位置からずれてしまうことが想定される。
 上述した半導体装置1では、モールド樹脂99がモールド樹脂33に繋がった状態にある。電子回路基板101には、モールド樹脂99が嵌め込まれる開口部101aが形成されている。半導体装置1を電子回路基板101に配置する際に、電子回路基板101に設けられた開口部101aに、モールド樹脂99が嵌め込まれる。
 これにより、半導体装置1の電子回路基板101における位置決めが行われる。その結果、リフロー工程において、半導体装置1が、電子回路基板101の実装位置からずれてしまうのを抑制することができる。また、半導体装置1の電子回路基板101における実装位置からのずれが抑制されることで、導電性接着剤103の量も必要最小限に抑えることができる。
 実施の形態5.
 実施の形態5に係る半導体製造装置等について説明する。ここでは、複数の樹脂溜め部を備えたモールド金型を適用した半導体製造装置等について説明する。
 まず、モールド金型について説明する。図50に示すように、モールド金型51(下金型53)には、たとえば、樹脂溜め部63として、樹脂溜め部63c、樹脂溜め部63dおよび樹脂溜め部63eが形成されている。樹脂溜め部63c、樹脂溜め部63dおよび樹脂溜め部63eは、直列に繋がっている。
 樹脂溜め部63cと第2キャビティ52bとを連通する樹脂溜めゲート部65が形成されている。樹脂溜め部63間を連通する封止材溜め部間ゲート部として樹脂溜め部間ゲート部70が形成されている。樹脂溜め部63cと樹脂溜め部63dとを連通する樹脂溜め部間ゲート部70として、樹脂溜め部間ゲート部70aが形成されている。樹脂溜め部63dと樹脂溜め部63eとを連通する樹脂溜め部間ゲート部70として、樹脂溜め部間ゲート部70bが形成されている。樹脂溜めゲート部65、樹脂溜め部間ゲート部70a、70bの断面積は、同じ断面積でも、異なる断面積でもよいが、樹脂注入ゲート部59の断面積よりも小さいことが望ましい。
 なお、これ以外の構成については、図8に示すモールド金型51の構成と同様なので、同一部材には同一符号を付し、必要である場合を除きその説明を繰り返さないこととする。
 次に、上述したモールド金型51を使用した半導体装置の製造方法について説明する。実施の形態1において説明した半導体装置の製造方法と同様にして、パワー半導体素子21等が搭載されたリードフレーム45が形成される(図15参照)。次に、図51に示すように、モールド金型51にリードフレーム45が配置される。
 次に、図16~図21に示す工程と同様にして、流動樹脂がキャビティ52内に徐々に充填される。第2キャビティ52b内の流動樹脂は、樹脂溜めゲート部65を経て、樹脂溜め部63cへ流れ込む。樹脂溜め部62に流動樹脂が充填されると、樹脂溜め部間ゲート部70aを経て、樹脂溜め部63dへ流れ込む。樹脂溜め部63dへ流れ込んだ流動樹脂は、樹脂溜め部間ゲート部70bを経て、樹脂溜め部63eへ流れ込む。キャビティ52内に流れ込んだ流動樹脂が硬化した後、モールド金型51が取り外されて、モールド樹脂によって封止された半導体装置が完成する。
 上述した半導体装置の製造方法では、モールド金型51に、樹脂溜め部63として、樹脂溜め部63c、樹脂溜め部63dおよび樹脂溜め部63eが形成されている。樹脂溜め部63c、樹脂溜め部63dおよび樹脂溜め部63eは、樹脂溜め部間ゲート部70によって、直列に繋がっている。
 このため、樹脂溜め部63c、樹脂溜め部63dおよび樹脂溜め部63eを合わせた容積と同じ容積を有する1つの樹脂溜め部が形成されたモールド金型を使用した場合と比べて、樹脂溜め部63c、樹脂溜め部63dおよび樹脂溜め部63eに順次充填される流動樹脂の速度が小さくなる。
 これにより、キャビティ52内における領域85(図17等参照)のボイドをキャビティ52から排出させやすくなる。その結果、モールド樹脂33(図3等参照)の第1主面33e側の電気的な絶縁性を確保することができる。
 なお、各実施の形態では、半導体素子として、パワー半導体素子を例に挙げたが、パワー半導体素子以外の半導体素子についても適用することができる。
 各実施の形態において説明した半導体製造装置および製造方法等については、必要に応じて種々組み合わせることが可能である。
 なお、半導体装置は以下の態様を含む。
 (付記1)
 リード端子と、
 前記リード端子に接続されたダイパッドと、
 前記ダイパッドに搭載された半導体素子と、
 前記リード端子の一部を露出する態様で、前記ダイパッドおよび前記半導体素子を封止する封止材と
を有し、
 前記封止材は、第1方向に距離を隔てて互いに対向する第1側部と第2側部とを有し、
 前記第1側部には、封止材痕があり、
 前記第2側部には、封止材塊部が突出している、半導体装置。
 (付記2)
 開口部が形成された電子回路基板を備え、
 前記封止材塊部は前記開口部に嵌め込まれた状態で電子回路基板に実装された、付記1記載の半導体装置。
 今回開示された実施の形態は例示であってこれに制限されるものではない。本開示は上記で説明した範囲ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲でのすべての変更が含まれることが意図される。
 本開示は、トランスファーモールド法によって製造される半導体装置およびその製造方法に有効に利用される。
 1 パワー半導体装置、3 パワーリード、5 パワーリード端子、7、7a、7b リード段差部、9 大ダイパッド、11a、11b、11c 終端部、13 屈曲部、15、15a、15b、15c 小ダイパッド、17a、17b、17c 先端、19 導電性接着剤、21 パワー半導体素子、23 ICリード、25 ICリード端子、27 導電性接着剤、29 IC素子、31 ワイヤ、33 モールド樹脂、33a 第1側部、33b 第2側部、33c 第3側部、33d 第4側部、33e 第1主面、33f 第2主面、34 樹脂痕、34a 樹脂注入痕、34b 樹脂溜め痕、34c ランナー痕、35 タイバー、37 フレーム、39、41a、41b 切り欠き部、43 吊りリード、45 リードフレーム、51 モールド金型、52 キャビティ、52a 第1キャビティ、52b 第2キャビティ、53 下金型、53a 上面、55 上金型、55a 下面、57 プランジャ、59 樹脂注入ゲート部、61 ランナー、63、63a、63b、63c、63d、63e 樹脂溜め部、64 傾斜部、65、65a、65b、65c、65d 樹脂溜めゲート部、66a、66b 部分、67 傾斜部、67a 頂部、69 可動ピン、79、79a、79b エアベント、70、70a、70b 樹脂溜め部間ゲート部、81 タブレット樹脂、83 流動樹脂、85 領域、87 位置、93a、93b 突出部、97 段差、99 モールド樹脂、D 直径、W、Wa、Wb 幅、AL1、AL2 角度、L10、L11、L12、L14a、L14b、L15a、L15b、L16a、L16b、L17 長さ、L18 距離、L19a、L19b 長さ、LZ4、LZ5 高さ、LY1、LY2 幅、101 電子回路基板、101a 開口部、103 導電性接着剤。

Claims (22)

  1.  下金型と上金型とを含むモールド金型によって第1方向に延在するキャビティが形成され、前記キャビティ内に半導体素子を搭載したリードフレームを配置し、前記キャビティ内に封止材を注入することによって、前記リードフレームを前記半導体素子とともに封止する半導体製造装置であって、
     前記キャビティ内へ前記封止材を注入する封止材注入ゲート部と、
     前記キャビティを挟んで前記封止材注入ゲート部が配置されている一方側とは前記第1方向に距離を隔てられた他方側に配置され、前記キャビティを経て流れ込む前記封止材を溜める一つ以上の封止材溜め部と、
     前記キャビティと前記封止材溜め部との間を連通する封止材溜めゲート部と
    を備え、
     前記封止材注入ゲート部は、第1開口断面積を有し、
     前記封止材溜めゲート部は、第2開口断面積を有し、
     前記第2開口断面積は前記第1開口断面積よりも小さい、半導体製造装置。
  2.  前記封止材溜めゲート部および前記封止材溜め部は、前記下金型および前記上金型の少なくともいずれかに設けられた、請求項1記載の半導体製造装置。
  3.  前記封止材溜めゲート部は、前記キャビティから前記封止材溜め部へ前記封止材が流れるのを阻止するシャッター部を備えた、請求項1または2に記載の半導体製造装置。
  4.  前記モールド金型では、
     前記キャビティ内に前記封止材を注入する際に、前記シャッター部を閉じた状態にし、
     前記キャビティ内に前記封止材が充填された時点で、前記シャッター部を開けた状態にする、請求項3記載の半導体製造装置。
  5.  前記封止材溜めゲート部は、
     前記キャビティ側に位置し、前記第2開口断面積を有する第1部と、
     前記第1部に対して前記封止材溜め部側に位置し、前記第2開口断面積よりも大きい第3開口断面積を有する第2部と
    を有する、請求項1~4のいずれか1項に記載の半導体製造装置。
  6.  前記第1部から前記第2部に向かって傾斜した傾斜部を含む、請求項5記載の半導体製造装置。
  7.  前記封止材溜めゲート部は、前記他方側における、前記封止材注入ゲート部に最も近い位置に配置された、請求項1~6のいずれか1項に記載の半導体製造装置。
  8.  前記封止材溜めゲート部は、前記他方側における、前記封止材注入ゲート部に最も近い位置から前記第1方向と交差する第2方向に離れた位置に配置された、請求項1~6のいずれか1項に記載の半導体製造装置。
  9.  前記封止材溜め部は、
     第1封止材溜め部と、
     第2封止材溜め部と
    を含み、
     前記封止材溜めゲート部は、
     前記キャビティと前記第1封止材溜め部との間を連通する第1封止材溜めゲート部と、
     前記キャビティと前記第2封止材溜め部との間を連通する第2封止材溜めゲート部と
    を含む、請求項1~8のいずれか1項に記載の半導体製造装置。
  10.  前記封止材溜めゲート部は、前記キャビティと前記封止材溜め部とを前記第1方向と交差する方向に連通する、請求項1~9のいずれか1項に記載の半導体製造装置。
  11.  前記封止材溜め部は、少なくとも一の前記封止材溜め部と他の前記封止材溜め部とを含み、
     前記封止材溜めゲート部は、前記キャビティと一の前記封止材溜め部との間を連通し、
     一の前記封止材溜め部と他の前記封止材溜め部との間は、封止材溜め部間ゲート部によって連通された、請求項1~8のいずれか1項に記載の半導体製造装置。
  12.  リードフレームを用意する工程と、
     前記リードフレームに半導体素子を搭載する工程と、
     下金型および上金型を含み、前記下金型と前記上金型とによってキャビティが形成されるモールド金型を用意する工程と、
     前記半導体素子が搭載された前記リードフレームを、前記モールド金型内に配置する工程と、
     前記キャビティ内に封止材を注入する工程と、
     前記モールド金型を取り外す工程と
    を有し、
     前記モールド金型を用意する工程は、
     前記キャビティへ向けて封止材を注入する封止材注入ゲート部と、
     前記キャビティを挟んで前記封止材注入ゲート部が配置されている第1側とは反対の第2側に設けられ、前記キャビティを経て流れ込む封止材を溜める一つ以上の封止材溜め部と、
     前記キャビティと前記封止材溜め部との間を連通する封止材溜めゲート部と
    を備えた前記モールド金型を用意する工程を備え、
     前記キャビティ内に前記封止材を注入する工程は、前記キャビティ内に充填される前記封止材が前記封止材溜め部へ流れ込むまで前記封止材を注入する工程を備えた、半導体装置の製造方法。
  13.  前記モールド金型を用意する工程は、前記封止材溜めゲート部に設けられ、前記キャビティから前記封止材溜め部へ前記封止材が流れるのを阻止するシャッター部を備えた前記モールド金型を用意する工程を含み、
     前記キャビティ内に前記封止材を注入する工程は、
     前記シャッター部を閉じた状態で、前記キャビティ内に前記封止材を注入する工程と、
     前記キャビティ内に前記封止材が充填された後、前記シャッター部を開けた状態にして、前記キャビティ内に充填された前記封止材が前記封止材溜め部へ流れ込むまで前記キャビティ内に前記封止材を注入する工程と
    を含む、請求項12記載の半導体装置の製造方法。
  14.  前記モールド金型を取り外す工程は、前記シャッター部を上下方向に稼動させて、前記リードフレーム、前記下金型および前記上金型のいずれかに当接させることによって、前記下金型と前記上金型とを離間させる工程を含む、請求項13記載の半導体装置の製造方法。
  15.  前記モールド金型を取り外す工程は、
     前記封止材溜め部にへ流れ込んだ封止材の部分を、前記キャビティ内に充填された前記封止材から取り除く工程と、
     前記封止材注入ゲート部に位置する前記封止材の部分を、前記キャビティ内に充填された前記封止材から取り除く工程と
    を含む、請求項12~14のいずれか1項に記載の半導体装置の製造方法。
  16.  前記リードフレームを用意する工程は、ダイパッドおよびリード端子となる部分を含み、前記ダイパッドの高さ位置が前記リード端子となる部分の高さ位置とは異なる前記リードフレームを用意する工程を含み、
     前記リードフレームに前記半導体素子を搭載する工程は、前記半導体素子を前記ダイパッドに搭載する工程を含み、
     前記リードフレームを前記モールド金型内に配置する工程は、前記ダイパッドと前記キャビティを構成する前記下金型の部分との間に、高さ方向に第1距離を有する第1充填空間が形成されるとともに、前記ダイパッドと前記キャビティを構成する前記上金型の部分との間に、前記高さ方向に前記第1距離よりも長い第2距離を有する第2充填空間が形成される態様で、前記リードフレームを配置する工程を含み、
     前記封止材を注入する工程は、前記封止材を前記第1充填空間と前記第2充填空間とに充填する工程を含む、請求項12~15のいずれか1項に記載の半導体装置の製造方法。
  17.  前記リードフレームを用意する工程は、前記モールド金型内に配置された状態で前記封止材溜め部が位置する領域を覆わない切り欠き部が形成された前記リードフレームを用意する工程を含む、請求項12~16のいずれか1項に記載の半導体装置の製造方法。
  18.  リード端子と、
     前記リード端子に接続されたダイパッドと、
     前記ダイパッドに搭載された半導体素子と、
     前記リード端子の一部を露出する態様で、前記ダイパッドおよび前記半導体素子を封止する封止材と
    を有し、
     前記封止材は、第1方向に距離を隔てて互いに対向する第1側部と第2側部とを有し、
     前記第1側部には、第1封止材痕があり、
     前記第2側部には、一つ以上の第2封止材痕がある、半導体装置。
  19.  前記第2封止材痕の面積は、前記第1封止材痕の面積よりも小さい、請求項18に記載の半導体装置。
  20.  前記第2封止材痕は、前記第2側部における、前記第1封止材痕とは前記第1方向に対向する位置に残されている、請求項18または19に記載の半導体装置。
  21.  前記封止材は、
     前記ダイパッドに前記半導体素子が搭載されている側を覆う第1封止材部分と、
     前記ダイパッドに前記半導体素子が搭載されている側とは反対側を覆う第2封止材部分と
    を含み、
     前記第2封止材部分の厚さは、前記第1封止材部分の厚さよりも薄い、請求項18~20のいずれか1項に記載の半導体装置。
  22.  前記第2封止材痕は、前記第2側部における、前記第1封止材痕とは前記第1方向に対向する位置から、前記第2側部に沿って距離を隔てられた位置に残されている、請求項18~21のいずれか1項に記載の半導体装置。
PCT/JP2020/036886 2019-10-07 2020-09-29 半導体製造装置およびそれを用いた半導体装置の製造方法ならびに半導体装置 WO2021070677A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202080069138.0A CN114514599A (zh) 2019-10-07 2020-09-29 半导体制造装置、使用半导体制造装置的半导体装置的制造方法及半导体装置
US17/636,650 US20220293434A1 (en) 2019-10-07 2020-09-29 Semiconductor manufacturing apparatus and method of manufacturing semiconductor device using the same, and semiconductor device
JP2021551305A JP7269362B2 (ja) 2019-10-07 2020-09-29 半導体製造装置およびそれを用いた半導体装置の製造方法ならびに半導体装置
DE112020004809.8T DE112020004809T5 (de) 2019-10-07 2020-09-29 Vorrichtung zur Halbleiterfertigung, Verfahren zur Herstellung eines Halbleiterbauelements unter Verwendung dieser Vorrichtung und Halbleiterbauelement
JP2023069540A JP2023083481A (ja) 2019-10-07 2023-04-20 半導体製造装置およびそれを用いた半導体装置の製造方法ならびに半導体装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019184617 2019-10-07
JP2019-184617 2019-10-07

Publications (1)

Publication Number Publication Date
WO2021070677A1 true WO2021070677A1 (ja) 2021-04-15

Family

ID=75437907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/036886 WO2021070677A1 (ja) 2019-10-07 2020-09-29 半導体製造装置およびそれを用いた半導体装置の製造方法ならびに半導体装置

Country Status (5)

Country Link
US (1) US20220293434A1 (ja)
JP (2) JP7269362B2 (ja)
CN (1) CN114514599A (ja)
DE (1) DE112020004809T5 (ja)
WO (1) WO2021070677A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117334663A (zh) * 2023-09-28 2024-01-02 海信家电集团股份有限公司 智能功率模块和智能功率模块的制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05218122A (ja) * 1992-01-30 1993-08-27 Nec Corp 樹脂封止型半導体装置の樹脂封止金型
JPH05326594A (ja) * 1992-05-22 1993-12-10 Nec Corp 半導体装置の樹脂封止金型と樹脂封止方法
JP2007042709A (ja) * 2005-08-01 2007-02-15 Seiko Epson Corp 樹脂封止金型及び樹脂封止型電子部品
JP2010263066A (ja) * 2009-05-07 2010-11-18 Renesas Electronics Corp 半導体装置の製造方法
JP2012146799A (ja) * 2011-01-12 2012-08-02 Renesas Electronics Corp 半導体装置の製造方法
JP2013207083A (ja) * 2012-03-28 2013-10-07 Seiko Epson Corp 電子デバイスの製造方法、及び樹脂成形型

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05218122A (ja) * 1992-01-30 1993-08-27 Nec Corp 樹脂封止型半導体装置の樹脂封止金型
JPH05326594A (ja) * 1992-05-22 1993-12-10 Nec Corp 半導体装置の樹脂封止金型と樹脂封止方法
JP2007042709A (ja) * 2005-08-01 2007-02-15 Seiko Epson Corp 樹脂封止金型及び樹脂封止型電子部品
JP2010263066A (ja) * 2009-05-07 2010-11-18 Renesas Electronics Corp 半導体装置の製造方法
JP2012146799A (ja) * 2011-01-12 2012-08-02 Renesas Electronics Corp 半導体装置の製造方法
JP2013207083A (ja) * 2012-03-28 2013-10-07 Seiko Epson Corp 電子デバイスの製造方法、及び樹脂成形型

Also Published As

Publication number Publication date
US20220293434A1 (en) 2022-09-15
DE112020004809T5 (de) 2022-06-15
JP7269362B2 (ja) 2023-05-08
CN114514599A (zh) 2022-05-17
JP2023083481A (ja) 2023-06-15
JPWO2021070677A1 (ja) 2021-04-15

Similar Documents

Publication Publication Date Title
US7820486B2 (en) Method of fabricating a semiconductor device having a heat sink with an exposed surface
US8772923B2 (en) Semiconductor device having leads with cutout and method of manufacturing the same
US6717279B2 (en) Semiconductor device with recessed portion in the molding resin
US9947613B2 (en) Power semiconductor device and method for manufacturing the same
JP3194917B2 (ja) 樹脂封止方法
KR20080060160A (ko) 전자 부품 내장 기판
EP2597675B1 (en) Encapsulated semiconductor device and method for producing same
KR200309906Y1 (ko) 반도체 패키지 제조용 리드프레임
WO2021070677A1 (ja) 半導体製造装置およびそれを用いた半導体装置の製造方法ならびに半導体装置
TW201628107A (zh) 半導體裝置之製造方法
TWI658518B (zh) 電路零件的製造方法及電路零件
US20040203194A1 (en) Method of resin-sealing a semiconductor device, resin-sealed semiconductor device, and forming die for resin-sealing the semiconductor device
JP2014204082A (ja) 半導体装置の製造方法
US7795712B2 (en) Lead frame with non-conductive connective bar
JP2010212628A (ja) 半導体装置の製造方法
CN112838014A (zh) 树脂成形后的引线框的制造方法、树脂成形品的制造方法及引线框
CN112652543A (zh) 半导体装置的制造方法
JP2008235615A (ja) 配線基板、それを用いた半導体装置およびその製造方法
JP7065677B2 (ja) パワーモジュール製造装置およびパワーモジュールの製造方法
JP7142714B2 (ja) 電力用半導体装置の製造方法
WO2021186657A1 (ja) 半導体装置および半導体装置の製造方法
JPH10107054A (ja) 半導体チップパッケージの成形装置
JP2005081695A (ja) 樹脂成形用金型
JP2004087672A (ja) 樹脂封止型半導体装置およびその製造方法
JP2021027348A (ja) 半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20874249

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021551305

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20874249

Country of ref document: EP

Kind code of ref document: A1