WO2021068644A1 - 一种高效背钝化晶硅太阳能电池及其制备方法 - Google Patents

一种高效背钝化晶硅太阳能电池及其制备方法 Download PDF

Info

Publication number
WO2021068644A1
WO2021068644A1 PCT/CN2020/108863 CN2020108863W WO2021068644A1 WO 2021068644 A1 WO2021068644 A1 WO 2021068644A1 CN 2020108863 W CN2020108863 W CN 2020108863W WO 2021068644 A1 WO2021068644 A1 WO 2021068644A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
passivation
sinx
type silicon
solar cell
Prior art date
Application number
PCT/CN2020/108863
Other languages
English (en)
French (fr)
Inventor
张鹏
陈坤
王岚
尹志伟
Original Assignee
通威太阳能(成都)有限公司
通威太阳能(眉山)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 通威太阳能(成都)有限公司, 通威太阳能(眉山)有限公司 filed Critical 通威太阳能(成都)有限公司
Priority to AU2020363658A priority Critical patent/AU2020363658B2/en
Priority to US17/767,963 priority patent/US20240097056A1/en
Priority to EP20873407.9A priority patent/EP4027395A4/en
Publication of WO2021068644A1 publication Critical patent/WO2021068644A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Definitions

  • the invention relates to the field of back passivation solar cells, in particular to a high-efficiency back passivation crystalline silicon solar cell and a preparation method thereof.
  • solar cells mainly use crystalline silicon as the base material. Due to the periodic damage on the surface of the silicon wafer, a large number of dangling bonds will be generated, causing a large number of defect energy levels in the band gap on the crystal surface; in addition, Dislocations, chemical residues, and surface metal deposition will all introduce defect energy levels, making the surface of the silicon wafer a recombination center, resulting in a larger surface recombination rate, and thus limiting the conversion efficiency.
  • the main advantage of the back passivated battery compared with the conventional battery is to reduce the interface state on the back of the battery, improve the passivation ability, and by extending the light path, improve the long-wave response and short-circuit current, the back passivated battery improves the conversion efficiency of the conventional battery by 1.0- 1.2% or more.
  • large-scale production in the industry uses AlOX+SiNX structure as the main back passivation film.
  • Si-H and -NH bonds easily causes the film to loosen and accumulate a large number of pinholes.
  • the purpose of the present invention is to solve the problem that the back passivation film layer of the existing back passivation solar cell easily forms silicon aggregates, also called silicon islands, during the production process, which directly affects the overall back passivation effect. As a result, the conversion efficiency of the battery is reduced, and a high-efficiency back-passivated crystalline silicon solar battery and a preparation method thereof are provided.
  • a high-efficiency back passivation crystalline silicon solar cell comprising Ag gate finger levels, SiNx passivation anti-reflection layer, N+ layer (phosphorus doped layer), P-type silicon, back passivation layer, connected sequentially from top to bottom
  • the Al gate finger level, the Ag gate finger level sequentially penetrates the passivation film layer, the N+ layer is connected to the P-type silicon through the N++ layer (heavy doped silicon layer), and the Al gate finger level penetrates the back passivation layer It is connected to the P-type silicon through the P+ layer (partially contacted with the aluminum doped layer).
  • the back passivation layer is a passivation and anti-inverse laminated structure, and the passivation and anti-inverse laminated structure includes SiO sequentially arranged from top to bottom.
  • the thickness of the SiO 2 passivation layer is 0.3-3 nm.
  • the thickness of the AlOx passivation layer is 5-15 nm.
  • the SiNx anti-reflection layer has a thickness of 70-110 nm, a refractive index of 1.9-2.2, and a structure of a single layer, a double layer, or a triple layer.
  • the thickness of the SiOxNy anti-reflection layer is 70-110 nm, and the refractive index is 1.8-2.0.
  • the preparation method includes the following steps:
  • reaction temperature is 750-850°C
  • reaction time is 30-60min, forming an N+ layer on the surface of the P-type silicon wafer
  • reaction temperature is 750-850°C
  • the silicon dioxide (SiO 2 ) layer is deposited using O 2 or N 2 O gas, and the reaction temperature is 600-850° C.; the aluminum oxide (AlOx) layer is deposited using TMA And O 2 or N 2 O, the reaction temperature is 200-350°C; the silicon nitride (SiNx) layer is deposited using a mixed gas of SiH 4 and NH 3 , and the reaction temperature is 300-550°C;
  • the silicon oxynitride (SiOxNy) layer uses a mixed gas of SiH 4 , NH 3 and N2O, and the reaction temperature is 300-550°C.
  • the invention uses silicon dioxide (SiO 2 ) film on the bottom layer of the back passivation crystalline silicon solar cell to reduce the contact resistance and enhance the passivation ability, which is beneficial to significantly reduce the recombination speed of the entire silicon wafer surface, and the top layer uses silicon oxynitride (SiOxNy) thin film to enhance passivation and antireflection ability.
  • silicon oxynitride is a substance between silicon nitride (SiNx) and silicon dioxide (SiO 2 )
  • its electrical and optical properties are between the two
  • the refractive index can be controlled between 1.47(SiO 2 )-2.3(SiNx).
  • the coating process can be optimized by plasma enhanced chemical vapor deposition (PECVD), so that its structure and performance have the advantages of SiNx and SiO 2 and improve passivation and anti-reflection performance. Therefore, a SiO 2 -AlOx-SiNx-SiOxNy laminated passivation anti-reflective film is formed on the back of the battery, which has high carrier selectivity, high temperature stability, excellent interface passivation effect, and excellent anti-PID ability to achieve high conversion Solar cells with high efficiency and high stability.
  • PECVD plasma enhanced chemical vapor deposition
  • Figure 1 is a schematic diagram of the structure of the present invention
  • the names of the parts corresponding to the reference signs are as follows: 1-Ag gate finger level, 2-SiNx passivation anti-reflection layer, 3-N+ layer, 4-P-type silicon, 5-back passivation layer, 6-Al Grid finger electrical level, 7-N++ layer, 8-P+ layer, 51-SiO2 passivation layer, 52-AlOx passivation layer, 53-SiNx anti-reflection layer, 54-SiOxNy anti-reflection layer.
  • a high-efficiency back-passivation crystalline silicon solar cell including Ag gate finger level 1, SiNx passivation anti-reflection layer 2, N+ layer (phosphorus doped layer) 3, P-type silicon 4, and back side connected sequentially from top to bottom
  • the Al gate finger level 6 penetrates through the back passivation layer 5 and is connected to the P-type silicon 4 through the P+ layer (partially contacted with the aluminum doped layer) 8, and is characterized in that: the back passivation layer 5 is passivation reducing anti-overlapping
  • the layer structure, the passivation anti-reflection laminated structure includes a SiO2 passivation layer 51, an AlOx passivation layer 52, a SiNx anti-reflection layer 53, and a SiOxNy
  • the thickness of the SiO2 passivation layer 51 is 0.3-3 nm.
  • the thickness of the AlOx passivation layer 52 is 5-15 nm.
  • the SiNx anti-reflection layer 53 has a thickness of 70-110 nm, a refractive index of 1.9-2.2, and a structure of a single layer, a double layer, or a triple layer.
  • the SiOxNy anti-reflection layer 54 has a thickness of 70-110 nm and a refractive index of 1.8-2.0.
  • a high-efficiency back-passivation crystalline silicon solar cell including Ag gate finger level 1, SiNx passivation anti-reflection layer 2, N+ layer (phosphorus doped layer) 3, P-type silicon 4, and back side connected sequentially from top to bottom
  • the Al gate finger level 6 penetrates the back passivation layer 5 and is connected to the P-type silicon 4 through the P+ layer (partially contacted with the aluminum doped layer) 8, and is characterized in that: the back passivation layer 5 is passivation anti-reflective Laminated structure, the passivation anti-reflection laminated structure includes a SiO2 passivation layer 51, an AlOx passivation layer 52, a SiNx anti-reflection layer 53, and a SiOxNy anti
  • the thickness of the SiO2 passivation layer 51 is 0.3 nm.
  • the thickness of the SiO2 passivation layer 51 is 3 nm
  • the thickness of the AlOx passivation layer 52 is 5 nm.
  • the thickness of the AlOx passivation layer 52 is 15 nm.
  • the SiNx anti-reflection layer 53 has a thickness of 70 nm, a refractive index of 1.9, and a single layer structure.
  • the SiNx anti-reflection layer 53 has a thickness of 110 nm, a refractive index of 2.2, and a double-layer structure.
  • the SiNx anti-reflection layer 53 has a thickness of 80 nm, a refractive index of 2.0, and a three-layer structure.
  • the SiOxNy anti-reflection layer 54 has a thickness of 70 nm and a refractive index of 1.8.
  • the SiOxNy anti-reflection layer 54 has a thickness of 110 nm and a refractive index of 2.0.
  • the preparation method includes the following steps:
  • reaction temperature is 750-850°C
  • reaction time is 30-60min, forming an N+ layer on the surface of the P-type silicon wafer
  • reaction temperature is 750-850°C
  • the silicon dioxide (SiO 2 ) layer is deposited using O 2 or N 2 O gas, and the reaction temperature is 600-850° C.; the aluminum oxide (AlOx) layer is deposited Using a mixed gas of TMA and O 2 or N 2 O, the reaction temperature is 200-350°C; the silicon nitride (SiNx) layer is deposited with a mixed gas of SiH 4 and NH 3 , and the reaction temperature is 300-550°C; the silicon oxynitride (SiOxNy) layer, SiH 4 and NH 3 are employed, and a mixed gas of N2O, the reaction temperature is 300-550 °C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种高效背钝化晶硅太阳能电池及其制备方法,电池包括由上至下依次相连的Ag栅指电极(1)、SiNx钝化减反射层(2)、N+层(磷掺杂层)(3)、P型硅(4)、背面钝化层(5)、Al栅指电极(6),Ag栅指电极(1)依次贯穿SiNx钝化减反射层(2)、N+层(3)通过N++层(重掺杂硅层)(7)与P型硅(4)相连,Al栅指电极(6)贯穿背面钝化层(5)通过P+层(局部接触铝掺杂层)(8)与P型硅(4)相连,背面钝化层(5)为钝化减反叠层结构,钝化减反叠层结构(5)包括由上至下依次设置的SiO2钝化层(51)、AlOx钝化层(52)、SiNx减反射层(53)、SiOxNy减反射层(54);太阳能电池具有高载子选择性、高温度稳定性,优良的界面钝化效果,优良的抗PID能力,从而实现了高转换效率,高稳定性。

Description

一种高效背钝化晶硅太阳能电池及其制备方法 技术领域
本发明涉及背钝化太阳能电池领域,尤其涉及一种高效背钝化晶硅太阳能电池及其制备方法。
背景技术
目前太阳能电池主要以晶体硅作为基底材料,由于在硅片表面周期性破坏,会产生大量垂悬键(dangling bond),使得晶体表面存在大量位于带隙中的缺陷能级;除此之外,位错、化学残留物、表面金属的沉积均会导入缺陷能级,使得硅片表面成为复合中心,造成较大的表面复合速率,进而限制了转换效率。背钝化电池对比常规电池主要优势在于降低电池片背面界面态,提高钝化能力,并藉由延长光线路程,提高长波响应以及短路电流,使得背钝化电池较常规电池转换效率提高了1.0-1.2%甚至以上。目前业界规模化生产,以AlOX+SiNX结构为主要的背钝化膜层,但其中Si-H和-NH键的存在容易造成膜层松散并聚集大量的针孔,在经过高温退火之后,氢从Si-H键中脱离留下未饱和的Si+,这些过剩的Si+之间发生键合,最终形成硅的聚集体,也称为硅岛,直接影响钝化效果,因此限制了背钝化电池的效率提升,降低了高效电池生产的经济效益。
发明内容
本发明的目的在于:为解决现有的背钝化太阳能电池的背面钝化膜层在生产过程中容易形成硅的聚集体,也称为硅岛,直接影响了整体的背面钝化的效果,导致降低了电池的转换效率的问题,特提供一种高效背钝化晶硅太阳能电池及其制备方法。
本发明采用的技术方案如下:
一种高效背钝化晶硅太阳能电池,包括由上至下依次相连的Ag栅指电级、SiNx钝化减反射层、N+层(磷掺杂层)、P型硅、背面钝化层、Al栅指电级,所述Ag栅指电级依次贯穿钝化膜层、N+层通过N++层(重掺杂硅层)与P型硅相连,所述Al栅指电级贯穿背面钝化层通过P+层(局部接触铝掺杂层)与P型硅相连,所述背面钝化层为钝化减反叠层结构,所述钝化减反叠层结构包括由上至下依次设置的SiO 2钝化层、AlOx钝化层、SiNx减反射层、SiOxNy减反射层。
上述方案中,所述SiO 2钝化层的厚度为0.3-3nm。
上述方案中,所述AlOx钝化层的厚度为5-15nm。
上述方案中,所述SiNx减反射层的厚度为70-110nm,折射率为1.9-2.2,结构为单层或双层或三层。
上述方案中,所述SiOxNy减反射层厚度为70-110nm,折射率为1.8-2.0。
一种高效背钝化晶硅太阳能电池及其制备方法,所述制备方法包括以下步骤:
(a)采用碱制绒的方式,将P型硅片于槽中去除损伤层并制绒,形成0.5μm-5μm高的金字塔绒面;
(b)采用三氯氧磷高温扩散,反应温度为750-850℃,反应时间为30-60min,在P型硅片表面形成N+层;
(c)采用激光掺杂形成N++层;
(d)采用湿法刻蚀工艺,搭配HNO 3/HF混合溶液,去除背面的N+层,并对背面进行抛光处理;
(e)高温退火,反应温度为750-850℃;
(f)采用原子层沉积或等离子增强化学气相沉积法在P型硅片背面依序沉积SiO 2钝化层、AlOx钝化层、SiNx减反射层、SiOxNy减反射层薄膜,形成钝化减反叠层结构;
(g)采用等离子增强化学气相沉积法,在P型硅片正面形成SiNx钝化减反射层;
(h)采用激光刻蚀,在P型硅片背面选择性刻蚀掉部分钝化层,让硅层裸露;
(i)采用丝网印刷法,依照网版图形设计,在P型硅片正面印刷银浆/背面印刷铝浆,经过高温烧结后,形成欧姆接触,制作得到高效背钝化晶硅太阳能电池。
上述方案中,所述步骤(f)中沉积所述二氧化硅(SiO 2)层采用O 2或N 2O气体,反应温度为600-850℃;沉积所述氧化铝(AlOx)层采用TMA及O 2或N 2O的混合气体,反应温度为200-350℃;沉积所述氮化硅(SiNx)层采用SiH 4和NH 3的混合气体,反应温度为300-550℃;沉积所述氮氧化硅(SiOxNy)层采用SiH 4和NH 3以及N2O的混合气体,反应温度为300-550℃。
综上所述,由于采用了上述技术方案,本发明的有益效果是:
本发明在背钝化晶硅太阳能电池的背面底层采用二氧化硅(SiO 2)薄膜来减少接触电阻与增强钝化能力,有利于显着降低整个硅片表面的复合速度,顶层采用氮氧化硅(SiOxNy)薄膜来增强钝化与减反能力,由于氮氧化硅是介于氮化硅(SiNx)和二氧化硅(SiO 2)间的一种物质,其电学及光学性能介于二者之间,通过改变其组成成分,折射率可控制在1.47(SiO 2)-2.3(SiNx)之间,随着氧含量增加则转化向SiO 2为主的结构,随氮含量增加则转化SiNx成分较多的结构,可通过等离子增强化学气相沉积(PECVD)优化镀膜工艺,使其结构与性能兼具SiNx及SiO 2的部分优点,提高了钝化与减反性能。因此在电池背面形成SiO 2-AlOx-SiNx-SiOxNy叠层钝化减反膜,具有高载子选择性、高温度稳定性,优良的界面钝化效果,优良的抗PID能力,从而实现高转换效率,高稳定性的太阳能电池。
附图说明
本发明将通过实施例并参照附图的方式说明,其中:
图1为本发明结构示意图;
其中附图标记所对应的零部件名称如下:1-Ag栅指电级,2-SiNx钝化减反射层,3-N+层,4-P型硅,5-背面钝化层,6-Al栅指电级,7-N++层,8-P+层,51-SiO2钝化层,52-AlOx钝化层,53-SiNx减反射层,54-SiOxNy减反射层。
具体实施方式
本说明书中公开的所有特征,或公开的所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以以任何方式组合。
一种高效背钝化晶硅太阳能电池,包括由上至下依次相连的Ag栅指电级1、SiNx钝化减反射层2、N+层(磷掺杂层)3、P型硅4、背面钝化层5、Al栅指电级6,所述Ag栅指电级1依次SiNx钝化减反射层2、N+层3通过N++层(重掺杂硅层)7与P型硅4相连,所述Al栅指电级6贯穿背面钝化层5通过P+层(局部接触铝掺杂层)8与P型硅4相连,其特征在于:所述背面钝化层5为钝化减反叠层结构,所述钝化减反叠层结构包括由上至下依次设置的SiO2钝化层51、AlOx钝化层52、SiNx减反射层53、SiOxNy减反射层54。
上述方案中,所述SiO2钝化层51的厚度为0.3-3nm。
上述方案中,所述AlOx钝化层52的厚度为5-15nm。
上述方案中,所述SiNx减反射层53的厚度为70-110nm,折射率为1.9-2.2,结构为单层或双层或三层。
上述方案中,所述SiOxNy减反射层54厚度为70-110nm,折射率为1.8-2.0。
实施例1
一种高效背钝化晶硅太阳能电池,包括由上至下依次相连的Ag栅指电级1、SiNx钝化减反射层2、N+层(磷掺杂层)3、P型硅4、背面钝化层5、Al栅指电级6,所述Ag栅指电级1依次贯穿SiNx钝化减反射层2、N+层3通过N++层(重掺杂硅层)7与P型硅4相连,所述Al栅指电级6贯穿背面钝化层5通过P+层(局部接触铝掺杂层)8与P型硅4相连,其特征在于:所述背面钝化层5为钝化减反叠层结构,所述钝化减反叠层结构包括由上至下依次设置的SiO2钝化层51、AlOx钝化层52、SiNx减反射层53、SiOxNy减反射层54。
实施例2
在实施例1的基础上,所述SiO2钝化层51的厚度为0.3nm。
实施例3
在实施例1的基础上,所述SiO2钝化层51的厚度为3nm
实施例4
在上述实施例的基础上,所述AlOx钝化层52的厚度为5nm。
实施例5
在实施例1或2或3的基础上,所述AlOx钝化层52的厚度为15nm。
实施例6
在上述实施例的基础上,所述SiNx减反射层53的厚度为70nm,折射率为1.9,结构为单层。
实施例7
在实施例1-5中任一实施例的基础上,所述SiNx减反射层53的厚度为110nm,折射率为2.2,结构为双层。
实施例8
在实施例1-5中任一实施例的基础上,所述SiNx减反射层53的厚度为80nm,折射率为2.0,结构为三层。
实施例9
在上述实施例的基础上,所述SiOxNy减反射层54厚度为70nm,折射率为1.8。
实施例10
在实施例1-8中任一实施例的基础上,所述SiOxNy减反射层54厚度为110nm,折射率为2.0。
实施例11
一种高效背钝化晶硅太阳能电池及其制备方法,所述制备方法包括以下步骤:
(a)采用碱制绒的方式,将P型硅片于槽中去除损伤层并制绒,形成0.5μm-5μm高的金字塔绒面;
(b)采用三氯氧磷高温扩散,反应温度为750-850℃,反应时间为30-60min,在P型硅片表面形成N+层;
(c)采用激光掺杂形成N++层;
(d)采用湿法刻蚀工艺,搭配HNO 3/HF混合溶液,去除背面的N+层,并对背面进行抛光处理;
(e)高温退火,反应温度为750-850℃;
(f)采用原子层沉积或等离子增强化学气相沉积法在P型硅片背面依序沉积SiO 2钝化层、AlOx钝化层、SiNx减反射层、SiOxNy减反射层薄膜,形成钝化减反叠层结构;
(g)采用等离子增强化学气相沉积法,在P型硅片正面形成SiNx钝化减反射层;
(h)采用激光刻蚀,在P型硅片背面选择性刻蚀掉部分钝化层,让硅层裸露;
(i)采用丝网印刷法,依照网版图形设计,在P型硅片正面印刷银浆/背面印刷铝浆,经过高温烧结后,形成欧姆接触,制作得到高效背钝化晶硅太阳能电池。
在本实施例中,所述步骤(f)中沉积所述二氧化硅(SiO 2)层采用O 2或N 2O气体,反应温度为600-850℃;沉积所述氧化铝(AlOx)层采用TMA及O 2或N 2O的混合气体,反应温度为200-350℃;沉积所述氮化硅(SiNx)层采用SiH 4和NH 3的混合气体,反应温度为300-550℃;沉积所述氮氧化硅(SiOxNy)层采用SiH 4和NH 3以及N2O的混合气体,反应温度为300-550℃。
以上所述,仅为本发明的较佳实施例,并不用以限制本发明,本发明的专利保护范围以权利要求书为准,凡是运用本发明的说明书及附图内容所作的等同结构变化,同理均应包含在本发明的保护范围内。

Claims (7)

  1. 一种高效背钝化晶硅太阳能电池,包括由上至下依次相连的Ag栅指电级(1)、SiNx钝化减反射层(2)、N+层(3)、P型硅(4)、背面钝化层(5)、Al栅指电级(6),所述Ag栅指电级(1)依次贯穿SiNx钝化减反射层(2)、N+层(3)通过N++层(7)与P型硅(4)相连,所述Al栅指电级(6)贯穿背面钝化层(5)通过P+层(8)与P型硅(4)相连,其特征在于:所述背面钝化层(5)为钝化减反叠层结构,所述钝化减反叠层结构包括由上至下依次设置的SiO 2钝化层(51)、AlOx钝化层(52)、SiNx减反射层(53)、SiOxNy减反射层(54)。
  2. 根据权利要求1所述的一种高效背钝化晶硅太阳能电池,其特征在于:所述SiO 2钝化层(51)的厚度为0.3-3nm。
  3. 根据权利要求1所述的一种高效背钝化晶硅太阳能电池,其特征在于:所述AlOx钝化层(52)的厚度为5-15nm。
  4. 根据权利要求1所述的一种高效背钝化晶硅太阳能电池,其特征在于:所述SiNx减反射层(53)的厚度为70-110nm,折射率为1.9-2.2,结构为单层或双层或三层。
  5. 根据权利要求1所述的一种高效背钝化晶硅太阳能电池,其特征在于:所述SiOxNy减反射层(54)厚度为70-110nm,折射率为1.8-2.0。
  6. 一种高效背钝化晶硅太阳能电池及其制备方法,其特征在于,所述制备方法包括以下步骤:
    (a)采用碱制绒的方式,将P型硅片于槽中去除损伤层并制绒,形成0.5μm-5μm高的金字塔绒面;
    (b)采用三氯氧磷高温扩散,反应温度为750-850℃,反应时间为30-60min,在P型硅片表面形成N+层;
    (c)采用激光掺杂形成N++层;
    (d)采用湿法刻蚀工艺,搭配HNO 3/HF混合溶液,去除背面的N+层,并对背面进行抛光处理;
    (e)高温退火,反应温度为750-850℃;
    (f)采用原子层沉积或等离子增强化学气相沉积法在P型硅片背面依序沉积SiO 2钝化层、AlOx钝化层、SiNx减反射层、SiOxNy减反射层薄膜,形成钝化减反叠层结构;
    (g)采用等离子增强化学气相沉积法,在P型硅片正面形成SiNx钝化减反射层;
    (h)采用激光刻蚀,在P型硅片背面选择性刻蚀掉部分钝化层,让硅层裸露;
    (i)采用丝网印刷法,依照网版图形设计,在P型硅片正面印刷银浆/背面印刷铝浆,经过高温烧结后,形成欧姆接触,制作得到高效背钝化晶硅太阳能电池。
  7. 根据权利要求6所述的一种高效背钝化晶硅太阳能电池及其制备方法,其特征在于: 沉积所述二氧化硅(SiO 2)层采用O 2或N 2O气体,反应温度为600-850℃;沉积所述氧化铝(AlOx)层采用TMA及O 2或N 2O的混合气体,反应温度为200-350℃;沉积所述氮化硅(SiNx)层采用SiH 4和NH 3的混合气体,反应温度为300-550℃;沉积所述氮氧化硅(SiOxNy)层采用SiH 4和NH 3以及N20的混合气体,反应温度为300-550℃。
PCT/CN2020/108863 2019-10-12 2020-08-13 一种高效背钝化晶硅太阳能电池及其制备方法 WO2021068644A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2020363658A AU2020363658B2 (en) 2019-10-12 2020-08-13 Efficient back passivation crystalline silicon solar cell and manufacturing method therefor
US17/767,963 US20240097056A1 (en) 2019-10-12 2020-08-13 Efficient Back Passivation Crystalline Silicon Solar Cell and Manufacturing Method Therefor
EP20873407.9A EP4027395A4 (en) 2019-10-12 2020-08-13 EFFICIENT SILICON SOLAR CELL WITH REVERSE PASSIVATION AND MANUFACTURING PROCESS THEREOF

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910967301.4A CN110690296A (zh) 2019-10-12 2019-10-12 一种高效背钝化晶硅太阳能电池及其制备方法
CN201910967301.4 2019-10-12

Publications (1)

Publication Number Publication Date
WO2021068644A1 true WO2021068644A1 (zh) 2021-04-15

Family

ID=69112204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108863 WO2021068644A1 (zh) 2019-10-12 2020-08-13 一种高效背钝化晶硅太阳能电池及其制备方法

Country Status (5)

Country Link
US (1) US20240097056A1 (zh)
EP (1) EP4027395A4 (zh)
CN (1) CN110690296A (zh)
AU (1) AU2020363658B2 (zh)
WO (1) WO2021068644A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114256386A (zh) * 2021-12-22 2022-03-29 韩华新能源(启东)有限公司 适用于双面电池背面的套印方法及其应用
CN114464686A (zh) * 2021-12-28 2022-05-10 浙江爱旭太阳能科技有限公司 一种新型隧穿钝化接触结构电池及其制备方法
CN114944434A (zh) * 2022-05-25 2022-08-26 三一集团有限公司 晶体硅太阳能电池及其制备方法、光伏组件
WO2023093604A1 (zh) * 2021-11-23 2023-06-01 晶澳(扬州)太阳能科技有限公司 太阳能电池以及太阳能电池的制备方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110690296A (zh) * 2019-10-12 2020-01-14 通威太阳能(眉山)有限公司 一种高效背钝化晶硅太阳能电池及其制备方法
CN111628010A (zh) * 2020-06-09 2020-09-04 山西潞安太阳能科技有限责任公司 一种晶硅电池背钝化叠层结构及制备工艺
CN111916528B (zh) * 2020-06-29 2022-06-24 苏州腾晖光伏技术有限公司 一种降低letid的p型晶体硅太阳能电池的制备方法
CN112234115B (zh) * 2020-09-30 2022-04-29 通威太阳能(成都)有限公司 一种高效背钝化层的晶硅太阳能电池及其制备方法
CN112201715A (zh) * 2020-10-13 2021-01-08 天合光能股份有限公司 一种新型太阳能电池及其制备方法
CN112713204A (zh) * 2021-01-19 2021-04-27 天合光能股份有限公司 太阳能电池叠层钝化结构
CN112713203A (zh) * 2021-01-19 2021-04-27 天合光能股份有限公司 一种新型太阳能电池叠层钝化结构
CN113782638A (zh) * 2021-09-09 2021-12-10 海宁正泰新能源科技有限公司 一种电池背钝化结构及其制作方法、太阳能电池
CN114937706B (zh) * 2022-05-09 2023-09-29 苏州大学 一种晶硅太阳能电池用叠层钝化薄膜及其制备方法
CN117352572A (zh) * 2022-06-28 2024-01-05 四川省普照光新能源有限公司 一种氧化锌-晶硅叠层太阳能电池及其制备方法
CN115347076A (zh) * 2022-07-26 2022-11-15 隆基绿能科技股份有限公司 太阳能电池及制备方法、光伏组件

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102496661A (zh) * 2011-12-31 2012-06-13 中电电气(南京)光伏有限公司 一种制备背电场区域接触晶体硅太阳电池的方法
WO2013109583A2 (en) * 2012-01-16 2013-07-25 Ferro Corporation Non fire-through aluminum conductor reflector paste for back surface passivated cells with laser fired contacts
CN104992988A (zh) * 2015-06-24 2015-10-21 中山大学 一种具有良好导电性能的晶体硅太阳电池表面钝化层及钝化方法
CN105845747A (zh) * 2016-04-14 2016-08-10 董友强 一种太阳能电池结构
CN106653871A (zh) * 2016-11-18 2017-05-10 横店集团东磁股份有限公司 一种perc太阳能电池结构及其制备工艺
CN107146820A (zh) * 2017-03-10 2017-09-08 泰州隆基乐叶光伏科技有限公司 全背电极太阳电池结构及其制备方法
CN109087956A (zh) * 2018-07-16 2018-12-25 横店集团东磁股份有限公司 一种双面perc太阳能电池结构及其制备工艺
CN110690296A (zh) * 2019-10-12 2020-01-14 通威太阳能(眉山)有限公司 一种高效背钝化晶硅太阳能电池及其制备方法
CN210778614U (zh) * 2019-10-12 2020-06-16 通威太阳能(眉山)有限公司 一种高效背钝化晶硅太阳能电池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105659389B (zh) * 2013-10-25 2018-10-19 夏普株式会社 光电转换元件、光电转换模块以及太阳光发电系统
CN106653923B (zh) * 2016-11-01 2018-03-06 国家电投集团西安太阳能电力有限公司 一种适合薄片化的n型pert双面电池结构及其制备方法
CN107845701A (zh) * 2017-11-03 2018-03-27 常州亿晶光电科技有限公司 Perc电池背面al2o3叠加膜层工艺
CN109585600A (zh) * 2018-11-23 2019-04-05 浙江昱辉阳光能源江苏有限公司 一种双面perc高效晶硅太阳能电池的制作方法
CN110021673A (zh) * 2019-04-18 2019-07-16 苏州腾晖光伏技术有限公司 一种双面太阳能电池及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102496661A (zh) * 2011-12-31 2012-06-13 中电电气(南京)光伏有限公司 一种制备背电场区域接触晶体硅太阳电池的方法
WO2013109583A2 (en) * 2012-01-16 2013-07-25 Ferro Corporation Non fire-through aluminum conductor reflector paste for back surface passivated cells with laser fired contacts
CN104992988A (zh) * 2015-06-24 2015-10-21 中山大学 一种具有良好导电性能的晶体硅太阳电池表面钝化层及钝化方法
CN105845747A (zh) * 2016-04-14 2016-08-10 董友强 一种太阳能电池结构
CN106653871A (zh) * 2016-11-18 2017-05-10 横店集团东磁股份有限公司 一种perc太阳能电池结构及其制备工艺
CN107146820A (zh) * 2017-03-10 2017-09-08 泰州隆基乐叶光伏科技有限公司 全背电极太阳电池结构及其制备方法
CN109087956A (zh) * 2018-07-16 2018-12-25 横店集团东磁股份有限公司 一种双面perc太阳能电池结构及其制备工艺
CN110690296A (zh) * 2019-10-12 2020-01-14 通威太阳能(眉山)有限公司 一种高效背钝化晶硅太阳能电池及其制备方法
CN210778614U (zh) * 2019-10-12 2020-06-16 通威太阳能(眉山)有限公司 一种高效背钝化晶硅太阳能电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4027395A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023093604A1 (zh) * 2021-11-23 2023-06-01 晶澳(扬州)太阳能科技有限公司 太阳能电池以及太阳能电池的制备方法
CN114256386A (zh) * 2021-12-22 2022-03-29 韩华新能源(启东)有限公司 适用于双面电池背面的套印方法及其应用
CN114256386B (zh) * 2021-12-22 2023-10-03 韩华新能源(启东)有限公司 适用于双面电池背面的套印方法及其应用
CN114464686A (zh) * 2021-12-28 2022-05-10 浙江爱旭太阳能科技有限公司 一种新型隧穿钝化接触结构电池及其制备方法
CN114464686B (zh) * 2021-12-28 2024-05-10 浙江爱旭太阳能科技有限公司 一种新型隧穿钝化接触结构电池及其制备方法
CN114944434A (zh) * 2022-05-25 2022-08-26 三一集团有限公司 晶体硅太阳能电池及其制备方法、光伏组件
CN114944434B (zh) * 2022-05-25 2024-03-08 三一硅能(株洲)有限公司 晶体硅太阳能电池及其制备方法、光伏组件

Also Published As

Publication number Publication date
CN110690296A (zh) 2020-01-14
AU2020363658B2 (en) 2024-02-08
US20240097056A1 (en) 2024-03-21
EP4027395A4 (en) 2022-11-23
EP4027395A1 (en) 2022-07-13
AU2020363658A1 (en) 2022-04-28

Similar Documents

Publication Publication Date Title
WO2021068644A1 (zh) 一种高效背钝化晶硅太阳能电池及其制备方法
CN109087956B (zh) 一种双面perc太阳能电池结构及其制备工艺
CN106992229A (zh) 一种perc电池背面钝化工艺
TWI459577B (zh) 具改良表面保護膜之結晶矽太陽電池的製造方法
CN110931604A (zh) Topcon结构太阳能电池的制备方法
WO2014019340A1 (zh) N型晶硅太阳能电池及其制作方法
TWI463682B (zh) 異質接面太陽能電池
CN105810779B (zh) 一种perc太阳能电池的制备方法
CN210926046U (zh) 太阳能电池
CN105185851A (zh) 一种背面钝化太阳能电池及其制备方法
CN210778614U (zh) 一种高效背钝化晶硅太阳能电池
WO2024066884A1 (zh) 太阳电池及其制备方法
JP2013165160A (ja) 太陽電池の製造方法及び太陽電池
CN112820793A (zh) 太阳能电池及其制备方法
CN110890432A (zh) 一种高效多晶硅太阳能电池及其制备方法
CN111816714A (zh) 一种激光硼掺杂背钝化太阳能电池及其制备方法
CN112825340B (zh) 一种钝化接触电池及其制备方法和应用
CN116741877A (zh) 一种tbc电池制备方法及tbc电池
WO2022156101A1 (zh) 一种太阳能电池叠层钝化结构及其制备方法
CN104659150A (zh) 一种晶体硅太阳电池多层减反射膜的制备方法
WO2024021895A1 (zh) 太阳能电池及制备方法、光伏组件
CN101499502A (zh) 一种晶体硅太阳能电池及其钝化方法
CN218160392U (zh) 一种太阳能电池
JP2002277605A (ja) 反射防止膜の成膜方法
WO2022156102A1 (zh) 太阳能电池叠层钝化结构及制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20873407

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 17767963

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020873407

Country of ref document: EP

Effective date: 20220404

ENP Entry into the national phase

Ref document number: 2020363658

Country of ref document: AU

Date of ref document: 20200813

Kind code of ref document: A