WO2021068283A1 - 一种砖石成型机及其应用和砖石成型的方法 - Google Patents

一种砖石成型机及其应用和砖石成型的方法 Download PDF

Info

Publication number
WO2021068283A1
WO2021068283A1 PCT/CN2019/112546 CN2019112546W WO2021068283A1 WO 2021068283 A1 WO2021068283 A1 WO 2021068283A1 CN 2019112546 W CN2019112546 W CN 2019112546W WO 2021068283 A1 WO2021068283 A1 WO 2021068283A1
Authority
WO
WIPO (PCT)
Prior art keywords
fabric
vibration
bottom material
static pressure
box
Prior art date
Application number
PCT/CN2019/112546
Other languages
English (en)
French (fr)
Inventor
曹映辉
胡漪
曹映皓
李宏
张秦州
任建峰
Original Assignee
西安银马实业发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安银马实业发展有限公司 filed Critical 西安银马实业发展有限公司
Publication of WO2021068283A1 publication Critical patent/WO2021068283A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/08Producing shaped prefabricated articles from the material by vibrating or jolting
    • B28B1/087Producing shaped prefabricated articles from the material by vibrating or jolting by means acting on the mould ; Fixation thereof to the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B13/00Feeding the unshaped material to moulds or apparatus for producing shaped articles; Discharging shaped articles from such moulds or apparatus
    • B28B13/02Feeding the unshaped material to moulds or apparatus for producing shaped articles
    • B28B13/0215Feeding the moulding material in measured quantities from a container or silo
    • B28B13/023Feeding the moulding material in measured quantities from a container or silo by using a feed box transferring the moulding material from a hopper to the moulding cavities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B13/00Feeding the unshaped material to moulds or apparatus for producing shaped articles; Discharging shaped articles from such moulds or apparatus
    • B28B13/04Discharging the shaped articles
    • B28B13/06Removing the shaped articles from moulds
    • B28B13/065Removing the shaped articles from moulds by applying electric current or other means of discharging, e.g. pneumatic or hydraulic discharging means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/003Pressing by means acting upon the material via flexible mould wall parts, e.g. by means of inflatable cores, isostatic presses

Definitions

  • the invention belongs to the field of manufacturing machinery for concrete building material products, and specifically relates to a vibration & static pressure composite suitable for forming concrete building materials such as building sand and gravel, industrial waste, natural stone waste, tailings waste, etc., and forming artificial stone products A kind of masonry forming machine.
  • the pressure-bearing surface of the mold indenter is used to act on the upper surface of the product.
  • the effective applied pressure corresponding to the pressure-bearing upper surface is less than 1kgf/cm 2 , under the combined action of vibration and pressure-bearing state, the product can achieve the effect of vibrating and compacting.
  • This operating condition is relatively strict in the process of material grading:
  • the fineness modulus range should be controlled at 3.7 ⁇ 3.8mm.
  • the maximum particle size of the materials used should not exceed 10mm, and the minimum particle size should not be less than 1mm.
  • the said concrete product static pressure forming machine adopts the product forming process, and its operating conditions are mainly non-permeable stone products with relatively dense internal organization of the green body by relatively medium and high pressure, such as imitation stone products and fine powder for garden landscape
  • the effective applied static pressure corresponding to the surface of the product is greater than 100kgf/cm 2 , such as material lime sand brick, because it uses the upper and lower pressure heads on the product to bear the pressure at this station, and there is no vibration system due to the structure, so that the material can be filled.
  • the uniformity of the material flow in the process is poor, and only rely on pressure to squeeze each other.
  • the static pressure squeeze because there is no vibration compaction function of the aforementioned model, it is suitable for the multi-level fineness modulus in the range of 3.7 ⁇ 3.8mm.
  • the materials are all unsuitable areas for operation.
  • the static pressure forming machine is only suitable for operating conditions where the fineness modulus of the material is small, and the proportion of coarse aggregate in the entire material is only between 15% and 25%. It is required for industrial automation The standard controls the proportion of coarser rigid materials.
  • the concrete block forming machine is a model mainly used for construction of concrete sand and gravel materials. Even if it is mixed with fine powder materials above 100 mesh, such as fly ash and fine stone powder, the appropriate mixing amount can be used. The amount of fine powder can only be very small, and the indicators such as strength and density are relatively low compared to the static brick machine.
  • various industrial wastes and tailings such as phosphogypsum, red mud, pumice, shale, fly ash, coal gangue, slag and other materials to produce building materials, including PC products, artificial stone products ,
  • Single concrete block forming model or single concrete product static pressure model has the disadvantage of technical insufficiency in the forming process.
  • the present invention complements the advantages of the two, optimizes the structure, and effectively solves the insufficient compactness of the concrete products formed by the concrete block forming machine.
  • the present invention provides a vibration & static pressure composite masonry molding machine.
  • the structure of the present invention is reasonable, the operating cost is low, the production efficiency is high, the energy saving and environmental protection effect is good, and it can be widely applied to various industries.
  • a masonry forming machine includes:
  • the distributing system is used to fill the blank material into the mold box of the vibration system and the static pressure system;
  • the vibration system uses the horizontal vibration platform to generate a simple resonance action in the vertical direction for the bottom of the blank material in the mold box, so that the material has the product blank material to achieve a denser material homogenization effect, and reduce the cost
  • the static pressure system which acts vertically on the upper surface of the blank material in the mold box, is used to squeeze the blank material in the mold box, reduce the gap and air inside the blank material, and obtain denser masonry Shaped products;
  • the control system is used to set the technical parameters of the molding of masonry products, and is used to control the operation of the vibration system, the static pressure system, and the cloth system.
  • a preferred embodiment is that the preset values and calibration values of the masonry forming technical parameters are determined by the driving functions of each power system performed by the man-machine interface on the control system according to the type, bulk density, and compactness of the blank material. It needs to be set according to the operating procedure, and the operating process of the product into a blank is effectively implemented, wherein the preset material setting is 3 to 5 mm higher than the height of the finished product.
  • a preferred embodiment is that the blank material filling in the distributing system adopts a horizontally moving over-travel distributing mode to ensure that the blank material in the mold box of the vibration system and the static pressure system is filled.
  • a preferred embodiment is that the technical parameters set by the control system include: the over-range filling mode of the mold filling material moving in the horizontal direction, the number of filling times, the pre-vibration frequency, and the amplitude.
  • the cloth system includes a base material cloth system and a fabric cloth system.
  • the bottom material distributing system and the fabric distributing system are respectively arranged on both sides of the vibration system and the static pressure system.
  • the bottom material distributing system includes a bottom material storage hopper, a bottom material lifting frame, a bottom material distributing box, a bottom material distributing tank driving cylinder, a bottom material rack and a bottom material lifting mechanism, and a bottom material storage hopper.
  • the lower opening of the hopper is set corresponding to the feed inlet of the bottom material distribution box.
  • the bottom material storage hopper is installed and fixed on the connecting beams on both sides of the upper end of the bottom material lifting frame with bolts.
  • the motor reducer that drives the door is bolted to the
  • the upper end of the bottom material lifting frame body is connected to the back beam; the bottom material lifting mechanism for height adjustment is screwed under the connecting beams on both sides of the lower end of the bottom material lifting frame body, and the lower end of the bottom material lifting mechanism is fixedly connected to the bottom material frame with bolts ,
  • the bottom material cloth box driving cylinder is installed on the connecting beam at the middle and lower end of the bottom material lifting frame body, the bottom material cloth box is connected with the bottom material cloth box driving oil cylinder, and the bottom material cloth box is arranged on the bottom material
  • the lower end of the storage hopper is on a platform supported by connecting beams on both sides of the lower end of the bottom material lifting frame.
  • the bottom material storage hopper is a bottom material storage hopper that is driven by a motor reducer to open and close the door, and when the bottom material lifting frame is adjusted to a height suitable for the mold box, it is fixed with bolts On the bottom material rack.
  • a preferred embodiment is that the bottom material distribution box moves forward and backward under the driving cylinder of the bottom material distribution box.
  • the rotation of the cloth motor reducer on the bottom material distribution box drives the rotating cloth teeth in the box to rotate the rake material.
  • the material is fed into the mould box of the vibration system and the static pressure system.
  • the fabric distribution system is a fabric distribution system
  • the fabric distribution system includes a fabric storage hopper, a fabric lifting frame, a fabric distribution box, a fabric distribution box driving cylinder, a fabric rack, and a fabric lifting mechanism.
  • the fabric storage hopper is a fabric material storage hopper that opens and closes the door driven by a motor reducer.
  • the lower opening of the fabric storage hopper corresponds to the inlet of the fabric distribution box.
  • the fabric storage hopper is installed and fixed on both sides of the upper end of the fabric lifting frame with bolts.
  • the motor reducer driving the door is bolted to the connecting beam at the upper end of the fabric lifting frame body; the fabric lifting mechanism is screwed under the connecting beams on both sides of the lower end of the fabric lifting frame body to adjust the height of the fabric lifting mechanism.
  • the lower end of the mechanism is fixedly connected to the fabric frame with bolts.
  • a preferred embodiment is that when the fabric lifting frame is adjusted to a height adapted to the mold box, it is fixed on the fabric frame with bolts, and the fabric distribution box is arranged on both sides of the lower end of the fabric lifting frame below the fabric storage hopper.
  • the fabric distributing box driving cylinder On the platform supported by the connecting beam, the fabric distributing box driving cylinder is installed on the connecting beam at the middle and lower end of the rear of the fabric lifting frame body.
  • the fabric distributing box is connected with the fabric distributing tank driving cylinder, which is driven by the fabric distributing tank driving cylinder. ,
  • the fabric distribution box moves back and forth to send the blank material into the mold box of the vibration static pressure system.
  • the static pressure system includes a top beam, a guide column, a base, a load-bearing support platform, a demolding support seat, a frame, a lifting movable beam, a main oil cylinder, an auxiliary lifting cylinder, a mold box, and a displacement
  • the lower end of the frame is bolted and fixed on the base with the detection device and the demolding oil cylinder, and a cloth rail and a hydraulic pipeline are installed on the frame.
  • the guide post is provided with a movable beam with a pressure head and a demolding support seat connected to the mold box is installed, and the main cylinder and the auxiliary cylinder are installed on the top beam.
  • the lifting cylinder, the lower end of the main oil cylinder and the auxiliary lifting cylinder are bolted to the indenter lifting movable beam, and the indenter lifting movable beam moves up and down under the action of the main oil cylinder and the auxiliary lifting cylinder;
  • the demolding support seat connected with the mold box acts as the demolding oil cylinder
  • the lower end of the guide column moves up and down, the lower end of the demolding cylinder is bolted and installed on the base, and the upper end is connected to the demolding support seat; a load-bearing support platform is provided on the base, and a vibration device is nested in the load-bearing support platform .
  • the guide pillars are four straight up and down and installed in parallel, and the upper and lower ends of the guide pillar
  • the displacement detection device is a linear displacement sensor
  • the sensor body for detecting the displacement of the jacking movable beam is fixed on the top beam, and the linear displacement movable end is fixed on the jacking movable beam; the demolding support seat is detected
  • the moving sensor body is fixed on the base, and the linear displacement movable end is fixed on the demoulding support seat.
  • the vibration system includes a vibration power source and a vibration device, and the vibration device and the base are arranged in contact with each other through multiple sets of durable rubber springs.
  • a preferred embodiment is that the vibration device is fixedly installed on the base through a durable rubber spring and a spiral spring connection assembly, and is nested in the load-bearing support platform of the static pressure system.
  • the power input end of the vibration device and the vibration power source The output shaft is connected.
  • a preferred embodiment is that the vibration device is an even-numbered parallel-axis vibration system controlled by a chip servo, and the even-numbered parallel-axis vibration system controlled by the chip servo is seamlessly connected to the static pressure action at the same station.
  • a preferred embodiment is that the number of vibrating rotating shafts of the even-numbered parallel-axis vibrating system controlled by the chip servo is 2N+2, where N is a natural number, and the arrangement of the rotating shafts adopts plane or spatial interactive parallel Even rotation axis.
  • control system controls the operating mode setting of the vibration system and the static pressure system, including operating conditions: first vibration and then pressure, side vibration and side pressure, first pressure and then vibration or pulsed vibration pressure.
  • a preferred embodiment is that the main cylinder is a large-bore one-way main pressure cylinder, the number of auxiliary lifting cylinders is two, and the two auxiliary lifting cylinders are evenly arranged between the lifting movable beam and the top beam, A pressure head is screwed on the lifting movable beam, and the mold box and the demolding support seat are connected by an elastic body.
  • An application of a masonry forming machine is characterized in that the application is one of using building materials, building materials waste to manufacture ordinary concrete products, or preparing artificial imitation stone by dry or wet methods.
  • a method for forming masonry wherein the method for forming masonry includes the following steps:
  • control system starts the distributing system, after the distributing system fills the blank material into the mold box of the vibration system and the static pressure system, the control system controls the start of the vibration system to reduce the gap inside the blank material in the mold box And air
  • the control system starts the vibration system and the static pressure system, the vibration system and the static pressure system at the same time.
  • the pressing system applies vibration and static pressure to the blank material in the mold box at the same time, further reducing the gap and air inside the blank material;
  • the invention uses large tonnage pressure for the purpose of accelerating the squeezing and liquefaction of materials, reducing the porosity of product molding, increasing the density of the product, and further improving the strength of the product.
  • the vibration & static pressure system in the present invention is based on the self-synchronization theory of vibration, the rational distribution of rotation and translational mass and the combination of synchronicity and stability of geometric forms, using chip servo-controlled even-numbered parallel axis vibration system, virtual electronic gear Supported by synchronization theory, the two solve the synchronization and stability problems of the original mechanical gear for forced synchronization of multi-axis vibration through optimized combination, ensure the targeted release and utilization of the energy of the vibration system, and effectively increase the molding cycle by more than two seconds.
  • the nested load-bearing support table and vibrating table body mechanism effectively borrows the vibration mechanism of the block forming machine and maintains the characteristics of the static press.
  • the vibration and static pressure of the product are formed at the same station.
  • As a load-bearing support during static pressure it also plays a role of stopping retreat during vibration, maximizing the effect of vibration.
  • Through vibration when the product is formed the material particles are quickly slipped and moved toward filling and compacting, which can eliminate
  • the gap between the materials achieves the effect of exhaust and material compaction to achieve homogeneity; the main cylinder generates a pressing pressure of hundreds to thousands of tons, so that the materials are squeezed and melted to achieve the convergence effect of material liquefaction and ensure the compactness of the product.
  • the invention adopts the vibration + static pressure mode.
  • the effect after implementation is compared with the pure high static pressure scheme.
  • the vibration system exerts 50% to 70% efficiency and 600 tons of pressure under the combined effect of the situation, the instant (Within 1.5s)
  • the product efficiency of a pure static press of 1400 to 1800 tons and above is produced.
  • the most critical factor is that the pretreatment process of the pre-materials of the product becomes relatively simple, because the materials of pure static press products in the building materials industry are Fine powder materials are suitable, relatively granular materials are not easy to handle, and often require more than two compactions due to exhaust problems). It is especially suitable for the treatment of industrial tailings and tailings sand (200-300 mesh slag powder, stone powder) construction slag, etc. After 28 days of natural curing, the product body can reach a higher level of compressive strength of 50MPa to 80MPa. Specific mechanics range.
  • the main molding system of the present invention adopts a classic four-parallel guide column structure. After the guide column is pre-tightened, the top beam and the base are fixedly connected. At the same time, the lifting movable beam and the demolding box base share the four guide columns as the lifting guide column. The accuracy is accurate to ensure the accuracy of the product.
  • the molding machine of the present invention has the advantage of adopting a molding process that vibrates first and then pressurizes.
  • the molding process includes: 1 early molding: the material forms a plastic body under the vibration force of the vibrating machine; 2 mid-molding : The material forms an elastoplastic body under the combined action of the medium-pressure hydraulic cylinder and vibration; 3After forming: When the height of the material is 3 ⁇ 5mm higher than the required height of the product, it forms a single unit under the action of a high-pressure one-way main cylinder of hundreds of tons. To the rigid body.
  • the molding machine of the present invention can make various waste materials and tailings including phosphogypsum, red mud, pumice, liquid rock, fly ash, coal gangue, slag, ceramics, etc. into "highly uniform and dense" products. Both large and small materials can be made.
  • Liquefaction is one of the two, and because the molding machine uses pre-vibration during the cloth process to enable small raw materials and fine powders to enter the larger raw material gaps, when the final 3 ⁇ 5mm stroke of the molding is pressed down with hundreds of tons of pressure , The material can be smoothly made into products with high strength, good density, high quality and beautiful appearance. The products can compact and compact various materials to form atomic covalent bonds in the later stage of compaction. The necessary condition for this is the theoretical basis for using the present invention to produce high-strength and high-density products.
  • the bricks produced by this model fully meet the brick indexes required by low-temperature chemical ceramics (CBC).
  • the masonry forming machine provided by the present invention is completely different from the traditional vibrating model and static pressure model. It can not only make full use of various industrial wastes and tailings, but also can produce highly uniform and dense products according to different
  • the highly uniform and dense products produced by this molding machine provide a precondition for the fully automated production line to be compatible with various classic models, so that it can be used in the production line for cement products or non-cement products.
  • the autoclave is composed of a blank-making pallet production line, which can produce fine raw material products as well as products of various sizes and particle sizes.
  • the use of the invention greatly improves the competitiveness of the construction market, and its technical solutions can be popularized and applied. Make full use of waste materials, control environmental pollution, benefit the country and the people, and make building materials mechanization more perfect.
  • Figure 1 is a front view of Embodiment 1 of the present invention.
  • Figure 2 is a left side view of the present invention.
  • 201 top beam
  • 202 guide column
  • 203 vibration power source
  • 204 base
  • 205 bearing support platform
  • 206 vibration system
  • 207 release support base
  • 208 frame
  • 209 lifting movable beam
  • 210-main cylinder 211-auxiliary lifting cylinder
  • 212-displacement detection device 213-mold box 214-demolding cylinder
  • 301 fabric storage hopper
  • 302 fabric lifting frame
  • 303 fabric distributing tank
  • 304 fabric distributing tank driving cylinder
  • 305 fabric rack
  • 306 fabric lifting mechanism
  • Example 1 (commonly known as whole body products)
  • the masonry forming machine of this embodiment includes:
  • Distribution system the distribution system is used to fill the blank material into the mold box of the vibration system and the static pressure system;
  • the vibration system through the horizontal vibration platform, the vibration system produces a simple resonance action in the vertical direction for the bottom of the blank material in the mold box, so that the material has the finished blank material to achieve a denser material homogenization effect, and reduce the blank material Internal gaps and air;
  • the static pressure system which acts vertically on the upper surface of the blank material in the mold box, is used to squeeze the blank material in the mold box, reduce the gap and air inside the blank material, and obtain denser masonry molding Products; control system 10, the control system is used to set the technical parameters of the molding of masonry molding products, used to control the operation of the vibration system, the static pressure system, and the cloth system.
  • the cloth system in this embodiment is a bottom material cloth system.
  • the bottom material cloth system includes a bottom material storage hopper 101, a bottom material lifting frame 102, a bottom material cloth box 103, a bottom material cloth box driving cylinder 104, and a bottom material.
  • the frame 105 and the bottom material lifting mechanism 106, the bottom material storage hopper 101 is arranged at the upper end of the bottom material lifting frame 102, and the bottom material lifting mechanism 106 for adjusting the height is installed at the lower part of the bottom material lifting frame 102,
  • the bottom material distribution box 103 is arranged below the bottom material storage hopper 101.
  • the bottom material storage hopper 101 is a bottom material storage hopper driven by a motor reducer to open the door.
  • the bottom opening of the bottom material storage hopper 101 is connected to the bottom material storage hopper 103.
  • the bottom material cloth box 103 is connected to the bottom material cloth box driving cylinder 104.
  • the bottom material cloth box driving oil cylinder 104 drives the bottom material cloth box 103 to move back and forth.
  • the bottom material cloth box 103 is driven by the motor reducer to make the bottom material
  • the material distribution box 103 sends the material into the mold box 213 of the vibration static pressure system;
  • the vibration & static pressure system includes a top beam 201, a guide column 202, a vibration power source 203, a base 204, a load-bearing support table 205, a vibration system 206, a demolding support seat 207, a frame 208, and a lifting movable beam 209 ,
  • the main oil cylinder 210, the auxiliary lifting cylinder 211, the displacement detection device 212, the mold box 213 and the demolding oil cylinder 214, the top beam 201, the guide post 202 and the base 204 constitute the frame base,
  • the guide posts 202 are four straight up and down arranged on the base 204, the upper part of the guide posts 202 are all connected with the top beam 201, and the upper part of the guide post 202 is sleeved with an indenter lifting movable beam 209 with an indenter.
  • a demolding support seat 207 connected to the mold box 213 is sleeved on the lower part of the guide post 202, and a main oil cylinder 210 is provided between the upper part of the top beam 201 and the mold box 213.
  • An auxiliary lifting cylinder 211 is provided between 209 and the top beam 201, a load-bearing support platform 205 is provided on the base 204, and a vibration system 206 is nested within the load-bearing support platform 205.
  • the power input of the vibration system 206 is The end is connected with the output shaft of the vibration power source 203.
  • the frame 208 is equipped with a cloth rail and a hydraulic pipeline.
  • the top beam 201 and the lifting movable beam 209, the base 204 and the demolding support seat 207 are all installed There is a displacement detection device 212.
  • the vibration system 206 in this embodiment is an even-numbered parallel axis vibration system controlled by a chip servo, and the vibration system 206 is installed and nested in the load-bearing support platform 205 through an elastic body.
  • the even-numbered parallel axis vibration system controlled by the chip servo of this embodiment and the static pressure action are seamlessly docked in the same station, and the docking state is vibration first and then pressing, vibrating while pressing, pressing and then vibrating, or pulse vibration pressing.
  • the vibration rotation axis of the even-numbered parallel-axis vibration system controlled by the chip servo of this embodiment is four or more even-numbered axes, and the rotation axis is arranged in parallel or alternately parallel in space and plane.
  • the frame base of this embodiment is a steel frame.
  • the main cylinder 210 in this embodiment is a large-bore one-way main pressure cylinder.
  • the number of auxiliary lifting cylinders 211 in this embodiment is two, and the two auxiliary lifting cylinders 211 are evenly arranged between the lifting movable beam 209 and the top beam 201.
  • an indenter is screwed on the jacking movable beam 209 in this embodiment.
  • the mold box 213 and the demolding support base 207 in this embodiment are connected by an elastic body.
  • the displacement detecting device 212 is a linear displacement sensor
  • the sensor body that detects the displacement of the jacking movable beam 209 is fixed on the top beam 201, and the linear displacement movable end is fixed on the jacking movable beam 209;
  • the sensor body for detecting the displacement of the demolding support 207 is fixed on the base 204, and the movable end of the linear displacement is fixed on the demolding support 207.
  • the vibration system 206 and the base 204 of this embodiment are arranged in contact with each other through multiple sets of durable rubber springs.
  • the predetermined height value of the material in this embodiment is set to be 3 to 5 mm higher than the height of the finished product.
  • the vibration power source 203 provides a set of servo motor systems for powering the vibration system.
  • the working mechanism of this embodiment is that the even-numbered parallel-axis vibration system supported by the virtual electronic gear with chip servo control applies vertical directional vibration on the bottom table of the billet.
  • the final process of the billet is accompanied by additional data on the brick.
  • the static pressure of one hundred tons makes the bricks to achieve a highly dense and uniform effect.
  • the ingredients prepared in proportion and mixed by a mixer are sent to the bottom material storage hopper 101 by a belt conveyor.
  • the bottom material distribution box drives the oil cylinder 104 to move the bottom material distribution box 103 to the bottom of the bottom material storage hopper 101, and the bottom is opened by the motor.
  • the material flows into the bottom material cloth box 103, and the bottom material cloth box 103 moves forward to the mold box 213 of the vibrating static pressure system under the action of the bottom material cloth box driving cylinder 104, and the bottom material lifting frame 102 adjusts the height of the bottom material lifting frame 102 through the bottom material lifting mechanism 106 installed under it.
  • the bottom material lifting mechanism 106 is a worm gear screw lifting assembly.
  • the lifting body is fixed on the bottom material frame 105, and the lifting rod is fixed to the lifting frame.
  • the lower beam of 102 is adapted to the height of the mold box 213 installed on the vibrating static pressure system, and then the mixing shaft in the bottom material distribution box 103 rotates under the drive of the motor reducer to fill the mold box 213.
  • the vibration system starts Perform pre-vibration to vibrate the virtual material in the mold box 213, and the bottom material distribution box 103 continues to fill the mold box.
  • the static pressure forming machine in this embodiment selects the overtravel cloth mode, according to the product And material characteristics, pre-set the parameters such as cloth mode, cloth frequency and pre-vibration frequency on the man-machine interface to ensure that the material in the mold box is filled.
  • the bottom material distributing cart 103 After the cloth is finished, the bottom material distributing cart 103, the bottom material distributing box 103 is driven by the bottom material distributing box
  • the cylinder 104 drives down and retreats below the bottom material storage hopper 101, and then the jacking movable beam 209 takes the indenter to drive down the cylinders on both sides of the top beam 201 and presses the blank in the mold box, while the vibration system continues to vibrate.
  • the large-bore one-way main cylinder 210 in the middle of the top beam is driven by high pressure and continues to press the indenter against the blank in the mold box with a pressure of hundreds of tons until it reaches the set predetermined height. , Which is the height of the product.
  • the demolding support base 207 supports the mold box and demolds upward under the drive of demolding oil cylinders on both sides to produce products of general materials, and the products are sent out for curing by a special device.
  • the application is to use building materials or building materials waste to manufacture ordinary concrete products.
  • the application is to prepare artificial imitation stone using a dry method or a wet method.
  • this embodiment is a masonry forming machine, which includes:
  • Distribution system the distribution system is used to fill the blank material into the mold box of the vibration system and the static pressure system;
  • the vibration system through the horizontal vibration platform, the vibration system produces a simple resonance action in the vertical direction for the bottom of the blank material in the mold box, so that the material has the finished blank material to achieve a denser material homogenization effect, and reduce the blank material Internal gaps and air;
  • the static pressure system which acts vertically on the upper surface of the blank material in the mold box, is used to squeeze the blank material in the mold box, reduce the gap and air inside the blank material, and obtain denser masonry molding Products; control system 10, the control system is used to set the technical parameters of the molding of masonry molding products, used to control the operation of the vibration system, the static pressure system, and the cloth system.
  • the cloth system in this embodiment includes a base material cloth system and a fabric cloth system.
  • the base material cloth system and the fabric cloth system are respectively arranged on both sides of the vibrating static pressure system.
  • the base material cloth system includes a base material.
  • the storage hopper 101, the bottom material lifting frame 102, the bottom material cloth box 103, the bottom material cloth box drive cylinder 104, the bottom material frame 105 and the bottom material lifting mechanism 106, the bottom material storage hopper 101 is arranged on the bottom material lifting frame 102 At the upper end of the bottom material lifting frame 102, a bottom material lifting mechanism 106 for height adjustment is installed at the bottom of the bottom material lifting frame 102.
  • the bottom material distributing box 103 is arranged below the bottom material storage hopper 101, and the bottom material storage hopper 101 is a motor
  • the bottom material storage hopper that opens the door is driven by the reducer.
  • the bottom opening of the bottom material storage hopper 101 is set corresponding to the inlet of the bottom material cloth box 103.
  • the bottom material cloth box 103 is connected to the bottom material cloth box driving cylinder 104.
  • the box driving cylinder 104 drives the bottom material cloth box 103 to move back and forth.
  • the bottom material cloth box 103 is driven by the motor reducer to make the bottom material cloth box 103 send the material into the mold box 213 of the vibration static pressure system;
  • the fabric distributing system includes a fabric storage hopper 301, a fabric lifting frame 302, a fabric distributing box 303, a fabric distributing tank driving cylinder 304, a fabric frame 305, and a fabric lifting mechanism 306.
  • the fabric storage hopper 301 is arranged on the fabric lifting frame 302.
  • a fabric lifting mechanism 306 for adjusting the height is installed at the lower part of the fabric lifting frame 302.
  • the fabric lifting mechanism 306 is a worm gear screw lifting assembly.
  • the lifting body is fixed on the fabric frame 305, and the lifting rod is fixed to The lower end beam of the lifting frame 302, the fabric distribution box 303 is arranged below the fabric storage hopper 301, the fabric storage hopper 301 is a fabric storage hopper driven by a motor reducer to open the door, and the lower opening of the fabric storage hopper 301 is connected to the fabric distribution box 303 inlet Correspondingly, the fabric distribution box 303 is connected with the fabric distribution box driving cylinder 304.
  • the fabric distribution box driving cylinder 304 drives the fabric distribution box 303 to move forward and backward.
  • the fabric distribution box 303 is driven by the motor reducer to make the fabric distribution box 303 transfer the fabric. It is sent to the mold box 213 of the vibrating static pressure system.
  • the vibration & static pressure system includes a top beam 201, a guide column 202, a vibration power source 203, a base 204, a load-bearing support table 205, a vibration system 206, a demolding support seat 207, a frame 208, and a lifting movable beam 209 ,
  • the main cylinder 210, the auxiliary lifting cylinder 211, the displacement detection device 212, the mold box 213 and the demolding cylinder 214, the top beam 201, the guide post 202 and the base 204 constitute the frame base,
  • the guide posts 202 are four straight up and down arranged on the base 204, the upper part of the guide posts 202 are all connected with the top beam 201, and the upper part of the guide post 202 is sleeved with an indenter lifting movable beam 209 with an indenter.
  • a demolding support seat 207 connected to the mold box 213 is sleeved on the lower part of the guide post 202, and a main oil cylinder 210 is provided between the upper part of the top beam 201 and the mold box 213.
  • An auxiliary lifting cylinder 211 is provided between 209 and the top beam 201, a load-bearing support platform 205 is provided on the base 204, and a vibration system 206 is nested within the load-bearing support platform 205.
  • the power input of the vibration system 206 is The end is connected with the output shaft of the vibration power source 203, and a cloth rail and a hydraulic pipeline are installed in the frame 208.
  • the vibration system 206 in this embodiment is an even-numbered parallel axis vibration system controlled by a chip servo, and the vibration system 206 is installed and nested in the load-bearing support platform 205 through an elastic body.
  • the even-numbered parallel axis vibration system controlled by the chip servo of this embodiment and the static pressure action are seamlessly docked in the same station, and the docking state is vibration first and then pressing, vibrating while pressing, pressing and then vibrating, or pulse vibration pressing.
  • the vibration rotation axis of the even-numbered parallel-axis vibration system controlled by the chip servo of this embodiment is four or more even-numbered axes, and the rotation axis is arranged in parallel or alternately parallel in space and plane.
  • the main cylinder 210 in this embodiment is a large-bore one-way main pressure cylinder.
  • the number of auxiliary lifting cylinders 211 in this embodiment is two, and the two auxiliary lifting cylinders 211 are evenly arranged between the lifting movable beam 209 and the top beam 201.
  • an indenter is screwed on the jacking movable beam 209 in this embodiment.
  • the mold box 213 and the demolding support base 207 in this embodiment are connected by an elastic body.
  • the displacement detection device 212 in this embodiment is a linear displacement sensor
  • the sensor body for detecting the displacement of the lifting movable beam 209 is fixed on the top beam 201, and the linear displacement movable end is fixed on the lifting movable beam 209;
  • the sensor body for the displacement of the demolding support base 207 is fixed on the base 204, and the movable end of the linear displacement is fixed on the demolding support base 207.
  • the vibration system 206 and the base 204 of this embodiment are arranged in contact with each other through multiple sets of durable rubber springs.
  • the predetermined height value of the material in this embodiment is set to be 3 to 5 mm higher than the height of the finished product.
  • the vibration power source 203 provides a group of servo motor systems for powering the vibration system
  • the working mechanism of this embodiment is that the even-numbered parallel-axis vibration system supported by the virtual electronic gear with chip servo control applies vertical directional vibration on the bottom table of the billet.
  • the final process of the billet is accompanied by additional data on the brick.
  • the static pressure of one hundred tons makes the bricks to achieve a highly dense and uniform effect.
  • the bottom material prepared in proportion and mixed by a mixer is sent to the bottom material storage hopper 101 by the belt conveyor, and the bottom material distribution box drives the cylinder 104 to move the bottom material distribution box 103 to the bottom material storage hopper 101.
  • the bottom material storage hopper 101 After the gate of the bottom material storage hopper 101 is opened by the motor drive, the material flows into the bottom material cloth box 103, and the bottom material cloth box 103 moves forward to vibrate under the action of the bottom material cloth box driving cylinder 104
  • the bottom material lifting frame 102 adjusts the height of the bottom material lifting frame 102 through the bottom material lifting mechanism 106 installed under it.
  • the bottom material lifting mechanism 106 is a worm gear screw lifting assembly, and the lifting body is fixed on the bottom.
  • the lifting rod is fixed to the lower beam of the lifting frame 102 to adapt to the height of the mold box 213 installed on the vibrating static pressure system, and then the mixing shaft in the bottom material distributing box 103 is driven by the motor reducer to rotate towards The mold box 213 is filled.
  • the vibration system starts to pre-vibrate to vibrate the virtual material in the mold box 213.
  • the bottom material distribution box 103 continues to fill the mold box.
  • the static The press forming machine selects the overtravel cloth mode, and pre-sets the cloth mode, cloth times and pre-vibration frequency parameters on the man-machine interface according to the product and material characteristics to ensure that the material in the mold box is filled.
  • the bottom material cloth car 103 When the bottom material cloth box 103 is driven by the bottom material cloth box driving cylinder 104, it moves back under the bottom material storage hopper 101, and then the fabric prepared in proportion and stirred by the fabric mixer is sent to the fabric storage hopper 301 by the belt.
  • the box drive cylinder 304 moves the fabric distribution box 303 to the bottom of the fabric storage hopper 301.
  • the material flows into the fabric distribution box 303 below, and the bottom material distribution box drives the cylinder 104 to drive Retreat below the bottom material storage hopper 101, then the lifting movable beam 209 takes the indenter downward to press the height of the fabric and then lifts it up.
  • the fabric distribution box 303 moves forward to the top of the mold box 213 under the action of the fabric distribution box drive cylinder 304 , Under the pre-vibration condition, fill the mold box 213 with fabric and then retreat.
  • the large-bore one-way master cylinder 210 in the middle of the top beam is driven by high pressure and continues to press the indenter against the blank in the mold box 213 with a pressure of hundreds of tons.
  • the demolding support base 207 supports the mold box to demold upward under the drive of demolding oil cylinders on both sides to produce products with colored fabrics.
  • the products with colored fabrics are sent out for curing by a special device.
  • the application of the masonry molding machine of this embodiment is to use building materials or waste building materials to manufacture ordinary concrete products.
  • the present invention also provides a method for forming masonry, wherein the method for forming masonry includes the following steps:
  • control system 10 controls the start of the vibration system to reduce the internal material of the blank material in the mold box. Gap and air;
  • the control system 10 starts the vibration system and the static pressure system at the same time, and the vibration system and The static pressure system simultaneously applies vibration and static pressure to the blank material in the mold box to further reduce the gap and air inside the blank material;
  • the control system 10 controls the operation of the static pressure system, and the static pressure system extrudes the mold The blank material in the box;
  • the application of the masonry forming machine of this embodiment is to prepare artificial imitation stone using a dry method or a wet method.
  • the equipment involved in this application is suitable for the technical field of concrete products and artificial stone products.
  • the equipment is an important carrier for the preparation of concrete products, artificial stone products and other products, and has a strong relationship with the reasonable gradation of materials.
  • the cementitious material is selected as cement-based or non-cement-based products, its compactness is the decisive factor for important technical indicators of the product.
  • This equipment system can optimize vibration and static pressure parameters at the same time. After long-term comparative tests, it is true and effective. Compared with the actual measured data, the corresponding actual measured product results are better than those of pure vibration model and pure static pressure model.
  • the water absorption rate of the product body is not more than 3%. It further optimizes the material and ratio, including vibration and static pressure parameters, and its water absorption rate can be As low as 1%.
  • the principle mentioned in the previous description that is, through vibration exhaust, static pressure squeezing method, to meet or close to the requirements of natural stone homogeneity and compactness.

Landscapes

  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Moulds, Cores, Or Mandrels (AREA)

Abstract

本发明公开了一种砖石成型机,其包含布料系统,振动系统,静压系统,控制系统,其中,布料系统用于将成坯物料填入到同一工位的振动系统和静压系统的模箱中,当模箱内的成坯物料的技术参数达到控制系统内的预设值时,振动和静压系统按各自设定的运作参数,同时向模箱中的成坯物料施加振动与加压,直至达到成坯物料设置的预定高度,然后将成品坯体脱出模具,完成制坯过程。本发明以常态的成坯作业状况,能够获得具有美观耐久的高强度性能的建筑材料制品所需的成坯要求,形成非常致密的单向刚性固体。

Description

一种砖石成型机及其应用和砖石成型的方法 技术领域
本发明属于混凝土建筑材料制品制作机械领域,具体涉及一种适合于采用建筑用砂石、工业废料、天然石材类废料、尾矿废料等成型混凝土建材制品及成型人造石材制品的振动&静压复合的一种砖石成型机。
背景技术
近年,全球经济的全面复苏,混凝土建筑材料制品行业迎来快速发展的机遇。国家倡导生态环保绿色发展理念,坚守土地红线,部分地区已全面禁止粘土砖的生产,同时高污染的纯天然石材的开采利用必然受到很大影响,因此,利用各种工业废料、尾矿废料、石材开采的废料等来生产混凝土建筑材料制品已是势在必行。
从目前混凝土制品类各种砖、块、石材制品成型工艺分析,众所周知,混凝土砌块成型机多以生产建筑或城市(镇)化进程升级改造需要的混凝土砌块、多孔砖、铺地路面透水砖等砂石制品为主,其制品的成型机理以其制品的振动密实为主,即通过振动解除多级配的混凝土物料粗细骨料间束缚力,使混凝土物料快速冲入模具箱体型腔后,通过振动粗细骨料重新滑移,进行有效地匀化致密的混合,为了使混凝土制品上表面密实并达到最佳的制品装饰效果,采用了模具压头承压面作用在制品上表面,制品被承压的上表面对应的有效施加压力小于1kgf/cm 2,在振动与承压状态的共同作用下使制品达到振捣密实效果,此作业工况在工艺上对物料级配相对严格:级配的细度模数范围在多控制在3.7~3.8mm为宜,其采用的物料的最大粒径不超10mm,最小粒径不小于1mm。
所述的混凝土制品静压成型机采用的制品成型工艺,其作业工况系采用以相对中高压对坯体内部组织相对致密的非透水石材制品为主,如园林景观用仿 石材制品及细粉料灰砂砖等,制品表面对应的有效施加静压力大于100kgf/cm 2,因其在此工位上采用了制品上下施加以上下压头承压,结构所限没有振动系统,使物料充模过程物料流动的均匀程度较差,仅靠压力相互挤溶,在静压挤溶当中,由于没有前述机型的振动密实此功能,所以对多级配的细度模数3.7~3.8mm范围的物料均为不适宜作业区域,对5~10mm范围的混凝土刚性物料,物料粗细骨料之间的匀化度较差,致使成坯的致密均质性较差,因而达不到制品的均匀致密的最佳效果;因而静压成型机仅适合于物料的细度模数较小,粗骨料在整个物料的占比仅15%~25%之间的作业工况,工业自动化生产时需高标准控制较粗的刚性物料的比例。
前述,混凝土砌块成型机是以建筑用混凝土砂石原料为主的机型,即便是掺入100目以上细粉物料,如粉煤灰及细石粉等,其适宜的掺入量所能够采用的细粉料量仅能非常的少,且强度、致密程度等指标相对静压砖机较低。鉴于上述,在充分利用各种工业废料、尾矿,如磷石膏、赤泥、浮石、页岩、粉煤灰、煤矸石、矿渣等物料生产建材制品,进而包括PC制品、人造石材制品的问题,单一混凝土砌块成型机型或单一混凝土制品静压机型在成坯工艺上存在有技术不足的弊端。从本行业处于国际领先地位的德国、意大利在转盘式砖机的结构特点就可窥出一二,其在同一设备上,振动与静压也是分拆两个工位来完成,但仍然达不到在同一工位同时交互进行振动&静压制品成型得最佳成坯的状况,可见实现振动&静压同时段施加的作业工况有相当的技术难度,为技术工艺的空白。
为了发挥振动及静压两种单一工艺的最佳技术组合优势,本发明将两者优势互补,优化结构,有效解决了混凝土砌块成型机成型混凝土制品致密性不足,静压机刚性对物料级配高标准要求的难题,同一工位振动与静压并存,最大化的发挥了两者各自优势,使同一设备工位上实现混凝土制品品类多元化成为现实。
发明内容
针对现有技术中存在的技术难题,本发明提供一种振动&静压复合的砖石成 型机,本发明结构设置合理、运行成本低、生产效率高、节能环保效果好、可广泛适用于各种工业废料、尾矿及人造石材的生产。
为实现上述技术目的,本发明采用以下技术方案:
一种砖石成型机,其包括:
布料系统,所述布料系统用于将成坯物料填入到振动系统和静压系统的模箱中;
振动系统,所述振动系统通过水平振动平台,产生垂直方向的简谐振动作用于模箱里的成坯物料的底部,使物料具备制品成坯物料达成更为致密的物料均匀化效果,减少成坯物料内部的间隙和空气;
静压系统,所述静压系统垂直作用于模箱里成坯物料的上表面,用于挤压模箱内的成坯物料,减少成坯物料内部的间隙和空气,获取更加致密的砖石的成型制品;
控制系统,所述控制系统用于设定砖石成型制品成型的技术参数,用于控制振动系统、静压系统,布料系统的作业。
优选的一种实施方案是,砖石成型技术参数的预设值和标定值是根据成坯物料的类别、容重、致密性在所述控制系统上的人机界面进行的各动力系统驱动功能所需按作业程序设置,以及有效地实施制品成坯的作业过程,其中,所述物料设置预值高于成品的高度3~5mm。
优选的一种实施方案是,布料系统内的成坯物料填入是采用水平移动的超程布料模式,确保振动系统和静压系统模箱内的成坯物料充盈。
优选的一种实施方案是,所述控制系统设定的技术参数包括:成坯物料沿水平方向移动的超量程的充模布料填入模式、填入次数、预振频率、振幅。
优选的一种实施方案是,所述布料系统包括底料布料系统和面料布料系统。所述底料布料系统和面料布料系统分别设置在振动系统和静压系统的两侧。
优选的一种实施方案是,所述底料布料系统包括底料储料斗、底料升降架,底料布料箱、底料布料箱驱动油缸、底料机架和底料升降机构,底料储料斗下部开口与底料布料箱进料口相对应设置,底料储料斗用螺栓安装固定在底料升 降架架体的上端两侧连接梁上,驱动开门的电机减速机螺栓连接于在所述底料升降架架体的上端后连接梁上;底料升降架架体下端两侧连接梁下面螺接调节高度的底料升降机构,底料升降机构下端用螺栓固定连接在底料机架上,所述底料布料箱驱动油缸安装在底料升降架架体后方中下端的连接梁上,所述底料布料箱与底料布料箱驱动油缸相连,所述底料布料箱设置在底料储料斗的下方底料升降架下端两侧连接梁支撑的平台上。
优选的一种实施方案是,所述底料储料斗为电机减速机驱动开合斗门的底料物料储存斗,当所述底料升降架调整到与模箱适配的高度后,用螺栓固定在底料机架上。
优选的一种实施方案是,在底料布料箱驱动油缸带动下,底料布料箱前后运动,当需要布料时,底料布料箱上布料电机减速机旋转带动箱内旋转布料齿旋转耙料将物料送入振动系统和静压系统的模箱中。
优选的一种实施方案是,所述布料系统为面料布料系统,所述面料布料系统包括面料储料斗、面料升降架,面料布料箱、面料布料箱驱动油缸、面料机架和面料升降机构,所述面料储料斗为电机减速机驱动开合斗门的面料物料储存斗,面料储料斗下部开口与面料布料箱进料口相对应,面料储料斗用螺栓安装固定在面料升降架架体的上端两侧连接梁上,驱动开门的电机减速机螺栓连接于在所述面料升降架架体的上端后连接梁上;面料升降架架体下端两侧连接梁下面螺接调节高度的面料升降机构,面料升降机构下端用螺栓固定连接在面料机架上。
优选的一种实施方案是,当面料升降架调整到与模箱适配的高度后,用螺栓固定在面料机架上,所述面料布料箱设置在面料储料斗的下方面料升降架下端两侧连接梁支撑的平台上,所述面料布料箱驱动油缸安装在面料升降架架体后方中下端的连接梁上,所述面料布料箱与面料布料箱驱动油缸相连,在面料布料箱驱动油缸带动下,面料布料箱前后运动,将成坯物料送入振动静压系统的模箱中。
优选的一种实施方案是,所述静压系统包括顶梁、导柱、底座、承重支撑 台、脱模支承座、机架、顶升活动梁、主油缸、辅助提升缸、模箱、位移检测装置和脱模油缸,所述机架下端螺栓连接固定在底座上,机架上安装有布料轨道和液压管路。
优选的一种实施方案是,所述导柱上安装套有带压头的压头顶升活动梁和安装套有与模箱相连的脱模支承座,在所述顶梁上安装主油缸和辅助提升缸,主油缸和辅助提升缸下端螺栓连接压头顶升活动梁,压头顶升活动梁在主油缸和辅助提升缸作用下上下移动;所述与模箱相连脱模支承座在脱模油缸作用下沿导柱上下移动,脱模油缸下端螺栓连接安装在底座上,上端连接脱模支承座上;在所述底座上设有承重支撑台,在所述承重支撑台内嵌套设置有振动装置。其中,所述导柱为四根上下直通且平行安装,所述导柱的上、下端分别通过螺母将顶梁和底座锁紧固定,组成静压系统的框架基体。
优选的一种实施方案是,所述位移检测装置为直线位移传感器,检测顶升活动梁位移的传感器本体固定在顶梁上,直线位移活动端固定在顶升活动梁上;检测脱模支承座位移的传感器本体固定在底座上,直线位移活动端固定在脱模支承座上。
优选的一种实施方案是,所述振动系统包含振动动力源、振动装置,所述振动装置与底座之间通过多组耐久橡胶弹簧相接触设置。
优选的一种实施方案是,所述振动装置通过耐久橡胶弹簧及螺旋弹簧连接组件固定安装在底座上,并嵌套在静压系统的承重支撑台内,振动装置的动力输入端与振动动力源的输出轴相连。
优选的一种实施方案是,所述振动装置为芯片伺服控制的偶数平行轴振动系统,所述芯片伺服控制的偶数平行轴振动系统与静压动作在同一工位无缝对接。
优选的一种实施方案是,所述芯片伺服控制的偶数平行轴振动系统的振动旋转轴的个数为2N+2,其中,N为自然数,所述旋转轴的布置形式采用平面或空间交互平行偶数旋转轴。
优选的一种实施方案是,所述控制系统控制振动系统和静压系统的工况模 式设定包括的工况有:先振后压、边振边压、先压后振或脉冲振压。
优选的一种实施方案是,所述主油缸为大缸径单向主压力油缸,所述辅助提升缸的数量为两个,两个辅助提升缸均匀布设在顶升活动梁和顶梁之间,所述顶升活动梁上螺接有压头,所述模箱与脱模支承座之间通过弹性体连接。
一种砖石成型机的应用,其特征在于,所述应用为使用建材物料,建材废料制造普通混凝土制品,或干法或湿法制备人造仿石材的其中一种。
一种砖石成型的方法,其中,所述砖石成型的方法包含的步骤有:
a.当所述控制系统启动布料系统时,布料系统把成坯物料填入到振动系统和静压系统的模箱后,控制系统控制振动系统启动,减少模箱内的成坯物料内部的间隙和空气;
b.当振动系统和静压系统模箱内填入的成坯物料达到控制系统设定的砖石成型技术参数的预设值时,控制系统同时启动振动系统和静压系统,振动系统和静压系统同时对模箱内的成坯物料施加振动和静压,进一步的减少成坯物料内部的间隙和空气;
c.当振动系统和静压系统模箱内填入的成坯物料达到控制系统设定的砖石成型技术参数的标定值时,控制系统控制静压系统作业,静压系统挤压模箱内的成坯物料;
d.当达到砖石成型的高度时,所述振动系统和静压系统停止作业,成品脱模。
本发明是采用大吨位压力的目的加速物料的挤融液化,减小制品成型的空隙率,提高制品的致密度,进而提高制品的强度。
本发明中振动&静压系统依据振动的自同步理论有关转动与平动质量的合理分配及几何形态相结合的同步性与稳定性论述,采用芯片伺服控制的偶数平行轴振动系统,虚拟电子齿轮同步理论依据支撑,两者通过优化组合解决了原始机械齿轮强制同步多轴振动的同步性及稳定性问题,保证振动系统的能量的靶向释放和利用,有效提高成型周期两秒以上。
嵌套式的承重支撑台与振动台体机构,有效地借鉴了砌块成型机振动的机 理,又保持了静压机的特质,同时制品成型时振动与静压处同一工位承重支撑台除作为静压时的承重支撑,也起到了振动时止退作用,最大限度的发挥振动的功效,制品成型时通过振动,使物料颗粒间快速滑移,向填充及密实趋向移动,最大的消除了物料间间隙并达到排气及物料密实效果,达到匀质;主油缸产生几百吨至千吨以上的压下压力,使物料相互挤融,达到物料液化收敛效应,保证制品致密度。
本发明采用振动+静压模式,经实施后的效果与纯高静压方案对比,经反复试验测算,仅仅在振动系统发挥50%~70%功效及600吨压力压下共同作用状况下,瞬间(1.5s内)产生相当1400~1800吨及以上的纯静压机的制品功效,最关键因素是对制品前期物料的预处理工艺变得相对简单,因为建材行业纯静压机制品的物料以细粉料为宜,相对颗粒类物料不易处理,且经常因排气问题需两次以上压实)。对工业尾矿、尾矿砂(200~300目的矿粉、石粉)建筑渣土的处理等尤其适用,制品坯体经过28天自然养护,均达到50MPa~80MPa的较高等级抗压强度的具体力学范围。
本发明的主成型系统采用经典四平行导柱结构,导柱预紧后将顶梁与底座固联,同时顶升活动梁与脱模模箱座共用四导柱作为升降导向柱,模具对合精度准确,保证制品精度。
与现有技术相比,本发明所述成型机的优点在于采用先振动后加压的成型过程,该成型过程包括:①成型初期:物料在振动机振力作用下形成塑性体;②成型中期:物料在中压液压缸和振动的共同作用下形成弹塑性体;③成型后期:当物料高度在高于制品要求高度3~5mm时,在数百吨的高压单向主油缸作用下形成单向刚体。
本发明设计者经过多年的研究和试验发现,松散的物料由布料箱进入模箱时,其中夹带着3%~5%的气体,对此纯静压机型不但不能将其物料中的气体排出,严重的还会使制品形成水平横向分层,这样就会大大影响到制品强度和内在质量,而纯振动机型在制品成坯时亦达不到理想高密实度的要求。本发明成型机可将包括磷石膏、赤泥、浮石、液岩、粉煤灰、煤矸石、矿渣、陶瓷等在 内的各种废料、尾料制成“高度均匀致密”的制品,它对于大小原料均可制作,其原因是它克服了静压机型只能使用细原料以及纯振动机型对砖坯的整体密实度差的缺陷,最大限度地将制砖成坯物料之间的挤溶、液化二者合一,又由于成型机在布料过程中使用预振使小原料、细粉料能进入较大原料缝隙之中,所以在成型最终3~5mm行程以数百吨压力下压时,便能够顺利地将物料制成强度高、密实度好、高质量且具有漂亮外观的制品,其制品在成坯压密的后期能够使各种物料压紧致密形成原子共价键结合所需要的必要条件,这也就是采用本发明制出高强度、高密实度制品的理论依据。经此机型制出的砖坯完全达到低温化学陶瓷(CBC)要求的砖坯指标。
本发明提供的砖石成型机完全不同于传统的振动机型和静压机型,它不仅能够充分利用各种工业废料、尾矿,而且在制成高度均匀致密制品的前提下,可以根据不同的需要灵活的进行配方配料及进行生产线设备的不同配置等,大大地提高了生产效率,简化了生产线配置,降低了生产成本,具有体积小、结构简单、功能多、节能、高效等优点。由该成型机生产出的高度均匀致密的制品给与其相配套的全自动化生产线能够兼容各种经典模式提供了前提条件,使其在生产线,既可做有水泥制品,也可做无水泥制品,同时对有特殊要求的各类仿古文化砖,仿石材类制品更有效;既可使用升降板、窑车、养护窑组成生产线,也可采用生坯码垛机器人(电子机械手)、转运车、蒸压釜组成无制坯托板生产线,既可生产细微原料制品,也可生产各种大小粒径原料的制品,利用本发明机型大大提高了建筑市场的竞争能力,其技术方案的推广应用可以充分利用废料,治理环境污染,利国利民,使建材制品机械化更加完美。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明中实施例1的正面视图。
图2位本发明的左侧视图。
图中附图标记为:
10-控制系统,101-底料储料斗,102-底料升降架,103-底料布料箱,104-底料布料箱驱动油缸,105-底料机架,106-底料升降机构;
201-顶梁,202-导柱,203-振动动力源,204-底座,205-承重支撑台,206-振动系统,207-脱模支承座,208-机架,209-顶升活动梁,210-主油缸,211-辅助提升缸,212-位移检测装置213-模箱;214-脱模油缸
301-面料储料斗,302-面料升降架,303-面料布料箱,304-面料布料箱驱动油缸,305-面料机架,306-面料升降机构。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例,基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1(俗称通体制品)
如图1和图2所示,本实施例的砖石成型机,该成型机包括:
布料系统,布料系统用于将成坯物料填入到振动系统和静压系统的模箱中;
振动系统,振动系统通过水平振动平台,产生垂直方向的简谐振动作用于模箱里的成坯物料的底部,使物料具备制品成坯物料达成更为致密的物料均匀化效果,减少成坯物料内部的间隙和空气;
静压系统,静压系统垂直作用于模箱里成坯物料的上表面,用于挤压模箱内的成坯物料,减少成坯物料内部的间隙和空气,获取更加致密的砖石的成型制品;控制系统10,所述控制系统用于设定砖石成型制品成型的技术参数,用于控制振动系统、静压系统,布料系统的作业。
作为优选,本实施例中布料系统为底料布料系统,所述底料布料系统包括底料储料斗101、底料升降架102,底料布料箱103、底料布料箱驱动油缸104、 底料机架105和底料升降机构106,所述底料储料斗101设置在底料升降架102的上端部,在所述底料升降架102的下部安装有用于调节高度的底料升降机构106,所述底料布料箱103设置在底料储料斗101的下方,底料储料斗101为电机减速机驱动开门的底料储料斗,底料储料斗101下部开口与底料布料箱103进料口相对应设置,所述底料布料箱103与底料布料箱驱动油缸104相连,底料布料箱驱动油缸104带动底料布料箱103前后运动,底料布料箱103在电机减速机带动下使底料布料箱103将物料送入振动静压系统的模箱213中;
本实施例中振动&静压系统包括顶梁201、导柱202、振动动力源203、底座204、承重支撑台205、振动系统206、脱模支承座207、机架208、顶升活动梁209、主油缸210、辅助提升缸211、位移检测装置212、模箱213和脱模油缸214组成,所述顶梁201、导柱202和底座204组成框架基体,
所述导柱202为四根上下直通设置在底座204上,所述导柱202的上部均与顶梁201相连,在所述导柱202上部套设有带压头的压头顶升活动梁209,在所述导柱202下部套设有与模箱213相连的脱模支承座207,在所述顶梁201的上部和模箱213之间设有主油缸210,在所述顶升活动梁209和顶梁201之间设有辅助提升缸211,所述底座204上设有承重支撑台205,在所述承重支撑台205内嵌套设置有振动系统206,所述振动系统206的动力输入端与振动动力源203的输出轴相连,所述机架208中安装有布料轨道和液压管路,在所述顶梁201和顶升活动梁209、底座204和脱模支承座207上均安装有位移检测装置212。
作为进一步优选,本实施例中振动系统206为芯片伺服控制的偶数平行轴振动系统,所述振动系统206通过弹性体安装嵌套在承重支撑台205内。
作为进一步优选,本实施例芯片伺服控制的偶数平行轴振动系统与静压动作在同一工位无缝对接,对接状态为先振后压、边振边压、先压后振或脉冲振压。
作为进一步优选,本实施例芯片伺服控制的偶数平行轴振动系统的振动旋转轴为四轴及以上偶数轴,旋转轴为平行布置或空间平面交互平行布置。
作为进一步优选,本实施例框架基体为钢结构框架。
作为进一步优选,本实施例主油缸210为大缸径单向主压力油缸。
作为进一步优选,本实施例辅助提升缸211的数量为两个,两个辅助提升缸211均匀布设在顶升活动梁209和顶梁201之间。
作为进一步优选,本实施例所述顶升活动梁209上螺接有压头。
作为进一步优选,本实施例所述模箱213与脱模支承座207之间通过弹性体连接。
作为进一步优选,本实施例中,所述移检测装置212为直线位移传感器,检测顶升活动梁209位移的传感器本体固定在顶梁201上,直线位移活动端固定在顶升活动梁209上;检测脱模支承座207位移的传感器本体固定在底座204上,直线位移活动端固定在脱模支承座207上。
作为更进一步优选,本实施例振动系统206与底座204之间通过多组耐久橡胶弹簧相接触设置。
作为更进一步优选,本实施例所述物料设置预定的高度值高于成品的高度3~5mm。
本实施例中振动动力源203为振动系统提供动力的一组伺服电机系统。
本实施例的工作机理是通过带有芯片伺服控制的虚拟电子齿轮依托的偶数平行轴振动系统,在成坯底台面上施加垂直定向振动,成坯的最终过程伴有对砖坯上另施加有数百吨的静压力,使制砖成坯达到高度密实均匀的效果。
本实施例具体工作过程如下:
将按比例配制并通过搅拌机拌和好的配料由皮带机送入底料储料斗101中,底料布料箱驱动油缸104将底料布料箱103移动至底料储料斗101下方,通过电机驱动打开底料储料斗101的料门后,物料流入底料布料箱103中,底料布料箱103在底料布料箱驱动油缸104的作用下前行至振动静压系统的模箱213,底料升降架102通过其下安装的底料升降机构106调节底料升降架102的高度,底料升降机构106为蜗轮蜗杆螺旋升降组件,其升降本体固定于底料机架105上,升降杆固定于升降架102下端横梁,适配振动静压系统上安装的 模箱213的高度,然后底料布料箱103内的搅拌轴在电机减速机驱动下转动,向模箱213填料,与此同时,振动系统开始进行预振,将模箱213内的虚料振实,底料布料箱103继续向模箱内填料,在达到预定设置时,本实施例中的静压成型机选择超程布料模式,根据制品及物料特性,在人机界面上预先设置布料方式、布料次数及预振频率等参数,确保模箱内物料充盈,完成布料后底料布料车103,底料布料箱103在底料布料箱驱动油缸104驱动下后退到底料储料斗101下方,接着顶升活动梁209带着压头在顶梁201上两侧油缸驱动下下行并压制模箱内坯料,同时振动系统继续进行振动。当成型高度高于设计高度3~5mm时,顶梁中间的大缸径单向主油缸210在高压驱动下,以数百吨的压力继续将压头压向模箱内坯料,直至达到设置预定高度,即制品高度。此后脱模支承座207托着模箱在两侧脱模油缸的驱动下上行脱模,生产出一般物料的制品,将制品由专用装置送出养护。
本实施例的砖石成型机,所述应用为使用建材物料或建材废料制造普通混凝土制品。
本实施例的砖石成型机,所述应用为使用干法或湿法制备人造仿石材。
实施例二
如图1和图2所示,本实施例为一种砖石成型机,该成型机包括:
布料系统,布料系统用于将成坯物料填入到振动系统和静压系统的模箱中;
振动系统,振动系统通过水平振动平台,产生垂直方向的简谐振动作用于模箱里的成坯物料的底部,使物料具备制品成坯物料达成更为致密的物料均匀化效果,减少成坯物料内部的间隙和空气;
静压系统,静压系统垂直作用于模箱里成坯物料的上表面,用于挤压模箱内的成坯物料,减少成坯物料内部的间隙和空气,获取更加致密的砖石的成型制品;控制系统10,所述控制系统用于设定砖石成型制品成型的技术参数,用于控制振动系统、静压系统,布料系统的作业。
作为优选的,本实施例中布料系统包括底料布料系统和面料布料系统,所述底料布料系统和面料布料系统分别设置在振动静压系统的两侧,所述底料布 料系统包括底料储料斗101、底料升降架102,底料布料箱103、底料布料箱驱动油缸104、底料机架105和底料升降机构106,所述底料储料斗101设置在底料升降架102的上端部,在所述底料升降架102的下部安装有用于调节高度的底料升降机构106,所述底料布料箱103设置在底料储料斗101的下方,底料储料斗101为电机减速机驱动开门的底料储料斗,底料储料斗101下部开口与底料布料箱103进料口相对应设置,所述底料布料箱103与底料布料箱驱动油缸104相连,底料布料箱驱动油缸104带动底料布料箱103前后运动,底料布料箱103在电机减速机带动下使底料布料箱103将物料送入振动静压系统的模箱213中;
所述面料布料系统包括面料储料斗301、面料升降架302,面料布料箱303、面料布料箱驱动油缸304、面料机架305和面料升降机构306,所述面料储料斗301设置在面料升降架302的上端部,在所述面料升降架302的下部安装有用于调节高度的面料升降机构306,面料升降机构306为蜗轮蜗杆螺旋升降组件,其升降本体固定于面料机架305上,升降杆固定于升降架302下端横梁,所述面料布料箱303设置在面料储料斗301的下方,面料储料斗301为电机减速机驱动开门的面料储料斗,面料储料斗301下部开口与面料布料箱303进料口相对应设置,所述面料布料箱303与面料布料箱驱动油缸304相连,面料布料箱驱动油缸304带动面料布料箱303前后运动,面料布料箱303在电机减速机带动下使面料布料箱303将面料送入振动静压系统的模箱213中。
本实施例中振动&静压系统包括顶梁201、导柱202、振动动力源203、底座204、承重支撑台205、振动系统206、脱模支承座207、机架208、顶升活动梁209、主油缸210、辅助提升缸211,位移检测装置212、模箱213和脱模油缸214,所述顶梁201、导柱202和底座204组成框架基体,
所述导柱202为四根上下直通设置在底座204上,所述导柱202的上部均与顶梁201相连,在所述导柱202上部套设有带压头的压头顶升活动梁209,在所述导柱202下部套设有与模箱213相连的脱模支承座207,在所述顶梁201的上部和模箱213之间设有主油缸210,在所述顶升活动梁209和顶梁201之 间设有辅助提升缸211,所述底座204上设有承重支撑台205,在所述承重支撑台205内嵌套设置有振动系统206,所述振动系统206的动力输入端与振动动力源203的输出轴相连,所述机架208中安装有布料轨道和液压管路。
作为进一步优选,本实施例中振动系统206为芯片伺服控制的偶数平行轴振动系统,所述振动系统206通过弹性体安装嵌套在承重支撑台205内。
作为进一步优选,本实施例芯片伺服控制的偶数平行轴振动系统与静压动作在同一工位无缝对接,对接状态为先振后压、边振边压、先压后振或脉冲振压。
作为进一步优选,本实施例芯片伺服控制的偶数平行轴振动系统的振动旋转轴为四轴及以上偶数轴,旋转轴为平行布置或空间平面交互平行布置。
作为进一步优选,本实施例主油缸210为大缸径单向主压力油缸。
作为进一步优选,本实施例辅助提升缸211的数量为两个,两个辅助提升缸211均匀布设在顶升活动梁209和顶梁201之间。
作为进一步优选,本实施例所述顶升活动梁209上螺接有压头。
作为进一步优选,本实施例所述模箱213与脱模支承座207之间通过弹性体连接。
作为进一步优选,本实施例中所述移检测装置212为直线位移传感器,检测顶升活动梁209位移的传感器本体固定在顶梁201上,直线位移活动端固定在顶升活动梁209上;检测脱模支承座207位移的传感器本体固定在底座204上,直线位移活动端固定在脱模支承座207上。
作为更进一步优选,本实施例振动系统206与底座204之间通过多组耐久橡胶弹簧相接触设置。
作为更进一步优选,本实施例所述物料设置预定的高度值高于成品的高度3~5mm。
本实施例中振动动力源203为振动系统提供动力的一组伺服电机系统
本实施例的工作机理是通过带有芯片伺服控制的虚拟电子齿轮依托的偶数平行轴振动系统,在成坯底台面上施加垂直定向振动,成坯的最终过程伴有对 砖坯上另施加有数百吨的静压力,使制砖成坯达到高度密实均匀的效果。
本实施例具体工作过程如下:
当要生产带彩色面料的制品时,先将按比例配制并通过搅拌机拌和好的底料由皮带机送入底料储料斗101中,底料布料箱驱动油缸104将底料布料箱103移动至底料储料斗101下方,通过电机驱动打开底料储料斗101的料门后,物料流入底料布料箱103中,底料布料箱103在底料布料箱驱动油缸104的作用下前行至振动静压系统的模箱213,底料升降架102通过其下安装的底料升降机构106调节底料升降架102的高度,底料升降机构106为蜗轮蜗杆螺旋升降组件,其升降本体固定于底料机架105上,升降杆固定于升降架102下端横梁,适配振动静压系统上安装的模箱213的高度,然后底料布料箱103内的搅拌轴在电机减速机驱动下转动,向模箱213填料,与此同时,振动系统开始进行预振,将模箱213内的虚料振实,底料布料箱103继续向模箱内填料,在达到预定设置,本实施例中的静压成型机选择超程布料模式,根据制品及物料特性,在人机界面上预先设置布料方式、布料次数及预振频率等参数,确保模箱内物料充盈,完成布料后底料布料车103,时,底料布料箱103在底料布料箱驱动油缸104驱动下后退到底料储料斗101下方,然后将按比例配制并由面料搅拌机搅和好的面料由皮带送入面料储料斗301中,面料布料箱驱动油缸304将面料布料箱303移动至面料储料斗301下方,通过电机驱动打开面料储料斗301的料门后,物料流入其下面的面料布料箱303中,在底料布料箱驱动油缸104驱动下后退到底料储料斗101下方后,接着顶升活动梁209带着压头下行点压出面料布料高度后提升,面料布料箱303在面料布料箱驱动油缸304作用下前行至模箱213上方,在预振状况下向模箱213填入面料后退回,顶梁中间的大缸径单向主油缸210在高压驱动下,以数百吨的压力继续将压头压向模箱213内坯料,直至达到设置预定高度,即制品高度。此后脱模支承座207托着模箱在两侧脱模油缸的驱动下上行脱模,生产出带彩色面料制品,将带彩色面料的制品由专用装置送出养护。
本实施例的砖石成型机,所述应用为使用建材物料或建材废料制造普通混 凝土制品。
实施例三
本发明还提供了一种砖石成型的方法,其中,砖石成型的方法包含的步骤有:
a.当所述控制系统启动布料系统时,布料系统把成坯物料填入到振动系统和静压系统的模箱后,控制系统10控制振动系统启动,减少模箱内的成坯物料内部的间隙和空气;
b.当振动系统和静压系统模箱内填入的成坯物料达到控制系统设定的砖石成型技术参数的预设值时,控制系统10同时启动振动系统和静压系统,振动系统和静压系统同时对模箱内的成坯物料施加振动和静压,进一步的减少成坯物料内部的间隙和空气;
c.当振动系统和静压系统模箱内填入的成坯物料达到控制系统10设定的砖石成型技术参数的标定值时,控制系统10控制静压系统作业,静压系统挤压模箱内的成坯物料;
d.当达到砖石成型的高度时,所述振动系统和静压系统停止作业,成品脱模。
本实施例的砖石成型机,其应用为使用干法或湿法制备人造仿石材。
本申请所涉及的装备系适用于混凝土制品及人造石材制品所属的技术领域,该装备系针对混凝土制品、人造仿石材制品等制品制备的重要载体,与物料的合理级配等有很强的关联,无论其胶凝材料选择为水泥基还是非水泥基制品,其致密性是制品重要技术指标的决定性因素。依照常规的建材制品物料的配比条件;按产品品类需求,均可以通过合理的物料配比,本装备系统能够同时优化振动及静压参数,经过长久所采用的对比性试验,其进行真实有效的实测数据对比,其对应实测的制品结果均优于纯振动机型、纯静压机型成型制品。以水泥基人造仿石材制品为例:制品坯体经过28天的自然养护,其吸水率不大于3%,其将物料及配比、亦包括振动及静压参数的进一步优化,其吸水率可低至1%。原理前述说明所提及,即通过振动排气,静压挤融方式,达到或接近天 然石材的匀质致密要求。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (21)

  1. 一种砖石成型机,其特征在于,所述砖石成型机包括:
    布料系统,所述布料系统用于将成坯物料填入到振动系统和静压系统的模箱中;振动系统,所述振动系统通过水平振动平台,产生垂直方向的简谐振动作用于模箱里的成坯物料的底部,使形成制品的成坯物料达成更为致密的物料均匀化,减少成坯物料内部的间隙和空气;
    静压系统,所述静压系统垂直作用于模箱里成坯物料的上表面,用于挤压模箱内的成坯物料,减少成坯物料内部的间隙和空气,获取更加致密的成型制品;控制系统,所述控制系统用于设定砖石成型制品的成型技术参数,用于控制振动系统、静压系统,布料系统的作业。
  2. 根据权利要求1所述的一种砖石成型机,其特征在于,砖石成型制品的成型技术参数的预设值和标定值是根据成坯物料的类别、容重、致密性在所述控制系统上的人机界面进行的各动力系统驱动功能所需按作业程序设置,保证有效地实施制品成坯的作业过程,其中,所述物料设置预值高于成品的高度3~5mm。
  3. 根据权利要求1所述的一种砖石成型机,其特征在于,布料系统内的成坯物料填入采用水平移动的超程布料模式,确保振动系统和静压系统模箱内的成坯物料充盈。
  4. 根据权利要求2所述的一种砖石成型机,其特征在于,所述控制系统设定的技术参数包括:成坯物料沿水平方向移动的超量程的充模布料填入模式、填入次数、预振频率、振幅。
  5. 根据权利要求1所述的一种砖石成型机,其特征在于,所述布料系统包括底料布料系统和面料布料系统,所述底料布料系统和面料布料系统分别设置在振动系统和静压系统的两侧。
  6. 根据权利要求5所述的一种砖石成型机,其特征在于,所述底料布料系统包括底料储料斗(101)、底料升降架(102),底料布料箱(103)、底料布料箱驱动油缸(104)、底料机架(105)和底料升降机构(106),底料储料斗(101)下部开口与底料布料箱(103)进料口相对应设置,底料储料斗(101)用螺栓安装 固定在底料升降架(102)架体的上端两侧连接梁上,驱动开门的电机减速机螺栓连接于在所述底料升降架(102)架体的上端后连接梁上;底料升降架(102)架体下端两侧连接梁下面螺接调节高度的底料升降机构(106),底料升降机构(106)下端用螺栓固定连接在底料机架(105)上,所述底料布料箱(103)驱动油缸(104)安装在底料升降架(102)架体后方中下端的连接梁上,所述底料布料箱(103)与底料布料箱驱动油缸(104)相连,所述底料布料箱(103)设置在底料储料斗(101)的下方底料升降架(102)下端两侧连接梁支撑的平台上。
  7. 根据权利要求6所述的一种砖石成型机,其特征在于,所述底料储料斗(101)为电机减速机驱动开合斗门的底料物料储存斗,当所述底料升降架(102)调整到与模箱适配的高度后,用螺栓固定在底料机架(105)上。
  8. 根据权利要求7所述的一种砖石成型机,其特征在于,在底料布料箱驱动油缸(104)带动下,底料布料箱(103)前后运动,当需要布料时,底料布料箱(103)上布料电机减速机旋转带动箱内旋转布料齿旋转耙料将物料送入振动系统和静压系统的模箱中。
  9. 根据权利要求5所述的一种砖石成型机,其特征在于,所述布料系统为面料布料系统,所述面料布料系统包括面料储料斗(301)、面料升降架(302),面料布料箱(303)、面料布料箱驱动油缸(304)、面料机架(305)和面料升降机构(306),所述面料储料斗(301)为电机减速机驱动开合斗门的面料物料储存斗,面料储料斗(301)下部开口与面料布料箱(303)进料口相对应,面料储料斗(301)用螺栓安装固定在面料升降架(302)架体的上端两侧连接梁上,驱动开门的电机减速机螺栓连接于在所述面料升降架(302)架体的上端后连接梁上;面料升降架(302)架体下端两侧连接梁下面螺接调节高度的面料升降机构(306),面料升降机构(306)下端用螺栓固定连接在面料机架(305)上。
  10. 根据权利要求9所述的一种砖石成型机,其特征在于,当面料升降架(302)调整到与模箱适配的高度后,用螺栓固定在面料机架(305)上,所述面料布料箱(303)设置在面料储料斗(301)的下方面料升降架(302)下端两侧连接梁支撑的平台上,所述面料布料箱驱动油缸(304)安装在面料升降架(302)架体 后方中下端的连接梁上,所述面料布料箱(303)与面料布料箱驱动油缸(304)相连,在面料布料箱驱动油缸(304)带动下,面料布料箱(103)前后运动,将成坯物料送入振动静压系统的模箱中。
  11. 根据权利要求1所述的一种砖石成型机,其特征在于,所述静压系统包括顶梁(201)、导柱(202)、底座(204)、承重支撑台(205)、脱模支承座(207)、机架(208)、顶升活动梁(209)、主油缸(210)、辅助提升缸(211)、位移检测装置(212)和模箱(213)和脱模油缸(214),所述机架(208)下端螺栓连接固定在底座(204)上,机架(208)上安装有布料轨道和液压管路。
  12. 根据权利要求11所述的一种砖石成型机,其特征在于,所述导柱(202)上安装套有带压头的压头顶升活动梁(209)和安装套有与模箱(213)相连的脱模支承座(207),在所述顶梁(201)上安装主油缸(210)和辅助提升缸(211),主油缸(210)和辅助提升缸(211)下端螺栓连接压头顶升活动梁(209),压头顶升活动梁(209)在主油缸(210)和辅助提升缸(211)作用下上下移动;所述与模箱(213)相连脱模支承座(207)在脱模油缸(214)作用下沿导柱(202)上下移动,脱模油缸(214)下端螺栓连接安装在底座(204)上,上端连接脱模支承座(207)上;在所述底座(204)上设有承重支撑台(205),在所述承重支撑台(205)内嵌套设置有振动装置(206),其中,所述导柱(202)为四根上下直通且平行安装,所述导柱(202)的上、下端分别通过螺母将顶梁(201)和底座(204)锁紧固定,组成静压系统的框架基体。
  13. 根据权利要求1所述的一种砖石成型机,其特征在于,所述振动系统包含振动动力源(203)、振动装置(206),所述振动装置(206)与底座(204)之间通过多组耐久橡胶弹簧相接触设置。
  14. 根据权利要求13所述的一种砖石成型机,其特征在于,所述振动装置(206)通过耐久橡胶弹簧及螺旋弹簧连接组件固定安装在底座(204)上,并嵌套在静压系统的承重支撑台(205)内,振动装置(206)的动力输入端与振动动力源(203)的输出轴相连。
  15. 根据权利要求14所述的一种砖石成型机,其特征在于,所述振动装置(206) 为芯片伺服控制的偶数平行轴振动系统,所述芯片伺服控制的偶数平行轴振动系统与静压动作在同一工位无缝对接。
  16. 根据权利要求15所述的一种砖石成型机,其特征在于,所述芯片伺服控制的偶数平行轴振动系统的振动旋转轴的个数为2N+2,其中,N为自然数,所述旋转轴的布置形式采用平面或空间交互平行偶数旋转轴。
  17. 根据权利要求1所述的一种砖石成型机,其特征在于,所述控制系统控制振动系统和静压系统的工况模式设定包括的工况有:先振后压、边振边压、先压后振或脉冲振压。
  18. 根据权利要求12所述的一种砖石成型机,其特征在于,所述主油缸(210)为大缸径单向主压力油缸,所述辅助提升缸(211)的数量为两个,两个辅助提升缸(211)均匀布设在顶升活动梁(209)和顶梁(201)之间,所述顶升活动梁(209)上螺接有压头,所述模箱(213)与脱模支承座(207)之间通过弹性体连接。
  19. 根据权利要求11所述的一种砖石成型机,其特征在于,所述位移检测装置(212)为直线位移传感器,检测顶升活动梁(209)位移的传感器本体固定在顶梁(201)上,直线位移活动端固定在顶升活动梁(209)上;检测脱模支承座(207)位移的传感器本体固定在底座(204)上,直线位移活动端固定在脱模支承座(207)上。
  20. 一种权利要求1-19中任一所述的砖石成型机的应用,其特征在于,所述应用为使用建材物料,建材废料制造普通混凝土制品,或干法或湿法制备人造仿石材的其中一种。
  21. 一种砖石成型的方法,其特征在于,所述砖石成型的方法包含的步骤有:
    a.当所述控制系统启动布料系统时,布料系统把成坯物料填入到振动系统和静压系统的模箱后,控制系统控制振动系统启动,减少模箱内的成坯物料内部的间隙和空气;
    b.当振动系统和静压系统模箱内填入的成坯物料达到控制系统设定的砖石成型技术参数的预设值时,控制系统同时启动振动系统和静压系统,振动系统和静 压系统同时对模箱内的成坯物料施加振动和静压,进一步的减少成坯物料内部的间隙和空气;
    c.当振动系统和静压系统模箱内填入的成坯物料达到控制系统设定的砖石成型技术参数的标定值时,控制系统控制静压系统作业,静压系统挤压模箱内的成坯物料;
    d.当达到砖石成型的高度时,所述振动系统和静压系统停止作业,成品脱模。
PCT/CN2019/112546 2019-04-29 2019-10-22 一种砖石成型机及其应用和砖石成型的方法 WO2021068283A1 (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201910357215.1A CN109968496A (zh) 2019-04-29 2019-04-29 固定式高效振动静压成型机
CN201910948611.1 2019-10-08
CN201910948611.1A CN110497504A (zh) 2019-04-29 2019-10-08 一种砖石成型机及其应用和砖石成型的方法

Publications (1)

Publication Number Publication Date
WO2021068283A1 true WO2021068283A1 (zh) 2021-04-15

Family

ID=67086982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/112546 WO2021068283A1 (zh) 2019-04-29 2019-10-22 一种砖石成型机及其应用和砖石成型的方法

Country Status (2)

Country Link
CN (2) CN109968496A (zh)
WO (1) WO2021068283A1 (zh)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113173432A (zh) * 2021-06-01 2021-07-27 安徽金种子酒业股份有限公司 上甑布料机器人
CN113843887A (zh) * 2021-10-04 2021-12-28 何永明 一种装配式建筑用预制构件生产设备
CN114378935A (zh) * 2022-01-13 2022-04-22 福建唯暻机械有限公司 便于换模的布料机
CN114474344A (zh) * 2022-01-11 2022-05-13 马鞍山瑞恒精密制造有限公司 一种多工位粉末布料机及使用方法
CN114538889A (zh) * 2021-12-16 2022-05-27 黄玉兰 一种复合型保温材料及生产工艺
CN114603691A (zh) * 2022-03-24 2022-06-10 湖南新鼎住宅工业有限公司 一种带升降功能的可自动行走布料机
CN114683390A (zh) * 2022-03-09 2022-07-01 北京隆翔环保科技有限公司 一种砌块成型机上的新型三层料车结构
CN115056334A (zh) * 2022-05-30 2022-09-16 淮阴工学院 一种基于直线电机驱动的脱模机及脱模方法
CN115139398A (zh) * 2022-07-15 2022-10-04 衡阳市铭丰建材有限公司 一种混凝土试块的快速成型装置及其成型工艺
CN115194928A (zh) * 2022-07-27 2022-10-18 北京好运达智创科技有限公司 一种盖梁底模顶升脱模系统及脱模方法
CN115319896A (zh) * 2022-09-02 2022-11-11 常德佳轩汽车零部件有限公司 一种环保砖一体化自动加工装置
CN115383873A (zh) * 2022-08-12 2022-11-25 江河工程检验检测有限公司 一种预制产品成型装置及使用方法
CN115709509A (zh) * 2022-11-11 2023-02-24 山东万维智能装备有限公司 一种轻质墙板加工成型装置
CN116749308A (zh) * 2023-06-19 2023-09-15 浙江嘉吉石化工程有限公司 一种刚玉耐火砖自动制备工艺
CN116852515A (zh) * 2023-07-31 2023-10-10 郑州汇丰新材料科技有限公司 一种耐高温镁碳砖的生产装置及其工艺
CN117021326A (zh) * 2023-10-07 2023-11-10 保利长大工程有限公司 螺旋自动布料器
CN117601228A (zh) * 2023-12-15 2024-02-27 连云港恒鑫通矿业有限公司 以铁尾矿为原料的地质聚合物制备装置及实施方法
CN117962077A (zh) * 2024-04-01 2024-05-03 阳城县世锋建材有限公司 一种透水砖制备设备及制备方法
CN118342608A (zh) * 2023-12-30 2024-07-16 盐城市荣立新型建材有限公司 一种大型路缘石生产设备及其生产工艺

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109968496A (zh) * 2019-04-29 2019-07-05 西安银马实业发展有限公司 固定式高效振动静压成型机
CN110315635A (zh) * 2019-07-10 2019-10-11 李雷 一种转动定位的模具承载装置
CN110587784B (zh) * 2019-10-14 2021-04-16 安徽兰兮工程技术开发有限公司 一种水泥砖静压成型方法
CN110524682B (zh) * 2019-10-14 2021-04-23 安徽兰兮工程技术开发有限公司 水泥砖静压成型机
CN111347550A (zh) * 2020-05-02 2020-06-30 郑州玛纳房屋装备有限公司 一种子母模技术双向孔板生产工艺
CN111912717B (zh) * 2020-08-24 2021-04-23 广东科捷检测技术服务有限公司 一种混凝土抗裂性能检测装置及检测方法
CN111993538B (zh) * 2020-09-05 2021-08-10 颍上县和顺新型环保建材有限公司 一种烧结砖制备工艺
CN111958808A (zh) * 2020-09-10 2020-11-20 泉州市三联机械制造有限公司 一种全伺服墙地砖、石一体机
CN113146828B (zh) * 2021-01-28 2022-08-12 福建群峰机械有限公司 一种用于双层湿法制作大板与路缘石的多功能仿石机
CN113977742A (zh) * 2021-11-29 2022-01-28 福建鸿益机械有限公司 一种旋转多工位的梁柱一体仿石干湿成型装置及其方法
CN115179389A (zh) * 2022-07-12 2022-10-14 西安银马实业发展有限公司 一种可翻转模静压振动成型机
CN115401768B (zh) * 2022-10-09 2023-04-18 无锡市亿洲耐火材料有限公司 一种用于制备刚玉莫来石砖的压制装置及其使用方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5916504A (en) * 1997-07-07 1999-06-29 Pavement Technology, Inc. Method for forming a test specimen from a mixture of asphalt concrete
CN101708624A (zh) * 2009-12-08 2010-05-19 西安银马贝莎建筑制品机械有限公司 固定式制砖高效振动加压成型机
CN204604518U (zh) * 2015-04-30 2015-09-02 盐城市荣立新型建材有限公司 制备混凝土砌砖的成型机
CN206011365U (zh) * 2016-08-26 2017-03-15 洛阳中冶重工机械有限公司 一种生产防汛用人造备防石材的振动成型设备
CN107398988A (zh) * 2017-07-28 2017-11-28 朱林军 一种自动化的钢骨架建材生产系统
CN109968496A (zh) * 2019-04-29 2019-07-05 西安银马实业发展有限公司 固定式高效振动静压成型机

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000127124A (ja) * 1998-10-26 2000-05-09 Shigeru Kobayashi コンクリートブロック成形装置
CN2885544Y (zh) * 2006-03-22 2007-04-04 西安银马贝莎建筑制品机械有限公司 叠层式混凝土砌块成型机
CN101121280A (zh) * 2006-08-08 2008-02-13 四川绵竹太极机械有限公司 保温砌块成型方法
CN103753691B (zh) * 2013-12-31 2016-08-17 西安银马实业发展有限公司 一种偶数平行多轴垂直定向振动系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5916504A (en) * 1997-07-07 1999-06-29 Pavement Technology, Inc. Method for forming a test specimen from a mixture of asphalt concrete
CN101708624A (zh) * 2009-12-08 2010-05-19 西安银马贝莎建筑制品机械有限公司 固定式制砖高效振动加压成型机
CN204604518U (zh) * 2015-04-30 2015-09-02 盐城市荣立新型建材有限公司 制备混凝土砌砖的成型机
CN206011365U (zh) * 2016-08-26 2017-03-15 洛阳中冶重工机械有限公司 一种生产防汛用人造备防石材的振动成型设备
CN107398988A (zh) * 2017-07-28 2017-11-28 朱林军 一种自动化的钢骨架建材生产系统
CN109968496A (zh) * 2019-04-29 2019-07-05 西安银马实业发展有限公司 固定式高效振动静压成型机

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113173432A (zh) * 2021-06-01 2021-07-27 安徽金种子酒业股份有限公司 上甑布料机器人
CN113843887A (zh) * 2021-10-04 2021-12-28 何永明 一种装配式建筑用预制构件生产设备
CN114538889A (zh) * 2021-12-16 2022-05-27 黄玉兰 一种复合型保温材料及生产工艺
CN114474344A (zh) * 2022-01-11 2022-05-13 马鞍山瑞恒精密制造有限公司 一种多工位粉末布料机及使用方法
CN114378935B (zh) * 2022-01-13 2023-07-25 福建唯暻机械有限公司 便于换模的布料机
CN114378935A (zh) * 2022-01-13 2022-04-22 福建唯暻机械有限公司 便于换模的布料机
CN114683390A (zh) * 2022-03-09 2022-07-01 北京隆翔环保科技有限公司 一种砌块成型机上的新型三层料车结构
CN114603691A (zh) * 2022-03-24 2022-06-10 湖南新鼎住宅工业有限公司 一种带升降功能的可自动行走布料机
CN115056334A (zh) * 2022-05-30 2022-09-16 淮阴工学院 一种基于直线电机驱动的脱模机及脱模方法
CN115056334B (zh) * 2022-05-30 2023-12-08 淮阴工学院 一种基于直线电机驱动的脱模机及脱模方法
CN115139398A (zh) * 2022-07-15 2022-10-04 衡阳市铭丰建材有限公司 一种混凝土试块的快速成型装置及其成型工艺
CN115194928A (zh) * 2022-07-27 2022-10-18 北京好运达智创科技有限公司 一种盖梁底模顶升脱模系统及脱模方法
CN115383873A (zh) * 2022-08-12 2022-11-25 江河工程检验检测有限公司 一种预制产品成型装置及使用方法
CN115383873B (zh) * 2022-08-12 2024-05-14 江河安澜工程咨询有限公司 一种预制产品成型装置及使用方法
CN115319896A (zh) * 2022-09-02 2022-11-11 常德佳轩汽车零部件有限公司 一种环保砖一体化自动加工装置
CN115319896B (zh) * 2022-09-02 2024-05-24 常德佳轩汽车零部件有限公司 一种环保砖一体化自动加工装置
CN115709509A (zh) * 2022-11-11 2023-02-24 山东万维智能装备有限公司 一种轻质墙板加工成型装置
CN115709509B (zh) * 2022-11-11 2024-06-07 山东万维智能装备有限公司 一种轻质墙板加工成型装置
CN116749308A (zh) * 2023-06-19 2023-09-15 浙江嘉吉石化工程有限公司 一种刚玉耐火砖自动制备工艺
CN116749308B (zh) * 2023-06-19 2024-05-28 浙江嘉吉石化工程有限公司 一种刚玉耐火砖自动制备工艺
CN116852515B (zh) * 2023-07-31 2024-03-19 郑州汇丰新材料科技有限公司 一种耐高温镁碳砖的生产装置及其工艺
CN116852515A (zh) * 2023-07-31 2023-10-10 郑州汇丰新材料科技有限公司 一种耐高温镁碳砖的生产装置及其工艺
CN117021326A (zh) * 2023-10-07 2023-11-10 保利长大工程有限公司 螺旋自动布料器
CN117021326B (zh) * 2023-10-07 2023-12-26 保利长大工程有限公司 螺旋自动布料器
CN117601228A (zh) * 2023-12-15 2024-02-27 连云港恒鑫通矿业有限公司 以铁尾矿为原料的地质聚合物制备装置及实施方法
CN118342608A (zh) * 2023-12-30 2024-07-16 盐城市荣立新型建材有限公司 一种大型路缘石生产设备及其生产工艺
CN117962077A (zh) * 2024-04-01 2024-05-03 阳城县世锋建材有限公司 一种透水砖制备设备及制备方法

Also Published As

Publication number Publication date
CN109968496A (zh) 2019-07-05
CN110497504A (zh) 2019-11-26

Similar Documents

Publication Publication Date Title
WO2021068283A1 (zh) 一种砖石成型机及其应用和砖石成型的方法
CN101708624B (zh) 固定式制砖高效振动加压成型机
CN201950714U (zh) 强力振动混凝土砌块自动成型机
CN100563966C (zh) 环保节能全自动小型砌块成型机
CN110057639B (zh) 一种模拟含多层层间错动带岩体的制样模具及其制样方法
CN102452129A (zh) 强力振动混凝土砌块自动成型机
CN104385436A (zh) 一种人造石材生产系统
CN101733824B (zh) 多功能双向加压振动制砖机
CN103889671A (zh) 用于形成工程复合石板材的真空振动压机
CN107226662A (zh) 一种大掺量高炉重矿渣复合砂基透水砖及其高效制备方法
CN105271971A (zh) 一种轻质高强耐磨的彩色环保砖及制备工艺
CN104162933A (zh) 一种利用再生资源制造高性能装饰板材的自动化生产线
CN102514086A (zh) 标准砖成型模具及成型方法
CN108437155A (zh) 一种大型复杂地质物理模型3d成型机
CN210679114U (zh) 一种湿法六工位成型高强混凝土制品设备
CN110434983A (zh) 一种液压制砖机及制砖方法
CN201287374Y (zh) 多功能双向加压振动制砖机
CN113049341A (zh) 一种沥青混合料室内碾压成型装置及试件制作方法
CN209633357U (zh) 轻质组合墙板生产线
CN201140431Y (zh) 全自动液压砌块成型机
CN2635313Y (zh) 气、电驱动程控砌块成型机
CN201895350U (zh) 一种砌块成型机
CN206154480U (zh) 一种翻转式混凝土构件成型机
CN201317042Y (zh) 一种新型制砖机
CN113997386A (zh) 一种环保砖砖坯成型设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19948296

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19948296

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19948296

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 17.10.22)

122 Ep: pct application non-entry in european phase

Ref document number: 19948296

Country of ref document: EP

Kind code of ref document: A1