WO2021063359A1 - 硫酸锂与碳酸钠(钾)直产碳酸锂降低硫酸根含量新方法 - Google Patents

硫酸锂与碳酸钠(钾)直产碳酸锂降低硫酸根含量新方法 Download PDF

Info

Publication number
WO2021063359A1
WO2021063359A1 PCT/CN2020/118886 CN2020118886W WO2021063359A1 WO 2021063359 A1 WO2021063359 A1 WO 2021063359A1 CN 2020118886 W CN2020118886 W CN 2020118886W WO 2021063359 A1 WO2021063359 A1 WO 2021063359A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium carbonate
lithium
sulfate
precipitation
grade
Prior art date
Application number
PCT/CN2020/118886
Other languages
English (en)
French (fr)
Inventor
王庆生
Original Assignee
戴艾霖
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 戴艾霖 filed Critical 戴艾霖
Priority to CA3154127A priority Critical patent/CA3154127A1/en
Priority to US17/754,335 priority patent/US20220340440A1/en
Priority to AU2020360341A priority patent/AU2020360341A1/en
Publication of WO2021063359A1 publication Critical patent/WO2021063359A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/08Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Definitions

  • the invention relates to a method for producing lithium salt.
  • the present invention relates to a large reduction of spodumene, lepidolite, iron-lepidolite, carbonate-type salt lake lithium ore, primary lithium carbonate, phospite, lapholite, carbonate sedimentary rock lithium ore, etc.
  • Lithium ore, intermediate lithium sulfate prepared by sulfuric acid method or sulfate method or sulfide method directly produced a new method for the sulfate content in various levels of lithium carbonate; more specifically, the present invention relates to a new method for greatly reducing sulfuric acid
  • a new method of sulfate radical content in lithium carbonate obtained by thermal precipitation reaction between lithium solution and sodium (potassium) solution can be used as an example to give a detailed explanation.
  • the impurity sulfate content of industrial-grade lithium carbonate produced in Europe was generally 0.70-0.80wt% (unless otherwise specified, the percentages or ratios mentioned in this application are mass percentages), equivalent to 1.035%-1.183% of sodium sulfate.
  • the arithmetic average is 1.109%, which is much higher than many other water-insoluble and slightly soluble carbonate products.
  • lithium carbonate with a sulfate content as low as 0.20% (that is, the standard of Dow Corning Glass Company), which is then purified by the Trust Method.
  • the lithium carbonate is acidified into lithium bicarbonate with a solubility of 5% in water by pressing carbon dioxide into a lithium carbonate slurry prepared with 20 times deionized water, the impurity sodium sulfate is diluted in a large amount of water, and then heated to decompose the lithium bicarbonate.
  • the moisture content of the product should meet the requirements in Table 2 below:
  • the impurity sulfate content is 0.7%-0.8%, which is reduced to 0.50%-0.35% of the original American Lithium Corporation's sulfuric acid industrial grade lithium carbonate, which lasted about 40 years; Now it has been reduced to 0.20% for ordinary industrial grade and 0.08% for battery grade (which is essentially an industrial grade). It has been more than 100 years, which shows that it is difficult.
  • Chinese invention patent application CN107915240A discloses a method for producing battery-grade lithium carbonate by sulfuric acid method. Its impurity indicators are 0.08% and 0.025%, which are still relatively high. Reducing an order of magnitude is very beneficial for improving the quality of lithium batteries.
  • the technical problems to be solved by the present invention are: (1) On the basis of the existing production technology and product standard YS/T582-2013 of direct battery-grade lithium carbonate by the thermal precipitation process of lithium sulfate purification solution and sodium (potassium) purification solution Innovate part of the process to greatly reduce the content of impurity sulfate to 0.010%-0.008%, and at the same time slightly reduce the content of other impurities, so that the main content of battery-grade lithium carbonate can reach 3N steadily. Under optimized conditions, some The products reach 3.5N grade, and some products are close to, eventually even reach 4N grade (may be called "quasi-high purity grade"). The inventor of the present application believes that the limit of the main content value of lithium carbonate directly produced by the thermal precipitation method of lithium sulfate solution and sodium (potassium) solution may be 4N.
  • the solution of the present invention to solve its technical problems is: according to different requirements for product quality, on the basis of the existing industrial-grade and battery-grade lithium carbonate production technology, the three inventions of the present invention are combined and used: 1. "Reverse feeding , Do not circulate the mother liquor”; 2, “pre-precipitation supplementary removal of impurities”; 3, "efficient desorption” to achieve the goals described in paragraphs [0010]-[0011].
  • the first and third items of the present invention are necessary technologies, which are the heat precipitation reaction from the lithium sulfate purification liquid and the sodium carbonate (potassium) purification liquid
  • the process of obtaining crude lithium carbonate starts and is used until the wet products of refined lithium carbonate of various levels are obtained;
  • the second item of the present invention is an optional technology, used on the eve of the thermal precipitation reaction, and is mainly used for the production of industrial-grade lithium carbonate. Available for battery-grade lithium carbonate when necessary.
  • the first part of the present invention, (or optional) the second part, and the first part of the third item are used in combination with the'slightly improved warm precipitation "Cum hot stirring” technology (see paragraphs [0024], [0027]-[0029], [0041], [0042] for detailed description).
  • the first and third items of the present invention are combined and used Technology, if necessary, use the second technology of the present invention to supplement it (the selected operating parameters such as the amount of deionized water in the third item, temperature-pressure parameters, thermal aging time, etc., are higher than the industrial "zero-level” More stringent), you can achieve this goal.
  • the crude lithium carbonate is filtered out while it is hot, and it is returned to the acidification material leaching process; the third hot mother liquor of crude lithium carbonate is filtered out While it is hot, merge into a new primary hot mother liquor for precipitation of lithium and freeze Glauber's salt, so that the operation of "cold precipitation of Glauber's salt-thermal precipitation of crude lithium carbonate" is performed alternately; or, the secondary cooling mother liquor (or even the primary hot mother liquor) is used to precipitate lithium phosphate, After lithium fluoride and organic acid lithium (such as lithium stearate) are used to recover lithium, vacuum concentration is carried out directly to recover sodium sulfate.
  • Non-circulating mother liquor that is, no longer returning a large amount of lithium-containing sodium sulfate mother liquor to the leaching process, which minimizes the harmful sodium sulfate content in the leaching lithium sulfate solution system, and further reduces the thermal precipitation of carbonic acid
  • the sulfate concentration of the lithium reaction feed liquid is superimposed on the beneficial technical effects of "reverse feeding” in reducing the chemical adsorption of sulfate and deep wrapping (hereinafter referred to as "peritectic"); it is also due to the effect of lithium sulfate purification of the finished liquid.
  • the concentration of sodium sulfate is reduced more, the salt effect is reduced, and the primary yield of thermally precipitated crude lithium carbonate is improved.
  • Pre-sedimentation supplementation and impurity removal includes three purposes:
  • the industrial grade lithium carbonate produced by the spodumene sulfuric acid method can smoothly cross the threshold of 0.35% sulfate radical content, which can be as low as 0.15% (analytical purity standard), It can be as low as 0.10% (that is, the special grade lithium carbonate standard produced by the reconversion of lithium hydroxide produced by the spodumene-lime method in the Xinjiang lithium salt plant in China; now it is very close to the current battery grade standard).
  • Grade lithium carbonate.
  • High-efficiency desorption is a collective term for the two components of "powerful desorption” and "hydrocyclone separation". It is a new threshold from 0.20%-0.15%-0.10% of industrial grade lithium carbonate sulfate, and 0.08% of battery grade lithium carbonate. It further reduces sulfate to the greatest extent, and achieves the reduction of industrial grade and battery grade lithium carbonate to 0.03%-0.02 respectively. % And 0.01%-0.008%, the main content is increased to 99.50% and 3.5N-4N, which are powerful new technologies required.
  • “Strong desorption” also contains two parts, namely, ‘micro-extraction, warm precipitation and thermal stirring and washing’ and ‘strong desorption at medium and high temperature’.
  • “Micro-extraction warm precipitation and thermal stirring washing” is also an improvement based on the technical principles described in paragraphs [0057]-[0072] on the first and third contents of the present invention:
  • adsorption and desorption are in a dynamic equilibrium state. Adsorption releases heat, desorption endothermics, and the temperature is increased and the equilibrium moves toward the desorption direction (Le Chateau).
  • Le principle which is conducive to desorption, that is, the desorption effect is positively correlated with temperature, and it is a continuous change process. Refer to the data of the small experiment 1) in paragraph [0032].
  • “Hydronic separation” refers to a simple, low-input, and easy-to-operate solid-liquid that can efficiently separate impurities such as sulfate radicals that are dissolved and suspended in a larger amount of deionized water by separating lithium carbonate particles from lithium carbonate particles. Separation technology. It is superior to various solid-liquid separation technologies using filter devices because most of the micro-sized water-insoluble impurities that are removed and suspended in a larger amount of deionized water will be directly carried away by the rotating liquid phase; The use of a filter device to separate this solid-liquid phase will trap more of these micro-particle water-insoluble impurities in the solid-phase refined lithium carbonate, which will fail the beneficial technical effect of "strong desorption".
  • the operation method of the technology of'micro-extraction warm precipitation and thermal stirring washing' is: after adding sodium carbonate to the reactor to complete the purification liquid, heating up, cover the manhole of the reactor, and after the air in the reactor is exhausted, the reactor Airtight; the temperature rises to the selected value, start the agitator and always keep effective stirring, the pumped lithium sulfate purification liquid passes through the multi-point arrangement of pressurized shower nozzles, and sprays at (0.1-0.3 MPa) pressure
  • the reaction is pumped into the reaction in the form of (the production of lithium carbonate with 0.008% sulfate radical requires this process to obtain small particle size lithium carbonate first, taking 0.3 MPa and spraying at a higher speed).
  • the reaction kettle immediately starts to release the pressure (should be connected to the pipeline to recover the steam heat).
  • the material is discharged immediately and centrifuged to obtain crude lithium carbonate-1.
  • the pipeline type desorber is used to automate and continuously carry out the operation of'medium-high temperature and strong desorption'.
  • the pressure of the slurry is reduced to 0.05-0.06 MPa through the decompression storage tank with agitator and cooling water jacket. Control the speed and pump the slurry into the hydrocyclone for separation.
  • One of the method for judging the end point of the'medium and high temperature strong desorption' operation sampling through the continuous sampling nozzle of the desorption kettle and device, intermittent, multiple sampling detection or continuous online detection of liquid sulfate content, program-controlled computer Calculate the residual sulfate content of solid lithium carbonate (dry basis) with this content data and the amount of crude lithium carbonate-2 and its sulfate content and the amount of deionized water added. After reaching the standard, it can be confirmed as desorption end.
  • the parameters such as the discharge pressure of the "hydrocyclone separation" process are determined according to factors such as the level of lithium carbonate to be produced, order quality requirements, raw material composition characteristics, output and cost control, safety production management, etc.; the invention of this specification
  • the parameters exemplified in the content and the specific implementation are a whole, they are not a rigid parameter range that is invariable, and can be flexibly adjusted and controlled in actual use. Therefore, these parameter groups are included in the protection of the present invention. Within range.
  • the amount of deionized water when producing industrial-grade lithium carbonate, "micro-extraction warm precipitation and hot stirring", “medium and high temperature strong desorption”, centrifugal leaching, the total amount of the three is recommended to follow
  • the finished product lithium carbonate 8-9 times is enough to invest, it can be allocated according to the specific situation according to 2.5:5:0.5 or 1.5+1.5:5.5:0.5; battery level, it is recommended that the total of the three is 9-10 times, according to 2.5:6:0.5 Or 1.5+1.5: 6.5: 0.5 allocation.
  • Another example is (and not limited to this) desorption tank and internal temperature-saturated vapor pressure: Although the desorption effect is positively related to temperature-pressure, the higher the temperature-pressure, the easier it is to remove sulfate and other impurities. More, and the shorter the time needed to get out, but the higher the equipment cost and maintenance cost, the more complicated the enterprise management. Considering product quality requirements, technical effects, investment amount, production capacity, cost, safety management of pressure vessels, the status of existing equipment of various manufacturers, etc., it is recommended to produce industrial "new zero-level" and "new-level” lithium carbonate.
  • phase separation method (such as centrifuge separation) will cause a lot of suspended micro-particle water-insoluble impurities to be mixed into the solid phase, which greatly reduces the original excellent impurity removal effect of'medium-high temperature strong desorption'.
  • desorption kettle and device used in'medium-high temperature strong desorption include: 1) Pressure reaction kettle with low-speed stirring, heating and cooling jacket, and shaping equipment; or 2) Low-speed spherical or horizontal cylindrical Type desorber, sizing equipment or self-designed; or 3) manufacturers with large design capacity, the most suitable pipeline type desorber, self-designed; 4) no matter what type of desorption kettle or device is selected, it must be used
  • the partition wall heating and cooling method should not be directly heated by steam to avoid polluting the slurry.
  • the internal surface structure material of the desorption kettle and the contact material used in the ‘medium-high temperature strong desorption’ is preferably composited with titanium plates, and stainless steel plates made of 0Cr18Ni9Ti or 0Cr18Mo2Ti are also acceptable.
  • stainless steel plates made of 0Cr18Ni9Ti or 0Cr18Mo2Ti are also acceptable.
  • the magnetic metal chromium content of the product is less than or equal to 3ppm, so a small pressure autoclave with a pressure of 1.6 MPa is required, and lithium carbonate slurry is used in the autoclave first.
  • a long-term immersion test (more than 100 hours is recommended) under the saturated vapor pressure of 0.8-1.0-1.2 MPa to detect the amount of chromium leaching: as long as the chromium content of lithium carbonate after the immersion test is increased by 1 ppm than before the immersion, the batch of materials It cannot be selected, and it needs to be selected separately.
  • lithium sulfate obtained from fluorine (chlorine) raw materials such as fluorolepidolite must also be subjected to this immersion test, but the purpose of the test is to determine the corrosiveness of fluorine (chlorine) to these two materials. If there is corrosion, use internal
  • the composite steel plate lined with polytetrafluoroethylene (the allowable temperature is minus -180 to 260 degrees Celsius for long-term use) is used as the structural material.
  • glass-lined design on the inner wall of the desorber requires pre-loading test to detect elements such as boron, aluminum, silicon, lead, antimony in the glass-lined in the lithium carbonate alkaline slurry, long time (recommended more than 100 hours), high temperature (Saturated vapor pressure 0.8-1.0-1.2 MPa), dissolution under low-speed stirring conditions: once the foregoing and other elements that are soluble in alkali and battery-grade lithium carbonate impurity indicators are limited, they dissolve and cause them not to When it is qualified, the formula of the inner wall glass-lined material should be rejected, and it needs to be selected separately. Fluorine-containing raw materials, such as lithium sulfate obtained from fluorolepidolite, should not be used in glass-lined reactors or vessels.
  • Hydrocyclone separation uses sizing equipment or self-designed hydrocyclone.
  • the material selection method is the same as the internal surface structure material of the desorption kettle used in the aforementioned “medium-high temperature strong desorption” and the contact material used in the device.
  • the overall beneficial effect of the technical scheme of the present invention is that with a relatively simple technical scheme and a lower production cost, the lithium sulfate solution and the lithium sulfate solution extracted from the various lithium ore and sulfur-containing raw materials referred to in paragraph [0001] can be greatly reduced
  • the content of impurity sulfate and other impurities in industrial grade and battery grade lithium carbonate directly produced by sodium (potassium) solution, and increase the main content of these two types of lithium carbonate; will make lithium ore-sulfuric acid method, sulfate method , Industrial grade and battery grade lithium carbonate directly produced by the sulfur compound method, and high-purity grade lithium carbonate produced by various methods, the original large or even huge difference in quality, cost, and selling price has greatly narrowed and the limit The ambiguity will enable the future revision of the technical standards for lithium carbonate at all levels to "simplify the complex.”
  • the above beneficial effects are very beneficial to promote the rapid development of high-end lithium industries such as lithium batteries, and are extremely beneficial
  • the adsorbed sulfate radicals in the initial stage of thermal precipitation will grow up with the coarse lithium carbonate particles, and will even be deeply wrapped, which is extremely difficult to remove according to the existing thermal stirring method, which is the most harmful.
  • alkali metals and alkaline earth metal elements are not as highly polarized as transition elements, they can be used as central atoms to form complexes (complexes) with coordination atoms, especially lithium atoms, which have the smallest radius among all metal elements, which is beneficial
  • a complex with a slightly larger stability constant is formed.
  • the sulfate has two coordinated oxygen atoms, which is also conducive to forming a complex with the lithium ion in the lithium carbonate with a larger stable constant.
  • the resulting coordinate bond energy is slightly higher, and the chemical adsorption force is stronger (carbonate and silicon The same goes for acid roots).
  • lithium sulfate solution and sodium (potassium) carbonate solution precipitate and wash coarse lithium carbonate particles, based on the physical adsorption force of van der Waals force Very weak. Since there are two coordinating oxygen atoms in the sulfate that can be used as the coordination sites of the complex, when the crude lithium carbonate is precipitated, when the sulfate concentration is high, a sulfate complex with a slightly larger stability constant will be formed. The probability is very big.
  • the adsorption of sulfate radicals on the surface of coarse lithium carbonate particles is mainly chemical adsorption.
  • the adsorbent is lithium ion and the adsorbate is sulfate.
  • Several other characteristics of chemical adsorption are: a, high selectivity.
  • the lithium carbonate particles have a strong adsorption of sulfate and carbonate. Who is more likely to be adsorbed depends on the concentration of the adsorbate, because the Freindrich adsorption formula shows , The adsorption capacity increases with the increase of the adsorbate concentration.
  • b Only single-layer adsorption occurs. This is because the chemical adsorption is completed by the remaining bond force of the molecules on the surface of the solid molecule to form a new chemical bond with the adsorbate.
  • Reverse feeding is based on the principle that chemical adsorption has selective adsorption, single-layer adsorption, and difficult desorption: At the beginning of feeding, the small particles of lithium carbonate are in an environment of high concentration of carbonate and low concentration of sulfate.
  • the probability of adsorbing carbonate radicals on the surface is high, and the probability of adsorbing sulfate radicals is small, and only a few parts have sulfate radicals (and a small amount of silicate radicals); and due to the characteristics of monolayer adsorption, the surface of lithium carbonate particles is saturated with carbonate radicals. It no longer adsorbs electronegative sulfate and carbonate.
  • the adsorbed carbonate is not easy to reverse desorption, it will quickly adsorb free positive lithium ions (followed by sodium ions), cross-adsorb carbonate and lithium ions, lithium carbonate particles can be at a lower concentration of sulfate It grows rapidly in the environment, and the amount of sulfate adsorbed is much less than that of the "forward feeding" process.
  • non-circulating mother liquor greatly reduces the sulfate radical concentration in the thermal precipitation reaction slurry system, and superimposes the beneficial effect of reducing the adsorption of sulfate radicals in the lithium carbonate particles.
  • a layer of carbonates adsorbed by the precipitated lithium carbonate particles will adsorb sodium ions and become sodium carbonate, which will not cause major trouble: one of these carbonates will dissociate from the lithium sulfate that is continuously added.
  • the ions undergo chemical adsorption and then undergo a chemical reaction to form lithium carbonate, which has a much lower solubility than sodium carbonate and is more firmly bonded, which makes the lithium carbonate particles larger, which are then squeezed out and exchanged by the lithium ions added to the thermal precipitation system.
  • the sodium ions in the reaction solution will be absorbed by the free sulfate radicals in the reaction solution and transferred to the reaction solution; secondly, sodium carbonate and lithium carbonate will not form a double salt, and its thermal water solubility is much greater than that of lithium carbonate. When stirring and washing, it is easy to wash off. Of course, there will also be a small amount of sodium ions adsorbing sulfate to form sodium sulfate, which is deeply wrapped by the later adsorbed lithium carbonate.
  • the amount of sodium is slightly less than the equivalent sulfate, indicating that there are traces of other metal elements, such as calcium sulfate, which are wrapped, and this part of the sulfate is more difficult to wash off.
  • the "reverse feeding” process uses high-concentration adsorbent carbonate to preemptively complex the lithium ions in the primary lithium carbonate particles, preventing a large amount of adsorbent sulfate from complexing with the adsorbent lithium ions in the lithium carbonate particles and being wrapped.
  • the industrial production scale has successfully reduced the sulfate content in the product.
  • crude lithium carbonate After adopting “reverse feeding” (combined with "pre-precipitation supplement and impurity removal"), crude lithium carbonate only needs to be heated and washed with deionized water at a ratio of 1:2-3 (mass ratio)-centrifuged 3 times. Obtain a product with a sulfate radical of 0.15%-0.20%.
  • the reason for the "slow, stirring, heating, and aging" operation of the current thermal precipitation process of crude lithium carbonate is to obtain large-diameter lithium carbonate particles to reduce the adsorption and encapsulation of sulfate radicals. It is based on the following theories: 1. Langmuir theory, the smaller the surface of the adsorbent, the larger the particle size, the smaller the amount of adsorption; 2. The Kelvin formula, aging can automatically transform small crystals into large crystals (The free energy of the system decreases and tends to be stable).
  • the hot precipitate often has strong viscosity.
  • the reasons are as follows: a.
  • the two liquids of lithium sulfate and sodium carbonate used in the thermal precipitation reaction The concentration of the four main ions is high, and the reaction trend is strong.
  • the lithium ions of the primary lithium carbonate particles are easily coordinated with carbonate, sulfate, and silicate to form complex salts.
  • Lithium ions are coated with acid radicals and acid radicals with a layer of lithium.
  • the sulfate radicals in the bonding group continue to combine with sodium ions to dissolve in hot water, and lithium carbonate particles also continue to precipitate, but it is inevitable that there will be a few or A very small number of bonding groups continue to adhere to the wall or agitator or remain in the crude lithium carbonate, causing problems such as high sulfate content in the finished product, so it must be avoided as much as possible.
  • b If the solution of lithium sulfate and sodium carbonate is not effective in desiliconization, lithium silicate will be generated during thermal precipitation, which is very viscous and will increase the self-adhesive force of lithium carbonate particles, and it is easy to agglomerate after drying. This is because liquid lithium silicate has a characteristic. Once dehydrated, it will never dissolve in water. It is very different from sodium silicate, which is sodium silicate. (For example, liquid lithium silicate, a concrete sealant, is very firm after drying and solidification. Long-term soaking in water).
  • both the lithium sulfate leaching solution and the sodium carbonate solution must be strictly and effectively removed silicon before they can be confirmed as the completed purification solution.
  • the rescue method of "pre-precipitation supplementary removal" should be on standby at any time, but attention should be paid to strong and effective stirring.
  • the reaction material liquid system After the reasonable layout of the pressurized shower feeding port, when a small amount of precipitant sodium carbonate is sprayed at an appropriate speed, the reaction material liquid system always maintains PH "7.0; the inner wall of the stainless steel reaction tank and the surface of the agitator should be smooth and scratch-free And spot welding slag to prevent the adhesion of lithium carbonate particles.
  • the third "efficient desorption" technology of the present invention was born logically, which can smoothly resolve and attach most of the sulfate radicals deeply wrapped in the lithium carbonate particles at the initial stage of the thermal precipitation reaction. Further, it is greatly reduced to industrial grade 0.03%-0.02%, and battery grade 0.008%.
  • the charging speed of the lithium sulfate purification solution is appropriately increased, and the thermal aging time is moved later, so that the small particle size crude lithium carbonate.
  • a supplementary explanation is given: in the liquid-solid system, it provides "dilute, slow, agitated , Heat and aging” conditions to obtain large-diameter crystals, in order to reduce the total surface area of the crystals and reduce the adsorption of other harmful impurities on the surface.
  • This universal technology principle is used for the crude carbonic acid obtained by the thermal precipitation reaction of lithium sulfate solution and sodium carbonate solution.
  • Lithium also applies.
  • the low concentration of sodium sulfate mother liquor is useful for the recovery of by-product sulfuric acid.
  • Sodium is unfavorable; “slow, stir, heat, and age”, in the stage of reducing sulfate content to 0.20% of industrial grade and 0.08% of battery grade, it has been adopted, effective and error-free.
  • the distance between the core part of the crystal with small particle size and the outer surface of the crystal is small.
  • the sulfate radicals and other impurities in the peritectic are shallowly buried, which is a "shallow layer", and they are easy to be subjected to'medium-high temperature strong desorption' and thermal aging.
  • the technology can improve the “medium-high temperature and strong desorption” to further reduce the reliability of sulfate radicals, moderately reduce the working pressure, shorten the pressure working time, reduce the volume of the autoclave, and reduce the equipment investment .
  • Figure 1 is a schematic diagram of the spodumene-sulfuric acid process of the former Lithium America Company;
  • Figure 2 is a washing curve for the trial production of sulfate radicals according to the spodumene-sulfuric acid process of the former American Lithium Company;
  • Figure 3 is the solubility data of lithium phosphate, lithium fluoride, and lithium carbonate in water
  • Fig. 4 is a curve of decrease of sulfate radical content of lithium carbonate after implementing the technical scheme of the present invention.
  • Figures 1-4 are described in detail as follows:
  • Figure 1 is from Ostrosko's "Chemistry and Technology of Lithium", published by China Industry Press, Beijing first edition, May 1965, page 160. Combined with the text of the book, it can be clearly stated that the lithium sulfate purification completed liquid and the sodium carbonate purification completed liquid are thermally precipitated according to the "forward feeding" process.
  • Figure 2 shows that the inventor of this application presided over the initial stage of small-scale spodumene-sulfuric acid lithium carbonate industrial production in 1978-79-80.
  • the washing curve of the product sulfate clearly shows that when the sulfate is washed to about 0.35%, it is extremely difficult to decrease again, which is enough to indicate that the biggest shortcoming of this traditional process is that the impurity sulfate is too high.
  • Figure 3 is the solubility data of lithium phosphate, lithium fluoride, and lithium carbonate in water, presenting a huge difference of one order of magnitude second, indicating that the lithium-containing sodium sulfate mother liquor is recovered by lithium phosphate with the highest lithium yield.
  • Figure 4 shows the declining curve of sulfate radicals after the implementation of the "reverse feeding without circulating mother liquor", "pre-sedimentation supplementary removal” and “efficient desorption” technologies of the present invention, all showing a cliff-like decline.
  • the word A represents the stage of'micro-extraction, warming and precipitation'
  • the wording B represents the stage of'micro-extraction and warming and washing','medium-high temperature strong desorption' and "hydrocyclone separation”
  • the horizontal line represents the crude carbonic acid produced in stage A Lithium-1 is transferred to stage B operation to produce refined lithium carbonate
  • the left curve represents industrial grade
  • the right one represents battery grade.
  • the initial filtrate is temporarily put into a small turbid liquid tank (the volume of which is about 20% of the volume of the lithium sulfate purification solution), and the filtration is repeated until the filtrate is tested again and the standard is met. The filter cake is successfully bridged before it is confirmed as the purification completed liquid.
  • Lithium purification completed liquid in order to obtain small particle size crude lithium carbonate-1 first.
  • the reaction kettle immediately begins to release the pressure (should be connected to the pipeline to recover the steam heat).
  • the material is discharged and centrifuged-rinsed immediately to obtain crude lithium carbonate-1, and the operation of ‘slightly raising, warming and precipitation’ is completed. While it is hot, immediately transfer the crude lithium carbonate-1 to the deionized water that has been put into 3 times (industrial "new zero level”) or 4 times (“new battery level”), the temperature of 90-95 degrees Celsius, and the microstructure that has been stirred.
  • the primary sodium sulfate hot mother liquor produced by the ‘micro-extraction warm precipitation’ operation is to recover crude lithium carbonate or lithium phosphate and other lithium salts, and then mirabilite or sodium sulfate in accordance with the method described in the "non-recycling mother liquor” process.
  • the industrial "new grade” and industrial “new zero grade” sulfate should reach 0.10%, 0.03%-0.02%, respectively, “new battery grade” (necessary Heat and stir again once)
  • the sulfate radical is expected to reach 0.010%-0.008%-0.005%, or it can reach the limit value of the main content of 4N under the optimized conditions.
  • the content of the "efficient analysis attached” can naturally be extended to the following similar technical fields: two One or more soluble inorganic substances, the insoluble or slightly soluble target product precipitated by the precipitation reaction, the core part of the crystal (or particle) is chemically adsorbed and deeply wrapped, and the impurities that are difficult to remove by conventional washing methods can be removed efficiently. Therefore, they are all covered within the technical scope of the present invention.

Abstract

从硫酸锂净化完成液液和碳酸钠(钾)净化完成液热沉淀工序产出粗碳酸锂开始,到产出精碳酸锂湿品为止,厂家原有祛除硅、铝、铁、镁、钙、重金属的方法大部分不变,检测方法不变,采用"反向加料、不循环母液"、"预沉淀补充除杂"和"高效解吸附",可使工业级碳酸锂硫酸根下降到0.03%、主含量升高到2.5N,电池级硫酸根下降到0.008%、主含量稳定上3N甚至触及3.5N-4N极限位。"高效解吸附"含"微提温热沉淀暨热搅洗"、"中高温强力解吸附"和"旋液分离",可释放碳酸锂粒子包晶核心部位被化学吸附、深度包裹的硫酸根等杂质于去离子水中,并由"旋液分离"液相有效带离出去。

Description

硫酸锂与碳酸钠(钾)直产碳酸锂降低硫酸根含量新方法 一、技术领域
本发明涉及一种锂盐生产方法。具体地,本发明涉及一种大幅度降低锂辉石、锂云母、铁锂云母、碳酸盐型盐湖锂矿初级碳酸锂、磷铝锂石、透锂长石、碳酸盐沉积岩锂矿等锂矿石,经硫酸法或硫酸盐法或硫化物法制取的中间锂盐硫酸锂,直接生产的各级碳酸锂中硫酸根含量的新方法;更具体地,本发明涉及一种大幅度降低硫酸 溶液与碳酸钠(钾)溶液热沉淀反应得到的碳酸锂中硫酸根含量的新方法。为了说明书内容不致过于复杂,仅能以锂辉石-硫酸法为例,给予详细说明。
本发明内容、特别是第3项“高效解吸附”可自然扩展到的相似领域另见第【0081】段说明。
二、背景技术
上世纪初,欧洲生产的工业级碳酸锂,杂质硫酸根含量一般是0.70-0.80wt%(除非另有说明,本申请所述百分比或者比例均为质量百分比),折合硫酸钠1.035%-1.183%,算数平均值为1.109%,这与众多其它水不溶和微溶性碳酸盐类产品相比,显得偏高很多。
上世纪四、五十年代,原美国美洲锂公司(Lithium of America)发明了锂辉石硫酸法碳酸锂工艺,在北卡罗来纳州俾斯麦城建立了年产0.9万吨的工厂,其工业级碳酸锂标准中,杂质硫酸根含量比早期欧洲产品已降低很多,达一级品0.35%,二级品0.50%,但对中高档含锂玻璃等行业 来说,仍嫌偏高。
生产微晶玻璃等中高档含锂玻璃需要用到硫酸根含量低至0.20%(即道.康宁Dow Corning玻璃公司标准)的碳酸锂,则再用特鲁斯特法(Truste Method)提纯。该方法通过压入二氧化碳于20倍去离子水调配的碳酸锂水浆当中,使碳酸锂酸化为水中溶解度5%的碳酸氢锂,稀释杂质硫酸钠于大量的水中,然后再加热分解碳酸氢锂,驱除二氧化碳,在低浓度硫酸根环境中,复沉淀出碳酸锂,实现降低硫酸根到0.20%的目标。但是,该提纯工艺流程长,设备投资巨大,成本提高很多。
工业级碳酸锂的现行中国国家标准GB/T11075-2013规定的化学成分如下表1所示:
表1
Figure PCTCN2020118886-appb-000001
产品的水分含量应符合如下表2的规定:
表2
产品牌号 Li 2CO 3-0 Li 2CO 3-1 Li 2CO 3-2
水分,不大于 0.3% 0.3% 0.5%
电池级碳酸锂的现行中国有色金属行业标准
YS/T582-2013规定的化学成分表如下表3所示:
表3
Figure PCTCN2020118886-appb-000002
从GB/T11075-2013和YS/T582-2013规定的碳酸锂化学成分表中可以看出,Li 2CO 3-0、Li 2CO 3-1、Li 2CO 3-2级碳酸锂中杂质硫酸根指标都比其它杂质Fe,Ca,Mg,Cl的指标高1-2个数量级;对于电池级而言,这个差别更大,比Mg,Ca,Fe,Zn,Cu,Pb,Si,Al,Mn,Ni,Cl高2-3个数量级。很明显,其原因在于,降低硫酸根含量的技术难度大于降低其他杂质含量的技术难度。须知,从欧洲最早硫酸(盐)法生产的工业碳酸锂中,杂质硫酸根含量0.7%-0.8%,降低到原美洲锂公司硫酸法工业级碳酸锂0.50%-0.35%,历时约40年;现在降低到普通工业级0.20%、电池级(实质上也是一种工业级)0.08%,历时已逾100年,足见其难矣。
中国发明专利申请CN107915240A(公开日2018.04.17)公开了一种硫酸法生产电池级碳酸锂的方法,其杂质指标硫酸根和钠的含量分别是0.08%和0.025%,仍较高,若能再降低一个数量级,于提高锂电池质量很有利。
三、发明内容
本申请仅以锂辉石-硫酸法为例,来说明其发明内容,应当理解,这不应被解释为对本发明保护范围的限制,凡基于本发明内容所实现的技术均涵盖在本申请旨在保护的范围内。
本发明要解决的技术问题是:(1)在现有由硫酸锂净化液与碳 酸钠(钾)净化液热沉淀工艺直接电池级碳酸锂的生产技术和产品标准YS/T582-2013的基础上,再革新部分工艺,来大幅度降低杂质硫酸根含量到0.010%-0.008%,并同时略微降低其它杂质的含量,让电池级碳酸锂主含量稳定地达到3N级,在优化的条件下,部分产品达到3.5N级,部分产品接近、最终甚或达到4N级(可称为“准高纯级”)。本申请的发明人认为,由硫酸锂液与碳酸钠(钾)液热沉淀法直接生产的碳酸锂,其主含量值的极限可能就是4N。
(2)在现有由硫酸锂净化液与碳酸钠(钾)净化液热沉淀工艺制造工业级碳酸锂的生产技术和产品标准GB/T11079-2013的基础上,再革新部分工艺,来大幅度降低杂质硫酸根含量到更低的“新零级”0.03%,同时降低钠和其它杂质含量,使主含量升高到99.50%;“新一级”硫酸根0.10%,主含量升高到99.35%。不再考虑其它低级别的工业碳酸锂了,因为一旦全面实施本发明三项内容,产出的工业碳酸锂中,硫酸根含量不再有高于0.10%的了。
本发明解决其技术问题的方案是:根据对产品质量的不同需要,在现有工业级和电池级碳酸锂生产技术的基础上,再组合运用本发明三项发明内容:1,“反向加料,不循环母液”;2,“预沉淀补充除杂”;3,“高效解吸附”,来实现第【0010】-【0011】段所述的目标。
下面第【0013】-【0073】段对此逐步深入地给予说明:
要实现第【0010】-【0011】段所述的目标,本发明第1项和第3项为必须用技术,它们是从硫酸锂净化完成液与碳酸钠(钾)净化完成液热沉淀反应获得粗碳酸锂的工序开始,到获得各级精碳酸锂湿品为止,予以运用的;本发明第2项是可选用技术,在热沉淀反应前夕使用,主要供生产工业级碳酸锂选用,也可供电池级碳酸锂必要时选用。
组合运用本发明三项内容的方式是:
1.当需要产出硫酸根0.20%的现行工业零级碳酸锂时,现有热沉淀工序之前祛除硅、铁、铝、镁、钙、重金属这些杂质的技术基本不变,所有检测方法不变;仅组合运用本发明第1项和第2项的技术,就可以使各种固体锂矿石如锂辉石、锂云母、碳酸盐型盐湖锂矿初级碳酸锂(西藏扎布耶茶卡、龙木措、结则茶卡盐湖有产,南美洲阿塔卡玛盐湖有储)、铁锂云母、磷锂铝石、透锂长石,以及(未来)中国云南省中部碳酸盐型沉积岩锂矿石,(未来)阿富汗硬岩锂矿石,锂电池回收的含锂废料,经由硫酸锂形态,将其提纯为净化完成液后,与碳酸钠(钾)提纯净化完成液进行热沉淀反应,直接生产出来。
2.当需要产出硫酸根0.10%的工业“新一级”碳酸锂时,组合运用本发明第1项、(或选用)第2项、和第3项的前部分‘微提温热沉淀暨热搅洗’技术(见第【0024】、【0027】-【0029】、【0041】、【0042】段详细说明)即可。
3.当需要产出硫酸根0.03%的工业“新零级”碳酸锂时,在现有工业级各项除杂技术的基础之上,组合运用本发明第1项和第3项技术,必要时再组合选用第2项技术即可。
4.当需要产出硫酸根0.01%-0.008%的“新电池级”碳酸锂时,在现有电池级各项除杂技术的基础之上,再组合运用本发明第1项和第3项技术,必要时再选用本发明第2项技术予以补充(其选择的操作参数如第3项中的去离子水用量、温度-压力参数、热陈化时长等等,比工业“新零级”更严格而已),就可实现这一目标。
现从本段开始,到第【0072】段为止,对此三项发明内容,仍以锂辉石-硫酸法直接生产碳酸锂为例,分别予以进一步的详细说明:
“反向加料,不循环母液”是本申请的发明人1978-1980年在中国成都市某化工厂主持锂辉石-硫酸法直接生产硫酸根0.22%-0.15%的某企业专用碳酸锂时发明并予命名的(请见中国发明专利申请201810900977.7的附加说明文件),它具体指:
1.从硫酸锂净化完成液与碳酸钠净化完成液热沉淀工序起,把原美洲锂公司发明的锂辉石-硫酸法经典操作工艺,即附图1所示,将“作为沉淀剂的Na 2CO 3的饱和溶液”加入到“20%的Li 2SO 4溶液”中(本申请称这种方式为“正向加料”),予以反向,将硫酸锂净化完成液按加料点适度分散的方式,加入到强烈搅拌着的、温度90-95摄氏度的碳酸钠净化完成液当中,来沉淀出较少化学吸附、较少深度包裹硫酸根的粗碳酸锂粒子。
当需要生产工业“新一级、“新零级”和“新电池级”碳酸锂时,将此热沉淀暨搅洗作业温度提高到摄氏104.8-120.2度(对应的饱和蒸汽为0.13-0.20兆帕),是更有利于降低碳酸锂中的硫酸根含量的革新措施之一,请见第【0014】、【0027-0029】、【0032】、【0041】段详细说明。
2.同时,不再按原美洲锂公司经典操作工艺,将趁热离心分离出粗碳酸锂的硫酸钠一次热母液冷冻至摄氏0度至摄氏-15度、结晶出芒硝后,让二次冷母液返回酸化料浸取工序回收锂;而是另劈一条工艺路线,将该含锂(折为碳酸锂)高达10-15克/升的二次冷母液加热浓缩至液面硫酸钠结晶膜初起(母液中保留有微过量纯碱,在浓缩过程中,又逐步热析出粗碳酸锂),趁热滤出粗碳酸锂,将之返回酸化料浸取工序;滤出粗碳酸锂的三次热母液趁热合并入新的沉锂一次热母液冷冻析芒硝,如此交叉进行“冷析芒硝-热析粗碳酸锂”操作;或者,将二次冷母液(甚至一次热母液)用沉淀出磷酸锂、氟化锂、有机酸锂(如硬脂酸锂)的方式回收锂之后,直接进行真空浓缩回收元明粉。
“不循环母液”,即不再将大量的含锂硫酸钠母液返回浸取工序,这就最大限度地降低了浸取出的硫酸锂溶液系统中的有害物硫酸钠含量,进一步降低了热沉淀碳酸锂反应料液的硫酸根浓度,与“反向加料”减少对硫酸根的化学吸附与深度包裹(以下简称为“包晶”)的有益技术效果就相互叠加;还因硫酸锂净化完成液的硫酸钠浓度降低较多、盐效应减小,热沉淀粗碳酸锂的一次收得率有所提高。
“反向加料,不循环母液”产生的这些有益技术效果,是以很低的设备、成本投入代价实现的;而此前,本领域不存在一种经济有效的方法,可以将锂辉石-硫酸法直接生产的碳酸锂中的硫酸根如此方便地降低到0.35%以下;而且,本项发明还是后续诞生的、进一步大幅度降低硫酸根含量的又一创造性的改进、即第3项发明“高效解吸附”必不可少的前期配套、奠基技术。
“预沉淀补充除杂”包括三方面用途:
1)若迟至热沉淀工序开始之前,才发现前期浸取作业、逐次沉淀法祛除铝、铁、镁、钙、重金属等杂质作业有误,导致某些杂质形成的胶体颗粒未及充分凝聚而沉淀不完全,或滤布破损及安放不当发生了穿滤,或过滤作业操作不当,滤渣未及搭桥成功时即中断滤液循环,检测到硫酸锂净化液的这些杂质指标超标,则可在热沉淀作业之前夕,先按“正向加料”方式,在搅拌下往硫酸锂净化液中,徐徐加入少量碳酸钠净化完成液,目测及浊度仪密切观察,到硫酸锂净化液中刚有白色细微沉淀物出现时,即暂停加料,继续搅拌几分钟,检测由取样口放出并经仔细过滤的硫酸锂净化液,一俟这些杂质指标合格,则停止加料(若还不合格,则再追加少量碳酸钠净化完成液,直至合格),继续搅拌约一刻钟以上,让超标存在的铝、铁、镁、钙、某些重金属氢氧化物和碳酸钙充分凝聚、共沉淀,然后真空过滤,初期滤液必定混 浊,泵出循环过滤,直至滤饼搭桥成功、滤液取样观测完全清澈,停止滤液循环过滤。彼时若观察滤饼,能发现细腻滑手(氢氧化镁、铝为主),混有少量略粗颗粒(碳酸锂),说明前述杂质已净化较好,该过滤成功的硫酸锂净化液再经检测证实后,方确认为净化完成液。比之将这种不合格硫酸锂净化液返回浸取工序重新依次祛除这些杂质,该简易纠错、挽救方法产生的有益技术、成本效果是明显的,对于设备、管理等条件较差的小型厂家来说,更是如此。
完成“预沉淀补充除杂”后,生产现行零级和“新零级”、“新一级”工业碳酸锂、生产电池级碳酸锂,都必须按“反向加料,不循环母液”方式进行热沉淀作业。
2)组合运用“反向加料,不循环母液”、“预沉淀补充除杂”和“高效解析附”的‘微提温热沉淀暨热搅洗’部分(请见第【0014】段),加之热沉淀工序之前的现有除杂技术,就可以使锂辉石硫酸法产出的工业级碳酸锂顺利跨过硫酸根含量0.35%的大门槛,可低达0.15%(分析纯标准)、可低达0.10%(即中国新疆锂盐厂锂辉石-石灰法所产氢氧化锂再转化产出的特级品碳酸锂标准;现在衡量,已十分接近现行电池级标准)的工业“新一级”碳酸锂。
3)曾经在生产过程中,常常观察到完全清澈的硫酸锂净化液,在浓缩过程中往往又絮凝、析出铁、铝、镁的氢氧化物,这与原美洲锂公司公布的锂辉石-硫酸法碳酸锂工艺文献记载的现象一致,说明让硫酸锂净化液中的这些因穿滤而残存的胶体杂质充分絮凝、共沉淀、多次祛除,是很有必要的;尤其是生产电池级碳酸锂(包括其它高纯度碳酸锂品种)时,若采用循环浸取,不浓缩硫酸锂的工艺,有可能发生铝、铁、镁、某些重金属的氢氧化物胶体杂质未及长时间受热或胶体颗粒表面电荷未及消除,未得以充分 凝聚,因而穿滤,就可在热沉淀粗碳酸锂之前,使用“预沉淀补充除杂”技术并行补充祛除。
“高效解吸附”,是“强力解吸附”和“旋液分离”两部分构成技术的合称。它是从工业级碳酸锂硫酸根0.20%-0.15%-0.10%,电池级碳酸锂0.08%的新门槛,进一步最大幅度降低硫酸根,实现工业级和电池级碳酸锂分别降低到0.03%-0.02%和0.01%-0.008%,主含量分别升高到99.50%和3.5N-4N所需要的强有力新技术。
“强力解吸附”又含2部份内容,即‘微提温热沉淀暨热搅洗’和‘中高温强力解吸附’。
‘微提温热沉淀暨热搅洗’也是根据第【0057】-【0072】段对本发明第1、3两项内容所阐述、依据的技术原理,作出的改进:在热沉淀、热搅洗和“强力解吸附”作业系统整个祛除包晶内硫酸根的过程中,吸附和解吸附都处于动态平衡状态,吸附放热、解吸附吸热,升高温度平衡往解吸附方向移动(勒夏特勒原理),有利于解吸附,即解吸附效果与温度正相关,并且是一个连续变化过程,参考第【0032】段小实验1)的数据,可以近似地预计,哪怕热沉淀暨热搅洗温度提高10个摄氏度,也会有增加硫酸根被解吸附的明显效果。而且,碳酸锂溶解度-温度曲线曲率为负,温度升高,可提高其一次收率。
现有通用的夹套反应釜设计许用压力很多都是夹套0.6兆帕,釜内0.2兆帕,据此,可在不变动现有主要设备的前提条件下,仅凭改变部分作业方式和操作参数,来进行热沉淀暨热搅洗作业,就能有效降低粗碳酸锂1的硫酸根含量,为后续‘中高温强力解吸附’作业作一个较好的技术铺垫。可以参考第【0032】段的第1)例小试结果数据来预估这种效果。另外,这一工艺改进,因进釜粗碳酸锂2的硫酸根含量有所降低,还可减少昂贵的去离子水 用量。为此,建议使用摄氏104.8度(0.13兆帕)--摄氏115.2度(0.18兆帕)--最高摄氏120.2度(0.20兆帕)的范围操作,较为合理,但并不是限定使用其它设备执行此项作业时也只能在此温度-压力范围内操作。
但不必在此‘微提温热沉淀暨热搅洗’作业时过度提高温度。一则毕竟在高浓度硫酸根环境中,降低硫酸根的技术效果还是有限的,二来也不必因此去更换许用应力更高的夹套反应釜。
‘中高温强力解吸附’是指:对于已经难以继续用常规热搅洗--离心的方法降低粗碳酸锂粒子核心部位包晶内的这部分硫酸根,现着重通过较大幅度提高温度,来加剧粗碳酸锂-2--去离子水浆料系统中,各种分子、离子、原子团的热运动,松弛碳酸锂粒子核心部位包晶内的硫酸根与锂离子之间的配位键,强力促使其大量脱离碳酸锂粒子,释放、溶解于较大量去离子水中;其它水溶性、水微溶性和水不溶性杂质中的相当部分,亦因热运动加剧而释放、溶解、悬浮于较大量去离子水中,这样一个关键性的创造性发明,来直接生产硫酸根0.008%的电池级或准高纯级碳酸锂,甚至使产出硫酸根靠近0.005%-0.003%(50-30ppm)的4N级碳酸锂的可能性有所增加。其依据的吸附和解吸附技术原理,请见第【0057】-【0072】段详细说明;其详细作业说明,请见第【0042】-【0043】段。
本申请的发明人早年所作的下述两例逐步提高压力-温度进行“强力解吸附”的易重复印证小试结果,证明了该项发明对碳酸锂粒子包晶内的硫酸根确实具有强有力的解吸附效果:
1)使用家庭烹饪压力锅,加入自来水适量,往放入的不锈钢杯中,盛入已先用3倍热蒸馏水初洗1次、硫酸根降到0.40%以下的、“反向加料,不循环母液”工艺生产出的工业级粗碳酸锂,再加入3倍蒸馏水,盖上不锈钢杯防止杯外自来水沾染,外热至压力0.12兆帕(家庭烹饪压力锅最高压 力,对应的饱和蒸汽压力约摄氏105度,此时特征是喷嘴喷汽声急促),静态强力解吸附并行热陈化1小时。自然冷却降压后用倾洗法祛除液相,再加1倍蒸馏水搅洗1次,化学法测定得到的精碳酸锂,硫酸根大幅度降低,已到0.15%以下,已超预期值(0.20%)。该例大体上对应‘微提温热沉淀暨热搅洗’。
2)然后用简易不锈钢热压筒提升压力-温度进行试验:仍然先用3倍热蒸馏水初洗1次,硫酸根降到0.35%,再用6倍蒸馏水、压力0.4-0.6兆帕(对应的饱和蒸汽压力约146-160摄氏度)强力解吸附并行热陈化1小时,再加1倍蒸馏水搅洗1次,化学法测得工业级精碳酸锂,硫酸根降低到0.04-0.035%,呈断崖式下降,已低于现行电池级碳酸锂硫酸根0.08%的标准,有益技术效果非常明显。该例大体上对应‘中高温强力解析附’。
根据上述小试结果可以预计,增加“强力解吸附”和“旋液分离”除杂技术后,对于现有工艺、设备、管理一般的锂辉石-硫酸法碳酸锂厂家来说,都能够进一步大幅度降低硫酸根到工业级0.03%-0.02%;对现有工艺、设备、管理已很先进的厂家来说,是完全能够降低到电池级碳酸锂0.008%的水平的。这主要是因为它们依据的“强力解吸附”技术原理是完全相同的。
“旋液分离”是指:能够高效分离出“强力解吸附”作业脱离出碳酸锂粒子而溶解和悬浮于较大量去离子水中的硫酸根等杂质之简便、低投入、易操作的固-液分离技术。它优于使用过滤装置的各种固-液分离技术,是因为脱出的、悬浮于较大量去离子水中的微粒径水不溶性杂质,绝大部分将由旋转流动的液相直接带离而出;而使用过滤装置的方式分离这种固-液相,则会在固相精碳酸锂中,截留较多这些微粒径水不溶性杂质,辜负“强力解吸附”的有益技术效果。
下面进一步、系统地、完整地说明本发明解决其技术问题的方 案:
(1)对采用硫酸锂溶液和碳酸钠溶液热沉淀法直接生产现行工业零级、“新零级”、“新一级”碳酸锂和电池级碳酸锂而言(运用“高效解吸附”技术以后,工业二级品、一级品碳酸锂已无言及价值),厂家热沉淀工序之前的祛除硅、铝、铁、镁、钙、重金属,磁性金属等杂质的现有技术基本不变;另可选用本发明的“预沉淀补充除杂”技术予以补充;精碳酸锂湿品干燥、粉碎、计量、包装的现有技术亦不变;所有检测方法不变。
(2)热沉淀工序碳酸钠配方过量5%,即当量比碳酸钠:硫酸锂==1.05:1.00,较适度。这是为了热沉淀反应时减少碳酸锂粒子对硫酸根的吸附量,并增加碳酸锂的一次收成率;当用于“不循环母液”工艺的“冷析芒硝-热析粗碳酸锂”热析作业时,与比等当量投料相比较,可自动析出更多的粗碳酸锂并带出母液系统中的非两性金属元素杂质即净化母液。
(3)硫酸锂和碳酸钠净化完成液,必须按“反向加料,不循环母液”方式进行热沉淀暨热搅洗及此后相关的操作。
(4)把热沉淀工序的作业做一个大的修改,即暂不追求获得大粒径粗碳酸锂粒子,反而企获小粒径者,将热陈化时长后移至‘中高温强力解吸附’工序中一并完成。此举是为‘中高温强力解吸附’有效释放热沉淀反应初期形成并被深度包裹的硫酸根等杂质,作一个技术铺垫,详情请见第【0069】-【0072】段对此项改进依据的技术原理所作说明。
(5)‘微提温热沉淀暨热搅洗’技术的操作方法是:反应釜内加入碳酸钠完成净化液后,升温,盖上反应釜人孔,待釜内空气驱尽后,反应釜密闭;温度升至选定的位值,启动搅拌器并始终保持有效搅拌,泵入的硫酸锂净化完成液通过多点布置的增压花洒喷头,以(0.1-0.3兆帕)压力、喷雾的形式泵入反应(生产硫酸根0.008%规格的碳酸锂需要此工序先获得小粒 径碳酸锂,取0.3兆帕、以较高速度喷料)。加料结束,反应釜立即开始泄压(应接管道回收蒸汽热量),泄压完毕后,立即放料离心淋洗,获粗碳酸锂-1。
(6)趁热立即把热沉淀得到的粗碳酸锂-1移入到已放有选定倍数如工业级和电池级分别是3-4-5倍和5-6倍的去离子水、并已升温到90-95摄氏度、已启动搅拌器的反应釜中;盖上人孔,继续升温,待釜内空气驱尽后,密闭反应釜,升温到与第【0041】段热沉淀反应相同的温度位置后,保持热搅洗15分钟,反应釜泄压(宜接管道回收蒸汽热量),泄压完毕后,放料离心淋洗,让工业级和电池级粗碳酸锂-2的硫酸根分别控制到0.30-0.20%和0.15%-0.10%,备用。
(7)往中高温强力解吸附釜中泵入按粗碳酸锂-2质量选定倍数的去离子水,开启低速搅拌,加入粗碳酸锂-2,升温至选定位置如摄氏159-170摄氏度(饱和蒸气压力0.6-0.8兆帕),在低速搅拌、保持料浆固相低速运动状态下,强力解吸附并行热陈化1小时以上,来释放碳酸锂粒子核心部位包晶内以硫酸钠为主的水溶性杂质、水微溶性及水不溶性杂质于去离子水中,并在此硫酸根浓度远远低于热沉淀反应浓度的条件下重结晶为硫酸根含量0.03%-0.02%(工业“新零级”级)或0.010%-0.008%(“新电池级”)的大晶体。
(8)检测到硫酸根含量已达标后,中高温强力解吸附釜泄压(须接管道回收、利用蒸汽热量),待压力降低到0.05-0.06兆帕时,提高搅拌速度至料浆维持较强烈搅拌状态,控制好速度,泵出料浆入旋液分离器,连续分离开液、固两相;分离出带有释放出来的水(微)溶性和水不溶性微粒径杂质的液相返回至浸取工序回收锂,可用一部分于清洗滤布及设备;仅允许经过充分凝聚并精密过滤的一部分,参用于热搅洗粗碳酸锂-1、生产工 业级产品,但此后工序禁用。离心淋洗固相(必要时,电池级的再热搅洗一次),就可得到硫酸根下降到0.03-0.02%的工业级、硫酸根下降到0.008%以下的电池级精碳酸锂湿品。
(9)采用管道型解吸附器自动化、连续进行‘中高温强力解吸附’作业的,通过带搅拌器和冷却水夹套的减压储罐,将料浆压力降低到0.05-0.06兆帕,控制好速度,泵出料浆入旋液分离器进行分离作业。
‘中高温强力解吸附’作业终点判断法之一:通过解吸附釜、器特别设置的可连续取样管口取样,间歇性、多次取样检测或连续在线检测液相硫酸根含量,程控计算机据此含量数据和投入的粗碳酸锂-2数量及其硫酸根含量、加入的去离子水数量,计算出固相碳酸锂(干基)的残余硫酸根含量,达标之后,即可确认为解吸附终点。
关于“高效解吸附”技术参数的特别说明:设计和调控各项作业操作参数,如‘微提温热沉淀暨热搅洗’工序“粗碳酸锂-1初洗配水量、初洗次数、粗碳酸锂-2硫酸根含量控制指标、‘中高温强力解吸附’工序解吸附配水量、解吸附器饱和蒸汽压力-温度控制指标、搅拌转速或解吸附器转速、解吸附暨热陈化时长等等,以及“旋液分离”工序放料压力等等参数,是根据欲产碳酸锂的级别、订单质量需求、原料成分特征、产量及成本控制、安全生产管理等等因素决定的;本说明书发明内容和具体实施方式中例举出的参数是一个整体,它们并不是一成不变的僵硬参数范围,实际运用时,可自行灵活调节、控制,是故这些参数群,均涵盖入本发明旨在保护的范围内。
例如(但不限定仅如此)去离子水用量:生产工业级碳酸锂时,‘微提温热沉淀暨热搅洗’、‘中高温强力解吸附’、离心淋洗,三者总量建议按成品碳酸锂8-9倍投入足矣,可以根据具体情况按2.5:5:0.5或1.5+1.5:5.5:0.5分配;电池级,建议三者总量9-10倍,按2.5:6:0.5或1.5+1.5:6.5: 0.5分配。
又例如(也不限定仅如此)解吸附釜、器内温度-饱和蒸汽压力:虽然解吸附效果与温度-压力是正相关的,温度-压力越高,脱出硫酸根和其它杂质就越容易、约多、且脱出需要的时间越短,但是,设备造价和维修费用就越高,企业管理就越复杂。综合考虑产品质量要求、技术效果、投资额、生产能力、成本、压力容器安全管理、各厂家现有设备状况等等因素,建议生产工业“新零级”、“新一级”碳酸锂时,采用0.5-0.6兆帕,虽不限定但无必要超过0.6兆帕,仅管道型解吸附器自动化、连续性生产的,可超过0.8兆帕,虽不限定但似无必要超过1.0兆帕;电池级,建议采用0.7-0.8-1.0兆帕,虽不限定亦无必要超过,但管道型解吸附器自动化、连续性生产的,可超过1.0-1.2兆帕,虽不限定但似无必要超过现行1.6兆帕的低压/中压容器界限。
是故,第【0028】段、第【0032】-【0033】段、第【0041】-【0045】段、第【0048】段、第【0049】段、第【0053】-【0054】段中,所述涉及“高效解吸附”技术的、各种可适度调整的技术参数,都应该涵盖入本申请旨在保护的范围内。
通过“旋液分离”器来分离‘中高温强力解吸附’过程从粗碳酸锂-2粒子中脱离下来的、以硫酸钠为主的水溶性杂质、水微溶性杂质、其它胶体杂质和其它微粒径水不溶性杂质之液相,这是‘中高温强力解吸附’大规模工业化、自动化、连续化生产一种较好的固-液分离设备选型;若采用带有滤布的液-固相分离方式(如离心机分离),会使不少悬浮的微粒径水不溶性杂质混入固相,让‘中高温强力解吸附’原本优秀的除杂效果大打折扣。
‘中高温强力解吸附’使用的解吸附釜、器可选结构类型包括:1)带低速搅拌、加热降温夹套的压力反应釜,定型设备;或2)低转速球型 或卧式圆柱形型解吸附器,定型设备或自行设计;或3)设计产能很大的厂家,最适合采用管道型解吸附器,自行设计;4)不论选用何种形态的解吸附釜、器,均须采用间壁式加热及冷却方式,不可直接蒸汽加热,以免污染料浆。
‘中高温强力解吸附’使用的解吸附釜、器所用接触物料的内表面结构材料,以钛板材复合为好,材质为0Cr18Ni9Ti或0Cr18Mo2Ti的不锈钢板亦可。但生产电池级的,如欲选用不锈钢材质者,因有产品磁性金属铬含量小于或等于3ppm的严格限制,故需使用耐压1.6兆帕的小型压力釜,先用碳酸锂料浆在釜内饱和蒸气压0.8-1.0-1.2兆帕条件下进行长时间(建议100小时以上)浸泡试验来检测铬浸出量:只要浸泡试验后碳酸锂的铬含量比浸泡前增加1个ppm,则该批材质就不能选用,需另选。另外,用含氟(氯)原料如氟锂云母获得的硫酸锂,亦须作此浸泡试验,但检测目的是测定氟(氯)对这两种材质的腐蚀性,若有腐蚀,则选用内衬聚四氟乙烯(长期使用许用温度为零下-180至260摄氏度)的复合钢板作结构材料。
使用解吸附器内壁搪玻璃设计的方案,需预先带料试验,检测搪玻璃中硼、铝、硅、铅、锑等元素在碳酸锂碱性料浆、长时间(建议100小时以上)、高温(饱和蒸气压0.8-1.0-1.2兆帕)、低速搅拌条件下的溶出量:一旦出现前述几种和其它能溶于碱的、电池级碳酸锂杂质指标有限制的元素溶出、并致其不合格时,该种内壁搪玻璃材质配方应予否定,需另选。含氟原料如氟锂云母获得的硫酸锂,不宜使用搪玻璃内壁反应釜、器。
“旋液分离”,使用定型设备或自行设计的旋液分离器,其材质选择方式与前述‘中高温强力解吸附’使用的解吸附釜、器所用接触物料的内表面结构材料相同。
“高效解析附”所有工序的管道管件均采用与主设备内壁相同的材质为 好。
本发明技术方案总括的有益效果是:用相对简便的技术方案,较低的生产成本,就可大幅度降低第【0001】段所指各种锂矿和含硫原料提取出的硫酸锂溶液与碳酸钠(钾)溶液直接生产的工业级和电池级碳酸锂中的杂质硫酸根和其它杂质含量,并提高这两种类别碳酸锂的主含量;将使锂矿石--硫酸法、硫酸盐法、硫化合物法直接生产的工业级、电池级碳酸锂,与各种方法产出的高纯级碳酸锂,这几者原有的较大甚至巨大质量、成本、售价差距大幅度缩小、界限模糊,将使今后修改的各级碳酸锂技术标准能“化繁为简”。以上有益效果,对推动锂电池等高端锂产业的快速发展很有利,对矿石锂盐能与质高价廉的盐湖锂盐长期并行极其有利。
“反向加料,不循环母液”和“高效解吸附”共同依据的技术原理,由本段至【0072】段,说明如下:
第【0002】-【0008】段已指出了锂矿石--硫酸法和硫酸盐法直接生产的碳酸锂中,杂质硫酸根畸高难除的历史痼疾。究其本质的原因,是因锂离子的结构特征,易于与含硅、碳、硫的有氧酸根形成配位键,即易于在热沉淀粗碳酸锂时产生对硫酸根的化学吸附、从而形成包裹(包晶)而难以洗涤下来。特别是热沉淀初期被吸附的硫酸根随着粗碳酸锂粒子长大,甚至会被深度包裹,极难按照现有热搅洗方法祛除,危害最大。碱金属和碱土金属元素虽然没有过渡元素极化性强,但都可以作为中心原子与配位原子形成配合物(络合物),特别是锂原子,所有金属元素中半径最小者,这有利于形成稳定常数稍大的配合物。而硫酸根有两个配位氧原子,也有利于和碳酸锂中的锂离子形成稳定常数稍大的配合物,生成的配位键键能稍高,化学吸附力较强(碳酸根和硅酸根亦然)。
根据物理化学中固体表面吸附现象的兰格谬尔理论,在90-95摄 氏度的相对高温下,硫酸锂溶液和碳酸钠(钾)溶液沉淀并洗涤粗碳酸锂粒子,基于范德华力的物理吸附力很弱。硫酸根中既然有两个配位氧原子可作为络合物的配位点,故在粗碳酸锂沉淀时,硫酸根浓度高的情况下,生成稳定常数稍大的硫酸根配合物,几率是很大的。粗碳酸锂粒子表面对硫酸根的吸附,这就主要是化学吸附,吸附剂是锂离子,吸附质是硫酸根。化学吸附的另外几个特征是:a,选择性很高。热沉淀反应时,碳酸锂粒子对硫酸根和碳酸根的吸附都很强,谁被吸附的几率大、数量大,就主要取决于吸附质的浓度了,因为弗莱因德利胥吸附公式表明,吸附量随着吸附质浓度的增加而增加。b,只发生单层吸附。这是因为化学吸附是通过固体分子表面层分子的剩余键力,与吸附质形成新的化学键来完成的,故当其表面饱和吸附后,就不再吸附带相同电荷的吸附质形成第二吸附层。c,吸附时放热,不易逆向,即解吸附很难,需吸热。这种化学吸附,还助长了晶体长大过程中对硫酸根的包裹,因为一旦硫酸根被吸附上碳酸锂粒子,不易解吸附,外面接着就会有与该硫酸根配位的碳酸锂分子被吸附上去,形成对硫酸根的包裹,即形成包晶,这就使常规洗涤方式难以解吸附脱除碳酸锂粒子中的硫酸根,其含量偏高,自然就在所难免了。
从吸附质和吸附剂这两方面因素来看,生产实践证明,前者对碳酸锂中杂质硫酸根含量高低影响更大。
根据以上理论分析,要大幅度降低杂质硫酸根含量,最重要的是尽量降低热沉淀反应系统中吸附质硫酸根的浓度,并在热搅洗工序采用“慢、热、陈”操作方式来获得大粒径的精碳酸锂粒子,以此来减少包晶内的硫酸根;更重要的是,必须寻求到比较简便、低成本而又强有力的解吸附技术,来释放出难以用现有热搅洗--离心方法脱除的包晶内的硫酸根。
基于以上认识,本申请的发明人1978-80年提出并主持实施了 “反向加料,不循环母液”技术方案。“反向加料”就是依据化学吸附同时具有选择性吸附、单层吸附、解吸附难的原理推出的:加料初期,初生的碳酸锂微小粒子身处高浓度碳酸根、低浓度硫酸根环境中,故其表面吸附碳酸根的几率大,吸附硫酸根几率小,仅有个别部位吸附有硫酸根(以及少量硅酸根);而由于单层吸附的特性,碳酸锂粒子表面饱和吸附碳酸根以后,就不再吸附电负性硫酸根、碳酸根了。因为被吸附上去的碳酸根,不易逆向解吸附,而会迅速吸附游离的电正性锂离子(其次是钠离子),交叉吸附碳酸根和锂离子,碳酸锂粒子得以在较低浓度硫酸根的环境当中迅速长大,硫酸根被吸附的数量,就比“正向加料”工艺减少很多了。
“不循环母液”使热沉淀反应料浆系统中硫酸根浓度大幅度降低,叠加了降低硫酸根吸附于碳酸锂粒子中的有益效果。
沉淀出的碳酸锂颗粒吸附的一层碳酸根,有一部分会吸附钠离子,成为碳酸钠,这倒不会引起大的麻烦:一则这些碳酸根,会与不断加入的硫酸锂离解出的锂离子发生化学吸附、进而发生化学反应,生成溶解度比碳酸钠小得多、键合得更牢固的碳酸锂,使碳酸锂颗粒变大,而被后来加入热沉淀体系中的锂离子排挤、交换析出的钠离子,会被反应液中游离的硫酸根吸住转移于反应溶液中;二则碳酸钠与碳酸锂不会生成复盐,其热水溶性比碳酸锂大得多,在后工序热水搅拌洗涤时,很容易洗涤下来。当然,也会有少量钠离子吸附硫酸根形成硫酸钠,被后来吸附上来的碳酸锂深度包裹。
有时发现产品碳酸锂中,钠的数量比当量的硫酸根略少,说明还有微量的其它金属元素,比如钙的硫酸盐被包裹,这部分硫酸根就更难以洗涤下来了。
“反向加料”工艺,如此借用高浓度吸附质碳酸根来抢先络合初生碳酸锂粒子中的锂离子,阻止了吸附质硫酸根大量络合碳酸锂粒子中的吸 附剂锂离子而被包裹,在工业生产规模,成功地降低了产品中硫酸根含量。采用“反向加料”(并组合使用“预沉淀补充除杂”)后,粗碳酸锂只需按1:2-3(质量比)加入去离子水热搅洗--离心3次,即可获硫酸根0.15%-0.20%的产品。
现行热沉淀粗碳酸锂工序“慢、搅、热、陈”操作的原因,是想获得大粒径碳酸锂颗粒,来减少对硫酸根的吸附和包裹。其依据的理论有:1,兰格谬尔理论,吸附剂表面越小,即粒径越大,吸附量就越少;2,凯尔文公式,陈化可使小晶体自动转化为大晶体(系统自由能降低而趋于稳定),在此转化过程中,因处搅拌、加热条件下,被吸附、包裹的硫酸根和钠离子能释放一部分到反应液中;但因反应早期,初生碳酸锂粒子吸附的硫酸根已被深度包裹,反应后期,反应液硫酸根浓度已很高,在吸附-解吸附的动态可逆状态下,碳酸锂粒子中吸附、包裹的硫酸根量仍很大,这就尚待新技术突破来解决此问题;3,勒夏特勒原理,升高温度,有利于解吸附。
热沉淀碳酸锂初期,特别是加料较快、搅拌不力的情况下,热沉淀物往往有粘性很强的现象发生,原因如下:a,热沉淀反应使用的硫酸锂和碳酸钠两种料液的四种主要离子浓度皆很高,反应趋势强烈,初生碳酸锂粒子的锂离子又容易与碳酸根、硫酸根、硅酸根,配位成络盐,锂离子外一层酸根、酸根外一层锂离子、再一层酸根……,彼此会迅速自粘成一团;这些锂离子也会它粘硅酸盐构成的搪玻璃反应罐内壁或搅拌器(还有实验室玻璃仪器、用具),这是一个快速的熵增过程,其推动力很大。但随着时间推移,粘接团因内部各种化学键不断调整而松弛、瓦解,粘接团内的硫酸根不断结合钠离子溶于热水中,碳酸锂粒子也不断析出,但难免有少数或极少数粘接团继续粘接于器壁或搅拌器或保留于粗碳酸锂中,造成产成品硫酸根含量偏高等问题,故需极力避免。b,若硫酸锂和碳酸钠液脱硅不力,则热沉淀 时生成硅酸锂,它粘性很强,会加大碳酸锂粒子自粘力,干燥后很易结团。这是因为液体硅酸锂有一个特点,一旦脱水,永不复溶于水,与钠水玻璃即硅酸钠迥异(例如混凝土密封剂液体硅酸锂,施工干燥固化后十分牢固,不再惧水长期浸泡)。
因此,硫酸锂浸取液和碳酸钠液都必须严格、有效除硅,方得确认为净化完成液,“预沉淀补充除杂”的挽救方法宜随时待命,但须注意应在强烈、有效搅拌下,经合理布局的增压花洒加料口,以适当速度喷雾状加入少量沉淀剂碳酸钠时,反应料液系统始终保持PH《7.0;不锈钢反应罐内壁及搅拌器表面应光滑、无划痕和点焊渣,以防碳酸锂粒子粘接。
依据以上吸附和解析附原理,顺理成章地诞生了本发明第3项“高效解吸附”技术,可以将热沉淀反应初期碳酸锂粒子中深度包裹的硫酸根顺利地解析附其大部分,使其含量进一步、大幅度地降低至工业级0.03%-0.02%,电池级0.008%。
兹对第【0040】段热沉淀工序适度提高硫酸锂净化完成液加料速度、热陈化时长后移,以此‘微提温热沉淀暨热搅洗’工序先期获得小粒径粗碳酸锂、再于后期‘中高温强力解析附’工序热陈化获得重结晶产生的大粒径极低硫酸根精碳酸锂的技术原理给予补充说明:在液-固态系统中,提供“稀、慢、搅、热、陈”的条件来获得大粒径晶体、以期减少晶体总表面积,减少其表面吸附它种有害的杂质,该普适技术原理对硫酸锂溶液和碳酸钠溶液热沉淀反应获得的粗碳酸锂同样适用。“稀”,虽然能降低热沉淀反应料液系统的硫酸根浓度,有利于减少碳酸锂粒子对硫酸根的吸附,但降低碳酸锂的一次收得率,低浓度的硫酸钠母液对回收副产品硫酸钠不利;“慢、搅、热、陈”,在降低硫酸根含量到工业级0.20%,电池级0.08%阶段,现已采取了,有效,无错。但是,要进一步大幅度降低硫酸根到工业级0.03%- 0.02%,电池级0.008%,甚至想生产4N级产品,就需要修正“慢”为“适度加快”,并后移“陈”的作业位置,来首先获得小粒径晶体。
何也?在热沉淀料液系统高浓度环境中,热沉淀初期形成的包晶内的那部分硫酸根和钠离子等杂质,赋存于大晶体核心部位,极难被热搅洗、甚至“强力解吸附”释放出来(热搅洗实质上也是一种解吸附作业,仅力度大大低于“强力解吸附”尔),主要是这部分硫酸根,构成了现行电池级标准那个0.08%含量。兹用热沉淀工序首先获得小粒径晶体的方法作一个技术铺垫,就可在下一步‘中高温强力解吸附’工序,解决这一技术难题。
小粒径晶体核心部位与晶体外表面之间的距离小,包晶内的硫酸根和其它杂质埋藏浅,属“浅层包裹”,它们就很容易在‘中高温强力解吸附’暨热陈化作业时,随着小粒径晶体在其质量5-6倍或再稍多的去离子水造成的很低浓度硫酸根等杂质的环境中重结晶为大粒径晶体这一过程,大部分得以释放于液相中,由此,该技术铺垫可提高‘中高温强力解吸附’进一步大幅度降低硫酸根的可靠性,适度降低作业压力,缩短压力作业时间,减少压力釜容积,减少设备投资。
完全不在乎‘微提温热沉淀’工序小粒径碳酸锂粒子数量大为增加、总表面积大为增加,小粒径碳酸锂粒子外表面层暂时多吸附碳酸钠,以及硫酸根等杂质,因为它们“埋藏”浅,很容易在粗碳酸锂初次热搅洗--离心作业时,就大量脱离粗碳酸锂-1粒子,少量残留者,根本无力抵抗‘中高温强力解吸附’的强大解析附能力,将与深度包裹的硫酸根等杂质一起,获得释放。
四、附图说明
图1是原美洲锂公司锂辉石--硫酸法工艺流程示意图;
图2是按照原美洲锂公司锂辉石--硫酸法工艺试产产品硫酸根的洗涤曲 线;
图3是磷酸锂、氟化锂、碳酸锂在水中的溶解度数据;
图4是实施本发明技术方案后,碳酸锂的硫酸根含量下降曲线。
附图1-4详细说明如下:图1来源于奥斯特罗什科等著《锂的化学与工艺学》,中国工业出版社出版,1965年5月北京第一版,第160页。结合该著作文字部分,可清晰地说明硫酸锂净化完成液与碳酸钠净化完成液是按“正向加料”工艺进行热沉淀作业的。
图2是本申请的发明人于1978-79-80年,主持小规模锂辉石--硫酸法碳酸锂工业生产初期,按原美洲锂公司热沉淀工序的“正向加料”工艺,试产产品硫酸根的洗涤曲线。该曲线明显显示出硫酸根洗涤至0.35%左右时,极难再下降,足以表明此传统工艺最大短板在于杂质硫酸根偏高。洗涤条件是:粗碳酸锂:蒸馏水=1:1.5,温度90-95摄氏度,搅拌时间30分钟,SS-800三脚式离心机1,000转/分甩干。
图3是磷酸锂、氟化锂、碳酸锂在水中的溶解度数据,呈递次大一个数量级的巨大差异,说明含锂硫酸钠母液以磷酸锂方式回收其锂收得率最高。
图4是实施本发明的“反向加料,不循环母液”、“预沉淀补充除杂”和“高效解吸附”技术后,硫酸根的下降曲线,皆呈断崖式下跌状态。图中,字样A代表‘微提温热沉淀’阶段,字样B代表‘微提温热搅洗’、‘中高温强力解吸附’和“旋液分离”阶段;横线代表A阶段产物粗碳酸锂-1转移去B阶段作业产出精碳酸锂;左边一条曲线代表工业级,右边一条代表电池级。
五、具体实施方式
下文将结合具体实施例对本发明的内容做更进一步的说明。应当理解,下列实施例仅为示例性地说明和解释本发明,而不应被解释为对本 发明保护范围的限制。凡基于本发明上述内容所实现的技术均涵盖都在本发明旨在保护的范围内。
仍以锂辉石--硫酸法直接生产碳酸锂为例:实施本发明技术方案时,‘微提温热沉淀暨热搅洗’工序之前的现有除杂方法原则上不变,但可选用“预沉淀补充除杂”技术予以补充;‘微提温热沉淀暨热搅洗’工序必须采用“反向加料,不循环母液”技术;精碳酸锂湿品干燥、粉碎、计量、包装现有技术不变;所有检测方法不变;第【0046】段‘中高温强力解吸附’终点判断法,仅涉及取样措施和固相碳酸锂中硫酸根含量计算办法,不涉及硫酸根的检测方法变化。
兹结合第【0014-15】段述及的、本申请三项发明的4种组合运用方式,来说明具体实施方式:
①按组合运用方式1、产出硫酸根0.20%的现行工业零级碳酸锂:
按第【0022】段“预沉淀补充除杂”实施方式:
往热沉淀反应釜中加入硫酸锂净化液,启动搅拌,从增压花洒喷料管口以0.05兆帕压力、中等速度、雾状,喷入少量碳酸钠净化液,一俟肉眼及浊度仪发现料液刚产生混浊、继而析出白色细微物(铁超标较多时带黄、红色光),停止加料,继续搅拌几分钟,取样精密过滤后,检测其铁、铝、镁、钙、重金属等杂质含量,尚未达标,则再喷入少量碳酸钠,再检测,直至达标并继续搅拌15分钟。
开始过滤已达标的硫酸锂净化液,初期滤出液暂入小型浊液罐(其容积约为硫酸锂净化液体积的20%),循环再滤,直至再次检测滤出液,达标,即视为滤饼搭桥成功,方得确认为净化完成液。
然后,按第【0018】-【0019】段“反向加料,不循环母液”工艺说明的方 法操作,即可产出硫酸根0.20%的现行工业零级碳酸锂。碳酸钠对硫酸锂配料的当量比应为1.05。
工艺、生产和检测设备及仪器、管理都很先进的厂家,在其现有技术基础上,仅使用“反向加料,不循环母液”工艺,采用10%或稍多的中、低浓度硫酸锂完成净化液,不组合“预沉淀补充除杂”,亦可产出现行工业零级碳酸锂。
②按组合运用方式2、产出工业“新一级”碳酸锂的具体实施方式:
运用第【0018】-【0019】段“反向加料,不循环母液”的操作方法,和第【0041】-【0042】段“高效解析附”的‘微提温热沉淀暨热搅洗’操作方法,必要时选用第【0077】段“预沉淀补充除杂”的操作方法,即可产出硫酸根0.10%的“新一级”碳酸锂。
③和④按组合运用方式3和4,产出工业“新零级”和“新电池级”碳酸锂的具体实施方式:
根据硫酸锂净化液质量情况,若需要选用“预沉淀补充除杂”,则先按第【0077】段说明的实施方式补充净化之。
参按第【0041】-【0042】段,在微提温热沉淀反应釜内加入碳酸钠完成净化液后,升温,盖上反应釜人孔,待釜内空气驱尽后,反应釜密闭;温度升至选定的位值如工业“新零级”摄氏105度(0.13兆帕)、“新电池级”摄氏118度(0.18兆帕),启动搅拌器并始终保持有效搅拌,泵入的硫酸锂净化完成液通过多点布置的增压花洒喷头,以(0.1-0.3兆帕)压力、比力求获得大粒径粗碳酸锂粒子原工艺加快一倍的速度,喷雾的形式泵入硫酸锂净化完成液,以期首先获得小粒径粗碳酸锂-1。加料结束,反应釜立即开始泄压(应接管道回收蒸汽热量),泄压完毕后,立即放料离心--淋洗,获粗碳酸锂-1, 完成‘微提温热沉淀’操作。趁热立即转移粗碳酸锂-1到已投入其质量3倍(工业“新零级”)或4倍(“新电池级”)、温度90-95摄氏度的去离子水、已启动搅拌的微提温热搅洗反应釜中,盖上人孔,驱尽空气后,密闭反应釜,继续升温至选定位置如工业“新零级”摄氏105度(0.13兆帕)、“新电池级”摄氏120度(0.20兆帕),搅洗15分钟,泄压,温度回到摄氏95度后,开始放料离心--淋洗,卸出的初洗粗碳酸锂-2,硫酸根含量下降到工业“新零级”0.30%-0.20%、“新电池级”0.15%-0.10%,备用,完成‘微提温热搅洗’操作。
‘微提温热沉淀’作业产生的一次硫酸钠热母液按“不循环母液”工艺说明的方法回收粗碳酸锂或磷酸锂等锂盐,回收芒硝或元明粉。
低速搅拌下,将粗碳酸锂-2趁热移入已按其质量3-4-5倍(工业级)或5-6倍(电池级)泵入去离子水(生产电池级用18兆欧.厘米纯度,自制的,并已预热到90-95摄氏度)、已启动低速搅拌的中高温强力解吸附釜中;继续升温,驱尽釜内空气,然后完全密闭反应釜;生产工业级的,升温至144-159摄氏度(釜内饱和蒸汽压力0.4-0.6兆帕),电池级的,升温至165-170-180摄氏度(釜内饱和蒸气压力0.7-0.8-1.0兆帕),维持低速搅拌和温度、压力,持续该‘中高温强力解吸附’暨热陈化作业1小时以上,以获取重结晶形成的大粒径精碳酸锂晶体;其间定时通过特别设置的取样管口压出少量的液相,快速检测其硫酸根含量(尽可能在线连续检测),并据此计算出釜内碳酸锂的硫酸根残留含量,达标后,关闭加热阀,维持低速搅拌,缓慢谨慎地通入冷却水至夹套降温,待釜内压力已降低至0.05-0.06兆帕时,提高搅拌速度至料浆维持较强烈搅拌状态,控制好速度,泵出料浆入旋液分离器,连续分离开液、固两相;因分离出的液相,含有粗碳酸锂中吸附、包裹的水微溶性杂质和微粒径水不溶性杂质,不能循环用于热沉淀粗碳酸锂工艺开始的作业,返回浸取工序使用,或清洗滤布及设备后再返回浸取工序使 用,仅允许部分经充分凝聚杂质、精密过滤的分离液,掺用于热搅洗粗碳酸锂-1的去离子水中、生产工业级产品,但此后工序禁用。固相离心--淋洗后,得精碳酸锂湿品,工业“新一级”、工业“新零级”硫酸根应分别达0.10%、0.03%-0.02%,“新电池级”(必要时再热搅洗1次)硫酸根可望达0.010%-0.008%-0.005%,或可在最优化的条件下触及主含量4N级的界限值。
“高效解析附”的发明内容,除用于例举的硫酸锂溶液和碳酸钠(钾)溶液沉淀出的碳酸锂大幅度降低杂质硫酸根含量以外,还可自然扩展到以下相似技术领域:两种或多种可溶性无机物,经沉淀反应析出的不溶性或微溶性目标产物,其晶体(或称颗粒)核心部位被化学吸附、深度包裹而难以用常规洗涤方法祛除的杂质,均得以高效祛除,因此,都涵盖在本发明旨在保护的技术范围内。

Claims (14)

  1. 硫酸锂与碳酸钠(钾)直接生产碳酸锂工艺大幅度降低其杂质硫酸根含量的新方法,与传统工艺单纯依靠去离子水多次热搅洗降低其杂质硫酸根含量的方法相比,其特征是:示例以锂辉石-硫酸法直接生产工业级和电池级碳酸锂,在厂家现有热沉淀工序之前祛除硅、铁、铝、镁、钙、重金属诸杂质的现有技术大部分不变,精碳酸锂湿品干燥、粉碎、计量、包装的现有技术不变,现有各种检测方法不变的基础之上,从硫酸锂净化完成液和碳酸钠(钾)净化完成液热沉淀反应获得粗碳酸锂的工序起,到获得精碳酸锂湿品的工序为止,组合运用本发明三项技术内容:1.必须用技术“反向加料,不循环母液”、2.选用技术“预沉淀补充除杂”和3.必须用技术“高效解吸附”,生产现行工业零级、工业“新一级”、工业“新零级”和“新电池级”碳酸锂,其对应的硫酸根含量可分别达到0.20%、0.10%、0.03%和0.008%。
  2. 根据权利要求1所述的“反向加料,不循环母液”技术,其特征是:将热沉淀工序原碳酸钠净化完成液加入到硫酸锂净化完成液当中的传统方式,予以反向,把硫酸锂净化完成液加入到纯碱净化液当中,以此大幅度减少碳酸锂粒子对硫酸根的化学吸附与深度包裹;离心--淋洗获得粗碳酸锂-1的一次热母液采用以下三种方式之一作业,不再返回酸化料浸取工序——①冷却到0-零下15摄氏度结晶、离心出芒硝后,另辟工艺路线,将二次冷母液浓缩至硫酸钠结晶膜初起时,趁热滤出再次析出的粗碳酸锂,返回酸化料浸取工序使用,三次热母液合并结晶芒硝……,交叉进行“冷析芒硝、热析粗碳酸锂”操作,②二次冷母液以沉淀出磷酸锂或氟化锂或硬脂酸锂等水不溶性锂盐的方式回收其锂之后,多效真空浓缩回收元明粉,③一次热母液回收磷酸锂或氟化锂或硬脂酸锂等水不溶性锂盐后,直接多效真空连续性浓缩回收元明粉,如此大幅度降低热沉淀反应料液系统的硫酸钠浓度,叠加“反向加料”降低硫酸根的有益技术效果,并因盐效应降低而致粗碳酸锂-1的一次性收率提高。
  3. 根据权利要求1所述的“高效解吸附”技术,其特征是:①它由“强力解吸附”技术和“旋液分离”技术构成,“强力解吸附”又由‘微提温热沉淀暨热搅洗’和‘中高温强力解吸附’技术构成;②‘微提温热沉淀暨热搅洗’是指热沉淀和热搅洗作业仍然使用现有的通用夹套反应釜为例,在其夹套和釜内许用压力分别为0.6兆帕和0.2兆帕的情况下,选择釜内饱和蒸汽压0.13-0.18-最高0.20兆帕(料液对应温度105-115-最高120摄氏度)的较佳范围(但不是仅限于0.13兆帕为低限范围),进行热沉淀和热搅洗(热搅洗配以3倍、但不是仅限于3倍的去离子水),来适度降低粗碳酸锂-1和粗碳酸锂-2的硫酸根含量、适度提高锂的一次收率、适度减少热搅洗去离子水用量;③‘中高温强力解析附’是指粗碳酸锂-2配以其3-4-5-6倍质量(但不仅限于此范围)的去离子水,在压力反应釜(以此为例),或反应器或反应管道中,于饱和蒸汽压0.5-0.6-0.7-0.8-最高1.2兆帕(对应温度152-159-165-170-最高188摄氏度)较佳范围(但不仅限于此范围)并在低速搅拌、滚动、料液固相能不断低速移动的条件下,强力解吸附暨热陈化1小时以上,如此因料液系统中各种分子、离子、原子团热运动加剧,热沉淀反应初期因化学吸附被深度包裹在粗碳酸锂粒子核心部位的那部分极难祛除的硫酸根,以及其它水溶性、水微溶性、水不溶性杂质的大部分,遂得以解吸附而释放于较大量去离子水中,小粒径碳酸锂晶体在大量去离子水的低硫酸根环境中重结晶为极低硫酸根含量的大晶体,这样一个关键性的创新技术;④“旋液分离”是指‘中高温强力解吸附’作业脱离出碳酸锂粒子的这些水溶性、水微溶性、水不溶性杂质的绝大部分,将由旋转流动的液相直接带离而出,不会像使用滤布或滤芯的各种固-液分离技术那样,截留较多这些杂质于精碳酸锂粒子中。
  4. 根据权利要求3所述的‘微提温热沉淀暨热搅洗’技术,其热沉淀作业的特征是:①往微提温热沉淀反应釜内加入碳酸钠净化完成液后,夹套开启升温,盖上反应釜人孔,待釜内空气驱尽后,反应釜全密闭;温度升至选定 的位值如105-115-120摄氏度(但不仅限于摄氏105度低限范围),启动搅拌器并始终保持有效搅拌,硫酸锂净化完成液通过多点布置的增压花洒以雾化的形式快速喷料加入(比传统热沉淀工艺缩短加料时间50%以上),先期获取小粒径粗碳酸锂-1,并将传统工艺企求大粒径晶体的热陈化时长,后移至‘中高温强力解吸附’工序,届时再在大量去离子水环境中获取重结晶产生的精碳酸锂大晶体,来释放出大部分热沉淀反应初期粗碳酸锂-1粒子核心部位因化学吸附而被深度包裹的硫酸根等杂质;加料结束,反应釜泄压降温,待釜内料温降低到90-95摄氏度时,立即放料离心--淋洗,获粗碳酸锂-1;②碳酸钠对硫酸锂的配料当量比为1.05:1.00。
  5. 根据权利要求3所述的‘微提温热沉淀暨热搅洗’技术,其热搅洗作业的特征是:趁热把粗碳酸锂-1移入到已放有选定质量倍数如工业级和电池级分别是3-4-5倍和5-6倍的去离子水(但不仅限于此范围)、升温到90-95摄氏度并已启动搅拌器的微提温热搅洗反应釜中,盖上人孔,继续升温,待釜内空气驱尽后,反应釜全密闭,升温到选定的位值如105-115-120摄氏度(但不仅限于摄氏105度低限范围)之后,保持热搅洗15分钟,反应釜泄压降温到摄氏95度后,放料离心--淋洗,控制工业级和电池级粗碳酸锂-2的硫酸根分别降低到0.30%-0.20%和0.15%-0.10%,备用。
  6. 根据权利要求3所述的‘中高温强力解吸附’技术,其作业特征是:以使用中高温强力解吸附釜为例,往其中泵入按粗碳酸锂-2质量选定倍数如5-6倍(但不仅限于此范围)的去离子水(生产99.950%以上级别碳酸锂的,采用18兆欧.厘米以上质量的去离子水),夹套开启升温并开启低速搅拌,加入粗碳酸锂-2;升温至选定位置(但不仅限于此范围)如工业“新零级”144-159摄氏度(0.4-0.6兆帕),“新电池级”165-170-180摄氏度(0.7-0.8兆帕),维持低速搅拌、保持料浆固相呈低速运动状态,强力解吸附暨热陈化1小时以上,释放碳酸锂粒子核心部位包晶内以硫酸钠为主的水溶性杂质、其它水微 溶性及水不溶性杂质于去离子水中,由此大量碳酸锂小粒径晶体在此硫酸根浓度远远低于热沉淀反应浓度的环境中,重结晶成硫酸根含量分别为工业“新零级”0.03%、“新电池级”0.008%的碳酸锂大晶体。
  7. 根据权利要求3所述的“旋液分离”技术,其特征是:‘中高温强力解吸附’作业检测到解吸附釜内碳酸锂的硫酸根残留含量达标后,关闭加热阀,维持低速搅拌,泄压并缓慢通入冷却水降温,待釜内压力降低至0.05-0.06兆帕(但不仅限此范围)时,提高搅拌速度至料浆维持较强烈搅拌状态,控制好速度,泵出料浆入旋液分离器,连续分离开液、固两相;离心--淋洗固相(“新电池级”的,必要时再热搅洗1次),工业“新零级”或“新电池级”精碳酸锂湿品(干燥后)的硫酸根应分别降低到0.03%、0.008%;分离出的液相,不能循环用于热沉淀粗碳酸锂工艺开始的作业,返回浸取工序使用,或清洗滤布及设备后再返回浸取工序使用,仅允许部分经充分凝聚杂质、精密过滤的分离液,掺用于热搅洗粗碳酸锂-1的去离子水中、生产工业级产品,但此后工序禁用。
  8. 根据权利要求3或6所述的‘中高温强力解吸附’技术、“旋液分离”技术,其特征是:采用管道型解吸附器自动化、连续进行‘中高温强力解吸附’作业的,通过带搅拌器和冷却水夹套的减压储罐,将料浆压力降低到0.05-0.06兆帕(但不仅限此范围),控制好速度,泵出料浆入旋液分离器进行分离作业。
  9. 根据权利要求3所述的‘中高温强力解吸附’技术,其设备特征是:解吸附主体装置的形状,可选择立式带搅拌夹套压力反应釜、低转速球形或圆柱形卧式压力反应器、管道型反应器;一律间壁式加热、冷却;其接触料液部分(或整体)如反应容器内壁或其整体、搅拌器外壁或其整体、管道管件整体或其内壁,选用材质有0Cr18Ni9Ti不锈钢、0Cr18Mo2Ti不锈钢、搪玻璃,钛材(釜、器衬里)、聚四氟乙烯(釜、器衬里);选用上述2种不锈钢 材质生产电池级产品的,除须严格控制含氟锂矿如氟锂云母产出之硫酸锂净化液中的氟含量及碳酸钠(钾)净化液中的氯含量之外,还因受重金属杂质指标限制、例如磁性金属铬含量小于或等于3ppm的严格限制,故必须先用耐压1.6兆帕的小型压力釜,让粗碳酸锂料浆在釜内饱和蒸气压0.8-1.0-1.2兆帕条件下进行长时间(建议100小时以上)浸泡试验来检测其浸出量,只要浸泡试验后碳酸锂的重金属含量超标,则否定该批材质,另选;选用内壁搪玻璃的,亦需预先带料试验,检测搪玻璃中硼、铝、硅、铅、锑等元素在碳酸锂碱性料浆、长时间(建议100小时以上)、高温(饱和蒸气压0.8-1.0-1.2兆帕)、低速搅拌条件下的溶出量,一旦导致电池级碳酸锂杂质指标不合格时,该种内壁搪玻璃材质配方应予否定,另选;“旋液分离”装置接触料液的部分材质选用与解吸附釜、器的相同。
  10. 根据权利要求1或3或4或5或6或7或8所述的“高效解吸附”技术,其一大特征是:在整个‘微提温热沉淀暨热搅洗’、‘中高温强力解吸附’和“旋液分离”作业过程中,所有已列出的技术参数,除传统工艺热沉淀、热搅洗的典型温度范围90-95摄氏度属现有技术以外,其它特征参数如像去离子水配用量及纯度、反应釜饱和蒸汽压力-温度控制指标、粗碳酸锂-1及-2的硫酸根含量控制指标、容器内搅拌转速、球形及圆柱形卧式解吸附釜转速、解吸附暨热陈化时长、旋液分离操作参数等等,它们构成一个整体,但都不是一成不变的僵硬参数,而是根据所产碳酸锂的级别、订单质量需求、原料成分特征、产量及成本控制、安全生产管理等等因素,可在一定范围内作些合理、适度的调整;例如去离子水量,生产工业级碳酸锂,可酌情按微提温热搅洗:‘中高温强力解吸附’:离心--淋洗==2.5:5:0.5或1.5+1.5:5.5:0.5分配,三者总质量数按成品碳酸锂8-9倍投入足矣;电池级,按2.5:6:0.5或1.5+1.5:6.5:0.5分配,三者总量9-10倍足矣;再例如反应釜、器饱和蒸汽压力-温度参数控制范围,‘微提温热沉淀暨热搅洗’作业,摄氏104.8度-0.13 兆帕或摄氏115.2度-0.18兆帕、最高摄氏120.2度-0.20兆帕,较适合厂家既有热沉淀主设备、无须更换而已,‘中高温强力解吸附’作业,摄氏159-170摄氏度(0.6-0.8兆帕)较适和罐、釜型主设备而已,管道型解吸附器自动化、连续性生产的,可超过摄氏170度(0.8兆帕)、提高到摄氏180度(1.00兆帕)-最高摄氏188度(1.20兆帕),完全无必要超过摄氏200度(1.60兆帕)、进入中压容器管理的范畴而已;是故,合理调整后的技术参数,亦均涵盖入本发明旨在保护的技术范围内。
  11. 根据权利要求1所述的“预沉淀补充除杂”技术,其特征是:该项可选用技术,可在以下三种情况下运用:1)若迟至热沉淀工序开始之前,才发现前期浸取作业起、逐次沉淀法祛除铝、铁、镁、钙、重金属等杂质操作有误或设备有故障,导致铝、铁、镁、某些重金属氢氧化物形成的胶体颗粒未及充分凝聚、沉淀不完全,或滤布破损及安放不当发生了穿滤,或出现它种除杂意外事故、检测到硫酸锂净化液的这些杂质指标超标,就可采用、予以高效、方便地挽救;2)该项可选用技术组合“反向加料,不循环母液”技术,即可生产现行工业零级碳酸锂;3)生产工业“新一级”、工业“新零级”、现行电池级、“新电池级”碳酸锂(包括其它品种较高纯度碳酸锂)时,都可选用;特别是若采用循环浸取,不浓缩硫酸锂的工艺,有可能发生铝、铁、镁、某些重金属的氢氧化物胶体杂质未及长时间受热或胶体颗粒表面电荷未及消除,未得以充分凝聚、共沉淀而穿滤使,便可选用,予以高效、方便地挽救。
  12. 根据权利要求11“预沉淀补充除杂”技术所述内容,其具体操作特征是:往热沉淀反应釜中加入硫酸锂净化液,启动搅拌,于90-95摄氏度,在密切观察或浊度仪在线检测下,从增压花洒喷料管口以0.05兆帕压力、中等速度、雾状、喷入少量碳酸钠净化完成液,一俟料液产生混浊、继而析出白色细微物(铁超标较多时带黄、红色光),停止加料,继续搅拌几分钟,取样 精密过滤后,检测其铁、铝、镁、钙、重金属、硅含量,尚未达标,则再喷入少量碳酸钠净化完成液,再检测,直至达标并继续搅拌15分钟;开始过滤已达标的硫酸锂净化液,初期滤出液暂入小型浊液罐(总容积约为硫酸锂净化液体积的20%),循环再滤,直至再次检测滤出液样品,达标,即视为滤饼搭桥成功,方得确认为净化完成液,遂连同浊液罐内硫酸锂净化液继续过滤,直至全部转化为硫酸锂净化完成液;目测滤渣细腻微带较粗颗粒(碳酸锂),则甚好。
  13. 根据权利要求1所述的本发明三项技术内容组合运用方式,其特征是:①当需要产出硫酸根0.20%的现行工业零级碳酸锂时,现有热沉淀工序之前祛除硅、铁、铝、镁、钙、重金属这些杂质的技术基本不变,所有检测方法不变;组合运用“反向加料,不循环母液”和“预沉淀补充除杂”的技术内容即可;②当需要产出硫酸根0.10%的工业“新一级”碳酸锂时,组合运用“反向加料,不循环母液”、(或选用)“预沉淀补充除杂”、和‘微提温热沉淀暨热搅洗’技术内容即可;③当需要产出硫酸根0.03%的工业“新零级”碳酸锂时,在现有工业级各项除杂技术的基础之上,组合运用“反向加料,不循环母液”和“高效解析附”,必要时再组合选用“预沉淀补充除杂”技术内容即可;④当需要产出硫酸根0.01%-0.008%的“新电池级”碳酸锂时,在现有电池级碳酸锂各项除杂技术的基础之上,再组合运用“反向加料,不循环母液”和“高效解析附”技术内容,必要时再选用“预沉淀补充除杂”技术内容(其选择的操作参数如去离子水用量、温度-压力参数、热陈化时长等等,比工业“新零级”更严格而已)即可。
  14. 本申请说明书仅能以目前仍系最大规模生产的锂辉石-硫酸法为例,来说明和解释本发明内容,而不应被解释为对本发明运用范围的限制;实际上,“高效解析附”技术内容,除适合例举的硫酸锂溶液和碳酸钠(钾)溶液沉淀产出的碳酸锂大幅度降低杂质硫酸根含量以外,还可自然扩展到以下 相似技术领域:两种或多种可溶性无机物,经沉淀反应析出的不溶性或微溶性目标产物,其晶体(或称颗粒)核心部位被化学吸附、深度包裹而难以用常规洗涤方法祛除的杂质,均得高效祛除,因此,都涵盖在本发明旨在保护的技术范围内。
PCT/CN2020/118886 2019-09-30 2020-09-29 硫酸锂与碳酸钠(钾)直产碳酸锂降低硫酸根含量新方法 WO2021063359A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA3154127A CA3154127A1 (en) 2019-09-30 2020-09-29 New method of lithium sulfate and sodium (potassium) carbonate directly producing lithium carbonate and reducing sulfate radical content
US17/754,335 US20220340440A1 (en) 2019-09-30 2020-09-29 Method of lithium sulfate and sodium (potassium) carbonate directly producing lithium carbonate and reducing sulfate radical content
AU2020360341A AU2020360341A1 (en) 2019-09-30 2020-09-29 New method of lithium sulfate and sodium (potassium) carbonate directly producing lithium carbonate and reducing sulfate radical content

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910942746.7 2019-09-30
CN201910942746.7A CN112573546A (zh) 2019-09-30 2019-09-30 硫酸锂与碳酸钠(钾)直产碳酸锂降低硫酸根含量新方法

Publications (1)

Publication Number Publication Date
WO2021063359A1 true WO2021063359A1 (zh) 2021-04-08

Family

ID=75117302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/118886 WO2021063359A1 (zh) 2019-09-30 2020-09-29 硫酸锂与碳酸钠(钾)直产碳酸锂降低硫酸根含量新方法

Country Status (5)

Country Link
US (1) US20220340440A1 (zh)
CN (1) CN112573546A (zh)
AU (1) AU2020360341A1 (zh)
CA (1) CA3154127A1 (zh)
WO (1) WO2021063359A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114368765A (zh) * 2021-08-20 2022-04-19 山东泰普锂业科技有限公司 一种锂离子电池中正极补锂用表面光滑的碳酸锂纳米片的形貌控制工艺与方法
CN114573006A (zh) * 2022-03-24 2022-06-03 甘肃睿思科新材料有限公司 镍钴锰酸锂正极材料回收提锂过程中副产物含锂粗硫酸钠的提纯及回收锂的方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10150056B2 (en) 2016-11-14 2018-12-11 Lilac Solutions, Inc. Lithium extraction with coated ion exchange particles
EP3661619A4 (en) 2017-08-02 2021-05-05 Lilac Solutions, Inc. LITHIUM EXTRACTION WITH POROUS ION EXCHANGE BEADS
WO2019168941A1 (en) 2018-02-28 2019-09-06 Lilac Solutions, Inc. Ion exchange reactor with particle traps for lithium extraction
JP2023529444A (ja) 2020-06-09 2023-07-10 ライラック ソリューションズ,インク. スケール物質存在下におけるリチウム抽出
CN114784218B (zh) * 2022-03-29 2023-11-07 兰州金通储能动力新材料有限公司 一种降低锂电池正极材料表面碱含量的方法
CN115072751B (zh) * 2022-08-23 2022-11-01 矿冶科技集团有限公司 一种磷酸铁锂电池再利用制备低氟含量碳酸锂的方法
CN115786732A (zh) * 2022-11-11 2023-03-14 湖北金泉新材料有限公司 一种从黏土型锂矿中提取锂资源的方法
CN115744942A (zh) * 2022-11-28 2023-03-07 江西永兴特钢新能源科技有限公司 一种利用沉锂母液除去锂云母浸出卤水杂质的方法
CN117446851B (zh) * 2023-12-26 2024-03-19 全南县新资源稀土有限责任公司 一种高纯低铝氧化钆及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101674393B1 (ko) * 2015-06-30 2016-11-10 재단법인 포항산업과학연구원 수산화리튬 및 탄산리튬 제조방법
CN108423695A (zh) * 2017-11-14 2018-08-21 中国地质科学院矿产综合利用研究所 一种电池级碳酸锂的制备方法
CN109354044A (zh) * 2018-10-22 2019-02-19 天齐锂业(射洪)有限公司 从锂辉石硫酸法工艺提锂副产物硫酸钠中回收锂的方法
CN109455744A (zh) * 2018-12-28 2019-03-12 江西赣锋锂业股份有限公司 利用锂辉石钙镁渣回收锂制备工业级碳酸锂的方法
CN110078099A (zh) * 2019-04-26 2019-08-02 核工业北京化工冶金研究院 一种从锂云母浸出净化液制备碳酸锂的方法
CN110817906A (zh) * 2018-08-09 2020-02-21 戴艾霖 大幅度降低锂辉石硫酸法各级碳酸锂中硫酸根含量的技术

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100469697C (zh) * 2007-08-21 2009-03-18 四川天齐锂业股份有限公司 硫酸锂溶液生产低镁电池级碳酸锂的方法
CN103318925B (zh) * 2013-06-19 2015-01-21 海门容汇通用锂业有限公司 一种用锂精矿生产高纯碳酸锂的方法
CN103964474B (zh) * 2014-05-22 2015-09-02 甘孜州泸兴锂业有限公司 一种锂辉石硫酸法生产碳酸锂工艺母液中锂的回收方法
CN104701545B (zh) * 2015-03-31 2017-11-24 湖北百杰瑞新材料股份有限公司 一种高纯碳酸锂的制备方法
CN107986302B (zh) * 2016-10-27 2019-10-18 中国科学院过程工程研究所 一种水热纯化方法
CN109336141B (zh) * 2018-11-30 2021-04-06 浙江三晟化工有限公司 一种提高废水中锂回收率的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101674393B1 (ko) * 2015-06-30 2016-11-10 재단법인 포항산업과학연구원 수산화리튬 및 탄산리튬 제조방법
CN108423695A (zh) * 2017-11-14 2018-08-21 中国地质科学院矿产综合利用研究所 一种电池级碳酸锂的制备方法
CN110817906A (zh) * 2018-08-09 2020-02-21 戴艾霖 大幅度降低锂辉石硫酸法各级碳酸锂中硫酸根含量的技术
CN109354044A (zh) * 2018-10-22 2019-02-19 天齐锂业(射洪)有限公司 从锂辉石硫酸法工艺提锂副产物硫酸钠中回收锂的方法
CN109455744A (zh) * 2018-12-28 2019-03-12 江西赣锋锂业股份有限公司 利用锂辉石钙镁渣回收锂制备工业级碳酸锂的方法
CN110078099A (zh) * 2019-04-26 2019-08-02 核工业北京化工冶金研究院 一种从锂云母浸出净化液制备碳酸锂的方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114368765A (zh) * 2021-08-20 2022-04-19 山东泰普锂业科技有限公司 一种锂离子电池中正极补锂用表面光滑的碳酸锂纳米片的形貌控制工艺与方法
CN114368765B (zh) * 2021-08-20 2023-09-22 山东泰普锂业科技有限公司 一种锂离子电池中正极补锂用表面光滑的碳酸锂纳米片的形貌控制方法
CN114573006A (zh) * 2022-03-24 2022-06-03 甘肃睿思科新材料有限公司 镍钴锰酸锂正极材料回收提锂过程中副产物含锂粗硫酸钠的提纯及回收锂的方法
CN114573006B (zh) * 2022-03-24 2023-06-30 甘肃睿思科新材料有限公司 镍钴锰酸锂正极材料回收提锂过程中副产物含锂粗硫酸钠的提纯及回收锂的方法

Also Published As

Publication number Publication date
CA3154127A1 (en) 2021-04-08
US20220340440A1 (en) 2022-10-27
AU2020360341A1 (en) 2022-04-14
CN112573546A (zh) 2021-03-30

Similar Documents

Publication Publication Date Title
WO2021063359A1 (zh) 硫酸锂与碳酸钠(钾)直产碳酸锂降低硫酸根含量新方法
WO2020030123A1 (zh) 大幅度降低锂辉石硫酸法各级碳酸锂中硫酸根含量的方法
CN106745097B (zh) 一种从锂云母精矿提取锂的方法
CN104944665B (zh) 一种盐酸酸洗废液综合资源化处理方法
CN102659144B (zh) 高纯级单水氢氧化锂的制备方法
WO2011003266A1 (zh) 一种利用氯化锂溶液制备电池级碳酸锂的方法
CN102502720B (zh) 深度碳化法处理碳酸盐型锂精矿生产电池级碳酸锂工艺
CN107032372B (zh) 一种从锂云母精矿提取锂的方法
WO2015161660A1 (zh) 一种从含钒铬硅溶液制备低硅五氧化二钒的方法
CN102718234B (zh) 从锂云母中提取碳酸锂的方法
CN103570043B (zh) 生产制备碳酸钾所需高纯氯化钾溶液及联产低钠盐的方法
CN102295303B (zh) 提取碳酸锂的方法
CN101955211A (zh) 从锂云母中提取碳酸锂的方法
CN109336140B (zh) 一种锂云母添加磷酸铁锂提锂的工艺
CN106185989A (zh) 一种生活垃圾焚烧飞灰中回收无机盐的方法
CN106148730A (zh) 一种从锂云母中提取碱金属的方法
CN109110788A (zh) 一种盐湖卤水中锂镁资源综合利用的方法
CN102557153A (zh) 一种从硫酸镍溶液中去除钙镁杂质的方法
CN106882821A (zh) 一种利用盐湖锂资源制取高纯碳酸锂的工艺方法
CN103466664A (zh) 全自动流水线式硝酸钾回收工艺
CN102786069B (zh) 无尘级单水氢氧化锂的制备方法
CN102145906A (zh) 一种以粉煤灰为原料制备低铁结晶氯化铝的方法
CN113666393A (zh) 一种氯化钾精制工艺及生产系统
CN104743586B (zh) 一种拜耳法赤泥中铝碱浸取与氧化铝分解母液蒸发排盐的联合生产方法
CN207142844U (zh) 一种盐酸法处理粉煤灰生产氧化铝的系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20870809

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 3154127

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2020360341

Country of ref document: AU

Date of ref document: 20200929

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20870809

Country of ref document: EP

Kind code of ref document: A1