WO2021057507A1 - 一种两层结构的陶瓷电热体及电烙铁 - Google Patents

一种两层结构的陶瓷电热体及电烙铁 Download PDF

Info

Publication number
WO2021057507A1
WO2021057507A1 PCT/CN2020/114709 CN2020114709W WO2021057507A1 WO 2021057507 A1 WO2021057507 A1 WO 2021057507A1 CN 2020114709 W CN2020114709 W CN 2020114709W WO 2021057507 A1 WO2021057507 A1 WO 2021057507A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric heating
ceramic
heating body
layer
conductive layer
Prior art date
Application number
PCT/CN2020/114709
Other languages
English (en)
French (fr)
Inventor
雷彼得
Original Assignee
重庆利迈陶瓷技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆利迈陶瓷技术有限公司 filed Critical 重庆利迈陶瓷技术有限公司
Priority to CA3154922A priority Critical patent/CA3154922A1/en
Priority to US17/761,134 priority patent/US20220377849A1/en
Priority to EP20868650.1A priority patent/EP4037431A4/en
Priority to JP2022518166A priority patent/JP7369863B2/ja
Priority to KR1020227011916A priority patent/KR102651147B1/ko
Priority to MX2022003167A priority patent/MX2022003167A/es
Publication of WO2021057507A1 publication Critical patent/WO2021057507A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K3/00Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
    • B23K3/02Soldering irons; Bits
    • B23K3/03Soldering irons; Bits electrically heated
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/141Conductive ceramics, e.g. metal oxides, metal carbides, barium titanate, ferrites, zirconia, vitrous compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K3/00Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
    • B23K3/02Soldering irons; Bits
    • B23K3/03Soldering irons; Bits electrically heated
    • B23K3/0338Constructional features of electric soldering irons
    • B23K3/0353Heating elements or heating element housings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K3/00Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
    • B23K3/02Soldering irons; Bits
    • B23K3/03Soldering irons; Bits electrically heated
    • B23K3/0338Constructional features of electric soldering irons
    • B23K3/0369Couplings between the heating element housing and the bit or tip
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/18Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor the conductor being embedded in an insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • H05B3/44Heating elements having the shape of rods or tubes non-flexible heating conductor arranged within rods or tubes of insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/027Heaters specially adapted for glow plug igniters

Definitions

  • the invention relates to an electric heating body, in particular to an electric heating body with a full ceramic structure, and the application of the electric heating body.
  • the ceramic electric heating body can be used as the electric heating body of the ignition mechanism.
  • the extremely high temperature reached by the ceramic at the moment of electrification can be used for ignition or heating. It can be used in engine ignition, gas stove ignition, water heater ignition, infrared radiation source, oxygen sensor heating, soldering iron tip heating, etc.
  • the electric heating body of ceramic material has the advantages of fast start-up, high temperature resistance, corrosion resistance, high strength and long life.
  • Chinese patent CN100484337C discloses a multilayer circular ceramic heater and its preparation process, and specifically discloses that the resistance layer, insulating layer and conductive layer of the ceramic heater include Si 3 N 4 , Al 2 O 3 , Y 2 O 3 and MoSi 2 four components; Si 3 N 4 functions to form a network structure, Al 2 O 3 and Y 2 O 3 function to adjust the network structure, and MoSi 2 functions to form a conductive heating material.
  • the ceramic electric heating body prepared by the above-mentioned components has a fast reaction speed, a high temperature, a time period for reaching a desired temperature, a long service life, a high yield of the manufacturing process, and a low manufacturing cost.
  • the composite materials prepared by the preparation materials in the above patents still have the following problems in some applications: high temperature coefficient of resistance and large inrush current directly lead to an increase in the cost of the power supply. Due to the rapid change of current/resistance, the use of The algorithm is complicated in power control.
  • Chinese patent CN105072718A discloses a two-layer ceramic electric heating body.
  • the ceramic electric heating body includes an internal resistance layer, and the ceramic electric heating body is completely covered with an outer insulating layer. Conductive covers are provided at both ends (see Figure 1).
  • the ceramic electric heater body of this structure is fully covered with an insulating layer, which is large in size and can be used in high temperature fields. However, it is not applicable to many areas where space is extremely restricted.
  • the smallest diameter of the electric heating body in the world is the metal heating tube produced by Spain JBC, with an assembly diameter of 1.4mm.
  • JBC has a built-in metal heating wire in such a small metal tube, and the casing and the metal wire are separated by dense, high thermal conductivity and insulating powder. The process is difficult and the cost is high.
  • the heating part is formed by winding the electric heating wire on a hollow porcelain tube in parallel. Due to the structural limitations of the heating components of the existing electric soldering iron, the size of the electric soldering iron cannot be made smaller. However, the existing large-sized electric soldering irons are not suitable for the welding of increasingly fine electronic components. For the welding of small electronic components, it is not only impossible to accurately solder, but also easily affects nearby electronic components. Therefore, it is the goal pursued by those skilled in the art to provide a miniaturized heating component so that the electric soldering iron can be more miniaturized and adapt to the soldering of existing electronic components.
  • the purpose of the present invention is to provide a small-diameter two-layer ceramic electric heating body with reliable structure, controllable cost and low process difficulty.
  • the present invention is achieved as follows: a two-layer ceramic structure electric heating body, characterized in that: the electric heating body includes a conductive layer and an outer insulating layer; the insulating layer is wrapped outside the conductive layer , The conductive layer is exposed outside the insulating layer at the head and tail of the electric heating body.
  • the electric heating body includes a conductive layer and an outer insulating layer; the insulating layer is wrapped outside the conductive layer , The conductive layer is exposed outside the insulating layer at the head and tail of the electric heating body.
  • the tail of the conductive layer and the tail of the insulating layer are flush.
  • blind holes or grooves are provided at the tail of the conductive layer.
  • a V-shaped blind hole is provided at the tail of the conductive layer.
  • a ceramic electric heating body includes the above-mentioned two-layer ceramic structure electric heating body, the head of the electric heating body is provided with a metal coating, and the metal coating covers a conductive layer and an insulating layer.
  • the small-volume two-layer structure all-ceramic electric heating body can be applied to more small heating electrical components, such as electric soldering irons.
  • the metal coating material is silver copper + titanium.
  • the head of the electric heating body is inserted into a metal shell as a negative electrode, and the conductive layer welding electrode exposed at the tail of the electric heating body is used as a positive electrode.
  • Another object of the present invention is to provide an electric soldering iron with a smaller volume.
  • An electric soldering iron includes a ceramic electric heating body with the above-mentioned head metallization treatment, the head of the ceramic electric heating body is inserted into the blind hole of the soldering iron tip as a negative electrode, and the tail part of the ceramic electric heating body is welded with a center electrode as a negative electrode.
  • An electric soldering iron comprising a ceramic electric heating body with an unmetallized head, and a soldering iron tip, one end of the soldering iron tip is provided with a blind hole, and a metal layer is arranged in the hole, and the material of the metal layer is silver Copper+titanium, the head of the ceramic electric heater is inserted into the blind hole of the soldering iron tip and welded with the metal layer, and the tail of the ceramic electric heater is welded with electrodes.
  • the two-layer structure ceramic electric heater of the present invention adopts an all-ceramic hierarchical structure, and a small-volume electric heating body with a diameter of less than 1 mm can be obtained.
  • the diameter of the smallest electric heating body is more than 0.4mm smaller than the existing one.
  • the two-layer structure all-ceramic electric heating body of the present invention is more reliable, lower cost, and lower in process difficulty than the existing smallest-volume electric heating body, and has the ability to further reduce the diameter of the heating body.
  • the two-layer structure ceramic heating element of the present invention can also be used as a thermocouple when the head is not metallized.
  • the center electrode welded on the tail can be used as a thermocouple, or the center electrode can be used as one pole of the thermocouple, and the metal material or its extension material connected with the conductive layer of the heater head can be used as the other pole of the thermocouple.
  • the temperature of the heating area of the head can be accurately controlled and the temperature of the heating element can be detected at the same time.
  • the electric heating element of the present invention adopting the head metallization treatment can make it suitable for small heating electrical components below 800°C, and can also have the advantage of quick start-up. For many electrical components with limited space, a more reliable heating element with more advantages such as quick start is provided.
  • the electric heating element of the present invention can be applied to an electric soldering iron.
  • the impulse current is small when the temperature coefficient of resistance TCR is large, and the impulse current is small when the temperature coefficient of resistance TCR is small.
  • the cost of the supporting power supply and control components can be greatly reduced. It effectively solves the problems of high cost and difficult control of the original ceramic structural material body in the actual application of supporting control electronic components, and reaches the similar performance index of the international ceramic material structural body.
  • the use of the material of the present invention can use a 60W power supply, which reduces the requirement for power supply capacity.
  • Figure 1 shows the structure of the existing two-layer ceramic heating element
  • Figure 2 is the structure of the two-layer ceramic electric heating body in Example 1 (green embryo);
  • Figure 3 is the structure of the two-layer ceramic heating element in Example 2 (green embryo);
  • Figure 4 shows the structure of the two-layer ceramic heating element (with a metal shell) in Example 1;
  • Figure 5 shows the structure of the two-layer ceramic heating element (with a metal shell) in Example 2;
  • Figure 6 is a structural diagram of the electric soldering iron in Example 3.
  • Fig. 7 is a cross-sectional view of Fig. 6.
  • Embodiment 1 As shown in Figures 2 and 4, a two-layer structure ceramic heating body, the heating body includes an inner conductive layer 1 and an outer insulating layer 2; the insulating layer is wrapped outside the conductive layer The conductive layer at the head 3 and the tail 4 of the electric heating body are exposed outside the insulating layer. In addition, the conductive layer and the insulating layer of the tail of the ceramic electric heating body in this embodiment are flush.
  • a two-layer structure all-ceramic electric heating body with a diameter of 1 mm or less can be obtained.
  • the two-layer structure ceramic heating body in this embodiment can be used as a thermocouple.
  • the center electrode 7 is welded to the conductive layer at its tail.
  • the center electrode can be used as a thermocouple, or the center electrode can be used as one pole of the thermocouple, and the metal material or its extension material connected to the conductive layer of the heating element head can be used as the other pole of the thermocouple.
  • the temperature of the heating area of the head can be accurately controlled and the temperature of the heating element can be detected at the same time.
  • this embodiment provides an application in which the above two-layer structure ceramic electric heating body is used as an electric heating body.
  • a metal coating 6 is coated on the head of the electric heating body, and the metal coating covers the conductive layer and the insulating layer.
  • the metal coating is made of high-temperature resistant materials.
  • the material used for the metal coating is silver copper + titanium.
  • the electric heating body in this embodiment can be applied to smaller heating electrical components to meet the needs of more customers.
  • this all-ceramic two-layer electric heating body eliminates the side electrode, connects the negative electrode with the head and connects the positive electrode with the tail, so that the diameter is smaller and more controllable. It is especially suitable for small heating electrical components below 800°C, and can also have the advantage of quick start-up.
  • ceramic electric heater manufacturers can only produce and sell two-layer full ceramic electric heaters, that is, the green ceramic electric heater structure. After the customer purchases them, they can weld the center electrode as a thermocouple or use it as a thermocouple. After the head is metallized, it can be used as an electric heater. See Figure 2 and Figure 3.
  • ceramic heater manufacturers can also pre-metallize the green ceramic heater body structure and/or sell the tail center electrode after welding. After purchasing, customers only need to insert the metalized ceramic heater body into the It can be used in the metal shell 8, as shown in Figure 4.
  • ceramic heater manufacturers can not only metallize the head of the ceramic heater and weld the center electrode at the tail, but also insert the metalized ceramic heater into the metal shell 8 as an integration Product sales, such as electric soldering irons.
  • the preparation material of the conductive layer and/or the preparation material of the insulating layer further includes tungsten carbide (WC).
  • the preparation material of the conductive layer and/or the preparation material of the insulating layer further includes ytterbium oxide (Yb2O3).
  • the two-layer ceramic electric heating body in this embodiment is manufactured by grouting, and includes the following steps:
  • Step 1 Prepare mixed slurry: silicon nitride, silicon carbide, molybdenum disilicide, yttrium oxide, lanthanum oxide, and aluminum oxide powder, add water according to the weight ratio, mix and stir evenly, and put it into a container.
  • different mixed slurries are prepared and equipped in different containers for standby.
  • Step 2 Grouting: Put the grouting mold with open ends on the grouting machine, and the inner diameter of the grouting mold is 0.8mm; and then inject the mixed ceramic slurry into the grouting machine to start grouting. According to the number of layers of the ceramic electric heating body, grouting is performed in stages, and the grouting is carried out sequentially from the outer layer to the inner layer.
  • Step 3 Sintering: Take out the dried ceramic body that has lost water from the grouting mold and put it into the sintering mold. Finally, put the sintering mold containing the ceramic green body into the sintering furnace for sintering at a temperature of 1400°C and a pressure Sintering at 2000-5000Kpa for 7-12 hours.
  • Step 4 Take the sintered ceramic material body out of the sintering mold, perform external trimming, and obtain a green ceramic heating body.
  • a ceramic electric heating body with a diameter of 0.8 mm can be obtained. Not only is the volume reduced compared to the current smallest-sized electric heating element, but the electric heating element of this embodiment has a more reliable structure, lower cost, and lower process difficulty, and at the same time has the ability to further reduce the diameter of the heating element.
  • the two-layer structure ceramic electric heating body green embryo obtained according to the above process can be sold directly. It can also be sold after metallizing the head of the two-layer structure ceramic electric heating body green embryo and the center electrode welding on the tail. It is also possible to insert the ceramic electric heating body after the head metallization treatment into the metal shell and then sell it.
  • the impulse current is small when the temperature coefficient of resistance TCR is large, and the impulse current is small when the temperature coefficient of resistance TCR is small.
  • the cost of power supply and control components can be greatly reduced due to the reduction of starting current. It effectively solves the problems of high cost and difficult control of the original ceramic structural material body in the actual application of supporting control electronic components, and reaches the similar performance index of the international ceramic material structural body.
  • Embodiment 2 As shown in FIGS. 3 and 5, this embodiment is a modification based on Embodiment 1.
  • the electric heating body includes an inner conductive layer 1 and an outer insulating layer 2; the insulating layer is wrapped outside the conductive layer, and the head 3 and the tail 4 of the electric heating body are all The conductive layer is exposed outside the insulating layer.
  • the conductive layer at the tail of the ceramic electric heating body in this embodiment is provided with grooves or blind holes. Can be set with square grooves, circular grooves, polygonal grooves, circular blind holes, tapered blind holes, V-shaped blind holes, etc.
  • a V-shaped blind hole 5 is provided at the tail of the conductive layer.
  • the central electrode can be welded in the V-shaped blind hole of the conductive layer at the tail, and the central electrode is partially inserted into the blind hole and partially exposed the electric heating body. And fill the gap between the electrode and the V-shaped blind hole with other materials such as solder. Further ensure the stability of the connection between the center electrode and the electric heating body.
  • the electric heating body that welds the center electrode can be used as a thermocouple.
  • the head of the two-layer structure all-electric heating body can also be further metalized and used as an electric heating body.
  • the metallization process is to coat the head with a metal coating, and the metal coating simultaneously covers the conductive layer and the insulating layer.
  • the material of the metal is an alloy of silver, copper and titanium.
  • the metalized heating element head can also be inserted into the metal shell to become the negative electrode, and the exposed center electrode can be used as the positive electrode.
  • ceramic electric heater manufacturers can only produce and sell two-layer full ceramic electric heaters, that is, the green ceramic electric heater structure. After the customer purchases them, they can weld the center electrode as a thermocouple or use it as a thermocouple. After the head is metallized, it can be used as an electric heater. See Figure 2 and Figure 3.
  • ceramic heater manufacturers can also pre-metallize the green ceramic heater body structure and/or sell the tail center electrode after welding. After purchasing, customers only need to insert the metalized ceramic heater body into the It can be used in a metal shell, as shown in Figure 4.
  • the preparation materials of the insulating layer and the conductive layer of the two-layer ceramic heater in this embodiment are the same as those in the first embodiment.
  • the preparation process is also the same, but the inner diameter of the grouting mold in this embodiment is 1 mm, and the diameter of the injected ceramic electric heating body is 1 mm.
  • Embodiment 3 As shown in Figures 6 and 7, in this embodiment, the ceramic electric heating body in Embodiment 1 or Embodiment 2 is applied to small heating parts such as electric soldering irons.
  • a two-layer ceramic electric heating body is used for the green embryo, and its head is coated with a metalized coating, and the material of the metalized coating is silver copper + titanium.
  • the ceramic heating element in this embodiment is divided into a front section near the head and a rear section near the tail.
  • the diameter of the front section is smaller than the diameter of the rear section.
  • the electric soldering iron includes a soldering iron tip 11, one end of the soldering iron tip is a working end, and the other end is provided with a blind hole.
  • the front part of the ceramic electric heating body 10 is inserted into the blind hole so that the metalized head of the ceramic electric heating body is in contact with the soldering iron tip.
  • a metal wire 12 is welded along the axial direction at the conductive layer of the tail of the ceramic electric heating body, and the other end of the metal wire is welded to the metal electrode 18.
  • an insulating sleeve 13 is wrapped on the outer wall of the thermocouple wire
  • an upper insulating sleeve 14 is wrapped on the outside of the metal wire section of the metal electrode
  • a tail pipe 15 is wrapped on the other section of the stainless steel electrode.
  • the outer wall of the insulating sleeve and the upper insulating sleeve is wrapped with an outer tube 16, a metal sleeve 17 is sleeved between the outer tube and the outer wall of the soldering iron tip, and one end of the metal sleeve is wrapped around the soldering iron tip And the other end is wrapped on the outer tube.
  • the metal wire 12 and the metal sleeve 17 can be made of different materials to form the two poles of the thermocouple, so as to realize the purpose of temperature measurement while serving as an electrode and a structural member.
  • the electric soldering iron is integrally formed in the blind hole: there is a metal material of silver copper + titanium in the blind hole, and the ceramic heating element head that has not been metalized is directly inserted into the blind hole. Go into the blind hole and perform welding so that the head of the electric heating body is in contact with the metal layer.
  • Using the electric soldering iron of this embodiment can make the electric soldering iron more compact and adapt to the increasingly sophisticated electronic soldering industry. It is more convenient to measure and control the temperature of the electric soldering iron during welding.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Resistance Heating (AREA)

Abstract

本发明公开了一种两层结构的陶瓷电热体及电烙铁,所述两层陶瓷结构电热体包括在内的导电层和在外的绝缘层;所述绝缘层包裹在所述导电层外,在所述电热体的头部和尾部处所述导电层暴露在所述绝缘层外。以及将上述两层结构的陶瓷电热体应用到电烙铁之中。本发明的可实现陶瓷电热体的小型化制造,并且生产成本低,工艺难度低。

Description

一种两层结构的陶瓷电热体及电烙铁 技术领域
本发明涉及一种电热体,尤其涉及一种全陶瓷结构的电热体,以及此种电热体的应用。
背景技术
陶瓷电热体作为一种导体材料,可将其作为点火机构的电热体使用,通过陶瓷在通电瞬间达到的极高温度,进行点火或加热。可应用在发动机点火、燃气灶点火、热水器点火、红外辐射源、氧传感器加热、烙铁头加热等等领域。陶瓷材料的电热体具有启动快、耐高温、耐腐蚀、强度高寿命长等优势。
在中国专利CN100484337C中公开了一种多层圆形陶瓷电热体及其制备工艺,并具体公开了陶瓷电热体的电阻层、绝缘层及导电层的组成成分包含Si 3N 4、Al 2O 3、Y 2O 3、MoSi 2四种成分;Si 3N 4作用为形成网状组织结构,Al 2O 3及Y 2O 3作用为调节网状组织,MoSi 2作用为形成导电发热材料。
通过上述成分制备的陶瓷电热体反应速度快、温度高、达到预期温度的时间段,使用寿命长,制作工艺的成品率高,制造成本低。
但是上述专利中的制备材料所制备的复合型材料,在一些应用中依然存在以下问题:电阻温度系数大,冲击电流大,直接导致供电电源的成本增加,因电流/电阻变化速度快,在采用功率控制时算法复杂。
另外,在中国专利CN105072718A中公开了一种两层的陶瓷电热体,所述陶瓷电热体包括有一层内电阻层,在所述陶瓷电热体外全包覆有外绝缘层,在所述陶瓷电热体两端设置有导电罩(见图1)。此种结构的陶瓷电热体外全包覆绝缘层,其体积大,能够应用在高温领域。但是对于很多对空间极其限制的领域,其并不适用。
目前来说,世界上电热体中直径最小的是西班牙JBC生产的金属加热管,装配配合直径为1.4mm。JBC在这么小的金属管内内置金属发热丝,套管和金属丝之间用致密高导热和绝缘粉料进行隔离,工艺难度大,成本很高。
并且对于现在的电烙铁来说,其发热部件是将电热丝平行地绕制在一根空心 瓷管上构成的。由于现有的电烙铁的发热部件的结构限制,使得电烙铁尺寸不能做得更小。而现有体积较大的电烙铁不适用于日益精细的电子元件的焊接,对于细小的电子元件的焊接不但无法精确的焊接,而且还极易影响到附近的电子元件。因此,提供一种小型化的发热部件使得电烙铁能够更小型化适应现有的电子元件的焊接是本领域技术人员追求的目标。
发明内容
本发明的目的在于提供一种结构可靠、成本可控、工艺难度低的小直径两层陶瓷电热体。
为了实现上述目的,本发明是这样实现的:一种两层陶瓷结构电热体,其特征在于:电热体包括在内的导电层和在外的绝缘层;所述绝缘层包裹在所述导电层外,在所述电热体的头部和尾部处所述导电层暴露在所述绝缘层外。通过这样的结构可达到低成本、低工艺难度获得结构可靠的、小体积的全陶瓷电热体。采用这种结构的电热体,可使得电热体的直径控制在1mm以下。
为进一步降低工艺难度,所述导电层尾部和所述绝缘层尾部齐平。
为进一步提高便于应用的可靠性,在所述导电层尾部设置有盲孔或凹槽。
优选的,所述导电层尾部设置有V形盲孔。
为进一步降低使用过程中的冲击电流,所述导电层的制备材料采用以下材料按比例制备而成:氮化硅:碳化硅:二硅化钼:氧化钇:氧化镧:氧化铝=(200-700):(100-700):(600-1500):(40-80):(10-70):(5-50)。
为进一步降低冲击电流,所述导电层的制备材料采用以下材料按比例制备而成:氮化硅:碳化硅:二硅化钼:氧化钇:氧化镧:氧化铝=(300-600):(200-500):(800-1200):(50-70):(30-60):(20-30)。
为进一步降低冲击电流,所述导电层的制备材料采用以下材料按比例制备而成:氮化硅:碳化硅:二硅化钼:氧化钇:氧化镧:氧化铝=500:450:900:50:45:25。
为进一步降低使用过程中的冲击电流,所述绝缘层的制备材料采用以下材料按比例制备而成:氮化硅:碳化硅:二硅化钼:氧化钇:氧化镧:氧化铝=(400-900):(50-200):(500-800):(40-90):(30-80):(5-60)。
为进一步降低冲击电流,所述绝缘层的制备材料采用以下材料按比例制备而 成:氮化硅:碳化硅:二硅化钼:氧化钇:氧化镧:氧化铝=(600-700):(100-150):(600-700):(50-70):(50-60):(20-40)。
为进一步降低冲击电流,所述绝缘层的制备材料采用以下材料按比例制备而成:氮化硅:碳化硅:二硅化钼:氧化钇:氧化镧:氧化铝=550:120:650:55:60:40。
一种陶瓷电热体,包括上述两层陶瓷结构电热体,所述电热体的头部设置有金属涂层,所述金属涂层包覆导电层和绝缘层。通过在所述电热体的都不涂覆金属涂层,可实现此种小体积的两层结构全陶瓷电热体应用到更多的微小发热电器元件之中,比如说电烙铁。
为进一步提高结构可靠性、发热可靠性,所述金属涂层材质为银铜+钛。
为进一步提高应用可靠性,所述电热体的头部插入金属壳体作为负极,所述电热体的尾部暴露的导电层焊接电极作为正极。
本发明的另一目的在于提供一种体积更小的电烙铁。
一种电烙铁,包括上述头部金属化处理的陶瓷电热体,所述陶瓷电热体的头部插入到烙铁头的盲孔内作为负极,所述陶瓷电热体的尾部焊接中心电极作为负极。
一种电烙铁,包括头部未金属化处理的陶瓷电热体,还包括烙铁头,所述烙铁头一端设有盲孔,在所述孔内设置有金属层,所述金属层的材质为银铜+钛,所述陶瓷电热体的头部插入到烙铁头的盲孔内并与金属层焊接,所述陶瓷电热体的尾部焊接电极。
采用本发明的两层结构陶瓷电热体,具有的有益效果有:
1、本发明的两层结构陶瓷电热器,采用全陶瓷层级结构,可得到直径在1mm以下的小体积电热体。较现有的最小的电热体直径还要小0.4mm以上。并且本发明的两层结构全陶瓷电热体,其相对于现有的最小体积的电热体结构更加可靠、成本更低、工艺难度更低,同时具备使发热体直径进一步缩小的能力。
2、本发明的两层结构陶瓷发热体,当其头部未做金属化处理时,还可作为热电偶使用。其尾部焊接的中心电极可作为热电偶,也可以把中心电极作为热电偶的一极,与发热体头部导电层连接的金属类材料或其延伸材料可以作为热电偶的另外一极。可对头部发热区温度进行精确控温同时还可侦查发热体的温度。
3、采用头部金属化处理的本发明的电热体,能够使其适用于800℃以下的微小发热电器元件,并且还能够具有启动快的优势。对于很多空间有限的电器元件提供了一种更可靠、启动快等具有更多优势的发热体,比如可将本发明的电热体应用到电烙铁之中。
5、达到不同的电阻温度系数TCR,实现了负温度系数到正温度系数的任意转换,既能实现TCR=-500,也可达到TCR=5000,同时保证了原有陶瓷材料的多种性能优势,如启动快、耐高温、耐腐蚀、高强度等。
6、冲击电流小:同时做到了电阻温度系数TCR大时冲击电流小,且电阻温度系数TCR小时冲击电流也小。对于负或低的TCR,因为启动电流的降低,可以极大降低配套使用的电源及控制元件的成本。有效解决了原有的陶瓷结构材料体在实际应用配套控制电子元件成本高、控制困难的问题,达到国际陶瓷材料结构体类同性能指标。如以前采用为100W电源通过本发明的材料的使用可采用60W的电源,降低电源容量的要求。
附图说明
图1为现有两层陶瓷电热体的结构;
图2为实施例1中两层陶瓷电热体的结构(生胚);
图3为实施例2中两层陶瓷电热体的结构(生胚);
图4为实施例1中两层陶瓷电热体的结构(带金属壳体);
图5为实施例2中两层陶瓷电热体的结构(带金属壳体);
图6为实施例3中电烙铁的结构图;
图7为图6的剖视图。
具体实施方式
下面将通过附图中所示的实施例来介绍本发明,但本发明并不局限于所介绍的实施方式,任何在本实施例基本精神上的改进或替代,仍属于本发明权利要求所要求保护的范围:
实施例1:如图2和4所示,一种两层结构陶瓷电热体,所述电热体包括在内的导电层1和在外的绝缘层2;所述绝缘层包裹在所述导电层外,所述电热体的头部3和尾部4处的所述导电层暴露在绝缘层外。且本实施例中的陶瓷电热体的尾部的导电层和绝缘层齐平。通过本实施例的技术方案,可得到直径为1mm 以下的两层结构的全陶瓷电热体。
本实施例中的两层结构陶瓷电热体可作为热电偶使用。在其尾部的导电层处焊接中心电极7。所述中心电极可作为热电偶,也可以把中心电极作为热电偶的一极,与发热体头部导电层连接的金属类材料或其延伸材料可以作为热电偶的另外一极。可对头部发热区温度进行精确控温同时还可侦查发热体的温度。
另外,本实施例中提供一种将以上两层结构陶瓷电热体用作电热体的一种应用。具体而言,在所述电热体的头部涂覆一层金属涂层6,所述金属涂层包覆所述导电层和绝缘层。所述金属涂层采用耐高温的材料。本实施例中,所述金属涂层采用的材质为银铜+钛。
通过头部金属化处理,并且在尾部焊接中心电极7,使得本实施例中的电热体可以引用在更微小的发热电器元件上,满足更多客户的需求。这种全陶瓷两层电热体相比于现有的陶瓷电热器,取消了侧电极,以头部连接负极以尾部连接正极,使其直径更小更可控。尤其适用于800℃以下的微小加热电器元件,并且还能够具有启动快的优势。
作为一种说明,陶瓷电热体厂家可以仅生产和售卖两层结构的全陶瓷电热体,也就是陶瓷电热体生胚结构,而客户购买之后可进行中心电极焊接作后为热电偶使用,也可进行头部金属化处理后作为电热体使用。见图2和图3.
当然,陶瓷电热体厂家,也可预先对陶瓷电热体生胚结构进行金属化处理和/或尾部中心电极焊接之后进行售卖,客户购买之后只需将头部金属化处理后的陶瓷电热体插入到金属壳体8之中就可使用,见图4。
还有一种可能,陶瓷电热体厂家,不但可以将陶瓷电热体的头部进行金属化处理、尾部焊接中心电极,还可将金属化处理后的陶瓷电热体插入到金属壳体8内作为一体化产品售卖,比如说电烙铁。
本实施例中,所述导电层的制备材料采用以下材料按比例制备而成:氮化硅:碳化硅:二硅化钼:氧化钇:氧化镧:氧化铝=(200-700):(100-700):(600-1500):(40-80):(10-70):(5-50)。所述绝缘层的制备材料采用以下材料按比例制备而成:氮化硅:碳化硅:二硅化钼:氧化钇:氧化镧:氧化铝=(400-900):(50-200):(500-800):(40-90):(30-80):(5-60)。
对于导电层,可采用按以下材料份数制备的复合型材料制备:氮化硅:碳化 硅:二硅化钼:氧化钇:氧化镧:氧化铝=(200-700):(100-700):(600-1500):(40-80):(10-70):(5-50)。
可选择但不限于不同的比例份数进行制备:
如氮化硅:碳化硅:二硅化钼:氧化钇:氧化镧:氧化铝=200:100:600:40:10:5;
如氮化硅:碳化硅:二硅化钼:氧化钇:氧化镧:氧化铝=400:300:800:60:30:15;
如氮化硅:碳化硅:二硅化钼:氧化钇:氧化镧:氧化铝=600:500:1000:70:50:30;
如氮化硅:碳化硅:二硅化钼:氧化钇:氧化镧:氧化铝=500:600:1300:50:60:45;
如氮化硅:碳化硅:二硅化钼:氧化钇:氧化镧:氧化铝=700:700:1500:80:70:50。
对于绝缘层,可采用按以下材料份数制备的复合型材料制备:氮化硅:碳化硅:二硅化钼:氧化钇:氧化镧:氧化铝=(400-900):(50-200):(500-800):(40-90):(30-80):(5-60)。
可选择但不限于不同的比例份数进行制备:
如氮化硅:碳化硅:二硅化钼:氧化钇:氧化镧:氧化铝=400:50:500:40:30:5;
如氮化硅:碳化硅:二硅化钼:氧化钇:氧化镧:氧化铝=500:100:600:60:70:35;
如氮化硅:碳化硅:二硅化钼:氧化钇:氧化镧:氧化铝=700:150:700:50:40:30;
如氮化硅:碳化硅:二硅化钼:氧化钇:氧化镧:氧化铝=800:90:650:70:40:50;
如氮化硅:碳化硅:二硅化钼:氧化钇:氧化镧:氧化铝=900:200:800:90:80:60。
作为本实施例中的另一实施方式,所述导电层的制备材料和/或绝缘层的制备材料中还包括碳化钨(WC)。
作为本实施例中的另一实施方式,所述导电层的制备材料和/或绝缘层的制备材料中还包括氧化镱(Yb2O3)。
其中,另外,本实施例中的两层陶瓷电热体采用注浆方式制造,并包括以下步骤:
步骤1:制备混合浆料:氮化硅、碳化硅、二硅化钼、氧化钇、氧化镧、氧化铝粉末,按照重量配比加水混合搅拌均匀,装入容器内。其中,根据多层陶瓷电热体的不同层调配不同的混合浆料,装备在不同的容器中备用。
作为本实施例中的一种实施方式,以上材料成分的总和重量:水重=1:(1-4)。
步骤2:注浆成型:将两端开口的注浆模放入注浆机上,所述注浆模的内径为0.8mm;再将混合好的陶瓷浆料注入注浆机内开始注浆成型。按照陶瓷电热体的层数分次注浆,采用由外层至内层的方式依次注浆。
步骤3:烧结:将干燥已失水的陶瓷胚体从注浆模取出,放入烧结模内,最后将装有陶瓷生胚体的烧结模放入烧结炉内烧结,在温度1400℃、压力2000-5000Kpa下烧结7-12个小时。
步骤4:将烧结完后的陶瓷材料体从烧结模中取出,进行外部修整并得到陶瓷电热体生胚。
通过本实施例得到的两层结构陶瓷电热体,可得到直径为0.8mm的陶瓷电热体。不但相对现有的最小体积的电热体而言减小了体积,且本实施例的电热体结构更加可靠、成本更低、工艺难度更低,同时具备使发热体直径进一步缩小的能力。
根据以上工艺得到的两层结构陶瓷电热体生胚,可直接售卖。也可在两层结构陶瓷电热体生胚的头部进行金属化处理、尾部进行中心电极焊接后售卖。也可以将头部金属化处理之后的陶瓷电热体插入到金属壳体之中再进行售卖。
采用本实施例的复合型材料制造的陶瓷电热体,达到不同的电阻温度系数TCR,实现了负温度系数到正温度系数的任意转换,既能实现TCR=-500,也可达到TCR=5000,同时保证了原有陶瓷材料的多种性能优势,如启动快、耐高温、耐腐蚀、高强度等。
冲击电流小:同时做到了电阻温度系数TCR大时冲击电流小,且电阻温度系数TCR小时冲击电流也小。对于负或低的TCR,因为启动电流的降低,可以极大 降低配套使用的电源及控制元件的成本。有效解决了原有的陶瓷结构材料体在实际应用配套控制电子元件成本高、控制困难的问题,达到国际陶瓷材料结构体类同性能指标。
实施例2:如图3和5所示,本实施例是在实施例1的基础上进行的改动。
在本实施例中,所述电热体包括在内的导电层1和在外的绝缘层2;所述绝缘层包裹在所述导电层外,所述电热体的头部3和尾部4处的所述导电层暴露在绝缘层外。且本实施例中的陶瓷电热体的尾部处的导电层设置有凹槽或盲孔。可设置方形凹槽、圆形凹槽、多边形凹槽、圆形盲孔、锥形盲孔、V形盲孔等。在本实施例中,所述导电层的尾部设置V形盲孔5。通过本实施例的技术方案,可得到直径为1mm以下的两层结构的全陶瓷电热体。
对于以上两层结构的全陶瓷电热体,可在其尾部的导电层的V形盲孔中焊接中心电极,所述中心电极部分插入所述盲孔之中,部分暴露出所述电热体。并且在电极与V形盲孔的间隙中填充焊料等其他材料。进一步保证中心电极和电热体的连接稳固性。
在应用时,可将焊接中心电极的电热体用作热电偶。也可对两层结构全电热体的头部进一步进行金属化处理后作为电热体使用。所述金属化处理为对所述头部涂覆金属涂层,所述金属涂层同时包覆所述导电层和绝缘层。作为本实施例中的一种实施方式,所述金属的材质为银铜+钛的合金。当然也可将金属化处理后的电热体头部插入到金属壳体之中成为负极,而暴露的中心电极作为正极。
作为一种说明,陶瓷电热体厂家可以仅生产和售卖两层结构的全陶瓷电热体,也就是陶瓷电热体生胚结构,而客户购买之后可进行中心电极焊接作后为热电偶使用,也可进行头部金属化处理后作为电热体使用。见图2和图3.
当然,陶瓷电热体厂家,也可预先对陶瓷电热体生胚结构进行金属化处理和/或尾部中心电极焊接之后进行售卖,客户购买之后只需将头部金属化处理后的陶瓷电热体插入到金属壳体之中就可使用,见图4。
还有一种可能,陶瓷电热体厂家,不但可以将陶瓷电热体的头部进行金属化处理、尾部焊接中心电极,还可将金属化处理后的陶瓷电热体插入到金属壳体内作为一体化产品售卖。
另外,本实施例中的两层陶瓷电热体的绝缘层和导电层的制备材料和实施例 1中的一样。制备工艺也一致,但是本实施例中的注浆模的内径为1mm,注得的陶瓷电热体的直径为1mm。
实施例3:如图6和7所示,本实施例是将实施例1或实施例2中的陶瓷电热体应用到电烙铁等小型发热零件之中。
采用两层陶瓷电热体生胚,并在其头部涂覆金属化涂层,所述金属化涂层的材质为银铜+钛。
且作为其中一种实施例方式,本实施例中的陶瓷电热体分为近头部的前段和近尾部的后段,所述前段的直径小于后段的直径。
所述电烙铁包括烙铁头11,所述烙铁头一端为工作端,另一端设置有盲孔。将陶瓷电热体10的前段部分插入到所述盲孔内,使得所述陶瓷电热体的金属化头部与烙铁头接触。在所述陶瓷电热体的尾部的导电层处沿轴向焊接有金属丝12,所述金属丝的另一端与金属电极18焊接。另外在所述热电偶丝的外壁包裹有绝缘套13,在所述金属电极的近金属丝段的外部包裹有上绝缘套14,在所述不锈钢电极的另一段包裹有尾管15。所述绝缘套和上绝缘套的外壁上包裹有外管16,在所述外管和所述烙铁头的外壁之间套有金属套17,所述金属套一端部包覆在所述烙铁头上,另一端包覆在所述外管上。
金属丝12和金属套17可以采用不同材料,以形成热偶的两极,以实现作为电极和结构件的同时,作为温度测量用途。
作为本实施例中的另一实施方式,在所述电烙铁的盲孔内一体成型:在盲孔内有银铜+钛的金属材料,将未做金属化处理的陶瓷电热体头部直接插入到盲孔之中并进行焊接,使得电热体的头部与金属层接触。
采用本实施例的电烙铁,可使得电烙铁更加小型化,适应于日渐精细的电子焊接行业。更加便于焊接时电烙铁的测温控温。

Claims (11)

  1. 一种两层陶瓷结构电热体,其特征在于:电热体包括在内的导电层和在外的绝缘层;所述绝缘层包裹在所述导电层外,在所述电热体的头部和尾部处所述导电层暴露在所述绝缘层外。
  2. 如权利要求1所述的两层陶瓷结构电热体,其特征在于:所述导电层尾部和所述绝缘层尾部齐平。
  3. 如权利要求1所述的两层陶瓷结构电热体,其特征在于:在所述导电层尾部设置有盲孔或凹槽。
  4. 如权利要求2所述的两层陶瓷结构电热体,其特征在于:所述导电层尾部设置有V形盲孔。
  5. 如上述任一项权利要求所述的两层结构陶瓷电热体,其特征在于:所述导电层的制备材料采用以下材料按比例制备而成:氮化硅:碳化硅:二硅化钼:氧化钇:氧化镧:氧化铝=(200-700):(100-700):(600-1500):(40-80):(10-70):(5-50)。
  6. 如上述任一项权利要求所述的两层结构陶瓷电热体,其特征在于:所述绝缘层的制备材料采用以下材料按比例制备而成:氮化硅:碳化硅:二硅化钼:氧化钇:氧化镧:氧化铝=(400-900):(50-200):(500-800):(40-90):(30-80):(5-60)。
  7. 一种陶瓷电热体,包括上述任一项权利要求所述两层陶瓷结构电热体,其特征在于:所述电热体的头部设置有金属涂层,所述金属涂层包覆导电层和绝缘层。
  8. 如权利要求7所述的陶瓷电热体,其特征在于:所述金属涂层材质为银铜+钛。
  9. 如权利要求7或8所述的陶瓷电热体,其特征在于:所述电热体的头部插入金属壳体作为负极,所述电热体的尾部暴露的导电层焊接电极作为正极。
  10. 一种电烙铁,其特征在于:包括权利要求7所述的陶瓷电热体,所述陶瓷电热体的头部插入到烙铁头的盲孔内,所述陶瓷电热体的尾部焊接电极。
  11. 一种电烙铁,其特征在于:包括权利要求1-6中任一项所述的陶瓷电热体, 还包括烙铁头,所述烙铁头一端设有盲孔,在所述盲孔内设置有金属层,所述金属层的材质为银铜+钛,所述陶瓷电热体的头部插入到烙铁头的盲孔内并与金属层焊接,所述陶瓷电热体的尾部焊接电极。
PCT/CN2020/114709 2019-09-25 2020-09-11 一种两层结构的陶瓷电热体及电烙铁 WO2021057507A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA3154922A CA3154922A1 (en) 2019-09-25 2020-09-11 Ceramic electric heating element having a two-layer structure and electric soldering iron
US17/761,134 US20220377849A1 (en) 2019-09-25 2020-09-11 Ceramic electric heating element having a twolayer structure and electric soldering iron
EP20868650.1A EP4037431A4 (en) 2019-09-25 2020-09-11 CERAMIC ELECTRIC RADIATOR WITH TWO-LAYER STRUCTURE AND ELECTRIC SOLDERING IRON
JP2022518166A JP7369863B2 (ja) 2019-09-25 2020-09-11 2層構造を有するセラミック電気発熱体および電気はんだごて
KR1020227011916A KR102651147B1 (ko) 2019-09-25 2020-09-11 2층 구조의 세라믹 전기발열체 및 전기납땜인두
MX2022003167A MX2022003167A (es) 2019-09-25 2020-09-11 Elemento de calefaccion electrica ceramica con una estructura en dos capas y hierro electrico para soldadura.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910912270.2 2019-09-25
CN201910912270.2A CN110536491B (zh) 2019-09-25 2019-09-25 一种两层结构的陶瓷电热体及电烙铁

Publications (1)

Publication Number Publication Date
WO2021057507A1 true WO2021057507A1 (zh) 2021-04-01

Family

ID=68670137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/114709 WO2021057507A1 (zh) 2019-09-25 2020-09-11 一种两层结构的陶瓷电热体及电烙铁

Country Status (8)

Country Link
US (1) US20220377849A1 (zh)
EP (1) EP4037431A4 (zh)
JP (1) JP7369863B2 (zh)
KR (1) KR102651147B1 (zh)
CN (1) CN110536491B (zh)
CA (1) CA3154922A1 (zh)
MX (1) MX2022003167A (zh)
WO (1) WO2021057507A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110536491B (zh) * 2019-09-25 2024-07-05 重庆利迈科技有限公司 一种两层结构的陶瓷电热体及电烙铁
CN110590371A (zh) * 2019-09-25 2019-12-20 重庆利迈陶瓷技术有限公司 一种用于陶瓷电热体的复合型材料
DE102020117987A1 (de) * 2020-07-08 2022-01-13 Polymerge Gmbh Infrarotstrahlungs-Emitter, Schweißanlage, insbesondere Kunststoffschweißanlage, mit einem solchen Infrarotstrahlungs-Emitter, sowie Schweißverfahren mit einem solchen Infrarotstrahlungs-Emitter
CN114769782B (zh) * 2022-05-23 2024-03-29 朔盈月新(深圳)智能设备有限责任公司 一种即热式电热头模组的结构及制作方法
CN114777155A (zh) * 2022-05-25 2022-07-22 重庆利迈科技有限公司 四线可测温电加热及点火装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1185564A (zh) * 1996-11-19 1998-06-24 日本特殊陶业株式会社 陶瓷加热器及其制造方法
US5801361A (en) * 1996-01-26 1998-09-01 Saint-Gobain/Norton Industrial Ceramics Corporation Ceramic igniter with hot zone thickness of 0.019 inches or less
US6028292A (en) * 1998-12-21 2000-02-22 Saint-Gobain Industrial Ceramics, Inc. Ceramic igniter having improved oxidation resistance, and method of using same
CN1738493A (zh) * 2004-08-21 2006-02-22 雷彼得 多层圆形陶瓷陶瓷电热体及制备工艺
CN105072718A (zh) 2015-08-21 2015-11-18 雷彼得 一种陶瓷电热体
CN106376107A (zh) * 2016-11-24 2017-02-01 常德科锐新材料科技有限公司 大功率氮化硅陶瓷加热片及其内软外硬的制作方法
CN110536491A (zh) * 2019-09-25 2019-12-03 重庆利迈陶瓷技术有限公司 一种两层结构的陶瓷电热体及电烙铁
CN210928014U (zh) * 2019-09-25 2020-07-03 重庆利迈陶瓷技术有限公司 一种两层陶瓷结构电热体生胚、陶瓷电热体及电烙铁

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3600658B2 (ja) * 1995-02-02 2004-12-15 株式会社デンソー セラミックヒータ及びその製造方法
JP3762103B2 (ja) * 1998-07-01 2006-04-05 京セラ株式会社 セラミックヒータ
US6884967B1 (en) * 1999-06-16 2005-04-26 Chongging Le-Mark Ceramic Technology Co. Ltd. Multi-layer ceramic heater element and method of making same
CN2728154Y (zh) * 2004-08-21 2005-09-21 雷彼得 下段开缝的四层陶瓷电热体
CN2868524Y (zh) * 2006-01-25 2007-02-14 申箭峰 发热体、传感器和烙铁头复合装置
CN1884199A (zh) * 2006-06-06 2006-12-27 包头稀土研究院 电烙铁用陶瓷加热芯及加工方法
JP5392463B2 (ja) * 2008-10-31 2014-01-22 白光株式会社 はんだ取扱い器機用熱伝導部材、該熱伝導部材を備えた電気はんだこておよび電気除はんだ工具
US9668302B2 (en) * 2011-03-31 2017-05-30 Kyocera Corporation Ceramic heater
CN103974475A (zh) * 2013-02-06 2014-08-06 博格华纳贝鲁系统有限公司 陶瓷棒和在辅助或液体加热器中将其用作加热棒的应用
JP6214418B2 (ja) * 2014-02-14 2017-10-18 日本特殊陶業株式会社 セラミックヒータ素子、セラミックヒータおよびグロープラグ
JP6296672B2 (ja) 2015-01-13 2018-03-20 太洋電機産業株式会社 半田ごて
CN109526079B (zh) * 2018-12-18 2023-12-15 重庆利迈科技有限公司 一种大电压陶瓷电热体

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5801361A (en) * 1996-01-26 1998-09-01 Saint-Gobain/Norton Industrial Ceramics Corporation Ceramic igniter with hot zone thickness of 0.019 inches or less
CN1185564A (zh) * 1996-11-19 1998-06-24 日本特殊陶业株式会社 陶瓷加热器及其制造方法
US6028292A (en) * 1998-12-21 2000-02-22 Saint-Gobain Industrial Ceramics, Inc. Ceramic igniter having improved oxidation resistance, and method of using same
CN1738493A (zh) * 2004-08-21 2006-02-22 雷彼得 多层圆形陶瓷陶瓷电热体及制备工艺
CN100484337C (zh) 2004-08-21 2009-04-29 雷彼得 多层圆形陶瓷陶瓷电热体及制备工艺
CN105072718A (zh) 2015-08-21 2015-11-18 雷彼得 一种陶瓷电热体
CN106376107A (zh) * 2016-11-24 2017-02-01 常德科锐新材料科技有限公司 大功率氮化硅陶瓷加热片及其内软外硬的制作方法
CN110536491A (zh) * 2019-09-25 2019-12-03 重庆利迈陶瓷技术有限公司 一种两层结构的陶瓷电热体及电烙铁
CN210928014U (zh) * 2019-09-25 2020-07-03 重庆利迈陶瓷技术有限公司 一种两层陶瓷结构电热体生胚、陶瓷电热体及电烙铁

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4037431A4

Also Published As

Publication number Publication date
US20220377849A1 (en) 2022-11-24
EP4037431A1 (en) 2022-08-03
KR102651147B1 (ko) 2024-03-22
CA3154922A1 (en) 2021-04-01
KR20220061204A (ko) 2022-05-12
CN110536491A (zh) 2019-12-03
JP7369863B2 (ja) 2023-10-26
CN110536491B (zh) 2024-07-05
EP4037431A4 (en) 2023-11-01
JP2022550289A (ja) 2022-12-01
MX2022003167A (es) 2022-05-25

Similar Documents

Publication Publication Date Title
WO2021057507A1 (zh) 一种两层结构的陶瓷电热体及电烙铁
CN102939519B (zh) 温度传感器元件、用于制造温度传感器元件的方法和温度传感器
CN111053298B (zh) 柔性发热体及其制造方法和柔性发热组件及气溶胶产生器
JPH10208853A (ja) セラミックヒータ、およびその製造方法
CN110652042A (zh) 电子烘烤烟具及其发热装置
CN109219175A (zh) 一种低温烘烤电子烟发热体及其制备方法
JPH10205753A (ja) セラミックグロープラグ
US4931619A (en) Glow plug for diesel engines
TW201733963A (zh) 陶瓷構件
CN108476558A (zh) 加热器
CN109123805A (zh) 烘烤烟具及其金属基电加热件
WO2021057512A1 (zh) 一种用于陶瓷电热体的复合型材料
CN210928014U (zh) 一种两层陶瓷结构电热体生胚、陶瓷电热体及电烙铁
JP2005315447A (ja) セラミックヒーターおよびグロープラグ
CN105858587B (zh) 用于加热激活微小型自加热吸气剂的热子结构及制作方法
CN112641134A (zh) 发热管及其制造方法和气溶胶产生装置
JP3886699B2 (ja) グロープラグ及びその製造方法
WO2021232250A1 (zh) 加热装置及其制造方法、加热不燃烧烟具
CN205838569U (zh) 用于加热激活微小型自加热吸气剂的热子结构
CN216019092U (zh) 发热管及气溶胶产生装置
CN214594176U (zh) 一种发热体及雾化装置
EP1243859B1 (en) Glow plug arranged for measuring the ionization current of an engine, and a method for manufacturing the same
CN209314979U (zh) 一种电子烟加热用陶瓷发热杯
JP3685623B2 (ja) セラミックヒータ
CN110521279A (zh) 加热器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20868650

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3154922

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2022518166

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227011916

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020868650

Country of ref document: EP

Effective date: 20220425