WO2021057143A1 - 触控面板检测设备和系统 - Google Patents

触控面板检测设备和系统 Download PDF

Info

Publication number
WO2021057143A1
WO2021057143A1 PCT/CN2020/098627 CN2020098627W WO2021057143A1 WO 2021057143 A1 WO2021057143 A1 WO 2021057143A1 CN 2020098627 W CN2020098627 W CN 2020098627W WO 2021057143 A1 WO2021057143 A1 WO 2021057143A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
signal
unit
touch
amplitude
Prior art date
Application number
PCT/CN2020/098627
Other languages
English (en)
French (fr)
Inventor
白国晓
张永志
Original Assignee
云谷(固安)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 云谷(固安)科技有限公司 filed Critical 云谷(固安)科技有限公司
Publication of WO2021057143A1 publication Critical patent/WO2021057143A1/zh
Priority to US17/491,814 priority Critical patent/US11860219B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/282Testing of electronic circuits specially adapted for particular applications not provided for elsewhere
    • G01R31/2829Testing of circuits in sensor or actuator systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material

Definitions

  • the present disclosure relates to detection technology, and more particularly to a touch panel detection device and system.
  • Metal-Mesh-Sensor is a newly emerging touch sensor.
  • the metal grid in the MM Sensor touch technology is composed of extremely thin metal wires, and its impedance is usually less than 10 ohms, which is used to make large-size touch screens.
  • the metal grid sensor also has the characteristics of low power consumption, sensitive touch, long service life, flexible and bendable, waterproof and explosion-proof, and pollution-free. These unique characteristics make MMSensor gradually become the new favorite in the touch field.
  • the detection of the metal grid in the touch panel is mainly a non-contact progressive scan detection. Determine whether the channel is on or off by detecting the presence or absence of signals at both ends of each line.
  • the embodiments of the present disclosure provide a touch panel detection device and system, which improve detection reliability.
  • a touch panel inspection device for detecting a metal grid on the touch panel, and the touch panel inspection device includes:
  • a signal transceiving component the signal transceiving component is movably arranged relative to the metal grid, and the signal transceiving component includes a signal generating unit and a signal receiving unit; the signal generating unit and the signal receiving unit are used to preset The relative positions are arranged on the same surface of the metal grid, and signals are sent and received through capacitive coupling with the metal grid respectively; and
  • the defect detection unit is configured to detect whether each touch unit in the metal grid is defective according to the detection signal received by the signal receiving unit, and determine the position of the defect.
  • a touch panel detection system including a sports device and the touch panel detection device of the first aspect and various possible designs of the first aspect of the present disclosure
  • the motion device is used to control the signal transceiving component to move along the center line of the row direction channel and the center line of the column direction channel of the metal grid, and to indicate the detection position of the signal transceiving component
  • the location information is sent to the defect detection unit.
  • the embodiments of the present disclosure provide a touch panel detection device and system, which are used to detect a metal grid on the touch panel, wherein the metal grid includes a plurality of row-direction channels, and The row-direction channels are insulated and intersected with a plurality of column-direction channels, and the row-direction channels and the column-direction channels are both composed of touch units connected to each other.
  • the touch panel inspection device includes: a signal transceiving component and a defect detection unit; wherein the signal transceiving component includes a signal generating unit and a signal receiving unit; the signal generating unit and the signal receiving unit are used to preset Are arranged on the same surface of the metal grid, and send and receive signals through capacitive coupling with the metal grid respectively; the defect detection unit is used for detecting signals received by the signal receiving unit, Each touch unit in the metal grid is detected, thereby realizing detection of defects on the metal grid of the touch panel, and positioning the defects in the touch unit, thereby improving the reliability of detection.
  • Figure 1a is a schematic diagram of the structure of a metal grid
  • Fig. 1b is a schematic diagram of the microstructure of the metal grid shown in Fig. 1a;
  • FIG. 2 is a schematic structural diagram of a touch panel inspection device provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of the detection principle of a touch panel detection device provided by an embodiment of the disclosure
  • FIG. 4 is a schematic diagram of detecting a metal grid by a signal transceiving component provided by an embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of a signal transceiving assembly with two signal receiving units provided by an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of another touch panel inspection device provided by an embodiment of the present disclosure.
  • FIG. 7 is a comparative example of detection signal waveforms corresponding to several defect types provided by the embodiments of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a signal transceiving assembly with two auxiliary receiving units provided by an embodiment of the present disclosure
  • FIG. 9 is a schematic structural diagram of another signal transceiving assembly with two auxiliary receiving units provided by an embodiment of the present disclosure.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. It should be understood that in the present disclosure, “including” and “having” and any variations thereof are intended to cover non-exclusive inclusions. Depending on the context, “if” as used herein can be interpreted as “when” or “when” or “in response to determination” or “in response to detection”.
  • the metal grid sensor uses the metal grid as the conductive functional layer of the sensor to realize the sensing and driving functions.
  • electrical testing of the metal grid is an important step.
  • Figure 1a is a schematic diagram of the structure of a metal grid.
  • the diamond-shaped blocks formed by grids in FIG. 1 illustrate the touch units arranged in the row direction and the column direction of the metal grid 10 and the channels formed by the touch units.
  • the touch unit in the column direction channel is selected by the dashed frame
  • the part of the touch unit along the dotted line is the main path of the column direction channel
  • the remaining parts are branches. Among them, a branch remains as shown in Figure 1a.
  • FIG. 1b is a schematic diagram of the microstructure of the metal grid shown in Fig. 1a. It can be seen from Figure 1b that all touch units in the metal grid are composed of the same hollowed-out traces in the grid shape, and the grid structure uses discontinuous fractures to realize the connection between the unconnected touch units in Figure 1b. Clearance.
  • the touch units in the row direction constitute the row direction channel
  • the touch units in the column direction constitute the column direction channel.
  • the metal grid 10 usually includes a plurality of row-direction channels and a plurality of column-direction channels insulated and intersected with the row-direction channels. unit.
  • each touch unit is provided with a hollow trace for sensing electrical signals, and the hollow portion provides a gap for the light from the pixel below.
  • the metal used for the row-direction channels and the column-direction channels in the metal grid 10 may be, for example, titanium aluminum titanium, or molybdenum, which is not limited in the present disclosure.
  • the non-contact electrical detection technology in the related technology usually adopts cutting-type progressive scanning. Although the main path abnormality of the channel can be tested, when the branch of the channel is abnormal, the entire channel can still be turned on. Will not be able to test out. In addition, the existing inspection equipment can only locate the inspection at the channel level, and the defect location is not accurate enough.
  • the present disclosure discloses a touch panel detection device, which utilizes the detection signal of an inductive capacitor through the capacitive coupling of at least one small-sized signal transceiving component and a metal grid. Realize the detection of each touch unit.
  • FIG. 2 is a schematic structural diagram of a touch panel inspection device provided by an embodiment of the present disclosure.
  • the touch panel detection device 20 shown in the figure is used to detect the metal grid 10 (see FIG. 4 or 5) on the touch panel.
  • the touch panel inspection device 20 includes: a signal transceiving component 21 and a defect inspection unit 22.
  • the signal transceiving component 21 is used to capacitively couple with the metal grid 10 to obtain a detection signal passing through the detection area.
  • the signal transceiving component is movably arranged relative to the metal grid, and the signal transceiving component is moved to realize the detection of the metal grid.
  • the coupling distance between the signal transceiving component 21 and the metal grid may be in the range of 10 ⁇ m ⁇ 10 ⁇ m. Specifically, the capacitive coupling distance can be adjusted according to actual conditions.
  • the signal transceiving component 21 includes a signal generating unit 211 and a signal receiving unit 212.
  • the signal generating unit 211 is used to send an original signal, and the original signal generates a detection signal on the metal grid 10, and the signal receiving unit 212 is used to receive the detection signal at a fixed distance from the signal generating unit 211 on the metal grid 10.
  • FIG. 3 is a schematic diagram of the detection principle of the touch panel detection device provided by an embodiment of the disclosure.
  • the distance between the emitting surface of the signal generating unit 211 and the metal grid to be tested is d1
  • the distance between the receiving surface of the signal receiving unit 212 and the metal grid to be measured is d2. Therefore, when a high-frequency signal is applied between the signal generating unit 211 and the signal receiving unit 212, the transmitting surface of the signal generating unit 211 and the metal grid to be measured can approximately form a plate capacitor C1.
  • the receiving surface of the signal receiving unit 212 and the metal grid to be measured can approximately form a plate capacitor C2.
  • the transmitting surface of the signal generating unit 211 and the receiving surface of the signal receiving unit 212 serve as one of the plates of the flat capacitor, and may be made of metal materials.
  • the high-frequency voltage signal can pass through the plate capacitor C1, the metal grid to be tested and the plate capacitor C2, and finally the signal receiving unit
  • the receiving surface of 212 receives.
  • the measurement object shown in FIG. 3 is the metal grid through which the high-frequency voltage signal passes. If the metal grid to be tested has no defect position, the detection signal received by the signal receiving unit 212 is consistent with the fluctuation law of the waveform of the high-frequency voltage signal loaded by the signal generating unit 211.
  • FIG. 4 is a schematic diagram of detecting a metal grid by a signal transceiving component provided by an embodiment of the present disclosure.
  • the signal generating unit 211 and the signal receiving unit 212 are configured to be arranged on the same surface of the metal grid 10 in a preset relative position, and send through capacitive coupling with the metal grid 10 respectively. And receive the signal. It can be seen from FIG.
  • the layout area of the signal generating unit 211 and the signal receiving unit 212 only covers a partial metal grid, and only the metal grid within the layout area can be judged; in order to achieve a comprehensive detection of the metal grid, the present disclosure
  • the provided signal generating unit 211 and signal receiving unit 212 are movably arranged relative to the metal grid.
  • the preset relative position can be understood as the relative position is fixed, which requires that the signal generating unit 211 and the signal receiving unit 212 move synchronously during the movement scanning detection process, so as to reduce the detection accuracy caused by the relative position change. Impact.
  • the process of mobile scanning detection is to movably set the signal transceiver component 21 above the metal grid to be tested, maintain a predetermined gap with the metal grid to be tested, and load the signal transceiver component 21 with a stable high frequency. After the signal, it forms a capacitive coupling path with the metal grid under test.
  • the local metal grid through which the capacitive coupling path passes is the metal grid to be tested as shown in FIG. 3.
  • the signal transceiving component 21 is controlled to move along the row direction of the metal grid to be measured (the X direction shown in FIG. 4), and the detection signal received by the signal receiving unit 212 is collected during the movement.
  • the detection signal waveform will be abnormal.
  • the detection signal waveform can be used to determine whether the touch unit on the metal grid to be tested is defective, and to determine the position of the defect.
  • the aforementioned metal grid 10 itself is not additionally powered, but the original signal is sent by the signal generation unit 211 to be coupled to obtain power, and then flows through the electrically connected line and then is received by the signal receiving unit 212.
  • the signal transceiving component 21 and the metal grid 10 can be simply understood as a capacitor structure. Due to the principle that the size of the capacitance value is proportional to the area of the sensing plate, the larger the area of the capacitance plate, the larger the capacitance value, which can be understood as the greater the amplitude of the electrical signal.
  • the metal mesh 10 has disconnection defects (including the main circuit disconnection defect and the branch circuit disconnection defect), then the coupling area is smaller than the normal coupling area, and the signal receiving The amplitude of the detection signal received by the unit 212 is smaller than the normal amplitude. Also, if there are residual defects in the metal grid in the detection area between the signal generating unit 211 and the signal receiving unit 212 (including the residual defects that cause the shorting of adjacent channels and the residual defects that do not affect the electrical performance), then the coupling area is greater than that of the normal coupling. The area is large, and the amplitude of the detection signal received by the signal receiving unit 212 is greater than the normal amplitude. In this way, non-contact detection of the metal grid can be realized.
  • the defect detection unit 22 connected to the signal transceiving component 21 is configured to detect each touch unit in the metal grid 10 according to the detection signal received by the signal receiving unit 212.
  • the signal transceiving component 21 may use the touch unit as the smallest detection unit.
  • the signal transceiving component 21 uses the touch unit as the minimum moving distance unit, and the detected center line is, for example, coincident with the center line of the channel where the touch unit under test is located, so as to increase the coverage area of the touch unit under test by the signal transceiving component 21 and Detection accuracy.
  • the defect detection unit 22 analyzes the detection signal received by the signal receiving unit 212, so as to determine whether the touch unit corresponding to the detection signal has a defect and the possible defect type. For the specific analysis method, refer to the subsequent embodiment examples of the defect detection unit 22.
  • This embodiment provides a touch panel detection device 20 for detecting the metal grid 10 on the touch panel, wherein the row direction channel and the column direction channel on the metal grid 10 are all connected to each other.
  • Control unit composition In the touch panel inspection device 20, the signal transceiving component 21 includes a signal generating unit 211 and a signal receiving unit 212; the signal generating unit 211 and the signal receiving unit 212 are used for arranging on the same part of the metal grid 10 in a preset relative position.
  • the defect detection unit 22 is used to detect each touch unit in the metal mesh 10 according to the detection signal received by the signal receiving unit 212, and to send and receive signals through capacitive coupling with the metal mesh 10, respectively. The detection of defects on the metal grid of the touch panel is realized, and the positioning of the defects in the touch unit can be realized, and the detection reliability is improved.
  • the following are some optional embodiments of the signal transceiving component 21.
  • the detection width of the signal transceiving component 21 is greater than the size of a single touch unit in the width direction, and is less than or equal to the size of three touch units in the width direction, wherein the detection
  • the width is the size of the detection area of the signal transceiving component 21 in the width direction, and the width direction is a direction perpendicular to the detection direction.
  • the detection direction is the X direction
  • the width direction is the Y direction.
  • the detection width may be the maximum distance in the Y direction that the signal transceiving component 21 can detect.
  • the detection area here can be specifically obtained by experiment.
  • the width of the signal generating unit 211 is the size of one touch unit in the width direction; the width of the signal receiving unit 212 is larger than the size of a single touch unit in the width direction, and is smaller than Or equal to the size of the three touch units in the width direction.
  • the detection length of the signal transceiving component 21 is greater than or equal to the size of a single touch unit in the length direction, wherein the detection length is the length of the detection area of the signal transceiving component 21 in the length direction.
  • the size, the length direction is the direction consistent with the detection direction. Taking the scanning detection in the X direction in FIG. 4 as an example, the detection direction and the length direction are the X direction.
  • the detection length may be the maximum distance in the X direction that the signal transceiving component 21 can detect.
  • the detection length of the signal transceiving component 21 can be understood as the connection between the signal generating unit 211 and the one signal generating unit 211 and the metal grid 10.
  • the one signal receiving unit 212 respectively performs the X-direction distance of the coupling.
  • the detection area here can also be specifically obtained by experiment.
  • the detection signal of the signal transceiving component 21 can detect at least one complete touch unit at a time, and each touch unit is at least partially overlapped and tested, which improves the reliability and accuracy of detection Sex.
  • multiple signal transceiving components 21 may be provided to scan multiple rows/columns at the same time.
  • the touch panel inspection device includes multiple signal transceiving components 21 and multiple signal transceiving components 21.
  • the components 21 are arranged side by side in the width direction, wherein the width direction is a direction perpendicular to the detection direction.
  • each signal transceiving component 21 is used to detect a row-direction channel or a column-direction channel.
  • the detection areas of multiple signal transceiving components 21 are distributed at equal intervals, and two adjacent signal transceiving components 21
  • the center distance of the component 21 is the size of the N touch units in the width direction, and the N is an integer greater than or equal to 2.
  • the center-to-center spacing is equal to the size of two touch units in the width direction, and the circuit for detecting the X-direction needs to scan at least 3 times to ensure detection accuracy and high positioning accuracy. Synchronous detection by multiple signal transceiving components 21 improves the detection efficiency. Moreover, by limiting the center-to-center distance, an integer multiple of the number of inspections can cover all areas, which further improves the reliability of the inspection.
  • the signal transceiving component 21 may include one signal generating unit 211 and one signal receiving unit 212, but this embodiment is not limited to this. It can also be set that the signal transceiving component 21 includes a single signal generating unit 211 and two signal receiving units 212.
  • FIG. 5 is a schematic structural diagram of a signal transceiving assembly with two signal receiving units provided by an embodiment of the present disclosure. As shown in FIG. 5, two signal receiving units 212 are arranged along the detection direction, the signal generating unit 211 is arranged between the two signal receiving units 212, and the signal generating unit 211 is connected to the two signal receiving units 211 respectively. The distance between the receiving units 212 is the same.
  • the capacitive coupling position of a single signal generating unit 211 and the metal grid 10 and the capacitive coupling of the two signal receiving units 212 and the metal grid 10 The position is aligned with the center of the row direction channel or the column direction channel of the metal grid 10 in the detection direction.
  • the signal generating unit 211 and the two signal receiving units 212 being in a straight line, the accuracy of detection and positioning is further improved.
  • the signal transceiving component 21 may include a signal generating unit 211 and a signal receiving unit 212.
  • the defect detection unit 22 connected to the signal transceiver component 21 may specifically include a signal comparison unit 221 and a processing unit 222 as shown in FIG. 6.
  • the signal comparison unit 221 is configured to obtain the detection signal from the signal receiving unit 212, and determine the abnormal band according to the change of the waveform of the detection signal.
  • FIG. 7 is a comparative example of detection signal waveforms corresponding to several defect types provided by the embodiments of the present disclosure.
  • the normal waveform should be a sine wave, and the bands with increased and decreased amplitudes are abnormal bands with defects in the corresponding positions.
  • the signal waveform is a time-domain waveform, and the detection position corresponding to each waveband is determined, and the defective touch unit can be determined by calculating the moving position of the signal transceiving component 21.
  • the processing unit 222 shown in FIG. 6, which is used to determine the defective touch unit in the metal mesh 10 according to the detection position of the signal transceiving component 21 at the time corresponding to the abnormal waveband, and to detect the abnormality Whether the amplitude of the band is greater than the average amplitude of multiple adjacent bands is judged.
  • the processing unit 222 determines the amplitude variance of the abnormal waveband and the adjacent multiple wavebands Is it greater than the preset threshold:
  • the defect type is that the touch unit corresponding to the detection position has a residual defect; if not, it is determined that the defect type is that the touch unit corresponding to the detection position has a short-circuit defect with an adjacent channel.
  • the processing unit 222 determines whether the amplitude of the abnormal band is 0:
  • the defect type is that there is a main circuit disconnection defect in the touch unit corresponding to the detection position; if it is determined that the amplitude of the abnormal band is not 0, then It is determined that the defect type is a branch disconnection defect in the touch unit corresponding to the detection position.
  • the touch panel inspection device 20 in this embodiment can distinguish the remaining defects in the touch unit and the short-circuiting of adjacent channels, and can also distinguish the disconnection defects of the main circuit and the branch circuit.
  • the defect detection capability of the system improves the detection reliability of the touch panel.
  • the implementation principle can refer to the embodiment in which the signal transceiving component 21 includes one signal generating unit 211 and one signal receiving unit 212 , And there may be two defect detection units 22, and the detection signals of the two signal receiving units 212 are respectively analyzed.
  • the implementation principle and effect are similar to those described above, and will not be repeated here.
  • the signal transceiving component 21 may be composed of one signal generating unit 211 and one signal receiving unit 212, or may be composed of one signal generating unit 211 and multiple signal receiving units 212.
  • the signal transceiving component may further include two auxiliary receiving units 213 in addition to the signal generating unit 211 and the signal receiving unit 212.
  • FIG. 8 which is a schematic structural diagram of a signal transceiving assembly with two auxiliary receiving units provided by an embodiment of the present disclosure.
  • FIG. 9 which is a schematic structural diagram of another signal transceiving assembly with two auxiliary receiving units provided by an embodiment of the present disclosure.
  • solid line diamonds indicate the touch units connected in the row direction channel
  • dotted diamond shapes indicate the touch unit connected in the column direction channel.
  • the structure of the auxiliary receiving unit 213 here is the same as that of the signal receiving unit 212, both of which are used to receive the detection signal on the metal grid 10, but the function of the auxiliary receiving unit 213 is more to provide an auxiliary reference for determining the defect type.
  • the two auxiliary receiving units 213 are symmetrically arranged on both sides of the signal generating unit 211 in a direction perpendicular to the detection direction, and the detection distance between the two auxiliary receiving units 213 is less than Or equal to the size of two touch units in the detection width.
  • the detection distance of the auxiliary receiving unit 213 is a distance that can be detected in a direction perpendicular to the detection direction.
  • the detection distance is the distance between the two auxiliary receiving units 213 and the capacitive coupling position of the metal grid.
  • the detection width of the signal receiving unit 212 in this embodiment is the width of one touch unit; the detection width of one auxiliary receiving unit 213 is smaller than the width of one touch unit.
  • the location layout is as follows: the signal receiving unit 212 and the signal generating unit 211 are respectively in the middle of the channel under test, and the two auxiliary receiving units 213 are on both sides of the signal receiving unit 212 and on the center lines of the channels on both sides.
  • the signal transceiving components shown in Figs. 8 and 9 are all layouts when detecting in the row direction.
  • the signal transceiving components include two signal receiving units 212, two auxiliary receiving units 213, and one signal generating unit 211.
  • the metal grid is capacitively coupled to two opposite units, and the distance between the edges of the two coupling regions away from the signal generating unit is the detection distance of the two opposite units.
  • the two relative units may be two signal receiving units 212 or two auxiliary receiving units 213. Among them, the detection distance between the two signal receiving units 212 forms the detection length of the signal transceiver component.
  • Figure 8 shows that the detection length of the signal transceiver component is 3 touch units.
  • 9 shows that the detection length of the signal transceiving component is 5 touch units.
  • the detection distance between the two auxiliary receiving units 213 forms the detection width of the signal transceiver component.
  • Figures 8 and 9 both show that the detection width of the signal transceiving component is 3 touch units.
  • the above-mentioned length direction is the detection direction, and the width direction is the direction perpendicular to the detection direction.
  • 8 and 9 are only schematic diagrams of the detection length and detection width of the signal transceiving component, and the present disclosure is not limited thereto.
  • the amplitude of the waveform set on the auxiliary receiving unit 213 close to the previous row/column channel will increase; similarly, if the touch unit is connected to the same If the adjacent next row/column channel is short-circuited, the amplitude of the waveform on the auxiliary receiving unit 213 arranged close to the next row/column channel will increase.
  • the defect detection unit (not shown in the figure) adopted is similar to the structure of the defect detection unit 22 shown in FIG. 6, and may also include a signal
  • the comparison unit 221 and the processing unit 222 have different functions.
  • the signal comparison unit 221 is configured to obtain the detection signal from the signal receiving unit 212, obtain the first auxiliary signal and the second auxiliary signal from the two auxiliary receiving units 213, and
  • the abnormal waveband is determined according to the change of the waveform of the detection signal; and the first auxiliary waveband and the second auxiliary waveband are respectively determined in the waveforms of the first auxiliary signal and the second auxiliary signal according to the detection time corresponding to the abnormal waveband.
  • Auxiliary band When the waveform amplitude increases, the first auxiliary signal and the second auxiliary signal can help improve the accuracy of determining the defect type.
  • the processing unit 222 shown in FIG. 6 is configured to determine the defective touch unit in the metal grid according to the detection position of the signal transceiving component 21 at the time corresponding to the abnormal waveband, and determine whether the amplitude of the abnormal waveband is It is judged if it is larger than the average amplitude of multiple adjacent bands.
  • the defect type is that the touch unit corresponding to the detection position has a short-circuit defect with an adjacent channel; if not, it is determined that the defect type is that the touch unit corresponding to the detection position has a residual defect.
  • residual defects in a single channel may not affect the electrical performance of the touch panel, such as residues on the main circuit or branch circuit of the touch unit.
  • the remaining part causes the local light-passing area to be reduced, and the light from the pixels below it is blocked, causing local dark spots and affecting the display effect. Therefore, the detection of residual defects on the main or branch circuits of the touch unit is very important.
  • the auxiliary receiving unit 213 the detection accuracy of the short-circuit defect of the touch unit and the adjacent channel and the residual defect of the touch unit is improved, and the detection of the short-circuit defect of the adjacent channel has higher accuracy and reliability. .
  • the defect type is that there is a main circuit disconnection defect in the touch unit corresponding to the detection position; if it is determined that the amplitude of the abnormal band is not 0, then It is determined that the defect type is a branch disconnection defect in the touch unit corresponding to the detection position.
  • the present disclosure also provides a touch panel inspection system, including a sports device and the touch panel inspection device 20 described in any of the foregoing embodiments.
  • the motion device is used to control the signal transceiving component 21 to move along the center line of the row direction channel and the center line of the column direction channel of the metal grid 10, and to indicate the signal transceiving component 21
  • the location information of the detection position is sent to the defect detection unit 22.
  • the movement device here may be, for example, a movement device with an X movement axis and a Y movement axis.
  • the X movement axis drives the touch panel detection device 20 to detect the metal grid 10 on the touch panel in the X direction, and then passes Y
  • the moving shaft drives the touch panel inspection device 20 to detect the metal grid 10 on the touch panel in the Y direction.
  • the sports equipment may include a stage and a motion arm matched with the stage. After the motion device control signal transceiver component 21 is tested in the X direction, the stage carrying the metal grid can be rotated by 90 degrees, and then the Y direction test can be performed. It is also possible to change the scanning in the X-direction to the scanning in the Y-direction by the motion arm control signal transceiving assembly 21.
  • the implementation of the sports equipment is not limited here.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Electromagnetism (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种触控面板检测设备和系统,用于对触控面板上的金属网格(10)进行检测,金属网格(10)上的行方向通道和列方向通道均由相互连接的触控单元组成。在触控面板检测设备(20)中,信号收发组件(21)包括信号发生单元(211)、信号接收单元(212),用于以预设的相对位置布置在金属网格(10)的同一面,并通过分别与金属网格(10)的电容耦合发送和接收信号;缺陷检测单元(22)用于根据信号接收单元(212)接收到的检测信号,对金属网格(10)中各触控单元进行检测,由此实现对触控面板的金属网格(10)上的缺陷检测,并能够实现缺陷在触控单元中的定位,提高了检测可靠性。

Description

触控面板检测设备和系统 技术领域
本公开涉及检测技术,尤其涉及一种触控面板检测设备和系统。
背景技术
随着一体机、大尺寸笔记本电脑等装置采用触控屏,触控面板的尺寸逐渐增大,所需要处理的数据量也逐渐增加。因此,需要触控面板具有更小的阻抗,以适应大尺寸触控屏的需求。金属网格传感器(Metal-Mesh-Sensor,简称MM Sensor)是目前新兴的一种触控感测器。相比传统触控技术(以氧化铟锡为触控材料),MM Sensor触控技术中金属网格是由极细的金属线交叉组成,其阻抗通常小于10欧姆,是制作大尺寸触控屏的首选技术,此外金属网格传感器还具有低功耗、触控灵敏、使用寿命长,以及柔性可弯曲、防水防爆、无污染等特性。这些独有的特性使MMSensor逐步成为触摸领域的新宠。
在触控面板制造过程中,通常需要对金属网格中线路的通断进行检测。相关技术中,对触控面板中金属网格的检测主要是非接触式的逐行扫描检测。通过对每行两端检测信号有无,确定该通道的通断情况。
然而,现有的检测设备的检测可靠性还不够高。
发明内容
本公开实施例提供一种触控面板检测设备和系统,提高了检测可靠性。
本公开实施例的第一方面,提供一种触控面板检测设备,用于对所述触控面板上的金属网格进行检测,所述触控面板检测设备包括:
信号收发组件,所述信号收发组件相对所述金属网格可移动设置且所述 信号收发组件包括信号发生单元和信号接收单元;所述信号发生单元和所述信号接收单元用于以预设的相对位置布置在所述金属网格的同一面,并通过分别与所述金属网格的电容耦合发送和接收信号;以及
缺陷检测单元,所述缺陷检测单元用于根据所述信号接收单元接收到的检测信号,检测所述金属网格中各触控单元是否有缺陷,并确定缺陷位置。
本公开实施例的第二方面,提供一种触控面板检测系统,包括运动设备和本公开第一方面及第一方面各种可能设计的所述触控面板检测设备;
其中,所述运动设备用于控制所述信号收发组件沿所述金属网格的行方向通道的中心线和列方向通道的中心线移动,并将用于指示所述信号收发组件的检测位置的定位信息发给所述缺陷检测单元。
本公开实施例提供的一种触控面板检测设备和系统,用于对所述触控面板上的金属网格进行检测,其中,所述金属网格包括多个行方向通道,和与所述行方向通道绝缘相交的多个列方向通道,所述行方向通道和所述列方向通道均由相互连接的触控单元组成。所述触控面板检测设备包括:信号收发组件和缺陷检测单元;其中,所述信号收发组件包括信号发生单元、信号接收单元;所述信号发生单元和所述信号接收单元,用于以预设的相对位置布置在所述金属网格的同一面,并通过分别与所述金属网格的电容耦合发送和接收信号;所述缺陷检测单元用于根据所述信号接收单元接收到的检测信号,对所述金属网格中各触控单元进行检测,由此实现对触控面板的金属网格上的缺陷检测,并能够实现缺陷在触控单元的定位,提高了检测可靠性。
附图说明
图1a是一种金属网格的结构示意图;
图1b是图1a所示金属网格的微观结构示意图;
图2是本公开实施例提供的一种触控面板检测设备结构示意图;
图3为本公开实施例提供的一种触控面板检测设备的检测原理示意图
图4是本公开实施例提供的一种信号收发组件对金属网格进行检测的示意图;
图5是本公开实施例提供的一种具有2个信号接收单元的信号收发组件结构示意图;
图6是本公开实施例提供的另一种触控面板检测设备结构示意图;
图7是本公开实施例提供的几种缺陷类型对应的检测信号波形对比示例;
图8是本公开实施例提供的一种具有2个辅助接收单元的信号收发组件结构示意图;
图9是本公开实施例提供的另一种具有2个辅助接收单元的信号收发组件结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。应当理解,在本公开中,“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。取决于语境,如在此所使用的“若”可以被解释成为“在……时”或“当……时”或“响应于确定”或“响应于检测”。
下面以具体地实施例对本公开的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
金属网格传感器是以金属网格作为传感器的导电功能层实现感应和驱动 功能。在采用金属网格传感器的触控面板的制作过程中,对其中金属网格进行电学检测是一个重要环节。参见图1a,是一种金属网格的结构示意图。图1中以格子构成的菱形块,示意了金属网格10在行方向和列方向排列的触控单元,及触控单元构成的通道。图1a中以虚线框选出在列方向通道上的触控单元,触控单元沿虚线的部分为列方向通道的主路,其余部分均为支路。其中,一种支路残留如图1a所示。参见图1b,是图1a所示金属网格的微观结构示意图。从图1b中可见,金属网格中所有触控单元都是由相同的方格形状镂空的走线组成,且方格结构中以不连续的断口实现图1b中不相连的触控单元之间的间隙。在图1a中,行方向的触控单元构成行方向通道,列方向的触控单元构成列方向通道。目前,金属网格10通常包括多个行方向通道,和与所述行方向通道绝缘相交的多个列方向通道,所述行方向通道和所述列方向通道分别包括相互连接的若干个触控单元。行方向通道与列方向通道之间相交处为绝缘交叠,行方向通道与列方向通道上的最小重复单元即为触控单元。参见图1b,每个触控单元内设置有用于感应电信号的镂空走线,其镂空处为下方像素出光提供了间隙。金属网格10中行方向通道与列方向通道采用的金属,例如可以是钛铝钛,或者钼等,本公开不对此进行限定。
金属网格传感器在使用过程中,如果金属网格的行方向通道与列方向通道上单独存在断开缺陷或残留缺陷,或者相邻通道之间发生短接,都会影响触控效果。其中,断开缺陷又分为主路断开和支路断开。目前相关技术中的非接触式电学检测技术通常采用切割式逐行扫描,对于通道的主路异常虽可以测试出,但在通道的支路异常时,由于整条通道仍可以导通,其缺陷将无法测试出。且现有的检测设备仅能将检测定位在通道级别,缺陷定位不够准确。
为了提高对触控面板的检测可靠性和准确性,本公开公开了一种触控面板检测设备,通过至少一个小尺寸的信号收发组件与金属网格的电容耦合,利用感应电容的检测信号,实现对各触控单元进行检测。下面结合附图和具 体实施例对本公开的各种实现方式进行介绍和举例。
参见图2,是本公开实施例提供一种触控面板检测设备结构示意图。如图所示的触控面板检测设备20,用于对所述触控面板上的金属网格10(见图4或5)进行检测。其中,所述触控面板检测设备20包括:信号收发组件21和缺陷检测单元22。信号收发组件21用于与金属网格10电容耦合,以获取经过检测区域的检测信号,所述信号收发组件相对所述金属网格可移动设置,通过信号收发组件的移动实现对金属网格的全面检测。其中,信号收发组件21与金属网格之间的耦合距离可以是10μm±10μm的范围,具体可根据实际情况调整电容耦合的距离。
具体地,信号收发组件21包括信号发生单元211和信号接收单元212。信号发生单元211用于发出原始信号,原始信号在金属网格10上产生检测信号,信号接收单元212用于在金属网格10上与信号发生单元211固定距离的位置,接收检测信号。
参见图3,图3为本公开实施例提供的触控面板检测设备的检测原理示意图。如图3所示,当信号发生单元211和信号接收单元212均置于待测触控面板的金属网格上方时,信号发生单元211的发射面与待测金属网格之间的距离为d1,信号接收单元212的接收面与待测金属网格之间的距离为d2。因此,在信号发生单元211和信号接收单元212之间施加高频信号时,信号发生单元211的发射面与待测金属网格可以近似构成平板电容C1。信号接收单元212的接收面与待测金属网格可以近似构成平板电容C2。信号发生单元211的发射面和信号接收单元212的接收面作为平板电容的其中一个极板,可以由金属材料制成。
根据电容通高频信号的原理,通过向信号发生单元211的发射面加载高频电压信号,则高频电压信号可以经平板电容C1,待测金属网格以及平板电容C2,最后由信号接收单元212的接收面接收。图3所示的测量对象为该高频电压信号所经过的金属网格。若待测金属网格无缺陷位置,信号接收单元 212接收到的检测信号与信号发生单元211加载的高频电压信号的波形的波动规律一致。
参见图4,图4是本公开实施例提供一种信号收发组件对金属网格进行检测的示意图。如图4所示,信号发生单元211和信号接收单元212,用于以预设的相对位置布置在所述金属网格10的同一面,并通过分别与所述金属网格10的电容耦合发送和接收信号。从图4可以看出,该信号发生单元211和信号接收单元212的布设面积仅覆盖局部金属网格,只能判断布设面积内金属网格的情况;为了实现金属网格的全面检测,本公开所提供的信号发生单元211和信号接收单元212相对于金属网格可移动设置。如此,预设的相对位置可以理解为相对位置固定不变,这就要求在移动扫描检测的过程中,信号发生单元211和信号接收单元212同步移动,以减少因相对位置改变而对检测精确度的影响。
移动扫描检测的过程,例如是将信号收发组件21可移动地设置在待测金属网格的上方,与待测金属网格之间保持预定的间隙,并在信号收发组件21加载稳定的高频信号后与下方待测金属网格形成电容耦合通路。该电容耦合通路经过的局部金属网格则为图3所示的待测金属网格。控制信号收发组件21沿待测金属网格的行方向移动(图4所示的X方向),并在移动的过程中对信号接收单元212接收的检测信号进行采集。在信号收发组件21移动到或接近缺陷位置时,检测信号波形会出现异常。可以通过检测信号波形,判断待测金属网格上的触控单元是否有缺陷,并确定缺陷位置。
上述金属网格10本身不另外加电,而是由信号发生单元211发出原始信号而耦合获电,再流经电性相连的线路后由信号接收单元212接收。可以简单地将信号收发组件21与金属网格10理解为电容结构。由于电容值的大小与感应极板的面积成正比的原理,电容极板的面积越大,电容值越大,可以理解为电信号的幅值越大。假如信号发生单元211和信号接收单元212之间检测区域中,金属网格10存在断开缺陷(包括主路断开缺陷和支路断开缺陷), 那么耦合面积比正常耦合面积小,信号接收单元212接收到的检测信号幅值小于正常幅值。又假如信号发生单元211和信号接收单元212之间检测区域中,金属网格存在残留缺陷(包括造成相邻通道短接的残留缺陷和不影响电性能的残留缺陷),那么耦合面积比正常耦合面积大,信号接收单元212接收到的检测信号幅值大于正常幅值。由此,可以实现对金属网格的非接触检测。
与信号收发组件21相连的缺陷检测单元22,用于根据所述信号接收单元212接收到的检测信号,对所述金属网格10中各触控单元进行检测。如图3所示的检测方式中,信号收发组件21可以是以触控单元为最小检测单元。信号收发组件21以触控单元为最小移动距离单位,其检测的中线例如是与被测触控单元所在通道的中心线重合,以提高信号收发组件21对被测的触控单元的覆盖面积和检测准确性。缺陷检测单元22通过对信号接收单元212接收到的检测信号进行分析,从而对检测信号对应的触控单元是否存在缺陷,以及可能存在的缺陷类型进行判断。具体的分析方式可参见后续对缺陷检测单元22的实施例举例。
本实施例提供了一种触控面板检测设备20,用于对触控面板上的金属网格10进行检测,其中,金属网格10上的行方向通道和列方向通道均由相互连接的触控单元组成。在触控面板检测设备20中,信号收发组件21包括信号发生单元211、信号接收单元212;信号发生单元211和信号接收单元212,用于以预设的相对位置布置在金属网格10的同一面,并通过分别与金属网格10的电容耦合发送和接收信号;缺陷检测单元22用于根据信号接收单元212接收到的检测信号,对金属网格10中各触控单元进行检测,由此实现对触控面板的金属网格上的缺陷检测,并能够实现缺陷在触控单元的定位,提高了检测可靠性。
为了提高上述图4所示实施例中的信号收发组件21的检测准确性和可靠性,以下为信号收发组件21的一些尺寸的可选实施例。
在一些实施例中,信号收发组件21的检测宽度大于单个所述触控单元在宽度方向上的尺寸,且小于或等于3个所述触控单元在宽度方向上的尺寸,其中,所述检测宽度是所述信号收发组件21的检测区域在宽度方向上的尺寸,所述宽度方向是与检测方向相垂直的方向。以图4中对X方向的扫描检测为例,检测方向为X方向,宽度方向则为Y方向。检测宽度可以是信号收发组件21可以检测到的Y方向的最大距离。这里的检测区域可以具体以试验获取为准。通过对检测宽度的限定,保证了信号收发组件21可以跨在两个通道之间,或三个通道之间,由此实现对触控单元与相邻通道之间是否存在短接缺陷的检测。在本实施例的一些实现方式中,信号发生单元211的宽度为一个触控单元在宽度方向上的尺寸;信号接收单元212的宽度大于单个所述触控单元在宽度方向上的尺寸,且小于或等于3个所述触控单元在宽度方向上的尺寸。
在一些实施例中,信号收发组件21的检测长度大于或等于单个所述触控单元在长度方向上的尺寸,其中,所述检测长度是所述信号收发组件21的检测区域在长度方向上的尺寸,所述长度方向是与检测方向一致的方向。以图4中对X方向的扫描检测为例,检测方向和长度方向为X方向。检测长度可以是信号收发组件21可以检测到的X方向的最大距离。例如,在信号收发组件21包含1个信号发生单元211和1个信号接收单元212的实施例中,信号收发组件21的检测长度可以理解为金属网格10上与该1个信号发生单元211和该1个信号接收单元212,分别进行耦合的X方向距离。这里的检测区域也可以具体以试验获取为准。通过对检测长度的限定,使信号收发组件21的检测信号,每次可以对至少一个完整的触控单元进行检测,且每个触控单元都至少部分被重叠测试,提高检测的可靠性和准确性。
在一些实施例中,可以设置多个信号收发组件21以同时对多行/列进行扫描检测,例如所述触控面板检测设备包括多个所述信号收发组件21,且多个所述信号收发组件21在宽度方向上排列设置,其中,所述宽度方向是与检 测方向相垂直的方向。而为了提高检测的准确性,以每个信号收发组件21检测一行方向通道或列方向通道,多个所述信号收发组件21的检测区域之间等间隔分布,且相邻两个所述信号收发组件21的中心间距,为N个所述触控单元在宽度方向上的尺寸,所述N为大于或等于2的整数。例如,X方向检测时,中心间距等于2个触控单元在宽度方向上的尺寸,则检测X方向的电路需要至少扫描3次,从而保证检测精确度及定位高精度。通过多个信号收发组件21同步检测,提高了检测效率。并且,通过对中心间距的限定,整数倍的检测次数能正好覆盖所有面积,进一步提高了检测的可靠性。
在上述实施例中,信号收发组件21可以包括1个信号发生单元211和1个信号接收单元212,但本实施例不限于此。还可以设置信号收发组件21包括单个信号发生单元211和2个信号接收单元212。参见图5,是本公开实施例提供的一种具有2个信号接收单元的信号收发组件结构示意图。如图5所示,2个信号接收单元212沿检测方向设置,所述信号发生单元211设置在所述2个信号接收单元212之间,且所述信号发生单元211分别与所述2个信号接收单元212之间的距离相同。通过在检测方向的前后各设置一信号接收单元212,同时对信号发生单元211前后两个检测区域进行检测,在扫描检测过程中实现重叠区域的重复检测,提高检测的全面性和可靠性。
继续参考图5所示的实施例,可选地,单个信号发生单元211与所述金属网格10的电容耦合位置,和所述2个信号接收单元212与所述金属网格10的电容耦合位置,在所述检测方向上对所述金属网格10的行方向通道或列方向通道中心对齐。通过信号发生单元211与2个信号接收单元212在一条直线上,进一步提高检测定位的准确性。
参见图6,是本公开实施例提供的另一种触控面板检测设备结构示意图。在上述各种实施例的基础上,在一些实施例中,信号收发组件21可以包括信号发生单元211和信号接收单元212。与信号收发组件21相连的缺陷检测单元22,具体可以包括如图6所示的信号比较单元221和处理单元222。
在图6所示的一些实施例中,信号比较单元221,用于从所述信号接收单元212获取检测信号,并根据所述检测信号的波形的变化情况确定异常波段。参见图7,是本公开实施例提供的几种缺陷类型对应的检测信号波形对比示例。在图7所示的波形中,正常波形应为正弦波,而幅值增大和减小的波段,都是对应位置存在缺陷的异常波段。信号波形是时域的波形,每个波段对应检测位置都是确定的,可以通过计算信号收发组件21的移动位置,来确定存在缺陷的触控单元。
继续参见图6所示的处理单元222,用于根据所述异常波段对应时刻所述信号收发组件21的检测位置,确定所述金属网格10中存在缺陷的触控单元,并且对所述异常波段的幅值是否大于相邻的多个波段的平均幅值进行判断。
(1)参见图7,若确定所述异常波段的幅值大于相邻的多个波段的平均幅值,则处理单元222判断所述异常波段和所述相邻的多个波段的幅值方差是否大于预设阈值:
若是,则确定所述缺陷类型为所述检测位置对应的触控单元存在残留缺陷;若否,则确定所述缺陷类型为所述检测位置对应的触控单元与相邻通道存在短接缺陷。
(2)参见图7,若确定所述异常波段的幅值小于相邻的多个波段的平均幅值,则处理单元222判断所述异常波段的幅值是否为0:
若确定所述异常波段的幅值为0,则确定所述缺陷类型为所述检测位置对应的触控单元中存在主路断开缺陷;若确定所述异常波段的幅值不为0,则确定所述缺陷类型为所述检测位置对应的触控单元中存在支路断开缺陷。
由此,本实施例中的触控面板检测设备20可以对触控单元内残留和相邻通道短接的缺陷进行区分,也可以对主路和支路的断开缺陷进行区分,具有较高的缺陷检测能力,提高了对触控面板的检测可靠性。
在信号收发组件21包括1个信号发生单元211和2个信号接收单元212 的实施例中,其实现原理可参考信号收发组件21包括1个信号发生单元211和1个信号接收单元212的实施例,而缺陷检测单元22可以是2个,分别对2个信号接收单元212的检测信号进行分析,其实现原理的效果与上述类似,在此不做赘述。
在上述实施例中,信号收发组件21可以是由1个信号发生单元211和1个信号接收单元212组成,也可以是由1个信号发生单元211和多个信号接收单元212组成。
在具有多个信号接收单元212的实施例中,信号收发组件在包括信号发生单元211和信号接收单元212的基础上,还可以包括2个辅助接收单元213。参见图8,是本公开实施例提供的一种具有2个辅助接收单元的信号收发组件结构示意图。参见图9,是本公开实施例提供的另一种具有2个辅助接收单元的信号收发组件结构示意图。图8和图9中,以实线菱形示意行方向通道上连通的触控单元,以虚线菱形示意列方向通道上连通的触控单元。这里的辅助接收单元213结构与信号接收单元212相同,都是为了对金属网格10上的检测信号进行接收,但辅助接收单元213的作用更多地是对缺陷类型的判断提供辅助参考。参见图8,所述2个辅助接收单元213在与所述检测方向相垂直的方向对称设置在所述信号发生单元211的两侧,且所述2个辅助接收单元213之间的检测距离小于或等于2个触控单元在检测宽度上的尺寸。辅助接收单元213的检测距离是沿与检测方向垂直方向所能检测的距离。其中,检测距离是2个辅助接收单元213与金属网格电容耦合位置之间的距离。在一种具体的实现方式中,本实施例中的信号接收单元212检测宽度为一个触控单元的宽度;一个辅助接收单元213的检测宽度小于一个触控单元的宽度。位置布局例如下:信号接收单元212和信号发生单元211分别在被测通道的正中,而2个辅助接收单元213在信号接收单元212的两侧,并分别在两侧通道的中心线上。
图8和图9所示意的信号收发组件都是在行方向进行检测时的布局,信 号收发组件包括2个信号接收单元212、2个辅助接收单元213以及1个信号发生单元211。金属网格分别与两个相对单元电容耦合,两个耦合区域远离信号发生单元的边缘之间的距离为该两个相对单元的检测距离。该两个相对单元,可以是2个信号接收单元212,也可以是2个辅助接收单元213。其中,2个信号接收单元212之间的检测距离,形成了信号收发组件的检测长度。图8示意了信号收发组件的检测长度为3个触控单元。而图9示意信号收发组件的检测长度为5个触控单元。2个辅助接收单元213之间的检测距离,形成了信号收发组件的检测宽度。图8和图9均示意信号收发组件的检测宽度为3个触控单元。上述长度方向即是检测方向,宽度方向是与检测方向相垂直的方向。图8和图9仅为信号收发组件的检测长度和检测宽度的示意,本公开不限于此。
如果触控单元与其相邻的前一行/列通道短接,那么设置在靠近该前一行/列通道的辅助接收单元213上的波形幅值就会增大;同样地,如果触控单元与其相邻的后一行/列通道短接,那么设置在靠近该后一行/列通道的辅助接收单元213上的波形幅值就会增大。通过在检测方向的垂直方向设置2个辅助接收单元213,可以提高对相邻通道短接缺陷的检测准确性和可靠性。
对于图8、图9所示具有辅助接收单元213的实施例,其采用的缺陷检测单元(图中未示出),与图6所示的缺陷检测单元22的组成结构类似,同样可以包括信号比较单元221和处理单元222,但各单元的功能不同。
在具有辅助接收单元213的实施例中,信号比较单元221,用于从所述信号接收单元212获取检测信号,从所述2个辅助接收单元213获取第一辅助信号和第二辅助信号,并根据所述检测信号的波形的变化情况确定异常波段;以及,根据所述异常波段对应的检测时刻,在所述第一辅助信号和第二辅助信号的波形中分别确定第一辅助波段和第二辅助波段。在波形幅值增大的情况下,通过第一辅助信号和第二辅助信号,可以辅助提高对缺陷类型判断准确性。
图6所示的处理单元222,用于根据所述异常波段对应时刻所述信号收发组件21的检测位置,确定所述金属网格中存在缺陷的触控单元,并且对异常波段的幅值是否大于相邻的多个波段的平均幅值进行判断。
(1)继续参见图7,若确定所述异常波段的幅值大于相邻的多个波段的平均幅值,则判断所述第一辅助波段的幅值或所述第二辅助波段的幅值是否大于0:
若是,则确定所述缺陷类型为所述检测位置对应的触控单元与相邻通道存在短接缺陷;若否,则确定所述缺陷类型为所述检测位置对应的触控单元存在残留缺陷。
在一些情况下,在单个通道内出现残留缺陷,可能不会影响触控面板的电学性能,例如在触控单元主路或支路上的残留。但残留部分导致局部通光区域减少,其下方像素出光被遮挡,造成局部暗点,影响显示效果。因此,对触控单元主路或支路上的残留缺陷的检测十分重要。通过辅助接收单元213,提高了对触控单元与相邻通道存在短接缺陷、触控单元存在残留缺陷的检测准确性,对相邻通道短接缺陷的检测具有更高的准确性和可靠性。
(2)继续参见图7,若确定所述异常波段的幅值小于相邻的多个波段的平均幅值,则判断所述异常波段的幅值是否为0:
若确定所述异常波段的幅值为0,则确定所述缺陷类型为所述检测位置对应的触控单元中存在主路断开缺陷;若确定所述异常波段的幅值不为0,则确定所述缺陷类型为所述检测位置对应的触控单元中存在支路断开缺陷。
在上述各种实施例的基础上,本公开还提供一种触控面板检测系统,包括运动设备和上述任一实施例中所述的触控面板检测设备20。
其中,所述运动设备用于控制所述信号收发组件21沿所述金属网格10的行方向通道的中心线和列方向通道的中心线移动,并将用于指示所述信号收发组件21的检测位置的定位信息发给所述缺陷检测单元22。
这里的运动设备例如可以是具有X移动轴和Y移动轴的运动设备,通过 X移动轴带动触控面板检测设备20在X方向上对触控面板上的金属网格10进行检测,然后通过Y移动轴带动触控面板检测设备20在Y方向上对触控面板上的金属网格10进行检测。例如运动设备可以包括载台和与载台配合的运动臂,运动设备控制信号收发组件21沿X方向测试完后,可以将承载金属网格的载台旋转90度后,再进行Y方向测试。也可以是以运动臂控制信号收发组件21从X方向的扫描改变为Y方向的扫描。在此不对运动设备的实现方式进行限定。
最后应说明的是:以上各实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述各实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的范围。

Claims (13)

  1. 一种触控面板检测设备,用于对所述触控面板上的金属网格进行检测,其中,所述触控面板检测设备包括:
    信号收发组件,所述信号收发组件相对所述金属网格可移动设置且所述信号收发组件包括信号发生单元和信号接收单元;所述信号发生单元和所述信号接收单元用于以预设的相对位置布置在所述金属网格的同一面,并通过分别与所述金属网格的电容耦合发送和接收信号;以及
    缺陷检测单元,所述缺陷检测单元用于根据所述信号接收单元接收到的检测信号,检测所述金属网格中各触控单元是否有缺陷,并确定缺陷位置。
  2. 根据权利要求1所述的设备,其中,所述金属网格包括多个行方向通道,和与所述行方向通道绝缘相交的多个列方向通道,所述行方向通道和所述列方向通道分别包括相互连接的若干个触控单元。
  3. 根据权利要求1所述的设备,其中,所述信号收发组件的检测宽度大于单个所述触控单元在宽度方向上的尺寸,且小于或等于3个所述触控单元在宽度方向上的尺寸,所述检测宽度是所述信号收发组件的检测区域在宽度方向上的尺寸,所述宽度方向是与检测方向相垂直的方向。
  4. 根据权利要求1所述的设备,其中,所述信号收发组件的检测长度大于或等于单个所述触控单元在长度方向上的尺寸,所述检测长度是所述信号收发组件的检测区域在长度方向上的尺寸,所述长度方向是与检测方向一致的方向。
  5. 根据权利要求1至4任一所述的设备,其中,所述触控面板检测设备包括多个所述信号收发组件且多个所述信号收发组件在宽度方向上排列设置。
  6. 根据权利要求5所述的设备,其中,多个所述信号收发组件的检测区域之间等间隔分布,且相邻两个所述信号收发组件的中心间距,为N个所述触控单元在宽度方向上的尺寸,其中,所述宽度方向是与检测方向相垂直的方向,所述N为大于或等于2的整数。
  7. 根据权利要求1所述的设备,其中,所述信号收发组件包括单个信号发生单元和2个信号接收单元。
  8. 根据权利要求7所述的设备,其中,所述2个信号接收单元沿检测方向设置,所述信号发生单元设置在所述2个信号接收单元之间,且所述信号发生单元分别与所述2个信号接收单元之间的距离相同。
  9. 根据权利要求7所述的设备,其中,所述单个信号发生单元与所述金属网格的电容耦合位置,和所述2个信号接收单元与所述金属网格的电容耦合位置,在所述检测方向上对所述金属网格的行方向通道或列方向通道中心对齐。
  10. 根据权利要求1所述的设备,其中,所述缺陷检测单元,包括信号比较单元和处理单元;
    所述信号比较单元,用于从所述信号接收单元获取检测信号,并根据所述检测信号的波形的变化情况确定异常波段;
    所述处理单元,用于根据所述异常波段对应时刻所述信号收发组件的检测位置,确定所述金属网格中存在缺陷的触控单元,并且对所述异常波段的幅值是否大于相邻的多个波段的平均幅值进行判断,
    若确定所述异常波段的幅值大于相邻的多个波段的平均幅值,则判断所述异常波段和所述相邻的多个波段的幅值方差是否大于预设阈值;若是,则确定所述缺陷类型为所述检测位置对应的触控单元存在残留缺陷,若否,则确定所述缺陷类型为所述检测位置对应的触控单元与相邻通道存在短接缺陷;
    若确定所述异常波段的幅值小于相邻的多个波段的平均幅值,则判断所述异常波段的幅值是否为0;若确定所述异常波段的幅值为0,则确定所述缺陷类型为所述检测位置对应的触控单元中存在主路断开缺陷,若确定所述异常波段的幅值不为0,则确定所述缺陷类型为所述检测位置对应的触控单元中存在支路断开缺陷。
  11. 根据权利要求1所述的设备,其中,所述信号收发组件还包括2个 辅助接收单元;
    所述2个辅助接收单元在与所述检测方向相垂直的方向对称设置在所述信号发生单元的两侧,且所述2个辅助接收单元之间的检测距离小于或等于2个所述触控单元在检测宽度上的尺寸。
  12. 根据权利要求11所述的设备,其中,所述缺陷检测单元,包括信号比较单元和处理单元;
    所述信号比较单元,用于从所述信号接收单元获取检测信号,从所述2个辅助接收单元获取第一辅助信号和第二辅助信号,并根据所述检测信号的波形的变化情况确定异常波段;以及,根据所述异常波段对应的检测时刻,在所述第一辅助信号和第二辅助信号的波形中分别确定第一辅助波段和第二辅助波段;
    所述处理单元,用于根据所述异常波段对应时刻所述信号收发组件的检测位置,确定所述金属网格中存在缺陷的触控单元,并且对所述异常波段的幅值是否大于相邻的多个波段的平均幅值进行判断,
    若确定所述异常波段的幅值大于相邻的多个波段的平均幅值,则判断所述第一辅助波段的幅值或所述第二辅助波段的幅值是否大于0;若是,则确定所述缺陷类型为所述检测位置对应的触控单元与相邻通道存在短接缺陷;若否,则确定所述缺陷类型为所述检测位置对应的触控单元存在残留缺陷;
    若确定所述异常波段的幅值小于相邻的多个波段的平均幅值,则判断所述异常波段的幅值是否为0;若确定所述异常波段的幅值为0,则确定所述缺陷类型为所述检测位置对应的触控单元中存在主路断开缺陷,若确定所述异常波段的幅值不为0,则确定所述缺陷类型为所述检测位置对应的触控单元中存在支路断开缺陷。
  13. 一种触控面板检测系统,包括运动设备和所述权利要求1-12任一所述的触控面板检测设备;
    其中,所述运动设备用于控制所述信号收发组件沿所述金属网格的行方 向通道的中心线和列方向通道的中心线移动,并将用于指示所述信号收发组件的检测位置的定位信息发给所述缺陷检测单元。
PCT/CN2020/098627 2019-09-29 2020-06-28 触控面板检测设备和系统 WO2021057143A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/491,814 US11860219B2 (en) 2019-09-29 2021-10-01 Device and system for detecting touch panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910936856.2A CN110672948B (zh) 2019-09-29 2019-09-29 触控面板检测设备和系统
CN201910936856.2 2019-09-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/491,814 Continuation US11860219B2 (en) 2019-09-29 2021-10-01 Device and system for detecting touch panel

Publications (1)

Publication Number Publication Date
WO2021057143A1 true WO2021057143A1 (zh) 2021-04-01

Family

ID=69080287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/098627 WO2021057143A1 (zh) 2019-09-29 2020-06-28 触控面板检测设备和系统

Country Status (3)

Country Link
US (1) US11860219B2 (zh)
CN (1) CN110672948B (zh)
WO (1) WO2021057143A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110672948B (zh) 2019-09-29 2021-04-20 云谷(固安)科技有限公司 触控面板检测设备和系统
CN111897450B (zh) * 2020-07-15 2024-01-26 云谷(固安)科技有限公司 电容式触控模组及其控制方法、触控显示屏

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1514939A (zh) * 2001-06-11 2004-07-21 Oht��ʽ���� 电路布图检查装置和电路布图检查方法及记录媒体
CN101107536A (zh) * 2005-01-19 2008-01-16 Oht株式会社 电路图案检查装置及其方法
CN101107535A (zh) * 2005-01-19 2008-01-16 Oht株式会社 电路图案检查装置及其方法
JP2009048604A (ja) * 2007-08-14 2009-03-05 Trendon Touch Technology Corp 適応可能な非接触式タッチパッド検査テスト方法
CN101776976A (zh) * 2010-01-28 2010-07-14 意力(广州)电子科技有限公司 电容触摸屏线性测试机
CN101887098A (zh) * 2009-05-14 2010-11-17 日本电产理德株式会社 触控面板检查装置
CN102193038A (zh) * 2010-03-05 2011-09-21 启迪科技股份有限公司 触控面板测试设备
WO2011129339A1 (ja) * 2010-04-13 2011-10-20 日本電産リード株式会社 検査装置
KR20130031024A (ko) * 2011-09-20 2013-03-28 네오뷰코오롱 주식회사 터치패널의 불량검사 방법 및 이를 이용한 터치패널 제조방법
CN110672948A (zh) * 2019-09-29 2020-01-10 云谷(固安)科技有限公司 触控面板检测设备和系统

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10188596A (ja) * 1996-12-24 1998-07-21 Sony Corp 半導体記憶装置の不良解析方法
JP2005208058A (ja) * 2003-12-26 2005-08-04 Oht Inc 回路パターン検査装置及び回路パターン検査方法
JP4107601B2 (ja) * 2004-12-15 2008-06-25 インターナショナル・ビジネス・マシーンズ・コーポレーション アレイ基板の検査方法及びその検査装置
JP2007171257A (ja) * 2005-12-19 2007-07-05 Toshiba Matsushita Display Technology Co Ltd アクティブマトリクス型検査基板および検査方法
CN100405069C (zh) * 2006-04-26 2008-07-23 友达光电股份有限公司 显示面板的非接触式检测装置
CN101315401A (zh) * 2007-05-31 2008-12-03 安捷伦科技有限公司 用于测试一个或多个差分信令通道的开路的方法和装置
KR101532634B1 (ko) * 2008-12-31 2015-07-01 삼성전자주식회사 풀-칩의 결함 메탈라인 검출 방법 및 시스템
CN103713205B (zh) * 2012-09-28 2016-10-26 名硕电脑(苏州)有限公司 电容触摸屏自动测试方法
US9151853B2 (en) * 2012-11-07 2015-10-06 Rensselaer Polytechnic Institute Neutron-detecting apparatuses and methods of fabrication
KR101582940B1 (ko) * 2014-12-10 2016-01-07 주식회사 지2터치 터치 신호 검출 장치 및 터치 신호 검출 방법
CN109216220B (zh) 2017-07-03 2021-01-05 无锡华润上华科技有限公司 半导体器件的缺陷结构定位方法
CN107506091B (zh) * 2017-09-28 2021-05-14 京东方科技集团股份有限公司 触控检测芯片、触控面板及触控检测方法
JP2019101625A (ja) * 2017-11-30 2019-06-24 シャープ株式会社 表示装置
CN108226834B (zh) * 2018-04-09 2024-01-19 安徽大学 一种用于低场核磁共振成像仪器的磁信号增强器件及其制作方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1514939A (zh) * 2001-06-11 2004-07-21 Oht��ʽ���� 电路布图检查装置和电路布图检查方法及记录媒体
CN101107536A (zh) * 2005-01-19 2008-01-16 Oht株式会社 电路图案检查装置及其方法
CN101107535A (zh) * 2005-01-19 2008-01-16 Oht株式会社 电路图案检查装置及其方法
JP2009048604A (ja) * 2007-08-14 2009-03-05 Trendon Touch Technology Corp 適応可能な非接触式タッチパッド検査テスト方法
CN101887098A (zh) * 2009-05-14 2010-11-17 日本电产理德株式会社 触控面板检查装置
CN101776976A (zh) * 2010-01-28 2010-07-14 意力(广州)电子科技有限公司 电容触摸屏线性测试机
CN102193038A (zh) * 2010-03-05 2011-09-21 启迪科技股份有限公司 触控面板测试设备
WO2011129339A1 (ja) * 2010-04-13 2011-10-20 日本電産リード株式会社 検査装置
KR20130031024A (ko) * 2011-09-20 2013-03-28 네오뷰코오롱 주식회사 터치패널의 불량검사 방법 및 이를 이용한 터치패널 제조방법
CN110672948A (zh) * 2019-09-29 2020-01-10 云谷(固安)科技有限公司 触控面板检测设备和系统

Also Published As

Publication number Publication date
US20220018894A1 (en) 2022-01-20
US11860219B2 (en) 2024-01-02
CN110672948B (zh) 2021-04-20
CN110672948A (zh) 2020-01-10

Similar Documents

Publication Publication Date Title
CN108417506B (zh) 膜上芯片封装件、显示面板和显示装置
WO2021057143A1 (zh) 触控面板检测设备和系统
TWI539352B (zh) 觸控螢幕面板短路之原位偵測
CN107683020A (zh) 一种显示面板、其检测方法、柔性电路板及显示装置
KR101091694B1 (ko) 터치패널의 검사장치
CN104777637A (zh) 阵列基板、触控显示装置及其测试方法
US20110057905A1 (en) Touch Panel and Inspection Method Thereof
US9891264B2 (en) Line detecting apparatus and method for array substrate
US11274943B2 (en) Detection apparatus and display apparatus
TWI474012B (zh) 導電圖案檢查裝置及檢查方法
TWI427302B (zh) 電路圖案檢查裝置
TW201518748A (zh) 顯示面板及其測試方法
CN102981686A (zh) 一种电容触摸屏装置缺陷检测的方法
TWI398808B (zh) 觸控面板及觸控面板的檢測方法
US6316949B1 (en) Apparatus and method for testing electric conductivity of circuit path ways on circuit board
JP2004177256A (ja) 基板検査装置および基板検査方法
KR20080098088A (ko) 비접촉 싱글사이드 프로브와 이를 이용한 패턴전극의 단선및 단락 검사장치 및 그 방법
JP3335758B2 (ja) 線状電極の欠陥検出方法および欠陥検出装置
JP5050394B2 (ja) 基板検査装置及び基板検査方法
JP3131131B2 (ja) 導電性パターンが形成された基板の検査方法およびそれに用いる検査装置
US9696364B2 (en) Apparatus and method for detecting fault in digitizer
US9459745B2 (en) Capacitive touch panel and electrode set thereof
JP4847396B2 (ja) プローブ、信号検出用のプローブ装置、信号供給用のプローブ装置、および検査装置
US20220283687A1 (en) Touch control substrate, test method thereof, and manufacturing method of touch control screen
CN208706213U (zh) 一种基板结构和显示设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20869887

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20869887

Country of ref document: EP

Kind code of ref document: A1