WO2021053912A1 - 空気入りタイヤ - Google Patents

空気入りタイヤ Download PDF

Info

Publication number
WO2021053912A1
WO2021053912A1 PCT/JP2020/024397 JP2020024397W WO2021053912A1 WO 2021053912 A1 WO2021053912 A1 WO 2021053912A1 JP 2020024397 W JP2020024397 W JP 2020024397W WO 2021053912 A1 WO2021053912 A1 WO 2021053912A1
Authority
WO
WIPO (PCT)
Prior art keywords
sipe
tread
tire
change point
circumferential
Prior art date
Application number
PCT/JP2020/024397
Other languages
English (en)
French (fr)
Inventor
明禎 清水
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to EP20866430.0A priority Critical patent/EP3988335B1/en
Priority to CN202080059898.3A priority patent/CN114286758B/zh
Priority to US17/753,600 priority patent/US11904636B2/en
Publication of WO2021053912A1 publication Critical patent/WO2021053912A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1204Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe
    • B60C11/1218Three-dimensional shape with regard to depth and extending direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/04Tread patterns in which the raised area of the pattern consists only of continuous circumferential ribs, e.g. zig-zag
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1272Width of the sipe
    • B60C11/1281Width of the sipe different within the same sipe, i.e. enlarged width portion at sipe bottom or along its length
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present invention relates to a pneumatic tire.
  • Patent Document 1 As a technique for improving the drainage property of a tire when wear progresses, it has been proposed to provide a groove or a sipe whose groove width becomes large when wear progresses on the tread tread surface of the tire (for example, Patent Document 1).
  • the tire performance may change suddenly due to the appearance of a widened portion when wear progresses.
  • An object of the present invention is to provide a pneumatic tire capable of ensuring drainage during wear progress while suppressing abrupt changes in tire performance during wear progress.
  • the gist structure of the present invention is as follows.
  • (1) The pneumatic tire of the present invention On the tread tread, between a plurality of circumferential main grooves extending in the tire circumferential direction and the circumferential main grooves adjacent to the tire width direction among the plurality of circumferential main grooves, or with the circumferential main groove.
  • a pneumatic tire having a plurality of land areas partitioned by a tread end.
  • the land portion has one or more circumferential sipes extending in the circumferential direction of the tire. At the first position in the tire circumferential direction of the circumferential sipe, the sipe width gradually decreases from the tread tread toward the sipe bottom from the tread tread to the first change point, and then from the first change point.
  • the sipe width gradually increases from the tread tread toward the sipe bottom from the tread tread to the second change point, and then from the second change point.
  • the sipe width at the tread tread and the sipe bottom gradually decreases in the tire circumferential direction from the first position to the second position, and the sipe width at the intermediate portion in the tire radial direction is in the tire circumferential direction. , It is characterized in that it gradually increases from the first position toward the second position.
  • the "tread tread” is the entire tread circumferential direction of the tread surface that comes into contact with the road surface when a pneumatic tire is attached to the applicable rim, the specified internal pressure is applied, and the maximum load is applied. It refers to the aspect that extends.
  • the "circumferential main groove” means that the opening width of the tread tread is 2 mm in a state where the tread extends in the circumferential direction, a pneumatic tire is attached to the applicable rim, the specified internal pressure is applied, and no load is applied.
  • the “tread end” refers to the outermost points on both sides of the tread tread in the tire width direction.
  • circumferential sipe means that the opening width of the tread tread is less than 2 mm in a state where the tire extends in the tread width direction, a pneumatic tire is attached to the applicable rim, the specified internal pressure is applied, and no load is applied.
  • the "applicable rim” is an industrial standard effective in the area where the tire is produced and used. In Japan, JATMA (Japan Automobile Tire Association) JATMA YEAR BOOK, and in Europe, ETRTO (The European). STANDARDS MANUAL of Tire and Rim Technical Organization), YEAR BOOK of TRA (The Tire and Rim Association, Inc.) in the United States, etc.
  • the "rim” above includes sizes that may be included in the industry standard in the future in addition to the current size.
  • size the size described as “FUTURE DEVELOPMENTS” in the ETRTO 2013 edition can be mentioned.
  • the "specified internal pressure” refers to the air pressure (maximum air pressure) corresponding to the maximum load capacity of a single wheel in the applicable size / ply rating described in the above JATMA, etc., and is of a size not described in the above industrial standard.
  • the "specified internal pressure” shall mean the air pressure (maximum air pressure) corresponding to the maximum load capacity specified for each vehicle on which the tires are mounted.
  • the "maximum load” means a load corresponding to the above maximum load capacity.
  • the internal structure and the like of the pneumatic tire (hereinafter, also simply referred to as a tire) can be the same as that of the conventional one.
  • the tire may have a pair of bead portions, a pair of sidewall portions connected to the pair of bead portions, and a tread portion arranged between the pair of sidewall portions. ..
  • the tire may have a carcass straddling the pair of bead portions in a toroidal manner and a belt arranged on the outer side of the crown portion of the carcass in the tire radial direction.
  • the dimensions and the like refer to the dimensions and the like when the tire is mounted on the applicable rim, the specified internal pressure is filled, and the load is not applied.
  • FIG. 1 is a development view schematically showing a tread pattern of a pneumatic tire according to an embodiment of the present invention.
  • the tire of this example has a plurality of (two in the illustrated example) circumferential main grooves 2 (2a, 2b) extending in the tire circumferential direction on the tread tread 1, and a plurality of circumferential directions.
  • main grooves 2 a plurality of (three in the illustrated example) are partitioned between the circumferential main grooves 2 adjacent to each other in the tire width direction, or by the circumferential main grooves 2 (2a, 2b) and the tread end TE. It has a land portion 3 (3a, 3b, 3c).
  • the circumferential main groove 2a is located in one half of the tire width direction with the tire equatorial plane CL as the boundary, and the other circumferential main groove 2b is defined with the tire equatorial plane CL as the boundary. It is located in the other half of the tire width direction.
  • one land portion 3 (3b) is arranged on the tire equatorial plane CL, and one land portion 3 (3a, 3c) is arranged in each half of the tire width direction.
  • the number of the circumferential main grooves 2 is two, but it may be one or three or more. Therefore, the number of land portions 3 can also be two or four or more.
  • the land portion 3b has one or more (two in the illustrated example) circumferential sipes 4 extending in the circumferential direction of the tire.
  • the land portion 3b has the circumferential sipe 4, but any land portion 3 may have the circumferential sipe 4.
  • all the land portions 3 are rib-shaped land portions having no width groove (in the present specification, the land portion 3 is divided in the tire circumferential direction by the width direction sipe 4). However, if it is not completely divided by the width groove, it is included in the ribbed land area).
  • one or more land parts 3 may be formed as a block-shaped land part.
  • the groove width of the circumferential main groove 2 depends on the number of the circumferential main grooves 2, so it is particularly important. It is not limited, but can be, for example, 5 to 25 mm. Similarly, the groove depth (maximum depth) of the circumferential main groove 2 is not particularly limited, but may be, for example, 6 to 18 mm.
  • the circumferential main grooves 2 extend along the tire circumferential direction (without tilting), but at least one circumferential main groove 2 extends around the tire. It may be inclined and extended with respect to the direction, and in that case, it may be inclined and extended at an angle of, for example, 5 ° or less with respect to the tire circumferential direction. Further, in the illustrated example, all of the circumferential main grooves 2 extend straight in the tire circumferential direction, but at least one circumferential main groove 2 has a shape such as a zigzag shape or a curved shape. Is also good.
  • the sipe width of the circumferential sipe 4 is not particularly limited because it depends on the number of circumferential sipe 4, but for example. It can be 0.2 to 1.0 mm (however, the minimum value among the changes in the circumferential direction).
  • the sipe depth (maximum depth) of the circumferential sipe 4 is not particularly limited, but may be, for example, 4.0 to 18.0 mm. In the illustrated example, all the circumferential sipes 4 extend along the tire circumferential direction (without tilting), but one or more circumferential sipes 4 extend inclined with respect to the tire circumferential direction.
  • the tire extends at an inclination angle of 5 ° or less with respect to the tire circumferential direction.
  • the circumferential sipe 4 continuously extends on the tire circumference, but may have a discontinuous portion.
  • FIG. 2 is a partial perspective view of the circumferential sipe.
  • FIG. 3A is a plan view of the circumferential sipe at the tread tread and the sipe bottom.
  • FIG. 3B is a plan view of the circumferential sipe at the intermediate portion in the radial direction of the tire.
  • the sipe width is directed from the tread tread 1 (upper side in the drawing) to the bottom of the sipe (lower side in the drawing). Then, after gradually decreasing from the tread tread 1 to the first change point C1, it gradually increases from the first change point C1 to the bottom of the sipe. Further, as shown in FIG.
  • the sipe width gradually increases from the tread tread 1 to the second change point C2 from the tread tread 1 toward the sipe bottom. After that, it gradually decreases from the second change point C2 to the bottom of the sipe.
  • the sipe width at the tread tread surface 1 and the sipe bottom gradually decreases from the first position P1 to the second position P2 in the tire circumferential direction
  • FIGS. As shown in 3B, the sipe width at the tire radial intermediate portion (in this example, the tire radial positions of the change points C1 and C2) is from the first position P1 to the second position P2 in the tire circumferential direction. Is gradually increasing.
  • the first change point C1 and the second change point C2 have the same position in the tire radial direction, and the middle portion in the tire radial direction is the first change point C1 as described in parentheses above. And the position in the tire radial direction of the second change point C2.
  • the first change point C1 and the second change point C2 are preferably positions in the range of 40 to 60% of the sipe depth, and in this example, are positions of 50% of the sipe depth. ..
  • the first position P1 and the second position P2 are alternately positioned at equal intervals in the tire circumferential direction, and the circumferential sipe 4 is a second position from the first position P1.
  • the sipe shape up to P2 has a shape that is repeated in the tire circumferential direction while being folded back in the tire width direction.
  • the sipe walls (both sides) at the first position P1 form one arc shape having a center of curvature on the land portion 3 side. Further, as shown in FIG.
  • the rate of change (increase rate) of the sipe width gradually decreases from the tread tread 1 toward the sipe bottom from the tread tread 1 to the second change point C2.
  • the rate of change (decrease rate) of the sipe width gradually increases from the second change point C2 to the bottom of the sipe.
  • the sipe walls (both sides) at the second position P2 form one arc shape having a center of curvature on the circumferential sipe 4 side.
  • the rate of change (decrease rate) of the sipe width gradually decreases from the first position P1 to the second position P2 in the tire circumferential direction on the tread tread 1. Further, as shown in FIGS. 2 and 3A, the rate of change (decrease rate) of the sipe width gradually decreases from the first position P1 to the second position P2 in the tire circumferential direction at the sipe bottom.
  • the drainage property can be improved. Further, since the sipe width of the circumferential sipe 4 gradually increases from the tread tread 1 to the second change point C2 at the second position P2, the drainage property at the time of wear progress before the first change point C1 is improved. Can be secured. On the other hand, at the first position P1, the sipe width is gradually reduced from the tread tread 1 to the first change point C1, so that the sipe rigidity can be increased and the rolling resistance can be reduced.
  • the sipe width of the circumferential sipe 4 gradually increases from the first change point C1 to the sipe bottom at the first position P1, the drainage property at the time of wear progress after the first change point C1 is ensured. can do.
  • the sipe width at the second position P2 since the sipe width gradually decreases from the second change point C2 to the sipe bottom, the sipe rigidity can be increased and the rolling resistance can be reduced.
  • the sipe width at the tread tread surface 1 and the sipe bottom gradually decreases from the first position P1 to the second position P2 in the tire circumferential direction, and the sipe width at the intermediate portion in the tire radial direction is the tire.
  • the tread tread surface 1 to the first change point C1 at the first position P1 having a large sipe width on the tread tread surface 1.
  • the sipe width gradually decreases during wear, and at the second position P2 where the sipe width is small on the tread tread 1, the sipe width gradually increases during wear from the tread tread 1 to the second change point C2, and At the first position P1 where the sipe width is small in the middle part in the tire radial direction, the sipe width gradually increases during wear from the first change point C1 to the bottom of the sipe, and the sipe width in the middle part in the tire radial direction is large.
  • the sipe width gradually decreases during wear from the second change point C2 to the sipe bottom. Therefore, the average sipe width of the circumferential sipe 4 as a whole does not change significantly with the progress of wear. Since the changes in the sipe width are gradually increasing or decreasing, the changes in the sipe width at any circumferential position at the time of wear progress are continuous, and the sipe width at any depth position is continuous. The change in the tire circumferential direction is also continuous. Therefore, when the wear progresses, the position of the widening tire in the circumferential direction does not suddenly move, or the sipe volume does not change suddenly, whereby the tire performance (for example, wear resistance) suddenly changes. Can be suppressed. As described above, according to the pneumatic tire of the present embodiment, it is possible to secure the drainage property at the time of wear progress while suppressing the sudden change in the tire performance at the time of wear progress.
  • the rate of change of the sipe width gradually decreases from the tread tread toward the sipe bottom from the tread tread to the first change point, and from the first change point.
  • the rate of change of the sipe width gradually increases to the bottom of the sipe
  • the rate of change of the sipe width gradually decreases from the tread tread toward the bottom of the sipe from the tread tread to the second change point. It is preferable that the rate of change of the sipe width gradually increases from the change point to the bottom of the sipe.
  • the smooth shape of the sipe wall in the tire radial direction is advantageous from the viewpoint of manufacturing such as mold removal property, and the sipe wall does not form an inflection point in the tire radial direction, so that cracks occur. This is because the failure can be suppressed.
  • the rate of change of the sipe width gradually decreases from the first position to the second position in the tire circumferential direction on the tread tread, and the first in the tire circumferential direction on the sipe bottom. It is preferable that the rate of change of the sipe width gradually decreases from the position to the second position.
  • the smooth shape of the sipe wall in the tire circumferential direction is advantageous from the viewpoint of manufacturing such as mold removal property, and the sipe wall does not form an inflection point in the tire circumferential direction, so that cracks occur. This is because the failure can be suppressed.
  • the rate of change of the sipe width gradually increases from the first position to the second position in the tire circumferential direction in the intermediate portion in the tire radial direction. This is because the portion where the distance between the sipe walls is short can be secured long in the tire circumferential direction, so that the sipe rigidity can be further improved and the rolling resistance can be further reduced.
  • the first change point and the second change point have the same position in the tire radial direction, and the intermediate portion in the tire radial direction is the first change point and the second change. It is preferably the position of the point in the tire radial direction. This is because the circumferential sipe does not have a complicated shape, which is advantageous in manufacturing.
  • the first change point and the second change point are preferably positions in the range of 40 to 60% of the sipe depth, and more preferably 50% of the sipe depth. It is possible to secure both the tire radial length from the tread tread to the first and second change points and the tire radial length from the first change point and the second change point to the sipe bottom. This is because it is advantageous to change the sipe width as slowly as possible as the wear progresses.
  • the circumferential sipe has a shape that is repeated in the tire circumferential direction while being folded back in the tire width direction. As a result, the above effect can be obtained over the entire tire circumferential direction.
  • the circumferential sipe is not particularly limited, but can be formed by using, for example, a 3D printer or the like. Further, the circumferential sipe of the present disclosure may be applied to any of the circumferential sipe, but at least the center land portion (the land portion on the tire equatorial plane CL as shown in FIG. 1 or the tire equatorial plane CL). When the circumferential main groove 2 is located in, it is preferable to apply it to all the circumferential sipes in the land portion adjacent to the circumferential main groove 2.
  • the sipe width at the tread tread 1 and the sipe width at the sipe bottom are the same at the first position P1 and the second position P2, respectively, but the first position P1 and / or It is also possible to make the sipe width at the tread tread 1 and the sipe width at the sipe bottom at the second position P2 different, in which case the sipe bottom at the sipe bottom is considered to reduce the groove volume during wear progress. It is preferable that the sipe width is larger than the sipe width on the tread tread. Therefore, in the above embodiment, the rate of change of the sipe width from the tread tread 1 to the first change point C1 and the second change point C2 and the first change rate at each of the first position P1 and the second position P2.
  • the rate of change of the sipe width from the change point C1 and the second change point C2 to the bottom of the sipe is equal (for example, when the definition is aligned with the change rate as a large value / a small value), but the first position P1 And / or the rate of change of the sipe width from the tread tread 1 to the first change point C1 and / or the second change point C2 at the second position P2 and the first change point C1 and / or the second.
  • the rate of change of the sipe width from the change point C2 to the sipe bottom can be made different. In this case, the first change point C1 and / or the second change point is taken into consideration in consideration of the decrease in the groove volume during wear progress.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

本発明の空気入りタイヤは、陸部に、タイヤ周方向に延びる1本以上の周方向サイプを有し、第1の位置において、サイプ幅が、トレッド踏面からサイプ底に向かって、トレッド踏面から第1の変化点まで漸減した後、前記第1の変化点から前記サイプ底まで漸増し、第2の位置において、サイプ幅が、トレッド踏面からサイプ底に向かって、トレッド踏面から第2の変化点まで漸増した後、前記第2の変化点から前記サイプ底まで漸減し、トレッド踏面及び前記サイプ底でのサイプ幅は、タイヤ周方向に、前記第1の位置から前記第2の位置に向かって漸減し、タイヤ径方向中間部でのサイプ幅は、タイヤ周方向に、前記第1の位置から前記第2の位置に向かって漸増する。

Description

空気入りタイヤ
 本発明は、空気入りタイヤに関するものである。
 摩耗進展時のタイヤの排水性を向上させる技術として、タイヤのトレッド踏面に、摩耗進展時に溝幅が大きくなる溝やサイプを設けることが提案されている(例えば、特許文献1)。
特表2013-505874号公報
 しかしながら、上記のような溝やサイプを有する空気入りタイヤにおいては、摩耗進展時に拡幅部が出現することにより、タイヤ性能が急激に変化する場合があった。
 本発明は、摩耗進展時のタイヤ性能の急激な変化を抑制しつつも、摩耗進展時の排水性を確保することのできる、空気入りタイヤを提供することを目的とする。
 本発明の要旨構成は、以下の通りである。
 (1)本発明の空気入りタイヤは、
 トレッド踏面に、タイヤ周方向に延びる複数本の周方向主溝と、前記複数本の周方向主溝のうちタイヤ幅方向に隣接する前記周方向主溝間に、又は、前記周方向主溝とトレッド端とにより、区画される複数の陸部と、を有する空気入りタイヤであって、
 前記陸部に、タイヤ周方向に延びる1本以上の周方向サイプを有し、
 前記周方向サイプのタイヤ周方向の第1の位置において、サイプ幅が、前記トレッド踏面からサイプ底に向かって、前記トレッド踏面から第1の変化点まで漸減した後、前記第1の変化点から前記サイプ底まで漸増し、
 前記周方向サイプのタイヤ周方向の第2の位置において、サイプ幅が、前記トレッド踏面からサイプ底に向かって、前記トレッド踏面から第2の変化点まで漸増した後、前記第2の変化点から前記サイプ底まで漸減し、
 前記トレッド踏面及び前記サイプ底でのサイプ幅は、タイヤ周方向に、前記第1の位置から前記第2の位置に向かって漸減し、タイヤ径方向中間部でのサイプ幅は、タイヤ周方向に、前記第1の位置から前記第2の位置に向かって漸増することを特徴とする。
 ここで、「トレッド踏面」とは、空気入りタイヤを適用リムに装着し、規定内圧を充填して、最大負荷荷重を負荷した際に路面と接地することとなるトレッド表面の、トレッド周方向全域にわたる面をいう。
 また、「周方向主溝」とは、トレッド周方向に延び、空気入りタイヤを適用リムに装着し、規定内圧を充填し、無負荷とした状態での、上記トレッド踏面における開口幅が、2mm以上のものをいう。
 また、「トレッド端」とは、上記トレッド踏面のタイヤ幅方向両側の最外側点をいう。
 また、「周方向サイプ」とは、トレッド幅方向に延び、空気入りタイヤを適用リムに装着し、規定内圧を充填し、無負荷とした状態での、上記トレッド踏面における開口幅が、2mm未満のものをいう。
 本明細書において、「適用リム」とは、タイヤが生産され、使用される地域に有効な産業規格であって、日本ではJATMA(日本自動車タイヤ協会)のJATMA  YEAR  BOOK、欧州ではETRTO(The  European  Tyre  and  Rim  Technical  Organisation)のSTANDARDS  MANUAL、米国ではTRA(The  Tire  and  Rim  Association,Inc.)のYEAR  BOOK等に記載されているまたは将来的に記載される、適用サイズにおける標準リム(ETRTOのSTANDARDS  MANUALではMeasuring  Rim、TRAのYEAR  BOOKではDesign  Rim)を指す(即ち、上記の「リム」には、現行サイズに加えて将来的に上記産業規格に含まれ得るサイズも含む。「将来的に記載されるサイズ」の例としては、ETRTO  2013年度版において「FUTURE  DEVELOPMENTS」として記載されているサイズを挙げることができる。)が、上記産業規格に記載のないサイズの場合は、タイヤのビード幅に対応した幅のリムをいう。
 また、「規定内圧」とは、上記JATMA等に記載されている、適用サイズ・プライレーティングにおける単輪の最大負荷能力に対応する空気圧(最高空気圧)を指し、上記産業規格に記載のないサイズの場合は、「規定内圧」は、タイヤを装着する車両毎に規定される最大負荷能力に対応する空気圧(最高空気圧)をいうものとする。
 また、「最大負荷荷重」とは、上記最大負荷能力に対応する荷重をいうものとする。
 本発明によれば、摩耗進展時のタイヤ性能の急激な変化を抑制しつつも、摩耗進展時の排水性を確保することのできる、空気入りタイヤを提供することができる。
本発明の一実施形態にかかる空気入りタイヤのトレッドパターンを模式的に示す展開図である。 周方向サイプの部分斜視図である。 トレッド踏面及びサイプ底での、周方向サイプの平面図である。 タイヤ径方向中間部での、周方向サイプの平面図である。
 以下、本発明の実施形態について図面を参照して詳細に例示説明する。
 ここで、空気入りタイヤ(以下、単にタイヤとも称する)の内部構造等については、従来のものと同様の構造とすることができる。一例としては、該タイヤは、一対のビード部と、該一対のビード部に連なる一対のサイドウォール部と、該一対のサイドウォール部間に配置されたトレッド部とを有するものとすることができる。また、該タイヤは、一対のビード部間をトロイダル状に跨るカーカスと、該カーカスのクラウン部のタイヤ径方向外側に配置されたベルトと、を有するものとすることができる。
 以下、特に断りのない限り、寸法等は、タイヤを適用リムに装着し、規定内圧を充填し、無負荷状態とした際の寸法等を指す。
 図1は、本発明の一実施形態にかかる空気入りタイヤのトレッドパターンを模式的に示す展開図である。
 図1に示すように、本例のタイヤは、トレッド踏面1に、タイヤ周方向に延びる複数本(図示例では2本)の周方向主溝2(2a、2b)と、複数本の周方向主溝2のうちタイヤ幅方向に隣接する周方向主溝2間に、又は、周方向主溝2(2a、2b)とトレッド端TEとにより、区画される複数(図示例では3つ)の陸部3(3a、3b、3c)と、を有している。この例では、周方向主溝2aは、タイヤ赤道面CLを境界としたタイヤ幅方向の一方の半部に位置しており、他の周方向主溝2bは、タイヤ赤道面CLを境界としたタイヤ幅方向の他方の半部に位置している。そして、この例では、タイヤ赤道面CL上に1つの陸部3(3b)と、各タイヤ幅方向半部に1つずつの陸部3(3a、3c)が配置されている。図1に示した例では、周方向主溝2の本数は、2本であるが、1本又は3本以上とすることもできる。従って、陸部3の個数も、2つ又は4つ以上とすることができる。
 また、陸部3bは、タイヤ周方向に延びる1本以上(図示例では2本)の周方向サイプ4を有している。なお、本例では、陸部3bが周方向サイプ4を有しているが、いずれかの陸部3が周方向サイプ4を有していれば良い。本例では、全ての陸部3が幅方向溝を有しないリブ状陸部である(本明細書においては、幅方向サイプ4により陸部3がタイヤ周方向に分断されている場合であっても、幅方向溝で完全に分断されていなければ、リブ状陸部に含めるものとしている)。一方で、1つ以上の陸部3をブロック状の陸部とすることもできる。
 ここで、周方向主溝2の溝幅(開口幅(平面視において、溝の延在方向に対して垂直に測った開口幅))は、周方向主溝2の本数にもよるため特には限定されないが、例えば5~25mmとすることができる。同様に、周方向主溝2の溝深さ(最大深さ)は、特には限定されないが、例えば6~18mmとすることができる。
 図示例では、トレッド踏面1の平面視において、周方向主溝2は、いずれも、タイヤ周方向に沿って(傾斜せずに)延びているが、少なくとも1つの周方向主溝2がタイヤ周方向に対して傾斜して延びていても良く、その場合、タイヤ周方向に対して、例えば5°以下の角度で傾斜して延びるものとすることができる。また、図示例では、周方向主溝2は、いずれも、タイヤ周方向に真っ直ぐ延びているが、少なくとも1本の周方向主溝2が、ジグザグ状、湾曲状などの形状を有していても良い。
 周方向サイプ4のサイプ幅(開口幅(平面視において、溝の延在方向に対して垂直に測った開口幅))は、周方向サイプ4の本数にもよるため特には限定されないが、例えば0.2~1.0mm(ただし、周方向に変化するうちの最小値)とすることができる。同様に、周方向サイプ4のサイプ深さ(最大深さ)は、特には限定されないが、例えば4.0~18.0mmとすることができる。
 なお、図示例では、いずれの周方向サイプ4も、タイヤ周方向に沿って(傾斜せずに)延びているが、1本以上の周方向サイプ4がタイヤ周方向に対して傾斜して延びていても良く、この場合、タイヤ周方向に対して5°以下の傾斜角度で傾斜して延びていることが好ましい。また、図示例では、周方向サイプ4は、タイヤ周上を連続して延びているが、不連続な部分を有していても良い。
 図2は、周方向サイプの部分斜視図である。図3Aは、トレッド踏面及びサイプ底での、周方向サイプの平面図である。図3Bは、タイヤ径方向中間部での、周方向サイプの平面図である。
 図2に示すように、本実施形態においては、周方向サイプ4のタイヤ周方向の第1の位置P1において、サイプ幅が、トレッド踏面1(図示上側)からサイプ底(図示下側)に向かって、トレッド踏面1から第1の変化点C1まで漸減した後、第1の変化点C1からサイプ底まで漸増している。また、図2に示すように、周方向サイプのタイヤ周方向の第2の位置P2において、サイプ幅が、トレッド踏面1からサイプ底に向かって、トレッド踏面1から第2の変化点C2まで漸増した後、第2の変化点C2からサイプ底まで漸減している。
 また、図2、図3Aに示すように、トレッド踏面1及びサイプ底でのサイプ幅は、タイヤ周方向に、第1の位置P1から第2の位置P2に向かって漸減し、図2、図3Bに示すように、タイヤ径方向中間部(本例では変化点C1、C2のタイヤ径方向位置)でのサイプ幅は、タイヤ周方向に、第1の位置P1から第2の位置P2に向かって漸増している。
 本例では、第1の変化点C1と第2の変化点C2とは、タイヤ径方向の位置が同じであり、タイヤ径方向中間部は、上記のかっこ書きの通り、第1の変化点C1及び第2の変化点C2のタイヤ径方向位置である。ここで、第1の変化点C1及び第2の変化点C2は、サイプ深さの40~60%の範囲の位置であることが好ましく、本例では、サイプ深さの50%の位置である。
 そして、図2に示すように、第1の位置P1及び第2の位置P2は、タイヤ周方向に等間隔で交互に位置し、周方向サイプ4は、第1の位置P1から第2の位置P2までのサイプ形状が、タイヤ幅方向に折り返されながら、タイヤ周方向に繰り返されてなる形状を有している。
 周方向サイプ4の形状について、より具体的には、図2に示すように、第1の位置P1において、トレッド踏面1からサイプ底に向かって、トレッド踏面1から第1の変化点C1まで、サイプ幅の変化率(減少率)が漸減し、第1の変化点C1からサイプ底までサイプ幅の変化率(増大率)が漸増している。タイヤ幅方向断面視において、第1の位置P1でのサイプ壁(両側)は、陸部3側に曲率中心を有する1つの弧状をなしている。
 また、図2に示すように、第2の位置P2において、トレッド踏面1からサイプ底に向かって、トレッド踏面1から第2の変化点C2まで、サイプ幅の変化率(増大率)が漸減し、第2の変化点C2からサイプ底までサイプ幅の変化率(減少率)が漸増している。タイヤ幅方向断面視において、第2の位置P2でのサイプ壁(両側)は、周方向サイプ4側に曲率中心を有する1つの弧状をなしている。
 また、図2、図3Aに示すように、トレッド踏面1において、タイヤ周方向に、第1の位置P1から第2の位置P2まで、サイプ幅の変化率(減少率)が漸減している。また、図2、図3Aに示すように、サイプ底において、タイヤ周方向に、第1の位置P1から第2の位置P2まで、サイプ幅の変化率(減少率)が漸減している。
 一方、図2、図3Bに示すように、タイヤ径方向中間部(本例では、変化点C1、C2のタイヤ径方向位置)においては、タイヤ周方向に、第1の位置P1から第2の位置P2まで、サイプ幅の変化率(増大率)が漸増している。
 以下、本実施形態の空気入りタイヤの作用効果について説明する。
 本実施形態の空気入りタイヤによれば、まず、陸部3に1本以上の周方向サイプ4を設けているため、排水性を向上させることができる。
 また、周方向サイプ4は、第2の位置P2において、トレッド踏面1から第2の変化点C2までサイプ幅が漸増しているため、第1の変化点C1以前の摩耗進展時の排水性を確保することができる。その一方で、第1の位置P1においては、トレッド踏面1から第1の変化点C1までサイプ幅が漸減しているため、サイプ剛性を高めて転がり抵抗を低減することができる。
 また、周方向サイプ4は、第1の位置P1において、第1の変化点C1からサイプ底までサイプ幅が漸増しているため、第1の変化点C1以降の摩耗進展時の排水性を確保することができる。その一方で、第2の位置P2においては、第2の変化点C2からサイプ底までサイプ幅が漸減しているため、サイプ剛性を高めて転がり抵抗を低減することができる。
 さらに、トレッド踏面1及びサイプ底でのサイプ幅は、タイヤ周方向に、第1の位置P1から第2の位置P2に向かって漸減し、且つ、タイヤ径方向中間部でのサイプ幅は、タイヤ周方向に、第1の位置P1から第2の位置P2に向かって漸増するため、トレッド踏面1でのサイプ幅の大きい第1の位置P1では、トレッド踏面1から第1の変化点C1までの摩耗の際にサイプ幅が漸減し、トレッド踏面1でのサイプ幅の小さい第2の位置P2では、トレッド踏面1から第2の変化点C2までの摩耗の際にサイプ幅が漸増し、且つ、タイヤ径方向中間部でのサイプ幅の小さい第1の位置P1では、第1の変化点C1からサイプ底までの摩耗の際にサイプ幅が漸増し、タイヤ径方向中間部でのサイプ幅の大きい第2の位置P2では、第2の変化点C2からサイプ底までの摩耗の際にサイプ幅が漸減するようになっている。このため、摩耗進展と共に周方向サイプ4全体としての平均的なサイプ幅が大きく変化しないように構成されている。
 そして、上記サイプ幅の変化は、いずれも漸増若しくは漸減であるため、いずれの周方向位置の摩耗進展時におけるサイプ幅の変化も連続的であり、また、いずれの深さ位置でのサイプ幅のタイヤ周方向での変化も連続的である。従って、摩耗進展時に、拡幅するタイヤ周方向の位置が急に移動したり、あるいは、サイプ体積が急激に変化したりすることがなく、これにより、タイヤ性能(例えば耐摩耗性)の急激な変化を抑制することができる。
 以上のように、本実施形態の空気入りタイヤによれば、摩耗進展時のタイヤ性能の急激な変化を抑制しつつも、摩耗進展時の排水性を確保することができる。
 ここで、本実施形態のように、第1の位置において、トレッド踏面からサイプ底に向かって、トレッド踏面から第1の変化点まで、サイプ幅の変化率が漸減し、第1の変化点からサイプ底までサイプ幅の変化率が漸増し、第2の位置において、トレッド踏面からサイプ底に向かって、トレッド踏面から第2の変化点まで、サイプ幅の変化率が漸減し、前記第2の変化点からサイプ底までサイプ幅の変化率が漸増することが好ましい。
 サイプ壁がタイヤ径方向に滑らかな形状になることにより、モールド抜け性等の製造上の観点から有利であり、また、サイプ壁がタイヤ径方向に変曲点が形成されないためクラックの発生等の故障を抑制することもできるからである。
 また、本実施形態のように、トレッド踏面において、タイヤ周方向に、第1の位置から第2の位置まで、サイプ幅の変化率が漸減し、サイプ底において、タイヤ周方向に、第1の位置から第2の位置まで、サイプ幅の変化率が漸減することが好ましい。
 サイプ壁がタイヤ周方向に滑らかな形状になることにより、モールド抜け性等の製造上の観点から有利であり、また、サイプ壁がタイヤ周方向に変曲点が形成されないためクラックの発生等の故障を抑制することもできるからである。
 また、本実施形態のように、タイヤ径方向中間部において、タイヤ周方向に、第1の位置から第2の位置まで、サイプ幅の変化率が漸増することが好ましい。
 サイプ壁間の距離が短い部分をタイヤ周方向に長く確保することができるため、サイプ剛性をより一層向上させて、転がり抵抗をさらに低減することができるからである。
 また、本実施形態のように、第1の変化点と第2の変化点とは、タイヤ径方向の位置が同じであり、タイヤ径方向中間部は、第1の変化点及び第2の変化点のタイヤ径方向位置であることが好ましい。周方向サイプが複雑な形状にならないようになるため、製造上有利であるからである。
 第1の変化点及び第2の変化点は、サイプ深さの40~60%の範囲の位置であることが好ましく、サイプ深さの50%の位置であることがより好ましい。トレッド踏面から第1の変化点及び第2の変化点までのタイヤ径方向長さ及び第1の変化点及び第2の変化点からサイプ底までのタイヤ径方向長さの両方を確保することが、サイプ幅を摩耗進展と共になるべく緩やかに変化させるのに有利であるからである。
 周方向サイプは、タイヤ幅方向に折り返されながら、タイヤ周方向に繰り返されてなる形状であることが好ましい。これにより、タイヤ周方向全体にわたって上記の効果を得ることができる。
 上記の周方向サイプは、特には限定されないが、例えば3Dプリンタ等を用いて形成することができる。
 また、本開示の周方向サイプは、いずれかの周方向サイプに適用すれば良いが、少なくとも、センター陸部(図1のようにタイヤ赤道面CL上の陸部、又は、タイヤ赤道面CL上に周方向主溝2が位置する場合には、該周方向主溝2に隣接する陸部)内の全ての周方向サイプに適用することが好ましい。
 上記の実施形態では、第1の位置P1及び第2の位置P2のそれぞれにおいて、トレッド踏面1でのサイプ幅とサイプ底でのサイプ幅とを同じとしているが、第1の位置P1及び/又は第2の位置P2での、トレッド踏面1でのサイプ幅とサイプ底でのサイプ幅とを異ならせることもでき、この場合、摩耗進展時の溝体積の減少を考慮して、サイプ底でのサイプ幅をトレッド踏面でのサイプ幅より大きくすることが好ましい。
 従って、上記の実施形態では、第1の位置P1及び第2の位置P2のそれぞれにおいて、トレッド踏面1から第1の変化点C1及び第2の変化点C2までのサイプ幅の変化率と第1の変化点C1及び第2の変化点C2からサイプ底までのサイプ幅の変化率を(例えば変化率を大きい値/小さい値として定義を揃えた場合)等しくしているが、第1の位置P1及び/又は第2の位置P2での、トレッド踏面1から第1の変化点C1及び/又は第2の変化点C2までのサイプ幅の変化率と第1の変化点C1及び/又は第2の変化点C2からサイプ底までのサイプ幅の変化率を異ならせることもでき、この場合、摩耗進展時の溝体積の減少を考慮して、第1の変化点C1及び/又は第2の変化点C2からサイプ底までのサイプ幅の増大率(減少率)を、トレッド踏面1から第1の変化点C1及び/又は第2の変化点C2までのサイプ幅の増大率(減少率)を増大率の場合は大きく、減少率の場合は小さくすることが好ましい。
1:トレッド踏面、 2、2a、2b:周方向主溝、
3、3a、3b、3c:陸部、 4:周方向サイプ、
CL:タイヤ赤道面、 TE:トレッド端
 

Claims (7)

  1.  トレッド踏面に、タイヤ周方向に延びる複数本の周方向主溝と、前記複数本の周方向主溝のうちタイヤ幅方向に隣接する前記周方向主溝間に、又は、前記周方向主溝とトレッド端とにより、区画される複数の陸部と、を有する空気入りタイヤであって、
     前記陸部に、タイヤ周方向に延びる1本以上の周方向サイプを有し、
     前記周方向サイプのタイヤ周方向の第1の位置において、サイプ幅が、前記トレッド踏面からサイプ底に向かって、前記トレッド踏面から第1の変化点まで漸減した後、前記第1の変化点から前記サイプ底まで漸増し、
     前記周方向サイプのタイヤ周方向の第2の位置において、サイプ幅が、前記トレッド踏面からサイプ底に向かって、前記トレッド踏面から第2の変化点まで漸増した後、前記第2の変化点から前記サイプ底まで漸減し、
     前記トレッド踏面及び前記サイプ底でのサイプ幅は、タイヤ周方向に、前記第1の位置から前記第2の位置に向かって漸減し、タイヤ径方向中間部でのサイプ幅は、タイヤ周方向に、前記第1の位置から前記第2の位置に向かって漸増することを特徴とする、空気入りタイヤ。
  2.  前記第1の位置において、前記トレッド踏面から前記サイプ底に向かって、前記トレッド踏面から前記第1の変化点まで、サイプ幅の変化率が漸減し、前記第1の変化点から前記サイプ底までサイプ幅の変化率が漸増し、
     前記第2の位置において、前記トレッド踏面から前記サイプ底に向かって、前記トレッド踏面から前記第2の変化点まで、サイプ幅の変化率が漸減し、前記第2の変化点から前記サイプ底までサイプ幅の変化率が漸増する、請求項1に記載の空気入りタイヤ。
  3.  前記トレッド踏面において、タイヤ周方向に、前記第1の位置から前記第2の位置まで、サイプ幅の変化率が漸減し、
     前記サイプ底において、タイヤ周方向に、前記第1の位置から前記第2の位置まで、サイプ幅の変化率が漸減する、請求項1又は2に記載の空気入りタイヤ。
  4.  前記タイヤ径方向中間部において、タイヤ周方向に、前記第1の位置から前記第2の位置まで、サイプ幅の変化率が漸増する、請求項1~3のいずれか一項に記載の空気入りタイヤ。
  5.  前記第1の変化点と前記第2の変化点とは、タイヤ径方向の位置が同じであり、
     前記タイヤ径方向中間部は、前記第1の変化点及び前記第2の変化点のタイヤ径方向位置である、請求項1~4のいずれか一項に記載の空気入りタイヤ。
  6.  前記第1の変化点及び前記第2の変化点は、サイプ深さの40~60%の範囲の位置である、請求項5に記載の空気入りタイヤ。
  7.  前記周方向サイプは、
     前記第1の位置から前記第2の位置までのサイプ形状が、タイヤ幅方向に折り返されながら、タイヤ周方向に繰り返されてなる形状である、請求項1~6のいずれか一項に記載の空気入りタイヤ。
PCT/JP2020/024397 2019-09-19 2020-06-22 空気入りタイヤ WO2021053912A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20866430.0A EP3988335B1 (en) 2019-09-19 2020-06-22 Pneumatic tire
CN202080059898.3A CN114286758B (zh) 2019-09-19 2020-06-22 充气轮胎
US17/753,600 US11904636B2 (en) 2019-09-19 2020-06-22 Pneumatic tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019170668A JP7273672B2 (ja) 2019-09-19 2019-09-19 空気入りタイヤ
JP2019-170668 2019-09-19

Publications (1)

Publication Number Publication Date
WO2021053912A1 true WO2021053912A1 (ja) 2021-03-25

Family

ID=74877547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/024397 WO2021053912A1 (ja) 2019-09-19 2020-06-22 空気入りタイヤ

Country Status (5)

Country Link
US (1) US11904636B2 (ja)
EP (1) EP3988335B1 (ja)
JP (1) JP7273672B2 (ja)
CN (1) CN114286758B (ja)
WO (1) WO2021053912A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024066540A (ja) * 2022-11-02 2024-05-16 住友ゴム工業株式会社 重荷重用タイヤ

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006298057A (ja) * 2005-04-18 2006-11-02 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP2007253875A (ja) * 2006-03-24 2007-10-04 Bridgestone Corp タイヤ
JP2014509980A (ja) * 2011-02-17 2014-04-24 コンパニー ゼネラール デ エタブリッスマン ミシュラン トレーラ型重車両用タイヤトレッド及び成形コンポーネント
JP2016113003A (ja) * 2014-12-15 2016-06-23 横浜ゴム株式会社 空気入りタイヤ
JP2017505261A (ja) * 2014-02-03 2017-02-16 コンパニー ゼネラール デ エタブリッスマン ミシュラン 重量物運搬車両用タイヤのためのトレッド
WO2018122713A1 (en) * 2016-12-27 2018-07-05 Pirelli Tyre S.P.A. Tyre for vehicle wheels

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60116190T2 (de) * 2000-07-03 2006-08-17 Société de Technologie Michelin Luftreifen mit einer Lauffläche für schwere Lasten
JP3983584B2 (ja) 2002-04-10 2007-09-26 東洋ゴム工業株式会社 空気入りタイヤ
US7793692B2 (en) 2005-10-31 2010-09-14 The Goodyear Tire & Rubber Company Pneumatic tire tread having sipe that devolves into groove as tread wears
US20080163970A1 (en) * 2007-01-09 2008-07-10 Toyo Tire & Rubber Co., Ltd. Pneumatic tire and a tire mold for molding a tire
JP4669052B2 (ja) * 2009-03-02 2011-04-13 東洋ゴム工業株式会社 空気入りタイヤ
FR2950565B1 (fr) 2009-09-29 2012-08-31 Michelin Soc Tech Bande de roulement pour pneu de rigidite amelioree
DE102012105515A1 (de) 2012-06-25 2014-02-20 Continental Reifen Deutschland Gmbh Laufstreifenprofil eines Fahrzeugreifens
JP2014097697A (ja) * 2012-11-13 2014-05-29 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP6236857B2 (ja) 2013-05-01 2017-11-29 横浜ゴム株式会社 空気入りタイヤ
WO2015170673A1 (ja) * 2014-05-07 2015-11-12 株式会社ブリヂストン 空気入りタイヤ
CN106457924B (zh) 2014-05-30 2018-11-06 株式会社普利司通 乘用车用充气子午线轮胎
WO2018225371A1 (ja) * 2017-06-06 2018-12-13 横浜ゴム株式会社 空気入りタイヤ
IT201700084726A1 (it) 2017-07-25 2019-01-25 Prometeon Tyre Group S R L Pneumatico per ruote di veicoli

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006298057A (ja) * 2005-04-18 2006-11-02 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP2007253875A (ja) * 2006-03-24 2007-10-04 Bridgestone Corp タイヤ
JP2014509980A (ja) * 2011-02-17 2014-04-24 コンパニー ゼネラール デ エタブリッスマン ミシュラン トレーラ型重車両用タイヤトレッド及び成形コンポーネント
JP2017505261A (ja) * 2014-02-03 2017-02-16 コンパニー ゼネラール デ エタブリッスマン ミシュラン 重量物運搬車両用タイヤのためのトレッド
JP2016113003A (ja) * 2014-12-15 2016-06-23 横浜ゴム株式会社 空気入りタイヤ
WO2018122713A1 (en) * 2016-12-27 2018-07-05 Pirelli Tyre S.P.A. Tyre for vehicle wheels

Also Published As

Publication number Publication date
CN114286758A (zh) 2022-04-05
JP7273672B2 (ja) 2023-05-15
EP3988335B1 (en) 2024-05-29
JP2021046132A (ja) 2021-03-25
US11904636B2 (en) 2024-02-20
CN114286758B (zh) 2023-08-25
EP3988335A1 (en) 2022-04-27
US20220324264A1 (en) 2022-10-13
EP3988335A4 (en) 2023-07-26

Similar Documents

Publication Publication Date Title
JP6306436B2 (ja) 空気入りタイヤ
JP6153763B2 (ja) 空気入りタイヤ
WO2014064885A1 (ja) 空気入りタイヤ
WO2020250690A1 (ja) 空気入りタイヤ
WO2020250688A1 (ja) 空気入りタイヤ
WO2021053912A1 (ja) 空気入りタイヤ
JP6724317B2 (ja) 空気入りタイヤ
JP6824832B2 (ja) タイヤ
WO2021111665A1 (ja) 空気入りタイヤ
WO2021111664A1 (ja) 空気入りタイヤ
WO2021053914A1 (ja) 空気入りタイヤ
WO2021053913A1 (ja) 空気入りタイヤ
JP7397648B2 (ja) 空気入りタイヤ
JP7397647B2 (ja) 空気入りタイヤ
JP7152362B2 (ja) 空気入りタイヤ
JP7368213B2 (ja) 空気入りタイヤ
JP7397650B2 (ja) 空気入りタイヤ
JP7397649B2 (ja) 空気入りタイヤ
JP7306976B2 (ja) 空気入りタイヤ
JP2024049889A (ja) 空気入りタイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20866430

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020866430

Country of ref document: EP

Effective date: 20220118

NENP Non-entry into the national phase

Ref country code: DE