WO2021033530A1 - 放射性金属錯体の製造方法 - Google Patents

放射性金属錯体の製造方法 Download PDF

Info

Publication number
WO2021033530A1
WO2021033530A1 PCT/JP2020/029757 JP2020029757W WO2021033530A1 WO 2021033530 A1 WO2021033530 A1 WO 2021033530A1 JP 2020029757 W JP2020029757 W JP 2020029757W WO 2021033530 A1 WO2021033530 A1 WO 2021033530A1
Authority
WO
WIPO (PCT)
Prior art keywords
radioactive metal
ligand
water
metal complex
reaction solution
Prior art date
Application number
PCT/JP2020/029757
Other languages
English (en)
French (fr)
Inventor
智之 今井
真登 桐生
彰宏 井澤
Original Assignee
日本メジフィジックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本メジフィジックス株式会社 filed Critical 日本メジフィジックス株式会社
Priority to JP2021540709A priority Critical patent/JPWO2021033530A1/ja
Priority to EP20855145.7A priority patent/EP4019502A4/en
Priority to AU2020332618A priority patent/AU2020332618A1/en
Priority to US17/632,994 priority patent/US20220259160A1/en
Priority to CN202080058291.3A priority patent/CN114269724A/zh
Priority to KR1020227004086A priority patent/KR20220047974A/ko
Priority to CA3148288A priority patent/CA3148288A1/en
Publication of WO2021033530A1 publication Critical patent/WO2021033530A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D257/00Heterocyclic compounds containing rings having four nitrogen atoms as the only ring hetero atoms
    • C07D257/02Heterocyclic compounds containing rings having four nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/08Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/08Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins
    • A61K51/088Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins conjugates with carriers being peptides, polyamino acids or proteins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B59/00Introduction of isotopes of elements into organic compounds ; Labelled organic compounds per se
    • C07B59/002Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B59/00Introduction of isotopes of elements into organic compounds ; Labelled organic compounds per se
    • C07B59/004Acyclic, carbocyclic or heterocyclic compounds containing elements other than carbon, hydrogen, halogen, oxygen, nitrogen, sulfur, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F19/00Metal compounds according to more than one of main groups C07F1/00 - C07F17/00
    • C07F19/005Metal compounds according to more than one of main groups C07F1/00 - C07F17/00 without metal-C linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/003Compounds containing elements of Groups 4 or 14 of the Periodic Table without C-Metal linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/05Isotopically modified compounds, e.g. labelled

Definitions

  • the present invention relates to a method for producing a radioactive metal complex.
  • Non-Patent Document 1 describes a method for forming a radioactive metal complex by reacting 89 Zr, which is a radioactive metal, with DOTA, which is a ligand, in a buffer solution.
  • Non-Patent Document 2 describes a method of reacting 68 Ga or 44 Sc with DOTATOC, which is a DOTA derivative as a ligand, in a buffer solution to form a radioactive metal complex.
  • Non-Patent Document 3 describes a method of reacting 68 Ga or 44 Sc with DOTA in ethanol-containing physiological saline to form a radioactive metal complex.
  • an object of the present invention is to provide a method for producing a radioactive metal complex having excellent complex formation efficiency in DOTA, a derivative thereof, or a ligand containing a structure similar to DOTA.
  • the present invention comprises a step of reacting a radioactive metal with a ligand represented by the following formula (1) in a reaction solution to form a radioactive metal complex.
  • the reaction solution contains water, a buffer and a water-soluble organic solvent. It provides a method for producing a radioactive metal complex in which the radioactive metal is 89 Zr or 225 Ac.
  • R 11 , R 12 and R 13 are independently ⁇ (CH 2 ) p COOH, ⁇ (CH 2 ) p C 5 H 5 N, ⁇ (CH 2 ) p PO 3 H 2 , respectively.
  • Or-(CH 2 ) p CONH 2 and one of R 14 or R 15 is a hydrogen atom,-(CH 2 ) p COOH,-(CH 2 ) p C 5 H 5 N,-(CH 2) 2) p PO 3 H 2, - (CH 2) p CONH 2, or, - (CHCOOH) (CH 2 ) a consists p COOH group and the other, - (CH 2) p COOH , - (CH 2 ) P C 5 H 5 N,-(CH 2 ) p PO 3 H 2 , or-(CH 2 ) p CONH 2 or a group linked to a peptide, where p is It is an integer of 0 or more and 3 or less.)
  • the present invention it is possible to provide a method for producing a radioactive metal complex having excellent complex formation efficiency in DOTA, a derivative thereof, or a ligand containing a structure similar to DOTA.
  • the present invention is particularly effective when a poorly water-soluble ligand is used.
  • the production method of the present invention comprises a step (complex forming step) of reacting a radioactive metal and a ligand in a reaction solution containing water, a buffer and a water-soluble organic solvent to form a radioactive metal complex. ..
  • radioactive metal in this step is preferably used in the form of an ionizable radioactive metal compound, and more preferably in the form of a radioactive metal ion (hereinafter, these aspects are collectively referred to) from the viewpoint of increasing the complex formation efficiency.
  • radioactive metal source for example, a radioactive metal ion-containing liquid in which radioactive metal ions are dissolved or dispersed in a solvent mainly composed of water can be used. Specific nuclides of radioactive metals will be described later.
  • the ligand used in this step has a structure represented by the following formula (1). That is, the ligand used in this step includes 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) or a derivative thereof, or a structure similar to DOTA. It is a ligand.
  • DOTA 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid
  • DOTA 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid
  • R 11 , R 12 and R 13 are independently ⁇ (CH 2 ) p COOH, ⁇ (CH 2 ) p C 5 H 5 N, ⁇ (CH 2 ) p PO 3 H, respectively.
  • the above p is an integer of 0 or more and 3 or less independently of each other.
  • one of R 14 or R 15 is a hydrogen atom,-(CH 2 ) p COOH,-(CH 2 ) p C 5 H 5 N,-(CH 2 ) p PO 3 H 2 ,-.
  • the above p is an integer of 0 or more and 3 or less independently of each other. Details of the peptide will be described later.
  • “Slightly water-soluble” means having a property that satisfies at least one of the following (i) or (ii), and preferably has a property that satisfies at least (ii).
  • the poor water solubility also includes the meaning of water insolubility in which the ligand is substantially insoluble in water.
  • water-insoluble when both (i) and (ii) below are satisfied, it is also referred to as "water-insoluble”.
  • the octanol-water partition coefficient (LogP value) of the ligand is a positive value.
  • the index (LogS value) indicating the solubility of the ligand in water is a negative value.
  • Oxyl-water partition coefficient which is one of the indexes of poor water solubility, is an index showing the hydrophobicity of a compound, and the distribution concentration of a substance in each phase of a two-phase solvent system consisting of n-octanol and water. It is defined as the common logarithm of the numerical value of the ratio of. This common logarithm value is a numerical value based on the ratio (C0 / Cw) of the concentration C0 in the n-octanol phase (oil phase) of the test substance to the concentration Cw in the aqueous phase of the test substance to be measured.
  • the numerical value indicates whether the ligand as the test substance is more soluble in the oil phase or the aqueous phase. Therefore, the larger the value, the more hydrophobic the ligand is, that is, the less water-soluble it is.
  • the calculation of the octanol-water partition coefficient was based on, for example, the method measured by the flask shaking method of JIS Z-7260-107: 2000, the HPLC method of OECD Test Guideline 117, or the partial structure and constituent atoms of the substance. It can be done by a method of computational chemistry estimation.
  • the LogP value when the measured LogP value is obtained as the octanol-water partition coefficient of the ligand to be measured, the LogP value is estimated when the measured value is a positive value or by computational chemistry. In the case, when the calculated LogP value is calculated as a positive value, it is assumed that the ligand is poorly water-soluble.
  • the "LogS value” which is another index of poor water solubility, is an index showing the solubility of the test substance in water. The lower the LogS value, the less water-soluble the test substance or ligand.
  • a value estimated by computational chemistry can be used as the LogS value of the present invention by using commercially available software such as "Chemdraw Professional" manufactured by PerkinElmer.
  • the peptide that can be contained in R 14 or R 15 preferably has a molecular weight of 500 Da or more and 10000 Da or less.
  • the peptide is, for example, a raw amino acid such as a D-amino acid or an amino acid modified with an N-aliphatic hydrocarbon group such as an N-methyl group. It may be a peptide containing amino acids that do not constitute a protein in the body. Peptides containing amino acids that do not constitute in vivo proteins are generally poorly water-soluble, and the ligand to which the peptide is bound expresses poorly water-soluble as a whole.
  • such peptides generally have peptidase resistance and are not easily decomposed in vivo, and as a result, they are highly stable in vivo such as in blood. Therefore, a radioactive metal complex containing this peptide is used in living organisms. When applied to, it can facilitate delivery to the target site.
  • such peptides are preferably cyclic peptides. Since the cyclic peptide has a chemically stronger structure than the chain peptide, the stability in the living body can be further enhanced.
  • the peptide that can be contained in R 14 or R 15 is not particularly limited as long as it is in the above molecular weight range and exhibits poor water solubility, but for example, a linear peptide such as physalaemin or a cyclic structure such as daptomycin can be used. Examples thereof include peptides having.
  • the reaction solution in the complex formation step is an aqueous reaction solution containing water, a buffer, and a water-soluble organic solvent.
  • water for example, distilled water or ion-exchanged water can be used.
  • the buffer used in this step includes acetic acid and its salt, phosphoric acid and its salt, phosphate, 2-amino-2- (hydroxymethyl) propan-1,3-diol (Tris), 2- [4. -(2-Hydroxyethyl) -1-piperazinyl] -ethanesulfonic acid (HEPES) and one of the basic amino acids are preferably used.
  • the counter ion of the buffer include alkali metal ions such as sodium and potassium, cations such as primary to quaternary ammonium such as ammonium and tetramethylammonium salts, and anions such as various halogen ions. Be done. In addition to this, a neutral salt such as sodium chloride may be further added. It is also preferable to select these buffers according to the types and combinations of radioactive metal nuclides and ligands.
  • acetic acid and its salt phosphoric acid and its salt, Tris, HEPES, tetramethylammonium acetic acid, and a basic amino acid
  • a buffer solution in which a buffer is dissolved in water an acetate-sodium acetate buffer solution (hereinafter, also simply referred to as an acetate buffer solution), an ammonium acetate buffer solution, a phosphate buffer solution, a phosphate buffered physiological saline solution, Tris
  • a buffer solution a HEPES buffer solution, a buffer solution such as a tetramethylammonium acetate buffer solution, or the like.
  • the reaction solution further contains a water-soluble organic solvent.
  • the water-soluble organic solvent in this step is used for the purpose of increasing the solubility of the ligand in the reaction solution and increasing the amount of the ligand subjected to the complex formation reaction, and is particularly poorly water-soluble. It is suitable for increasing the solubility of the ligand of.
  • Water-soluble in a water-soluble organic solvent means that when an arbitrary volume of water and an arbitrary volume of an organic solvent are mixed, they are freely mixed without observing the interface between the solvents.
  • a protic solvent such as methanol and ethanol
  • a polar solvent such as a protic solvent such as acetonitrile, N, N-dimethylformamide, tetrahydrofuran, dimethyl sulfoxide and acetone are preferably used.
  • acetonitrile, N, N-dimethylformamide, tetrahydrofuran, dimethyl sulfoxide and acetone it is more preferable to use at least one selected from acetonitrile, N, N-dimethylformamide, dimethyl sulfoxide and ethanol as the water-soluble organic solvent from the viewpoint of allowing the complex formation reaction to proceed satisfactorily.
  • the order of addition of the radioactive metal source and the ligand does not matter, for example, water, a buffer, and a buffer constituting the reaction solution.
  • One of the radioactive metal source and the ligand may be added to the reaction vessel containing the mixed solvent containing the water-soluble organic solvent in advance, and then the other may be added and reacted.
  • the other may be added to a solution prepared by dissolving one of them in a mixed solvent and reacted. Alternatively, these may be simultaneously added to a reaction vessel containing a mixed solvent in advance for reaction.
  • the reaction conditions in the complex formation step can be, for example, the following conditions.
  • As the reaction solvent used in this step a mixed solvent containing water, a buffer and a water-soluble organic solvent is used.
  • the reaction temperature may be, for example, room temperature (25 ° C.) or heating conditions, but is preferably 30 ° C. from the viewpoint of suppressing the decomposition of the ligand and improving the complex formation efficiency. It is heated to 80 ° C. or higher, more preferably 50 ° C. or higher and 80 ° C. or lower.
  • the reaction time is preferably 15 minutes or more and 150 minutes or less, and more preferably 30 minutes or more and 120 minutes or less, provided that the reaction temperature is as described above.
  • the amount of the reaction solution in this step is not particularly limited, but from the viewpoint of practicality in the manufacturing process, 0.01 mL or more and 100 mL or less is realistic at the start of this step. Further, the concentrations of the radioactive metal ion and the ligand in the reaction solution are independently set to be 1 ⁇ mol / L or more and 100 ⁇ mol / L or less at the start of this step, which is the desired yield of the radioactive metal complex.
  • the reaction solution can be appropriately changed depending on the physical properties of the radioactive metal, ligand and buffer used, but is preferably 4.0 or more and 7.0 or less, and more preferably 4.5 or more and 6.5 or less. , 5.0 or more and 6.0 or less is more preferable.
  • the obtained radioactive metal complex may be used as it is, or may be purified by using a filtration filter, a membrane filter, a column filled with various fillers, chromatography or the like.
  • the solubility of the ligand in the reaction solution can be enhanced and the complex formation reaction can be sufficiently proceeded.
  • a radioactive metal complex having a high complex formation rate can be obtained.
  • the reaction system contains a water-soluble organic solvent. Therefore, for example, a part of the structure of the water-soluble ligand is substituted or modified to have a poorly water-soluble property. Even when a poorly water-soluble ligand, such as an expressed ligand or a ligand that is originally poorly water-soluble, has not proceeded with the complex formation reaction in the prior art, it is coordinated with the radioactive metal.
  • the complex formation reaction with the ligand proceeds well, and a radioactive metal complex can be obtained in an excellent yield.
  • complex formation proceeds well and the yield of the complex is high, so that the radioactive metal It is advantageous in that the complex containing the nuclide can be subjected to the subsequent steps in an unpurified state.
  • Examples of the step after complex formation include a formulation step for obtaining a radioactive drug containing the complex containing the radioactive metal nuclide as an active ingredient.
  • a pH adjuster such as citrate buffer, phosphate buffer, borate buffer, a solubilizer such as polysolvate, a stabilizer or an antioxidant is added as appropriate, or water or physiological saline is added. It can be carried out by diluting with an isotonic solution such as.
  • the formulation step may then include a step of sterilizing and filtering with a membrane filter or the like to prepare an injection.
  • the ligand used in the present invention may have any of the structures shown in the following formulas (1-a) to (1-h). preferable. These structures can be appropriately selected depending on the type of radioactive metal or water-soluble organic solvent described later. The effect of the present invention is sufficiently exhibited regardless of the ligand having any structure.
  • P represents a peptide, preferably a poorly water-soluble peptide having the above-mentioned constitution.
  • the ligand represented by each formula has a poorly water-soluble peptide in its structure, so that the ligand as a whole exhibits a poorly water-soluble property.
  • R 11 , R 12 and R 13 are all ⁇ (CH 2).
  • one of R 14 and R 15 is a carboxyalkyl group represented by-(CH 2 ) p COOH, p is an integer of 1 or more and 3 or less, and the other is a chemical structure containing a poorly water-soluble peptide. It is preferable to have.
  • the content of the water-soluble organic solvent contained in the reaction solution should be 2% by volume or more. It is preferably 5% by volume or more and 70% by volume or less, and more preferably 5% by volume or more and 50% by volume or less.
  • the content in the reaction solution is preferably 2% by volume or more, more preferably 5% by volume or more and 70% by volume or less, and 5% by volume.
  • the content in the reaction solution is preferably 20% by volume or more and 70% by volume or less, and more preferably 30% by volume or more and 60% by volume or less.
  • the type of water-soluble organic solvent used is selected in consideration of the solubility of the ligand in the reaction solution, and the content of the water-soluble organic solvent in the reaction solution is selected according to the type of water-soluble organic solvent used.
  • the concentration of the buffer in the reaction solution is preferably 0.05 mol / L or more and 5.0 mol / L or less, and is 0. It is more preferably 0.05 mol / L or more and 2.0 mol / L or less.
  • the concentration in the reaction solution is preferably 0.05 mol / L or more and 2.0 mol / L or less, and 0.1 mol / L or more and 1 mol / L or less. It is more preferable to have.
  • the concentration in the reaction solution is preferably 0.01 mol / L or more and 2.0 mol / L or less, and 0.1 mol / L or more and 1.0 mol / L or less. Is more preferable.
  • a metal nuclide that emits ⁇ -rays, ⁇ -rays, ⁇ -rays, or a combination thereof can be used.
  • nuclei of such radioactive metals include alkali metals, alkaline earth metals, lanthanoids, actinides, transition metals, and radioisotopes of metals other than these metals.
  • 44 Sc, 51 Cr, 57 Co, 58 Co, 60 Co, 59 Fe, 67 Ga, 68 Ga as nuclides of radioactive metals from the viewpoint of being commercially available and improving complex formation.
  • radioactive metals can be produced according to a conventional method, and it is preferable to obtain them as a solution containing the radioactive metals in an ionized manner.
  • alpha-emitting radionuclide as a radioactive metal or beta - it is preferable to use a line-emitting nuclides.
  • the ⁇ -ray emitting nuclide may be any nuclide that emits ⁇ -rays in the process of decay of the radioactive metal. Specifically, 212 Bi, 213 Bi, 227 Th or 225 Ac or the like is preferably used, and more preferably 227 Th or It is 225 Ac, more preferably 225 Ac.
  • the ⁇ - ray emitting nuclide may be a nuclide that emits ⁇ - rays in the process of decay of a radioactive metal .
  • 60 Co, 59 Fe, 64 Cu, 67 Cu, 89 Sr, 90 Y, 99m Tc, 103 Ru, 153 Sm, 165 Dy, 166 Ho, 177 Lu, 186 Re, 188 Re, 198 Au, 203 Hg, 212 Bi, 213 Bi or 212 Pb, etc. are preferably used, more preferably 64 Cu, 67 Cu, etc. 89 Sr or 90 Y is used.
  • ⁇ + ray emitting nuclide When the radioactive metal complex is used for the purpose of diagnosing a disease or detecting a lesion, ⁇ + ray emitting nuclide, electron capture decay nuclide, or ⁇ ray emitting nuclide should be used as the radioactive metal from the viewpoint of improving the diagnostic performance. Is preferable.
  • the ⁇ + ray emitting nuclide may be any nuclide that emits positrons in the process of decay of the radioactive metal, and 44 Sc, 58 Co, 68 Ga, 64 Cu or 89 Zr or the like is preferably used, and more preferably 64 Cu or 89. Zr.
  • the electron-capture decay nuclide may be a nuclide that emits Auger electrons or characteristic X-rays in the process of decay of a radioactive metal, and may be 51 Cr, 57 Co, 58 Co, 67 Ga, 68 Ga, 64 Cu, 89 Zr, 111 In. , 186 Re, 201 Tl or 197 Hg, etc. are preferably used.
  • the ⁇ -ray emitting nuclide may be any nuclide that emits ⁇ -rays by ⁇ -decay, and 99 m Tc, 68 Ga or 201 Tl is preferably used as the nuclide that emits ⁇ -rays by ⁇ -decay.
  • the radioactive metal having an ionic radius of about 70 to 130 pm is 67 Ga, 68 Ga, 64 Cu, 67 Cu, 89 Zr, 90 Y, 99m Tc, 103 Ru, 111 In, 153 Sm, 165 Dy, 166 Ho, 177 Lu, 186 Re, 188 Re, 198 Au, 201 Tl, 197 Hg, 203 Hg, 212 Bi, 213 Bi , 212 Pb, 225 Ac, etc.
  • the radioactive metal-labeled antibody when used for the purpose of diagnosing a disease or detecting a lesion, the above formula (1-b) or (1-d) to (1-h) It is preferable to use any of the ligands having the structure represented by the above formula (1-b), (1-d) or (1-e). More preferred.
  • the radioactive metal complex produced for the treatment of a disease and the diagnosis of a disease and the detection of a lesion are used. It is more preferable that the ligands constituting these complex have the same structure as the radioactive metal complex produced for the purpose of. That is, in this case, it is more preferable to produce a radioactive metal complex using ligands having the same structure.
  • Suitable combinations of the radioactive metal, the buffer and the water-soluble organic solvent include, for example, the following combinations, but the combination is not limited to this.
  • 89 Zr is more preferably used as the ⁇ + ray emitting nuclide
  • the ligand has a structure represented by the above formulas (1-b), (1-d) or (1-e). Is more preferably used.
  • tetramethylammonium acetic acid having a concentration of 0.1 mol / L or more and 2.0 mol / L or less as a buffer in the reaction solution and 2 volumes as a water-soluble organic solvent are used. Includes% or more and 30% by volume or less of ethanol or acetonitrile.
  • 225 Ac is more preferably used as the ⁇ -ray emitting nuclide, and any of the ligands having the structures represented by the above formulas (1-a) to (1-h) is more preferably used as the ligand. Be done.
  • the radioactive metal complex When 225 Ac is used as the radioactive metal and ethanol is used as the water-soluble organic solvent under the condition (b-1) above, according to this production method, even when the concentration of ethanol is relatively low, the radioactive metal complex The formation efficiency can be increased. In addition to this, it is advantageous in that the amount of the water-soluble organic solvent used can be reduced and the manufacturing cost can be reduced.
  • the content of ethanol in the reaction solution is preferably 2% by volume or more and 30% by volume or less, more preferably 2% by volume or more and 20% by volume. % Or less.
  • a radioactive metal as an ⁇ -ray emitting nuclei
  • sodium acetate or ammonium acetate having a concentration of 0.05 mol / L or more and 2.0 mol / L or less as a buffer in the reaction solution and 2 as a water-soluble organic solvent in the reaction solution.
  • 225 Ac is more preferably used as the ⁇ -ray emitting nuclide
  • any of the ligands having the structures represented by the above formulas (1-a) to (1-h) is more preferably used as the ligand. Be done.
  • a radioactive metal as an ⁇ -ray emitting nuclide
  • sodium acetate or ammonium acetate having a concentration of 0.05 mol / L or more and 2.0 mol / L or less as a buffer is used as a buffer in the reaction solution, and 10 as a water-soluble organic solvent. Includes dimethyl sulfoxide in an amount of at least 50% by volume.
  • 225 Ac is more preferably used as the ⁇ -ray emitting nuclide
  • any of the ligands having the structures represented by the above formulas (1-a) to (1-h) is more preferably used as the ligand. Be done.
  • the radioactive metal complex is used even when the ligand concentration is increased. Formation efficiency can be increased. This is advantageous in that a high efficiency of forming the radioactive metal complex can be achieved while maintaining the solubility in the reaction solution even when a large amount of ligand is used in the commercial production of the radioactive metal complex.
  • Peptides that can be used in the present invention include, for example, liquid phase synthesis method, solid phase synthesis method, automatic peptide synthesis method, gene recombination method, phage display method, and genetic code reprogramming, RaPID (Random non-standard Peptide Integrated Discovery). It can be synthesized by a method such as a method. In the synthesis of the peptide, the functional groups of the amino acids used may be protected, if necessary.
  • the poorly water-soluble peptide and the ligand precursor are linked to each other by an amide bond or a thiourea bond. It is preferable to form a poorly water-soluble ligand.
  • the amide bond can be formed, for example, by reacting an amino group derived from the side chain of an amino acid constituting the peptide with a carboxy group contained in a ligand precursor. Examples of such a ligand include a ligand having a structure represented by the above formula (1-a) or (1-c).
  • the thiourea bond is formed by, for example, reacting an amino group derived from the side chain of an amino acid constituting the peptide with an isothiocyanate group having a ligand precursor, or a side chain of an amino acid constituting the peptide. It can be formed by reacting the thiol group derived from the above with the maleimide group of the ligand precursor.
  • a ligand include a ligand having a structure represented by the above formula (1-b) or (1-d) to (1-h).
  • Example 1-1 [Examples 1-1 to 1-4: 89 Zr labeling study (type of organic solvent)] [Example 1-1] 89 Zr was used as the radioactive metal element.
  • DOTA in the above formula (1), R 11 , R 12 , R 13 and R 14 are all "-CH 2 COOH" groups, and R 15 is a hydrogen atom
  • R 11 , R 12 , R 13 and R 14 are all "-CH 2 COOH" groups, and R 15 is a hydrogen atom
  • the ligand was dissolved in water containing 90% by volume of dimethyl sulfoxide as an organic solvent to prepare a solution containing 200 ⁇ mol / L of the ligand. 0.029 mL of this solution, 0.02 mL of a solution containing 89 Zr ions as a radioactive metal source (solvent: 0.1 mol / L hydrochloric acid aqueous solution, radioactivity concentration 33.4 MBq / mL), and 1.5 mol / L acetate buffer (1.5 mol / L acetate buffer)
  • the reaction solution mixed with pH 5.5) 0.01 mL was reacted under heating conditions to obtain an 89 Zr complex solution.
  • the heating temperature of the reaction solution was 70 ° C., and the heating time was 60 minutes.
  • Example 1-2 DOTA was used as a ligand, and the ligand was dissolved in water containing 90% by volume of acetonitrile as an organic solvent, but the conditions were the same as in Example 1-1.
  • the labeling rate of the 89 Zr complex was 59%.
  • Example 1-3 DOTA was used as a ligand, and the ligand was dissolved in water containing 90% by volume of ethanol as an organic solvent under the same conditions as in Example 1-1.
  • the labeling rate of the 89 Zr complex was 55%.
  • Example 1-4 The procedure was carried out under the same conditions as in Example 1-1 except that DOTA was used as a ligand and the ligand was dissolved in water containing 90% by volume of N, N-dimethylformaldehyde as an organic solvent. The labeling rate of the 89 Zr complex was 54%.
  • Example 2-1 DOTA is used as a ligand, the ligand is dissolved in 1.5 mol / L acetate buffer (pH 5.5) containing 90% by volume of dimethyl sulfoxide as an organic solvent, and the ligand is 200 ⁇ mol / L. The solution contained.
  • Example 2-2 Example 2-1 except that DOTA was used as a ligand and the ligand was dissolved in water containing 90% by volume of dimethyl sulfoxide as an organic solvent to prepare a solution containing 200 ⁇ mol / L of the ligand.
  • the conditions were the same as above.
  • the final concentration of the buffer in the reaction solution was 0.25 mol / L.
  • the labeling rate of the 89 Zr complex at this time was 55%.
  • Example 2-3 DOTA was used as a ligand, and the ligand was dissolved in water containing 90% by volume of dimethyl sulfoxide as an organic solvent to prepare a solution containing 200 ⁇ mol / L of the ligand. 0.029 mL of this solution, 0.02 mL of 89 Zr ion-containing solution as a radioactive metal source (solvent: 0.1 mol / L hydrochloric acid aqueous solution, radioactivity concentration 25.2 MBq / mL) and 0.75 mol / L acetate buffer (pH 5) .5) The reaction was carried out under the same conditions as in Example 2-1 except that the reaction solution mixed with 0.01 mL was reacted under heating conditions. The final concentration of the buffer in the reaction solution was 0.13 mol / L. The labeling rate of the 89 Zr complex was 66%.
  • Example 2-4 With DOTA as a ligand, the ligand is dissolved in water, except that the solution containing the ligand 200 [mu] mol / L is performed in the same conditions as in Example 2-1, the 89 Zr complex solution Obtained. The final concentration of the buffer in the reaction solution was 0.25 mol / L. The labeling rate of the 89 Zr complex was 50%.
  • Example 2-5 Example 2-Except that DOTA was used as a ligand and the ligand was dissolved in 1.5 mol / L acetate buffer (pH 5.5) to prepare a solution containing 200 ⁇ mol / L of the ligand. The same conditions as in 1 were carried out to obtain an 89 Zr complex solution. The final concentration of the buffer in the reaction solution was 1.00 mol / L. The labeling rate of the 89 Zr complex was 28%.
  • Example 2-6 Example 2 except that DOTA was used as a ligand and the ligand was dissolved in 3.0 mol / L acetate buffer (pH 5.5) to prepare a solution containing 200 ⁇ mol / L of the ligand. The procedure was carried out under the same conditions as in -1, and an 89 Zr complex solution was obtained. The labeling rate of the 89 Zr complex was 10%.
  • Example 3-1 DOTA was used as a ligand, and the ligand was dissolved in water containing 90% by volume of dimethyl sulfoxide as an organic solvent to prepare a solution containing 200 ⁇ mol / L of the ligand.
  • Example 3-2 DOTA was used as the ligand, and the ligand was dissolved in water containing 90% by volume of dimethyl sulfoxide as an organic solvent so that the final concentration of the ligand in the reaction solution was 50 ⁇ mol / L. The reaction was carried out under the same conditions as in Example 3-1 to obtain an 89 Zr complex solution. The labeling rate of the 89 Zr complex was 50%.
  • Example 3-3 DOTA was used as the ligand, and the ligand was dissolved in water containing 90% by volume of dimethyl sulfoxide as an organic solvent so that the final concentration of the ligand in the reaction solution was 10 ⁇ mol / L. The reaction was carried out under the same conditions as in Example 3-1 to obtain an 89 Zr complex solution. The labeling rate of the 89 Zr complex was 12%.
  • Example 3-4 DOTA was used as the ligand, and the ligand was dissolved in water containing 90% by volume of dimethyl sulfoxide as an organic solvent so that the final concentration of the ligand in the reaction solution was 1 ⁇ mol / L. The reaction was carried out under the same conditions as in Example 3-1 to obtain an 89 Zr complex solution. The labeling rate of the 89 Zr complex was 9%.
  • Example 4-1 DOTA was used as a ligand, and the ligand was dissolved in water containing 10% by volume of ethanol as an organic solvent to prepare a solution containing 100 ⁇ mol / L of the ligand.
  • Example 4-2 DOTA was used as a ligand, and the ligand was reacted under the same conditions as in Example 4-1 except that the ligand was dissolved in water containing 10% by volume of acetonitrile as an organic solvent to obtain a 225 Ac complex solution. .. The labeling rate of the 225 Ac complex was 86%.
  • Examples 4-3-4-4 Examples except that DOTA was used as a ligand and the ligand was dissolved in water containing 90% by volume or 50% by volume of ethanol as an organic solvent to prepare a solution containing 100 ⁇ mol / L of the ligand. The reaction was carried out under the same conditions as in 4-1 to obtain a 225 Ac complex solution. The labeling rate of the 225 Ac complex was 25% or 67%, respectively.
  • Examples 4-5 to 4-6 Under the same conditions as in Example 4-1 except that the ligand was dissolved in water containing 90% by volume or 50% by volume of acetonitrile as an organic solvent to prepare a solution containing 100 ⁇ mol / L of the ligand. The reaction was carried out to obtain a 225 Ac complex solution. The labeling rate of the 225 Ac complex at this time was 27% or 69%, respectively.
  • Example 1 Example 1 except that DOTA was used as a ligand and the ligand was dissolved in 0.5 mol / L phosphate buffer (pH 5.5) to prepare a solution containing 2 mmol / L of the ligand. The conditions were the same as in -1. In this comparative example, the reaction solution did not contain a water-soluble organic solvent. The labeling rate of the 89 Zr complex was 0%, and the complex formation reaction did not proceed at all.
  • Examples 5-1 and 5-2 Except for the use of a ligand having DOTA in the structure and a peptide having a computationally-estimated calculated LogS value of negative value and having a calculated calculated LogS value of negative value as a whole ligand.
  • the reaction is carried out under the same reaction conditions as in Example 1. In this case, the complex formation reaction proceeds to obtain an 89 Zr complex solution.
  • ligands have a structure represented by the above formula (1-b), and have a structure derived from DOTA and a peptide in the structure. Details of the chemical structure are shown in the following formulas (E1) and (E2). These ligands are poorly water-soluble because the calculated LogS value is negative.
  • each ligand was dissolved in 1.5 mol / L acetate buffer (pH 5.5) containing 45% by volume of dimethyl sulfoxide (DMSO) as a water-soluble organic solvent to prepare a solution.
  • DMSO dimethyl sulfoxide
  • 89 Zr ion-containing solution solvent: 0.1 mol / L hydrochloric acid aqueous solution, radioactivity concentration 33.4 MBq / mL
  • 1.5 mol / L acetate buffer pH 5.5
  • 59 ⁇ L of the mixed reaction solution was reacted under heating conditions at 70 ° C. for 2 hours to obtain an 89 Zr complex solution.
  • the ligand concentration and the amount of radioactivity in the reaction solution at the start of the reaction were as shown in Table 1 below.
  • the obtained 89 Zr complex was subjected to thin layer chromatography (Agient, iTLC-SG, developing solvent: water / acetonitrile (1: 1)) to count the total 89 Zr radioactivity including unreacted 89 Zr.
  • the percentage of the radioactivity count of the 89 Zr complex was defined as the labeling rate (%).
  • the results of the labeling rate of the 89 Zr complex are shown in Table 1 below.
  • Examples 6-1 and 6-2 Using the ligands represented by the above formulas (E1) and (E2), the ligand was dissolved in water containing ethanol as an organic solvent to prepare a solution. This solution and a 225 Ac ion-containing solution (solvent: 0.2 mol / L hydrochloric acid aqueous solution, radioactivity concentration 5 MBq / mL) and 0.5 mol / L tetramethylammonium acetate buffer (pH 7.8) were used as a radioactive metal source. 79 ⁇ L of the mixed reaction solution was reacted under heating conditions of 70 ° C. for 1 hour to obtain a 225 Ac complex solution.
  • solvent 0.2 mol / L hydrochloric acid aqueous solution, radioactivity concentration 5 MBq / mL
  • 0.5 mol / L tetramethylammonium acetate buffer pH 7.8
  • the ligand concentration and the amount of radioactivity in the reaction solution at the start of the reaction were as shown in Table 2 below.
  • the concentration of the water-soluble organic solvent (ethanol) in the reaction solution was 10% by volume.
  • Thin layer chromatography was performed under the same conditions as in Example 5-1.
  • the results of the labeling rate (%) of the 225 Ac complex are shown in Table 2 below.
  • Examples 7-1 to 7-4 the ligand represented by the above formula (E2) was used.
  • the ligand concentration and 225 Ac radioactivity in the reaction solution at the start of the reaction were as shown in Table 3 below.
  • the types and concentrations of the water-soluble organic solvent in the reaction solution were changed as shown in Table 3 below.
  • the reaction was carried out under the same reaction conditions as in Example 6-1 to obtain a 225 Ac complex solution.
  • the results of the labeling rate (%) of the 225 Ac complex are shown in Table 3 below.
  • Examples 7-5 to 7-11 the ligand represented by the above formula (E2) was used.
  • the ligand concentration and 225 Ac radioactivity in the reaction solution at the start of the reaction were as shown in Table 3 below.
  • the type of buffer in the reaction solution and the type and concentration of the water-soluble organic solvent were changed as shown in Table 3 below.
  • the reaction was carried out under the same reaction conditions as in Example 6-1 to obtain a 225 Ac complex solution.
  • the results of the labeling rate (%) of the 225 Ac complex are shown in Table 3 below.
  • the complex formation reaction proceeds satisfactorily when a water-soluble organic solvent is used in the reaction solution. Further, it can be seen that the complex formation reaction proceeds satisfactorily by adjusting the concentration thereof or the concentration of the ligand to an appropriate concentration range according to the type of the water-soluble organic solvent or the buffer. Under the production conditions using 89 Zr and a poorly water-soluble ligand, the complex formation rate (labeling rate) can be further improved by adopting a combination of DMSO and acetate buffer having a predetermined concentration. I understand.
  • the production method of the present invention is excellent in complex formation efficiency, and its effect is particularly remarkable when a poorly water-soluble ligand is used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

放射性金属錯体の製造方法は、放射性金属と、DOTA又はその誘導体である配位子とを反応液中で反応させて、放射性金属錯体を形成させる工程を備える。前記反応液が、水、緩衝剤及び水溶性有機溶媒を含む。前記放射性金属は89Zr又は225Acである。前記配位子は、その構造中にペプチドが連結された基を有し得る。前記反応液に含まれる前記水溶性有機溶媒の含有量が2体積%以上50体積%以下であることも好適である。30℃以上80℃以下の前記反応液中で、前記放射性金属と前記配位子とを反応させることも好適である。

Description

放射性金属錯体の製造方法
 本発明は、放射性金属錯体の製造方法に関する。
 標的分子の検出のための試薬及び診断薬、あるいは、疾患の治療のための医薬品への利用を目的として、放射性金属に配位子が配位した放射性金属錯体に関する検討が進められている。特許文献1には、抗体とコンジュゲートさせるキレート剤として、DOTAを用い、これと放射性金属とを配位させて、抗体への90Y標識を行っている。また非特許文献1には、放射性金属である89Zrと、配位子であるDOTAとを緩衝液中で反応させて、放射性金属錯体を形成する方法が記載されている。
 非特許文献2には、68Ga又は44Scと、配位子としてDOTA誘導体であるDOTATOCとを緩衝液中で反応させて、放射性金属錯体を形成する方法が記載されている。
 非特許文献3には、68Ga又は44Scと、DOTAとをエタノール含有生理食塩水中で反応させて、放射性金属錯体を形成する方法が記載されている。
US 2005/191239 A1
Pandya et al., Chem Sci. 2017;8(3):2309-14. Eppard et al., EJNMMI Radiopharm. Chem. 2017; 1,6. Perez-Malo et al., Inorg. Chem. 2018, 57(10), 6107-6117.
 しかしながら、配位子として、DOTAにペプチドなどの抗体以外の標的分子を結合させた誘導体を用いた場合に、特許文献1や非特許文献1~3に開示された条件では、DOTAと特定の放射性金属との間の錯形成がうまく進行しないことがあることが本発明者らの知見により明らかとなった。このような問題は、DOTAに限らず、DOTAGAなどDOTAに類似する誘導体においても同様に生じる問題である。
 したがって、本発明の課題は、DOTA、その誘導体、又はDOTAに類似する構造を含む配位子において、錯形成効率に優れる放射性金属錯体の製造方法を提供することにある。
 本発明は、放射性金属と、下記式(1)で表される配位子とを反応液中で反応させて、放射性金属錯体を形成させる工程を備え、
 前記反応液が、水、緩衝剤及び水溶性有機溶媒を含み、
 前記放射性金属が89Zr又は225Acである、放射性金属錯体の製造方法を提供するものである。
Figure JPOXMLDOC01-appb-C000002

(式中、R11、R12及びR13は、それぞれ独立して、-(CHCOOH、-(CHN、-(CHPO、又は-(CHCONHからなる基であり、R14又はR15の一方が、水素原子、-(CHCOOH、-(CHN、-(CHPO、-(CHCONH、又は、-(CHCOOH)(CHCOOHからなる基であり、他方が、-(CHCOOH、-(CHN、-(CHPO、若しくは、-(CHCONHからなる基であるか、又は、ペプチドと連結している基であり、pが0以上3以下の整数である。)
 本出願は、2019年8月21日に出願された日本国特許出願2019-151480号に基づく優先権を主張する出願であり、日本国特許出願2019-151480号のすべての内容は、本明細書の一部として本明細書に組み入れられる。
 本発明によれば、DOTA、その誘導体、又はDOTAに類似する構造を含む配位子において、錯形成効率に優れる放射性金属錯体の製造方法を提供することができる。本発明は、特に、難水溶性の配位子を用いた場合に効果的である。
 以下、本発明の放射性金属錯体の製造方法を、その好ましい実施形態に基づき説明する。本発明の製造方法は、放射性金属と、配位子とを、水、緩衝剤及び水溶性有機溶媒を含む反応液中で反応させて、放射性金属錯体を形成させる工程(錯体形成工程)を備える。
 本工程において、放射性金属と配位子とを錯体形成させることと、放射性金属で配位子を標識することは同義であり、錯形成効率と標識率とは同義である。
 本工程における放射性金属は、錯形成効率を高める観点から、電離可能な放射性金属化合物の態様で用いることが好ましく、放射性金属イオンの態様で用いることがより好ましい(以下、これらの態様を総称して「放射性金属源」ともいう。)。放射性金属源としては、例えば、水を主体とする溶媒に放射性金属イオンが溶解又は分散した放射性金属イオン含有液を用いることができる。放射性金属の具体的な核種は後述する。
 本工程に用いられる配位子は、以下の式(1)で表される構造を有するものである。すなわち、本工程に用いられる配位子は、1,4,7,10-テトラアザシクロドデカン-1,4,7,10-テトラ酢酸(DOTA)若しくはその誘導体、又はDOTAに類似する構造を含む配位子である。
Figure JPOXMLDOC01-appb-C000003
 式(1)中、R11、R12及びR13は、それぞれ独立して、-(CHCOOH、-(CHN、-(CHPO、又は-(CHCONHからなる基である。上記pは、それぞれ独立して、0以上3以下の整数である。
 式(1)中、R14又はR15の一方が、水素原子、-(CHCOOH、-(CHN、-(CHPO、-(CHCONH、又は、-(CHCOOH)(CHCOOHからなる基であり、他方が、-(CHCOOH、-(CHN、-(CHPO、若しくは、-(CHCONHからなる基であるか、又は、ペプチドと連結している基である。上記pは、それぞれ独立して、0以上3以下の整数である。ペプチドの詳細については後述する。
 本工程においては、錯体形成にあたり、難水溶性の配位子を用いた場合に、錯形成効率を更に高めることができる。「難水溶性」とは、以下の(i)又は(ii)のうち少なくとも一方の条件を満たす性質を有し、好ましくは少なくとも(ii)の条件を満たす性質を有することをいう。難水溶性には、配位子が水に実質的に溶解しない水不溶性の意味も包含する。なお、以下の(i)及び(ii)の双方を満たす場合も同様に「難水溶性」とする。
  (i)配位子のオクタノール-水分配係数(LogP値)が正の値である。
  (ii)配位子の水への溶解性を示す指標(LogS値)が負の値である。
 難水溶性の指標の一つである「オクタノール-水分配係数」は、化合物の疎水性を表す指標であり、n-オクタノールおよび水からなる二相溶媒系の各相へのある物質の分配濃度の比の数値の常用対数として定義される。この常用対数の値は、測定対象となる被験物質の水相中濃度Cwに対する該被験物質のn-オクタノール相(油相)中濃度C0の比(C0/Cw)に基づく数値である。つまり、当該数値は、被験物質としての配位子が油相と水相とのどちらに溶けやすいかを表す。したがって、当該数値が大きいほど、配位子は疎水性が高い、すなわち難水溶性であることを示す。
 オクタノール-水分配係数の算出は、例えば、JIS Z-7260-107:2000のフラスコ振盪法、若しくはOECD Test Guideline 117のHPLC法によって実測する方法、又は、物質の部分構造や構成原子を基にした計算化学的に推定する方法によって行うことができる。
 本発明では、測定対象となる配位子のオクタノール-水分配係数として実測LogP値を求めた場合にはその実測値が正の値であるときに、又は、計算化学的にLogP値を推定した場合はその計算LogP値が正の値と算出されたときに、「配位子が難水溶性である」とする。
 オクタノール-水分配係数を計算化学的に推定する場合には、市販のソフトウェアを用いることができ、例えばPerkinelmer社製の「Chemdraw Professional」や、Daylight Chemical Information Systems社製の「CLOGP」などを用いて算出した数値(計算LogP値)を、本発明のオクタノール-水分配係数として用いることが好ましい。
 難水溶性の別の指標である「LogS値」は、被験物質の水への溶解性を示す指標である。LogS値が低ければ低いほど、被験物質すなわち配位子が難水溶性であることを示す。LogS値は、例えばPerkinelmer社製の「Chemdraw Professional」などの市販のソフトウェアを用いて、計算化学的に推定した値(計算LogS値)を本発明のLogS値として用いることができる。
 上記式(1)において、R14又はR15に含まれ得るペプチドは、分子量が500Da以上10000Da以下であることが好ましい。また錯形成反応時におけるペプチドの意図しない分解や反応を防ぐ観点から、該ペプチドは、例えば、D-アミノ酸や、N-メチル基等のN-脂肪族炭化水素基が修飾されたアミノ酸などの生体内タンパク質を構成しないアミノ酸を含むペプチドであってもよい。生体内タンパク質を構成しないアミノ酸を含むペプチドは、一般的に難水溶性であり、該ペプチドが結合した配位子は、配位子全体として難水溶性を発現する。また、このようなペプチドは、一般的に、ペプチダーゼ耐性を有し生体内で分解されにくく、これに起因して、血中等の生体内安定性が高いので、このペプチドを含む放射性金属錯体を生体に適用したときに、標的部位に送達しやすくすることができる。特に、このようなペプチドは環状ペプチドであることが好ましい。環状ペプチドは、鎖状ペプチドに比べて化学的に強固な構造を有しているので、生体内安定性を更に高めることができる。
 R14又はR15に含まれ得るペプチドは、上記分子量の範囲であり、かつ難水溶性を示すものであれば特に限定されないが、例えばフィサレミン等の直鎖状ペプチドや、ダプトマイシン等の環状構造を有するペプチド等が挙げられる。
 上述のとおり、錯体形成工程における反応液は、水、緩衝剤及び水溶性有機溶媒を含む水系の反応液である。水としては、例えば、蒸留水やイオン交換水を用いることができる。
 本工程に用いられる緩衝剤としては、酢酸及びその塩、リン酸及びその塩、リン酸塩、2-アミノ-2-(ヒドロキシメチル)プロパン-1,3-ジオール(Tris)、2-[4-(2-ヒドロキシエチル)-1-ピペラジニル]-エタンスルホン酸(HEPES)、並びに塩基性アミノ酸のうち一種が好ましく用いられる。緩衝剤の対イオンとしては、例えば、ナトリウム、カリウム等のアルカリ金属イオン、アンモニウム、テトラメチルアンモニウム塩等の第1級ないし第4級アンモニウムなどの陽イオンや、各種ハロゲンイオン等の陰イオンが挙げられる。これに加えて、塩化ナトリウム等の中性塩を更に添加してもよい。これらの緩衝剤は、放射性金属核種や配位子の種類及び組み合わせに応じて選択することも好ましい。
 これらのうち、緩衝剤としては、酢酸及びその塩、リン酸及びその塩、Tris、HEPES、テトラメチルアンモニウム酢酸、並びに塩基性アミノ酸のうち一種を用いることが更に好ましい。すなわち、緩衝剤を水に溶解させた緩衝液として、酢酸-酢酸ナトリウム緩衝液(以下、単に酢酸緩衝液ともいう。)、酢酸アンモニウム緩衝液、リン酸緩衝液、リン酸緩衝生理食塩水、Tris緩衝液、HEPES緩衝液、若しくはテトラメチルアンモニウム酢酸緩衝液等の緩衝液等を用いることが更に好ましい。
 反応液は、水溶性有機溶媒を更に含む。本工程における水溶性有機溶媒は、配位子の反応液への溶解性を高めて、錯体形成反応に供される配位子の量を増加させることを目的として用いられ、特に、難水溶性の配位子の溶解性を高めるために好適である。水溶性有機溶媒における水溶性とは、任意の体積の水と、任意の体積の有機溶媒とを混合したときに、互いの溶媒の界面が観察されることなく自由に混和することをいう。
 水溶性有機溶媒としては、例えばメタノール及びエタノール等のプロトン性溶媒や、アセトニトリル、N,N-ジメチルホルムアミド、テトラヒドロフラン、ジメチルスルホキシド及びアセトン等のプロトン性溶媒等の極性溶媒が好ましく用いられる。これらのうち、アセトニトリル、N,N-ジメチルホルムアミド、ジメチルスルホキシド及びエタノールから選ばれる少なくとも一種を水溶性有機溶媒として用いることが、錯体形成反応を良好に進行させることができる観点から更に好ましい。
 錯体形成工程は、放射性金属イオンと、配位子との錯体形成が可能であれば、放射性金属源と配位子との添加順序は問わず、例えば、反応液を構成する水、緩衝剤及び水溶性有機溶媒を含む混合溶媒を予め収容した反応容器に、放射性金属源及び配位子のうち一方を添加し、次いで他方を添加して反応させてもよく、放射性金属源及び配位子のうち一方を混合溶媒に溶解した溶液に他方を添加して反応させてもよい。あるいは、混合溶媒を予め収容した反応容器に、これらを同時に添加して反応させてもよい。
 錯体形成工程における反応条件としては、例えば以下の条件とすることができる。本工程で用いられる反応溶媒としては、水、緩衝剤及び水溶性有機溶媒を含む混合溶媒を用いる。反応温度としては、例えば室温(25℃)であってもよく、加熱条件下であってもよいが、配位子の分解抑制と錯体の形成効率向上とを両立する観点から、好ましくは30℃以上80℃以下、更に好ましくは50℃以上80℃以下に加熱する。反応時間は、上述の反応温度であることを条件として、好ましくは15分以上150分以下、更に好ましくは30分以上120分以下である。
 本工程における反応液量は特に限定されないが、製造工程における実用性の観点から、本工程の開始時において、0.01mL以上100mL以下が現実的である。また、放射性金属イオン及び配位子の反応液中の濃度は、それぞれ独立して、本工程の開始時において、1μmol/L以上100μmol/L以下であることが、目的とする放射性金属錯体の収率を高める観点から好ましく、10μmol/L以上9000μmol/L以下であることがより好ましく、30μmol/L以上600μmol/L以下であることが更に好ましく、50μmol/L以上500μmol/L以下であることが一層好ましい。反応液のpHは、用いる放射性金属、配位子及び緩衝剤の物性に応じて適宜変更可能であるが、4.0以上7.0以下が好ましく、4.5以上6.5以下がより好ましく、5.0以上6.0以下が更に好ましい。
 得られた放射性金属錯体は、これをそのままで用いてもよく、あるいは、ろ過フィルター、メンブランフィルター、種々の充填剤を充填したカラム、クロマトグラフィー等を用いて精製してもよい。
 上述した工程を有する本発明の製造方法によれば、配位子の反応液への溶解性を高めて、錯体形成反応を十分に進行させることができる。これにより、錯形成率の高い放射性金属錯体を得ることができる。本発明は、反応系に水溶性有機溶媒を含有させることを特徴の一つとしているので、例えば、水溶性を示す配位子の構造の一部が置換あるいは修飾されて難水溶性の性質が発現した配位子や、もともと難水溶性である配位子等の、従来技術では錯体形成反応が進行しなかった難水溶性の配位子を用いた場合であっても、放射性金属と配位子との錯形成反応が良好に進行し、優れた収率で放射性金属錯体を得ることができる。特に本工程は、検出が困難な低エネルギー放射線や、α線を放出する放射性金属核種を用いた場合であっても、錯形成が良好に進行し、錯体の収率が高いので、該放射性金属核種を含む錯体を未精製の状態で以後の工程に供することができる点で有利である。
 錯形成後の工程としては、例えば、該放射性金属核種を含む錯体を有効成分とする放射性薬剤を得るための製剤化工程が挙げられる。製剤化工程は、適宜、クエン酸緩衝液、リン酸緩衝液、ホウ酸緩衝液等のpH調節剤、ポリソルベート等の可溶化剤、安定剤若しくは酸化防止剤を添加し、又は水や生理食塩液等の等張液で希釈することにより実行することができる。また、該製剤化工程は、その後、メンブランフィルター等で滅菌ろ過を行って注射剤として調製する工程を含んでいてもよい。
 上述した効果を一層顕著なものとする観点から、本発明に用いられる配位子は、以下の式(1-a)~(1-h)に示すいずれかの構造を有するものを用いることが好ましい。これらの構造は、後述する放射性金属や、水溶性有機溶媒の種類に応じて、適宜選択することができる。いずれの構造を有する配位子であっても、本発明の効果は十分に奏される。以下の各式中、Pはペプチドを表し、好ましくは上述した構成を有する難水溶性ペプチドである。各式に示される配位子は、難水溶性ペプチドを構造中に有することで、配位子全体として難水溶性の性質を示している。
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
 特に、上述した効果に加えて、用いる配位子の取扱い性と、得られる放射性金属錯体の錯体安定性とを両立する観点から、R11、R12及びR13は、いずれも-(CHCOOHで表され、pが1以上3以下の整数であるカルボキシアルキル基であることが更に好ましい。この場合、R14及びR15のうち一方が-(CHCOOHで表され、pが1以上3以下の整数であるカルボキシアルキル基であり、他方が難水溶性ペプチドを含む化学構造であることが好ましい。
 反応液への配位子の溶解性及び分散性を高めつつ、高い錯形成効率を達成する観点から、反応液中に含まれる水溶性有機溶媒の含有量は、2体積%以上であることが好ましく、5体積%以上70体積%以下であることが好ましく、5体積%以上50体積%以下であることが更に好ましい。
 例えば、水溶性有機溶媒としてエタノール又はアセトニトリルを用いた場合、反応液中の含有量が2体積%以上であることが好ましく、5体積%以上70体積%以下であることがより好ましく、5体積%以上40体積%以下であることが更に好ましく、また2体積%以上20体積%以下であることがより更に好ましく、5体積%以上15体積%以下であることが一層好ましい。
 また、水溶性有機溶媒としてジメチルスルホキシドを用いた場合、反応液中の含有量が20体積%以上70体積%以下であることが好ましく、30体積%以上60体積%以下であることが更に好ましい。
 配位子の反応液への溶解性を考慮して、用いる水溶性有機溶媒の種類を選択し、且つ、用いる水溶性有機溶媒の種類に応じて、反応液中の水溶性有機溶媒の含有量を上述の範囲に変更することによって、配位子を反応液中に適度に分散又は溶解させつつ、放射性金属と配位子の錯形成効率を高めることができる利点があり、この利点は難水溶性の配位子を用いた場合に顕著となる。
 反応時の意図しないpH変化を抑制して、錯形成効率を一層高める観点から、反応液中の緩衝剤の濃度は、0.05mol/L以上5.0mol/L以下であることが好ましく、0.05mol/L以上2.0mol/L以下であることが更に好ましい。例えば、緩衝剤として酢酸ナトリウム又は酢酸アンモニウムを含む場合、反応液中の濃度が、0.05mol/L以上2.0mol/L以下であることが好ましく、0.1mol/L以上1mol/L以下であることが更に好ましい。また、緩衝剤としてテトラメチルアンモニウム酢酸を含む場合、反応液中の濃度が、0.01mol/L以上2.0mol/L以下であることが好ましく、0.1mol/L以上1.0mol/L以下であることが更に好ましい。
 放射性金属錯体にイオンの状態で配位される放射性金属は、α線、β線若しくはγ線又はこれらの組み合わせの放射線を放出する金属核種を用いることができる。このような放射性金属の核種としては、例えばアルカリ金属、アルカリ土類金属、ランタノイド、アクチノイド、遷移金属若しくはこれらの金属以外の金属の放射性同位体等が挙げられる。これらのうち、商業利用可能であり且つ錯形成性の向上を図る観点から、放射性金属の核種として、44Sc、51Cr、57Co、58Co、60Co、59Fe、67Ga、68Ga、64Cu、67Cu、89Sr、89Zr、90Y、99mTc、103Ru、111In、153Sm、165Dy、166Ho、177Lu、186Re、188Re、198Au、201Tl、197Hg、203Hg、212Bi、213Bi、212Pb、227Th又は225Acを用いることが好ましい。これらの放射性金属は、常法に従って製造することができ、放射性金属が電離した態様で含む溶液として得ることが好ましい。
 放射性金属錯体を疾患の治療を目的として用いる場合には、治療効果を高める観点から、放射性金属としてα線放出核種又はβ線放出核種を用いることが好ましい。α線放出核種は、放射性金属の壊変過程でα線を放出する核種であればよく、詳細には、212Bi、213Bi、227Th又は225Ac等が好ましく用いられ、より好ましくは227Th又は225Acであり、更に好ましくは225Acである。β線放出核種は、放射性金属の壊変過程でβ-線を放出する核種であればよく、詳細には、60Co、59Fe、64Cu、67Cu、89Sr、90Y、99mTc、103Ru、153Sm、165Dy、166Ho、177Lu、186Re、188Re、198Au、203Hg、212Bi、213Bi又は212Pb等が好ましく用いられ、より好ましくは64Cu、67Cu、89Sr又は90Yが用いられる。
 また、放射性金属錯体を疾患の診断や病巣の検出を目的として用いる場合には、診断性能を高める観点から、放射性金属としてβ線放出核種、電子捕獲壊変核種、又はγ線放出核種を用いることが好ましい。β線放出核種は、放射性金属の壊変過程で陽電子を放出する核種であればよく、44Sc、58Co、68Ga、64Cu又は89Zr等が好ましく用いられ、より好ましくは64Cu又は89Zrである。電子捕獲壊変核種は、放射性金属の壊変過程でオージェ電子又は特性X線を放出する核種であればよく、51Cr、57Co、58Co、67Ga、68Ga、64Cu、89Zr、111In、186Re、201Tl又は197Hg等が好ましく用いられる。γ線放出核種は、γ崩壊によって、γ線を放出する核種であればよく、γ崩壊によってγ線を放出する核種としては、99mTc、68Ga又は201Tlが好ましく用いられる。
 放射性金属錯体にイオンの状態で配位されている放射性金属を、イオン半径に基づいて選択する場合、イオン半径が70~130pm程度の放射性金属として、67Ga、68Ga、64Cu、67Cu、89Zr、90Y、99mTc、103Ru、111In、153Sm、165Dy、166Ho、177Lu、186Re、188Re、198Au、201Tl、197Hg、203Hg、212Bi、213Bi、212Pb、225Ac等が挙げられる。
 例えば、放射性金属錯体を疾患の治療を目的として用いる場合に、放射性金属として225Acを用いる場合は、上記式(1-a)~(1-h)で示される構造を有する配位子のいずれであっても、放射性金属錯体を好適に形成することができる。また、放射性金属標識抗体を疾患の診断や病巣の検出を目的として用いる場合に、放射性金属として89Zrを用いる場合は、上記式(1-b)又は(1-d)~(1-h)で示される構造を有する配位子のいずれかを用いることが好ましく、上記式(1-b)、(1-d)又は(1-e)で示される構造を有する配位子を用いることがより好ましい。
 また、疾患の治療と、疾患の診断や病巣の検出との双方を目的として放射性金属錯体を用いる場合には、疾患の治療を目的として製造される放射性金属錯体と、疾患の診断や病巣の検出を目的として製造される放射性金属錯体とは、これらを構成する配位子が同一の構造であることが一層好ましい。すなわち、この場合において、同一の構造を有する配位子を用いて放射性金属錯体を製造することが一層好ましい。
 放射性金属、緩衝剤及び水溶性有機溶媒の好適な組み合わせとしては、例えば、以下の組み合わせが挙げられるが、これに限られず適用可能である。
 (a)放射性金属をβ線放出核種とし、反応液中に、緩衝剤として0.05mol/L以上2.0mol/L以下の濃度の酢酸ナトリウム又は酢酸アンモニウムと、水溶性有機溶媒として20体積%以上50体積%以下のジメチルスルホキシドとを含む。この場合、β線放出核種は89Zrがより好ましく用いられ、配位子は、上記式(1-b)、(1-d)又は(1-e)で示される構造を有する配位子がより好ましく用いられる。
 (b-1)放射性金属をα線放出核種とし、反応液中に、緩衝剤として0.1mol/L以上2.0mol/L以下の濃度のテトラメチルアンモニウム酢酸と、水溶性有機溶媒として2体積%以上30体積%以下のエタノール又はアセトニトリルとを含む。この場合、α線放出核種は225Acがより好ましく用いられ、配位子は、上記式(1-a)~(1-h)で示される構造を有する配位子のいずれかがより好ましく用いられる。
 上記(b-1)の条件において、放射性金属として225Acを用い、且つ水溶性有機溶媒としてエタノールを用いる場合、本製造方法によれば、エタノールの濃度が比較的低い場合でも、放射性金属錯体の形成効率を高めることができる。これに加えて、水溶性有機溶媒の使用量を低減して、製造コストを低減できる点で有利である。
 上記(b-1)の条件において、水溶性有機溶媒としてエタノールを用いる場合、反応液中のエタノールの含有量は、好ましくは2体積%以上30体積%以下、より好ましくは2体積%以上20体積%以下である。
(b-2)放射性金属をα線放出核種とし、反応液中に、緩衝剤として0.05mol/L以上2.0mol/L以下の濃度の酢酸ナトリウム又は酢酸アンモニウムと、水溶性有機溶媒として2体積%以上30体積%以下のエタノール又はアセトニトリルとを含む。この場合、α線放出核種は225Acがより好ましく用いられ、配位子は、上記式(1-a)~(1-h)で示される構造を有する配位子のいずれかがより好ましく用いられる。
 上記(b-2)の条件において放射性金属として225Acを用い、且つ水溶性有機溶媒としてエタノールを用いる場合、本製造方法によれば、エタノールの濃度が比較的低い場合でも、かつ、配位子濃度を高くした場合でも、放射性金属錯体の形成効率を高めることができる。水溶性有機溶媒の使用量を低減して、製造コストを低減できるとともに、放射性金属錯体の商業生産において多量の配位子を用いた場合でもその反応液中への溶解性を維持しながら高い放射性金属錯体の形成効率を達成できる点で有利である。
 (b-3)放射性金属をα線放出核種とし、反応液中に、緩衝剤として0.05mol/L以上2.0mol/L以下の濃度の酢酸ナトリウム又は酢酸アンモニウムと、水溶性有機溶媒として10体積%以上50体積%以下のジメチルスルホキシドとを含む。この場合、α線放出核種は225Acがより好ましく用いられ、配位子は、上記式(1-a)~(1-h)で示される構造を有する配位子のいずれかがより好ましく用いられる。
 上記(b-3)の条件において、放射性金属として225Acを用い、且つ水溶性有機溶媒としてジメチルスルホキシドを用いる場合、本製造方法によれば、配位子濃度を高くした場合でも、放射性金属錯体の形成効率を高めることができる。これは放射性金属錯体の商業生産において多量の配位子を用いた場合でもその反応液中への溶解性を維持しながら高い放射性金属錯体の形成効率を達成できる点で有利である。
 本発明に用いられ得るペプチドは、例えば、液相合成法、固相合成法、自動ペプチド合成法、遺伝子組み換え法、ファージディスプレイ法、及び遺伝暗号リプログラミング、RaPID(Random non-standard Peptide Integrated Discovery)法等の手法により合成することができる。ペプチドの合成にあたっては、必要に応じて、用いられるアミノ酸の官能基の保護を行ってもよい。
 配位子として、難水溶性のペプチドを構造中に含む配位子を用いる場合には、難水溶性のペプチドと、配位子前駆体とが、アミド結合又はチオウレア結合で互いに連結されて、難水溶性の配位子を形成していることが好ましい。アミド結合は、例えば、該ペプチドを構成するアミノ酸の側鎖に由来するアミノ基と、配位子前駆体の有するカルボキシ基を反応させて形成することができる。このような配位子として、上述の式(1-a)又は(1-c)で示される構造を有する配位子が挙げられる。
 また、チオウレア結合は、例えば、該ペプチドを構成するアミノ酸の側鎖に由来するアミノ基と、配位子前駆体の有するイソチオシアネート基とを反応させるか、又は該ペプチドを構成するアミノ酸の側鎖に由来するチオール基と、配位子前駆体の有するマレイミド基とを反応させることで形成することができる。このような配位子として、上述の式(1-b)又は(1-d)~(1-h)で示される構造を有する配位子が挙げられる。
 以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。
[実施例1-1~1-4:89Zr標識検討(有機溶媒の種類)]
[実施例1-1]
 放射性金属元素として89Zrを用いた。また配位子として、DOTA(上記式(1)中、R11、R12、R13及びR14が全て「‐CHCOOH」基であり、R15が水素原子である。)を用いた。
 上記配位子を、有機溶媒としてジメチルスルホキシドを90体積%含む水に溶解させて、上記配位子を200μmol/L含む溶液とした。この溶液0.029mLと、放射性金属源として89Zrイオン含有溶液(溶媒:0.1mol/L塩酸水溶液、放射能濃度33.4MBq/mL)0.02mLと、1.5mol/L酢酸緩衝液(pH5.5)0.01mLとを混合した反応液を、加熱条件下で反応させて、89Zr錯体溶液を得た。反応液の加熱温度は70℃、加熱時間は60分間とした。薄層クロマトグラフィー(Merck社製、型番:1.15685.0001、展開溶媒:10体積%塩化アンモニウム水溶液/メタノール(1:1))を用いて、未反応の89Zrを含む全89Zr放射能カウントに対する89Zr錯体の放射能カウントの百分率を標識率とした。本実施例における89Zr錯体の標識率は、84%であった。
[実施例1-2]
 配位子としてDOTAを用い、該配位子を、有機溶媒としてアセトニトリルを90体積%含む水に溶解させた以外は、実施例1-1と同様の条件で行った。89Zr錯体の標識率は、59%であった。
[実施例1-3]
 配位子としてDOTAを用い、該配位子を、有機溶媒としてエタノールを90体積%含む水に溶解させた以外は、実施例1-1と同様の条件で行った。89Zr錯体の標識率は、55%であった。
[実施例1-4]
 配位子としてDOTAを用い、該配位子を、有機溶媒としてN,N-ジメチルホルムアルデヒドを90体積%含む水に溶解させた以外は、実施例1-1と同様の条件で行った。89Zr錯体の標識率は、54%であった。
[実施例2-1~2-6:89Zr標識検討(緩衝剤の濃度)]
[実施例2-1]
 配位子としてDOTAを用い、該配位子を、有機溶媒としてジメチルスルホキシドを90体積%含む1.5mol/L酢酸緩衝液(pH5.5)に溶解させて、前記配位子を200μmol/L含む溶液とした。この溶液0.029mLと、放射性金属源として89Zrイオン含有溶液(溶媒:0.1mol/L塩酸水溶液、放射能濃度25.2MBq/mL)0.02mL及び1.5mol/L酢酸緩衝液(pH5.5)0.01mLとを混合した反応液を、加熱条件下で反応させて、89Zr錯体溶液を得た。反応液中の緩衝剤の最終濃度は、0.33mol/Lであった。反応液の加熱温度は70℃、加熱時間は15分間とした。薄層クロマトグラフィーは実施例1と同様の条件で測定した。89Zr錯体の標識率は、60%であった。
[実施例2-2]
 配位子としてDOTAを用い、該配位子を、有機溶媒としてジメチルスルホキシドを90体積%含む水に溶解させて、上記配位子を200μmol/L含む溶液とした以外は、実施例2-1と同様の条件で行った。反応液中の緩衝剤の最終濃度は、0.25mol/Lであった。この時の89Zr錯体の標識率は、55%であった。
[実施例2-3]
 配位子としてDOTAを用い、該配位子を、有機溶媒としてジメチルスルホキシドを90体積%含む水に溶解させて、上記配位子を200μmol/L含む溶液とした。この溶液0.029mLと、放射性金属源として89Zrイオン含有溶液(溶媒:0.1mol/L塩酸水溶液、放射能濃度25.2MBq/mL)0.02mL及び0.75mol/L酢酸緩衝液(pH5.5)0.01mLとを混合した反応液を、加熱条件下で反応させた以外は、実施例2-1と同様の条件で行った。反応液中の緩衝剤の最終濃度は、0.13mol/Lであった。89Zr錯体の標識率は、66%であった。
[実施例2-4]
 配位子としてDOTAを用い、該配位子を水に溶解させて、上記配位子を200μmol/L含む溶液とした以外は実施例2-1と同様の条件で行い、89Zr錯体溶液を得た。反応液中の緩衝剤の最終濃度は、0.25mol/Lであった。89Zr錯体の標識率は、50%であった。
[実施例2-5]
 配位子としてDOTAを用い、該配位子を、1.5mol/L酢酸緩衝液(pH5.5)に溶解させて、上記配位子を200μmol/L含む溶液とした以外は実施例2-1と同様の条件で行い、89Zr錯体溶液を得た。反応液中の緩衝剤の最終濃度は、1.00mol/Lであった。89Zr錯体の標識率は、28%であった。
[実施例2-6]
 配位子としてDOTAを用い、該配位子を、3.0mol/L酢酸緩衝液(pH5.5)に溶解させて、上記配位子を200μmol/L含む溶液とした以外は、実施例2-1と同様の条件で行い、89Zr錯体溶液を得た。89Zr錯体の標識率は、10%であった。
[実施例3-1~3-4:89Zr標識検討(配位子濃度)]
[実施例3-1]
 配位子としてDOTAを用い、該配位子を、有機溶媒としてジメチルスルホキシドを90体積%含む水に溶解させて、上記配位子を200μmol/L含む溶液とした。この溶液0.029mLと、放射性金属源として89Zrイオン含有溶液(溶媒:0.1mol/L塩酸水溶液、放射能濃度28.5MBq/mL)0.02mL及び1.5mol/L酢酸緩衝液(pH5.5)0.01mLとを混合した反応液を、加熱条件下で反応させて、89Zr錯体溶液を得た。反応液中の配位子の最終濃度は、100μmol/Lであった。反応液の加熱温度は70℃、加熱時間は60分間とした。薄層クロマトグラフィーは実施例1-1と同様の条件で行った。89Zr錯体の標識率は、89%であった。
[実施例3-2]
 配位子としてDOTAを用い、該配位子を、反応液中の配位子の最終濃度として、50μmol/Lとなるように有機溶媒としてジメチルスルホキシドを90体積%含む水に溶解させた以外は実施例3-1と同様の条件で反応させて、89Zr錯体溶液を得た。89Zr錯体の標識率は、50%であった。
[実施例3-3]
 配位子としてDOTAを用い、該配位子を、反応液中の配位子の最終濃度として、10μmol/Lとなるように有機溶媒としてジメチルスルホキシドを90体積%含む水に溶解させた以外は実施例3-1と同様の条件で反応させて89Zr錯体溶液を得た。89Zr錯体の標識率は、12%であった。
[実施例3-4]
 配位子としてDOTAを用い、該配位子を、反応液中の配位子の最終濃度として、1μmol/Lとなるように有機溶媒としてジメチルスルホキシドを90体積%含む水に溶解させた以外は実施例3-1と同様の条件で反応させて89Zr錯体溶液を得た。89Zr錯体の標識率は、9%であった。
[実施例4-1~4-6:225Ac標識検討(有機溶媒の種類と濃度)]
[実施例4-1]
 配位子としてDOTAを用い、該配位子を、有機溶媒としてエタノールを10体積%含む水に溶解させて、上記配位子を100μmol/L含む溶液とした。この溶液0.039mLと、放射性金属源として225Acイオン含有溶液(溶媒:0.2mol/L塩酸水溶液、放射能濃度5MBq/mL)0.02mL及び0.5mol/Lテトラメチルアンモニウム酢酸緩衝液(pH7.8)0.016mLとを混合した反応液を、加熱条件下で反応させて、225Ac錯体溶液を得た。反応液の加熱温度は70℃、加熱時間は60分間とした。薄層クロマトグラフィーは、実施例1-1と同様の条件で行った。225Ac錯体の標識率は、83%であった。
[実施例4-2]
 配位子としてDOTAを用い、該配位子を、有機溶媒としてアセトニトリルを10体積%含む水に溶解させた以外は実施例4-1と同様の条件で反応させ、225Ac錯体溶液を得た。225Ac錯体の標識率は、86%であった。
[実施例4-3~4-4]
 配位子としてDOTAを用い、該配位子を、有機溶媒としてエタノールを90体積%又は50体積%含む水に溶解させて、上記配位子を100μmol/L含む溶液とした以外は、実施例4-1と同様の条件で反応させて、225Ac錯体溶液を得た。225Ac錯体の標識率は、それぞれ25%、又は67%であった。
[実施例4-5~4-6]
 上記配位子を、有機溶媒としてアセトニトリルを90体積%又は50体積%含む水に溶解させて、上記配位子を100μmol/L含む溶液とした以外は、実施例4-1と同様の条件で反応させて、225Ac錯体溶液を得た。この時の225Ac錯体の標識率は、それぞれ27%、又は69%であった。
[比較例1]
 配位子としてDOTAを用い、該配位子を0.5mol/Lリン酸緩衝液(pH5.5)に溶解させて、上記配位子を2mmol/L含む溶液とした以外は、実施例1-1と同様の条件で行った。本比較例は反応液中に水溶性有機溶媒を含まないものであった。89Zr錯体の標識率は、0%であり、錯形成反応が全く進行しなかった。
[実施例5-1及び5-2]
 構造中にDOTAと、計算化学的に推定した計算LogS値が負の値であるペプチドとを有し、配位子全体として計算LogS値が負の値である配位子を用いる以外は、実施例1と同様の反応条件で反応させる。この場合、錯形成反応が進行して89Zr錯体溶液が得られる。
 詳細には、本実施例では、p-SCN-Bn-DOTAと、ペプチドとしてフィサレミン(実施例5-1;分子量:1265Da、計算LogS値:-6.664)又はダプトマイシン(実施例5-2;分子量:1619Da、計算LogS値:-9.777)とを常法によって結合させた配位子を用いた。これらの配位子は、上記式(1-b)で表される構造を有し、構造中にDOTAに由来する構造とペプチドとを有する。化学構造の詳細を以下の式(E1)及び(E2)に示す。これらの配位子は、計算LogS値が負の値であるので、難水溶性のものである。
Figure JPOXMLDOC01-appb-C000006
 本実施例における製造方法の詳細は以下のとおりである。まず、水溶性有機溶媒としてジメチルスルホキシド(DMSO)を45体積%含む1.5mol/L酢酸緩衝液(pH5.5)に各配位子を溶解させて、溶液とした。この溶液と、放射性金属源として89Zrイオン含有溶液(溶媒:0.1mol/L塩酸水溶液、放射能濃度33.4MBq/mL)と、1.5mol/L酢酸緩衝液(pH5.5)とを混合した反応液59μLを70℃、2時間の加熱条件下で反応させて、89Zr錯体溶液を得た。反応開始時における反応液中の配位子濃度及び放射能量は、以下の表1に示すとおりとした。
 得られた89Zr錯体を、薄層クロマトグラフィー(Agilent社製、iTLC-SG、展開溶媒:水/アセトニトリル(1:1))を用いて、未反応の89Zrを含む全89Zr放射能カウントに対する89Zr錯体の放射能カウントの百分率を標識率(%)とした。89Zr錯体の標識率の結果を以下の表1に示す。
Figure JPOXMLDOC01-appb-T000007
[比較例2]
 反応液に水溶性有機溶媒を含まない以外は、実施例5と同じ反応条件で反応させる。この場合、錯形成反応が進行しない。
[実施例6-1及び6-2]
 上記式(E1)及び(E2)で示す配位子を用い、該配位子を、有機溶媒としてエタノールを含む水に溶解させて、溶液とした。この溶液と、放射性金属源として225Acイオン含有溶液(溶媒:0.2mol/L塩酸水溶液、放射能濃度5MBq/mL)及び0.5mol/Lテトラメチルアンモニウム酢酸緩衝液(pH7.8)とを混合した反応液79μLを、70℃、1時間の加熱条件下で反応させて、225Ac錯体溶液を得た。反応開始時における反応液中の配位子濃度及び放射能量は以下の表2に示すとおりとした。反応液中の水溶性有機溶媒(エタノール)濃度は10体積%とした。
 薄層クロマトグラフィーは、実施例5-1と同様の条件で行った。225Ac錯体の標識率(%)の結果を以下の表2に示す。
Figure JPOXMLDOC01-appb-T000008
[実施例7-1~7-4]
 本実施例は、上記式(E2)で示す配位子を用いた。反応開始時における反応液中の配位子濃度及び225Ac放射能量は以下の表3に示すとおりとした。また、反応液中の水溶性有機溶媒の種類及び濃度を以下の表3に示すとおり変更した。これ以外は、実施例6-1と同様の反応条件で反応させて、225Ac錯体溶液を得た。225Ac錯体の標識率(%)の結果を以下の表3に示す。
[実施例7-5~7-11]
 本実施例は、上記式(E2)で示す配位子を用いた。反応開始時における反応液中の配位子濃度及び225Ac放射能量は以下の表3に示すとおりとした。また、反応液中の緩衝剤の種類、並びに水溶性有機溶媒の種類及び濃度を以下の表3に示すとおり変更した。これ以外は、実施例6-1と同様の反応条件で反応させて、225Ac錯体溶液を得た。225Ac錯体の標識率(%)の結果を以下の表3に示す。
Figure JPOXMLDOC01-appb-T000009
 以上のとおり、反応液に水溶性有機溶媒を使用した場合、錯体形成反応が良好に進行していることが判る。また、水溶性有機溶媒や緩衝剤の種類に応じて、それらの濃度、又は配位子の濃度を適切な濃度範囲に調節することによって錯体形成反応が良好に進行していることがわかる。
 89Zrと難水溶性の配位子とを用いた製造条件においては、所定濃度のDMSOと酢酸緩衝液の組み合わせを採用することによって、錯体形成率(標識率)が一層優れたものとなることが判る。
 225Acと難水溶性の配位子とを用いた製造条件においては、所定濃度のエタノールと、酢酸緩衝液若しくはテトラメチルアンモニウム酢酸緩衝液との組み合わせを採用するか、又は所定濃度のDMSOと酢酸緩衝液との組み合わせを採用することによって、錯体形成率(標識率)が一層優れたものとなることが判る。
 したがって、本発明の製造方法は、錯形成効率に優れ、特に難水溶性の配位子を用いた場合にその効果が顕著となる。

Claims (14)

  1.  放射性金属と、下記式(1)で表される配位子とを反応液中で反応させて、放射性金属錯体を形成させる工程を備え、
     前記反応液が、水、緩衝剤及び水溶性有機溶媒を含み、
     前記放射性金属が89Zr又は225Acである、放射性金属錯体の製造方法。
    Figure JPOXMLDOC01-appb-C000001

    (式中、R11、R12及びR13は、それぞれ独立して、-(CHCOOH、-(CHN、-(CHPO、又は-(CHCONHからなる基であり、R14又はR15の一方が、水素原子、-(CHCOOH、-(CHN、-(CHPO、-(CHCONH、又は、-(CHCOOH)(CHCOOHからなる基であり、他方が、-(CHCOOH、-(CHN、-(CHPO、若しくは、-(CHCONHからなる基であるか、又は、ペプチドと連結している基であり、pが0以上3以下の整数である。)
  2.  前記配位子が難水溶性の配位子である、請求項1に記載の放射性金属錯体の製造方法。
  3.  前記式中、R11、R12及びR13はいずれも-(CHCOOHからなる基であり、R14又はR15の一方が、水素原子、又は、-(CHCOOHからなる基であり、他方が、-(CHCOOHからなる基であるか、又は、ペプチドと連結している基であり、
     R14がペプチドと連結している基である場合は、R15は水素原子であり、
     R14がペプチドと連結している基でない場合は、R15はペプチドと連結している基である、請求項1又は2に記載の放射性金属錯体の製造方法。
  4.  前記反応液に含まれる前記水溶性有機溶媒の含有量が2体積%以上50体積%以下である、請求項1ないし3のいずれか一項に記載の放射性金属錯体の製造方法。
  5.  前記水溶性有機溶媒が極性溶媒である、請求項1ないし4のいずれか一項に記載の放射性金属錯体の製造方法。
  6.  前記水溶性有機溶媒が、アセトニトリル、N,N-ジメチルホルムアミド、ジメチルスルホキシド、及びエタノールから選ばれる少なくとも一種である、請求項1ないし5のいずれか一項に記載の放射性金属錯体の製造方法。
  7.  前記反応液が、前記水溶性有機溶媒として20体積%以上50体積%以下のジメチルスルホキシドを含む、請求項6に記載の放射性金属錯体の製造方法。
  8.  前記反応液が、前記水溶性有機溶媒として2体積%以上50体積%以下のエタノール又はアセトニトリルを含む、請求項6又は7に記載の放射性金属錯体の製造方法。
  9.  前記緩衝剤が、酢酸及びその塩、リン酸及びその塩、2-アミノ-2-(ヒドロキシメチル)プロパン-1,3-ジオール、2-[4-(2-ヒドロキシエチル)-1-ピペラジニル]-エタンスルホン酸、テトラメチルアンモニウム酢酸、並びに塩基性アミノ酸のうち一種である、請求項1ないし8のいずれか一項に記載の放射性金属錯体の製造方法。
  10.  前記反応液に含まれる前記緩衝剤の濃度が、0.01mol/L以上5.0mol/L以下である、請求項9に記載の放射性金属錯体の製造方法。
  11.  前記反応液が、前記緩衝剤として、0.05mol/L以上2.0mol/L以下の酢酸ナトリウム又は酢酸アンモニウムを含む、請求項10に記載の放射性金属錯体の製造方法。
  12.  前記反応液が、前記緩衝剤として、0.1mol/L以上2.0mol/L以下のテトラメチルアンモニウム酢酸を含む、請求項10に記載の放射性金属錯体の製造方法。
  13.  30℃以上80℃以下の前記反応液中で、前記放射性金属と前記配位子とを反応させる、請求項1ないし12のいずれか一項に記載の放射性金属錯体の製造方法。
  14.  前記ペプチドは、その分子量が500Da以上10000Da以下である、請求項1ないし13のいずれか一項に記載の放射性金属錯体の製造方法。 
PCT/JP2020/029757 2019-08-21 2020-08-04 放射性金属錯体の製造方法 WO2021033530A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2021540709A JPWO2021033530A1 (ja) 2019-08-21 2020-08-04
EP20855145.7A EP4019502A4 (en) 2019-08-21 2020-08-04 PROCESS FOR THE PRODUCTION OF A RADIOACTIVE METAL COMPLEX
AU2020332618A AU2020332618A1 (en) 2019-08-21 2020-08-04 Method for producing radioactive metal complex
US17/632,994 US20220259160A1 (en) 2019-08-21 2020-08-04 Method for producing radioactive metal complex
CN202080058291.3A CN114269724A (zh) 2019-08-21 2020-08-04 放射性金属络合物的制造方法
KR1020227004086A KR20220047974A (ko) 2019-08-21 2020-08-04 방사성 금속 착체의 제조 방법
CA3148288A CA3148288A1 (en) 2019-08-21 2020-08-04 Method for producing radioactive metal complex

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-151480 2019-08-21
JP2019151480 2019-08-21

Publications (1)

Publication Number Publication Date
WO2021033530A1 true WO2021033530A1 (ja) 2021-02-25

Family

ID=74660922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/029757 WO2021033530A1 (ja) 2019-08-21 2020-08-04 放射性金属錯体の製造方法

Country Status (9)

Country Link
US (1) US20220259160A1 (ja)
EP (1) EP4019502A4 (ja)
JP (1) JPWO2021033530A1 (ja)
KR (1) KR20220047974A (ja)
CN (1) CN114269724A (ja)
AU (1) AU2020332618A1 (ja)
CA (1) CA3148288A1 (ja)
TW (1) TW202120483A (ja)
WO (1) WO2021033530A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022149578A1 (ja) 2021-01-08 2022-07-14 日本メジフィジックス株式会社 Ac-225溶液の製造方法およびAc-225溶液を用いた医薬の製造方法
WO2023100852A1 (ja) * 2021-11-30 2023-06-08 日本メジフィジックス株式会社 安定化放射性医薬組成物

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004532820A (ja) * 2001-02-28 2004-10-28 ダウ グローバル テクノロジーズ インコーポレイティド 標的放射線療法のためのアクチニウム−225錯体および複合体
US20050191239A1 (en) 2003-12-01 2005-09-01 Immunomedics, Inc. Method for preparing conjugates of proteins and chelating agents
WO2008009444A1 (en) * 2006-07-19 2008-01-24 Van Dulmen, Adrianus, A. Use of ethanol for stabilizing a single-vial liquid formulation of a radiolabeled peptide
JP2013512918A (ja) * 2009-12-04 2013-04-18 イミューノメディクス、インコーポレイテッド タンパク質、ペプチドおよび他の分子の改善されたf−18標識化のための方法および組成物
US20140147381A1 (en) * 2012-11-29 2014-05-29 Gregory David Espenan 89zr compounds, to include somatostatin, apparatus and products comprising such compounds, methods of making same, and methods of using same for radio imaging and/or treatment
JP2017503763A (ja) * 2013-12-03 2017-02-02 ミレニアム ファーマシューティカルズ, インコーポレイテッドMillennium Pharmaceuticals, Inc. Gcc発現細胞を撮像するための化合物及び組成物
WO2017161356A1 (en) * 2016-03-18 2017-09-21 Wake Forest University Compounds, compositions and associated methods using zirconium-89 in immuno-positron emission tomography
WO2018187631A1 (en) * 2017-04-05 2018-10-11 Cornell University Trifunctional constructs with tunable pharmacokinetics useful in imaging and anti-tumor therapies
JP2019151480A (ja) 2018-03-06 2019-09-12 富士ゼロックス株式会社 検知装置及び画像形成装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7597876B2 (en) * 2007-01-11 2009-10-06 Immunomedics, Inc. Methods and compositions for improved F-18 labeling of proteins, peptides and other molecules

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004532820A (ja) * 2001-02-28 2004-10-28 ダウ グローバル テクノロジーズ インコーポレイティド 標的放射線療法のためのアクチニウム−225錯体および複合体
US20050191239A1 (en) 2003-12-01 2005-09-01 Immunomedics, Inc. Method for preparing conjugates of proteins and chelating agents
JP2007535492A (ja) * 2003-12-01 2007-12-06 イムノメディクス, インコーポレイテッド タンパク質とキレート剤とのコンジュゲートを調製するための改良された方法
WO2008009444A1 (en) * 2006-07-19 2008-01-24 Van Dulmen, Adrianus, A. Use of ethanol for stabilizing a single-vial liquid formulation of a radiolabeled peptide
JP2013512918A (ja) * 2009-12-04 2013-04-18 イミューノメディクス、インコーポレイテッド タンパク質、ペプチドおよび他の分子の改善されたf−18標識化のための方法および組成物
US20140147381A1 (en) * 2012-11-29 2014-05-29 Gregory David Espenan 89zr compounds, to include somatostatin, apparatus and products comprising such compounds, methods of making same, and methods of using same for radio imaging and/or treatment
JP2017503763A (ja) * 2013-12-03 2017-02-02 ミレニアム ファーマシューティカルズ, インコーポレイテッドMillennium Pharmaceuticals, Inc. Gcc発現細胞を撮像するための化合物及び組成物
WO2017161356A1 (en) * 2016-03-18 2017-09-21 Wake Forest University Compounds, compositions and associated methods using zirconium-89 in immuno-positron emission tomography
WO2018187631A1 (en) * 2017-04-05 2018-10-11 Cornell University Trifunctional constructs with tunable pharmacokinetics useful in imaging and anti-tumor therapies
JP2019151480A (ja) 2018-03-06 2019-09-12 富士ゼロックス株式会社 検知装置及び画像形成装置

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
EPPARD ET AL., EJNMMI RADIOPHARM. CHEM., vol. 1, 2017, pages 6
GHAI ANCHAL, SINGH BALJINDER, LI MENGSHI, DANIELS TAMARA A., COELHO RICHARD, ORCUTT KELLY, WATKINS G. LEONARD, NORENBERG JEFFREY P: "Optimizing the radiosynthesis of [68Ga] DOTA-MLN6907 peptide containing three disulfide cyclization bonds - a GCC specific chelate for clinical radiopharmaceuticals", APPLIED RADIATION AND ISOTOPES, vol. 140, October 2018 (2018-10-01), pages 333 - 341, XP055803251, ISSN: 0969-8043 *
HASEGAWA KOKI, KAWACHI EMI, UEHARA YOSHINARI, YOSHIDA TSUYOSHI, IMAIZUMI SATOSHI, OGAWA MASAHIRO, MIURA SHIN-ICHIRO, SAKU KEIJIRO: "Improved 68Ga-labeling method using ethanol addition: Application to the alpha-helical peptide DOTA-FAMP", J LABEL COMPD RADIOPHARM, vol. 60, no. 1, January 2017 (2017-01-01), pages 55 - 61, XP055803249, ISSN: 1099-1344 *
PANDYA ET AL., CHEM SCI, vol. 8, no. 3, 2017, pages 2309 - 14
PEREZ-MALO ET AL., INORG. CHEM., vol. 57, no. 10, 2018, pages 6107 - 6117
PÉREZ-MALO MARYLAINE, SZABÓ GERGELY, EPPARD ELISABETH, VAGNER ADRIENN, BRÜCHER ERNŐ, TÓTH IMRE, MAIOCCHI ALESSANDRO, SUH EUL HYUN,: "Improved Efficacy of Synthesizing *MIII- Labeled DOTA Complexes in Binary Mixtures of Water and Organic Solvents", A COMBINED RADIO- AND PHYSICOCHEMICAL STUDY, INORGANIC CHEMISTRY, vol. 57, no. 10, 10 May 2018 (2018-05-10), pages 6107 - 6117, XP055803247, ISSN: 0020-1669 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022149578A1 (ja) 2021-01-08 2022-07-14 日本メジフィジックス株式会社 Ac-225溶液の製造方法およびAc-225溶液を用いた医薬の製造方法
US11752223B2 (en) 2021-01-08 2023-09-12 Nihon Medi-Physics Co., Ltd. Method for producing Ac-225 solution and method for producing medicine using Ac-225 solution
WO2023100852A1 (ja) * 2021-11-30 2023-06-08 日本メジフィジックス株式会社 安定化放射性医薬組成物

Also Published As

Publication number Publication date
KR20220047974A (ko) 2022-04-19
CN114269724A (zh) 2022-04-01
EP4019502A1 (en) 2022-06-29
US20220259160A1 (en) 2022-08-18
TW202120483A (zh) 2021-06-01
JPWO2021033530A1 (ja) 2021-02-25
CA3148288A1 (en) 2021-02-25
EP4019502A4 (en) 2023-08-16
AU2020332618A1 (en) 2022-02-24

Similar Documents

Publication Publication Date Title
Shetty et al. Stable aluminium fluoride chelates with triazacyclononane derivatives proved by X-ray crystallography and 18 F-labeling study
JP6943765B2 (ja) 骨疾患の診断及び治療のためのコンジュゲート化ビスホスホネート
KR100650506B1 (ko) 방사성 의약품용 레늄-트리카보닐 착물 및 그 전구체의제조방법
David et al. Cyclam Derivatives with a Bis (phosphinate) or a Phosphinato–Phosphonate Pendant Arm: Ligands for Fast and Efficient Copper (II) Complexation for Nuclear Medical Applications
US5601800A (en) New multifunctional ligands for potential use in the design therapeutic or diagnostic radiopharmaceutical imaging agents
WO2021033530A1 (ja) 放射性金属錯体の製造方法
JP2017535583A (ja) Gd−DOTA金属錯体のメグルミン塩を含む製剤
US5409689A (en) MRI image enhancement using complexes of paramagnetic cations and amine ligands containing a mixture of phosphonate and non-phosphonate pendant arms
WO2021075546A1 (ja) 放射性金属標識抗体の製造方法
David et al. Improved conjugation, 64-cu radiolabeling, in vivo stability, and imaging using nonprotected Bifunctional macrocyclic ligands: Bis (Phosphinate) Cyclam (BPC) Chelators
Le Fur et al. Pyclen tri-n-butylphosphonate ester as potential chelator for targeted radiotherapy: from yttrium (III) complexation to 90Y radiolabeling
Urbanovský et al. Lanthanide complexes of DO3A–(dibenzylamino) methylphosphinate: effect of protonation of the dibenzylamino group on the water-exchange rate and the binding of human serum albumin
Försterová et al. Chemical and biological evaluation of 153Sm and 166Ho complexes of 1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetrakis (methylphosphonic acid monoethylester)(H4dotpOEt)
JP6525968B2 (ja) トランス−ジ−n−ピコリネートテトラアザシクロアルカンベースの鉛(ii)およびビスマス(iii)のキレート
Lengacher et al. Organometallic small molecule kinase inhibitors–direct incorporation of Re and 99mTc into Opaganib®
JPH04120066A (ja) 10−(2’−ヒドロキシ−3’−ポリオキサアルキル)−1,4,7−トリスカルボキシメチル−1,4,7,10−テトラアザシクロドデカン
CA2420645A1 (en) Metal complexes for use in medical and therapeutic applications
JPH11504002A (ja) 診断医薬品及び治療医薬品としての使用のためのヒドロキシアルキルホスフィン化合物並びにその製造方法
JPH05504127A (ja) 常磁性カチオン及びポリホスホネートリガンドの錯体を用いての骨及び関連組織のmri像増強
JP4056088B2 (ja) 多座イミン類およびそれらの金属錯体類
EP3377504B1 (en) Cyclam based compounds, their conjugates, co-ordination compounds, pharmaceutical compositions thereof, method of preparation and use thereof
Försterová et al. Complexation and biodistribution study of 111In and 90Y complexes of bifunctional phosphinic acid analogs of H4dota
WO1996023806A1 (en) Rapid synthesis of radiolabeled pyrimidine nucleosides or nucleotides
WO2023210510A1 (ja) 放射性金属錯体の製造方法
Hayes Technetium-99m carbonyl complexes and new ligand development for targeted radiopharmaceuticals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20855145

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021540709

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3148288

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020332618

Country of ref document: AU

Date of ref document: 20200804

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020855145

Country of ref document: EP

Effective date: 20220321