WO2021033526A1 - 発光装置、および、その製造方法 - Google Patents

発光装置、および、その製造方法 Download PDF

Info

Publication number
WO2021033526A1
WO2021033526A1 PCT/JP2020/029703 JP2020029703W WO2021033526A1 WO 2021033526 A1 WO2021033526 A1 WO 2021033526A1 JP 2020029703 W JP2020029703 W JP 2020029703W WO 2021033526 A1 WO2021033526 A1 WO 2021033526A1
Authority
WO
WIPO (PCT)
Prior art keywords
led
light emitting
emitting device
substrate
gas
Prior art date
Application number
PCT/JP2020/029703
Other languages
English (en)
French (fr)
Inventor
鼓 東山
Original Assignee
スタンレー電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スタンレー電気株式会社 filed Critical スタンレー電気株式会社
Priority to CN202080055785.6A priority Critical patent/CN114245939A/zh
Priority to US17/636,513 priority patent/US11703194B2/en
Publication of WO2021033526A1 publication Critical patent/WO2021033526A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/66Details of globes or covers forming part of the light source
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/90Methods of manufacture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V19/00Fastening of light sources or lamp holders
    • F21V19/001Fastening of light sources or lamp holders the light sources being semiconductors devices, e.g. LEDs
    • F21V19/0015Fastening arrangements intended to retain light sources
    • F21V19/0025Fastening arrangements intended to retain light sources the fastening means engaging the conductors of the light source, i.e. providing simultaneous fastening of the light sources and their electric connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V31/00Gas-tight or water-tight arrangements
    • F21V31/005Sealing arrangements therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2101/00Point-like light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages

Definitions

  • the present invention relates to a light emitting device in which an LED (semiconductor light emitting element) is airtightly mounted on a substrate.
  • An object of the present invention is a light emitting device in which an ultraviolet light LED (an LED that emits ultraviolet light) is sealed in a package, and an object thereof is to maintain an optical output.
  • an ultraviolet light LED an LED that emits ultraviolet light
  • the light emitting device of the present invention is made of an LED that emits ultraviolet light, an enclosed gas containing oxygen gas, a substrate that is airtight to the enclosed gas, and an alloy, and the LED is formed as a substrate.
  • a light emitting device in which an ultraviolet light LED is sealed in a package and which maintains a light output.
  • the inventors have found a phenomenon in which a light emitting device having a structure in which an LED that emits ultraviolet light is sealed in a space inside a package causes the light emitting surface of the LED to turn black and the light output to decrease.
  • TOF-SIMS secondary ion mass spectrometry
  • the carbides deposited on the light emitting surface of the LED were considered to be due to the flux residue contained in the bonding material used when bonding the LED to the substrate.
  • the inventors have found that by encapsulating the space in the package with oxygen gas at an appropriate concentration, the flux residue can be prevented from being deposited as an inorganic carbide on the light emitting surface of the LED, and the light output can be maintained. This will be described in detail below.
  • the light emitting device of the present embodiment includes an LED 10 (FIG. 3) that emits ultraviolet light and a package 20.
  • the package 20 is provided with a space 30 inside, and the LED 10 is placed in the space 30 via the bonding material 7.
  • the space 30 is filled with an enclosed gas containing oxygen gas in addition to the LED 10, and is airtightly sealed.
  • the package 20 includes a substrate 1 having a cavity (recess), a lid member 3 that covers the opening of the cavity, and a lid joining material 8 that airtightly seals the lid member 3 and the substrate 1.
  • the substrate 1 uses an aluminum nitride base material that can maintain the airtightness of the package 20.
  • the base material is a ceramic made of nitrides, carbides, or oxides such as silicon nitride (Si 3 N 4 ), silicon carbide (SiC), and aluminum oxide (Al 2 O 3). Can be used.
  • the ceramic-based substrate 1 the heat generated by the LED 10 can be efficiently dissipated, and since it has ultraviolet resistance, the light output can be maintained for a long period of time.
  • the bottom surface of the cavity of the substrate 1 is electrically connected to the metal layer 4 electrically connected to the first electrode 109 of the LED 10 and the second electrode pad 102 on the second electrode 101 of the LED 10 via a bonding wire.
  • the metal layer 15 to be formed is provided.
  • the metal layer 4 and the metal layer 15 are layers of silver (Ag) or a silver alloy, and the surfaces thereof are plated with tungsten (W) or / and nickel (Ni) and gold (Au) in this order from the side of the substrate 1. It has a laminated structure.
  • Each of the metal layer 4 and the metal layer 15 is electrically connected to the back surface electrode 5 and the back surface electrode 13 arranged on the back surface of the substrate 1 by the through electrode 6 and the through electrode 14.
  • the back surface electrodes 5 and 13 are layers of Ag or silver alloy, and have a structure in which W or / and Ni, Au are laminated in order from the substrate 1 side on the surface thereof.
  • the metal ring 9 is arranged on the upper plane of the side wall (the surface parallel to the bottom surface of the cavity of the substrate 1) that defines the cavity of the substrate 1.
  • the metal ring 9 has a structure in which W or / and Ni, Au are laminated by plating in order from the substrate 1 side, for example. Further, the metal ring 9 can extend to the side wall surface defining the cavity of the substrate 1. As a result, the reflectance of the light emitted from the LED 10 can be increased. Further, by covering the side wall surface defining the cavity of the substrate 1 with the metal ring 9, the exposed area of the ceramic as the base material can be reduced, and the adhesion of the flux residue which becomes a carbide due to the ultraviolet light described later can be suppressed.
  • the substrate 1 may be a flat plate and the cavity may be provided on the lid member 3 side. Further, cavities can be provided in both the substrate 1 and the lid member 3. Further, the cavity of the substrate 1 can be formed by joining a frame body to the plate-shaped substrate 1 in addition to the integral molding.
  • an aluminum nitride-based or gallium nitride-based semiconductor light emitting device that includes at least a p-type semiconductor layer, a light emitting layer, and an n-type semiconductor layer and emits ultraviolet light having a wavelength of 240 nm to 405 nm can be used.
  • the LED 10 is provided with a first electrode 109 for energizing, a second electrode 101 having a polarity different from that of the first electrode 109, and a second electrode pad 102 on the second electrode. It also includes a light emitting surface 100 that emits ultraviolet light.
  • the first electrode 109 is on the surface in contact with the bonding material 7, and the second electrode pad 102 is on the upper surface of the LED 10.
  • the LED 10 is electrically bonded to the upper side of the metal layer 4 on the bottom surface of the cavity of the substrate 1 by the first electrode 109 via the bonding material 7. Further, the second electrode pad 102 and the metal layer 15 on the bottom surface of the cavity are electrically connected by the bonding wire 12.
  • a gold-tin alloy (AuSn alloy) can be used as the bonding material 7.
  • AuSn alloy As the bonding material 7, for example, alloys such as tin-silver alloys, tin-copper alloys, tin-zinc alloys, and tin-bismuth-based alloys can be used.
  • either the inner wall of the package 20 or the bonding material 7 contains an organic substance (flux residue) carbonized by ultraviolet light.
  • the bonding material 7 contains grain boundaries of AuSn alloy and voids (voids) of about 10% to 30%, and organic substances (flux residues) carbonized by ultraviolet light are these grain boundaries. And may also be included in voids.
  • the void is included in the bonding material 7 in the region sandwiched between the LED and the substrate.
  • the organic substance (flux residue) contained in either the inner wall of the package 20 or the bonding material 7 has a property of being carbonized by irradiation with ultraviolet light in an oxygen-free atmosphere or an oxygen-poor atmosphere (oxygen gas about 1 vol%). doing.
  • an LED in which the first electrode and the second electrode are provided in the same plane (for example, in the case of an LED composed of a hexahedron, one surface thereof) can be used. ..
  • the first electrode and the metal layer 4 and the second electrode and the metal layer 15 are bonded by the bonding material 7 (flip bonding).
  • the light emitting surface in this case is the surface on the opposite side where the first electrode and the second electrode are provided.
  • first electrode, the second electrode, and the light emitting surface are provided in the same plane.
  • the opposite surfaces provided with the first electrode and the second electrode are bonded to the metal layer 4 via the bonding material 7, and the first electrode and the metal layer 4 and the second electrode and the metal layer 15 are bonded, respectively. Connect with wire 12.
  • the Zener diode 16 can also be used.
  • one electrode of the Zener diode 16 is bonded to the metal layer 4, and the other electrode is bonded to the metal layer 15 via the bonding material 7.
  • oxygen gas is 5 vol. A gas contained in a concentration of% or more can be used. Although the details will be described later, by filling the space 30 with the enclosed gas containing oxygen gas, the organic matter which is the flux residue is carbonized by the ultraviolet light emitted from the LED 10, and is carbonized on the light emitting surface 100 of the LED 10. It can be prevented from accumulating.
  • nitrogen (N 2 ) gas can be used as the interpolation gas in addition to the oxygen gas.
  • the interpolation gas argon (Ar) in addition to N 2 gas, krypton (Kr), can also be used an inert gas such as xenon gas (Xe).
  • the interpolation gas may be used alone or in combination of two or more. This is because the enclosed gas can suppress the diffusion of vapor of the flux residue by increasing the average molecular weight, and can suppress the deposition of carbides on the light emitting surface 100 of the LED 10. Further, by increasing the filling pressure, it is possible to similarly suppress the deposition of carbides on the light emitting surface 100 of the LED 10.
  • the lid member 3 uses a plate-shaped borosilicate glass that transmits ultraviolet light emitted by the LED 10.
  • borosilicate glass quartz glass, sapphire glass, or the like can be used.
  • a metallize layer 11 is arranged on the periphery facing the upper surface of the side wall that defines the cavity of the substrate 1.
  • the metallized layer 11 has a structure in which chromium (Cr), nickel (Ni), and gold (Au) are laminated in this order from the lid member 3 side by plating or the like.
  • the plate-shaped lid member 3 has been described here, a structure in which a cavity (recess) is provided on the lid member side may be used. Further, the cavity may be provided on both the substrate 1 and the lid member 3. Further, the cavity of the lid member 3 may be formed by joining a frame made of glass or an iron-nickel-cobalt alloy (trade name: Kovar (registered trademark)) to a glass plate.
  • the lid joining material 8 is arranged between the metal ring 9 of the substrate 1 and the metallized layer 11 of the lid member 3, and joins (airtightly seals) the substrate 1 and the lid member 3.
  • An AuSn alloy (20 wt.% Sn) is used for the lid bonding material 8. Further, no flux is used in the AuSn alloy used as the lid bonding material 8. This is to prevent excess flux residue from entering the space 30.
  • the light emitting device 40 supplies the current between the back electrode 5 and 13 to pass the metal layer 4 and the bonding material 7, and the metal layer 15 and the bonding wire 12, and the first electrode 109 and the first electrode 109 of the LED 10 and the bonding wire 12. It is possible to supply power to the two-electrode pad 102 and emit (emit) ultraviolet light.
  • the configuration of the light emitting device 40 shown in FIG. 1 has been mainly described, but the present invention is not limited to this.
  • a plurality of LEDs 10 may be provided in the space 30.
  • a light receiving element for ultraviolet light may be used instead of the LED 10.
  • Example 1 In the light emitting device having the structure of FIGS. 1A to 1D, the filled gas in the space 30 is oxygen gas 20 vol. %, Nitrogen gas 80 vol. A light emitting device with% was manufactured.
  • the substrate 1 of the AlN base material on which 9 is formed is prepared.
  • an LED 10 that emits light having a wavelength of 365 nm is prepared.
  • the LED 10 is a semiconductor layer composed of a p-type nitride layer 106, a light emitting layer 105, and an n-type nitride layer 104 on a conductive support substrate 108 made of silicon (Si) via a bonding layer 107 made of metal.
  • a second electrode (cathode electrode) 101, a second electrode pad 102, and a silicon dioxide (SiO 2 ) film as a protective film 103 are provided on the n-type nitride layer 104.
  • the p-type nitride layer 106 is provided with a support substrate 108 and a first electrode (anode electrode) 109 via a bonding layer 107 that also serves as an ohmic electrode and a reflective layer. Then, one of the ultraviolet light emitted from the light emitting layer 105 is transmitted through the n-type nitride layer 104 and emitted from the light emitting surface 100 on the upper surface. The other is transmitted through the p-type nitride layer 106, reflected by the bonding layer 107, and emitted from the light emitting surface 100 on the upper surface.
  • a volatile solder paste solder of AnSn alloy (20 wt.% Sn) to be a bonding layer 7 is applied onto the metal layer 4 on the bottom surface of the cavity of the substrate 1, and the LED 10 is temporarily attached.
  • the particles are placed in a reflow furnace and heated to about 300 ° C. to melt the AuSn alloy fine particles contained in the solder paste, forming a bonding material 7 between the metal layer 4 and the first electrode 109 of the LED 10. Join.
  • the LED 10 is self-aligned on the metal layer 4 by the molten AnSn alloy. Further, a grain boundary of the AnSn alloy and a void of about 10 to 30% are formed inside the bonding material 7.
  • Volatile solder paste solder (also called residue-free solder paste solder) consists of fine particles of alloy that can be used as a bonding material 7 of several nanometers to several tens of microns, rosins, alcohols, sugars, esters, fatty acids, fats and oils, etc. It consists of a flux that is liquid at room temperature and contains a plurality of organic substances such as polymerized oils, surfactants, and organic acids. The boiling point of the organic substance contained in the volatile flux is about the same as the melting temperature of the alloy, and most of the flux volatilizes at the time of joining.
  • the substrate 1 on which the LED 10 and the Zener diode 16 are mounted is washed with a solvent to remove the flux residue.
  • a solvent to remove the flux residue.
  • an organic substance which is a flux residue sufficient to be deposited as carbide on the light emitting surface of the LED 10 and reduce the light output remains. ..
  • As the cleaning method in addition to solvent cleaning, ozone cleaning that oxidatively decomposes with ozone gas, excimer cleaning that decomposes and removes with excimer light, and heat cleaning that volatilizes and removes can also be used.
  • the flux residue can be reduced by cleaning after joining the LED10, so that the oxygen concentration of the enclosed gas is 5 vol. Can be over%.
  • the oxygen concentration of the enclosed gas is 7 vol.
  • the second electrode pad 102 of the LED 10 and the metal layer 15 on the bottom surface of the cavity are connected by the bonding wire 12.
  • a borosilicate glass plate is prepared as the lid member 3, and a metallized layer 11 in which chromium (Cr), nickel (Ni), and gold (Au) are laminated is formed by vapor deposition around the lower surface (FIG. 1 (e)). Then, an annular AnSn alloy (20 wt.% Sn) sheet to be the lid bonding material 8 is pressure-bonded to the surface thereof. This alloy sheet does not contain flux.
  • a laminated body in which an AuSn alloy layer 8a and an Au layer 8b having a thickness of a dozen nanometers are laminated is used as the lid bonding material 8. Then, the AnSn alloy layer 8a side is pressure-bonded to the metallized layer 11 so that the Au layer 8b becomes an antioxidant film.
  • the substrate 1 on which the LED 10 is mounted and the lid member 13 are set in a joining device capable of adjusting the enclosed gas composition.
  • a joining device capable of adjusting the enclosed gas composition.
  • the lid member 13 is pressed against the substrate 1 to seal the space 3 before the temperature at which the lid joining material 8 is melted is reached.
  • the lid joining material 8 is heated to the melting temperature and joined, and the space 3 is hermetically sealed.
  • the joining step 2 since the Au layer 8b is laminated on the AuSn alloy layer 8a, the AuSn alloy layer 8a does not come into direct contact with the enclosed gas, so that oxidation can be prevented. Further, in the joining step 4, since the lid joining material 8 is sandwiched between the metal ring 9 and the metallized layer 11 and is in close contact with each other, the lid joining material 8 can be joined without being oxidized. Further, since the Au layer 8b is melted as the AuSn alloy layer 8a is melted, it does not interfere with the bonding.
  • oxygen gas concentration is too high, the parts of the joining device will deteriorate, so 30 vol. % Or less is preferable. Further, by mixing dry air (oxygen gas: nitrogen gas ⁇ 1: 4) in which water is removed from the air instead of oxygen gas and nitrogen gas and an interpolating gas, the oxygen gas concentration is 20 vol. It is also possible to adjust the filled gas of% or less. According to this method, it is not necessary to separately prepare oxygen gas, and the manufacturing cost can be suppressed.
  • Example 2 As the second embodiment, the filled gas to be sealed in the space 30 is oxygen gas 10 vol. %, Nitrogen 90 vol.
  • the light emitting device was manufactured in the same manner as in Example 1 in the other steps.
  • Comparative Example 1 As a comparative example 1, the filled gas sealed in the space 30 is oxygen gas 1 vol. %, Nitrogen 99 vol.
  • the light emitting device was manufactured in the same manner as in Example 1 in other steps.
  • Comparative Example 2 As Comparative Example 2, the encapsulating gas enclosed in the space 30 is nitrogen 100 vol.
  • the light emitting device was manufactured in the same manner as in Example 1 in other steps.
  • Table 1 shows the evaluations of the light emitting devices of Examples 1 and 2 and Comparative Examples 1 and 2 after 100 hours of continuous lighting, and will be described below.
  • the light emitting surface of the LED was visually observed and observed with a microscope to check for discoloration after lighting and for deposits.
  • V characteristics As for the electrical characteristics, the voltage / current characteristics (VI characteristics), forward leak voltage (Vf), and reverse leak voltage (Vr) were examined.
  • the light output retention rate was obtained by dividing the light output after 100 hours of continuous lighting by the light output at the initial stage of lighting (immediately after lighting) and multiplying by 100 (%).
  • the properties of the light emitting surface of the LED in the light emitting devices of Examples 1 and 2 were colorless, and no accumulation of carbides was observed. The same applies to the wall surface defining the space 30. In addition, no values were measured that were found to be abnormal in electrical characteristics.
  • the light output retention rate was 96.4% in Example 1 and 105.9% in Example 2, which was within the range of the aging amount derived from the structure of the LED 10 and the production lot.
  • the properties of the light emitting surface of the LED of the light emitting device of Comparative Example 1 and Comparative Example 2 were brown or black, and the accumulation of carbides was observed. No values that were considered abnormal were measured for electrical characteristics.
  • the light output retention rate was 54.0% in Comparative Example 1 and 58.7% in Comparative Example 2, which was reduced to about half from the initial lighting value.
  • the light output retention rate curve A in Example 1 gradually decreases with the passage of energization time. Further, the light output retention rate curve B in Example 2 is gradually increasing. This gradual decrease and increase is due to aging derived from the LED structure, production lot, and the like.
  • the light output retention rate curve C in Comparative Example 1 is composed of a steep attenuation curve C1 corresponding to the deposition of carbides on the light emitting surface and a gentle attenuation curve C2 due to aging.
  • the attenuation curve C1 sets the oxygen gas concentration of the enclosed gas to 5 vol. It disappears when it is set to% or more. That is, it was possible to prevent the accumulation of carbides on the light emitting surface.
  • FIG. 4 shows and describes the results of measuring the light emitting surface of the LED after energization of the light emitting devices of Example 1 and Comparative Example 1 by ToF-SIMS (flying time secondary ion mass spectrometry).
  • the horizontal axis (m / Z) in FIG. 4 is the mass-to-charge ratio of the secondary ion, where m is the mass and Z is the charge. Intensity on the vertical axis is the detection intensity of secondary ions.
  • the flux remains in the metal grain boundaries and voids of the bonding material 7, and the volatile flux remains (adheres) to the inner wall of the package such as the surface of the ceramic substrate. doing.
  • These residual fluxes are volatilized even when the ultraviolet light LED is energized to generate heat (60 ° C to 80 ° C), and the LED is used in an environment of an enclosed gas containing no oxygen gas or a small amount of oxygen gas (oxygen gas 1 vol%). This is because it is carbonized by the ultraviolet light emitted from the light emitting surface and deposited as a charcoal on the light emitting surface.
  • Comparative Example 3 As Comparative Example 3, the wavelength of the LED was changed to the ultraviolet LED 10 having 355 nm, 385 nm, and 405 nm, and the other steps were the same as in Comparative Example 2 to manufacture a light emitting device having three kinds of wavelengths.
  • Comparative Example 4 As Comparative Example 4, the LED 10 was changed to an LED having a wavelength of 445 nm, and a light emitting device was manufactured in the same manner as in Comparative Example 2 in other steps.
  • Comparative Example 5 As Comparative Example 5, the LED 10 was changed to LED 10 having an LED wavelength of 855 nm, and a light emitting device was manufactured in the same manner as in Comparative Example 2 in other steps.
  • the light output retention rate of the light emitting devices of the three types of wavelengths of Comparative Example 3 after 100 hours of continuous lighting was 65% or less, and the accumulation of carbides on the light emitting surface of the LED was observed.
  • the light output retention rates of the light emitting devices of Comparative Example 4 and Comparative Example 5 after 100 hours of continuous lighting were 95.5% and 97.4%, respectively, which were in the aging range, and both were on the light emitting surface of the LED. No accumulation of carbides was observed.
  • the light emitting device of each of the above-described embodiments can be used as an LED lighting device such as a resin curing light source, an excitation light source of an ultraviolet excitation agent, and a sterilization light source.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

紫外光LEDをパッケージ内に封止した発光装置であって、出力を高く維持する。 紫外光を出射するLEDを合金の接合材によって基板に接合し、酸素ガスを含む封入ガスでLEDを覆い、さらに、気密性を有する蓋部材で覆って、基板と蓋部材とを気密接合する。蓋部材は、封入ガスで満たされた空間を画定し、パッケージを構成する。蓋部材は、LEDが出射する紫外光を透光する。

Description

発光装置、および、その製造方法
 本発明は、LED(半導体発光素子)を基板上に気密に実装した発光装置に関する。
 高出力の半導体レーザをパッケージ内に気密封止した半導体レーザモジュールでは、製造工程において使用されパッケージ内部に残存する微量の炭化水素が、半導体レーザの発する光によって重合し、生じた有機物質が半導体レーザの発光端面に付着して、素子端面が溶融破壊することが特許文献1等により知られている。これを防ぐため、気密封止ガスに酸素を混合し、炭化水素の重合を防止することができる。しかしながら、酸素を封止ガスに混合した場合、モジュール内部の水素と反応して水になり、パッケージ内部で結露して光出力の低下や電気配線のショートを引き起こすため、特許文献1には、パッケージ内に水素吸蔵材を配置することにより、結露を防止する構成が提案されている。
特開2000-133868号公報
 半導体レーザではなく、LED(以後、発光素子または半導体発光素子と言うこともある)をパッケージ内に封止した発光装置が知られている。しかしながら、本発明者らの実験によれば、LEDとして紫外光を出射するものを用いた場合、LEDを発光させることにより水の発生はないが発光素子の表面に炭化物が堆積して、光出力が低下するという課題が生じることが新たにわかってきた。
 本発明の目的は、紫外光LED(紫外光を出射するLED)をパッケージ内に封止した発光装置であって、光出力を維持することにある。
 上記目的を達成するために、本発明の発光装置は、紫外光を出射するLEDと、酸素ガスを含む封入ガスと、封入ガスに対して気密性を有する基板と、合金からなり、LEDを基板に接合する接合材と、LEDを覆い且つ封入ガスで満たされた空間を画定するともに、LEDが出射する紫外光を透光し且つ封入ガスに対して気密性を有する蓋部材と、基板と蓋部材とを気密接合する蓋接合材とを有する。
 本発明によれば、紫外光LEDをパッケージ内に封止した発光装置であって、光出力を維持する発光装置を提供できる。
実施形態の発光装置の、(a)上面図、(b)側面図、(c)下面図、(d)A-A’断面図、(e)接合前の蓋接合材8の断面図。 実施例の発光装置の通電時間と、光出力維持率との関係を示すグラフ。 実施例で製造する発光装置に用いるLED10の、(a)上面図、(b)A-A’断面図。 実施例1と比較例1で製造した発光装置の通電後における発光素子の発光面のTOF-SIMSスペクトルを示すグラフ。
 本発明の一実施形態の発光装置について図面を用いて説明する。
 発明者らは、紫外光を出射するLEDをパッケージ内の空間に封止した構造の発光装置において、LEDを発光させることによりLEDの発光面が黒色化し、光出力が低下する現象を見出した。その原因をTOF-SIMS(二次イオン質量分析法)によって調べたところ、LEDの表面に無機質の炭化物が堆積していることが分かった。
 LEDの発光面に堆積した炭化物は、LEDを基板に接合する際に用いる接合材に含まれるフラックス残留物によるものと考えられた。
 発明者らは、パッケージ内の空間に酸素ガスを適切な濃度で封入することにより、フラックス残留物がLEDの発光面に無機質の炭化物となり堆積することを防ぎ、光出力を維持できることを見出した。以下具体的に説明する。
 本実施形態の発光装置は、図1(a)~(d)に示すように、紫外光を出射するLED10(図3)と、パッケージ20とを備えている。パッケージ20は、内部に空間30を備え、空間30内にLED10が接合材7を介して載置されている。空間30には、LED10の他に酸素ガスを含む封入ガスが満たされ、気密に封止されている。
 またパッケージ20は、キャビティ(凹部)を備えた基板1と、キャビティの開口を覆う蓋部材3と、蓋部材3と基板1とを気密に封止する蓋接合材8を備えている。
 基板1は、パッケージ20の気密を保つことができる窒化アルミニウム基材を用いている。基材には、窒化アルミニウム(AlN)以外に、窒化珪素(Si)、炭化珪素(SiC)、酸化アルミ(Al)などの窒化物、炭化物、または、酸化物からなるセラミックを用いることができる。セラミックス基材の基板1を用いることにより、LED10で発生した熱を効率よく放熱することができるとともに、耐紫外線性を有するので長期に光出力を維持できる。
 基板1のキャビティの底面には、LED10の第1電極109に電気的に接続される金属層4と、LED10の第2電極101上の第2電極パッド102とボンディングワイヤを介して電気的に接続される金属層15が備えられている。金属層4及び金属層15は、銀(Ag)又は銀合金の層であり、その表面には、基板1の側から順にタングステン(W)又は/及びニッケル(Ni)、金(Au)をめっきにより積層した構造としている。
 金属層4及び金属層15の各々は、基板1の裏面に配置された裏面電極5及び裏面電極13と、貫通電極6及び貫通電極14によって電気的に接続されている。裏面電極5及び13は、Ag又は銀合金の層であり、その表面に、基板1側から順にW又は/及びNi、Auをめっきにより積層した構造としている。
 基板1のキャビティを画定する側壁の上部平面(基板1のキャビティ底面と平行な面)には、金属環体9が配置されている。金属環体9は、例えば、基板1側から順に、W又は/及びNi、Auをめっきにより積層した構造としている。また、金属環体9は基板1のキャビティを画定する側壁面にまで延在することもできる。これにより、LED10から出射した光の反射率を高めることができる。また、金属環体9が基板1のキャビティを画定する側壁面を覆うことで、基材であるセラミックの露出面積を減少でき、後述する紫外光により炭化物となるフラックス残留物の付着を抑制できる。
 ここでは、基板1にキャビティを設けた構造について説明したが、基板1を平面板とし、蓋部材3側にキャビティを設けることもできる。また、基板1と蓋部材3の両方にキャビティを設けることもできる。また、基板1のキャビティは一体成形以外に、板状の基板1に枠体を接合して形成することもできる。
 LED10としては、少なくともp型半導体層と発光層とn型半導体層を備え、波長240nm~405nmの紫外光を出射する窒化アルミ系または窒化ガリウム系の半導体発光素子を用いることができる。
 また、LED10には通電するための第1電極109と、第1電極109と極性の異なる第2電極101及び第2電極上に第2電極パッド102を備えている。また、紫外光を出射する発光面100を備えている。
 図1(d)において、電極および電極パッドは省略しているが、第1電極109は接合材7と接する面にあり、第2電極パッド102はLED10の上面にある。
 LED10は、第1電極109によって、基板1のキャビティ底面の金属層4の上側に接合材7を介して電気的に接合されている。また、第2電極パッド102とキャビティ底面の金属層15がボンディングワイヤ12によって電気的に接続されている。
 接合材7としては金錫合金(AuSn合金)を用いることができる。接合材7としてのAuSn合金以外に、例えば、錫銀系合金、錫銅系合金、錫亜鉛系合金、錫ビスマス系合金などの合金を用いることができる。
 また、パッケージ20の内壁および接合材7のいずれかには、紫外光で炭化する有機物(フラックス残留物)が含まれている。ここで、接合材7には、AuSn合金の粒界、および、1割~3割程度のボイド(空隙)が含まれており、紫外光で炭化する有機物(フラックス残留物)は、これら粒界およびボイドにも含まれることがある。ボイドは、LEDと基板とで挟まれた領域の接合材7に含まれている。
 パッケージ20の内壁または接合材7のいずれかに含まれる有機物(フラックス残留物)は、酸素のない雰囲気または酸素の少ない雰囲気(酸素ガス1vol%程度)において、紫外光の照射により炭化する性質を有している。
 LED10としては、上述したLED以外に、第1電極と第2電極が同一面内(例えば、6面体で構成されたLEDの場合は、その一つの面)に設けられたLEDを用いることができる。この場合、第1電極と金属層4、第2電極と金属層15を各々接合材7で接合している(フリップ接合)。なお、この場合の発光面は、第1電極と第2電極が設けられた反対側の面となる。
 また、第1電極と第2電極、及び発光面が同一面内に設けられたLEDを用いることもできる。この場合、第1電極と第2電極が設けられた反対側の面を金属層4に接合材7を介して接合し、第1電極と金属層4、第2電極と金属層15を各々ボンディングワイヤ12で接続する。
 また、ツェナーダイオード16を用いることもできる。この場合、ツェナーダイオード16の一方の電極を金属層4、他方の電極を金属層15に接合材7を介して接合する。
 封入ガスとしては、酸素ガスが5vol.%以上の濃度で含まれたガスを用いることができる。詳細については後述するが、酸素ガスを含んだ封入ガスで空間30を満たすことにより、LED10から出射された紫外光により、フラックス残留物である有機物が、炭化されてLED10の発光面100に炭化物として堆積することを防止できる。
 封入ガスは、酸素ガス以外に補間ガスとして窒素(N)ガスを用いることができる。補間ガスとしては、Nガス以外にアルゴン(Ar)、クリプトン(Kr)、キセノンガス(Xe)などの不活性ガスを用いることもできる。また、補間ガスは、1種または2種以上混合して用いることもできる。封入ガスは、平均分子量を大きくすることでフラックス残留物の蒸気の拡散を抑え、LED10の発光面100への炭化物の堆積を抑制できるからである。また、充填圧を高くすることで、同様にLED10の発光面100への炭化物の堆積を抑制できるからである。
 蓋部材3は、LED10が出射する紫外光を透光する板状のホウケイ酸ガラスを用いる。ホウケイ酸ガラス以外に石英ガラスやサファイアガラス等を用いることができる。
 また、蓋部材3には、基板1のキャビティを画定する側壁上面と対向する周囲にメタライズ層11が配置されている。メタライズ層11は、蓋部材3側から順にクロム(Cr)、ニッケル(Ni)、金(Au)をめっき等により積層した構造としている。
 ここでは、板状の蓋部材3について説明したが、蓋部材側にキャビティ(凹部)を設けた構造としてもよい。また、キャビティを基板1と蓋部材3の両方に設けてもよい。また、蓋部材3のキャビティは、ガラス板にガラスまたは鉄-ニッケル-コバルト合金(商品名:Kovar(登録商標))からなる枠体を接合して形成してもよい。
 蓋接合材8は、基板1の金属環体9と蓋部材3のメタライズ層11の間に配置され、基板1と蓋部材3を接合(気密封止)する。蓋接合材8には、AuSn合金(20wt.%Sn)を用いている。また、蓋接合材8となるAuSn合金にはフラックスを用いていない。これは、空間30にフラックス残留物が過剰に入り込むのを防ぐためである。
 例えば、5vol.%以上の酸素ガスを含む封入ガスを空間30に満たしても、蓋接合材8からフラックス残留物が、空間30に入り込むとLED10の発光面に炭化物が堆積することを防止できなくなるからである。
 以上によって、発光装置40は、裏面電極5と13間に電流を供給することによって、金属層4と接合材7、及び金属層15とボンディングワイヤ12を介して、LED10の第1電極109及び第2電極パッド102に給電でき、紫外光を出射(発光)させることができる。
 また、LED10の発光面100に、フラックス成分の有機物が、紫外光によって炭化した炭化物として堆積することを防ぐことができ、光出力を維持する発光装置40の提供が可能となる。
 ここでは、図1に示した発光装置40の構成について主に説明したが、本発明はこれに限定されるものではない。例えば、空間30内に複数のLED10を備えていてもよい。また、LED10の代わりに紫外光用の受光素子を用いてもよい。
 次に、本実施形態の発光装置40の製造方法について実施例によって説明する。
 (実施例1)
 図1(a)~(d)の構造の発光装置であって、空間30の封入ガスを酸素ガス20vol.%、窒素ガス80vol.%とした発光装置を製造した。
 まず、基板1のキャビティ底面に金属層4,15と、キャビティ底面から基板裏面まで貫通する貫通電極6,14と、基板裏面に裏面電極5,13と、キャビティを画定する側壁上面に金属環体9が形成されているAlN基材の基板1を用意する。
 次に、波長365nmの光を出射するLED10を用意する。
 用意したLED10の具体的な構成を図3(a)~(b)に示す。このLED10は、シリコン(Si)からなる導電性の支持基板108上に、金属からなる接合層107を介して、p型窒化物層106、発光層105およびn型窒化物層104からなる半導体層が積層されている。n型窒化物層104上には、第2電極(カソード電極)101と、第2電極パッド102及び保護膜103としての二酸化珪素(SiO)膜が備えられている。また、p型窒化物層106には、オーミック電極と反射層を兼ねた接合層107を介して支持基板108と、さらに第1電極(アノード電極)109が備えられている。そして、発光層105から放射された紫外光の一方は、n型窒化物層104を透光して上面の発光面100から出射される。他方は、p型窒化物層106を透光して接合層107で反射されて上面の発光面100から出射される。
 次に、基板1のキャビティ底面の金属層4の上に、接合層7となるAnSn合金(20wt.%Sn)の揮発性ソルダーペーストはんだを塗布し、LED10を仮付けする。次に、リフロー炉に入れて約300℃まで加熱して、ソルダーペーストに含まれるAuSn合金の微粒子を溶融して、金属層4とLED10の第1電極109の間に接合材7を形成しつつ接合する。このとき、溶融したAnSn合金によってLED10は金属層4上にセルフアライメントされる。また、接合材7の内部にAnSn合金の粒界と1~3割程度のボイドが形成される。
 揮発性ソルダーペーストはんだ(無残渣ソルダーペーストはんだとも言う)は、数ナノから数十ミクロンの接合材7となる合金の微粒子と、ロジン類、アルコール類、糖類、エステル類、脂肪酸類、油脂類、重合油類、界面活性剤、有機酸などの有機物を複数含む室温で液状のフラックスからなる。揮発性フラックスに含まれる有機物の沸点は、合金の溶融温度と同等程度であり接合時にフラックスのほとんどが揮発する。
 ツェナーダイオード16を用いる場合は、LED10と同時に接合する。
 次に、LED10とツェナーダイオード16を実装した基板1を溶剤で洗浄して、フラックス残留物を除去する。これは、空間30に紫外光LED10を載置する発光装置40において、LED10の発光面に炭化物として堆積し、光出力を低下させるに十分なフラックス残留物である有機物が残留しているからである。洗浄方法としては、溶剤洗浄の他に、オゾンガスで酸化分解するオゾン洗浄、エキシマ光で分解除去するエキシマ洗浄、揮発除去する加熱洗浄などを用いるもともできる。
 このように、LED10の接合後に洗浄することでフラックス残留物を低減をできるので、封入ガスの酸素濃度を5vol.%以上にできる。対して、洗浄をしない場合は、フラックス残留物の残留量が多いため、封入ガスの酸素濃度を7vol.%以上とすることで、LED10の発光面100に炭化物が堆積することを防止できる。
 次に、ワイヤボンダーを用いて、LED10の第2電極パッド102と、キャビティ底面の金属層15をボンディングワイヤ12により接続する。
 一方、蓋部材3としてホウケイ酸ガラス板を用意し、下面の周囲(図1(e))にクロム(Cr)、ニッケル(Ni)、金(Au)が積層したメタライズ層11を蒸着にて形成し、その表面に蓋接合材8となる環状のAnSn合金(20wt.%Sn)シートを圧着する。なお、この合金シートはフラックスを含有していない。
 本実施例では、蓋接合材8としてAuSn合金層8aと厚さ十数nmのAu層8bを重ねた積層体を用いた。そして、Au層8bが酸化防止膜となるように、AnSn合金層8a側をメタライズ層11に圧着している。
 基板1と蓋部材13の接合は、(接合工程1)まず封入ガス組成を調整できる接合装置内にLED10が実装された基板1と蓋部材13をセットする。(接合工程2)接合装置内を封入ガスとなる酸素ガス20vol.%、窒素ガス80vol.%ガスを大気圧にて置換しつつ加熱する。(接合工程3)蓋接合材8が溶融する温度に達する前に蓋部材13を基板1に押圧して空間3を密閉する。(接合工程4)蓋接合材8の溶融温度まで加熱して接合し、空間3を気密封止する。
 接合工程2において、AuSn合金層8aにAu層8bを積層しているため、AuSn合金層8aが直接封入ガスに接しないので、酸化を防止できる。また、接合工程4において、蓋接合材8は金属環体9とメタライズ層11に挟まれて密着しているので、酸化されることなく接合ができる。また、AuSn合金層8aの溶融にともないAu層8bは溶解されるので接合の妨げにはならない。
 しかしながら、酸素ガス濃度が高すぎると接合装置の部品等を劣化させるので30vol.%以下が好ましい。また、酸素ガスと窒素ガスに替えて空気から水分を除去したドライエア(酸素ガス:窒素ガス≒1:4)と補間ガスを混合することで酸素ガス濃度20vol.%以下の封入ガスを調整することもできる。この方法によれば、酸素ガスを別途用意する必要がなく製造コストを抑えることができる。
 最後に冷却して接合工程は完了する。
 以上によって、空間30に酸素ガス20vol.%、窒素80vol.%が封入された発光装置40を製造した。
 (実施例2)
 実施例2として、空間30に封入する封入ガスを酸素ガス10vol.%、窒素90vol.%に変更し、他の工程は、実施例1と同様にして発光装置を製造した。
 (比較例1)
 比較例1として、空間30に封入する封入ガスを酸素ガス1vol.%、窒素99vol.%に変更し、他の工程は実施例1と同様にして発光装置を製造した。
 (比較例2)
 比較例2として、空間30に封入する封入ガスを窒素100vol.%に変更し、他の工程は実施例1と同様にして発光装置を製造した。
 (評価)
 実施例1及び2、比較例1及び2の発光装置の100時間連続点灯後の評価を表1に示し、以下に説明する。
Figure JPOXMLDOC01-appb-T000001
 性状は、LEDの発光面を目視および顕微鏡で観察して、点灯後の変色の有無、付着物の有無を調べた。
 電気特性は、電圧・電流特性(V・I特性)、順方向リーク電圧(Vf)、逆方向リーク電圧(Vr)を調べた。
 光出力維持率は、100時間連続点灯後の光出力を点灯初期(点灯直後)の光出力で除算し、100を掛けた値(%)として求めた。
 実施例1及び実施例2の発光装置におけるLEDの発光面の性状は、無色であり炭化物の堆積は認められなかった。また空間30を画定する壁面も同様であった。また、電気特性に異常と認められる値は測定されなかった。光出力維持率は、実施例1で96.4%、実施例2で105.9%であり、LED10の構造や製造ロットに由来するエージング量の範囲であった。
 対して、比較例1及び比較例2の発光装置のLEDの発光面の性状は、褐色または黒色であり炭化物の堆積を認めた。電気特性に関しては異常と認められる値は測定されなかった。光出力維持率は、比較例1で54.0%、比較例2で58.7%であり、点灯初期値から半分程度まで低下した。
 以上の結果により、空間30に酸素ガスを20vol.%(実施例1)及び10vol.%(実施例2)の濃度で封入することにより、発光面の性状及び電気特性を損なうことなく、発光面への炭化物の堆積を防ぐことができ、光出力が維持されることを確認した。
 次に、実施例1及び実施例2と、比較例1の発光装置の通電時間と光出力維持率の関係を図2に示し説明する。
 まず、実施例1における光出力維持率曲線Aは、通電時間の経過に応じて緩やかに減少している。また実施例2における光出力維持率曲線Bは、緩やかに増加している。この緩やかな減少及び増加は、LEDの構造や製造ロットなどに由来するエージングによるものである。
 対して、比較例1における光出力維持率曲線Cは、発光面への炭化物の堆積に対応した急峻な減衰曲線C1と、エージングによる緩やかな減衰曲線C2とからなっている。減衰曲線C1は、封入ガスの酸素ガス濃度を5vol.%以上とすることで消失する。つまり、発光面への炭化物の堆積を防止できたからである。
 次に、実施例1と比較例1の発光装置の通電後におけるLEDの発光面をToF-SIMS(飛行時間二次イオン質量分析法)よって測定した結果を図4に示し説明する。
 図4の横軸(m/Z)は2次イオンの質量電荷比であり、mは質量、Zは電荷である。また縦軸のIntensityは2次イオンの検出強度である。
 実施例1の発光装置の測定結果(a)は、質量電荷比(m/Z)の60と121に強いピークが観測されている。また、フラグメントが61であることから、保護膜103の二酸化珪素(SiO)と同定された。なお、炭化物や有機物に関わるピークは観測されていない。
 次に、比較例1の発光装置の測定結果(b)は、質量電荷比(m/Z)の121と145に強いピークが観測されている。また、フラグメントが24であることから、グラファイト、ダイヤモンドライクカーボン(DLC)、アモルファスカーボンなどの無機質の炭化物と同定された。僅かだが、保護膜103の二酸化珪素のピークも観察されている。
 これらの結果より、比較例1の発光装置におけるLEDの発光面への堆積物が炭化物であることを確認した。
 これとは別に、波長365nmのLEDを、接合材7としてAnSn合金のみで金属層4に熱圧着接合した発光装置(封入ガスは窒素のみ)においては、LEDの発光面に炭化物の堆積は認められなかった。以上から、炭化物はフラックス残留物(フラックス成分の有機物)が紫外光によって炭化されて無機質の炭化物となったものと確認された。
 つまり、揮発性のAnSu合金のソルダーペーストであっても、フラックスが接合材7の金属粒界やボイド内に残留し、また揮発したフラックスがセラミック基板の表面などのパッケージの内壁に残留(付着)している。これら残留したフラックスは、紫外光LEDへの通電による発熱程度(60℃~80℃)でも揮発され、酸素ガスを含まないあるいは酸素ガスの少ない(酸素ガス1vol%)封入ガスの環境下において、LEDから出射される紫外光で炭化して発光面に炭化物として堆積されるからである。
(比較例3)
 比較例3として、LEDの波長が355nm、385nm、405nmである紫外光LED10に変更し他の工程は比較例2と同様にして3種類の波長の発光装置を製造した。
(比較例4)
 比較例4として、LEDの波長が445nmであるLED10に変更し他の工程は比較例2と同様にして発光装置を製造した。
(比較例5)
 比較例5として、LEDの波長が855nmであるLED10に変更し他の工程は比較例2と同様にして発光装置を製造した。
 比較例3から比較例5の発光装置おいても100時間連続点灯後の、性状観察、電気特性、光出力維持率を評価した。
 その結果、比較例3の3種類の波長の発光装置の100時間連続点灯後の光出力維持率は何れも65%以下であり、またLEDの発光面への炭化物の堆積が認められた。
 他方、比較例4および比較例5の発光装置の100時間連続点灯後の光出力維持率は、それぞれ、95.5%、97.4%でエージングの範囲にあり、いずれもLEDの発光面への炭化物の堆積は認められなかった。
 つまり、波長が445nmの可視光LEDや、波長が855nmの赤外光LEDを用いた発光装置おいては、酸素ガスを含まない封入ガスであっても発光面への炭化物の堆積は起きない。このことから、発光面への炭化物の堆積は、少なくとも波長405nm以下の紫外光LEDを用いた発光装置において起こる現象である。
 以上から、パッケージ20内の空間30に揮発性ソルダーペーストはんだを用いて紫外光LED10を接合した発光装置において、LED10の発光面に炭化物が堆積して光出力が低下する問題は、空間30に酸素ガス濃度5vol.%以上の封入ガスを封入することによって解決された。これにより、光出力を維持した発光装置の提供を可能とした。また、酸素ガス濃度を30vol.%以下の封入ガスとすることによって、基板1と蓋部材3を接合(気密封止)する接合装置の部品劣化を抑えることも可能とした。
 上述してきた各実施形態の発光装置は、樹脂の硬化光源、紫外励起発剤の励起光源、減菌用光源、などのLED照明装置として用いることができる。
5…裏面電極、6…貫通電極、8…蓋接合材、8a…AuSn層、8b…Au層、9…金属環体、10…LED、11…メタライズ層、12…ボンディングワイヤ、13…裏面電極、14…貫通電極、15…金属層、16…ツェナーダイオード、20…パッケージ

Claims (13)

  1.  紫外光を出射するLEDと、
     酸素ガスを含む封入ガスと、
     前記封入ガスに対して気密性を有する基板と、
     合金からなり、前記LEDを前記基板に接合する接合材と、
     前記LEDを覆い且つ前記封入ガスで満たされた空間を画定するともに、前記LEDが出射する紫外光を透光し且つ前記封入ガスに対して気密性を有するパッケージを構成する蓋部材と、
     前記基板と蓋部材とを気密接合する蓋接合材と、
     を有する発光装置。
  2.  前記基板および前記蓋部材の前記封入ガスが封入された前記パッケージの内壁、および前記LEDと前記基板とで挟まれた領域の前記接合材、の何れかには、前記LEDの出射する紫外光によって炭化物となる有機物を含むことを特徴とする請求項1に記載の発光装置。
  3.  前記接合材の前記合金は、前記有機物を含む粒界を有することを特徴とする請求項2に記載の発光装置。
  4.  前記LEDと前記基板とで挟まれた領域の前記接合材には、前記有機物を含むボイド(空隙)があることを特徴とする請求項2または請求項3のいずれか1項に記載の発光装置。
  5.  前記有機物が、ロジン類、アルコール類、糖類、エステル類、脂肪酸類、油脂類、重合油類、界面活性剤、および、有機酸の何れか1以上であることを特徴とする請求項4に記載の発光装置。
  6.  前記有機物が前記接合材の溶融温度で揮発することを特徴とする請求項4乃至5のいずれか1項に記載の発光装置。
  7.  前記封入ガスは、前記酸素ガス以外の補間ガスを含み、前記補間ガスが、窒素、アルゴン、クリプトン、および、キセノンの何れか1以上のガスを含むことを特徴とする請求項1乃至6のいずれか1項に記載の発光装置。
  8.  前記LEDの発光波長が355nm~405nmであることを特徴とする請求項1乃至7のいずれか1項に記載の発光装置。
  9.  前記接合材が、金錫合金、錫銀系合金、錫銅系合金、錫亜鉛系合金、および、錫ビスマス系合金の何れかの合金であることを特徴とする請求項1乃至8のいずれか1項に記載の発光装置。
  10.  前記封入ガスの酸素濃度が、5vol.%以上~30vol.%であることを特徴とする請求項1乃至9のいずれか1項に記載の発光装置。
  11.  揮発性ソルダーペーストはんだで紫外光を出射するLEDを基板に接合してLED実装済み基板とする第1接合工程と
     前記LED実装済み基板に実装された前記LEDの前記LEDが配置された空間に酸素を含む封入ガスを封入しつつ、該LEDが出射する紫外光を透光する蓋部材で前記LEDが配置された空間を覆って、前記LEDが配置された空間を画定し、前記LED実装済み基板と前記蓋部材とをシート状の合金で気密封止する第2接合工程と
    を含む発光装置の製造方法。
  12.  前記シート状の合金は2層になっており、前記封入ガスと接触する表面層が前記酸素ガスで酸化されない金属であり、他の層が前記酸素で酸化される金属であることを特徴とする請求項11に記載の発光装置の製造方法。
  13.  前記第2接合工程において、前記シート状の合金の前記表面層が、該合金が溶融する前に前記LED実装済み基板に密着していることを特徴とする請求項12に記載の発光装置の製造方法。
PCT/JP2020/029703 2019-08-22 2020-08-03 発光装置、および、その製造方法 WO2021033526A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080055785.6A CN114245939A (zh) 2019-08-22 2020-08-03 发光装置及其制造方法
US17/636,513 US11703194B2 (en) 2019-08-22 2020-08-03 Light-emitting device and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019151864A JP2021034502A (ja) 2019-08-22 2019-08-22 発光装置、および、その製造方法
JP2019-151864 2019-08-22

Publications (1)

Publication Number Publication Date
WO2021033526A1 true WO2021033526A1 (ja) 2021-02-25

Family

ID=74660983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/029703 WO2021033526A1 (ja) 2019-08-22 2020-08-03 発光装置、および、その製造方法

Country Status (4)

Country Link
US (1) US11703194B2 (ja)
JP (1) JP2021034502A (ja)
CN (1) CN114245939A (ja)
WO (1) WO2021033526A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023096345A (ja) * 2021-12-27 2023-07-07 日亜化学工業株式会社 発光装置の製造方法および発光装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004158728A (ja) * 2002-11-08 2004-06-03 Tamura Kaken Co Ltd 回路基板はんだ付用フラックス及びソルダーペースト
JP2005509269A (ja) * 2001-03-28 2005-04-07 インテル・コーポレーション 洗浄不要フラックスを使用したフリップ・チップ相互接続
JP2006519481A (ja) * 2003-02-28 2006-08-24 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング 照明モジュールおよび該照明モジュールの製造方法
JP2006344727A (ja) * 2005-06-08 2006-12-21 Sharp Corp レーザ装置の製造方法
JP2009105343A (ja) * 2007-10-25 2009-05-14 Panasonic Electric Works Co Ltd 発光装置
JP2011222568A (ja) * 2010-04-02 2011-11-04 Olympus Corp 半田層形成方法、配線基板の接続方法及び配線基板の接続装置
JP2012227511A (ja) * 2011-04-20 2012-11-15 Lg Innotek Co Ltd 紫外線発光素子パッケージ
JP2013033891A (ja) * 2011-08-03 2013-02-14 Hitachi Ltd 半導体装置及びその製造方法
JP2016219505A (ja) * 2015-05-15 2016-12-22 パナソニックIpマネジメント株式会社 発光装置
US20180145237A1 (en) * 2015-05-07 2018-05-24 Seoul Viosys Co., Ltd. Ultraviolet ray emitting device
WO2018105327A1 (ja) * 2016-12-07 2018-06-14 日機装株式会社 光半導体装置の製造方法
JP2019102631A (ja) * 2017-12-01 2019-06-24 スタンレー電気株式会社 半導体発光装置及び半導体発光装置の製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000133868A (ja) 1998-10-26 2000-05-12 Furukawa Electric Co Ltd:The 半導体レーザモジュール
JP3707688B2 (ja) * 2002-05-31 2005-10-19 スタンレー電気株式会社 発光装置およびその製造方法
JP3627186B2 (ja) * 2002-06-17 2005-03-09 光磊科技股▲ふん▼有限公司 半導体発光装置のパッケージに用いられる熱放散構造とその製造方法
JP4401337B2 (ja) * 2004-09-30 2010-01-20 シャープ株式会社 窒化物半導体レーザ光源の製造方法および窒化物半導体レーザ光源の製造装置
US7790484B2 (en) 2005-06-08 2010-09-07 Sharp Kabushiki Kaisha Method for manufacturing laser devices
JP2010062240A (ja) * 2008-09-02 2010-03-18 C I Kasei Co Ltd 発光装置の製造方法および発光装置
CN102361956B (zh) * 2009-03-31 2014-10-29 三菱化学株式会社 荧光体、荧光体的制造方法、含荧光体组合物、发光装置、照明装置和图像显示装置
JP2011071407A (ja) * 2009-09-28 2011-04-07 Sharp Corp 発光素子および照明装置
JP2017059617A (ja) * 2015-09-15 2017-03-23 パナソニックIpマネジメント株式会社 発光装置
JP6547661B2 (ja) * 2016-03-09 2019-07-24 豊田合成株式会社 発光装置
JP6294419B2 (ja) * 2016-09-01 2018-03-14 日機装株式会社 光半導体装置および光半導体装置の製造方法
JP6294417B2 (ja) * 2016-09-01 2018-03-14 日機装株式会社 光半導体装置および光半導体装置の製造方法
CN110235260A (zh) * 2017-01-31 2019-09-13 晶化成半导体公司 用于增强紫外发光器件的可靠性的方法和封装
JP6720944B2 (ja) * 2017-08-31 2020-07-08 日亜化学工業株式会社 窒化物蛍光体の製造方法、窒化物蛍光体及び発光装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005509269A (ja) * 2001-03-28 2005-04-07 インテル・コーポレーション 洗浄不要フラックスを使用したフリップ・チップ相互接続
JP2004158728A (ja) * 2002-11-08 2004-06-03 Tamura Kaken Co Ltd 回路基板はんだ付用フラックス及びソルダーペースト
JP2006519481A (ja) * 2003-02-28 2006-08-24 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング 照明モジュールおよび該照明モジュールの製造方法
JP2006344727A (ja) * 2005-06-08 2006-12-21 Sharp Corp レーザ装置の製造方法
JP2009105343A (ja) * 2007-10-25 2009-05-14 Panasonic Electric Works Co Ltd 発光装置
JP2011222568A (ja) * 2010-04-02 2011-11-04 Olympus Corp 半田層形成方法、配線基板の接続方法及び配線基板の接続装置
JP2012227511A (ja) * 2011-04-20 2012-11-15 Lg Innotek Co Ltd 紫外線発光素子パッケージ
JP2013033891A (ja) * 2011-08-03 2013-02-14 Hitachi Ltd 半導体装置及びその製造方法
US20180145237A1 (en) * 2015-05-07 2018-05-24 Seoul Viosys Co., Ltd. Ultraviolet ray emitting device
JP2016219505A (ja) * 2015-05-15 2016-12-22 パナソニックIpマネジメント株式会社 発光装置
WO2018105327A1 (ja) * 2016-12-07 2018-06-14 日機装株式会社 光半導体装置の製造方法
JP2019102631A (ja) * 2017-12-01 2019-06-24 スタンレー電気株式会社 半導体発光装置及び半導体発光装置の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023096345A (ja) * 2021-12-27 2023-07-07 日亜化学工業株式会社 発光装置の製造方法および発光装置
JP7428916B2 (ja) 2021-12-27 2024-02-07 日亜化学工業株式会社 発光装置の製造方法および発光装置

Also Published As

Publication number Publication date
CN114245939A (zh) 2022-03-25
US20220282841A1 (en) 2022-09-08
US11703194B2 (en) 2023-07-18
JP2021034502A (ja) 2021-03-01

Similar Documents

Publication Publication Date Title
US11222998B2 (en) Optical semiconductor apparatus and method of manufacturing optical semiconductor apparatus
KR102157009B1 (ko) 광반도체 장치 및 광반도체 장치의 제조 방법
JP6260919B2 (ja) 発光装置及びその製造方法
US11217730B2 (en) Optical semiconductor apparatus and method of manufacturing optical semiconductor apparatus
JP6339652B1 (ja) 光半導体装置の製造方法
US20150103856A1 (en) Nitride semiconductor light emitting device
TWI307196B (en) Method for manufacturing laser devices
WO2021033526A1 (ja) 発光装置、および、その製造方法
US11764335B2 (en) Semiconductor light emitting device
JP2021012961A (ja) 発光装置、および、その製造方法
CN113161467B (zh) 发光装置和水杀菌装置
JP7499019B2 (ja) 発光装置及びその製造方法
JP7554685B2 (ja) 半導体発光装置及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20854211

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20854211

Country of ref document: EP

Kind code of ref document: A1