WO2021033442A1 - 絶縁膜形成用硬化性組成物、絶縁膜の形成方法、及び末端マレイミド変性ポリフェニレンエーテル樹脂 - Google Patents

絶縁膜形成用硬化性組成物、絶縁膜の形成方法、及び末端マレイミド変性ポリフェニレンエーテル樹脂 Download PDF

Info

Publication number
WO2021033442A1
WO2021033442A1 PCT/JP2020/026477 JP2020026477W WO2021033442A1 WO 2021033442 A1 WO2021033442 A1 WO 2021033442A1 JP 2020026477 W JP2020026477 W JP 2020026477W WO 2021033442 A1 WO2021033442 A1 WO 2021033442A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polyphenylene ether
ether resin
curable composition
terminal
Prior art date
Application number
PCT/JP2020/026477
Other languages
English (en)
French (fr)
Inventor
和明 海老澤
Original Assignee
東京応化工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京応化工業株式会社 filed Critical 東京応化工業株式会社
Priority to US17/630,033 priority Critical patent/US20220282043A1/en
Priority to KR1020227005309A priority patent/KR20220051836A/ko
Priority to JP2021540656A priority patent/JPWO2021033442A1/ja
Priority to CN202080057834.XA priority patent/CN114222775A/zh
Publication of WO2021033442A1 publication Critical patent/WO2021033442A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/48Polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/48Polymers modified by chemical after-treatment
    • C08G65/485Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • C08L71/126Polyphenylene oxides modified by chemical after-treatment
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/031Organic compounds not covered by group G03F7/029
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means

Definitions

  • the present invention relates to a curable composition used for forming an insulating film, a method for forming the insulating film, and a terminal maleimide-modified polyphenylene ether resin.
  • the insulating film that insulates the metal wiring of communication equipment is also required to have a higher frequency.
  • the higher the frequency the higher the transmission loss, and when the transmission loss increases, the electric signal is attenuated. Therefore, it is required to reduce the transmission loss as a measure for increasing the frequency.
  • Patent Document 1 A technique for forming an insulating film using a material having a low dielectric constant and a dielectric loss tangent is disclosed in order to reduce transmission loss (for example, Patent Document 1).
  • Patent Document 1 is a technique using a resin composition having a specific structure, specifically, a resin composition containing a cross-linking component represented by the formula (1) described in Patent Document 1. Under such circumstances, a technique using a composition other than the composition described in Patent Document 1 is required. It should be noted that support for higher frequencies is also required for electrical and electronic devices other than communication devices, such as network-related electronic devices such as servers and electronic devices such as computers.
  • the insulating film is also required to have heat resistance.
  • the composition is applicable to the coating method, that is, has excellent film forming property in the coating method.
  • the present invention has been made in view of the above problems, and is a curable composition that can be suitably applied to the formation of an insulating film, and forms a cured product having a low dielectric constant and dielectric loss tangent and excellent heat resistance.
  • the present inventors have prepared a curable composition containing a terminal maleimide-modified polyphenylene ether resin (A) having a radically polymerizable group having a specific structure including a maleimide skeleton at the end of a molecular chain, which has a low dielectric constant and dielectric loss tangent and is heat resistant.
  • the present invention has been completed by finding that an excellent insulating film is provided and the film forming property is excellent.
  • a first aspect of the present invention is a curable composition
  • the terminal maleimide-modified polyphenylene ether resin (A) has the following formula (a1): It has a terminal group represented by, at the end of the molecular chain, In the formula (a1), R a01 and R a02 are independently hydrogen atoms, alkyl groups having 1 to 6 carbon atoms, cycloalkyl groups having 3 to 8 carbon atoms, or 6 to 12 carbon atoms.
  • the phenylene group contained in the main chain of the terminal maleimide-modified polyphenylene ether resin (A) may have a substituent of 1 or more and 4 or less.
  • the terminal group has the following formula (a2): * -Y 2- Y 1 -** ... (a2) It is bonded to the main chain of the terminal maleimide-modified polyphenylene ether resin (A) via the linking group represented by.
  • the **-side bond in the linking group binds to the oxygen atom derived from the hydroxyl group at the end of the molecular chain of the unmodified polyphenylene ether resin (A') that gives the terminal maleimide-modified polyphenylene ether resin (A).
  • the * side bond in the linking group binds to the terminal group,
  • Y 1 is a single bond or a carbonyl group
  • Y 2 is a divalent organic group
  • Y 1 is a single bond
  • the single bond as Y 1 is Y 2 Bonded to a carbon atom that takes an sp3 hybrid orbital in a divalent organic group as A curable composition used for forming an insulating film.
  • a second aspect of the present invention is a curable composition
  • the terminal maleimide-modified polyphenylene ether resin (A) has the following formula (a1): It has a terminal group represented by, at the end of the molecular chain,
  • R a01 and R a02 are independently hydrogen atoms, alkyl groups having 1 or more and 6 or less carbon atoms, cycloalkyl groups having 3 or more and 8 or less carbon atoms, or 6 or more carbon atoms.
  • the phenylene group contained in the main chain of the terminal maleimide-modified polyphenylene ether resin (A) may have a substituent of 1 or more and 4 or less.
  • the radical generator (C) is a curable composition which is a photoradical generator (C1).
  • a third aspect of the present invention is the following formula (a1): It has a terminal group represented by, at the end of the molecular chain,
  • R a01 and R a02 are independently hydrogen atoms, alkyl groups having 1 to 6 carbon atoms, cycloalkyl groups having 3 to 8 carbon atoms, or 6 to 12 carbon atoms, respectively.
  • It is an aryl group of The phenylene group contained in the main chain of the terminal maleimide-modified polyphenylene ether resin (A) may have a substituent of 1 or more and 4 or less.
  • the terminal group has the following formula (a2): * -Y 2- Y 1 -** ...
  • the * side bond in the linking group binds to the terminal group,
  • Y 1 is a single bond or a carbonyl group
  • Y 2 is a divalent organic group
  • Y 1 is a single bond
  • the single bond as Y 1 is Y 2
  • It is a terminal maleimide-modified polyphenylene ether resin that binds to a carbon atom that takes an sp3 hybrid orbital in a divalent organic group.
  • the present invention is a curable composition that can be suitably applied to the formation of an insulating film, and a cured product having a low dielectric constant and dielectric loss tangent and excellent heat resistance can be formed and has excellent film forming property. It is possible to provide a curable composition, a method for forming an insulating film using the curable composition, and a terminal maleimide-modified polyphenylene ether resin preferably used as a component of the above-mentioned curable composition.
  • the curable composition contains a terminal maleimide-modified polyphenylene ether resin (A) and a radical generator (C).
  • the terminal maleimide-modified polyphenylene ether resin (A) has the following formula (a1): Having a terminal group represented by, at the end of the molecular chain,
  • R a01 and R a02 are independently hydrogen atoms, alkyl groups having 1 or more and 6 or less carbon atoms, cycloalkyl groups having 3 or more and 8 or less carbon atoms, or 6 or more and 12 carbon atoms.
  • the phenylene group contained in the main chain of the terminal maleimide-modified polyphenylene ether resin (A) may have a substituent of 1 or more and 4 or less as a common feature.
  • a second curable composition A second curable composition.
  • the first curable composition and the second curable composition will be described.
  • the first curable composition is a curable composition containing a terminal maleimide-modified polyphenylene ether resin (A) and a radical generator (C).
  • the terminal maleimide-modified polyphenylene ether resin (A) has the following formula (a1): It has a terminal group represented by, at the end of the molecular chain.
  • R a01 and R a02 are independently hydrogen atoms, alkyl groups having 1 to 6 carbon atoms, cycloalkyl groups having 3 to 8 carbon atoms, or 6 to 12 carbon atoms. The following aryl groups.
  • the phenylene group contained in the main chain of the terminal maleimide-modified polyphenylene ether resin (A) may have 1 or more and 4 or less substituents.
  • the above-mentioned terminal group has the following formula (a2): * -Y 2- Y 1 -** ... (a2) It binds to the main chain of the terminal maleimide-modified polyphenylene ether resin (A) via a linking group represented by.
  • the **-side bond in the linking group binds to an oxygen atom derived from the hydroxyl group at the end of the molecular chain of the unmodified polyphenylene ether resin (A') that gives the terminal maleimide-modified polyphenylene ether resin (A).
  • the * -side bond in the linking group binds to the terminal group.
  • Y 1 is a single bond or a carbonyl group.
  • Y 2 is a divalent organic group. If Y 1 is a single bond, a single bond as Y 1 is bonded to the carbon atoms taking sp3 hybrid orbital in the divalent organic group as Y 2.
  • the first curable composition is used for forming an insulating film.
  • the first curable composition is used in an electrical / electronic device having metal wiring to form an insulating film that insulates the metal wiring.
  • the electrical and electronic devices are not particularly limited, and communication devices such as mobile phones, network-related electronic devices such as servers, electronic devices such as computers, and particularly semiconductor components possessed by these devices, specifically, A semiconductor package called a wafer level package can be mentioned.
  • These electric / electronic devices have metal wiring made of a metal such as copper or an alloy on a substrate for the electric / electronic device.
  • the substrate for an electric / electronic device having metal wiring include a silicon substrate and a substrate in which various layers and members are provided on the silicon substrate.
  • This metal wiring and other metal wiring or conductive member are insulated by an insulating film formed of the first curable composition.
  • an insulating film having a low dielectric constant and a low dielectric loss tangent (tan ⁇ ) can be formed. Therefore, the first curable composition containing the components described below is suitable as an insulating film for insulating the metal wiring of an electric / electronic device using a high frequency signal.
  • high frequency means a frequency of 3GHz or more.
  • the first curable composition is, for example, an insulating film in an electric / electronic device in which another member is formed by heating after forming the insulating film with the curable composition. Can be used for the formation of.
  • the first curable composition is excellent in film forming property in the coating method. That is, when the film is formed by the coating method, there is no crack or crystal formation, there is no tack (stickiness), and the compatibility of the components is good, so that the insulating film can be formed by the coating method, which is an easy method. ..
  • the first curable composition will be described in detail.
  • the first curable composition contains a terminal maleimide-modified polyphenylene ether resin (A) having a terminal group represented by the following formula (a1) at the end of the molecular chain.
  • the substituted or unsubstituted cyclic imide group represented by the formula (a1) is also referred to as a "maleimide group" for convenience.
  • R a01 and R a02 are independently hydrogen atoms, alkyl groups having 1 to 6 carbon atoms, cycloalkyl groups having 3 to 8 carbon atoms, or 6 or more carbon atoms. It is an aryl group of 12 or less.
  • the alkyl group having 1 or more and 6 or less carbon atoms as R a01 and R a02 in the formula (a1) may be a linear alkyl group or a branched chain alkyl group. Specific examples include methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, isopropyl group, isobutyl group, sec-butyl group, tert-butyl group and isopentyl group. Examples thereof include neopentyl group, tert-pentyl group and isohexyl group.
  • cycloalkyl group having 3 or more and 8 or less carbon atoms as R a01 and R a02 in the formula (a1) include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group.
  • aryl group having 6 to 12 carbon atoms as R a01 and R a02 in the formula (a1) include a phenyl group, a biphenyl group, a 1-naphthyl group and a 2-naphthyl group. It is preferable that both R a01 and R a02 in the formula (a1) are hydrogen atoms.
  • the terminal maleimide-modified polyphenylene ether resin (A) is excellent in polymerizability. Therefore, it is easy to obtain a first curable composition having excellent curability.
  • the group represented by the formula (a1) is an unsubstituted maleimide group.
  • the terminal group represented by the formula (a1) is the following formula (a2): * -Y 2- Y 1 -** ... (a2) It binds to the main chain of the terminal maleimide-modified polyphenylene ether resin (A) via a linking group represented by.
  • the **-side bond in the above linking group binds to an oxygen atom derived from the hydroxyl group at the end of the molecular chain of the unmodified polyphenylene ether resin (A') that gives the terminal maleimide-modified polyphenylene ether resin (A).
  • the * -side bond in the linking group binds to the terminal group represented by the formula (a1).
  • Y 1 is a single bond or a carbonyl group.
  • Y 2 is a divalent organic group. If Y 1 is a single bond, a single bond as Y 1 is bonded to the carbon atoms taking sp3 hybrid orbital in the divalent organic group as Y 2.
  • Y 1 when Y 1 is a carbonyl group, it is preferable that Y 2 is a group represented by ⁇ Y 4 ⁇ Y 3 ⁇ . Y 3 represents a single bond, -O-, or -NH-. Y 4 is a divalent organic group. Y 3 binds to the carbonyl group as Y 1. That is, when Y 1 in the formula (a2) is a carbonyl group, the linking group represented by the formula (a2) is a group represented by the following formulas (a2-1) to (a2-3). Is preferable. * -Y 4- CO-** ... (a2-1) * -Y 4- O-CO-** ... (a2-2) * -Y 4- NH-CO-** ... (a2-3)
  • the divalent organic group as Y 4 is not particularly limited as long as it is a group capable of linking Y 3 and the terminal group represented by the formula (a1).
  • the structure of the organic group may be linear, branched, cyclic, or a combination of these structures.
  • heteroatoms other than carbon atoms and hydrogen atoms that can be contained in organic groups include nitrogen atoms, sulfur atoms, oxygen atoms, halogen atoms, phosphorus atoms, silicon atoms, and boron atoms.
  • the organic group may have one or more unsaturated bonds.
  • the Y 4, or a easily available or the preparation of the compounds used in the terminal-modified at the ends maleimide-modified polyphenylene ether resin (A), the the like that or a facilitated desired end modification, hydrocarbon groups are preferred.
  • the number of carbon atoms of the hydrocarbon group is preferably 1 or more and 10 or less, more preferably 1 or more and 8 or less, and further preferably 1 or more and 6 or less.
  • the hydrocarbon group may be an aliphatic hydrocarbon group or an aromatic hydrocarbon group. As the hydrocarbon group, a aliphatic hydrocarbon group is preferable because it is more flexible than a rigid aromatic hydrocarbon group.
  • the preferred hydrocarbon groups as Y 4, a methylene group, ethane-1,2-diyl, ethane-1,1-diyl group, propane-1,3-diyl, propane-1,2-diyl group, propane -1,1-diyl group, butane-1,4-diyl group, pentane-1,5-diyl group, hexane-1,6-diyl group, heptane-1,7-diyl group, octane-1,8- Diyl Group, Nonan-1,9-Diyl Group, Decane-1,10-Diyl Group, Cyclohexane-1,4-Diyl Group, Cyclohexane-1,3-Diyl Group, Cyclohexane-1,2-Diyl Group, p- Examples thereof include a phenylene group, an m-phenylene group, an o-phenylene group, a n
  • ethane-1,2-diyl group propane-1,3-diyl group, butane-1,4-diyl group, cyclohexane-1,4-diyl group, and cyclohexane-1,3-diyl group Is preferable.
  • the divalent organic group as Y 2 has at least one carbon atom having an sp3 hybrid orbital, and the terminal maleimide-modified polyphenylene ether resin (A).
  • the group is not particularly limited as long as it is a group capable of linking an oxygen atom derived from a hydroxyl group at the terminal of the molecular chain of the unmodified polyphenylene ether resin (A') and the terminal group represented by the formula (a1).
  • the divalent organic group as Y 2 is a nitrogen atom, a sulfur atom, an oxygen atom, a halogen atom, a phosphorus atom, a silicon atom, and a boron atom in addition to the carbon atom and the hydrogen atom. It may contain one or more heteroatoms such as.
  • the number of carbon atoms of the divalent organic group as Y 2 is preferably 1 or more and 10 or less, more preferably 1 or more and 8 or less, and further preferably 1 or more and 6 or less.
  • the divalent organic group as Y 2 has one or more methylene groups as a carbonyl group (-CO-), an ether bond (-O-), or an imino group (-NH-). It is preferably an aliphatic hydrocarbon group that may be substituted with).
  • preferred aliphatic hydrocarbon groups as Y 2 are methylene group, ethane-1,2-diyl group, ethane-1,1-diyl group, propane-1,3-diyl group.
  • Propane-1,2-diyl group propane-1,1-diyl group, butane-1,4-diyl group, pentane-1,5-diyl group, hexane-1,6-diyl group, heptane-1, 7-Diyl Group, Octane-1,8-Diyl Group, Nonan-1,9-Diyl Group, Decane-1,10-Diyl Group, Cyclohexane-1,4-Diyl Group, Cyclohexane-1,3-Diyl Group, And cyclohexane-1,2-diyl groups.
  • a group in which one or two methylene groups contained in these hydrocarbon groups are substituted with a carbonyl group (-CO-), an ether bond (-O-), or an imino group (-NH-) is also preferable.
  • ethane-1,2-diyl group, propane-1,3-diyl group, butane-1,4-diyl group, cyclohexane-1,4-diyl group, and cyclohexane-1,3-diyl group Is preferable.
  • the method of introducing the terminal group represented by the formula (a1) into the molecular chain terminal of the unmodified polyphenylene ether resin (A') and modifying it is not particularly limited.
  • an unmodified polyphenylene ether resin (A') having a phenolic hydroxyl group terminal is preferably used.
  • the unmodified polyphenylene ether resin (A') may be a resin having at least one phenolic hydroxyl group terminal.
  • the unmodified polyphenylene ether resin (A') preferably has two or more phenolic hydroxyl end ends, more preferably has two or three phenolic hydroxyl group ends, and further preferably has two phenolic hydroxyl group ends. preferable.
  • the unmodified polyphenylene ether resin (A') has a phenolic hydroxyl group at the terminal
  • the unmodified polyphenylene ether resin (A') further has a phenolic hydroxyl group on the phenylene group contained in the main chain. May be good.
  • the polyphenylene ether resin can be typically produced by oxidatively polymerizing a phenolic compound such as 2,6-dimethylphenol in the presence of a catalyst containing a metal such as copper.
  • the method for producing the unmodified polyphenylene ether resin (A') is not particularly limited, but it is preferable that the unmodified polyphenylene ether resin (A') is produced according to the above-mentioned typical method according to a known method.
  • the phenylene group contained in the main chain of the terminal maleimide-modified polyphenylene ether resin (A) may have 1 or more and 4 or less substituents. Therefore, the phenylene group contained in the main chain of the unmodified polyphenylene ether resin (A') may also have a substituent of 1 or more and 4 or less. Examples of substituents are alkyl groups having 1 to 4 carbon atoms such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, and tert-butyl group.
  • Aromatic hydrocarbon groups such as phenyl group, o-tolyl group, m-tolyl group, and p-tolyl group; methoxy group, ethoxy group, n-propyloxy group, isopropyloxy group, n-butyloxy group, isobutyl
  • An alkoxy group having 1 or more and 4 or less carbon atoms such as an oxy group, a sec-butyloxy group, and a tert-butyloxy group; a phenolic hydroxyl group; a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom is preferable.
  • a methyl group, a phenyl group, a chlorine atom, and a bromine atom are preferable, and a methyl group, a phenyl group, and a chlorine atom are more preferable.
  • Examples of the unmodified polyphenylene ether resin (A') include homopolymers of phenols and copolymers of two or more kinds of phenols.
  • the unmodified polyphenylene ether resin (A') may be a polymer obtained by polymerizing only monovalent phenol, and the monohydric phenol is copolymerized with a polyhydric phenol such as divalent phenol or trivalent phenol. It may be a polymer.
  • a polymer containing only monovalent phenol has an aryl group derived from a raw material phenol having no hydroxyl group at one end and a hydroxyaryl group derived from the raw material phenol at the other end.
  • the molecular chain of polyphenylene ether grows starting from two or more phenolic hydroxyl groups of the polyhydric phenol. Therefore, when a monohydric phenol is copolymerized with a divalent phenol, a polyphenylene ether resin having a hydroxyaryl group at both ends can be obtained. Further, when monovalent phenol is copolymerized with trihydric or higher phenol, a polyphenylene ether resin having a branched chain corresponding to the valence of the polyvalent phenol and having a hydroxyaryl group at the end of each branched chain can be obtained.
  • the homopolymers of phenols include poly (2,6-dimethyl-1,4-phenylene ether), poly (2-methyl-6-phenyl-1,4-phenylene ether), and poly (2, 6-Dichloro-1,4-phenylene ether) and the like.
  • the copolymer of two or more kinds of phenols may be a copolymer of two or more kinds of monovalent phenols, and one or more kinds of monovalent phenols and one or more kinds of divalent phenols. It may be a copolymer of.
  • copolymers of two or more monovalent phenols include copolymers of 2,6-dimethylphenol and 2,3,6-trimethylphenol, and 2,6-dimethylphenol and 2,6-trimethylphenol. Examples thereof include a copolymer with dichlorophenol and a copolymer of 2,6-dimethylphenol and 2-methyl-6-phenylphenol.
  • a copolymer of one or more monovalent phenols and one or more divalent phenols 3,3', 5,5'-tetramethylbisphenol A is polymerized with 2,6-dimethylphenol.
  • a polymer a copolymer obtained by polymerizing 2-methyl-6-phenylphenol on 3,3', 5,5'-tetramethylbisphenol A, or 3,3', 5,5'-tetramethylbisphenol A.
  • Examples thereof include a copolymer obtained by polymerizing 2,6-dichlorophenol.
  • 2,6-dimethylphenol is added to 3,3', 5,5'-tetramethylbisphenol A, which is a copolymer of monohydric phenol and divalent phenol.
  • Polymerized copolymers, 3,3', 5,5'-tetramethylbisphenol A polymerized with 2-methyl-6-phenylphenol, and 3,3', 5,5'-tetra A copolymer obtained by polymerizing 2,6-dichlorophenol with methylbisphenol A is preferable, and a copolymer obtained by polymerizing 2,6-dimethylphenol with 3,3', 5,5'-tetramethylbisphenol A is more preferable. preferable.
  • the method of modifying the unmodified polyphenylene ether resin (A') to introduce a terminal group represented by the formula (a1) at the terminal is not particularly limited.
  • Y 1 is a carbonyl group
  • the linking group represented by the formula (a2) is the following formula (a2-1) :. * -Y 4- CO-** ... (a2-1)
  • the carboxylic acid represented by MIG-Y 4- CO-OH and the phenolic hydroxyl group of the unmodified polyphenylene ether resin (A') are combined with carbonyldiimidazole or N, N'.
  • the terminal phenolic hydroxyl group of the unmodified polyphenylene ether resin (A') is represented by -O-CO-Y 4-MIG by condensing with a condensing agent such as a carbodiimide-based compound such as -diisopropylcarbodiimide. Can be converted to phenol.
  • MIG is a terminal group represented by the formula (a1).
  • the unmodified polyphenylene ether resin (A') is produced by reacting the carboxylic acid halide represented by MIG-Y 4-CO-Hal with the phenolic hydroxyl group of the unmodified polyphenylene ether resin (A').
  • the terminal phenolic hydroxyl group having can be converted into a group represented by -O-CO-Y 4-MIG.
  • Hal is a halogen atom such as a chlorine atom and a bromine atom.
  • Y 1 is a carbonyl group
  • the linking group represented by the formula (a2) is the following formula (a2-2): * -Y 4- O-CO-** ... (a2-2)
  • the phenolic hydroxyl group contained in the unmodified polyphenylene ether resin (A') and the alcohol represented by MIG-Y 4- OH in an excess amount with respect to the phenolic hydroxyl group are mixed with phosgen or.
  • a compound that produces a carbonate bond such as triphosgen
  • the terminal phenolic hydroxyl group of the unmodified polyphenylene ether resin (A') is converted into a group represented by -O-CO-OY 4-MIG. can do.
  • Y 1 is a carbonyl group
  • the linking group represented by the formula (a2-3) is the following formula (a2-3): * -Y 4- NH-CO-** ... (a2-3)
  • the phenolic hydroxyl group of the unmodified polyphenylene ether resin (A') is reacted with the isocyanate represented by MIG-Y 4- NCO to cause the unmodified polyphenylene ether resin (A').
  • terminal phenolic hydroxyl groups of can be converted into a group represented by -O-CO-NH-Y 4 -MIG.
  • the phenolic hydroxyl group of the unmodified polyphenylene ether resin (A') and the halide represented by MIG-Y 2- Hal are combined with the so-called Williamson ether synthesis. by etherification by the method etc., it can be converted to terminal phenolic hydroxyl groups unmodified polyphenylene ether resin (a ') has, in the group represented by -O-Y 2 -MIG.
  • the methods for modifying phenolic hydroxyl groups are not limited to these methods.
  • a method for modifying the phenolic hydroxyl group various known methods can be adopted depending on the structure of the linking group bonded to the terminal group represented by the formula (a1).
  • an organic solvent according to the adopted reaction can be appropriately used.
  • the reaction temperature and reaction time known suitable conditions in the adopted reaction can be appropriately adopted.
  • terminal maleimide-modified polyphenylene ether resin (A) is prepared using the unmodified polyphenylene ether resin (A')
  • a part of the phenolic hydroxyl groups of the unmodified polyphenylene ether resin (A') is represented by the formula (a1).
  • a group containing a terminal group to be used may be introduced, or a group containing a terminal group represented by the formula (a1) may be introduced into all of the phenolic hydroxyl groups.
  • the molecular weight of the terminal maleimide-modified polyphenylene ether resin (A) is not particularly limited as long as the effects of the present invention are not impaired.
  • the mass average molecular weight (Mw) is preferably 2000 or more, more preferably 2500 or more, and even more preferably 3000 or more.
  • the molecular weight of the resin (A) is preferably 100,000 or less, more preferably 80,000 or less, further preferably 50,000 or less, still more preferably 10,000 or less, as the mass average molecular weight (Mw).
  • the mass average molecular weight (Mw) is a measurement value obtained by gel permeation chromatography (GPC) in terms of polystyrene.
  • the terminal maleimide-modified polyphenylene ether resin (A) having the terminal group represented by the formula (a1) at a specific position is a radically polymerizable group. Can be polymerized by exposure or heating.
  • the terminal maleimide-modified polyphenylene ether resin (A) provides an insulating film having a low dielectric constant, a low dielectric loss tangent, and excellent heat resistance.
  • the dielectric constant of the formed insulating film can be less than 3.00.
  • the dielectric loss tangent of the formed insulating film can be less than 0.01.
  • the glass transition temperature (Tg) of the formed insulating film can be set to 150 ° C. or higher.
  • the first curable composition containing the terminal maleimide-modified polyphenylene ether resin (A) is excellent in film forming property in the coating method. Therefore, when a film is formed by a coating method using such a curable composition, cracks and crystals do not occur, there is no tack (stickiness), and the compatibility of the components is good. Therefore, the insulating film can be formed by a coating method, which is an easy method.
  • the terminal maleimide-modified polyphenylene ether resin (A) has excellent solvent solubility. Therefore, the first curable composition containing the terminal maleimide-modified polyphenylene ether resin (A) can be applied as a negative type composition to the developing process using the solvent.
  • the terminal maleimide-modified polyphenylene ether resin (A) may be soluble in an alkaline aqueous solution, depending on its structure.
  • the terminal maleimide-modified polyphenylene ether resin (A) has an alkali-soluble group such as a carboxy group or a phenolic hydroxyl group.
  • the first curable composition containing such an alkali-soluble terminal maleimide-modified polyphenylene ether resin (A) can be applied to an alkali developing process as a negative composition.
  • an alkali developing process As a negative composition.
  • insulation having a desired pattern shape can be achieved.
  • a film can be formed.
  • the content of the terminal maleimide-modified polyphenylene ether resin (A) in the first curable composition is not particularly limited.
  • the content of the terminal maleimide-modified polyphenylene ether resin (A) is preferably 5% by mass or more and 100% by mass or less with respect to the total solid content of the first curable composition.
  • the first curable composition may further contain a radically polymerizable compound (B).
  • the radically polymerizable compound (B) is a radically polymerizable compound other than the terminal maleimide-modified polyphenylene ether resin (A).
  • the radically polymerizable compound (B) may be a compound having an unsaturated double bond such as styrene, a styrene polymer, acrylonitrile, (meth) acrylic acid, or (meth) acrylic acid ester, and is represented by the above formula (a1).
  • a radically polymerizable compound having a group to be subjected to is preferably a radically polymerizable compound having a group to be subjected to.
  • a polyfunctional maleimide compound having two or more groups represented by the formula (a1) is preferable, and two of aromatic diamines and aliphatic diamines are preferable.
  • a bismaleimide compound in which the amino group is replaced with the group represented by the formula (a1) is preferable.
  • aromatic diamines include p-phenylenediamine, m-phenylenediamine, 2,4-diaminotoluene, 4,4'-diaminobiphenyl, and 4,4'-diamino-2,2'-bis (trifluoro).
  • Methyl) biphenyl 3,3'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl sulfide, 4,4'-diaminodiphenyl methane, 4,4'-diaminodiphenyl ether, 3,4 '-Diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) Benzene, 4,4'-bis (4-aminophenoxy) biphenyl, bis [4- (4-aminophenoxy) phenyl] sulphon, bis [4- (3-aminophenoxy) phenyl] sulphon, 2,2-bis [ Examples thereof include 4- (4-a
  • aliphatic diamine examples include pentamethylenediamine, hexamethylenediamine, heptamethylenediamine, 2,3,3-trimethylpentane-1,5-diamine and the like.
  • examples of the radically polymerizable compound having a group represented by the above formula (a1) include 2,2-bis [4- (4-maleimidephenoxy) phenyl] propane, the following compounds (all manufactured by Tokyo Kasei Kogyo Co., Ltd.), and the like. BMI-689, BMI-1400, BMI-1500, BMI-1700, BMI-2700, and BMI-3000 (all manufactured by Designer malecules) can also be mentioned.
  • radically polymerizable compound other than the above-mentioned maleimide compound various radically polymerizable compounds conventionally blended in the radically polymerizable composition can be used without particular limitation.
  • Specific examples of the radically polymerizable compound other than the maleimide compound include the following compounds.
  • Examples of the monofunctional radically polymerizable compound include (meth) acrylamide, methylol (meth) acrylamide, methoxymethyl (meth) acrylamide, ethoxymethyl (meth) acrylamide, propoxymethyl (meth) acrylamide, butoxymethoxymethyl (meth) acrylamide, and the like.
  • polyfunctional radically polymerizable compound examples include 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, and 1,9-.
  • the content of the radically polymerizable compound (B) in the first curable composition is not particularly limited, but is based on the total amount of the terminal maleimide-modified polyphenylene ether resin (A) and the radically polymerizable compound (B). It is preferably 10% by mass or more and 70% by mass or less.
  • the first curable composition comprises a radical generator (C).
  • the radical generator (C) may be either a photoradical generator (C1) or a thermal radical generator (C2), and the photoradical generator (C1) and the thermal radical generator (C2) may be used in combination.
  • Examples of the photoradical generator (C1) include Omnirad 651, Omnirad 184, Omnirad 1173, Omnirad 2959, Omnirad 127, Omnirad 907, Omnirad 369, Omnirad 369, Omnirad 369, Omnirad 369E, Omnirad 369E, Omnirad 369E, Omnirad 369E, Omnirad 369E, Omnirad 369E, Omnirad 369E, Omnirad 369E, Omnirad 369E, Omnirad 369E, Omnirad 369E, Omnirad Phenon-based generators, acylphosphine oxide-based generators such as Omnirad TPO H, Omnirad 819 (all manufactured by IGM Resins BV), and oxime ester-based agents such as Irgacare OXE01 and Irgacare OXE02 (all manufactured by BASF). Photopolymerizers can be mentioned.
  • photoradical generator (C1) examples include 1-hydroxycyclohexylphenylketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1- [4- (2-hydroxyethoxy) phenyl]. -2-Hydroxy-2-methyl-1-propane-1-one, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropane-1-one, 1- (4-dodecylphenyl) -2- Hydroxy-2-methylpropan-1-one, 2,2-dimethoxy-1,2-diphenylethane-1-one, bis (4-dimethylaminophenyl) ketone, 2-methyl-1- [4- (methylthio) Phenyl] -2-morpholinopropane-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butane-1-one, 1,2-octanedione, 1- [4- [4- (Phenylthio)
  • thermal radical generator (C2) examples include ketone peroxide (methyl ethyl ketone peroxide, cyclohexanone peroxide, etc.), peroxyketal (2,2-bis (tert-butylperoxy) butane and 1,1-bis (tert-).
  • the content of the radical generator (C) in the first curable composition is not particularly limited, but is based on 100 parts by mass of the total mass of the terminal maleimide-modified polyphenylene ether resin (A) and the radical polymerizable compound (B). It is preferably 0.1 part by mass or more and 10 parts by mass or less, more preferably 0.5 parts by mass or more and 10 parts by mass or less, and further preferably 2 parts by mass or more and 10 parts by mass or less.
  • the first curable composition usually contains an organic solvent (S).
  • the type of the organic solvent (S) is not particularly limited as long as it does not impair the object of the present invention, and can be appropriately selected from the organic solvents conventionally used in the photosensitive composition.
  • organic solvent (S) examples include ketones such as acetone, methyl ethyl ketone, cyclohexanone, methyl isoamyl ketone, and 2-heptanone; ethylene glycol, ethylene glycol monoacetate, diethylene glycol, diethylene glycol monoacetate, propylene glycol, and propylene glycol monoacetate.
  • the content of the organic solvent (S) is not particularly limited as long as it does not interfere with the object of the present invention. It is preferable to use the organic solvent (S) in the range where the solid content concentration of the first curable composition is 30% by mass or more and 70% by mass or less.
  • the first curable composition may further contain a maleimide curing agent (E) in order to improve curability, and further to improve coating property, defoaming property, leveling property and the like, a surfactant. May be contained.
  • a maleimide curing agent include diamines; low-polarity polyfunctional allylphenol resin (for example, FATC (manufactured by Gunei Chemical Industry Co., Ltd.)) and low-polarity allyl etherphenol resin (for example, FTC-AE (manufactured by Gunei Chemical Industry Co., Ltd.)).
  • Allyl compounds such as allyl ether; 1-propenyl compounds having a 1-propenyl group such as propenylated biphenylene resin (for example, BPN (manufactured by Gunei Chemical Industry Co., Ltd.)), and benzoxazine compounds.
  • BPN propenylated biphenylene resin
  • benzoxazine compounds Can be mentioned.
  • the surfactant for example, a fluorine-based surfactant or a silicone-based surfactant is preferably used.
  • Specific examples of fluorine-based surfactants include BM-1000 and BM-1100 (all manufactured by BM Chemie), Megafuck F142D, Megafuck F172, Megafuck F173, and Megafuck F183 (all manufactured by Dainippon Ink and Chemicals).
  • Florard FC-135, Florard FC-170C, Florard FC-430, Florard FC-431 all manufactured by Sumitomo 3M
  • Surfron S-112, Surfron S-113, Surfron S-131, Surfron S- Commercially available fluorine-based surfactants such as 141, Surflon S-145 (all manufactured by Asahi Glass Co., Ltd.), SH-28PA, SH-190, SH-193, SZ-6032, SF-8428 (all manufactured by Toray Silicone Co., Ltd.)
  • the present invention is not limited to these.
  • silicone-based surfactants examples include unmodified silicone-based surfactants, polyether-modified silicone-based surfactants, polyester-modified silicone-based surfactants, alkyl-modified silicone-based surfactants, aralkyl-modified silicone-based surfactants, and aralkyl-based silicone-based surfactants.
  • a reactive silicone-based surfactant or the like can be preferably used.
  • the silicone-based surfactant a commercially available silicone-based surfactant can be used.
  • silicone-based surfactants include Painted M (manufactured by Toray Dow Corning), Topica K1000, Topica K2000, Topica K5000 (all manufactured by Takachiho Sangyo Co., Ltd.), XL-121 (polyester-modified silicone-based). Surfactants, manufactured by Clariant), BYK-310 (polyester-modified silicone-based surfactants, manufactured by Big Chemie) and the like.
  • the first curable composition may contain an antioxidant.
  • the antioxidant is not particularly limited, and conventionally known antioxidants can be used.
  • a hindered phenolic antioxidant for example, Irganox 1010 (manufactured by BASF)
  • a hindered amine-based antioxidant for example, phosphorus-based antioxidants and sulfur-based antioxidants.
  • the first curable composition may contain a polymerization inhibitor in order to appropriately prevent polymerization during the reaction.
  • the polymerization inhibitor is not particularly limited, and conventionally known polymerization inhibitors can be used, and examples thereof include methquinone, hydroquinone, methylhydroquinone, p-methoxyphenol, pyrogallol, tert-butylcatechol, and phenothiazine.
  • the first curable composition is used to improve the adhesion between the metal wiring or the substrate for an electric / electronic device having the metal wiring and the insulating film formed by using the first curable composition.
  • Adhesion improver may be contained.
  • the adhesion improver is not particularly limited, and conventionally known adhesion improvers can be used, and examples thereof include benzotriazole and the like.
  • the first curable composition is prepared by mixing and stirring each of the above components by a usual method.
  • the device that can be used when mixing and stirring each of the above components include a dissolver, a homogenizer, and a three-roll mill. After uniformly mixing each of the above components, the obtained mixture may be further filtered using a mesh, a membrane filter or the like.
  • the second curable composition like the first curable composition, contains a terminal maleimide-modified polyphenylene ether resin (A) and a radical generator (C).
  • A terminal maleimide-modified polyphenylene ether resin
  • C radical generator
  • the use of the second curable composition is not particularly limited.
  • the second curable composition can be applied to various applications to which a conventionally known negative type photosensitive resin composition is applied.
  • the same insulating film forming use as the first curable composition is preferable.
  • the terminal maleimide-modified polyphenylene ether resin (A) used in the second curable composition is derived from the terminal group represented by the formula (a1) and the phenolic hydroxyl group of the unmodified polyphenylene ether resin (A'). It is the same as the terminal maleimide-modified polyphenylene ether resin described for the first curable resin composition, except that the linking group existing between the oxygen atom is not particularly limited.
  • the radical generator (C) used in the second curable composition is the above-mentioned photoradical generator (C1).
  • the optional component that can be contained in the second curable composition is the same as the optional component that can be contained in the first curable composition.
  • the content of each component in the second curable composition is the same as the content of each component in the first curable composition.
  • An insulating film is formed using the first curable composition or the second curable composition.
  • the first curable composition and the second curable composition will be collectively referred to as "curable composition”.
  • the method of forming the insulating film is A coating process in which a curable composition is applied to the insulating film forming portion to form a coating film, and Includes a curing step, which cures the coating film.
  • the curable composition can be used to form an insulating film that insulates the metal wiring in an electrical / electronic device having the metal wiring.
  • the curable composition is applied to at least the insulating film forming portion on the substrate for an electric / electronic device having metal wiring to form the coating film.
  • a method for applying the curable composition a spin coating method, a slit coating method, a roll coating method, a screen printing method, an inkjet method, an applicator method and the like can be adopted.
  • a printing method such as a screen printing method or an inkjet method is applied, it is possible to apply the curable composition only to the portion where the insulating film is punished.
  • the thickness of the coating film is not particularly limited, but is preferably 0.5 ⁇ m or more, more preferably 0.5 ⁇ m or more and 300 ⁇ m or less, particularly preferably 1 ⁇ m or more and 150 ⁇ m or less, and most preferably 3 ⁇ m or more and 50 ⁇ m or less.
  • the coating film is dried or prebaked.
  • the prebaking conditions vary depending on the type, blending ratio, coating film thickness, etc. of each component in the curable composition, but are usually 70 ° C. or higher and 200 ° C. or lower, preferably 80 ° C. or higher and 150 ° C. or lower, for 2 minutes or longer and 120. It is less than a minute.
  • the coating film is irradiated (exposed) with active light or radiation, for example, ultraviolet rays or visible light having a wavelength of 300 nm or more and 500 nm or less.
  • active light or radiation for example, ultraviolet rays or visible light having a wavelength of 300 nm or more and 500 nm or less.
  • the entire surface of the coating film may be exposed, or regioselective exposure (pattern exposure) may be performed by a method such as exposing active rays or radiation through a mask having a predetermined pattern.
  • the resin (A) and the radically polymerizable compound (B), which are polymerization components are polymerized to form an insulating film.
  • an insulating film is formed on a substrate for an electric / electronic device having metal wiring.
  • the radiation source a low-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, a metal halide lamp, an argon gas laser, or the like can be used.
  • the radiation includes microwaves, infrared rays, visible rays, ultraviolet rays, X-rays, ⁇ -rays, electron beams, proton beams, neutron beams, ion rays and the like. Dose of radiation varies depending on the film thickness and the like of the composition and the coating film of the curable composition, for example, in the case of ultra-high pressure mercury lamp used is 100 mJ / cm 2 or more 10000 mJ / cm 2 or less.
  • the radiation may include light rays that activate the radical generator (C) in order to generate radicals.
  • an insulating film having a predetermined shape is formed by developing the exposed coating film according to a conventionally known method and dissolving and removing unnecessary portions.
  • the organic solvent (S) or an alkaline aqueous solution can be used as the developing solution.
  • the above-mentioned terminal maleimide-modified polyphenylene ether resin (A) has an alkali-soluble group such as a carboxy group or a phenolic hydroxyl group, development with an alkaline aqueous solution is possible.
  • alkaline aqueous solution used as the developing solution examples include sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, aqueous ammonia, ethylamine, n-propylamine, diethylamine, di-n-propylamine, and triethylamine.
  • Methyldiethylamine dimethylethanolamine, triethanolamine, tetramethylammonium hydroxide (tetramethylammonium hydroxide), tetraethylammonium hydroxide, pyrrole, piperidine, 1,8-diazabicyclo [5,4,0] -7-undecene , 1,5-diazabicyclo [4,5,0] -5-nonane and other alkaline aqueous solutions can be used. Further, an aqueous solution obtained by adding an appropriate amount of a water-soluble organic solvent such as methanol or ethanol or a surfactant to the above-mentioned aqueous solution of alkalis can also be used as a developing solution.
  • a water-soluble organic solvent such as methanol or ethanol or a surfactant
  • the development time varies depending on the composition of the curable composition, the film thickness of the coating film, etc., but is usually between 1 minute and 30 minutes or less.
  • the developing method may be any of a liquid filling method, a dipping method, a paddle method, a spray developing method and the like.
  • an insulating film patterned in a desired shape is formed on a substrate for an electric / electronic device having metal wiring.
  • the resin (A) and the radically polymerizable compound (B), which are polymerization components are polymerized to form an insulating film by exposure.
  • the curable composition contains a thermal radical generator (C2)
  • the resin (A) or the radically polymerizable compound (B), which is a polymerization component may be polymerized by heating to form an insulating film.
  • the formed insulating film has a low dielectric constant and a low dielectric loss tangent, it is suitable as an insulating film for electrical / electronic devices having metal wiring for high frequency applications.
  • it can be used as an insulating film for an electric / electronic device having a metal wiring for a 5G communication band candidate frequency of 3 GHz or more and 30 GHz or less or a millimeter wave band frequency of 30 GHz or more and 300 GHz or less.
  • the formed insulating film has excellent heat resistance, it is suitable for applications in which a member such as wiring is further formed by heating after forming the insulating film.
  • the obtained terminal maleimide-modified polyphenylene ether resin P1 and the polyphenylene ether resin (SA90) were subjected to 1 H NMR measurement using deuterated chloroform as a measuring solvent.
  • 1 1 H NMR measurement results are shown in FIG.
  • the upper spectrum is the measurement result of the polyphenylene ether resin (SA90)
  • the lower spectrum is the measurement result of the terminal maleimide-modified polyphenylene ether resin P1.
  • the terminal maleimide-modified polyphenylene ether resin P1 since the peak derived from the maleimide skeleton of 6.7 ppm is present in the lower spectrum and not in the upper spectrum, the terminal maleimide-modified polyphenylene ether resin P1 has a desired terminal maleimide modification. It can be seen that the resin has received.
  • Preparation Example 2 A modification reaction of the terminal phenolic hydroxyl group was carried out in the same manner as in Preparation Example 1 except that the carboxylic acid having a maleimide group was changed to 43.6 parts by mass of the compound having the following structure.
  • Preparation Example 3 A modification reaction of the terminal phenolic hydroxyl group was carried out in the same manner as in Preparation Example 1 except that the carboxylic acid having a maleimide group was changed to 57.0 parts by mass of the compound having the following structure.
  • a terminal maleimide-modified polyphenylene ether resin P3 (resin P3) in which the phenolic hydroxyl groups at both ends of the unmodified polyphenylene ether resin (A') were modified based on the following formula was obtained.
  • the polystyrene-equivalent mass average molecular weight (Mw) measured by gel permeation chromatography (GPC) of the terminal maleimide-modified polyphenylene ether resin P3 was 7000.
  • C1 to C4 were used as the radical generators (C).
  • D1 to D3 and a surfactant BYK310, manufactured by Big Chemie
  • Terminal maleimide-modified polyphenylene ether resin (resin (A)) and / or radically polymerizable compound (B), radical generator (C), additive, and surfactant of the types and amounts shown in Tables 1 and 2, respectively.
  • 0.05 parts by mass of the activator (BYK310, manufactured by Big Chemie) was dissolved in propylene glycol monomethyl ether acetate (PGMEA) so that the solid content concentration was 40% by mass, and the curing of each Example and Comparative Example was performed. A sex composition was obtained.
  • a pattern (insulating film).
  • the surface of the coating film before prebaking was observed with a scanning electron microscope to evaluate the film forming property. Specifically, the case where no cracks and / or crystals were observed on the surface of the pattern, the pattern had no tack (stickiness), and the contained components were compatible with each other and was transparent was marked with ⁇ . Further, a is when cracks are observed on the pattern surface, b is when crystals are observed on the pattern surface, c is when there is tack (stickiness) on the pattern surface, and the contained components are not compatible and opaque. Was evaluated as d. In addition, the surface and cross section of the obtained pattern (insulating film) were observed with a scanning electron microscope to evaluate the photolithography characteristics.
  • the measurement was performed by a cavity resonator method under the conditions of room temperature 25 ° C., humidity 50%, frequency 36 GHz, and sample thickness 10 ⁇ m.
  • the dielectric constant was evaluated as ⁇ when the dielectric constant value was less than 3.00 and ⁇ when it was 3.00 or more.
  • the dielectric loss tangent value was evaluated as ⁇ when the dielectric loss tangent value was less than 0.01 and x when the dielectric loss tangent value was 0.01 or more.
  • the curable composition containing the terminal maleimide-modified polyphenylene ether resin (A) having a group represented by the formula (a1) at the end of the molecular chain and the radical generator (C) is a curable composition. It can be seen that an insulating film having a low dielectric constant and a dielectric loss tangent and excellent heat resistance can be formed, and the film forming property is excellent. Further, in the compositions of Examples 1 to 9, the terminal maleimide-modified polyphenylene ether resin (A) was dissolved in PGMEA. Further, according to Examples 1 to 9, it can be seen that the photolithography characteristics are also excellent.
  • Example 10 As shown in Table 3, a curable composition having the same components and blending amounts as in Example 1 was prepared except that anisole was used as the organic solvent instead of PGMEA, and the curable property was obtained. The composition was evaluated in the same manner as in Example 1.
  • Example 11 and 12 FATC and FTC-AE (both manufactured by Gun Ei Chemical Industry Co., Ltd.) were mixed as the additive maleimide curing agent (E) in Example 10 in the amounts shown in Table 3. Then, a curable composition was prepared, and the obtained curable composition was evaluated in the same manner as in Example 1.
  • FATC is represented by E1 below
  • FTC-AE is represented by E2 below.
  • Example 10 the terminal maleimide-modified polyphenylene ether resin (A) was dissolved in anisole. Further, in the composition of Example 10, similarly to Example 1, an insulating film having a low dielectric constant and dielectric loss tangent, excellent heat resistance, and excellent photolithography characteristics can be formed, and the film forming property can be formed. It turns out that it is excellent. Further, the compositions of Examples 11 and 12 containing the maleimide curing agent (E) as an additive also showed the same results as the composition of Example 10.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Polyethers (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

絶縁膜の形成に好適に適用され得る硬化性組成物であって、誘電率及び誘電正接が低く耐熱性に優れた硬化物を形成することができ且つ成膜性に優れた硬化性組成物と、当該硬化性組成物を用いる絶縁膜の形成方法と、前述の硬化性組成物の成分として好適に使用される末端マレイミド変性ポリフェニレンエーテル樹脂とを提供すること。 マレイミド骨格を含む特定の構造のラジカル重合性基を分子鎖末端に有する末端マレイミド変性ポリフェニレンエーテル樹脂(A)と、ラジカル発生剤(C)とを硬化性組成物に配合する。

Description

絶縁膜形成用硬化性組成物、絶縁膜の形成方法、及び末端マレイミド変性ポリフェニレンエーテル樹脂
 本発明は、絶縁膜を形成するために用いられる硬化性組成物、絶縁膜の形成方法、及び末端マレイミド変性ポリフェニレンエーテル樹脂に関する。
 近年、携帯電話等の通信機器では、高周波数化が進んでいる。そのため、通信機器が有する金属配線を絶縁する絶縁膜にも高周波数化への対応が求められる。
 ここで、周波数が高いほど伝送損失が増加し、伝送損失が増加すると電気信号が減衰する。従って、高周波数化への対応として、伝送損失を低減することが求められる。
 伝送損失を低減するために、誘電率及び誘電正接が低い材料を用いて絶縁膜を形成する技術が開示されている(例えば特許文献1)。
特開2004-87639号公報
 しかしながら、特許文献1の技術は、特定構造の樹脂組成物、具体的には特許文献1に記載された式(1)で表される架橋成分を含有する樹脂組成物を用いた技術である。このような状況において、特許文献1に記載される組成物以外のその他の組成物を用いる技術が求められている。
 なお、高周波数化への対応は、サーバー等のネットワーク関連の電子機器や、コンピュータ等の電子機器等、通信機器以外の電気・電子デバイスにおいても、同様に求められている。
 また、電気・電子デバイスの製造においては、組成物から絶縁膜を形成した後に、加熱されてさらに配線等の部材を形成されることが多い。このため、絶縁膜には耐熱性も求められている。
 組成物から絶縁膜を形成する際に、塗布法によれば容易に絶縁膜を形成できる。このため、組成物は、塗布法に適用できる、すなわち塗布法での成膜性に優れていることが望ましい。
 本発明は、上記課題に鑑みてなされたものであり、絶縁膜の形成に好適に適用され得る硬化性組成物であって、誘電率及び誘電正接が低く耐熱性に優れた硬化物を形成することができ且つ成膜性に優れた硬化性組成物と、当該硬化性組成物を用いる絶縁膜の形成方法と、前述の硬化性組成物の成分として好適に使用される末端マレイミド変性ポリフェニレンエーテル樹脂とを提供することを目的とする。
 本発明者らは、マレイミド骨格を含む特定の構造のラジカル重合性基を分子鎖末端に有する末端マレイミド変性ポリフェニレンエーテル樹脂(A)を含む硬化性組成物が、誘電率及び誘電正接が低く耐熱性に優れた絶縁膜を与え、且つ、成膜性に優れることを見出し、本発明を完成するに至った。
 本発明の第1の態様は、末端マレイミド変性ポリフェニレンエーテル樹脂(A)と、ラジカル発生剤(C)とを含む、硬化性組成物であって、
 末端マレイミド変性ポリフェニレンエーテル樹脂(A)が、下記式(a1):
Figure JPOXMLDOC01-appb-C000004
で表される末端基を分子鎖末端に有し、
 式(a1)中、Ra01及びRa02は、それぞれ独立に、水素原子、炭素原子数1以上6以下のアルキル基、炭素原子数3以上8以下のシクロアルキル基、又は炭素原子数6以上12以下のアリール基であり、
 末端マレイミド変性ポリフェニレンエーテル樹脂(A)の主鎖に含まれるフェニレン基は、1以上4以下の置換基を有してもよく、
 末端基が、下記式(a2):
*-Y-Y-**・・・(a2)
で表される連結基を介して、末端マレイミド変性ポリフェニレンエーテル樹脂(A)の主鎖に結合し、
 連結基中の**側の結合手が、末端マレイミド変性ポリフェニレンエーテル樹脂(A)を与える未変性ポリフェニレンエーテル樹脂(A’)の分子鎖末端の水酸基に由来する酸素原子に結合し、
 連結基中の*側の結合手が、末端基に結合し、
 式(a2)中、Yは、単結合、又はカルボニル基であり、Yは、2価の有機基であり、Yが単結合である場合、Yとしての単結合は、Yとしての2価の有機基中のsp3混成軌道をとる炭素原子に結合し、
 絶縁膜形成に用いられる、硬化性組成物である。
 本発明の第2の態様は、末端マレイミド変性ポリフェニレンエーテル樹脂(A)と、ラジカル発生剤(C)とを含む、硬化性組成物であって、
 末端マレイミド変性ポリフェニレンエーテル樹脂(A)が、下記式(a1):
Figure JPOXMLDOC01-appb-C000005
で表される末端基を分子鎖末端に有し、
 式(a1)中、Ra01及びRa02は、それぞれ独立に、水素原子、炭素原子数1以上6以下のアルキル基、炭素原子数3以上8以下のシクロアルキル基又、は炭素原子数6以上12以下のアリール基であり、
 末端マレイミド変性ポリフェニレンエーテル樹脂(A)の主鎖に含まれるフェニレン基は、1以上4以下の置換基を有してもよく、
 ラジカル発生剤(C)が、光ラジカル発生剤(C1)である、硬化性組成物である。
 本発明の第3の態様は、下記式(a1):
Figure JPOXMLDOC01-appb-C000006
で表される末端基を分子鎖末端に有し、
 式(a1)中、Ra01及びRa02は、それぞれ独立に、水素原子、炭素原子数1以上6以下のアルキル基、炭素原子数3以上8以下のシクロアルキル基又は炭素原子数6以上12以下のアリール基であり、
 末端マレイミド変性ポリフェニレンエーテル樹脂(A)の主鎖に含まれるフェニレン基は、1以上4以下の置換基を有してもよく、
 末端基が、下記式(a2):
*-Y-Y-**・・・(a2)
で表される連結基を介して、末端マレイミド変性ポリフェニレンエーテル樹脂(A)の主鎖に結合し、
 連結基中の**側の結合手が、末端マレイミド変性ポリフェニレンエーテル樹脂(A)を与える未変性ポリフェニレンエーテル樹脂(A’)の分子鎖末端の水酸基に由来する酸素原子に結合し、
 連結基中の*側の結合手が、末端基に結合し、
 式(a2)中、Yは、単結合、又はカルボニル基であり、Yは、2価の有機基であり、Yが単結合である場合、Yとしての単結合は、Yとしての2価の有機基中のsp3混成軌道をとる炭素原子に結合する、末端マレイミド変性ポリフェニレンエーテル樹脂である。
 本発明によれば、絶縁膜の形成に好適に適用され得る硬化性組成物であって、誘電率及び誘電正接が低く耐熱性に優れた硬化物を形成することができ且つ成膜性に優れた硬化性組成物と、当該硬化性組成物を用いる絶縁膜の形成方法と、前述の硬化性組成物の成分として好適に使用される末端マレイミド変性ポリフェニレンエーテル樹脂とを提供することができる。
調製例1で得られた末端マレイミド変性ポリフェニレンエーテル樹脂P1と、未変性のポリフェニレンエーテル樹脂(SA90)とのH NMR測定結果を示す図である。
≪硬化性組成物≫
 硬化性組成物としては、末端マレイミド変性ポリフェニレンエーテル樹脂(A)と、ラジカル発生剤(C)とを含むことと、
 末端マレイミド変性ポリフェニレンエーテル樹脂(A)が、下記式(a1):
Figure JPOXMLDOC01-appb-C000007
で表される末端基を分子鎖末端に有することと、
 式(a1)中、Ra01及びRa02が、それぞれ独立に、水素原子、炭素原子数1以上6以下のアルキル基、炭素原子数3以上8以下のシクロアルキル基、又は炭素原子数6以上12以下のアリール基であることと、
 末端マレイミド変性ポリフェニレンエーテル樹脂(A)の主鎖に含まれるフェニレン基が、1以上4以下の置換基を有してもよいことと、を共通の特徴として備える、第1の硬化性組成物と、第2の硬化性組成物とが挙げられる。
 以下、第1の硬化性組成物と、第2の硬化性組成物とについて説明する。
<第1の硬化性組成物>
 第1の硬化性組成物は、末端マレイミド変性ポリフェニレンエーテル樹脂(A)と、ラジカル発生剤(C)とを含む、硬化性組成物である。
 前述の通り、末端マレイミド変性ポリフェニレンエーテル樹脂(A)は、下記式(a1):
Figure JPOXMLDOC01-appb-C000008
で表される末端基を分子鎖末端に有する。
 式(a1)中、Ra01及びRa02は、それぞれ独立に、水素原子、炭素原子数1以上6以下のアルキル基、炭素原子数3以上8以下のシクロアルキル基、又は炭素原子数6以上12以下のアリール基である。
 末端マレイミド変性ポリフェニレンエーテル樹脂(A)の主鎖に含まれるフェニレン基は、1以上4以下の置換基を有してもよい。
 第1の硬化性組成物において使用される末端マレイミド変性ポリフェニレンエーテル樹脂において、上記の末端基は、下記式(a2):
*-Y-Y-**・・・(a2)
で表される連結基を介して、末端マレイミド変性ポリフェニレンエーテル樹脂(A)の主鎖に結合する。
 連結基中の**側の結合手は、末端マレイミド変性ポリフェニレンエーテル樹脂(A)を与える未変性ポリフェニレンエーテル樹脂(A’)の分子鎖末端の水酸基に由来する酸素原子に結合する。他方で、連結基中の*側の結合手が、末端基に結合する。
 式(a2)中、Yは、単結合、又はカルボニル基である。Yは、2価の有機基である。Yが単結合である場合、Yとしての単結合は、Yとしての2価の有機基中のsp3混成軌道をとる炭素原子に結合する。
 第1の硬化性組成物は、絶縁膜の形成に用いられる。典型的には、第1の硬化性組成物は、金属配線を有する電気・電子デバイスにおいて、金属配線を絶縁する絶縁膜を形成するために用いられる。
 電気・電子デバイスは、特に限定されず、携帯電話等の通信機器、サーバー等のネットワーク関連の電子機器や、コンピュータ等の電子機器等、特にはこれらの機器が有する半導体部品、具体的には、ウェハレベルパッケージと称される半導体パッケージが挙げられる。
 これらの電気・電子デバイスは、銅等の金属や合金からなる金属配線を、電気・電子デバイス用の基板上に有する。金属配線を有する電気・電子デバイス用の基板としては、シリコン基板や、シリコン基板上に種々の層や部材が設けられた基板が挙げられる。
 この金属配線と他の金属配線や導電部材とを、第1の硬化性組成物により形成される絶縁膜で絶縁する。
 後述する成分を含む第1の硬化性組成物を用いることにより、誘電率及び誘電正接(tanδ)が低い絶縁膜を形成できる。このため、後述する成分を含む第1の硬化性組成物は、高周波数の信号を用いる電気・電子デバイスの金属配線を絶縁する絶縁膜に好適である。なお、本明細書において、「高周波数」とは、3GHz以上の周波数を意味する。
 また、耐熱性に優れた絶縁膜を形成できるため、第1の硬化性組成物は、例えば、硬化性組成物により絶縁膜を形成した後に加熱により他部材を形成する電気・電子デバイスにおける絶縁膜の形成に用いることができる。
 また、第1の硬化性組成物は、塗布法での成膜性に優れている。すなわち、塗布法で成膜したときに、クラック及び結晶の発生がなく、タック(べたつき)がなく、成分の相溶性もよいため、容易な方法である塗布法で絶縁膜を形成することができる。
 以下、第1の硬化性組成物について、詳細に説明する。
〔末端マレイミド変性ポリフェニレンエーテル樹脂(A)〕
 第1の硬化性組成物は、下記式(a1)で表される末端基を分子鎖末端に有する末端マレイミド変性ポリフェニレンエーテル樹脂(A)を含有する。
 なお、本出願の明細書において、式(a1)で表される置換又は無置換の環状イミド基を、便宜的に「マレイミド基」とも称する。
Figure JPOXMLDOC01-appb-C000009
(式(a1)中、Ra01及びRa02は、それぞれ独立に、水素原子、炭素原子数1以上6以下のアルキル基、炭素原子数3以上8以下のシクロアルキル基、又は炭素原子数6以上12以下のアリール基である。)
 式(a1)中のRa01及びRa02としての炭素原子数1以上6以下のアルキル基は、直鎖状アルキル基でも分岐鎖状アルキル基でもよい。具体例としては、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、イソプロピル基、イソブチル基、sec-ブチル基、tert-ブチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、イソヘキシル基が挙げられる。
 式(a1)中のRa01及びRa02としての炭素原子数3以上8以下のシクロアルキル基の具体例としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基が挙げられる。
 式(a1)中のRa01及びRa02としての炭素原子数6以上12以下のアリール基の具体例としては、フェニル基、ビフェニル基、1-ナフチル基及び2-ナフチル基が挙げられる。
 式(a1)中のRa01及びRa02は、いずれも水素原子であることが好ましい。Ra01及びRa02がいずれも水素原子であると、末端マレイミド変性ポリフェニレンエーテル樹脂(A)が重合性に優れる。このため、硬化性に優れた第1の硬化性組成物を得やすい。Ra01及びRa02がいずれも水素原子の場合は、式(a1)で表される基は、無置換のマレイミド基となる。
 式(a1)で表される末端基は、下記式(a2):
*-Y-Y-**・・・(a2)
で表される連結基を介して、末端マレイミド変性ポリフェニレンエーテル樹脂(A)の主鎖に結合する。
 上記の連結基中の**側の結合手は、末端マレイミド変性ポリフェニレンエーテル樹脂(A)を与える未変性ポリフェニレンエーテル樹脂(A’)の分子鎖末端の水酸基に由来する酸素原子に結合する。他方で、連結基中の*側の結合手が、式(a1)で表される末端基に結合する。
 式(a2)中、Yは、単結合、又はカルボニル基である。Yは、2価の有機基である。Yが単結合である場合、Yとしての単結合は、Yとしての2価の有機基中のsp3混成軌道をとる炭素原子に結合する。
 式(a2)において、Yがカルボニル基である場合、Yが、-Y-Y-で表される基であるのが好ましい。Yは、単結合、-O-、又は-NH-である。Yは2価の有機基である。YがYとしてのカルボニル基と結合する。
 つまり、式(a2)中のYがカルボニル基である場合、式(a2)で表される連結基は、下記式(a2-1)~(a2-3)で表される基であるのが好ましい。
*-Y-CO-**・・・(a2-1)
*-Y-O-CO-**・・・(a2-2)
*-Y-NH-CO-**・・・(a2-3)
 Yとしての2価の有機基は、Yと、式(a1)で表される末端基を連結し得る基であれば特に限定されない。有機基の構造は、直鎖状であっても、分岐鎖状であっても、環状であってもこれらの構造の組み合わせでもよい。有機基が含み得る炭素原子及び水素原子以外のヘテロ原子としては、窒素原子、硫黄原子、酸素原子、ハロゲン原子、リン原子、ケイ素原子、及びホウ素原子等が挙げられる。有機基は、1以上の不飽和結合を有してもよい。
 Yとしては、末端マレイミド変性ポリフェニレンエーテル樹脂(A)における末端変性に用いる化合物の入手又は製造が容易であったり、所望する末端変性が容易であったりすること等から、炭化水素基が好ましい。
 炭化水素基の炭素原子数は1以上10以下が好ましく、1以上8以下がより好ましく、1以上6以下がさらに好ましい。
 炭化水素基は、脂肪族炭化水素基であっても、芳香族炭化水素基であってもよい。剛直な芳香族炭化水素基と比較して柔軟であることから、炭化水素基としては、肪肪族炭化水素基が好ましい。
 Yとして好ましい炭化水素基としては、メチレン基、エタン-1,2-ジイル基、エタン-1,1-ジイル基、プロパン-1,3-ジイル基、プロパン-1,2-ジイル基、プロパン-1,1-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基、ヘキサン-1,6-ジイル基、ヘプタン-1,7-ジイル基、オクタン-1,8-ジイル基、ノナン-1,9-ジイル基、デカン-1,10-ジイル基、シクロヘキサン-1,4-ジイル基、シクロヘキサン-1,3-ジイル基、シクロヘキサン-1,2-ジイル基、p-フェニレン基、m-フェニレン基、o-フェニレン基、ナフタレン-1,4-ジイル基、ナフタレン-2,6-ジイル基、及びナフタレン-2,7-ジイル基が挙げられる。
 これらの中では、エタン-1,2-ジイル基、プロパン-1,3-ジイル基、ブタン-1,4-ジイル基、シクロヘキサン-1,4-ジイル基、及びシクロヘキサン-1,3-ジイル基が好ましい。
 式(a2)において、Yが単結合である場合、Yとしての単結合は、Yとしての2価の有機基中のsp3混成軌道をとる炭素原子に結合する。sp3混成軌道をとる炭素原子は典型的には、Yとしての有機基における、脂肪族炭化水素基からなる全体構造又は部分構造を構成する炭素原子である。
 式(a2)において、Yが単結合である場合、Yとしての2価の有機基は、sp3混成軌道をとる炭素原子を少なくとも1つ有し、且つ末端マレイミド変性ポリフェニレンエーテル樹脂(A)を与える未変性ポリフェニレンエーテル樹脂(A’)の分子鎖末端の水酸基に由来する酸素原子と、式(a1)で表される末端基を連結し得る基であれば特に限定されない。Yが単結合である場合の、Yとしての2価の有機基は、炭素原子及び水素原子以外に、窒素原子、硫黄原子、酸素原子、ハロゲン原子、リン原子、ケイ素原子、及びホウ素原子等のヘテロ原子を1つ以上含んでいてもよい。
 Yが単結合である場合、Yとしての2価の有機基の炭素原子数は、1以上10以下が好ましく、1以上8以下がより好ましく、1以上6以下がさらに好ましい。
 Yが単結合である場合、Yとしての2価の有機基は、1以上のメチレン基が、カルボニル基(-CO-)、エーテル結合(-O-)、又はイミノ基(-NH-)で置換されていてもよい脂肪族炭化水素基であるのが好ましい。
 Yが単結合である場合、Yとして好ましい脂肪族炭化水素基としては、メチレン基、エタン-1,2-ジイル基、エタン-1,1-ジイル基、プロパン-1,3-ジイル基、プロパン-1,2-ジイル基、プロパン-1,1-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基、ヘキサン-1,6-ジイル基、ヘプタン-1,7-ジイル基、オクタン-1,8-ジイル基、ノナン-1,9-ジイル基、デカン-1,10-ジイル基、シクロヘキサン-1,4-ジイル基、シクロヘキサン-1,3-ジイル基、及びシクロヘキサン-1,2-ジイル基が挙げられる。また、これらの炭化水素基が有する1つ又は2つのメチレン基が、カルボニル基(-CO-)、エーテル結合(-O-)、又はイミノ基(-NH-)で置換された基も好ましい。
 これらの中では、エタン-1,2-ジイル基、プロパン-1,3-ジイル基、ブタン-1,4-ジイル基、シクロヘキサン-1,4-ジイル基、及びシクロヘキサン-1,3-ジイル基が好ましい。
 未変性ポリフェニレンエーテル樹脂(A’)の分子鎖末端に、式(a1)で表される末端基を導入して変性する方法は特に限定されない。
 かかる変性を行うためには、フェノール性水酸基末端を有する未変性ポリフェニレンエーテル樹脂(A’)が好ましく使用される。
 未変性ポリフェニレンエーテル樹脂(A’)は、フェノール性水酸基末端を少なくとも1つ有する樹脂であればよい。未変性ポリフェニレンエーテル樹脂(A’)は、2以上のフェノール性水酸基末端を有するのが好ましく、2又は3のフェノール性水酸基末端を有するのがより好ましく、2つのフェノール性水酸基末端を有するのがさらに好ましい。
 なお、未変性ポリフェニレンエーテル樹脂(A’)が末端にフェノール性水酸基を有する場合、未変性ポリフェニレンエーテル樹脂(A’)は、主鎖に含まれるフェニレン基上にさらにフェノール性水酸基を有していてもよい。
 ポリフェニレンエーテル樹脂は、典型的には、2,6-ジメチルフェノール等のフェノール化合物を、銅等の金属を含む触媒の存在下に酸化的に重合することにより製造され得る。未変性ポリフェニレンエーテル樹脂(A’)の製造方法は特に限定されないが、公知の方法に従って、前述の典型的な方法に従って未変性ポリフェニレンエーテル樹脂(A’)が製造されるのが好ましい。
 末端マレイミド変性ポリフェニレンエーテル樹脂(A)の主鎖に含まれるフェニレン基は、1以上4以下の置換基を有してもよい。このため、未変性ポリフェニレンエーテル樹脂(A’)の主鎖に含まれるフェニレン基も、1以上4以下の置換基を有してもよい。
 置換基の例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、及びtert-ブチル基等の炭素原子数1以上4以下のアルキル基;フェニル基、o-トリル基、m-トリル基、及びp-トリル基等の芳香族炭化水素基;メトキシ基、エトキシ基、n-プロピルオキシ基、イソプロピルオキシ基、n-ブチルオキシ基、イソブチルオキシ基、sec-ブチルオキシ基、及びtert-ブチルオキシ基等の炭素原子数1以上4以下のアルコキシ基;フェノール性水酸基;フッ素原子、塩素原子、臭素原子、及びヨウ素原子等のハロゲン原子が好ましい。
 これらの置換基の中では、メチル基、フェニル基、塩素原子、及び臭素原子が好ましく、メチル基、フェニル基、及び塩素原子がより好ましい。
 未変性ポリフェニレンエーテル樹脂(A’)としては、フェノール類の単独重合体、又は2種以上のフェノール類の共重合体が挙げられる。
 未変性ポリフェニレンエーテル樹脂(A’)は、1価フェノールのみを重合させた重合体であってもよく、1価フェノールと、2価フェノールや3価フェノールのような多価フェノールとを共重合させた重合体であってもよい。
 1価フェノールのみの重合体は、一方の末端に、水酸基を持たない原料フェノールに由来するアリール基を有し、他方の末端に原料フェノールに由来するヒドロキシアリール基を有する。
 1価フェノールと、多価フェノールとの共重合体では、多価フェノールが有する2以上のフェノール性水酸基を起点としてポリフェニレンエーテルの分子鎖が成長する。このため、2価フェノールに1価フェノールを共重合させると、両末端にヒドロキシアリール基を有するポリフェニレンエーテル樹脂が得られる。また、3価以上のフェノールに1価フェノールを共重合させると、多価フェノールの価数に対応する分岐鎖を有し、各分岐鎖の末端にヒドロキシアリール基を有するポリフェニレンエーテル樹脂が得られる。
 フェノール類の単独重合体の具体例としては、ポリ(2,6-ジメチル-1,4-フェニレンエーテル)、ポリ(2-メチル-6-フェニル-1,4-フェニレンエーテル)、ポリ(2,6-ジクロロ-1,4-フェニレンエ-テル)等が挙げられる。
 前述の通り、2種以上のフェノール類の共重合体は、2種以上の1価フェノールの共重合体であってもよく、1種以上の1価フェノールと、1種以上の2価フェノールとの共重合体であってもよい。
 2種以上の1価フェノール類の共重合体の具体例としては、2,6-ジメチルフェノールと2,3,6-トリメチルフェノールとの共重合体、2,6-ジメチルフェノールと2,6-ジクロロフェノールとの共重合体、及び2,6-ジメチルフェノールと2-メチル-6-フェニルフェノールとの共重合体等が挙げられる。
 1種以上の1価フェノールと、1種以上の2価フェノールとの共重合体としては、3,3’,5,5’-テトラメチルビスフェノールAに2,6-ジメチルフェノールを重合させた共重合体や、3,3’,5,5’-テトラメチルビスフェノールAに2-メチル-6-フェニルフェノールを重合させた共重合体や、3,3’,5,5’-テトラメチルビスフェノールAに2,6-ジクロロフェノールを重合させた共重合体が挙げられる。
 未変性ポリフェニレンエーテル樹脂(A’)としては、1価フェノールと、2価フェノールとの共重合体である、3,3’,5,5’-テトラメチルビスフェノールAに2,6-ジメチルフェノールを重合させた共重合体、3,3’,5,5’-テトラメチルビスフェノールAに2-メチル-6-フェニルフェノールを重合させた共重合体、及び3,3’,5,5’-テトラメチルビスフェノールAに2,6-ジクロロフェノールを重合させた共重合体が好ましく、3,3’,5,5’-テトラメチルビスフェノールAに2,6-ジメチルフェノールを重合させた共重合体がより好ましい。
 未変性ポリフェニレンエーテル樹脂(A’)を変性して、末端に式(a1)で表される末端基を導入する方法は特に限定されない。
 例えば、式(a2)においてYがカルボニル基であり、式(a2)で表される連結基が、下記式(a2-1):
*-Y-CO-**・・・(a2-1)
で表される基である場合、MIG-Y-CO-OHで表されるカルボン酸と、未変性ポリフェニレンエーテル樹脂(A’)が有するフェノール性水酸基とを、カルボニルジイミダゾールやN,N’-ジイソプロピルカルボジイミド等のカルボジイミド系化合物等の縮合剤を用いて縮合させることにより、未変性ポリフェニレンエーテル樹脂(A’)が有する末端フェノール性水酸基を、-O-CO-Y-MIGで表される基に変換することができる。なお、MIGは、式(a1)で表される末端基である。
 また、MIG-Y-CO-Halで表されるカルボン酸ハライドと、未変性ポリフェニレンエーテル樹脂(A’)が有するフェノール性水酸基とを反応させることにより、未変性ポリフェニレンエーテル樹脂(A’)が有する末端フェノール性水酸基を、-O-CO-Y-MIGで表される基に変換することができる。なお、Halは、塩素原子、臭素原子等のハロゲン原子である。
 式(a2)においてYがカルボニル基であり、式(a2)で表される連結基が、下記式(a2-2): 
*-Y-O-CO-**・・・(a2-2)
で表される基である場合、未変性ポリフェニレンエーテル樹脂(A’)が有するフェノール性水酸基と、フェノール性水酸基に対して過剰量のMIG-Y-OHで表されるアルコールとを、ホスゲンやトリホスゲン等のカーボネート結合を生成させる化合物と反応させることにより、未変性ポリフェニレンエーテル樹脂(A’)が有する末端フェノール性水酸基を、-O-CO-O-Y-MIGで表される基に変換することができる。
 式(a2)においてYがカルボニル基であり、式(a2-3)で表される連結基が、下記式(a2-3): 
*-Y-NH-CO-**・・・(a2-3)
で表される基である場合、未変性ポリフェニレンエーテル樹脂(A’)が有するフェノール性水酸基を、MIG-Y-NCOで表されるイソシアネートと反応させることにより、未変性ポリフェニレンエーテル樹脂(A’)が有する末端フェノール性水酸基を、-O-CO-NH-Y-MIGで表される基に変換することができる。
 式(a2)においてYが単結合である場合、未変性ポリフェニレンエーテル樹脂(A’)が有するフェノール性水酸基と、MIG-Y-Halで表されるハロゲン化物とを、いわゆるWilliamsonのエーテル合成等の方法によりエーテル化することにより、未変性ポリフェニレンエーテル樹脂(A’)が有する末端フェノール性水酸基を、-O-Y-MIGで表される基に変換することができる。
 以上、代表的なフェノール性水酸基の変性方法について説明したが、フェノール性水酸基の変性方法はこれらの方法に限定されない。フェノール性水酸基の変性方法としては、式(a1)で表される末端基に結合する連結基の構造に応じて、公知の種々の方法を採用し得る。
 上記の変性方法において、必要に応じて、採用された反応に応じた有機溶媒を適宜使用することができる。反応温度や反応時間についても、採用された反応における、公知の好適な条件を適宜採用することができる。
 未変性ポリフェニレンエーテル樹脂(A’)を用いて末端マレイミド変性ポリフェニレンエーテル樹脂(A)を調製する際、未変性ポリフェニレンエーテル樹脂(A’)が有するフェノール性水酸基の一部に式(a1)で表される末端基を含む基が導入されてもよく、フェノール性水酸基の全てに式(a1)で表される末端基を含む基が導入されてもよい。
 末端マレイミド変性ポリフェニレンエーテル樹脂(A)の分子量は、本発明の効果を損なわない限り特に制限はない。質量平均分子量(Mw)は、2000以上が好ましく、2500以上がより好ましく、3000以上がさらに好ましい。樹脂(A)の分子量は、質量平均分子量(Mw)として、10万以下が好ましく、8万以下がより好ましく、5万以下がさらに好ましく、1万以下がさらにより好ましい。
 本明細書において質量平均分子量(Mw)はゲルパーミエーションクロマトグラフィ(GPC)のポリスチレン換算による測定値である。
 このように、式(a1)で表される末端基を特定の位置に有する末端マレイミド変性ポリフェニレンエーテル樹脂(A)は、式(a1)で表される末端基がラジカル重合性基であるため、露光や加熱して重合し得る。重合の結果、末端マレイミド変性ポリフェニレンエーテル樹脂(A)は、低誘電率で、低誘電正接であり、且つ耐熱性に優れた絶縁膜を与える。例えば、形成される絶縁膜の誘電率を、3.00未満にできる。また、形成される絶縁膜の誘電正接を、0.01未満にできる。また、形成される絶縁膜のガラス転移温度(Tg)を150℃以上にできる。
 末端マレイミド変性ポリフェニレンエーテル樹脂(A)を含む第1の硬化性組成物は、塗布法での成膜性に優れている。このため、かかる硬化性組成物を用いて塗布法で成膜したときに、クラック及び結晶の発生がなく、タック(べたつき)がなく、成分の相溶性もよい。従って、容易な方法である塗布法で絶縁膜を形成することができる。
 末端マレイミド変性ポリフェニレンエーテル樹脂(A)は溶剤溶解性に優れている。従って、末端マレイミド変性ポリフェニレンエーテル樹脂(A)を含む第1の硬化性組成物は、ネガ型組成物として、該溶剤による現像プロセスに適用可能である。
 特に、末端マレイミド変性ポリフェニレンエーテル樹脂(A)は、その構造にもよるが、アルカリ性水溶液に可溶である場合がある。例えば、末端マレイミド変性ポリフェニレンエーテル樹脂(A)がカルボキシ基やフェノール性水酸基等のアルカリ可溶性基を有する場合である。このようなアルカリ可溶性の末端マレイミド変性ポリフェニレンエーテル樹脂(A)を含む第1の硬化性組成物は、ネガ型組成物として、アルカリ現像プロセスに適用可能である。
 末端マレイミド変性ポリフェニレンエーテル樹脂(A)を含む第1の硬化性組成物からなる塗布膜に対して、位置選択的な露光と、上記の現像プロセスとを適用することにより、所望のパターン形状の絶縁膜を形成することができる。
 第1の硬化性組成物中の末端マレイミド変性ポリフェニレンエーテル樹脂(A)の含有量は特に限定されない。末端マレイミド変性ポリフェニレンエーテル樹脂(A)の含有量は、第1の硬化性組成物の全固形分量に対して5質量%以上100質量%以下が好ましい。
〔ラジカル重合性化合物(B)〕
 第1の硬化性組成物は、さらに、ラジカル重合性化合物(B)を含んでいてもよい。勿論、第1の硬化性組成物は、ラジカル重合性化合物(B)を含まなくてもよい。
 ラジカル重合性化合物(B)は、末端マレイミド変性ポリフェニレンエーテル樹脂(A)以外のラジカル重合性の化合物である。
 ラジカル重合性化合物(B)は、スチレン、スチレン重合体、アクリロニトリル、(メタ)アクリル酸、(メタ)アクリル酸エステル等の不飽和二重結合を有する化合物でもよいが、上記式(a1)で表される基を有するラジカル重合性化合物であることが好ましい。
 上記式(a1)で表される基を有するラジカル重合性化合物としては、式(a1)で表される基を2以上有する多官能マレイミド化合物が好ましく、芳香族ジアミンや脂肪族ジアミンの2個のアミノ基を、式(a1)で表される基に置換したビスマレイミド化合物が好ましい。
 芳香族ジアミンの具体例としては、p-フェニレンジアミン、m-フェニレンジアミン、2,4-ジアミノトルエン、4,4’-ジアミノビフェニル、4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル、3,3’-ジアミノジフェニルスルフォン、4,4’-ジアミノジフェニルスルフォン、4,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス[4-(4-アミノフェノキシ)フェニル]スルフォン、ビス[4-(3-アミノフェノキシ)フェニル]スルフォン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、及び2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン等が挙げられる。
 脂肪族ジアミンの具体例としては、ペンタメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、2,3,3-トリメチルペンタン-1,5-ジアミン等が挙げられる。
 上記式(a1)で表される基を有するラジカル重合性化合物としては、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパンや下記化合物(いずれも東京化成工業社製)や、BMI-689、BMI-1400、BMI-1500、BMI-1700、BMI-2700、BMI-3000(いずれもDesigner molecules社製)も挙げられる。
Figure JPOXMLDOC01-appb-C000010
 上記のマレイミド化合物以外のラジカル重合性化合物としては、従来よりラジカル重合性の組成物に配合されている種々のラジカル重合性化合物を特に制限なく用いることができる。マレイミド化合物以外のラジカル重合性化合物の具体例としては、下記の化合物が挙げられる。
 単官能のラジカル重合性化合物としては、(メタ)アクリルアミド、メチロール(メタ)アクリルアミド、メトキシメチル(メタ)アクリルアミド、エトキシメチル(メタ)アクリルアミド、プロポキシメチル(メタ)アクリルアミド、ブトキシメトキシメチル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N-ヒドロキシメチル(メタ)アクリルアミド、(メタ)アクリル酸、フマル酸、マレイン酸、無水マレイン酸、イタコン酸、無水イタコン酸、シトラコン酸、無水シトラコン酸、クロトン酸、2-アクリルアミド-2-メチルプロパンスルホン酸、tert-ブチルアクリルアミドスルホン酸、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-フェノキシ-2-ヒドロキシプロピル(メタ)アクリレート、2-(メタ)アクリロイルオキシ-2-ヒドロキシプロピルフタレート、グリセリンモノ(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ジメチルアミノ(メタ)アクリレート、グリシジル(メタ)アクリレート、2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,3,3-テトラフルオロプロピル(メタ)アクリレート、フタル酸誘導体のハーフ(メタ)アクリレート等が挙げられる。これらの単官能化合物は、単独又は2種以上組み合わせて用いることができる。
 多官能のラジカル重合性化合物としては、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、1,12-ドデカンジオールジ(メタ)アクリレート、エトキシ化ヘキサンジオールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、2-ヒドロキシ-3-(メタ)アクリロイルオキシプロピル(メタ)アクリレート、ジペンタエリスリトールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、エトキシ化ネオペンチルグリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリ(エチレン-プロピレン)グリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、エトキシ化ビスフェノールAジ(メタ)アクリレート、プロポキシ化ビスフェノールAジ(メタ)アクリレート、プロポキシ化エトキシ化ビスフェノールAジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、2,2-ビス(4-(メタ)アクリロキシジエトキシフェニル)プロパン、2,2-ビス(4-(メタ)アクリロキシポリエトキシフェニル)プロパン、2-ヒドロキシ-3-(メタ)アクリロイルオキシプロピル(メタ)アクリレート、エチレングリコールジグリシジルエーテルジ(メタ)アクリレート、ジエチレングリコールジグリシジルエーテルジ(メタ)アクリレート、フタル酸ジグリシジルエステルジ(メタ)アクリレート、グリセリントリアクリレート、グリセリンポリグリシジルエーテルポリ(メタ)アクリレート、ウレタン(メタ)アクリレート(すなわち、トリレンジイソシアネート)、トリメチルヘキサメチレンジイソシアネートとヘキサメチレンジイソシアネート等と2-ビドロキシエチル(メタ)アクリレートとの反応物、メチレンビス(メタ)アクリルアミド、(メタ)アクリルアミドメチレンエーテル、多価アルコールとN-メチロール(メタ)アクリルアミドとの縮合物、トリアクリルホルマール、2,4,6-トリオキソヘキサヒドロ-1,3,5-トリアジン-1,3,5-トリスエタノールトリアクリレート、及び2,4,6-トリオキソヘキサヒドロ-1,3,5-トリアジン-1,3,5-トリスエタノールジアクリレート等が挙げられる。これらの多官能化合物は、単独又は2種以上組み合わせて用いることができる。
 第1の硬化性組成物中のラジカル重合性化合物(B)の含有量は特に限定されないが、末端マレイミド変性ポリフェニレンエーテル樹脂(A)とラジカル重合性化合物(B)との合計量に対して、10質量%以上70質量%以下とすることが好ましい。
〔ラジカル発生剤(C)〕
 第1の硬化性組成物は、ラジカル発生剤(C)を含む。ラジカル発生剤(C)は、光ラジカル発生剤(C1)でも熱ラジカル発生剤(C2)でもよく、光ラジカル発生剤(C1)及び熱ラジカル発生剤(C2)を併用してもよい。
 光ラジカル発生剤(C1)としては、Omnirad 651、Omnirad 184、Omnirad 1173、Omnirad 2959、Omnirad 127、Omnirad 907、Omnirad 369、Omnirad 369E、Omnirad 379EG(いずれもIGM Resins B.V.製)等のアルキルフェノン系発生剤、Omnirad TPO H、Omnirad 819(いずれもIGM Resins B.V.製)等のアシルフォスフィンオキサイド系発生剤や、Irgacure OXE01、Irgacure OXE02(いずれもBASF社製)等のオキシムエステル系光重合剤が挙げられる。
 光ラジカル発生剤(C1)の具体例としては、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-〔4-(2-ヒドロキシエトキシ)フェニル〕-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、1-(4-ドデシルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、ビス(4-ジメチルアミノフェニル)ケトン、2-メチル-1-〔4-(メチルチオ)フェニル〕-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタン-1-オン、1,2-オクタンジオン,1-[4-(フェニルチオ)フェニル]-,2-(O-ベンゾイルオキシム)(Irgacure OXE01)、エタノン-1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾル-3-イル]-1-(O-アセチルオキシム)(Irgacure OXE02)、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド(Omnirad TPO H)、ビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキシド(Omnirad 819)、4-ベンゾイル-4’-メチルジメチルスルフィド、4-ジメチルアミノ安息香酸、4-ジメチルアミノ安息香酸メチル、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸ブチル、4-ジメチルアミノ-2-エチルヘキシル安息香酸、4-ジメチルアミノ-2-イソアミル安息香酸、ベンジル-β-メトキシエチルアセタール、ベンジルジメチルケタール、1-フェニル-1,2-プロパンジオン-2-(O-エトキシカルボニル)オキシム、O-ベンゾイル安息香酸メチル、2,4-ジエチルチオキサントン、2-クロロチオキサントン、2,4-ジメチルチオキサントン、1-クロロ-4-プロポキシチオキサントン、チオキサンテン、2-クロロチオキサンテン、2,4-ジエチルチオキサンテン、2-メチルチオキサンテン、2-イソプロピルチオキサンテン、2-エチルアントラキノン、オクタメチルアントラキノン、1,2-ベンズアントラキノン、2,3-ジフェニルアントラキノン、アゾビスイソブチロニトリル、ベンゾイルパーオキシド、クメンヒドロパーオキシド、2-メルカプトベンゾイミダール、2-メルカプトベンゾオキサゾール、2-メルカプトベンゾチアゾール、2-(O-クロロフェニル)-4,5-ジ(m-メトキシフェニル)-イミダゾリル二量体、ベンゾフェノン、2-クロロベンゾフェノン、p,p’-ビスジメチルアミノベンゾフェノン、4,4’-ビスジエチルアミノベンゾフェノン、4,4’-ジクロロベンゾフェノン、3,3-ジメチル-4-メトキシベンゾフェノン、ベンジル、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾイン-n-ブチルエーテル、ベンゾインイソブチルエーテル、ベンゾインブチルエーテル、アセトフェノン、2,2-ジエトキシアセトフェノン、p-ジメチルアセトフェノン、p-ジメチルアミノプロピオフェノン、ジクロロアセトフェノン、トリクロロアセトフェノン、p-tert-ブチルアセトフェノン、p-ジメチルアミノアセトフェノン、p-tert-ブチルトリクロロアセトフェノン、p-tert-ブチルジクロロアセトフェノン、α,α-ジクロロ-4-フェノキシアセトフェノン、チオキサントン、2-メチルチオキサントン、2-イソプロピルチオキサントン、ジベンゾスベロン、ペンチル-4-ジメチルアミノベンゾエート、9-フェニルアクリジン、1,7-ビス-(9-アクリジニル)ヘプタン、1,5-ビス-(9-アクリジニル)ペンタン、1,3-ビス-(9-アクリジニル)プロパン、p-メトキシトリアジン、2,4,6-トリス(トリクロロメチル)-s-トリアジン、2-メチル-4,6-ビス(トリクロロメチル)-s-トリアジン、2-[2-(5-メチルフラン-2-イル)エテニル]-4,6-ビス(トリクロロメチル)-s-トリアジン、2-[2-(フラン-2-イル)エテニル]-4,6-ビス(トリクロロメチル)-s-トリアジン、2-[2-(4-ジエチルアミノ-2-メチルフェニル)エテニル]-4,6-ビス(トリクロロメチル)-s-トリアジン、2-[2-(3,4-ジメトキシフェニル)エテニル]-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4-メトキシフェニル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4-エトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4-n-ブトキシフェニル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2,4-ビス-トリクロロメチル-6-(3-ブロモ-4-メトキシ)フェニル-s-トリアジン、2,4-ビス-トリクロロメチル-6-(2-ブロモ-4-メトキシ)フェニル-s-トリアジン、2,4-ビス-トリクロロメチル-6-(3-ブロモ-4-メトキシ)スチリルフェニル-s-トリアジン、2,4-ビス-トリクロロメチル-6-(2-ブロモ-4-メトキシ)スチリルフェニル-s-トリアジン等が挙げられる。これらの光ラジカル発生剤は、単独又は2種以上を組み合わせて用いることができる。中でも、オキシム系の発生剤を用いることが感度の面で特に好ましい。
 熱ラジカル発生剤(C2)としては、ケトンパーオキシド(メチルエチルケトンパーオキシド及びシクロヘキサノンパーオキシド等)、パーオキシケタール(2,2-ビス(tert-ブチルパーオキシ)ブタン及び1,1-ビス(tert-ブチルパーオキシ)シクロヘキサン等)、ヒドロパーオキシド(tert-ブチルヒドロパーオキシド及びクメンヒドロパーオキシド等)、ジアルキルパーオキシド(ジ-tert-ブチルパーオキシド(パーブチル(登録商標)D(日油株式会社製)、及びジ-tert-ヘキシルパーオキサイド(パーヘキシル(登録商標)D(日油株式会社製))等)、ジアシルパーオキシド(イソブチリルパーオキシド、ラウロイルパーオキシド及びベンゾイルパーオキシド等)、パーオキシジカーボネート(ジイソプロピルパーオキシジカーボネート等)、パーオキシエステル(tert-ブチルパーオキシイソブチレート及び2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン等)等}の有機過酸化物や、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチル-4-メトキシバレロニトリル)、2,2’-アゾビス(2-メチルプロピオンアミジン)ジヒドロクロリド、2,2’-アゾビス[2-メチル-N-(2-プロペニル)プロピオンアミジン]ジヒドロクロリド、2,2’-アゾビス(2-メチルプロピオンアミド)、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]、2,2’-アゾビス(2-メチルプロパン)、2,2’-アゾビス(2,4,4-トリメチルペンタン)及びジメチル2,2’-アゾビス(2-メチルプロピオネート)等}等のアゾ化合物が挙げられる。
 第1の硬化性組成物中のラジカル発生剤(C)の含有量は特に限定されないが、末端マレイミド変性ポリフェニレンエーテル樹脂(A)とラジカル重合性化合物(B)との合計質量100質量部に対して、0.1質量部以上10質量部以下が好ましく、0.5質量部以上10質量部以下がより好ましく、2質量以上10質量部以下がさらに好ましい。
<有機溶剤(S)>
 第1の硬化性組成物は、通常、有機溶剤(S)を含む。有機溶剤(S)の種類は、本発明の目的を阻害しない範囲で特に限定されず、従来より感光性組成物に使用されている有機溶剤から適宜選択して使用することができる。
 有機溶剤(S)の具体例としては、アセトン、メチルエチルケトン、シクロヘキサノン、メチルイソアミルケトン、2-ヘプタノン等のケトン類;エチレングリコール、エチレングリコールモノアセテート、ジエチレングリコール、ジエチレングリコールモノアセテート、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコール、ジプロピレングリコールモノアセテートのモノメチルエーテル、モノエチルエーテル、モノプロピルエーテル、モノブチルエーテル、モノフェニルエーテル等の多価アルコール類及びその誘導体;ジオキサン等の環式エーテル類;蟻酸エチル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸ブチル、ピルビン酸メチル、アセト酢酸メチル、アセト酢酸エチル、ピルビン酸エチル、エトキシ酢酸エチル、メトキシプロピオン酸メチル、エトキシプロピオン酸エチル、2-ヒドロキシプロピオン酸メチル、2-ヒドロキシプロピオン酸エチル、2-ヒドロキシ-2-メチルプロピオン酸エチル、2-ヒドロキシ-3-メチルブタン酸メチル、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート等のエステル類;含ヘテロ原子芳香族化合物(例えば、アニソール)、芳香族炭化水素類(例えば、トルエン、キシレン)等の芳香族系有機溶剤;等を挙げることができる。これらは単独で用いてもよく、2種以上を混合して用いてもよい。
 有機溶剤(S)の含有量は、本発明の目的を阻害しない範囲で特に限定されない。第1の硬化性組成物の固形分濃度が30質量%以上70質量%以下となる範囲で、有機溶剤(S)を用いるのが好ましい。
〔その他の添加剤〕
 第1の硬化性組成物は、硬化性を向上させるため、さらにマレイミド硬化剤(E)を含有していてもよく、塗布性、消泡性、レベリング性等を向上させるため、さらに界面活性剤を含有していてもよい。
 マレイミド硬化剤としては、ジアミン類;低極性多官能アリルフェノール樹脂(例えば、FATC(群栄化学工業社製))、低極性アリルエーテルフェノール樹脂(例えば、FTC-AE(群栄化学工業社製))、アリルエーテル等のアリル化合物;プロぺニル化ビフェニレン樹脂(例えば、BPN(群栄化学工業社製))等の1-プロぺニル基を有する1-プロぺニル化合物、及びベンゾオキサジン化合物が挙げられる。
 界面活性剤としては、例えば、フッ素系界面活性剤やシリコーン系界面活性剤が好ましく用いられる。
 フッ素系界面活性剤の具体例としては、BM-1000、BM-1100(いずれもBMケミー社製)、メガファックF142D、メガファックF172、メガファックF173、メガファックF183(いずれも大日本インキ化学工業社製)、フロラードFC-135、フロラードFC-170C、フロラードFC-430、フロラードFC-431(いずれも住友スリーエム社製)、サーフロンS-112、サーフロンS-113、サーフロンS-131、サーフロンS-141、サーフロンS-145(いずれも旭硝子社製)、SH-28PA、SH-190、SH-193、SZ-6032、SF-8428(いずれも東レシリコーン社製)等の市販のフッ素系界面活性剤が挙げられるが、これらに限定されるものではない。
 シリコーン系界面活性剤としては、未変性シリコーン系界面活性剤、ポリエーテル変性シリコーン系界面活性剤、ポリエステル変性シリコーン系界面活性剤、アルキル変性シリコーン系界面活性剤、アラルキル変性シリコーン系界面活性剤、及び反応性シリコーン系界面活性剤等を好ましく用いることができる。
 シリコーン系界面活性剤としては、市販のシリコーン系界面活性剤を用いることができる。市販のシリコーン系界面活性剤の具体例としては、ペインタッドM(東レ・ダウコーニング社製)、トピカK1000、トピカK2000、トピカK5000(いずれも高千穂産業社製)、XL-121(ポリエーテル変性シリコーン系界面活性剤、クラリアント社製)、BYK-310(ポリエステル変性シリコーン系界面活性剤、ビックケミー社製)等が挙げられる。
 第1の硬化性組成物は、酸化防止剤を含有していてもよい。酸化防止剤としては、特に限定されず、従来公知の酸化防止剤を用いることができ、例えば、ヒンダードフェノール系酸化防止剤(例えば、Irganox 1010(BASF社製))、ヒンダードアミン系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤等が挙げられる。
 第1の硬化性組成物は、反応中の重合を適宜防止するために、重合防止剤を含有していてもよい。重合防止剤としては、特に限定されず、従来公知の重合防止剤を用いることができ、例えば、メトキノン、ハイドロキノン、メチルハイドロキノン、p-メトキシフェノール、ピロガロール、tert-ブチルカテコール、フェノチアジン等が挙げられる。
 第1の硬化性組成物は、金属配線や、金属配線を有する電気・電子デバイス用の基板と、第1の硬化性組成物を用いて形成される絶縁膜との密着性を向上させるために、密着性向上剤を含有していてもよい。密着性向上剤としては、特に限定されず、従来公知の密着性向上剤を用いることができ、例えば、ベンゾトリアゾール等が挙げられる。
〔第1の硬化性組成物の調製方法〕
 第1の硬化性組成物は、上記の各成分を通常の方法で混合、撹拌して調製される。上記の各成分を、混合、撹拌する際に使用できる装置としては、ディゾルバー、ホモジナイザー、3本ロールミル等が挙げられる。上記の各成分を均一に混合した後に、得られた混合物を、さらにメッシュ、メンブランフィルタ等を用いて濾過してもよい。
<第2の硬化性組成物>
 第2の硬化性組成物は、第1の硬化性組成物と同じく、末端マレイミド変性ポリフェニレンエーテル樹脂(A)と、ラジカル発生剤(C)とを含む。第2の硬化性組成物の用途は特に限定されない。第2の硬化性組成物は、従来知られるネガ型の感光性樹脂組成物が適用されている種々の用途に適用可能である。第2の硬化性組成物の用途としては、第1の硬化性組成物と同様の絶縁膜形成用途が好ましい。
 第2の硬化性組成物において使用される末端マレイミド変性ポリフェニレンエーテル樹脂(A)は、式(a1)で表される末端基と、未変性ポリフェニレンエーテル樹脂(A’)が有するフェノール性水酸基に由来する酸素原子との間に存在する連結基が特に限定されない点を除いて、第1の硬化性樹脂組成物について説明した末端マレイミド変性ポリフェニレンエーテル樹脂と同様である。
 また、第2の硬化性組成物において使用されるラジカル発生剤(C)は、前述の光ラジカル発生剤(C1)である。
 第2の硬化性組成物が含み得る任意成分は、第1の硬化性組成物が含み得る任意成分と同様である。また、第2の硬化性組成物における各成分の含有量は、第1の硬化性組成物における各成分の含有量と同様である。
≪絶縁膜の形成方法≫
 第1の硬化性組成物又は第2の硬化性組成物を用いて絶縁膜が形成される。以下、第1の硬化性組成物及び第2の硬化性組成物の総称として「硬化性組成物」と記す。
 絶縁膜の形成方法は、
 絶縁膜形成箇所に、硬化性組成物を塗布して塗布膜を形成する、塗布工程と、
 塗布膜を硬化させる、硬化工程と、を含む。
 好ましくは、硬化性組成物を用いて、金属配線を有する電気・電子デバイスにおける金属配線を絶縁する絶縁膜を形成することができる。
 絶縁膜の形成方法において、例えば、金属配線を有する電気・電子デバイス用の基板上の、少なくとも絶縁膜形成箇所に、硬化性組成物が塗布され塗布膜が形成される。
 硬化性組成物の塗布方法としては、スピンコート法、スリットコート法、ロールコート法、スクリーン印刷法、インクジェット法、アプリケーター法等の方法を採用することができる。スクリーン印刷法やインクジェット法等の印刷法を適用する場合、絶縁膜を刑する箇所のみに硬化性組成物を塗布することが可能である。
 塗布膜の厚さは特に限定されないが、0.5μm以上が好ましく、0.5μm以上300μm以下がより好ましく、1μm以上150μm以下が特に好ましく、3μm以上50μm以下が最も好ましい。
 次いで、必要に応じて、塗布膜に対して乾燥や、プレベークが行われる。プレベーク条件は、硬化性組成物中の各成分の種類、配合割合、塗布膜厚等によって異なるが、通常は70℃以上200℃以下で、好ましくは80℃以上150℃以下で、2分以上120分以下程度である。
 硬化性組成物が光ラジカル発生剤(C1)を含む場合、塗布膜に対して、活性光線又は放射線、例えば波長が300nm以上500nm以下の紫外線又は可視光線を照射(露光)する。塗布膜の全面に露光してもよく、また、所定のパターンのマスクを介して活性光線又は放射線を露光する等の方法により、位置選択的に露光(パターン露光)を行ってもよい。
 露光により、重合成分である樹脂(A)やラジカル重合性化合物(B)が重合し絶縁膜が形成される。これにより、例えば、金属配線を有する電気・電子デバイス用の基板上に絶縁膜が形成される。
 放射線の線源としては、低圧水銀灯、高圧水銀灯、超高圧水銀灯、メタルハライドランプ、アルゴンガスレーザー等を用いることができる。また、放射線には、マイクロ波、赤外線、可視光線、紫外線、X線、γ線、電子線、陽子線、中性子線、イオン線等が含まれる。放射線照射量は、硬化性組成物の組成や塗布膜の膜厚等によっても異なるが、例えば超高圧水銀灯使用の場合、100mJ/cm以上10000mJ/cm以下である。また、放射線には、ラジカルを発生させるために、ラジカル発生剤(C)を活性化させる光線が含まれていてもよい。
 位置選択的な露光の場合は、露光された塗布膜を、従来知られる方法に従って現像し、不要な部分を溶解、除去することにより、所定の形状の絶縁膜が形成される。この際、現像液としては、上記有機溶剤(S)や、アルカリ性水溶液が使用できる。例えば、前述の末端マレイミド変性ポリフェニレンエーテル樹脂(A)がカルボキシ基やフェノール性水酸基のようなアルカリ可溶性基を有する場合、アルカリ性水溶液による現像が可能である。
 現像液として用いるアルカリ性水溶液としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、ケイ酸ナトリウム、メタケイ酸ナトリウム、アンモニア水、エチルアミン、n-プロピルアミン、ジエチルアミン、ジ-n-プロピルアミン、トリエチルアミン、メチルジエチルアミン、ジメチルエタノールアミン、トリエタノールアミン、テトラメチルアンモニウムヒドロキシド(水酸化テトラメチルアンモニウム)、テトラエチルアンモニウムヒドロキシド、ピロール、ピペリジン、1,8-ジアザビシクロ[5,4,0]-7-ウンデセン、1,5-ジアザビシクロ[4,3,0]-5-ノナン等のアルカリ類の水溶液を使用することができる。また、上記アルカリ類の水溶液にメタノール、エタノール等の水溶性有機溶媒や界面活性剤を適当量添加した水溶液を現像液として使用することもできる。
 現像時間は、硬化性組成物の組成や塗布膜の膜厚等によっても異なるが、通常1分以上30分以下の間である。現像方法は、液盛り法、ディッピング法、パドル法、スプレー現像法等のいずれでもよい。
 現像後は、例えば、流水洗浄を30秒以上90秒以下の間行い、エアーガンや、オーブン等を用いて乾燥させる。
 このようにして、例えば、金属配線を有する電気・電子デバイス用の基板上に、所望する形状にパターン化された絶縁膜が形成される。
 なお、上記では露光により、重合成分である樹脂(A)やラジカル重合性化合物(B)が重合させて絶縁膜を形成する例を示した。硬化性組成物が熱ラジカル発生剤(C2)を含む場合、重合成分である樹脂(A)やラジカル重合性化合物(B)を加熱により重合させて絶縁膜を形成してもよい。
 形成された絶縁膜は、誘電率が低く、誘電正接が低いため、高周波数用途の金属配線を有する電気・電子デバイスの絶縁膜に適している。例えば、3GHz以上30GHz以下の5G通信帯候補の周波数や、30GHz以上300GHz以下のミリ波帯の周波数の用途の金属配線を有する電気・電子デバイスの絶縁膜とすることができる。また、形成された絶縁膜は耐熱性に優れているため、絶縁膜を形成した後に加熱されてさらに配線等の部材を形成される用途に適している。
 以下、本発明を実施例によりさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
〔調製例1〕
 未変性ポリフェニレンエーテル樹脂(A’)として、下記構造のフェノール性水酸基末端を有するポリフェニレンエーテル樹脂(SA90、SABIC Innovative Plastics社製)を用いた。
Figure JPOXMLDOC01-appb-C000011
 未変性ポリフェニレンエーテル樹脂(A’)166質量部と、下記構造のマレイミド基を有するカルボン酸47.2質量部を、ジクロロエタン1184質量部中に加えた。
Figure JPOXMLDOC01-appb-C000012
 反応液中にジイソプロピルカルボジイミド40.9質量部と、ジメチルアミノピリジン0.25質量部を加えた後、5℃で8時間、末端フェノール性水酸基の変性反応を行った。反応後、反応液を濾過しアセトニトリルで再沈殿して、未変性ポリフェニレンエーテル樹脂(A’)の両末端のフェノール性水酸基が下記式の基に変性された、末端マレイミド変性ポリフェニレンエーテル樹脂P1(樹脂P1)を145質量部得た。末端マレイミド変性ポリフェニレンエーテル樹脂P1のゲルパーミエーションクロマトグラフィ(GPC)により測定されたポリスチレン換算の質量平均分子量(Mw)は7000であった。
Figure JPOXMLDOC01-appb-C000013
 得られた末端マレイミド変性ポリフェニレンエーテル樹脂P1と、ポリフェニレンエーテル樹脂(SA90)とについて、重クロロホルムを測定溶媒として用いてH NMR測定を行った。H NMR測定結果を図1に示す。図1中、上段のスペクトルがポリフェニレンエーテル樹脂(SA90)の測定結果であり、下段のスペクトルが末端マレイミド変性ポリフェニレンエーテル樹脂P1の測定結果である。
 図1によれば、6.7ppmのマレイミド骨格に由来するピークが、下段のスペクトルには存在し、上段のスペクトルには存在しないことから、末端マレイミド変性ポリフェニレンエーテル樹脂P1が、所望する末端マレイミド変性を受けた樹脂であることが分かる。
〔調製例2〕
 マレイミド基を有するカルボン酸を、下記構造の化合物43.6質量部に変更することの他は、調製例1と同様にして末端フェノール性水酸基の変性反応を行った。
Figure JPOXMLDOC01-appb-C000014
 未変性ポリフェニレンエーテル樹脂(A’)の両末端のフェノール性水酸基が下記式の基に変性された、末端マレイミド変性ポリフェニレンエーテル樹脂P2(樹脂P2)を126質量部得た。末端マレイミド変性ポリフェニレンエーテル樹脂P2のゲルパーミエーションクロマトグラフィ(GPC)により測定されたポリスチレン換算の質量平均分子量(Mw)は7000であった。
Figure JPOXMLDOC01-appb-C000015
〔調製例3〕
 マレイミド基を有するカルボン酸を、下記構造の化合物57.0質量部に変更することの他は、調製例1と同様にして末端フェノール性水酸基の変性反応を行った。
Figure JPOXMLDOC01-appb-C000016
 未変性ポリフェニレンエーテル樹脂(A’)の両末端のフェノール性水酸基が下記式の基に変性された、末端マレイミド変性ポリフェニレンエーテル樹脂P3(樹脂P3)を140質量部得た。末端マレイミド変性ポリフェニレンエーテル樹脂P3のゲルパーミエーションクロマトグラフィ(GPC)により測定されたポリスチレン換算の質量平均分子量(Mw)は7000であった。
Figure JPOXMLDOC01-appb-C000017
<硬化性組成物の調製>
[実施例1~9、及び比較例1~7]
 実施例1~9では、樹脂(A)として、上記樹脂P1~P3を用いた。
 実施例1~9、及び比較例1~7では、ラジカル重合性化合物(B)として、下記B1~B5、及び、B6:SA9000(SABIC Innovative Plastics社製、ポリフェニレンエーテルの末端水酸基をメタクリル基で変性した変性ポリフェニレンエーテル)を用いた。なお、B1はBMI-689、B2はBMI-3000(いずれもDesigner molecules社製)である。
Figure JPOXMLDOC01-appb-C000018
 
Figure JPOXMLDOC01-appb-C000019
 実施例1~9、及び比較例1~7では、ラジカル発生剤(C)として、下記C1~C4を用いた。
C1:Irgacure OXE01(BASF社製)
C2:Irgacure OXE02(BASF社製)
C3:Omnirad 819(IGM Resins B.V.製)
C4:パーヘキシルD(日油社製)
 実施例1~9、及び比較例1~7では、添加剤として、下記D1~D3、及び、界面活性剤(BYK310、ビックケミー社製)を用いた。
D1:Irganox 1010(BASF社製)
D2:メトキノン
D3:ベンゾトリアゾール
 それぞれ表1~2に記載の種類及び量の、末端マレイミド変性ポリフェニレンエーテル樹脂(樹脂(A))及び/又はラジカル重合性化合物(B)と、ラジカル発生剤(C)と、添加剤と、界面活性剤(BYK310、ビックケミー社製)0.05質量部とを、固形分濃度が40質量%となるように、プロピレングリコールモノメチルエーテルアセテート(PGMEA)に溶解させて、各実施例及び比較例の硬化性組成物を得た。
<評価>
 得られた硬化性組成物を用いて、以下の方法に従って、成膜性と、フォトリソ特性と、誘電率と、誘電正接と、耐熱性とを評価した。これらの評価結果を表1~2に記す。
[成膜性及びフォトリソ特性]
 実施例、及び比較例の硬化性組成物を、直径200mmのSi基板上に塗布し、塗布膜を形成した。次いで、塗布膜を80℃で200秒間プリベーク(PAB)した。なお、プリベーク後の塗布膜の膜厚は11μmであった。プリベーク後、直径30μmの円形の開口を形成できるホールパターンのマスクと露光装置Prisma GHI5452(ウルトラテック社製)とを用い露光量100mJ/cm以上4400mJ/cm以下にて、ghi線でパターン露光した。なお、焦点は0μm(塗布膜表面)とした。
 次いで、基板をホットプレート上に載置して90℃で1.5分間の露光後加熱(PEB)を行った。その後、プロピレングリコールモノメチルエーテルアセテート(PGMEA)に、露光された塗布膜を、60℃で60秒間浸漬した。その後、窒素ブローして、窒素雰囲気下で180℃1時間加熱して、パターン(絶縁膜)を得た。
 プリベーク前の塗布膜の表面を走査型電子顕微鏡により観察して、成膜性を評価した。具体的には、パターン表面にクラック及び/又は結晶が観察されず、パターンにタック(べたつき)がなく、且つ含有成分が相溶しており透明であった場合を、○とした。また、パターン表面にクラックが観察された場合をa、パターン表面に結晶が観察された場合をb、パターン表面にタック(べたつき)があった場合をc、含有成分が相溶しておらず不透明であった場合をdとして評価した。
 また、得られたパターン(絶縁膜)の表面及び断面を走査型電子顕微鏡により観察して、フォトリソ特性を評価した。具体的には、上述の露光量範囲において、直径30μmの開口が形成される条件が存在していた場合は○、直径30μmの開口が形成される条件が存在しなかった場合を×として評価した。
 なお、比較例1は、タックがあり、パターン(絶縁膜)が形成できなかったため、誘電率、誘電正接、耐熱性については評価しなかった。
 また、比較例3及び4は、プリベーク前の塗布膜にクラックや結晶が発生していたため、フォトリソ特性、誘電率、誘電正接、耐熱性については評価しなかった。
[誘電率及び誘電正接]
 実施例、及び比較例の硬化性組成物を、直径200mmのSi基板上に塗布し、塗布膜を形成した。次いで、塗布膜を80℃で200秒間プリベーク(PAB)した。なお、プリベーク後の塗布膜の膜厚は11μmであった。プリベーク後、露光装置Prisma GHI5452(ウルトラテック社製)を用い露光量4400mJ/cmにて、ghi線で全面を露光した。なお、焦点は0μm(塗布膜表面)とした。その後、塗布膜表面を窒素ブローして、窒素雰囲気下で180℃1時間加熱して、サンプルを得た。
 得られたサンプルの誘電率(ε)及び誘電正接(tanδ)を、電子情報通信学会の信学技報 vol. 118, no. 506, MW2018-158, pp. 13-18, 2019年3月 「感光性絶縁フィルムの円筒空洞共振器法によるミリ波複素誘電率評価に関する検討」(高萩耕平(宇都宮大学)、海老澤和明(東京応化工業株式会社)、古神義則(宇都宮大学)、清水隆志(宇都宮大学))に記載された方法で、測定した。ネットワークアナライザーHP8510C(キーサイト社製)を使用し、空洞共振器法で、室温25℃、湿度50%、周波数36GHz、サンプル厚さ10μmの条件で測定した。
 誘電率値が3.00未満であった場合を○、3.00以上であった場合を×として、誘電率を評価した。
 誘電正接値が、0.01未満であった場合を○、0.01以上であった場合を×として、誘電正接を評価した。
[耐熱性]
 [誘電率及び誘電正接]の項目と同様の手法で得られたサンプルについて、動的粘弾性測定装置Rheogel-E4000(UBM株式会社製)を使用して測定したtanδのピークトップ温度(℃)を、ガラス転移点(Tg)とした(DMA法)。測定条件は、測定モード:引張モード、周波数:10Hz、昇温速度:5℃/min、測定温度範囲:40~300℃、サンプル形状:長さ50mm、幅5mm、厚み10μmmとした。
 Tgが150℃以上であった場合を○、150℃未満であった場合を×として、耐熱性を評価した。
Figure JPOXMLDOC01-appb-T000020
 
Figure JPOXMLDOC01-appb-T000021
 
 実施例1~9によれば、式(a1)で表される基を分子鎖末端に有する末端マレイミド変性ポリフェニレンエーテル樹脂(A)と、ラジカル発生剤(C)とを含む硬化性組成物は、誘電率及び誘電正接が低く耐熱性に優れた絶縁膜を形成することができ、且つ、成膜性に優れることが分かる。また、実施例1~9の組成物では、末端マレイミド変性ポリフェニレンエーテル樹脂(A)がPGMEAに溶解していた。また、実施例1~9によれば、フォトリソ特性にも優れることも分かる。
 他方、比較例1~7によれば、硬化性組成物が末端マレイミド変性ポリフェニレンエーテル樹脂(A)を含有しない場合、誘電率及び誘電正接が低く耐熱性に優れた絶縁膜の形成と、良好な成膜性との両立が困難であることが分かる。
[実施例10~12]
 実施例10では、有機溶剤としてPGMEAの代わりにアニソールを使用したこと以外は、表3に示すように、実施例1と同じ成分及び配合量の硬化性組成物を調製し、得られた硬化性組成物を実施例1と同様に評価した。
実施例11及び12では、実施例10において、添加剤であるマレイミド硬化剤(E)として、それぞれFATCおよびFTC-AE(いずれも群栄化学工業社製)を表3に示す配合量で混合して、硬化性組成物を調製し、得られた硬化性組成物を実施例1と同様に評価した。なお、FATCは下記E1で表され、FTC-AEは下記E2で表される。
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-T000023
 
 実施例10の組成物では、末端マレイミド変性ポリフェニレンエーテル樹脂(A)がアニソールに溶解していた。また、実施例10の組成物では、実施例1と同様に、誘電率及び誘電正接が低く耐熱性に優れ、且つ、フォトリソ特性に優れた絶縁膜を形成することができ、且つ、成膜性に優れることが分かる。また、添加剤としてマレイミド硬化剤(E)を配合した実施例11及び12の組成物についても、実施例10の組成物と同様の結果を示した。
 

Claims (14)

  1.  末端マレイミド変性ポリフェニレンエーテル樹脂(A)と、ラジカル発生剤(C)とを含む、硬化性組成物であって、
     前記末端マレイミド変性ポリフェニレンエーテル樹脂(A)が、下記式(a1):
    Figure JPOXMLDOC01-appb-C000001
    で表される末端基を分子鎖末端に有し、
     前記式(a1)中、Ra01及びRa02は、それぞれ独立に、水素原子、炭素原子数1以上6以下のアルキル基、炭素原子数3以上8以下のシクロアルキル基又は炭素原子数6以上12以下のアリール基であり、
     前記末端マレイミド変性ポリフェニレンエーテル樹脂(A)の主鎖に含まれるフェニレン基は、1以上4以下の置換基を有してもよく、
     前記末端基が、下記式(a2):
    *-Y-Y-**・・・(a2)
    で表される連結基を介して、前記末端マレイミド変性ポリフェニレンエーテル樹脂(A)の主鎖に結合し、
     前記連結基中の**側の結合手が、前記末端マレイミド変性ポリフェニレンエーテル樹脂(A)を与える未変性ポリフェニレンエーテル樹脂(A’)の分子鎖末端の水酸基に由来する酸素原子に結合し、
     前記連結基中の*側の結合手が、前記末端基に結合し、
     前記式(a2)中、Yは、単結合、又はカルボニル基であり、Yは、2価の有機基であり、Yが単結合である場合、Yとしての前記単結合は、前記Yとしての前記2価の有機基中のsp3混成軌道をとる炭素原子に結合し、
     絶縁膜形成に用いられる、硬化性組成物。
  2.  末端マレイミド変性ポリフェニレンエーテル樹脂(A)と、ラジカル発生剤(C)とを含む、硬化性組成物であって、
     前記末端マレイミド変性ポリフェニレンエーテル樹脂(A)が、下記式(a1):
    Figure JPOXMLDOC01-appb-C000002
    で表される末端基を分子鎖末端に有し、
     前記式(a1)中、Ra01及びRa02は、それぞれ独立に、水素原子、炭素原子数1以上6以下のアルキル基、炭素原子数3以上8以下のシクロアルキル基又は炭素原子数6以上12以下のアリール基であり、
     前記末端マレイミド変性ポリフェニレンエーテル樹脂(A)の主鎖に含まれるフェニレン基は、1以上4以下の置換基を有してもよく、
     前記ラジカル発生剤(C)が、光ラジカル発生剤(C1)である、硬化性組成物。
  3.  前記末端基が、下記式(a2):
    *-Y-Y-**・・・(a2)
    で表される連結基を介して、前記末端マレイミド変性ポリフェニレンエーテル樹脂(A)の主鎖に結合し、
     前記連結基中の**側の結合手は、前記末端マレイミド変性ポリフェニレンエーテル樹脂(A)を与える未変性ポリフェニレンエーテル樹脂(A’)の分子鎖末端の水酸基に由来する酸素原子に結合し、
     前記連結基中の*側の結合手は、前記末端基に結合し、
     前記式(a2)中、Yは、単結合、又はカルボニル基であり、Yは、2価の有機基であり、Yが単結合である場合、Yとしての前記単結合は、前記Yとしての前記2価の有機基中のsp3混成軌道をとる炭素原子に結合する、請求項2に記載の硬化性組成物。
  4.  前記式(a2)において、前記Yがカルボニル基であり、前記Yが、-Y-Y-で表される基であり、Yは、単結合、-O-、又は-NH-であり、Yは2価の有機基であり、YがYとしてのカルボニル基と結合する、請求項1又は3に記載の硬化性組成物。
  5.  前記Yが単結合であり、前記Yが炭素原子数1以上10以下の2価の炭化水素基である、請求項4に記載の硬化性組成物。
  6.  さらにラジカル重合性モノマー(B)を含む、請求項1~5のいずれか1項に記載の硬化性組成物。
  7.  前記ラジカル重合性モノマー(B)が、前記式(a1)で表される基を有するラジカル重合性化合物を含む、請求項6に記載の硬化性組成物。
  8.  請求項1~7のいずれか1項に記載の硬化性組成物の硬化物。
  9.  絶縁膜形成箇所に、請求項1~7のいずれか1項に記載の硬化性組成物を塗布して塗布膜を形成する、塗布工程と、
     前記塗布膜を硬化させる、硬化工程とを含む、絶縁膜の形成方法。
  10.  前記硬化性組成物が、前記ラジカル発生剤(C)として、光ラジカル発生剤(C1)を含み、前記塗布膜を露光により硬化させる、請求項9に記載の絶縁膜の形成方法。
  11.  前記塗布膜への前記露光が位置選択的に行われ、
     露光された前記塗布膜を現像液により現像する、現像工程をさらに含む、請求項10に記載の絶縁膜の形成方法。
  12.  下記式(a1):
    Figure JPOXMLDOC01-appb-C000003
    で表される末端基を分子鎖末端に有する、末端マレイミド変性ポリフェニレンエーテル樹脂であって、
     前記式(a1)中、Ra01及びRa02は、それぞれ独立に、水素原子、炭素原子数1以上6以下のアルキル基、炭素原子数3以上8以下のシクロアルキル基または炭素原子数6以上12以下のアリール基であり、
     前記末端マレイミド変性ポリフェニレンエーテル樹脂の主鎖に含まれるフェニレン基は、1以上4以下の置換基を有してもよく、
     前記末端基が、下記式(a2):
    *-Y-Y-**・・・(a2)
    で表される連結基を介して、前記末端マレイミド変性ポリフェニレンエーテル樹脂の主鎖に結合し、
     前記連結基中の**側の結合手が、前記末端マレイミド変性ポリフェニレンエーテル樹脂を与える未変性ポリフェニレンエーテル樹脂(A’)の分子鎖末端の水酸基に由来する酸素原子に結合し、
     前記連結基中の*側の結合手が、前記末端基に結合し、
     前記式(a2)中、Yは、単結合、又はカルボニル基であり、Yは、2価の有機基であり、Yが単結合である場合、Yとしての前記単結合は、前記Yとしての前記2価の有機基中のsp3混成軌道をとる炭素原子に結合する、末端マレイミド変性ポリフェニレンエーテル樹脂。
  13.  前記式(a2)において、前記Yがカルボニル基であり、前記Yが、-Y-Y-で表される基であり、Yは、単結合、-O-、又は-NH-であり、Yは2価の有機基であり、YがYとしてのカルボニル基と結合する、請求項12に記載の末端マレイミド変性ポリフェニレンエーテル樹脂。
  14.  前記Yが単結合であり、前記Yが炭素原子数1以上10以下の2価の炭化水素基である、請求項13に記載の末端マレイミド変性ポリフェニレンエーテル樹脂。
PCT/JP2020/026477 2019-08-20 2020-07-06 絶縁膜形成用硬化性組成物、絶縁膜の形成方法、及び末端マレイミド変性ポリフェニレンエーテル樹脂 WO2021033442A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/630,033 US20220282043A1 (en) 2019-08-20 2020-07-06 Curable composition for insulating film formation, insulating film formation method, and terminally maleimide-modified polyphenylene ether resin
KR1020227005309A KR20220051836A (ko) 2019-08-20 2020-07-06 절연막 형성용 경화성 조성물, 절연막의 형성 방법, 및 말단 말레이미드 변성 폴리페닐렌에테르 수지
JP2021540656A JPWO2021033442A1 (ja) 2019-08-20 2020-07-06
CN202080057834.XA CN114222775A (zh) 2019-08-20 2020-07-06 绝缘膜形成用固化性组合物、绝缘膜的形成方法及末端马来酰亚胺改性聚苯醚树脂

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-150664 2019-08-20
JP2019150664 2019-08-20

Publications (1)

Publication Number Publication Date
WO2021033442A1 true WO2021033442A1 (ja) 2021-02-25

Family

ID=74660859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/026477 WO2021033442A1 (ja) 2019-08-20 2020-07-06 絶縁膜形成用硬化性組成物、絶縁膜の形成方法、及び末端マレイミド変性ポリフェニレンエーテル樹脂

Country Status (6)

Country Link
US (1) US20220282043A1 (ja)
JP (1) JPWO2021033442A1 (ja)
KR (1) KR20220051836A (ja)
CN (1) CN114222775A (ja)
TW (1) TW202116869A (ja)
WO (1) WO2021033442A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023064041A (ja) * 2021-10-25 2023-05-10 南亞塑膠工業股▲分▼有限公司 樹脂材料及び金属基板
JP7507274B2 (ja) 2022-11-21 2024-06-27 南亞塑膠工業股▲分▼有限公司 樹脂組成物

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07508550A (ja) * 1992-07-01 1995-09-21 アクゾ ノーベル ナムローゼ フェンノートシャップ ポリフェニレンエーテル樹脂組成物を変性する方法
JP2000031350A (ja) * 1998-07-02 2000-01-28 Natl Starch & Chem Investment Holding Corp 再生可能なパッケ―ジ封入剤で封入された電子部品を製造する方法
JP2002037850A (ja) * 2000-07-27 2002-02-06 Dainippon Ink & Chem Inc マレイミド誘導体の製造方法
JP2004075904A (ja) * 2002-08-20 2004-03-11 Toagosei Co Ltd 活性エネルギー線硬化型粘着剤及び粘着シート
JP2010018791A (ja) * 2008-06-09 2010-01-28 Mitsubishi Gas Chemical Co Inc ビスマレアミック酸、ビスマレイミドおよびその硬化物
JP2011153248A (ja) * 2010-01-28 2011-08-11 Dic Corp 硬化性樹脂組成物、その硬化物、及びプラスチックレンズ
WO2015152427A1 (ja) * 2014-04-04 2015-10-08 日立化成株式会社 N-置換マレイミド基を有するポリフェニレンエーテル誘導体、並びにそれを用いた熱硬化性樹脂組成物、樹脂ワニス、プリプレグ、金属張積層板、及び多層プリント配線板

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002080509A (ja) * 2000-09-04 2002-03-19 Sekisui Chem Co Ltd マレイミドビニルエーテル誘導体及びそれを含有する光硬化性樹脂組成物
JP3985633B2 (ja) 2002-08-26 2007-10-03 株式会社日立製作所 低誘電正接絶縁材料を用いた高周波用電子部品
JP5649773B2 (ja) * 2007-05-31 2015-01-07 三菱瓦斯化学株式会社 硬化性樹脂組成物および硬化性フィルムならびにそれらの硬化物
KR102466876B1 (ko) * 2015-04-30 2022-11-11 쇼와덴코머티리얼즈가부시끼가이샤 수지 조성물, 프리프레그, 적층판 및 다층 프린트 배선판
JPWO2018159080A1 (ja) * 2017-03-02 2019-12-19 パナソニックIpマネジメント株式会社 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板
JP7106819B2 (ja) * 2017-06-22 2022-07-27 昭和電工マテリアルズ株式会社 樹脂ワニス、樹脂組成物、プリプレグ、積層板、多層プリント配線板及び樹脂ワニスの保存方法
WO2019131306A1 (ja) * 2017-12-28 2019-07-04 パナソニックIpマネジメント株式会社 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07508550A (ja) * 1992-07-01 1995-09-21 アクゾ ノーベル ナムローゼ フェンノートシャップ ポリフェニレンエーテル樹脂組成物を変性する方法
JP2000031350A (ja) * 1998-07-02 2000-01-28 Natl Starch & Chem Investment Holding Corp 再生可能なパッケ―ジ封入剤で封入された電子部品を製造する方法
JP2002037850A (ja) * 2000-07-27 2002-02-06 Dainippon Ink & Chem Inc マレイミド誘導体の製造方法
JP2004075904A (ja) * 2002-08-20 2004-03-11 Toagosei Co Ltd 活性エネルギー線硬化型粘着剤及び粘着シート
JP2010018791A (ja) * 2008-06-09 2010-01-28 Mitsubishi Gas Chemical Co Inc ビスマレアミック酸、ビスマレイミドおよびその硬化物
JP2011153248A (ja) * 2010-01-28 2011-08-11 Dic Corp 硬化性樹脂組成物、その硬化物、及びプラスチックレンズ
WO2015152427A1 (ja) * 2014-04-04 2015-10-08 日立化成株式会社 N-置換マレイミド基を有するポリフェニレンエーテル誘導体、並びにそれを用いた熱硬化性樹脂組成物、樹脂ワニス、プリプレグ、金属張積層板、及び多層プリント配線板

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023064041A (ja) * 2021-10-25 2023-05-10 南亞塑膠工業股▲分▼有限公司 樹脂材料及び金属基板
JP7507274B2 (ja) 2022-11-21 2024-06-27 南亞塑膠工業股▲分▼有限公司 樹脂組成物

Also Published As

Publication number Publication date
JPWO2021033442A1 (ja) 2021-02-25
CN114222775A (zh) 2022-03-22
KR20220051836A (ko) 2022-04-26
TW202116869A (zh) 2021-05-01
US20220282043A1 (en) 2022-09-08

Similar Documents

Publication Publication Date Title
US6706841B2 (en) Solventless polyimide silicone resin compositions
JP5415861B2 (ja) 感光性樹脂組成物、パターン形成方法、及び半導体装置
WO2021033442A1 (ja) 絶縁膜形成用硬化性組成物、絶縁膜の形成方法、及び末端マレイミド変性ポリフェニレンエーテル樹脂
JP6309755B2 (ja) 感光性樹脂組成物
US20200209745A1 (en) Photosensitive resin composition
WO2015046332A1 (ja) 感放射線性組成物及びパターン製造方法
JP6309761B2 (ja) ブラックカラムスペーサ用感光性樹脂組成物
WO2021033441A1 (ja) 硬化性組成物、硬化物、及び絶縁膜の形成方法
JP2013130843A (ja) ブラックカラムスペーサ用感光性樹脂組成物、ブラックカラムスペーサ、表示装置、及びブラックカラムスペーサの形成方法
JP6853057B2 (ja) 重合性組成物、硬化膜の製造方法、及び硬化膜
US20200347226A1 (en) Resin composition for insulating film
JP6022847B2 (ja) 絶縁膜形成用感光性樹脂組成物、絶縁膜、及び絶縁膜の形成方法
JP7219654B2 (ja) 組成物及び絶縁部の形成方法
JP2024095336A (ja) 半導体装置製造方法、半導体装置及び熱接着性硬化性樹脂組成物
WO2021106805A1 (ja) 感光性組成物、硬化物、及び硬化物の製造方法
CN114442431B (zh) 含有聚酰亚胺前驱体的感光性树脂组合物
JP7505140B2 (ja) 感光性樹脂組成物
JP7313472B2 (ja) 感光性組成物、硬化物、及び硬化物の製造方法
WO2023127402A1 (ja) 感光性組成物、硬化物、及びパターン化された硬化膜の製造方法
WO2023058385A1 (ja) ブロック共重合体
WO2023127401A1 (ja) 感光性組成物、硬化物、パターン化された硬化膜の製造方法
JP2023174312A (ja) 感光性樹脂組成物及びパターン化された樹脂膜を備える基板の製造方法
KR102542214B1 (ko) 비회전식 도포용 조성물 및 수지 조성물 막 형성 방법
JP2022013302A (ja) 感光性組成物、硬化物、硬化膜の製造方法、及び樹脂
JP2024070706A (ja) 感光性樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20855138

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021540656

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20855138

Country of ref document: EP

Kind code of ref document: A1