WO2021031783A1 - 汇流排、汇流排主体、电机、电动助力转向系统和车辆 - Google Patents

汇流排、汇流排主体、电机、电动助力转向系统和车辆 Download PDF

Info

Publication number
WO2021031783A1
WO2021031783A1 PCT/CN2020/103676 CN2020103676W WO2021031783A1 WO 2021031783 A1 WO2021031783 A1 WO 2021031783A1 CN 2020103676 W CN2020103676 W CN 2020103676W WO 2021031783 A1 WO2021031783 A1 WO 2021031783A1
Authority
WO
WIPO (PCT)
Prior art keywords
bus bar
terminal
main body
skeleton
supporting
Prior art date
Application number
PCT/CN2020/103676
Other languages
English (en)
French (fr)
Inventor
施涛
葛笑
万佳
龚杰
徐浩扬
赵中森
Original Assignee
安徽威灵汽车部件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201921355173.XU external-priority patent/CN210201093U/zh
Priority claimed from CN201921354472.1U external-priority patent/CN210200992U/zh
Priority claimed from CN201910770966.6A external-priority patent/CN112421320A/zh
Priority claimed from CN201921354424.2U external-priority patent/CN210200991U/zh
Priority claimed from CN201910770454.XA external-priority patent/CN112421274A/zh
Priority claimed from CN201910770460.5A external-priority patent/CN112421275A/zh
Priority claimed from CN202010115588.0A external-priority patent/CN113381212A/zh
Priority claimed from CN202020205579.6U external-priority patent/CN211605464U/zh
Priority claimed from CN202020205583.2U external-priority patent/CN211605465U/zh
Priority claimed from CN202020205586.6U external-priority patent/CN211879639U/zh
Priority claimed from CN202010115589.5A external-priority patent/CN113381213A/zh
Priority to JP2021578232A priority Critical patent/JP7270783B2/ja
Priority to EP20855059.0A priority patent/EP3985845A4/en
Application filed by 安徽威灵汽车部件有限公司 filed Critical 安徽威灵汽车部件有限公司
Publication of WO2021031783A1 publication Critical patent/WO2021031783A1/zh
Priority to US17/675,102 priority patent/US20220173558A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R25/00Coupling parts adapted for simultaneous co-operation with two or more identical counterparts, e.g. for distributing energy to two or more circuits
    • H01R25/16Rails or bus-bars provided with a plurality of discrete connecting locations for counterparts
    • H01R25/161Details
    • H01R25/162Electrical connections between or with rails or bus-bars
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/52Fastening salient pole windings or connections thereto
    • H02K3/521Fastening salient pole windings or connections thereto applicable to stators only
    • H02K3/522Fastening salient pole windings or connections thereto applicable to stators only for generally annular cores with salient poles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R2201/00Connectors or connections adapted for particular applications
    • H01R2201/10Connectors or connections adapted for particular applications for dynamoelectric machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2203/00Specific aspects not provided for in the other groups of this subclass relating to the windings
    • H02K2203/09Machines characterised by wiring elements other than wires, e.g. bus rings, for connecting the winding terminations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings

Definitions

  • This application relates to the technical field of electric motors, and specifically to bus bars, bus bar main bodies, electric motors, electric power steering systems, and vehicles.
  • the stator of a motor generally has multiple windings. Each winding has two terminals, a starting end and an ending end. The starting and ending ends of different windings need to be connected to each other according to product requirements to ensure the normal operation of the motor.
  • the wiring form is more complicated. It is not conducive to the rapid and efficient operation of the production line and reduces the production efficiency of the product.
  • This application aims to solve at least one of the technical problems existing in the prior art or related technologies.
  • the first aspect of this application is to propose a bus bar.
  • the second aspect of the application is to propose a bus main body.
  • the third aspect of this application is to propose another bus.
  • the fourth aspect of this application is to propose a motor.
  • the fifth aspect of this application is that another motor is proposed.
  • the sixth aspect of this application is to propose an electric power steering system.
  • the seventh aspect of this application is to propose a vehicle.
  • a bus bar including: a frame, the frame being an insulating member; a plurality of bus bars, each of the bus bars includes embedded in the frame and along the The main body part extending in the circumferential direction of the frame and a plurality of connecting parts connected to the main body part and protruding from the frame, the plurality of connecting parts are used to connect the terminals of the stator winding of the motor;
  • the bus bars are connected to connect to the power source; wherein, the main body parts of all the bus bars are arranged in a stack along the axial direction of the frame and are spaced apart from each other, and all the connection parts of the bus bars are distributed at intervals along the circumferential direction of the frame, And the end faces of all the connecting parts of the bus bar away from the stator winding are kept flush in the axial direction of the frame.
  • the connecting portions of the multiple bus bars can be used to connect the terminals of the multiple windings of the motor stator, and the good conductivity of the bus bars can be used to realize the electrical connection of the corresponding terminals.
  • all the connecting parts are distributed at intervals along the circumferential direction of the frame, keeping corresponding to the terminals of the multiple windings distributed in the circumferential direction on the stator of the motor, and the end faces of all the connecting parts away from the stator winding are in the axial direction of the frame.
  • the terminals of the multiple windings of the motor stator can maintain the same shape and size, which is convenient for controlling the peeling position of each terminal, and for welding the terminals and connections on the production line. After the welding is completed, cut off the excess thread, which is beneficial to significantly improve production efficiency, shorten the production cycle, and improve product consistency.
  • a busbar main body including: a skeleton, which is an insulating member, the skeleton includes a ring-shaped bracket and a plurality of strip-shaped brackets connected to the ring-shaped bracket;
  • Each of the bus bars includes a main body part embedded in the ring-shaped bracket and a plurality of connecting parts connected to the main body part and protruding from the frame; wherein the bar-shaped bracket is provided with a part for accommodating the terminal
  • the slot is provided with a avoidance notch, and the avoidance notch allows one end of the terminal to be bent and extends and protrudes from the slot to be connected to the connecting portion.
  • the strip-shaped bracket is provided with at least one for supporting the terminal At least one part of the supporting mating surface is located in the slot, and the connecting portion, the supporting mating surface and the entrance of the slot are arranged in sequence along the axial direction of the annular bracket.
  • another busbar including: the busbar main body of the second aspect; and a plurality of terminals connected to the busbars of the busbar main body, and one end of the terminal Connected to the connecting part, the other end of the terminal is used to connect to the power female terminal.
  • a motor including: a motor main body, including a stator, the stator is provided with a winding, the winding has two terminals; and the bus bar according to the first aspect, the bus bar The connection part is connected to the terminal.
  • a motor main body including a stator, the stator is provided with a winding, the winding has two terminals; and the confluence of any one of the third aspect
  • the connecting part of the bus bar is connected to the terminal.
  • an electric power steering system which includes: the motor as in the fifth aspect; and a control device electrically connected to the motor.
  • a vehicle including: a vehicle body; and the motor of the fourth or fifth aspect, installed in the vehicle body.
  • FIG. 1 is a schematic structural diagram of a U-phase bus bar provided by some embodiments of the present application.
  • Figure 2 is a schematic top view of the U-phase bus bar shown in Figure 1;
  • Fig. 3 is a schematic sectional view of the U-phase bus bar shown in Fig. 2;
  • V-phase bus bar is a schematic diagram of the structure of a V-phase bus bar provided by some embodiments of the present application.
  • Fig. 5 is a schematic top view of the V-phase bus bar shown in Fig. 4;
  • Fig. 6 is a schematic sectional view of the V-phase bus bar shown in Fig. 5;
  • Fig. 7 is a schematic structural diagram of a W-phase bus bar provided by some embodiments of the present application.
  • Fig. 8 is a schematic top view of the W-phase bus bar shown in Fig. 7;
  • FIG. 9 is a schematic sectional view of the W-phase bus bar shown in FIG. 8.
  • FIG. 10 is a schematic top view of the structure after connecting the phase bus bar and the terminal according to some embodiments of the present application.
  • Figure 11 is a schematic cross-sectional view of the A-A direction in Figure 10;
  • Figure 12 is a schematic front view of the structure shown in Figure 10;
  • FIG. 13 is a schematic diagram of a three-dimensional structure of a neutral bus bar provided by some embodiments of the present application.
  • Figure 14 is a schematic top view of the neutral bus bar shown in Figure 13;
  • Fig. 15 is a schematic sectional view of the structure in the direction of B-B in Fig. 14;
  • 16 is a schematic diagram of the assembly of a neutral bus bar, a W-phase bus bar, and a corresponding terminal provided by some embodiments of the present application;
  • FIG. 17 is a schematic diagram of assembly of a neutral bus bar, a W-phase bus bar, a V-phase bus bar, and two corresponding terminals provided by some embodiments of the present application;
  • 18 is a schematic diagram of assembly of a neutral bus bar, a W-phase bus bar, a V-phase bus bar, a U-phase bus bar, and corresponding three terminals provided by some embodiments of the present application;
  • FIG. 19 is a schematic front view of the structure of a bus bar provided by some embodiments of the present application.
  • 20 is a schematic top view of the structure of a bus bar provided by some embodiments of the present application.
  • Figure 21 is a schematic cross-sectional view of the structure in the direction of C-C in Figure 20;
  • Fig. 22 is a schematic partial sectional view of another part of the busbar in Fig. 20;
  • Fig. 23 is a schematic sectional view of the structure in the direction D-D in Fig. 20;
  • FIG. 24 is a partial top view structural diagram of a motor provided by some embodiments of the present application.
  • Figure 25 is a schematic cross-sectional view of the E-E direction in Figure 24;
  • 26 is a schematic diagram of the distribution of stator windings and terminals of a motor provided by some embodiments of the present application.
  • Figure 27 is a schematic diagram of the winding connection of the motor shown in Figure 26;
  • Fig. 28 is a schematic diagram of the circuit connection of the motor shown in Fig. 26.
  • FIG. 29 is a schematic top view of the structure of a bus bar provided by some embodiments of the present application.
  • Fig. 30 is a schematic sectional view of the structure in the direction of A'-A' in Fig. 29;
  • Fig. 31 is a schematic sectional view of the structure in the direction of B'-B' in Fig. 1;
  • Figure 32 is a schematic cross-sectional view of the structure in the direction of C'-C' in Figure 31;
  • Fig. 33 is a schematic sectional view of the structure in the direction of D’-D’ in Fig. 31;
  • FIG. 34 is a schematic diagram of the structure of the busbar provided by some embodiments of the present application with terminals removed;
  • Figure 35 is a schematic cross-sectional view of the E'-E' direction in Figure 34;
  • Fig. 36 is a schematic sectional view of the structure in the direction of F'-F' in Fig. 34;
  • Fig. 37 is a schematic sectional view of the G'-G' direction in Fig. 34;
  • 38 is a schematic diagram of a three-dimensional structure of a terminal provided by some embodiments of the present application.
  • FIG. 39 is a schematic diagram of the left side structure of the terminal shown in FIG. 38;
  • Fig. 40 is a schematic front view of the structure of the terminal shown in Fig. 38;
  • FIG. 41 is a schematic top view of the structure of the terminal shown in FIG. 38;
  • FIG. 42 is another perspective view of the three-dimensional structure of the terminal shown in FIG. 38;
  • FIG. 43 is another perspective view of the three-dimensional structure of the terminal shown in FIG. 38;
  • FIG. 44 is a schematic diagram of a three-dimensional structure of a busbar provided by some embodiments of the present application with terminals removed;
  • FIG. 45 is a schematic diagram of the structure shown in FIG. 44 from another perspective
  • FIG. 46 is a schematic diagram of a three-dimensional structure of a bus bar provided by some embodiments of the present application.
  • FIG. 47 is a schematic partial cross-sectional structure diagram of a motor provided by some embodiments of the present application.
  • FIG. 48 is a schematic block diagram of an electric power steering system provided by some embodiments of the present application.
  • FIG. 49 is a schematic block diagram of a vehicle provided by some embodiments of the present application.
  • a bus bar includes: a frame 1, a plurality of bus bars 2 and a plurality of terminals 3, as shown in FIG. 20.
  • the frame 1 is an insulating member.
  • Each bus bar 2 includes a main body part 21 and a plurality of connecting parts 22, as shown in FIGS. 1 to 9 and FIGS. 13 and 14.
  • the main body 21 is embedded in the frame 1 (as shown in Figs. 19 and 20) and extends along the circumferential direction of the frame 1, as shown in Figs. 1, 2, 4, 5, 7, and 8 13 and 14; a plurality of connecting parts 22 are connected to the main body 21 and protrude from the frame 1, as shown in FIG. 20, for connecting the terminal 41 of the winding of the motor stator 42.
  • the multiple terminals 3 are connected to the multiple bus bars 2, as shown in Figs. 16 to 18, for connecting power.
  • the main body portions 21 of all the bus bars 2 are arranged in a stack along the axial direction of the frame 1 (as shown in FIGS. 16 to 18), and are spaced apart from each other (as shown in FIGS. 21 to 23), and all the bus bars 2
  • the connecting portions 22 are distributed at intervals along the circumferential direction of the frame 1, and the end faces of all the connecting portions of the bus bars 2 away from the stator winding are kept flush in the axial direction of the frame 1, as shown in FIGS. 18 and 19.
  • the bus bar provided in this embodiment can use the connecting portions 22 of the multiple bus bars 2 to connect the terminals 41 of the multiple windings of the motor stator 42, and use the good electrical conductivity of the bus bar 2 to realize the electrical connection of the corresponding terminals 41. It is not necessary to connect the corresponding terminal 41 directly. This reduces the difficulty of wiring, facilitates efficient and fast operation of the production line, and helps improve product production efficiency.
  • all the connecting parts 22 are distributed at intervals along the circumferential direction of the frame 1, and correspond to the terminals 41 of the multiple windings distributed in the circumferential direction on the stator 42 of the motor, and all the connecting parts 22 are far away from the end faces of the stator windings. If the frame 1 is kept flush in the axial direction, the terminals 41 of the multiple windings of the motor stator 42 can maintain the same shape and size. This not only facilitates the control of the paint stripping position of each terminal 41, but also facilitates the welding of the terminal 41 and the connecting part 22 on the production line, and also facilitates cutting off the excess thread after the welding is completed, which is beneficial to significantly improve production efficiency and shorten the production cycle , And improve product consistency.
  • the bus bar includes a frame 1, a plurality of bus bars 2 and a plurality of terminals 3.
  • the frame 1 is an insulating part, which can be formed by injection molding, which supports a plurality of bus bars 2 and a plurality of terminals 3, and isolates adjacent bus bars 2 to provide electrical insulation.
  • the plurality of bus bars 2 are all conductors, and each bus bar 2 includes a main body portion 21 and a plurality of connection portions 22.
  • the multiple connecting portions 22 of each bus bar 2 are used to connect the terminals 41 of the multiple windings of the electronic stator 42 that need to be connected together, and the main body 21 realizes the electrical connection of these terminals 41 to realize the confluence function.
  • the multiple terminals 3 are connected to the multiple bus bars 2, and the terminals 3 can be connected to the corresponding bus bars in an integral manner, or they can be formed separately and then installed on the corresponding bus bars to realize the connection.
  • Each terminal 3 is electrically connected to the terminal 41 connected to the corresponding bus bar 2, and a plurality of terminals 3 are connected to a power source to form an electric circuit to supply power to multiple windings of the motor stator 42.
  • the main body portions 21 of the plurality of bus bars 2 are stacked and arranged along the axial direction of the frame 1, and the radial dimensions of the plurality of main body portions 21 can be kept consistent.
  • the terminal 41 is reserved for a long length to ensure that it can extend to the position of other terminals 41 to realize connection with other terminals 41. This not only shortens the length of the terminal 41, but also effectively prevents the terminal 41 from being twisted or confused during the wiring process, thereby reducing the wiring difficulty.
  • the material of the bus bar 2 is copper, which has better conductivity and is relatively inexpensive. In a specific embodiment, the material of the bus bar 2 is H65 brass, which is easy to be stamped and formed and has sufficient hardness.
  • the end faces of the connecting parts 22 of all the bus bars 2 close to the stator windings are also kept flush in the axial direction of the frame 1 (that is: the end faces of all the connecting parts 22 close to the stator windings are located in the same plane perpendicular to the central axis of the frame 1 (Above), so that all the connecting parts 22 are kept flush in the axial direction of the frame 1, so that the outer paint skin of the enameled wire can be peeled off at the same position during the wiring process for welding, which further improves the consistency of the wiring operation.
  • all the connecting parts 22 can adopt the same shape, which improves the regularity and consistency of the product and facilitates processing and molding.
  • the bus bar 2 further includes an extension 23, as shown in FIGS. 1, 4, and 7.
  • the extension portion 23 is located between the outer periphery of the main body portion 21 and the connection portion 22, and is used to connect the main body portion 21 and the connection portion 22; and the extension portion 23 extends at least partially along the axial direction of the skeleton 1 (as shown in FIG. ) To keep all the connecting parts 22 flush in the axial direction of the frame 1.
  • At least part of the bus bar 2 includes an extension portion 23, and two ends of the extension portion 23 are respectively connected to the main body portion 21 and the connection portion 22. Since the extension portion 23 extends at least partially along the axial direction of the frame 1, the extension portion 23 can easily realize the flushing of the plurality of connecting portions 22 in the axial direction of the frame 1; and it is convenient to rationally design the shape and shape of the connecting portion 22 according to needs. The size helps to optimize the structure of the product.
  • only part of the bus bar 2 may include the extension portion 23, and the extension portion 23 is used to keep the connecting portion 22 flush with the extension portion 23 of the other bus bar 2 without the extension portion 23.
  • the U-phase bus bar 251, the V-phase bus bar 252, and the W-phase bus bar 253 are provided with extensions 23 with different axial lengths, while the neutral bus bar 24 has no extensions 23.
  • the three phase bus bars 2 pass through the extension portions 23 with different axial lengths, so that the connecting portion 22 and the connecting portion 22 of the neutral bus bar 24 are kept flush in the axial direction.
  • all the bus bars 2 include extension portions 23, and the extension portions 23 of the bus bars 2 are not used to extend different sizes in the axial direction, so that all the connecting portions 22 remain flush in the axial direction.
  • the bus bar 2 may not have the extension portion 23, and the specific connection position of the connection portion 22 and the main body 21 and the rational design of the shape and size of the connection portion 22 can be directly used to realize the flushing of all the connection portions 22 in the axial direction of the skeleton 1. .
  • the extension part 23 is embedded in the skeleton 1, as shown in FIGS. 22 and 23.
  • the extension part 23 is embedded in the frame 1, and only the connecting part 22 is exposed outside the frame 1, as shown in FIG. 20.
  • the appearance structure of the busbar is relatively regular, and the frame 1 can play a good supporting role for the extension 23, effectively preventing the extension 23 from being deformed or shaking, thereby improving the stability of the position of each connecting part 22, which is beneficial to the production line Work to further improve production efficiency.
  • the connecting portion 22 is provided with a limiting slot 26 adapted to the terminal 41, as shown in Figure 1, Figure 4, Figure 7 and Figure 13, the limiting slot 26 allows the terminal 41 to pass through (as shown in Figure 24 Show) and is suitable for welding connection with the terminal 41.
  • the connecting portion 22 is provided with a limiting groove 26, and the terminal 41 is passed through the limiting groove 26 during the wiring operation, and then the welding operation is performed.
  • the limiting groove 26 can not only play a good limiting effect on the terminal 41, prevent the terminal 41 from shaking and tilting; it is also beneficial to increase the contact area between the terminal 41 and the connecting portion 22, thereby reducing the difficulty of welding, and is beneficial to Further improve production efficiency.
  • the connecting portion 22 includes a connecting piece 222 and a bending piece 223, as shown in FIG. 1, FIG. 4, FIG. 7 and FIG.
  • the connecting piece 222 is connected to the main body 21 and extends along the circumferential direction of the frame 1, as shown in FIGS. 1, 4, 7 and 13;
  • the bending piece 223 is connected to the connecting piece 222 and extends by bending,
  • a U-shaped limiting slot 26 is enclosed with the connecting piece 222, as shown in FIG. 1, FIG. 4, FIG. 7 and FIG.
  • the connecting portion 22 includes a connecting piece 222 and a bent piece 223.
  • the connecting piece 222 and the bending piece 223 enclose a U-shaped limiting groove 26, so that the limiting groove 26 forms a structure with both axial ends open and a gap in the circumferential direction (that is, the limiting groove 26 is on the axial end surface of the frame
  • the projection on is U-shaped). This is beneficial to increase the space of the limit slot 26, facilitate the rapid passing of the terminal 41, and also help increase the space of the welding operation and reduce the difficulty of the welding operation.
  • the thickness direction of the connecting piece 222 and the thickness direction of the bending piece 223 are perpendicular to the axis direction of the frame 1, as shown in FIGS. 1, 4, 7, and 13.
  • the thickness direction of the connecting piece 222 and the thickness direction of the bending piece 223 are both perpendicular to the axis direction of the frame 1, which increases the depth of the limiting groove 26, which is beneficial to increase the contact area between the limiting groove 26 and the terminal 41, thereby both It is beneficial to further reduce the difficulty of welding, and is beneficial to improve the strength of welding connection.
  • the U-shaped openings of all the limit slots 26 face the same rotation direction (for example, all are clockwise rotation direction, or all are counterclockwise rotation direction), so that the structure of the bus bar is more regular, which is convenient for the processing and forming of each bus bar 2 , It is also beneficial to make all the terminals 41 pass through the limit slots 26 synchronously by appropriately rotating the busbar during the operation of the production line, which is also beneficial to further improve production efficiency.
  • the size of the connecting piece 222 in the circumferential direction of the frame 1 is larger than the size of the portion of the bent piece 223 opposite to it in the circumferential direction of the frame 1, as shown in FIGS. 1, 4, 7 and 13.
  • the size of the connecting piece 222 in the circumferential direction of the frame 1 is larger than the size of the portion of the bent piece 223 opposite to the connecting piece 222 in the circumferential direction of the frame 1, and the connecting piece 222 and the bent piece 223 form a structure similar to a J shape In this way, it is convenient to reasonably set the position of the limit slot 26, and provide a more favorable operation space for the welding operation of the terminal 41.
  • the connecting portion 22 further includes an extension piece 221 extending in the radial direction of the frame 1, as shown in FIGS. 1, 4, 7 and 13.
  • the radially inner end of the extension piece 221 is connected to the main body portion 21, and the radially outer end of the extension piece 221 is connected to the portion of the connecting portion 22 for connecting the terminal 41.
  • the connecting portion 22 further includes an extension piece 221 that extends along the radial direction of the frame 1, and its radial inner and outer ends are respectively connected to the main body 21 and the part of the connecting portion 22 for connecting the terminal 41 (specifically, the connecting piece 222).
  • the radial distance between the connecting piece 222 and the main body portion 21 can be increased, which is beneficial to reduce the radial size of the main body portion 21 to reduce the production cost, and is also beneficial to increase the distance between adjacent connecting portions 22. Therefore, it is beneficial to rationally design the shape and size of the connecting portion 22 and further optimize the product structure.
  • the multiple terminals 3 are evenly arranged along the circumferential direction of the bus bar, as shown in FIG. 20 and FIG. 24.
  • the multiple terminals 3 are evenly distributed along the circumferential direction of the bus bar, and the structure is relatively regular, which helps the terminals 3 increase the distance between the terminals 3, ensure the electrical insulation between the terminals 3, and meet customer requirements. The requirement for uniform distribution.
  • a plurality of terminals 3 may also be distributed in one area or distributed in other ways.
  • the plurality of connecting portions 22 are uniformly distributed along the circumferential direction of the main body portion 21, as shown in FIGS. 18, 20 and 24.
  • the multiple connecting portions 22 are evenly distributed along the circumferential direction of the main body 21, so that the structure of the bus bar 2 is relatively regular, which is convenient for processing and molding, and can make all the connecting portions 22 of the bus bar after the assembly are evenly distributed in the circumferential direction.
  • the terminals 41 of the windings of the motor stator 42 are generally evenly distributed along the circumferential direction, thus maintaining a one-to-one correspondence.
  • the two ends of the connecting portion 22 of all the bus bars 2 in the axial direction of the frame 1 do not protrude from the plane where the axial end faces of the frame 1 are located, as shown in FIG. 19.
  • the ends of all the connecting parts 22 along the axial direction of the frame 1 do not protrude from the plane where the axial end faces of the frame 1 are located. Compared with the connecting parts 22 protruding from the axial end faces of the frame 1, it can be reduced.
  • the axial height skeleton 1 of the busbar makes the space in the axial direction of the busbar less occupied, which is beneficial to reduce the axial length of the motor and optimize the structure of the motor.
  • the bus bar 2 connected with the terminal 3 is connected to the terminal 3 through the extension piece 221 of one of the connecting portions 22, as shown in FIGS. 16 to 18 .
  • the bus bar 2 is connected to the terminal 3 through the extension piece 221 of one of the connecting portions 22, and there is no need to design other additional structures on the bus bar 2 to connect the terminal 3, thus
  • the structure of the bus bar 2 is simplified, and the radial size of the bus bar will not increase.
  • the terminal 3 can also be directly formed by bending and extending the bus bar 2.
  • the terminal 3 may be directly connected to the main body 21 and separated from the connection part 22.
  • the extension piece 221 is perpendicular to the axis direction of the frame 1, as shown in FIGS. 1, 4, 7 and 13.
  • the terminal 3 is in the shape of a sheet, and the dimension a0 of the extension piece 221 connected with the terminal 3 in the thickness direction of the terminal 3 is larger than the dimension a of the other extension pieces 221 of the same bus bar 2 in the thickness direction of the terminal 3, as shown in FIGS. 2, 5, Shown in Figure 8 and Figure 10.
  • the extension piece 221 is perpendicular to the axial direction of the frame 1, which is beneficial to reduce the axial size of the bus bar 2.
  • the dimension a0 of the extension piece 221 connected to the terminal 3 in the thickness direction of the terminal 3 is larger than the dimension a of the other extension pieces 221 on the same bus bar 2 in the thickness direction of the terminal 3, which is beneficial to increase the distance between the extension piece 221 and the terminal 3
  • the contact area improves the connection strength and stability of the terminal 3 and reduces the probability of deformation of the terminal 3.
  • the terminal 3 is bent into an L shape, as shown in FIG. 11.
  • the terminal 3 includes an extension section 31 parallel to the axial direction of the frame 1 and a connection section 32 parallel to the extension piece 221, and the connection section 32 is welded and connected to the extension piece 221, as shown in FIGS. 10, 11 and 18.
  • the terminal 3 is bent and includes an extension section 31 and a connection section 32.
  • the extension section 31 extends along the axis of the frame 1 and is used to connect to a power source.
  • the connecting section 32 is parallel to the extension piece 221 and welded to the extension piece 221, which increases the contact area between the terminal 3 and the extension piece 221, thereby improving the connection strength and stability of the terminal 3, and reducing the probability of deformation of the terminal 3 .
  • extension piece 221 connected to the terminal 3 corresponding to the part for connecting the terminal 41 along the circumferential direction of the frame 1 has a larger dimension b0 than other parts on the same bus bar 2 for connecting the terminal 41 along the frame 1.
  • the dimension b in the circumferential direction is shown in Figure 10.
  • the extension piece 221 to which the terminal 3 is connected corresponds to the part used to connect the terminal 41 along the circumferential direction of the frame 1.
  • the dimension b0 of the part used to connect the terminal 41 along the frame 1 is relative to the other part of the bus bar 2 for connecting the terminal 41.
  • Properly increasing the dimension b in the circumferential direction can increase the circumferential distance between the terminal 3 and the part of the connecting portion 22 for connecting the terminal 41 to provide a avoidance space and facilitate the welding operation of the terminal 41.
  • the U-shaped limiting groove 26 can be avoided.
  • all the bus bars 2 are divided into a neutral bus bar 24 and a plurality of phase bus bars 2, as shown in FIGS. 16 to 18.
  • the plurality of terminals 3 correspond to the plurality of phase bus bars 2 and are connected one by one.
  • the main bodies 21 of the plurality of phase bus bars 2 are arranged next to each other, as shown in FIGS. 18 and 22, the neutral bus bars 24
  • the main body 21 is provided at a position facing the windings, as shown in FIG. 25.
  • All bus bars 2 are divided into a neutral bus bar 24 and a phase bus bar 2, a circuit composed of terminals 41 (such as the end of a partial winding) connected to the phase bus bar 2 and a terminal 41 connected to the neutral bus bar 24 (
  • the circuit composed of the starting ends of all windings can realize multiple parallel connections to form a multi-phase circuit.
  • the neutral bus bar 24 is connected to relatively many terminals 41, as shown in Figure 13
  • the axial position of the connecting portion 22 of the strip 2 is beneficial to reduce processing difficulty and improve production efficiency.
  • the connecting portion 22 of the phase bus 2 can be offset to a position close to the winding, which is beneficial to shorten the distance between the terminal 41 and the connecting portion 22 , As shown in FIG. 25, thereby shortening the length of the terminal 41 and reducing the difficulty of welding the terminal 41.
  • bus bars 2 can be changed arbitrarily.
  • the connecting portion 22 of the neutral bus bar 24 is directly connected to its main body 21 (as shown in FIG. 13), and the connecting portion 22 of each phase bus bar is connected to its main body 21 through an extension 23 (as shown in FIGS. 1, 4). 7), the extension portion 23 extends in the axial direction of the skeleton toward the direction close to the neutral bus bar 24 (as shown in FIGS. 1, 4, and 7), so that the connecting portion 22 of the phase bus bar and the center
  • the connecting portion 22 of the sex bus bar 24 is kept flush in the axial direction of the frame 1, as shown in FIG. 19.
  • the connecting portion 22 of the neutral bus bar 24 is directly connected to its main body 21, and the connecting portion 22 of each phase bus bar is connected to its main body 21 by an extension 23, that is, the neutral bus 24 has no extension 23, only a plurality of The phasic bus bar includes an extension 23.
  • the extension 23 is used to extend toward the neutral bus bar 24, and the axial lengths of the extensions 23 of the plurality of phasic bus bars are not equal, so that the connecting portion of each phasic bus bar 22 can be kept flush with the connecting portion 22 of the neutral bus bar 24 in the axial direction of the skeleton 1. In this way, the structure of the neutral bus bar 24 is effectively simplified, and the distance between the terminal 41 and the connecting portion 22 is further shortened, which is beneficial to further shorten the length of the terminal 41 and further reduce the welding difficulty of the terminal 41 .
  • the extension piece 221 of the neutral bus bar 24 is straight, as shown in FIG. 13, directly connected to the outer periphery of the main body 21 of the neutral bus bar 24.
  • the extension piece 221 of the phase bus bar is also flat, as shown in FIGS. 1, 4 and 7, there is an extension part 23 between the extension piece 221 and the main body 21 of the phase bus bar, and the extension part 23 is close to the center.
  • the direction of the sex bus bar 24 extends axially, so that the extension piece 221 of the phase bus bar and the extension piece 221 of the neutral bus bar 24 remain flush. In this way, the connecting portion 22 of the phase bus bar and the connecting portion 22 of the neutral bus bar 24 are also kept flush.
  • a bus bar includes: a frame 1, a plurality of bus bars 2 and a plurality of terminals 3, as shown in FIG. 20.
  • the frame 1 is an insulating member.
  • Each bus bar 2 includes a main body part 21 and a plurality of connecting parts 22, as shown in FIGS. 1 to 9 and FIGS. 13 and 14.
  • the main body 21 is embedded in the frame 1 (as shown in Figs. 19 and 20) and extends along the circumferential direction of the frame 1, as shown in Figs. 1, 2, 4, 5, 7, and 8 13 and 14; a plurality of connecting parts 22 are connected to the main body 21 and protrude from the frame 1, as shown in FIG. 20, for connecting the terminal 41 of the winding of the motor stator 42.
  • the multiple terminals 3 are connected to the multiple bus bars 2, as shown in Figs. 16 to 18, for connecting power.
  • the skeleton 1 includes a ring-shaped bracket 11 and a plurality of strip-shaped brackets 12. Specifically, a plurality of strip-shaped brackets 12 are integrally connected with the ring-shaped bracket 11, as shown in FIG. 23.
  • the main body 21 of all the bus bars 2 is embedded in the ring bracket 11, as shown in FIGS. 21 to 23.
  • the multiple strip holders 12 correspond to the multiple terminals 3 one-to-one, as shown in FIG. 20, and a part of each terminal 3 is embedded in the corresponding strip holder 12, as shown in FIGS. 23 and 25.
  • the bus bar provided in this embodiment can use the connecting portions 22 of the multiple bus bars 2 to connect the terminals 41 of the multiple windings of the motor stator 42, and use the good electrical conductivity of the bus bar 2 to realize the electrical connection of the corresponding terminals 41. It is not necessary to connect the corresponding terminal 41 directly. This reduces the difficulty of wiring, facilitates efficient and fast operation of the production line, and helps improve the production efficiency of the product.
  • the bus bar includes a frame 1, a plurality of bus bars 2 and a plurality of terminals 3.
  • the frame 1 is an insulating part, which can be formed by injection molding, which supports a plurality of bus bars 2 and a plurality of terminals 3, and isolates adjacent bus bars 2 to provide electrical insulation.
  • the plurality of bus bars 2 are all conductors, and each bus bar 2 includes a main body portion 21 and a plurality of connection portions 22.
  • the multiple connecting portions 22 of each bus bar 2 are used to connect the terminals 41 of the multiple windings of the electronic stator 42 that need to be connected together, and the main body 21 realizes the electrical connection of these terminals 41 to realize the confluence function.
  • the multiple terminals 3 are connected to the multiple bus bars 2, and the terminals 3 can be connected to the corresponding bus bars in an integral manner, or they can be formed separately and then installed on the corresponding bus bars to realize the connection.
  • Each terminal 3 is electrically connected to the terminal 41 connected to the corresponding bus bar 2, and a plurality of terminals 3 are connected to a power source to form an electric circuit to supply power to multiple windings of the motor stator 42.
  • the skeleton 1 includes a ring-shaped bracket 11 and a strip-shaped bracket 12.
  • the ring-shaped bracket 11 is used to support the plurality of bus bars 2 and ensure the insulation between the plurality of bus bars 2.
  • the plurality of strip supports 12 are used to support the plurality of terminals 3 and ensure the electrical insulation between the terminals 3 and other structures. Since the ring-shaped bracket 11 and the plurality of strip-shaped brackets 12 are integrally connected, the integral structure can be formed by integral molding in the injection molding process, so the connection is more reliable, as shown in FIGS.
  • the strip-shaped bracket 12 of this solution can play a good supporting and limiting role on the terminal 3, effectively preventing the terminal 3 from shaking and deforming, and ensuring the terminal
  • the position and verticality of 3 are good, and the structure is firm, so that when the PIN needle of the controller is inserted into the terminal 3, the part of the terminal 3 exposed on the strip bracket 12 is not prone to deformation and failure.
  • the dimension c of the strip holder 12 along the axis of the frame 1 is greater than or equal to half of the dimension c0 of the terminal 3 along the axis of the frame 1.
  • the dimension c of the strip holder 12 along the axis of the frame 1 is greater than or equal to half of the dimension c0 of the terminal 3 along the axis of the frame 1, and the range of the strip frame 1 wrapping the terminal 3 exceeds half of the terminal 3, which can be significantly increased
  • the supporting and limiting functions of the terminal 3 effectively ensure the stability and reliability of the terminal 3.
  • the terminal 3 is connected to one of the connecting portions 22 of the corresponding bus bar 2.
  • the strip holder 12 is arranged asymmetrically with respect to the terminal 3 in the thickness direction of the terminal 3, as shown in FIG. 20, and is close to the corresponding connecting portion 22 for connecting the terminal
  • the size d1 of the portion 41 is smaller than the size d2 of the portion away from the corresponding connecting portion 22 for connecting the terminal 41.
  • the terminal 3 is connected to one of the connecting portions 22 of the corresponding bus bar 2, and the terminal 3 is relatively close to the part of the connecting portion 22 for connecting the terminal 41, and the strip holder 12 circumferentially wraps the terminal 3, which may be connected
  • the welding operation of the terminal 41 causes interference, so the strip holder 12 is arranged asymmetrically, as shown in FIG. 20, and the part close to the connection terminal 41 is relatively thin, and the part far away from the connection terminal 41 is relatively thin. As shown in Figure 20, this not only ensures reliable support for the terminal 3, but also avoids the part of the connecting part 22 used to connect to the terminal 41, which is reserved for the welding operation of the terminal 41 Space helps reduce the difficulty of welding operations.
  • the dimension d of one of the strip holders 12 in the thickness direction of the terminal 3 is different from the dimension d of the other strip holders 12 in the thickness direction of the terminal 3, as shown in FIG. 20.
  • the dimension of one of the strip holders 12 in the thickness direction of the terminal 3 is different from the dimensions of the other strip holders 12 in the thickness direction of the terminal 3, so that the three strip holders 12 are not completely identical in appearance, as shown in FIG. 20.
  • This can play the role of assembly foolproof, which is convenient for quickly identifying each bus bar 2, and then positioning the relative position between the bus bar and the stator 42 winding, which is beneficial to further improve production efficiency.
  • the dimensions of the plurality of strip-shaped brackets 12 along the thickness direction of the terminal 3 may also be inconsistent, which can also play a role in preventing assembly fools.
  • the main body 21 has an arc-shaped structure, as shown in FIGS. 1, 4, 7 and 13.
  • the main body 21 of the bus bar 2 has an arc structure and is not a complete ring. In this way, on the basis of ensuring that there are the same number of connecting portions 22, the circumferential length of the main body portion 21 can be reduced, which is beneficial to saving raw materials, and is convenient for processing and forming, such as forming by bending or the like.
  • the projection of the terminal 3 on the axial end surface of the frame 1 is elongated, and the length of its projection extends along the radial direction of the frame 1, as shown in Figure 18, Figure 20 and Figure 24 .
  • the projection of the terminal 3 on the axial end surface of the frame 1 is elongated. Since the terminal 3 is generally a long strip and extends along the axis of the frame 1, the terminal 3 is located on the axial end face of the frame 1.
  • the projection is basically the same as the shape of the cross section of the terminal 3.
  • the length of the projection extends along the radial direction of the frame 1, as shown in Fig. 20 and Fig. 24, which reasonably utilizes the radial space of the busbar, and can meet the requirements of customers for the radial arrangement of the terminals 3.
  • a bus bar includes: a frame 1, a plurality of bus bars 2 and a plurality of terminals 3, as shown in FIG. 20.
  • the frame 1 is an insulating member.
  • Each bus bar 2 includes an arc-shaped main body portion 21 and a plurality of connecting portions 22, as shown in FIGS. 1 to 9 and FIGS. 13 and 14.
  • the main body 21 is embedded in the frame 1 (as shown in Figs. 19 and 20) and extends along the circumferential direction of the frame 1, as shown in Figs. 1, 2, 4, 5, 7, and 8 13 and 14; a plurality of connecting portions 22 are connected to the main body portion 21 and protruding from the frame 1 (as shown in FIG. 20), and the plurality of connecting portions 22 are distributed along the circumferential direction of the main body portion 21 for
  • the terminal 41 connecting the winding of the motor stator 42 is shown in Figs. 24 and 25. All the bus bars 2 are divided into a neutral bus bar 24 and a plurality of phase bus bars.
  • the multiple terminals 3 are respectively provided on multiple phase bus bars, as shown in Fig. 16 to Fig. 18, for connecting power.
  • the main body portion 21 of the neutral bus bar 24 and the main body portions 21 of the plurality of phase bus bars are sequentially stacked in the axial direction of the skeleton (as shown in FIGS. 16 to 18) and spaced apart from each other (as shown in FIGS. 21 to As shown in Fig. 23), the connecting portions 22 of all the bus bars 2 are evenly distributed along the circumferential direction of the frame.
  • each bus bar 2 is sequentially recorded as the x-th connecting portion 22 starting from the gap of the main body portion 21 along the same rotation direction, and the multiple phasic bus bars are sequentially along the axial direction of the skeleton. It is recorded as the y-th phase bus bar and the first phase bus bar is arranged adjacent to the neutral bus bar 24.
  • the included angle ⁇ between the first connecting portion 22 of the neutral bus bar 24 and the adjacent first phase bus bar, the first connecting portion 22 of the first phase bus bar and the adjacent one The included angle ⁇ of the axis line between the first connecting portion 22 of the second phase bus bar satisfies:
  • 360°/(2 ⁇ m ⁇ n)+360° ⁇ K/(m ⁇ n)
  • 360° ⁇ P/(m ⁇ n) and ⁇ 360° ⁇ Q/n
  • m is phase confluence
  • the number of bars, n is the number of stator windings per phase, K ⁇ [0, (m ⁇ n-1)], P ⁇ (0, (m ⁇ n-1)], Q ⁇ [1, m].
  • the bus bar provided in this embodiment can use the connecting portions 22 of the multiple bus bars 2 to connect the terminals 41 of the multiple windings of the motor stator 42, and use the good electrical conductivity of the bus bar 2 to realize the electrical connection of the corresponding terminals 41. It is not necessary to connect the corresponding terminal 41 directly. This reduces the difficulty of wiring, facilitates efficient and fast operation of the production line, and helps improve the production efficiency of the product.
  • the main body 21 of the neutral bus bar 24 and the main body 21 of the phase bus bar are arranged one after another in the axial direction of the frame 1 and spaced apart from each other, and each phase bus bar is arranged in the circumferential direction according to the design.
  • the fixed axis connection angle is rotated and staggered, which not only facilitates the rapid assembly of the busbar, improves the production efficiency of the busbar, but also makes all the connecting parts 22 evenly distributed along the circumferential direction of the frame 1, and the motor stator 42 along the circumferential direction
  • the terminals 41 of a plurality of windings distributed at intervals are kept corresponding, which is convenient for quick connection.
  • the bus bar includes a frame 1, a plurality of bus bars 2 and a plurality of terminals 3.
  • the frame 1 is an insulating part, which can be formed by injection molding, which supports a plurality of bus bars 2 and a plurality of terminals 3, and isolates adjacent bus bars 2 to provide electrical insulation.
  • the plurality of bus bars 2 are all conductors, and each bus bar 2 includes a main body portion 21 and a plurality of connection portions 22.
  • the multiple connecting portions 22 of each bus bar 2 are used to connect the terminals 41 of the multiple windings of the electronic stator 42 that need to be connected together, and the main body 21 realizes the electrical connection of these terminals 41 to realize the confluence function.
  • the multiple terminals 3 are respectively arranged on multiple phase bus bars, and the terminals 3 can be integrally formed with the corresponding phase bus bars, or they can be formed separately and then installed on the corresponding phase bus bars.
  • Each terminal 3 is electrically connected to the terminal 41 connected to the corresponding bus bar 2, and a plurality of terminals 3 are connected to a power source to form an electric circuit to supply power to multiple windings of the motor stator 42.
  • the main body 21 is in the shape of a circular arc extending along the circumferential direction of the skeleton 1 and is not a complete ring.
  • the circumferential length of the main body 21 can be reduced on the basis of ensuring the same number of connecting portions 22, which is beneficial to It saves raw materials and is convenient for processing and molding, such as molding by bending, etc., and at the same time, the bus bar 2 is not a rotationally symmetric structure.
  • the notch of the main body 21 can be used as a reference to facilitate the positioning of the bus bar 2 during assembly.
  • all the bus bars 2 are divided into a neutral bus bar 24 and a phase bus bar, a circuit composed of a terminal 41 connected to the phase bus bar (such as the end of a partial winding), and a terminal 41 connected to the neutral bus bar 24 (For example, the starting end of all windings) can realize multi-path parallel connection to form a multi-phase circuit.
  • the main body portions 21 of all the bus bars 2 are stacked and arranged along the axial direction of the frame 1, and the radial dimensions of the plurality of main body portions 21 can be kept consistent.
  • the multiple terminals 3 are distributed and the positions of the multiple terminals 3 are correct, as shown in FIG. 18, and then the skeleton 1 can be processed by integral injection molding.
  • the processing technology is relatively simple, and the structure of the skeleton 1 is relatively simple.
  • each bus bar 2 are sequentially recorded as the x-th connecting portion 22 starting from the notch of the main body 21 in the same rotation direction, for example, counting from the notch of the main body 21 in the clockwise direction, They are the first connecting portion 22, the second connecting portion 22, the third connecting portion 22, and so on; a plurality of phasic bus bars are sequentially recorded as the y-th phasic bus bar along the axial direction of the skeleton 1.
  • the first phasic bus bar is arranged in phase with the neutral bus bar 24, that is, counted from the phasic bus bar closest to the neutral bus bar 24 in the axial direction, followed by the first phasic bus bar and the second phasic bus bar. ,So on and so forth.
  • the neutral bus bar 24 is used as the reference, and the phase bus bars are stacked one by one.
  • the first connecting portion 22 and the neutral bus bar 24 are The axis angle of ⁇ is generated between the first connecting part 22; then the second phase bus bar is stacked so that the first connecting part 22 is between the first connecting part 22 of the first phase bus bar Produce ⁇ axis angle.
  • the plurality of connecting portions 22 of the first phase bus bar and the plurality of connecting portions 22 of the second phase bus bar occupy the circumferential direction between several adjacent connecting parts 22 of the neutral bus bar 24.
  • the neutral bus bar 24 still has a relatively large circumferential gap between the connecting parts 22, which is represented by the bus bar circumference. Some parts of the connecting parts 22 are relatively concentrated and some are relatively scattered. Therefore, the remaining phase bus bars only need to have their connecting parts 22 distributed in these circumferential gaps to ensure that all the connecting parts 22 are along the circumferential direction of the frame 1 after the assembly is completed. The direction can be evenly distributed.
  • 360°/(2 ⁇ m ⁇ n)+360° ⁇ K/(m ⁇ n)
  • 360° ⁇ P/(m ⁇ n)
  • ⁇ 360° ⁇ Q/n m ⁇ n is the number of slots of the stator to which the bus bar is adapted, that is, the total number of coil windings
  • 360°/(2 ⁇ m ⁇ n) is the axial connection of the two adjacent connecting parts 22 of the neutral bus bar 24
  • Half of the line included angle, 360° ⁇ K/(m ⁇ n) and 360° ⁇ P/(m ⁇ n) are the included angles of the axial lines of the two adjacent connecting parts 22 of the neutral bus bar 2.
  • 360°/n is half of the angle between the two adjacent connecting parts 22 of the phase bus bar
  • 360° ⁇ Q/n is the angle between the two adjacent connecting parts 22 of the phase bus bar.
  • the axial connection angle between the first connecting portion 22 of the neutral bus bar 24 and the first connecting portion 22 of the first phase bus bar is ⁇
  • the first phase bus bar is A connecting portion 22 is located between any two adjacent connecting portions 22 of the neutral bus bar 24, and then the first connecting portion 22 of the second phase bus bar is connected to the first connection part 22 of the first phase bus bar
  • the part 22 rotates ⁇ , which not only ensures that each connecting part 22 of the second phase bus bar is located between the two adjacent connecting parts 22 of the neutral bus bar 24, but also avoids the part with the first phase bus bar.
  • the connecting portion 22 overlaps in the circumferential direction, thereby ensuring that the connecting portion 22 of the neutral bus bar 24, the connecting portion 22 of the first phase bus bar, and the connecting portion 22 of the second phase bus bar are mutually in the circumferential direction. stagger.
  • the angle of the axis line between the two connecting parts 22 refers to the vertical line between the center of one connecting part 22 and the central axis of the skeleton, and the center of the other connecting part 22 and the skeleton.
  • the center of the connecting portion 22 refers to the center of the connecting portion 22 corresponding to the terminal of the stator winding, that is, in the projection on a plane perpendicular to the central axis of the busbar, the center of the connecting portion 22 and the stator The terminals of the winding overlap.
  • the angle between the axis lines between the two connecting parts 22 refers to the perpendicular between the same part of the two connecting parts 22 and the central axis of the skeleton The angle between the lines.
  • the material of the bus bar 2 is copper, which has better conductivity and is relatively inexpensive. In a specific embodiment, the material of the bus bar 2 is H65 brass, which is easy to be stamped and formed and has sufficient hardness.
  • m is 3.
  • the number of bus bars 2 is four, and the number of terminals is three, and a three-phase motor can be formed through reasonable connection.
  • Three of the bus bars 2 are phase bus bars, which are respectively connected to an equal number of terminals to form a U-phase bus bar 251, a V-phase bus bar 252 and a W-phase bus bar 253, and the other bus bar 2 is a neutral bus bar 24. Connect to the other terminal of all windings.
  • the first phase bus bar adjacent to the neutral bus bar 24 is defined as the W-phase bus bar 253, followed by the V-phase bus bar 252 and the U-phase bus bar 251 in turn, the neutral bus bar 24 and the W-phase bus bar
  • the neutral bus bar 24 and the W-phase bus bar After the bar 253 and the V-phase bus bar 252 are stacked, there are exactly n gaps left in the neutral bus bar 24, which correspond to the n connecting portions 22 of the U-phase bus bar 251, and thus connect the n pieces of the U-phase bus bar 251.
  • the portion 22 can be placed in the gap position correspondingly.
  • K is zero.
  • K can also be 1, 2 or other integers.
  • P may not be equal to n.
  • n 4.
  • n is 4, that is, the number of stator windings per phase is 4.
  • n is not limited to 4, and can also be 1, 2, 3, 5 or other values.
  • the two ends of the main body 21 are the first end 211 and the second end 212 respectively.
  • all the main body parts 21 extend in a clockwise direction to form an arc shape.
  • the connecting portion 22 adjacent to the first end 211 is the first connecting portion 22
  • the connecting portion 22 adjacent to the second end 212 is the n-th connecting portion 22.
  • the first connecting portion 22 of the main body 21 of the previous bus bar 2 can be used as a reference to rotate the bus bar 2 to be subsequently stacked to quickly obtain the required axis connection. Line angle.
  • the angle between the first connecting portion 22 of the first phase bus bar and the first connecting portion 22 of the neutral bus bar 24 is 180°/(m ⁇ n ), the included angle of the axis line between the first connecting portion 22 of any two adjacent bus bars is 360°/m.
  • the U-phase bus bar 251 is stacked on the V-phase bus bar 252, so that the angle between the first end 211 of the U-phase bus bar 251 and the first end 211 of the V-phase bus bar 252 is 120 °, as shown in Figure 18.
  • a plurality of connecting portions 22 are evenly distributed along the circumferential direction of the main body portion 21, and the first connecting portion 22 and the last connecting portion 22 are located at both ends of the main body portion 21, as shown in Figure 1, Figure 4, Figure 7 and Figure 13 shown.
  • the plurality of connecting portions 22 are evenly distributed along the circumferential direction of the main body 21, so that the structure of the bus bar 2 is relatively regular, which is convenient for processing and forming; and all the connecting portions 22 of the assembled bus bar can be evenly distributed along the circumferential direction. Since the terminals 41 of the stator winding of the motor are generally evenly distributed along the circumferential direction, a one-to-one correspondence is maintained.
  • the first connecting portion 22 and the last connecting portion 22 are located at both ends of the main body 21, that is, the main body 21 is missing a part between the two connecting portions 22, which ensures that the main body 21 and the multiple connecting portions
  • the connection reliability of 22 shortens the length of the main body 21 as much as possible, which is beneficial to further saving raw materials.
  • the arc of the main body 21 is 270°, as shown in Figures 1, 4 and 7; when the number of connecting parts 22 is 6, the arc of the main body 21 is 300 °; When the number of connecting portions 22 is 12, the arc of the main body 21 is 330°, as shown in FIG. 13.
  • this solution also makes the two connecting parts 22 located at the two ends of the main body 21 (ie the first connecting part 22 and the last connecting part 22) clearly distinguishable from the connecting parts 22 at other parts.
  • Bar 2 can be used as a reference to further improve stacking efficiency, thereby further improving assembly efficiency.
  • the two ends of the main body 21 are the first end 211 and the second end 212 respectively.
  • all the main body parts 21 extend in a clockwise direction to form an arc shape.
  • the connecting portion 22 connected to the first end 211 is the first connecting portion 22, and the first The connecting portion 22 connected to the two ends 212 is the n-th connecting portion 22.
  • the first end 211 of the main body 21 of the previous bus bar 2 can be used as a reference to rotate the bus bar 2 to be subsequently stacked to quickly obtain the required axis connection clip angle.
  • both ends of the main body 21 can also be appropriately extended.
  • connection parts 22 of each phase bus bar is n, and each terminal is connected to the xth connection part 22 of the corresponding phase bus bar, x ⁇ [2, n-1].
  • the plurality of terminals 3 correspond to the plurality of phase bus bars one to one.
  • the number of connection parts 22 of each phase bus bar is n
  • n connection parts 22 are respectively connected to n coils of each phase stator
  • each terminal is connected to the xth connection part 22 of the corresponding phase bus bar, because x is greater than It is equal to 2 and less than or equal to n-1, so the connecting portion 22 of the connecting terminal is not the connecting portion 22 located on both sides of the notch of the main body portion 21.
  • the strength of the other parts of the main body 21 is relatively higher, and the probability of deformation is relatively low. Therefore, connecting the terminal to the connecting portion 22 of the main body 21 of the phase bus bar away from the gap is beneficial. Further improve the position and verticality of the terminal, and further reduce the probability of deformation of the terminal.
  • x is 2.
  • x is 2
  • the terminal is connected to the second connecting part 22 of the corresponding phase bus bar, so the first connecting part 22 of the phase bus bar serves as a reference for locating the position of the phase bus bar, and the second connecting part 22 is used for connecting terminals, which is easy to find and helps to further improve production efficiency.
  • x is not limited to 2, and can also be other values.
  • the multiple terminals 3 are evenly arranged along the circumferential direction of the bus bar, as shown in FIG. 20 and FIG. 24.
  • the plurality of terminals 3 are arranged non-uniformly along the circumferential direction of the bus bar.
  • the multiple terminals 3 are evenly distributed along the circumferential direction of the bus bar, and the structure is relatively regular, which helps the terminals 3 increase the distance between the terminals 3, ensure the electrical insulation between the terminals 3, and meet customer requirements.
  • the requirement for uniform distribution Alternatively, a plurality of terminals 3 are arranged non-uniformly along the circumferential direction of the bus bar, such as concentratedly distributed in one area of the bus bar, to meet customer requirements for non-uniform distribution of the terminals 3 in the circumferential direction.
  • the thickness t of all the main body parts 21 is equal, as shown in FIGS. 21 and 22.
  • All the main body parts 21 have the same thickness t, so all the bus bars 2 can be made of the same material, which is beneficial to reduce the types of raw materials, facilitate processing and molding, and also help save costs.
  • the thickness of the main body portion 21 is in the range of 0.7 mm-1.0 mm (such as 0.7 mm, 0.8 mm, 0.9 mm, 1.0 mm, etc.).
  • the thickness t of all the main body parts 21 can also be adjusted as required.
  • the distance t2 between adjacent main body portions 21 is equal.
  • the distance between the adjacent main body portions 21 is equal, so that the internal structure of the bus bar is regular, and the electrical insulation between the bus bars 2 is ensured.
  • the distance between adjacent main body parts 21 is 0.5 mm-3 mm (such as 0.5 mm, 1 mm, 2 mm, 3 mm, etc.).
  • the distance t2 between adjacent main body portions 21 can also be adjusted as required.
  • the distance t1 between the axial end surfaces of the main body portions 21 of the plurality of bus bars 2 and the axial end surfaces of the skeleton 1 is smaller than the distance t2 between adjacent main body portions 21, as shown in FIG. 21 And shown in Figure 22.
  • the distance between the neutral bus bar 24 and the axial end surface of the framework 1 and the distance between the U-phase bus bar 251 and the axial end surface of the framework 1 are equal, denoted as t1, then t1 ⁇ t2, so It is beneficial to reduce the longitudinal height of the skeleton 1, thereby further reducing the longitudinal size of the busbar and further reducing the axial length of the motor.
  • the distance between the neutral bus bar 24 and the axial end surface of the skeleton 1 and the distance between the U-phase bus bar 251 and the axial end surface of the skeleton 1 can also be adjusted as required.
  • the widths of all the main parts 21 are equal, that is, the dimensions of all main parts 21 in the radial direction of the frame 1 are equal.
  • all the main parts 21 are located on the same circle, and the outer edges of all the main body parts 21 are also located on the same circle, so that the structure of the busbars is more regular, which facilitates the processing and molding of the bus bars 2 and the processing and molding of the skeleton 1.
  • main body 21 of all phase bus bars is the same, as shown in FIGS. 1, 4, and 7.
  • the main body 21 of all phase bus bars is the same, that is, the shape and size are completely the same, which helps reduce the processing difficulty of phase bus bars and improve production efficiency.
  • the main body 21 of all the bus bars 2 are superimposed on each other to form a ring, that is, the main body 21 of all the bus bars 2 is on a plane perpendicular to the axis of the skeleton 1.
  • the projections are all located in the same circle. Since each main body 21 has a gap, its projection is not a complete circle, and the projections of multiple main bodies 21 are superimposed to form a complete circle, which is beneficial to improve the strength of the bus bar and facilitate the mutual communication of the bus bars 2
  • the inter-rotational dislocation ensures that all the connecting parts 22 are evenly distributed along the circumferential direction of the frame 1.
  • the fifth embodiment has the technical effects of the third embodiment and the fourth embodiment, and will not be repeated here.
  • the skeleton 1 includes a ring-shaped bracket 11 and a plurality of strip-shaped brackets 12. Specifically, a plurality of strip-shaped brackets 12 are integrally connected with the ring-shaped bracket 11, as shown in FIG. 23.
  • the main body 21 of all the bus bars 2 is embedded in the ring bracket 11, as shown in FIGS. 21 to 23.
  • the multiple strip holders 12 correspond to the multiple terminals 3 one-to-one, as shown in FIG. 20, and a part of each terminal 3 is embedded in the corresponding strip holder 12, as shown in FIGS. 23 and 25.
  • the dimension c of the strip holder 12 along the axis of the frame 1 is greater than or equal to half of the dimension c0 of the terminal 3 along the axis of the frame 1.
  • the terminal 3 is connected to one of the connecting portions 22 of the corresponding bus bar 2.
  • the strip holder 12 is arranged asymmetrically with respect to the terminal 3 in the thickness direction of the terminal 3, as shown in FIG. 20, and is close to the corresponding connecting portion 22 for connecting the terminal
  • the size d1 of the portion 41 is smaller than the size d2 of the portion away from the corresponding connecting portion 22 for connecting the terminal 41.
  • the dimension d of one of the strip holders 12 in the thickness direction of the terminal 3 is different from the dimension d of the other strip holders 12 in the thickness direction of the terminal 3, as shown in FIG. 20.
  • the projection of the terminal 3 on the axial end surface of the frame 1 is elongated, and the length of its projection extends along the radial direction of the frame 1, as shown in Figure 18, Figure 20 and Figure 24 .
  • the sixth embodiment has the technical effects of the first embodiment or the second embodiment and the fifth embodiment, and will not be repeated here.
  • the skeleton 1 includes a ring-shaped bracket 11 and a plurality of strip-shaped brackets 12. Specifically, a plurality of strip-shaped brackets 12 are integrally connected with the ring-shaped bracket 11, as shown in FIG. 23.
  • the main body 21 of all the bus bars 2 is embedded in the ring bracket 11, as shown in FIGS. 21 to 23.
  • the multiple strip holders 12 correspond to the multiple terminals 3 one-to-one, as shown in FIG. 20, and a part of each terminal 3 is embedded in the corresponding strip holder 12, as shown in FIGS. 23 and 25.
  • the dimension c of the strip holder 12 along the axis of the frame 1 is greater than or equal to half of the dimension c0 of the terminal 3 along the axis of the frame 1.
  • the terminal 3 is connected to one of the connecting portions 22 of the corresponding bus bar 2.
  • the strip holder 12 is arranged asymmetrically with respect to the terminal 3 in the thickness direction of the terminal 3, as shown in FIG. 20, and is close to the corresponding connecting portion 22 for connecting the terminal
  • the size d1 of the portion 41 is smaller than the size d2 of the portion away from the corresponding connecting portion 22 for connecting the terminal 41.
  • the dimension d of one of the strip holders 12 in the thickness direction of the terminal 3 is different from the dimension d of the other strip holders 12 in the thickness direction of the terminal 3, as shown in FIG. 20.
  • the main body 21 has an arc-shaped structure, as shown in FIGS. 1, 4, 7 and 13.
  • each bus bar 2 is sequentially recorded as the x-th connecting portion 22 starting from the gap of the main body portion 21 along the same rotation direction, and the multiple phasic bus bars are sequentially along the axial direction of the skeleton. It is recorded as the y-th phase bus bar and the first phase bus bar is arranged adjacent to the neutral bus bar 24.
  • the included angle ⁇ between the first connecting portion 22 of the neutral bus bar 24 and the adjacent first phase bus bar, the first connecting portion 22 of the first phase bus bar and the adjacent one The included angle ⁇ of the axis line between the first connecting portion 22 of the second phase bus bar satisfies:
  • 360°/(2 ⁇ m ⁇ n)+360° ⁇ K/(m ⁇ n)
  • 360° ⁇ P/(m ⁇ n) and ⁇ 360° ⁇ Q/n
  • m is phase confluence
  • the number of bars, n is the number of stator windings per phase, K ⁇ [0, (m ⁇ n-1)], P ⁇ (0, (m ⁇ n-1)], Q ⁇ [1, m].
  • 360°/(2 ⁇ m ⁇ n)+360° ⁇ K/(m ⁇ n)
  • 360° ⁇ P/(m ⁇ n)
  • ⁇ 360° ⁇ Q/n m ⁇ n is the number of slots of the stator to which the bus bar is adapted, that is, the total number of coil windings
  • 360°/(2 ⁇ m ⁇ n) is the axial connection of the two adjacent connecting parts 22 of the neutral bus bar 24
  • Half of the line included angle, 360° ⁇ K/(m ⁇ n) and 360° ⁇ P/(m ⁇ n) are the included angles of the axis lines of the two adjacent connecting parts 22 of the neutral bus bar 2.
  • 360°/n is half of the angle between the two adjacent connecting parts 22 of the phase bus bar
  • 360° ⁇ Q/n is the angle between the two adjacent connecting parts 22 of the phase bus bar.
  • m is 3.
  • K is zero.
  • n 4.
  • a plurality of connecting portions 22 are evenly distributed along the circumferential direction of the main body portion 21, and the first connecting portion 22 and the last connecting portion 22 are located at both ends of the main body portion 21, as shown in Figure 1, Figure 4, Figure 7 and Figure 13 shown.
  • connection parts 22 of each phase bus bar is n, and each terminal is connected to the xth connection part 22 of the corresponding phase bus bar, x ⁇ [2, n-1].
  • x is 2.
  • the difference from the first embodiment, the second embodiment or the sixth embodiment is that the main body 21 has a ring structure.
  • the main body 21 of the bus bar 2 has a complete annular structure, which is beneficial to improve the strength of the bus bar 2 and further improve the stability and reliability of the bus bar.
  • the projection of the terminal 3 on the axial end surface of the frame 1 is elongated, and the length of its projection extends along the radial direction of the frame 1, as shown in Figure 18, Figure 20 and Figure 24 .
  • the projection of the terminal 3 on the axial end surface of the frame 1 is elongated. Since the terminal 3 is generally a long strip and extends along the axis of the frame 1, the terminal 3 is located on the axial end face of the frame 1.
  • the projection is basically the same as the shape of the cross section of the terminal 3.
  • the length of the projection extends along the radial direction of the frame 1, as shown in Fig. 20 and Fig. 24, which reasonably utilizes the radial space of the busbar, and can meet the requirements of customers for the radial arrangement of the terminals 3.
  • Embodiment 1 Embodiment 2, Embodiment 6 or Embodiment 8 is that the projection of the terminal 3 on the axial end surface of the frame 1 is elongated, and the length of the projection is along the circumferential direction of the frame 1 extend.
  • the projection of the terminal 3 on the axial end surface of the frame 1 is elongated. Since the terminal 3 is generally a long strip and extends along the axis of the frame 1, the terminal 3 is located on the axial end face of the frame 1.
  • the projection is basically the same as the shape of the cross section of the terminal 3.
  • the length direction of the projection can also extend along the circumferential direction of the frame 1, which makes reasonable use of the circumferential space of the busbar, which can meet the requirements of customers for the circumferential arrangement of the terminals 3, and is beneficial to reduce the radial size of the busbar .
  • the thickness t of all the main body portions 21 is equal, as shown in FIGS. 21 and 22.
  • All the main body parts 21 have the same thickness, so all the bus bars 2 can be made of the same material, which is beneficial to reduce the types of raw materials, facilitates processing and molding, and also helps to save costs.
  • the thickness t of the bus bar 2 is in the range of 0.7 mm-1.0 mm (such as 0.7 mm, 0.8 mm, 0.9 mm, 1.0 mm, etc.).
  • the distance t2 between adjacent main body portions 21 is equal, as shown in FIGS. 21 and 22.
  • the widths of the intervals between the adjacent main body portions 21 are equal, so that the internal structure of the bus bar is regular, and the electrical insulation between the bus bars 2 is ensured.
  • the interval width t2 between the adjacent main body parts 21 is 0.5 mm-3 mm (such as 0.5 mm, 1 mm, 2 mm, 3 mm, etc.).
  • the distance t1 between the axial end surfaces of the main body portions 21 of the plurality of bus bars 2 and the axial end surfaces of the skeleton 1 is smaller than the distance t2 between adjacent main body portions 21, as shown in FIG. 21 And shown in Figure 22.
  • the distance between the neutral bus bar 24 and the axial end surface of the framework 1 and the distance between the U-phase bus bar 251 and the axial end surface of the framework 1 are equal, denoted as t1, then t1 ⁇ t2, so It is beneficial to reduce the longitudinal height of the skeleton 1, thereby further reducing the longitudinal size of the busbar and further reducing the axial length of the motor.
  • the distance between the neutral bus bar 24 and the axial end surface of the skeleton 1 and the distance between the U-phase bus bar 251 and the axial end surface of the skeleton 1 can also be adjusted as required. Further, the widths of all the main body parts 21 are equal.
  • the widths of all the main parts 21 are equal, that is, the dimensions of all main parts 21 in the radial direction of the frame 1 are equal.
  • all the main parts 21 are located on the same circle, and the outer edges of all the main body parts 21 are also located on the same circle, so that the structure of the busbars is more regular, which facilitates the processing and molding of the bus bars 2 and the processing and molding of the skeleton 1.
  • main body 21 of all phase bus bars is the same, as shown in FIGS. 1, 4, and 7.
  • the main body 21 of all phase bus bars is the same, that is, the shape and size are completely the same, which helps reduce the processing difficulty of phase bus bars and improve production efficiency.
  • the main body 21 of all the bus bars 2 are superimposed on each other to form a ring, that is, the main body 21 of all the bus bars 2 is on a plane perpendicular to the axis of the skeleton 1.
  • the projections are all located in the same circle. Since each main body 21 has a gap, its projection is not a complete circle, and the projections of multiple main bodies 21 are superimposed to form a complete circle, which is beneficial to improve the strength of the bus bar and facilitate the mutual communication of the bus bars 2
  • the inter-rotational dislocation ensures that all the connecting parts 22 are evenly distributed along the circumferential direction of the frame 1.
  • the number of bus bars 2 is four, and the number of terminals 3 is three, as shown in FIG. 18, where the number of connecting parts 22 of three bus bars 2 is equal, and the number of the other bus bar 2
  • the number of connecting parts 22 is the sum of the numbers of connecting parts 22 of the other three bus bars 2.
  • the number of bus bars 2 is four, and the number of terminals 3 is three, and a three-phase motor can be formed through reasonable connection.
  • Three of the bus bars 2 are phase bus bars 2, which are connected to an equal number of terminals 41 to form a U-phase bus bar 251 (as shown in FIGS. 1 to 3) and a V-phase bus bar 252 (as shown in FIGS. 4 to 3). 6) and W-phase bus bar 253 (shown in FIGS. 7 to 10).
  • the other bus bar 2 is a neutral bus bar 24 (as shown in FIGS. 13 to 15), which is connected to the other terminal 41 of all windings.
  • bus bars 2 is not limited to four, and can also be three, five, etc.
  • the surface of the frame 1 facing away from the terminal 3 is provided with a hook 13, as shown in FIG. 19, for clamping the motor stator 42, as shown in FIG. 25.
  • a hook 13 is provided on the surface of the frame 1 facing away from the terminal 3 to facilitate the clamping and cooperation with the stator 42 to prevent the busbar from shaking, tilting, and shifting during the welding process, which is beneficial to further improve production efficiency.
  • the number of the hooks 13 may be multiple, and the plurality of hooks 13 are evenly distributed along the circumferential direction of the skeleton 1, and the hooks 13 and the skeleton 1 may be integrally formed by injection molding.
  • stator 42 is generally also provided with an injection-molded insulation frame.
  • the insulation frame can be provided with a slot adapted to the hook 13, and the hook 13 is directly inserted into the slot, as shown in FIG. Pick up.
  • a motor includes: a motor main body 4 and a bus bar as in any one of the foregoing embodiments.
  • the motor main body 4 includes a stator 42 which is provided with windings. As shown in FIG. 26, the windings have two terminals 41; the connecting portion 22 of the bus bar is connected to the terminals 41, as shown in FIG. 25.
  • the motor provided in this embodiment includes the bus bar of any one of the above embodiments, it has all the beneficial effects of any one of the above embodiments, and will not be repeated here.
  • the terminal 41 and the bus bar are connected by resistance welding.
  • other welding methods such as ultrasonic welding or other fixed connection methods can also be used.
  • the number of windings is 12, as shown in FIG. 26 and FIG. 27, and the 12 windings are connected in a star connection mode, as shown in FIG. 28.
  • the 12 windings have 24 joints and are connected in a star shape, it is necessary to connect the 12 wire ends of the start ends of the 12 windings together, and the end ends of the C1, C4, C7, and C10 windings, C2, C5, C8, The ending ends of the C11 winding and the ending ends of the C3, C6, C9, and C12 windings are connected together, so the wiring method is very complicated. Using the solution of the present application can effectively reduce the wiring difficulty, and the wiring method is simple and reliable.
  • connection method of the windings is not limited to the above method, and may also be delta connection or other methods.
  • a vehicle includes a vehicle body and a motor as in the ninth embodiment, which is installed in the vehicle body.
  • the vehicle provided in this embodiment includes the motor of the ninth embodiment, it has all the beneficial effects of any of the above-mentioned embodiments, and will not be repeated here.
  • each tooth is wound to form a winding.
  • Each winding has 1 starting end and 1 ending end. Therefore, 12 teeth have a total of 24 wire ends, which are uniform along the circumferential direction. Distribution, one every 15°, as shown in Figure 26.
  • the motor adopts 4 parallel connections and star connection, as shown in Figure 28.
  • the starting ends of the 12 windings and 12 wire ends need to be connected together, as shown in Figure 27 and Figure 28, and the ending ends of the C1, C4, C7, and C10 windings, and C2, C5, C8,
  • the ending ends of the C11 winding and the ending ends of the C3, C6, C9, and C12 windings are respectively connected together, and the wiring form is complicated. Therefore, a simple and reliable structure is needed.
  • the purpose of this application is to design a busbar structure that can meet the wiring requirements of the 8P12S motor, and has the characteristics of small axial space and radial space occupation, simple wiring, and reliable structure.
  • the bus bar includes an insulating frame 1, a central point copper bar (ie neutral bus bar 24), a U-phase copper bar (ie U-phase bus bar 251), a V-phase copper bar (ie V-phase bus bar 252), and W-phase Copper bar (ie W-phase bus bar 253) and three terminals 3.
  • the insulating frame 1 is integrally injection-molded to support the copper bars and the terminals 3 and to insulate the copper bars.
  • the insulating frame 1 and the motor stator 42 frame 1 are clamped and fixed.
  • the center point copper bar and the U, V, and W phase copper bars are copper bars of equal thickness, which are manufactured by stamping, bending and other processes.
  • the main area is a ring with a gap, and the U-shaped terminal 3 (ie
  • the connecting portion 22 with the U-shaped limiting groove 26 is used for welding with the copper enameled wire (ie, the terminal 41).
  • the three terminals 3 are distributed along the circumferential direction at 120°, and are resistance welded with the U, V, and W phase copper bars to input current to the motor windings.
  • this motor is an 8P12S motor with 12 teeth in total. Copper wire is wound on each tooth to form a total of 12 windings C1-C12, and each winding has 1 start end wire end and 1 end end wire end, as shown in Figure 26.
  • the central point connection copper bar (shown in Figure 13 and Figure 14) and U, V, and W phase copper bars (shown in Figure 10) are designed.
  • the center point copper bar and the U, V, and W phase copper bars are formed by stamping and bending of copper bars of equal thickness.
  • the thickness t of the copper bar is between 0.7 and 1.0 mm, and the material is H65 brass, which is easy to be stamped and formed and has sufficient hardness.
  • the end of the copper bar is designed as a U-shaped groove, which is convenient to integrate the enameled wire into the U-shaped groove, and then apply resistance welding.
  • the width direction of the three terminals 3 of the motor is arranged in the radial direction, and the three terminals 3 are separated by 120° from each other. 3 terminals 3 distribution and 3 phase copper bar for resistance welding.
  • the end of the terminal 3 was bent (as shown in Figure 11), and the welding area of the 3-phase copper bar was widened (as shown in Figure 10).
  • the U-shaped groove of the copper bar is also bent downward, and the bending height is h, as shown in Figure 3, Figure 6 and Figure 6 As shown in 9, the three-phase copper excludes the inconsistent height h, and other parts are the same. After bending, all U-shaped grooves are at the same height position, as shown in Figure 19.
  • the advantages of this design are: less space in the height direction, which is conducive to reducing the axial length of the motor; the length of the wire ends of the enameled wire is equal, easy to control the peeling position, easy to resistance welding on the production line, and easy to cut off the excess after welding Of thread.
  • the bus wiring scheme is as follows:
  • the central point copper bar connects the start ends of the C1 ⁇ C12 windings
  • U-phase copper bar connects the ends of the windings of C1, C4, C7, and C10;
  • the V-phase copper bar connects the ends of the windings of C2, C5, C8, and C11;
  • the W-phase copper bar connects the ends of the windings of C3, C6, C9, and C12;
  • the second connecting portion 22 of the U, V, and W phase copper bars is welded to the terminal 3 in a clockwise direction, as shown in FIG. 10.
  • the height difference between the layers is 1mm, and the first U-shaped groove of the W-phase copper bar is 15° away from any U-shaped groove of the central copper bar.
  • the height difference between the V-phase copper bar and the W-phase copper bar is 1mm, and the circumferential difference of the terminal 3 is 120°.
  • the height difference between the U-phase copper bar and the V-phase copper bar is 1mm, and the circumferential difference of the terminal 3 is 120°.
  • the bus bar achieves the following technical effects: 1) Four-layer parallel star connection is satisfied; 2) One-piece injection-molded ring frame (i.e. ring support) and strip frame (i.e. strip support), structure Reliability, good position and verticality of the terminals, easy for ECU installation, small terminal deformation during installation; 3) U-shaped grooves of copper bars are roughly evenly distributed along the circumferential direction and distributed at the same height, which is good for resistance welding of enameled wires.
  • Wire enameled wire stripping and trimming is convenient; 4) The axial height of the busbar is small, which is beneficial to optimize the axial length of the motor; 5) The busbar adopts the U-shaped groove style, which is beneficial to the enameled wire to be integrated into the U-shaped groove; 6) Reasonably The radial space is used to meet the requirements of products requiring radial distribution of terminals.
  • a busbar main body includes a skeleton 2'and a plurality of bus bars 3'.
  • the frame 2' is an insulating member, and the frame 2'is provided with a plurality of hooks 23', as shown in Figs. 44 and 45. At least one hook 23' is provided with an escape groove 233'. As shown in Figs. 36 and 44, the escape groove 233' is used to make the hook 23' suitable for elastic deformation.
  • Each bus bar 3' includes a main body portion 31' embedded in the frame 2'and a plurality of connecting portions 32' connected to the main body portion 31' and protruding from the frame 2', as shown in Figs. 44 and 45.
  • a plurality of hooks 23' are provided on the frame 2', which facilitates the hooking and cooperation of the busbar and the stator 4', thereby realizing convenient assembly.
  • An avoidance groove 233' is provided on at least one hook 23' to facilitate the elastic deformation of the hook 23' during the assembly process with the stator 4', and reduce jamming and interference during the assembly process of the hook 23' and the stator 4' Therefore, it reduces the difficulty of assembly and improves assembly efficiency.
  • the hook 23' with the avoiding groove 233' will be reset and deformed after the assembly is completed, and generate a tight bonding force with the stator 4', which is beneficial to improve the stability after the assembly is completed.
  • the main body of the bus bar includes a skeleton 2'and a plurality of bus bars 3'.
  • the skeleton 2' is an insulator and can be molded by injection molding to support the plurality of bus bars 3'and the terminals 1'.
  • The'multiple connecting portions 32' are used to connect the terminals of the multiple windings of the motor stator 4'that need to be connected together, and the main body portion 31' realizes the electrical connection of these terminals to realize the confluence function; multiple terminals 1 'Connected to multiple bus bars 3', as shown in Figure 46, each terminal 1'is electrically connected to the terminal connected to the corresponding bus bar 3', and multiple terminals 1'are connected to the power female end to form an electrical circuit, which is The multiple windings of the motor stator 4'are powered.
  • the hook 23' includes a fixing portion 231' and a hooking portion 232', as shown in FIG. 35.
  • the fixing portion 231' is connected to the frame 2', and the hooking portion 232' is connected to the fixing portion 231'.
  • the hooking portion 232' of at least one hook 23' includes a plurality of elastic buckles 2321' arranged at intervals. As shown in FIG. 35, an escape groove 233' is formed between adjacent elastic buckles 2321'.
  • the hook 23' includes a fixing portion 231' and a hooking portion 232'.
  • the fixing portion 231' is connected to the frame 2'to realize the connection function of the hook 23' and the frame 2'.
  • the hooking portion 232' is connected to the fixing portion 231' and is used to hook and cooperate with the stator 4'to achieve the hooking function.
  • the hook portion 232' of at least one hook 23' includes a plurality of elastic buckles 2321', and the plurality of elastic buckles 2321' are arranged at intervals to form an escape groove 233'.
  • adjacent elastic buckles 2321' can be close to each other under the squeezing force, thereby reducing the size of the hook 23', so that the hook 23' can quickly and smoothly realize the hooking cooperation with the stator 4', and after the hooking is completed, the elastic buckle 2321' will The reset deformation occurs, and it fits closely with the stator 4', thereby improving the connection strength.
  • a plurality of elastic buckles 2321' are distributed side by side, as shown in FIG. 35.
  • the multiple elastic buckles 2321' are distributed side by side and have a simple structure, which is convenient for processing and forming. Moreover, the hook 23' is hooked in one direction. During the assembly process, the hook 23' mainly exhibits elastic changes in the width direction. At this time, the corresponding matching structure on the stator 4'only needs to be provided with a slot 41', and it can Set at the edge of the stator 4', the structure is simple and the assembly is also convenient.
  • the plurality of elastic buckles 2321' are arranged in a ring shape.
  • the plurality of elastic buckles 2321' are arranged in a ring shape, and the hooks 23' form the form of elastic column buckles, which are hooked in multiple directions, and the hooks 23' mainly exhibit thickness changes during the assembly process.
  • the corresponding matching structure on the stator 4'needs to be provided with a clamping hole, the connection is relatively reliable, and the hook 23' is not easy to escape.
  • one end of the hooking portion 232' connected to the fixing portion 231' protrudes from the fixing portion 231', as shown in Fig. 44, and is connected to the frame 2'.
  • the hook portion 232' in this solution is also connected to the frame 2'and has a different connection direction with the frame 2', which increases the hook 23'
  • the connection area with the frame 2' also increases the direction of the connection force between the hook 23' and the frame 2', thereby further improving the connection strength of the hook 23' and the frame 2', and further improving the hook 23'
  • the reliability of use can effectively prevent the hook 23' from cracking, breaking or falling off.
  • a main body of a bus bar includes a skeleton 2'and a plurality of bus bars 3'.
  • the skeleton 2' is an insulating member, and the skeleton 2'includes a ring-shaped bracket 21' and a plurality of strip-shaped brackets 22' connected to the ring-shaped bracket 21', as shown in Figure 31, Figure 35, Figure 44 and Figure 45 .
  • Each bus bar 3' includes a main body portion 31' embedded in the ring-shaped bracket 21' and a plurality of connecting portions 32' connected to the main body portion 31' and protruding from the frame 2', as shown in FIGS. 44 and 45 Show.
  • the strip holder 22' is provided with a slot 221' for accommodating a part of the terminal 1', as shown in Figs. 30, 31, 44 and 45.
  • the slot 221' is provided with a avoidance notch 223'. As shown in Figs. 37 and 44, the avoidance notch 223' allows one end of the terminal 1'to bend and extend and protrude from the slot 221' to be connected to the connecting portion 32'.
  • the strip holder 22' is provided with at least one supporting mating surface 222' for supporting the terminal 1', as shown in Figs. 44 and 45. At least a part of the at least one supporting mating surface 222' is located in the slot 221', as shown in FIGS. 44 and 45, and the connecting portion 32', the supporting mating surface 222', and the entrance of the slot 221' are along the annular bracket 21' The axial directions are arranged in sequence.
  • the main body of the busbar provided in this embodiment, by adding a supporting mating surface 222' on the strip-shaped bracket 22', can provide the terminal 1'with a supporting force towards the female end, thereby preventing the terminal 1'from being mated with the female end.
  • the large deformation reduces the difficulty of assembly, thereby improving the assembly yield of the terminal 1'.
  • the bus bar main body includes a skeleton 2'and a plurality of bus bars 3'.
  • the frame 2' is an insulating part, which can be formed by injection molding, which supports multiple bus bars 3'and multiple terminals 1', and isolates adjacent bus bars 3'to provide electrical insulation;
  • the terminals that need to be connected together are electrically connected through the main body 31' to realize the confluence function; multiple terminals 1'are connected to multiple bus bars 3', as shown in Figure 46, each terminal 1
  • the terminals connected to the corresponding bus bar 3 are electrically connected, and the multiple terminals 1'are connected to the power source female terminal to form an electrical circuit to supply power to multiple windings of the motor stator.
  • the frame 2' includes a ring-shaped bracket 21' and a strip-shaped bracket 22'.
  • the ring-shaped bracket 21' is used to support a plurality of bus bars 3'and ensure the insulation between the plurality of bus bars 3'.
  • the bracket 22' is used to support a plurality of terminals 1'and ensure electrical insulation between the terminals 1'and other structures.
  • a slot 221' is provided on the strip support 22', and the slot 221' is provided with an escape notch 223'. After the frame 2'is formed, the terminal 1'can be directly inserted into the slot 221', which is more convenient for assembly.
  • both ends of the terminal 1' are located outside the slot 221', and are respectively used for connecting the power female terminal and the connecting portion 32'. Since the connecting portion 32', the supporting mating surface 222', and the entrance of the slot 221' are arranged in sequence along the axial direction of the annular bracket 21', and the gap 223' is avoided for one end of the terminal 1'to bend and extend and protrude from the insertion
  • the groove 221' can be connected to the connecting portion 32'.
  • both ends of the terminal 1' are located on both sides of the supporting mating surface 222' along the axial direction of the annular bracket 21', and the terminal 1'is opposite to the supporting mating surface 222'
  • the mating structure forms a stepped structure on the terminal 1'.
  • the supporting mating surface 222' supports and cooperates with this part of the terminal 1', so that the part of the terminal 1'above the supporting mating surface 222' will be supported by the frame 2'when it is subsequently inserted into the female end. , It can effectively prevent the terminal 1'from being excessively deformed under pressure.
  • the terminal 1' when the terminal 1'contacts and fits with the supporting mating surface 222' of the strip-shaped bracket 22', it indicates that the terminal 1'is assembled in place, thereby realizing the assembly of the terminal 1'and the frame 2'.
  • the assembly method is simple and the operation is convenient.
  • the matching between the corresponding part of the terminal 1'(defined as the supporting surface 131' of the terminal 1') and the supporting mating surface 222' also plays a role in positioning during the assembly process, can provide a sense of place, prompt the assembly to be in place, and further reduce It is difficult to assemble, and has a certain protective effect on the terminal 1'and the frame 2'.
  • the number of supporting mating surfaces 222' may be one or multiple, which is equal to and corresponds to the number of supporting surfaces 131' of the terminal 1'.
  • the supporting mating surface 222' can be completely located in the slot 221'; it can also be partly located in the slot 221' and partly located outside the slot 221', at this time the slot 221
  • the bottom wall of the' forms a part of the supporting mating surface 222', and the other part of the supporting mating surface 222' passes through the avoiding notch 223' to extend out of the slot 221', as shown in FIG.
  • the female end of the power supply is generally provided with a jack, and the terminal 1'adopts a plug-in fitting method.
  • the terminal 1' is inserted into the jack, the terminal 1'and the female end of the power supply come into physical contact, thereby achieving electrical connection.
  • the power female terminal can be set on the motor controller.
  • the shape of the insertion portion 122' and the socket of the terminal 1' can be designed as required.
  • the plug-in portion 122' has a common rectangular sheet structure (as shown in Fig. 38), and the jack is a corresponding rectangular hole.
  • the insertion portion 122' is provided with an escape groove, so that the insertion portion 122' includes two inserted pieces arranged side by side and spaced apart from each other, and at the same time, convex points are provided on both sides of the insertion portion 122' in the width direction.
  • the two inserts can be elastically deformed and approach each other, which facilitates the rapid insertion of the terminal 1'.
  • the bump card In the corresponding groove, or over the corresponding supporting point and abutting against the supporting point this can effectively prevent the terminal 1'from separating from the power female end.
  • width W'of the slot 221' in the thickness direction of the terminal 1' is configured to be greater than the thickness W1' of the terminal 1', as shown in FIG. 33.
  • the terminal 1' When the width of the slot 221' in the thickness direction of the terminal 1'is greater than the thickness of the terminal 1', the terminal 1'is in clearance fit with the slot 221', as shown in FIGS. 32 and 33, so that the terminal 1'is in the circumferential direction Deformation easily occurs in the upper and radial directions, which makes the terminal 1'have the ability to deform in the circumferential and radial directions, that is, flexibility, and it is also convenient for the terminal 1'to accurately align with the female end opening to meet the requirements of the terminal 1'and the female end. End assembly requirements.
  • a limiting slot 2211' is provided at the entrance of the slot 221', as shown in Figures 35, 44 and 45, the limiting slot 2211' is used to accommodate the supporting protrusions of the terminal 1', as shown in Figures 31 and 46 shown.
  • a limit slot 2211' is provided at the entrance of the slot 221', and the terminal 1'is correspondingly provided with a support protrusion.
  • the support protrusion will be embedded in the limit slot 2211' during the assembly process. When the terminal 1'is pressed, the support protrusion It can play a supporting role, thereby preventing the terminal 1'from being deformed due to local stress concentration.
  • the limiting groove 2211' is provided on at least one side of the slot 221' along the width direction of the terminal 1', as shown in FIGS. 44 and 45.
  • the limiting groove 2211' is provided on at least one side of the slot 221' along the width direction of the terminal 1', and the supporting protrusion is also provided on at least one side of the width direction of the terminal 1', which is convenient for directly using stamping and forming.
  • the supporting protrusion is integrally formed with the terminal 1', thereby simplifying the processing technology of the terminal 1'.
  • limiting grooves 2211' are symmetrically provided on both sides of the slot 221' along the width direction of the terminal 1', and support protrusions are symmetrically provided on both sides of the width direction of the terminal 1', which is beneficial to the balanced force of the terminal 1' , Thereby further improving the stability of the terminal 1'.
  • the width W2' of the limiting groove 2211' along the thickness direction of the terminal 1' is configured to be greater than the thickness W1' of the terminal 1', as shown in FIG. 33.
  • the supporting protrusion is generally the same thickness as the terminal 1', when the width of the limiting groove 2211' in the thickness direction of the terminal 1'is greater than the thickness of the terminal 1', after the assembly is completed, the supporting protrusion and the limiting groove 2211
  • The'clearance fit does not limit the deformation of the terminal 1'in the circumferential direction and the radial direction, which ensures that the terminal 1'has the ability to deform in the circumferential and radial directions, that is, the flexibility. It is convenient to accurately align the terminal 1'and the female end opening to meet the assembly requirements of the terminal 1'and the female end.
  • width W2' of the limiting groove 2211' along the thickness direction of the terminal 1' is configured to be smaller than the width W'of the slot 221' along the thickness direction of the terminal 1', as shown in FIGS. 33, 44, and 45 .
  • the gap between the terminal 1'and the slot 221' in the thickness direction of the terminal 1' is recorded as the first gap 226', and the gap between the supporting protrusion 121' and the limiting groove 2211' in the thickness direction of the terminal 1'
  • the gap is denoted as the second gap 227'. Since the width of the limiting groove 2211' in the thickness direction of the terminal 1'is smaller than the width of the slot 221' in the thickness direction of the terminal 1', when the thickness of the supporting protrusion 121' is equal to the thickness of the terminal 1', the second gap The width of 227' is smaller than the width of the first gap 226', as shown in FIG. 33.
  • the first gap 226' is relatively large, which is conducive to better deformation of the terminal 1'in the circumferential, radial, and vertical upward directions; while the second gap 227' is relatively small, which is conducive to preventing the second connecting section 12' It bends and loses stability when under pressure.
  • the supporting mating surface 222' is perpendicular to the axis of the annular bracket 21', as shown in FIGS. 44 and 45.
  • the supporting mating surface 222' is perpendicular to the axis of the ring bracket 21', and the supporting surface 131' of the terminal 1'is also perpendicular to the axis of the ring bracket 21'.
  • the structure of the terminal 1'and the strip bracket 22' are relatively Regular and easy to process and shape.
  • the supporting force provided by the supporting mating surface 222' to the terminal 1' can be parallel to the mating direction of the terminal 1'and the female end, and the supporting reliability is high.
  • the supporting mating surface 222' is inclined with respect to the axis of the annular bracket 21'.
  • the supporting mating surface 222' can also be arranged obliquely with respect to the axis of the annular bracket 21', and can also provide a component force parallel to the mating direction of the terminal 1'and the female end to prevent excessive deformation of the terminal 1'.
  • the thirteenth embodiment has the technical effects of the eleventh embodiment and the twelfth embodiment, which will not be repeated here.
  • At least one strip-shaped bracket 22' is provided with a positioning identification portion, and the positioning identification portion includes a reinforcing protrusion 224', as shown in FIG. 29, FIG. 44, and FIG.
  • the protrusion 224' is connected to the ring-shaped bracket 21' and the strip-shaped bracket 22'.
  • the frame 2' is provided with a plurality of hooks 23', as shown in Figs. 44 and 45. At least one hook 23' is provided with an escape groove 233', as shown in Figures 31 and 44, the escape groove 233' is used to make the hook 23' suitable for elastic deformation.
  • the hook 23' includes a fixing portion 231' and a hooking portion 232', as shown in FIG. 35.
  • the fixing portion 231' is connected to the frame 2', and the hooking portion 232' is connected to the fixing portion 231'.
  • the hooking portion 232' of at least one hook 23' includes a plurality of elastic buckles 2321' arranged at intervals. As shown in FIG. 35, an escape groove 233' is formed between adjacent elastic buckles 2321'.
  • a plurality of elastic buckles 2321' are distributed side by side, as shown in FIG. 35.
  • the plurality of elastic buckles 2321' are arranged in a ring shape.
  • one end of the hooking portion 232' connected to the fixing portion 231' protrudes from the fixing portion 231', as shown in FIG. 44, and is connected to the frame 2'.
  • the strip support 22' of the skeleton 2' protrudes outward from the ring support 21' along the radial direction of the ring support 21', the hook 23' and the strip support 22 'Connected, as shown in Figure 34, Figure 44 and Figure 45.
  • the hook 23' is connected to the radially outer side surface of the strip holder 22', as shown in Figs. 44 and 45.
  • top surface 234' of the hook 23' is inclined with respect to the radially outer side surface of the strip holder 22', as shown in FIGS. 44 and 47, and the top surface 234' approaches the hook 23 from the inside to the outside.
  • the direction of the'hooking portion 232' extends obliquely.
  • a plurality of hooks 23' are used to hook and cooperate with the groove 41' on the stator 4', as shown in FIG. 47.
  • a part of the plurality of hooks 23' is provided with a avoiding groove 233', the hook 23' with the avoiding groove 233' is recorded as the first hook, and the other hooks 23' are recorded as the second hook.
  • a bus bar includes: the bus bar main body as in the eleventh embodiment or the twelfth embodiment or the thirteenth embodiment and a plurality of terminals 1'.
  • the multiple terminals 1' are connected to the multiple bus bars 3'of the main body of the busbar, one end of the terminal 1'is connected to the connecting portion 32', the other end of the terminal 1'is used to connect the power female end, and the terminal 1'is provided with a supporting surface 131', the supporting surface 131' is in contact with the supporting mating surface 222'.
  • the bus bar provided in this embodiment includes the bus bar body of any one of the eleventh embodiment to the thirteenth embodiment, so it has all the beneficial effects of the eleventh embodiment to the thirteenth embodiment. No longer.
  • a terminal 1' (as shown in Figure 38, Figure 42 and Figure 43), used for the busbar of the motor 51', the terminal 1'includes: a first connecting section 11', a supporting section 13' and a second connecting section 12 ', as shown in Figure 30.
  • the supporting section 13' is connected to the first connecting section 11' in a turning manner. As shown in Figures 30 and 39, the supporting section 13' is provided with at least one supporting surface 131'.
  • the second connecting section 12' is connected to the other end of the supporting section 13' by turning, and the second connecting section 12' extends in a direction away from the first connecting section 11'.
  • the first connecting section 11', the supporting section 13', and the second The connecting sections 12' are sequentially arranged along the thickness direction of the first connecting section 11'.
  • the supporting surface 131' is provided on the side of the supporting section 13' away from the second connecting section 12', as shown in FIG. 30, so that the supporting surface 131' is suitable for being supported To provide supporting force to at least a part of the supporting section 13' and the second connecting section 12'.
  • the supporting effect of the supporting surface 131' of the supporting section 13' can be used to provide the terminal 1'with a supporting force toward the female end, thereby preventing the terminal 1'from contacting Excessive deformation occurs when the female end is mated, which reduces the difficulty of assembly, thereby improving the assembly yield of the terminal 1'.
  • the terminal 1' includes a first connecting section 11', a supporting section 13', and a second connecting section 12'.
  • the first connecting section 11' is used to connect to the connecting portion 32' of the bus bar 3', and the second connecting The section 12' is used for plug connection with the female end, and the supporting section 13' is located between the first connecting section 11' and the second connecting section 12' and plays a supporting role.
  • the supporting section 13' is connected to the first connecting section 11' at a turning point, and is also connected to the second connecting section 12' at turning, and the first connecting section 11', the supporting section 13' and the second connecting section 12' extend along the first
  • the connecting section 11' is arranged in the thickness direction, the position of the supporting section 13' forms a step structure on the terminal 1', and part of the surface of the step structure forms the supporting surface 131'.
  • the supporting surface 131' will converge with The frame 2'of the row is supported and matched, so that when it is subsequently inserted into the female end, it is supported by the frame 2', which can effectively prevent the terminal 1'from excessively deforming under pressure.
  • the female end of the power supply is generally provided with a jack, and the terminal 1'adopts a plug-in fitting method.
  • the terminal 1' is inserted into the jack, the terminal 1'and the female end of the power supply come into physical contact, thereby achieving electrical connection.
  • the power female terminal can be provided on the controller of the motor 51'.
  • the shape of the insertion portion 122' and the socket of the terminal 1' can be designed as required.
  • the plug-in portion 122' has a common rectangular sheet structure (as shown in Fig. 38), and the jack is a corresponding rectangular hole.
  • the insertion portion 122' is provided with an escape groove, so that the insertion portion 122' includes two inserted pieces arranged side by side and spaced apart from each other, and at the same time, convex points are provided on both sides of the insertion portion 122' in the width direction.
  • the two inserts can be elastically deformed and approach each other, which facilitates the rapid insertion of the terminal 1'.
  • the bump card In the corresponding groove, or over the corresponding supporting point and abutting against the supporting point this can effectively prevent the terminal 1'from separating from the power female end.
  • the second connecting section 12' is provided with a supporting protrusion 121', as shown in Figs. 31 and 40.
  • a supporting protrusion 121' is provided on the second connecting section 12'.
  • the supporting protrusion 121' can play a supporting role, thereby preventing the terminal 1'from being deformed due to local stress concentration.
  • the supporting protrusion 121' is provided on at least one side of the width direction of the second connecting section 12', as shown in Figs. 31 and 40.
  • the supporting protrusion 121' is provided on at least one side of the width direction of the second connecting section 12', so that it can be directly integrally formed with the terminal 1'by stamping and forming, thereby simplifying the processing technology of the terminal 1'.
  • Supporting protrusions 121' are provided symmetrically on both sides of the width direction of the second connecting section 12', which is beneficial to the balanced force of the terminal 1', and further improves the stability of the terminal 1'.
  • the supporting surface 131' and the first connecting section 11' are parallel to each other, as shown in FIG. 30.
  • the supporting surface 131' and the first connecting section 11' are parallel to each other, and the structure is relatively regular, which is convenient for processing and forming, and also for processing and forming the skeleton 2'of the busbar.
  • the supporting force received by the supporting surface 131' can be parallel to the mating direction with the female end, and the supporting reliability is high.
  • the supporting section 13' includes at least one L-shaped section, as shown in Figs. 30 and 39.
  • the supporting section 13' includes at least one L-shaped section, and the supporting section 13' has a right-angle stepped structure, and the supporting surface 131' can be parallel to the first connecting section 11'. Since the first connecting section 11' and the second connecting section 12' are generally perpendicular to each other, when the supporting section 13' includes an L-shaped section, the terminal 1'is in a double L shape as a whole, which is stable and simple in structure; When 13' includes two L-shaped sections, the terminal 1'has a three-L shape as a whole; when the supporting section 13' includes more L-shaped sections, the same applies, and so on.
  • the supporting surface 131' is inclined with respect to the first connecting section 11'.
  • the supporting surface 131' can also be arranged obliquely relative to the first connecting section 11', and can also provide a component force parallel to the mating direction with the female end to prevent excessive deformation of the terminal 1'.
  • the supporting section 13' may also be an inclined section, and the supporting surface 131' can be arranged obliquely with respect to the first connecting section 11'; or the supporting section 13' may also include multiple inclined sections, as long as it has a supporting surface 131', It is enough to support the terminal 1'.
  • first connecting section 11' and the second connecting section 12' are perpendicular to each other, as shown in FIGS. 30 and 39, the first connecting section 11' is provided with a welding surface 111', and the second connecting section 12' is provided with a plug-in portion 122' (as shown in Figure 38, Figure 42 and Figure 43).
  • the first connecting section 11' and the second connecting section 12' are perpendicular to each other, and the first connecting section 11' and the second connecting section 12' are respectively provided with a welding surface 111' and an insertion portion 122', which is convenient for the first connecting section 11' is connected to the connecting portion 32' of the bus bar 3'by welding, which also facilitates the plug connection of the second connecting section 12' with the female end.
  • the terminal 1' Define the direction that the female end is inserted into the terminal 1'as the downward direction.
  • the terminal 1' is only restricted by the welding position.
  • the welding point and the point of action of the pulling force It is not in a line, so it will produce the effect of torque (force multiplied by the lever arm), which makes the terminal 1'easily deformed by pulling force (that is, the terminal 1'has the ability to deform upwards), which is convenient for rational adjustment of the terminal 1 'The relative position of the female end.
  • the terminal 1' is pressed downward, the supporting surface 131' is supported upward, so that the terminal 1'is not easily deformed and prevents the terminal 1'from deforming downward.
  • the female end slotted and the terminal 1' have an interference fit. Therefore, when subjected to downward pressure, the terminal 1'must not be greatly deformed, otherwise the terminal 1'cannot be inserted into the female end slot. Due to the influence of tolerances, when the female end is slotted and the terminal 1'is mated, precise positioning cannot be guaranteed. Generally, the mating can only be ensured by setting a guide on the female end or the terminal 1'. Therefore, the terminal 1'has the ability to deform in the vertical upward direction, that is, flexibility, which facilitates the accurate alignment of the terminal 1'and the female end opening to meet the assembly requirements of the terminal 1'and the female end.
  • the first connecting section 11' extends obliquely along the circumferential direction of the busbar, as shown in FIG. 41.
  • the extending direction of the first connecting section 11' is not vertically arranged relative to the end of the second connecting section 12' connecting the supporting section 13', but extends obliquely along the circumferential direction of the busbar. It is beneficial to extend the length of the first connecting section 11', which not only ensures that the first connecting section 11' can have sufficient contact surface with the corresponding connecting portion 32' of the busbar to ensure reliable connection, but also helps to extend the terminal 1'when the terminal 1'is stressed.
  • the length of the force arm is beneficial to improve the flexible deformation ability of the terminal 1', and it is convenient to design the length and shape of the support section 13' reasonably according to the needs to optimize the product performance.
  • a bus bar as shown in Figure 29, Figure 34 and Figure 46, includes a frame 2', a plurality of bus bars 3'and a plurality of terminals 1'as in the fifteenth embodiment.
  • the framework 2' is an insulating member, and the framework 2'is provided with a supporting and mating surface 222', as shown in Figs. 30, 44 and 45.
  • Each bus bar 3' includes a main body portion 31' embedded in the frame 2'and a plurality of connecting portions 32' connected to the main body portion 31' and protruding from the frame 2', as shown in Figs. 30 and 31.
  • the plurality of terminals 1' are connected to the plurality of bus bars 3', and the first connecting section 11' of the terminal 1'is connected to the connecting portion 32', as shown in FIG. 30.
  • the second connecting section 12' of the terminal 1' is used to connect the power female terminal, and the supporting surface 131' of the terminal 1'is in contact with the supporting mating surface 222'.
  • the bus bar provided in this embodiment can use the connecting portions 32' of the multiple bus bars 3'to connect the terminals of the multiple windings of the motor 51' and the stator 4', and use the good electrical conductivity of the bus bar 3'to achieve correspondence
  • the electrical connection of the terminal does not need to directly connect the corresponding terminal, thus reducing the wiring difficulty, facilitating the efficient and rapid operation of the production line, and improving the production efficiency of the product.
  • the bus bar includes a frame 2', a plurality of bus bars 3', and a plurality of terminals 1'.
  • the frame 2' is an insulator and can be molded by injection molding. Play a supporting role and isolate the adjacent bus bars 3'to provide electrical insulation; a plurality of bus bars 3'are conductors, and each bus bar 3'includes a main body 31' and a plurality of connecting portions 32' ,
  • the multiple connecting portions 32' of each bus bar 3'are used to connect the terminals of the multiple windings of the motor stator 4'that need to be connected together, and the electrical connection of these terminals is realized through the main body portion 31' to achieve confluence Function; multiple terminals 1'are connected to multiple bus bars 3', each terminal 1'is electrically connected to the terminal connected to the corresponding bus bar 3', and multiple terminals 1'are connected to the power female end to form an electrical circuit, which is The multiple windings of the motor 51'stator 4'are powered.
  • bus bar of the present solution includes the terminal 1'of any one of the above embodiments, it has all the beneficial effects of any one of the above embodiments, and will not be repeated here.
  • this embodiment also includes the content of the thirteenth embodiment, so it has the technical effect of the thirteenth embodiment, and will not be repeated here.
  • the skeleton 2' includes a ring-shaped bracket 21' and a plurality of strip-shaped brackets 22' integrally connected with the ring-shaped bracket 21', as shown in Figs. 31, 35, 44 and 45.
  • the main body 31' of all the bus bars 3' is embedded in the ring-shaped bracket 21', the plurality of strip-shaped brackets 22' correspond to the plurality of terminals 1'one to one, and the second connecting section 12 of each terminal 1' A part of 'is embedded in the corresponding strip holder 22', as shown in FIG. 46.
  • the strip support 22' is provided with a slot 221', as shown in Figs. 30, 31, 44 and 45.
  • the terminal 1' is mated with the socket 221'.
  • the slot 221' is provided with an avoiding notch 223', as shown in Figs. 37 and 44, the avoiding notch 223' is used to avoid the supporting section 13' and the first connecting section 11' of the terminal 1'.
  • the strip support 22' is provided with at least one supporting mating surface 222', and at least a part of the at least one supporting mating surface 222' is located in the slot 221'.
  • terminal 1' is in clearance fit with the slot 221', as shown in FIGS. 32 and 33.
  • a limiting slot 2211' is provided at the entrance of the slot 221', as shown in Figure 35, Figure 44 and Figure 45, the limiting slot 2211' is used to accommodate the supporting protrusion 121' of the terminal 1', as shown in Figure 31 And shown in Figure 46.
  • the supporting protrusion 121' is in clearance fit with the limiting groove 2211', as shown in FIG. 33.
  • the gap between the terminal 1'and the slot 221' in the thickness direction of the terminal 1' is recorded as the first gap 226'; the gap between the supporting protrusion 121' and the limiting groove 2211' is along the thickness direction of the terminal 1'
  • the gap of is recorded as the second gap 227'; the width of the second gap 227' is smaller than the width of the first gap 226', as shown in FIG. 33.
  • At least one strip-shaped bracket 22' is provided with a positioning identification portion, and the positioning identification portion includes a reinforced protrusion 224', as shown in FIGS. 29, 44 and 45, the reinforced protrusion 224' and the ring-shaped bracket 21' and The strip supports 22' are connected.
  • the frame 2' is provided with a plurality of hooks 23', as shown in Figs. 44 and 45. At least one hook 23' is provided with an escape groove 233', as shown in Figures 31 and 44, the escape groove 233' is used to make the hook 23' suitable for elastic deformation.
  • the hook 23' includes a fixing portion 231' and a hooking portion 232', as shown in FIG. 35.
  • the fixing portion 231' is connected to the frame 2', and the hooking portion 232' is connected to the fixing portion 231'.
  • the hooking portion 232' of at least one hook 23' includes a plurality of elastic buckles 2321' arranged at intervals. As shown in FIG. 35, an escape groove 233' is formed between adjacent elastic buckles 2321'.
  • a plurality of elastic buckles 2321' are distributed side by side, as shown in FIG. 35.
  • the plurality of elastic buckles 2321' are arranged in a ring shape.
  • one end of the hooking portion 232' connected to the fixing portion 231' protrudes from the fixing portion 231', as shown in FIG. 44, and is connected to the frame 2'.
  • the strip support 22' of the skeleton 2' protrudes outward from the ring support 21' along the radial direction of the ring support 21', the hook 23' and the strip support 22 'Connected, as shown in Figure 34, Figure 44 and Figure 45.
  • the hook 23' is connected to the radially outer side surface of the strip holder 22', as shown in Figs. 44 and 45.
  • top surface 234' of the hook 23' is inclined with respect to the radially outer side surface of the strip holder 22', as shown in FIGS. 44 and 47, and the top surface 234' approaches the hook 23 from the inside to the outside.
  • the direction of the'hooking portion 232' extends obliquely.
  • a plurality of hooks 23' are used to hook and cooperate with the groove 41' on the stator 4', as shown in FIG. 47.
  • a part of the plurality of hooks 23' is provided with a avoiding groove 233', the hook 23' with the avoiding groove 233' is recorded as the first hook, and the other hooks 23' are recorded as the second hook.
  • the terminal is the terminal as described in the fourteenth embodiment, so it has the technical effect of the fourteenth embodiment, and will not be repeated here.
  • the terminal 1' includes: a first connecting section 11', a supporting section 13' and a second connecting section 12', as shown in FIG.
  • the supporting section 13' is connected to the first connecting section 11' in a turning manner. As shown in Figures 30 and 39, the supporting section 13' is provided with at least one supporting surface 131'.
  • the second connecting section 12' is connected to the other end of the supporting section 13' by turning, and the second connecting section 12' extends in a direction away from the first connecting section 11'.
  • the first connecting section 11', the supporting section 13', and the second The connecting sections 12' are sequentially arranged along the thickness direction of the first connecting section 11'.
  • the supporting surface 131' is provided on the side of the supporting section 13' away from the second connecting section 12', as shown in FIG. 30, so that the supporting surface 131' is suitable for being supported To provide supporting force to at least a part of the supporting section 13' and the second connecting section 12'.
  • the second connecting section 12' is provided with supporting protrusions 121', as shown in Figs. 31 and 40.
  • the supporting protrusion 121' is provided on at least one side of the width direction of the second connecting section 12', as shown in Figs. 31 and 40.
  • the supporting surface 131' and the first connecting section 11' are parallel to each other, as shown in FIG. 30.
  • the supporting section 13' includes at least one L-shaped section, as shown in Figs. 30 and 39.
  • the supporting surface 131' is inclined with respect to the first connecting section 11'.
  • first connecting section 11' and the second connecting section 12' are perpendicular to each other, as shown in FIGS. 30 and 39, the first connecting section 11' is provided with a welding surface 111', and the second connecting section 12' is provided with a plug-in portion 122' (as shown in Figure 38, Figure 42 and Figure 43).
  • the first connecting section 11' extends obliquely along the circumferential direction of the busbar, as shown in FIG. 41.
  • the strip holder 22' is provided with a slot 221', as shown in Figs. 30, 31, 44 and 45.
  • the terminal 1' is mated with the socket 221'.
  • the slot 221' is provided with an avoiding notch 223', as shown in Figs. 37 and 44, the avoiding notch 223' is used to avoid the supporting section 13' and the first connecting section 11' of the terminal 1'.
  • the strip support 22' is provided with at least one supporting mating surface 222', and at least a part of the at least one supporting mating surface 222' is located in the slot 221'.
  • a slot 221' is opened on the strip support 22', and the slot 221' has a notch 223' to ensure that the terminal 1'can be directly inserted into the slot 221' after the frame 2'is formed.
  • the supporting surface 131' is in contact with the supporting mating surface 222' of the strip-shaped bracket 22', it indicates that the terminal 1'is assembled in place, thereby realizing the assembly of the terminal 1'and the frame 2'.
  • the assembly method is simple and the operation is convenient.
  • the supporting surface 131' and the supporting mating surface 222' also play a role in positioning during the assembly process, can provide a sense of in place, prompt the assembly to be in place, further reduce the difficulty of assembly, and play a certain role in the terminal 1'and the frame 2' Protective effects.
  • terminal 1' is in clearance fit with the slot 221', as shown in FIGS. 32 and 33.
  • the clearance fit between the terminal 1'and the slot 221' makes the terminal 1'easy to deform in the circumferential direction and the radial direction, which makes the terminal 1'have the ability to deform in the circumferential and radial directions, that is, the flexibility. It is convenient to accurately align the terminal 1'and the female end opening to meet the assembly requirements of the terminal 1'and the female end.
  • a limiting slot 2211' is provided at the entrance of the slot 221', as shown in Figure 35, Figure 44 and Figure 45, the limiting slot 2211' is used to accommodate the supporting protrusion 121' of the terminal 1', as shown in Figure 31 And shown in Figure 46.
  • the limiting groove 2211' at the entrance of the slot 221' is matched with the supporting protrusion 121' of the terminal 1'to support the terminal 1', thereby preventing the terminal 1'from unstable deformation due to local stress concentration.
  • the supporting protrusion 121' is in clearance fit with the limiting groove 2211', as shown in FIG. 33.
  • the supporting protrusion 121' is in clearance fit with the limiting groove 2211', and does not limit the deformation of the terminal 1'in the circumferential direction and the radial direction, which ensures that the terminal 1'has the ability to deform in the circumferential and radial directions, that is, flexibility Capability, it is also convenient for the terminal 1'and the female end to be accurately aligned to meet the assembly requirements of the terminal 1'and the female end.
  • the gap between the terminal 1'and the slot 221' in the thickness direction of the terminal 1' is recorded as the first gap 226'; the gap between the supporting protrusion 121' and the limiting groove 2211' is along the thickness direction of the terminal 1'
  • the gap of is recorded as the second gap 227'; the width of the second gap 227' is smaller than the width of the first gap 226', as shown in FIG. 33.
  • the first gap 226' is relatively large, which is conducive to better deformation of the terminal 1'in the circumferential, radial, and vertical upward directions; while the second gap 227' is relatively small, which is conducive to preventing the second connecting section 12' It bends and loses stability when under pressure.
  • a motor 51' as shown in Fig. 47, includes a motor main body and a bus bar as in the fourteenth, sixteenth or seventeenth embodiment.
  • the motor body includes a stator 4', the stator 4'is provided with a winding, and the winding has two terminals.
  • the connecting portion 32' of the bus bar is connected to the terminal.
  • motor 51' provided in this embodiment includes the bus bar of the fourteenth embodiment or the sixteenth embodiment or the seventeenth embodiment, it has all the beneficial effects of any of the foregoing embodiments, and will not be repeated here.
  • the number of windings is 12, and the 12 windings are connected in a star connection.
  • the star connection is adopted. It is necessary to connect the 12 wire ends of the start ends of the 12 windings together, and connect the end ends of the 1, 4, 7, 10 windings, 2, 5, 8, The ending ends of the 11 windings and the ending ends of the 3, 6, 9, and 12 windings are connected together, so the wiring method is very complicated. Using the solution of the present application can effectively reduce the wiring difficulty, and the wiring method is simple and reliable.
  • the number of windings is not limited to 12, but can also be 9, 15, etc.; the connection method of the windings is not limited to the above method, and may also be delta connection or other methods.
  • An electric power steering system 5' as shown in Fig. 48, includes a motor 51' and a control device 52' as in the eighteenth embodiment, and the control device 52' is electrically connected to the motor 51'.
  • the electric power steering system 5' provided in this embodiment includes the motor 51' of the eighteenth embodiment, it has all the beneficial effects of the eighteenth embodiment, and will not be repeated here.
  • control device 52' includes, but is not limited to, a vehicle speed sensor, an electronic control unit (ECU, Electronic Control Unit, also known as “travel computer”, “vehicle computer”, etc.).
  • ECU Electronic Control Unit
  • travel computer also known as "travel computer”
  • vehicle computer also known as "vehicle computer”
  • EPS Electric Power Steering
  • HPS Hydrophilic Power Steering
  • ECU electronic control unit
  • a vehicle 6' as shown in Fig. 49, includes a vehicle body 61' and a motor 51' as in the eighteenth embodiment.
  • the motor 51' is installed in the vehicle body 61'.
  • the vehicle 6'provided in this embodiment includes the motor 51' of the eighteenth embodiment, it has all the beneficial effects of the eighteenth embodiment described above, and will not be repeated here.
  • An 8P12S permanent magnet motor 51' includes a bus bar with flexible terminals 1'.
  • busbar is first integrally injected, and the molding diagram after injection is shown in Figure 44 and Figure 45.
  • the injection frame 2' reserves a slot 221' to facilitate subsequent assembly of the terminal 1', as shown in FIG. 46.
  • Three hooks are evenly distributed on the outer ring of the skeleton 2', which are numbered first hook, second hook, and third hook. Wherein, the first hook and the second hook are slotted in the middle, the total width is B1', and the third hook is not slotted in the middle, and the total width is B2'.
  • three hooks need to be hooked into the frame slot of the stator 4'(that is, the slot 41' of the stator 4') in sequence, and the frame slot width of the stator 4'is B3'.
  • the design size is now B2' ⁇ B3' ⁇ B1'.
  • the third hook can be easily hooked into the slot without interference, while the first hook and the second hook interfere with the notch and need to be squeezed and deformed by the side to narrow the overall width of the first hook and the second hook To hook into the slot.
  • the advantage of this design is that after the first hook and the second hook are hooked into the groove, due to the action of elastic force, the sides of the first hook and the second hook are closely attached to the side of the notch and have a certain binding force. Therefore, the assembly of the busbar will be more reliable.
  • the conventional method is to design the width of the hook to be smaller than the width of the notch, that is, between the hook and the notch. Clearance fit. This design will cause two problems: 1. If the gap is too large, the busbar is easy to loosen; 2. If the gap is too small, due to the dimensional tolerance and position tolerance of the hook and the notch, it is likely that a certain hook is not easy put into a.
  • the shape of the terminal 1' is designed as a double L shape, as shown in Figure 38, Figure 42 and Figure 43, and assembled into the reserved slot of the busbar frame 2', as shown in Figure 46.
  • the supporting mating surface 222' of the frame 2' supports the terminal 1'and protects the terminal 1'from deformation.
  • the two supporting protrusions 121' of the terminal 1' protect the terminal 1'from buckling deformation when it receives downward pressure.
  • the terminal 1'and the frame 2'of the busbar have a clearance fit in both the radial direction and the circumferential direction, so the force deformation in these two directions is easy.
  • This design simulates the force when the terminal 1'is plugged into the female end.
  • the female end slotted and the terminal 1'interference fit. Therefore, when the terminal 1'is subjected to vertical pressure, no major deformation is allowed. Due to the influence of tolerance, when the female end is slotted and the terminal 1'is mated, precise positioning cannot be guaranteed, and the mating can only be ensured by setting a guide on the female end or the terminal 1'. Therefore, the terminal 1'has the ability to deform in the circumferential, radial and vertical upward directions, that is, flexibility, which can effectively reduce the difficulty of assembly and improve the assembly yield. This design just meets the above assembly requirements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

本申请提出了汇流排、汇流排主体、电机、电动助力转向系统和车辆。汇流排包括:骨架,骨架为绝缘件;多个汇流条,每个汇流条包括内嵌在骨架中且沿骨架的周向方向延伸的主体部和与主体部相连并外凸于骨架的多个连接部,多个连接部用于连接电机定子绕组的接线端;多个端子,与多个汇流条相连,用于连接电源;其中,所有汇流条的主体部沿骨架的轴向方向层叠排布且相互间隔分开,所有汇流条的连接部沿骨架的周向方向间隔分布且所有汇流条的连接部远离定子绕组的端面在骨架的轴向方向上保持齐平。上述方案既便于控制各接线端的剥漆位置,又便于产线上对接线端与连接部进行焊接,还便于剪掉多余线头,从而提高生产效率,并提高产品的一致性。

Description

汇流排、汇流排主体、电机、电动助力转向系统和车辆
本申请要求于2019年08月20日提交到中国国家知识产权局、申请号为“201910770454.X”、申请名称为“汇流排、电机及车辆”、于2019年08月20日提交到中国国家知识产权局、申请号为“201921354472.1”、申请名称为“汇流排、电机及车辆”、于2019年08月20日提交到中国国家知识产权局、申请号为“201910770460.5”、申请名称为“汇流排、电机及车辆”、于2019年08月20日提交到中国国家知识产权局、申请号为“201921354424.2”、申请名称为“汇流排、电机及车辆”、于2019年08月20日提交到中国国家知识产权局、申请号为“201910770966.6”、申请名称为“汇流排、电机及车辆”、于2019年08月20日提交到中国国家知识产权局、申请号为“201921355173.X”、申请名称为“汇流排、电机及车辆”、于2020年02月25日提交到中国国家知识产权局、申请号为“202010115588.0”、申请名称为“端子、汇流排、电机、电动助力转向系统和车辆”、于2020年02月25日提交到中国国家知识产权局、申请号为“202020205586.6”、申请名称为“端子、汇流排、电机、电动助力转向系统和车辆”、于2020年02月25日提交到中国国家知识产权局、申请号为“202020205583.2”、申请名称为“汇流排主体、汇流排、电机、电动助力转向系统和车辆”、于2020年02月25日提交到中国国家知识产权局、申请号为“202010115589.5”、申请名称为“汇流排主体、汇流排、电机、电动助力转向系统和车辆”、于2020年02月25日提交到中国国家知识产权局、申请号为“202020205579.6”、申请名称为“汇流排主体、汇流排、电机、电动助力转向系统和车辆”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电机技术领域,具体而言,涉及汇流排、汇流排主体、电机、电动助力转向系统和车辆。
背景技术
电机定子一般具有多个绕组,每个绕组具有起始端和结束端共两个接线端,不同绕组的起始端和结束端之间需要按照产品要求相互连接以保证电机正常运行,接线形式较为复杂,不利于产线快速高效操作,降低了产品的生产效率。
发明内容
本申请旨在至少解决现有技术或相关技术中存在的技术问题之一。
为此,本申请的第一个方面在于提出了一种汇流排。
本申请的第二个方面在于提出了一种汇流排主体。
本申请的第三个方面在于提出了另一种汇流排。
本申请的第四个方面在于提出了一种电机。
本申请的第五个方面在于提出了另一种电机。
本申请的第六方面在于提出了一种电动助力转向系统。
本申请的第七个方面在于提出了一种车辆。
有鉴于此,根据本申请的第一个方面,提出了一种汇流排,包括:骨架,该骨架为绝缘件;多个汇流条,每个该汇流条包括内嵌在该骨架中且沿该骨架的周向方向延伸的主体部和与该主体部相连并外凸于该骨架的多个连接部,多个该连接部用于连接电机定子绕组的接线端;多个端子,与多个该汇流条相连,用于连接电源;其中,所有该汇流条的主体部沿该骨架的轴向方向层叠排布且相互间隔分开,所有该汇流条的连接部沿该骨架的周向方向间隔分布,且所有该汇流条的连接部远离该定子绕组的端面在该骨架的轴向方向上保持齐平。
根据本申请第一个方面提供的汇流排,能够利用多个汇流条的连接部来连接电机定子的多个绕组的各接线端,并利用汇流条良好的导电性能实现对应接线端的电性连接,而无需将对应的接线端直接相连,因而降低了接线难度,便于产线高效快速操作,有利于提高产品的生产效率。同时,所有的连接部沿骨架的周向方向间隔分布,与电机定子上沿周向间隔分布的多个绕组的接线端保持对应,且所有的连接部远离定子绕组的端面在骨架的轴向方向上保持齐平,则电机定子的多个绕组的各接线端可以保持一致的形状及尺寸,既便于控制各接线端的剥漆位置,又便于产线上对接线端与连接部进行焊接,还便于焊接完成后剪掉多余线头,从而有利于显著提高生产效率,缩短生产周期,并提高产品的一致性。
根据本申请的第二个方面,提出了一种汇流排主体,包括:骨架,该骨架为绝缘件,该骨架包括环状支架和多个与该环状支架相连的条状支架;多个汇流条,每个该汇流条包括内嵌在该环状支架内的主体部和与该主体部相连并外凸于该骨架的多个连接部;其中,该条状支架设有用于容纳端子的一部分的插槽,该插槽设有避让缺口,该避让缺口供该端子的一端弯折延伸并凸出于该插槽以与该连接部相连,该条状支架设有至少一个用于支撑该端子的支撑配合面,至少一个该支撑配合面的至少一部分位于该插槽内,且该连接部、该支撑配合面及该插槽的入口沿该环状支架的轴向依次排布。
根据本申请的第三个方面,提出了另一种汇流排,包括:如第二个方面的汇流排主体;和多个端子,与该汇流排主体的多个汇流条相连,该端子的一端与该连接部相连,该端子的另一端用于连接电源母端。
根据本申请的第四个方面,提出了一种电机,包括:电机主体,包括定子,该定子设 有绕组,该绕组具有两个接线端;和如第一个方面的汇流排,该汇流排的连接部与该接线端相连。
根据本申请的第五个方面,提出了另一种电机,包括:电机主体,包括定子,该定子设有绕组,该绕组具有两个接线端;和如第三个方面中任一项的汇流排,该汇流排的连接部与该接线端相连。
根据本申请的第六个方面,提出了一种电动助力转向系统,包括:如第五个方面中的电机;和控制装置,与该电机电连接。
根据本申请的第七个方面,提出了一种车辆,包括:车体;和第四个方面或第五个方面的电机,安装在该车体中。
本申请的附加方面和优点将在下面的描述部分中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是本申请一些实施例提供的U相汇流条的结构示意图;
图2是图1所示U相汇流条的俯视结构示意图;
图3是图2所示U相汇流条的剖视结构示意图;
图4是本申请一些实施例提供的V相汇流条的结构示意图;
图5是图4所示V相汇流条的俯视结构示意图;
图6是图5所示V相汇流条的剖视结构示意图;
图7是本申请一些实施例提供的W相汇流条的结构示意图;
图8是图7所示W相汇流条的俯视结构示意图;
图9是图8所示W相汇流条的剖视结构示意图;
图10是本申请一些实施例提供的相性汇流条与端子连接后的俯视结构示意图;
图11是图10中A-A向的剖视结构示意图;
图12是图10所示结构的主视示意图;
图13是本申请一些实施例提供的中性汇流条的立体结构示意图;
图14是图13所示中性汇流条的俯视结构示意图;
图15是图14中B-B向的剖视结构示意图;
图16是本申请一些实施例提供的中性汇流条、W相汇流条以及对应的一个端子的装配示意图;
图17是图16是本申请一些实施例提供的中性汇流条、W相汇流条、V相汇流条以及对应的两个端子的装配示意图;
图18是本申请一些实施例提供的中性汇流条、W相汇流条、V相汇流条、U相汇流条 以及对应的3个端子的装配示意图;
图19是本申请一些实施例提供的汇流排的主视结构示意图;
图20是本申请一些实施例提供的汇流排的俯视结构示意图;
图21是图20中C-C向的剖视结构示意图;
图22是图20中汇流排另一个部位的局部剖视结构示意图;
图23是图20中D-D向的剖视结构示意图;
图24是本申请一些实施例提供的电机的局部俯视结构示意图;
图25是图24中E-E向的剖视结构示意图;
图26是本申请一些实施例提供的电机定子绕组以及接线端的分布示意图;
图27是图26所示电机的绕组接线示意图;
图28是图26所示电机的电路连接示意图。
其中,图1至图26中的附图标记与部件名称之间的对应关系为:
1骨架,11环状支架,12条状支架,13卡钩,2汇流条,21主体部,211第一端,212第二端,22连接部,221延伸片,222连接片,223弯折片,23延伸部,24中性汇流条,251U相汇流条,252V相汇流条,253W相汇流条,26限位槽,3端子,31延伸段,32连接段,4电机主体,41接线端,42定子。
图29是本申请一些实施例提供的汇流排的俯视结构示意图;
图30是图29中A’-A’向的剖视结构示意图;
图31是图1中B’-B’向的剖视结构示意图;
图32是图31中C’-C’向的剖视结构示意图;
图33是图31中D’-D’向的剖视结构示意图;
图34是本申请一些实施例提供的汇流排去掉端子后的结构示意图;
图35是图34中E’-E’向的剖视结构示意图;
图36是图34中F’-F’向的剖视结构示意图;
图37是图34中G’-G’向的剖视结构示意图;
图38是本申请一些实施例提供的端子的一个立体结构示意图;
图39是图38所示端子的左视结构示意图;
图40是图38所示端子的主视结构示意图;
图41是图38所示端子的俯视结构示意图;
图42是图38所示端子另一个视角的立体结构示意图;
图43是图38所示端子又一个视角的立体结构示意图;
图44是本申请一些实施例提供的汇流排去掉端子后的立体结构示意图;
图45是图44所示结构另一个视角的示意图;
图46是本申请一些实施例提供的汇流排的立体结构示意图;
图47是本申请一些实施例提供的电机的局部剖视结构示意图;
图48是本申请一些实施例提供的电动助力转向系统的示意框图;
图49是本申请一些实施例提供的车辆的示意框图。
其中,图29至图49中的附图标记与部件名称之间的对应关系为:
1’端子,11’第一连接段,111’焊接面,12’第二连接段,121’支撑凸起,122’插接部,13’支撑段,131’支撑面;
2’骨架,21’环状支架,22’条状支架,221’插槽,2211’限位槽,222’支撑配合面,223’避让缺口,224’加强凸起,226’第一间隙,227’第二间隙,23’卡钩,231’固定部,232’钩挂部,2321’弹性卡扣,233’避让槽,234’顶端面;
3’汇流条,31’主体部,32’连接部;
4’定子,41’卡槽;
5’电动助力转向系统,51’电机,52’控制装置;
6’车辆,61’车体。
具体实施方式
为了能够更清楚地理解本申请的上述目的、特征和优点,下面结合附图和具体实施方式对本申请进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的其他方式来实施,因此,本申请的保护范围并不限于下面公开的具体实施例的限制。
实施例一
一种汇流排,包括:骨架1、多个汇流条2和多个端子3,如图20所示。
具体地,骨架1为绝缘件。
每个汇流条2包括主体部21和多个连接部22,如图1至图9以及图13和图14所示。其中,主体部21内嵌在骨架1中(如图19和图20所示),且沿骨架1的周向方向延伸,如图1、图2、图4、图5、图7、图8、图13和图14所示;多个连接部22与主体部21相连并外凸于骨架1,如图20所示,用于连接电机定子42绕组的接线端41。
多个端子3与多个汇流条2相连,如图16至图18所示,用于连接电源。
其中,所有汇流条2的主体部21沿骨架1的轴向方向层叠排布(如图16至图18所示),且相互间隔分开(如图21至图23所示),所有汇流条2的连接部22沿骨架1的周向方向间隔分布,且所有汇流条2的连接部远离定子绕组的端面在骨架1的轴向方向上保持齐平,如图18和图19所示。
本实施例提供的汇流排,能够利用多个汇流条2的连接部22来连接电机定子42的多个绕组的各接线端41,并利用汇流条2良好的导电性能实现对应接线端41的电性连接,而无需将对应的接线端41直接相连。由此降低了接线难度,便于产线高效快速操作,有利 于提高产品的生产效率。
同时,所有的连接部22沿骨架1的周向方向间隔分布,与电机定子42上沿周向间隔分布的多个绕组的接线端41保持对应,且所有的连接部22远离定子绕组的端面在骨架1的轴向方向上保持齐平,则电机定子42的多个绕组的各接线端41可以保持一致的形状及尺寸。这样既便于控制各接线端41的剥漆位置,又便于产线上对接线端41与连接部22进行焊接,还便于焊接完成后剪掉多余线头,从而有利于显著提高生产效率,缩短生产周期,并提高产品的一致性。
具体而言,汇流排包括骨架1、多个汇流条2和多个端子3。骨架1是绝缘件,可以采用注塑方式成型,对多个汇流条2以及多个端子3起到支撑作用,并隔离相邻的汇流条2,起到电性绝缘作用。多个汇流条2均为导体,每个汇流条2包括主体部21和多个连接部22。每个汇流条2的多个连接部22用于连接电子定子42的多个绕组中需要连接在一起的接线端41,并通过主体部21实现这些接线端41的电性连接,实现汇流功能。
多个端子3与多个汇流条2相连,且端子3可以与对应的汇流条通过一体成型的方式相连,也可以分别成型然后安装在对应的汇流条上实现连接。每个端子3与对应汇流条2连接的接线端41实现电性连接,多个端子3连接电源形成电回路,为电机定子42的多个绕组供电。其中,多个汇流条2的主体部21沿骨架1的轴向方向层叠排布,则多个主体部21的径向尺寸可以保持一致。这样,只需将连接有端子3的多个汇流条2通过简单叠放的方式排布在一起,如图16和图17所示,保证所有的连接部22沿骨架1的周向方向间隔分布,且所有的连接部22远离定子绕组的端面在轴向方向上保持齐平,且多个端子3的位置正确,如图18所示,然后通过一体注塑成型的方式加工出骨架1即可,加工工艺较为简单,骨架1的结构也较为简单。
由于制得的汇流排的所有连接部22沿骨架1的周向方向间隔分布,如图20所示,与电机定子42的多个接线端41的位置保持对应,如图24所示,因此无需将接线端41预留很长的长度以保证其能够延伸到其他接线端41的位置与其他接线端41实现连接。这样既缩短了接线端41的长度,又可以有效防止接线过程中接线端41发生缠绕或者混淆,从而降低了接线难度。并且所有的连接部22远离定子绕组的端面在骨架1的轴向方向上保持齐平(即:所有的连接部22远离定子绕组的端面位于垂直于骨架1的中心轴线的同一个平面上),如图19所示,这样,所有的绕组的接线端41也可以保持齐平,预留同样的长度,进行焊接,焊接完成后在同样的位置剪掉多余的线头,由此实现接线作业的高度一致性。如此,既便于人工操作,又便于机器操作,因而有利于显著提高产线生产效率。
在一个实施例中,汇流条2的材质为铜,铜的导电性能较好,且价格相对低廉。在一个具体实施例中,汇流条2的材质为H65黄铜,易于冲压成型,且具有足够的硬度。
进一步地,所有汇流条2的连接部22靠近定子绕组的端面在骨架1的轴向方向上保持齐平,使所有的连接部22在骨架1的轴向方向上保持齐平。
所有汇流条2的连接部22靠近定子绕组的端面在骨架1的轴向方向上也保持齐平(即: 所有的连接部22靠近定子绕组的端面位于垂直于骨架1的中心轴线的同一个平面上),这样所有的连接部22在骨架1的轴向方向上保持齐平,这样,接线过程中可以在同样的位置剥掉漆包线外侧的漆皮进行焊接,进一步提高了接线作业的一致性。同时,还使得所有的连接部22可以采用同样的形状,提高了产品的规整性和一致性,便于加工成型。
进一步地,至少部分汇流条2还包括延伸部23,如图1、图4和图7所示。其中,延伸部23位于主体部21的外周缘与连接部22之间,用于连接主体部21与连接部22;且延伸部23至少部分沿骨架1的轴向方向延伸(如图12所示),使所有的连接部22在骨架1的轴向方向上保持齐平。
至少部分汇流条2包括延伸部23,延伸部23的两端分别连接主体部21和连接部22。由于延伸部23至少部分沿骨架1的轴向方向延伸,则通过延伸部23可以轻松实现多个连接部22在骨架1轴向上的齐平;并且便于根据需要合理设计连接部22的形状和尺寸,有利于优化产品的结构。
其中,在一个具体实施例中,可以只有部分汇流条2包括延伸部23,利用延伸部23使其连接部22与其他没有延伸部23的汇流条2的延伸部23保持齐平。如图16、图17和图18中,U相汇流条251、V相汇流条252和W相汇流条253设有轴向长度不同的延伸部23,而中性汇流条24没有延伸部23,三个相性汇流条2通过不同轴向长度的延伸部23,使其连接部22与中性汇流条24的连接部22保持轴向上的齐平。
在一个具体实施例中,也可以是全部的汇流条2均包括延伸部23,不用汇流条2的延伸部23沿轴向延伸不同尺寸,使所有的连接部22在轴向上保持齐平。
当然,汇流条2也可以没有延伸部23,直接通过连接部22与主体部21的具体连接位置以及合理设计连接部22的形状和尺寸来实现所有连接部22在骨架1轴向上的齐平。
在一个具体实施例中,延伸部23内嵌在骨架1中,如图22和图23所示。
延伸部23内嵌在骨架1中,则只有连接部22外露于骨架1,如图20所示。这样,汇流排的外观结构较为规整,并且骨架1可以对延伸部23起到良好的支撑作用,有效防止延伸部23发生变形或者晃动,从而提高各连接部22位置的稳定性,有利于产线作业,进一步提高生产效率。
进一步地,连接部22设有与接线端41适配的限位槽26,如图1、图4、图7和图13所示,限位槽26供接线端41穿过(如图24所示)并适于与接线端41焊接相连。
连接部22设有限位槽26,接线作业时将接线端41穿过限位槽26,然后再进行焊接操作。这样,限位槽26既可以对接线端41起到良好的限位作用,防止接线端41晃动、倾斜;又有利于增加接线端41与连接部22的接触面积,从而降低焊接难度,有利于进一步提高生产效率。
具体地,连接部22包括连接片222和弯折片223,如图1、图4、图7和图13所示。其中,连接片222与主体部21相连,并沿骨架1的周向方向延伸,如图1、图4、图7和图13所示;弯折片223与连接片222相连并弯折延伸,且与连接片222围设出呈U形的 限位槽26,如图1、图4、图7和图13所示。
连接部22包括连接片222和弯折片223。连接片222和弯折片223围设出U形限位槽26,使得限位槽26形成轴向两端开口且周向还具有缺口的结构(即限位槽26在骨架1的轴向端面上的投影为U形)。这样有利于增加限位槽26的空间,便于接线端41快速穿过,也有利于增加焊接操作的空间,降低焊接操作难度。
其中,连接片222的厚度方向和弯折片223的厚度方向垂直于骨架1的轴线方向,如图1、图4、图7、图13所示。
连接片222的厚度方向和弯折片223的厚度方向均垂直于骨架1的轴线方向,这样增加了限位槽26的深度,有利于增加限位槽26与接线端41的接触面积,从而既有利于进一步降低焊接难度,又有利于提高焊接连接强度。
进一步地,所有的限位槽26的U形开口朝向同一旋转方向,如图18和图20所示。
所有的限位槽26的U形开口朝向同一旋转方向(比如都为顺时针旋转的方向,或者均为逆时针旋转的方向),使得汇流排的结构较为规整,既便于各汇流条2加工成型,又有利于产线操作时通过适当旋转汇流排,使所有的接线端41同步穿过各限位槽26,因而也有利于进一步提高生产效率。
其中,连接片222沿骨架1的周向方向的尺寸大于弯折片223与其相对的部分沿骨架1的周向方向的尺寸,如图1、图4、图7和图13所示。
连接片222沿骨架1的周向方向的尺寸大于弯折片223与连接片222相对的部分沿骨架1的周向方向的尺寸,则连接片222与弯折片223形成类似于J形的结构,这样便于合理设置限位槽26的位置,为接线端41的焊接操作提供更有利的操作空间。
进一步地,连接部22还包括沿骨架1的径向方向延伸的延伸片221,如图1、图4、图7和图13所示。延伸片221的径向内端与主体部21相连,延伸片221的径向外端与连接部22用于连接接线端41的部位相连。
连接部22还包括延伸片221,延伸片221沿骨架1的径向方向延伸,且其径向内外两端分别连接主体部21以及连接部22用于连接接线端41的部位(具体为连接片222)。如此,可以增加连接片222与主体部21之间的径向距离,既有利于减小主体部21的径向尺寸,以降低生产成本,又有利于增加相邻的连接部22之间的距离,因而有利于合理设计连接部22的形状和尺寸,进一步优化产品结构。
进一步地,多个端子3沿汇流排的周向方向均匀排布,如图20和图24所示。
多个端子3沿汇流排的周向方向均匀分布,结构较为规整,有利于端子3增加端子3之间的距离,保证各端子3相互之间的电气绝缘性,且满足客户要求端子3沿周向均匀分布的要求。当然,多个端子3也可以集中分布在一个区域,或者以其他方式分布。
进一步地,多个连接部22沿主体部21的周向方向均匀分布,如图18、图20和图24所示。
多个连接部22沿主体部21的周向方向均匀分布,使得汇流条2的结构较为规整,便 于加工成型,且能够使装配完成后的汇流排的所有连接部22沿周向均匀分布,由于电机定子42绕组的接线端41一般也是沿周向均匀分布,因而保持了一一对应。
进一步地,所有汇流条2的连接部22沿骨架1的轴向方向的两端不凸出于骨架1的轴向两端面所在的平面,如图19所示。
所有的连接部22沿骨架1的轴向方向的两端不凸出于骨架1的轴向两端面所在的平面,相较于连接部22凸出于骨架1的轴向两端面,可以减小汇流排的轴向高度骨架1,使得汇流排的轴向方向的空间占用少,因而有利于减小电机的轴向长度,优化电机的结构。
实施例二
与实施例一的区别在于:在实施例一的基础上,进一步地,连接有端子3的汇流条2通过其中一个连接部22的延伸片221与端子3相连,如图16至图18所示。
对于连接有端子3的汇流条2而言,该汇流条2通过其中一个连接部22的延伸片221与该端子3相连,则无需在汇流条2上设计其他额外的结构来连接端子3,因而简化了汇流条2的结构,也不会导致汇流排的径向尺寸变大。
当然,端子3也可以直接由汇流条2弯折延伸形成。或者,端子3也可以直接连接在主体部21上,与连接部22间隔分开。
其中,延伸片221垂直于骨架1的轴线方向,如图1、图4、图7和图13所示。端子3呈片状,连接有端子3的延伸片221沿端子3的厚度方向的尺寸a0大于同一汇流条2的其他延伸片221沿端子3的厚度方向的尺寸a,如图2、图5、图8和图10所示。
延伸片221垂直于骨架1的轴线方向,有利于减小汇流条2的轴向尺寸。连接有端子3的延伸片221沿该端子3的厚度方向的尺寸a0大于同一汇流条2上其他延伸片221沿该端子3的厚度方向的尺寸a,有利于增加该延伸片221与端子3的接触面积,从而提高端子3的连接强度和稳固性,降低端子3发生变形的概率。
进一步地,端子3弯折呈L型,如图11所示。具体地,端子3包括平行于骨架1的轴线方向的延伸段31和平行于延伸片221的连接段32,连接段32与延伸片221焊接相连,如图10、图11和图18所示。
端子3弯折设置,包括延伸段31和连接段32。延伸段31沿骨架1的轴线方向延伸,用于连接电源。连接段32与延伸片221相平行并与延伸片221焊接相连,这样增加了端子3与延伸片221的接触面积,从而提高了端子3的连接强度和稳固性,降低了端子3发生变形的概率。
进一步地,连接有端子3的延伸片221对应的用于连接接线端41的部位沿骨架1的周向方向的尺寸b0大于同一汇流条2上的其他用于连接接线端41的部位沿骨架1的周向方向的尺寸b,如图10所示。
连接有端子3的延伸片221对应的用于连接接线端41的部位沿骨架1的周向方向的尺寸b0,相对于该汇流条2上的其他用于连接接线端41的部位沿骨架1的周向方向的尺寸b适当增大,可以增加端子3与该连接部22用于连接接线端41的部位之间的周向距离,从 而提供避让空间,便于接线端41的焊接操作。
具体地,通过适当延长连接片222的长度,使U形的限位槽26与延伸片221之间的间距增大,即可对U形的限位槽26进行避让。
在一个具体实施例中,所有的汇流条2分为中性汇流条24和多个相性汇流条2,如图16至图18所示。多个端子3与多个相性汇流条2一一对应且一一连接,多个相性汇流条2的主体部21依次相邻排布,如图18和图22所示,中性汇流条24的主体部21设在朝向绕组的位置,如图25所示。
所有汇流条2分为中性汇流条24和相性汇流条2,相性汇流条2连接的接线端41(比如部分绕组的结束端)组成的电路、与中性汇流条24连接的接线端41(比如所有绕组的起始端)组成的电路可以实现多路并联,形成多相电路。由于相性汇流条2连接的接线端41相对较少,如图1、图4、图7中只有四个连接部22;中性汇流条24连接的接线端41相对较多,如图13中有12个连接部22,因而相性汇流条2的连接部22的数量也少于中性汇流条24的连接部22的数量,则将多个相性汇流条2的主体部21依次相邻排布,如图16至图18所示,只需改变相性汇流条2的连接部22的轴向位置,使其连接部22与中性汇流条24的轴向位置齐平即可,而无需改变中心汇流条2的连接部22的轴向位置,有利于降低加工难度,提高生产效率。
进一步将中性汇流条24的主体部21设在朝向绕组的位置,则相性汇流条2的连接部22可以向靠近绕组的位置偏移,有利于缩短接线端41与连接部22之间的距离,如图25所示,从而缩短接线端41的长度,并降低接线端41的焊接难度。
当然,汇流条2的排布方式可以任意改变。
其中,中性汇流条24的连接部22与其主体部21直接相连(如图13所示),每个相性汇流条的连接部22与其主体部21通过延伸部23相连(如图1、图4和图7所示),延伸部23沿骨架的轴向方向朝靠近中性汇流条24的方向延伸(如图1、图4和图7所示),使相性汇流条的连接部22与中性汇流条24的连接部22在骨架1的轴向方向上保持齐平,如图19所示。
中性汇流条24的连接部22与其主体部21直接相连,每个相性汇流条的连接部22与其主体部21通过延伸部23相连,即:中性汇流条24没有延伸部23,只有多个相性汇流条包括有延伸部23,利用延伸部23向靠近中性汇流条24的方向延伸,且多个相性汇流条的延伸部23的轴向长度不相等,使得每个相性汇流条的连接部22能够与中性汇流条24的连接部22在骨架1的轴向方向上保持齐平。如此,既有效简化了中性汇流条24的结构,又进一步缩短了接线端41与连接部22之间的距离,因而有利于进一步缩短接线端41的长度,并进一步降低接线端41的焊接难度。
具体地,中性汇流条24的延伸片221是平直的,如图13所示,直接与中性汇流条24的主体部21的外周缘相连。相性汇流条的延伸片221也是平直的,如图1、图4和图7所示,其延伸片221与相性汇流条的主体部21之间设有延伸部23,延伸部23向靠近中性汇 流条24的方向轴向延伸,使得相性汇流条的延伸片221与中性汇流条24的延伸片221保持齐平。如此,相性汇流条的连接部22与中性汇流条24的连接部22也保持齐平。
实施例三
一种汇流排,包括:骨架1、多个汇流条2和多个端子3,如图20所示。
具体地,骨架1为绝缘件。
每个汇流条2包括主体部21和多个连接部22,如图1至图9以及图13和图14所示。其中,主体部21内嵌在骨架1中(如图19和图20所示),且沿骨架1的周向方向延伸,如图1、图2、图4、图5、图7、图8、图13和图14所示;多个连接部22与主体部21相连并外凸于骨架1,如图20所示,用于连接电机定子42绕组的接线端41。
多个端子3与多个汇流条2相连,如图16至图18所示,用于连接电源。
骨架1包括环状支架11和多个条状支架12。具体地,多个条状支架12与环状支架11一体式相连,如图23所示。所有的汇流条2的主体部21内嵌在环状支架11内,如图21至图23所示。多个条状支架12与多个端子3一一对应,如图20所示,且每个端子3的一部分内嵌在对应的条状支架12内,如图23和图25所示。
本实施例提供的汇流排,能够利用多个汇流条2的连接部22来连接电机定子42的多个绕组的各接线端41,并利用汇流条2良好的导电性能实现对应接线端41的电性连接,而无需将对应的接线端41直接相连。由此降低了接线难度,便于产线高效快速操作,有利于提高产品的生产效率。
具体而言,汇流排包括骨架1、多个汇流条2和多个端子3。骨架1是绝缘件,可以采用注塑方式成型,对多个汇流条2以及多个端子3起到支撑作用,并隔离相邻的汇流条2,起到电性绝缘作用。多个汇流条2均为导体,每个汇流条2包括主体部21和多个连接部22。每个汇流条2的多个连接部22用于连接电子定子42的多个绕组中需要连接在一起的接线端41,并通过主体部21实现这些接线端41的电性连接,实现汇流功能。
多个端子3与多个汇流条2相连,且端子3可以与对应的汇流条通过一体成型的方式相连,也可以分别成型然后安装在对应的汇流条上实现连接。每个端子3与对应汇流条2连接的接线端41实现电性连接,多个端子3连接电源形成电回路,为电机定子42的多个绕组供电。
同时,骨架1包括环状支架11和条状支架12。环状支架11用于支撑多个汇流条2,并保证多个汇流条2相互之间的绝缘性。多个条状支架12用于支撑多个端子3,并保证端子3与其他结构之间的电气绝缘性。由于环状支架11和多个条状支架12一体式相连,具体可以通过在注塑过程中一体成型形成一体式结构,因而连接较为可靠,如图23和图25所示,相较于现有技术中单独成型绝缘件然后套设在端子3上的方案而言,本方案的条状支架12可以对端子3起到良好的支撑作用和限位作用,有效防止端子3发生晃动和变形,保证端子3的位置度、垂直度好,结构牢靠,使得控制器PIN针插入端子3时,端子3外露于条状支架12的部分不易发生变形失效。
在一个具体实施例中,条状支架12沿骨架1的轴线方向的尺寸c大于或等于端子3沿骨架1的轴线方向的尺寸c0的一半。
条状支架12沿骨架1的轴线方向的尺寸c大于或等于端子3沿骨架1轴线方向的尺寸c0的一半,则条状骨架1包裹端子3的范围超过了端子3的一半,因而可以显著提高对端子3的支撑作用和限位作用,有效保证端子3的稳固性和使用可靠性。
进一步地,端子3与对应的汇流条2的其中一个连接部22相连。在垂直于骨架1的中心轴线的平面的投影中,条状支架12在端子3的厚度方向上关于端子3非对称布置,如图20所示,且靠近对应的连接部22用于连接接线端41的部位的尺寸d1小于远离对应的连接部22用于连接接线端41的部位的尺寸d2。
端子3与对应的汇流条2的其中一个连接部22相连,则端子3与该连接部22用于连接接线端41的部位相距较近,而条状支架12周向包裹端子3,可能对接线端41的焊接操作造成干涉,因而设置条状支架12非对称布置,如图20所示,并使其靠近上述连接接线端41的部位的地方相对薄一些,而远离上述连接接线端41的部位的地方相对厚一些,如图20所示,这样既保证了对端子3的可靠支撑,又对连接部22用于连接接线端41的部位进行了避让,为接线端41的焊接操作预留了空间,有利于降低焊接操作难度。
进一步地,其中一个条状支架12沿端子3的厚度方向的尺寸d不同于其他条状支架12沿端子3的厚度方向的尺寸d,如图20所示。
其中一个条状支架12沿端子3的厚度方向的尺寸不同于其他条状支架12沿端子3的厚度方向的尺寸,使得三个条状支架12从外观上不完全一致,如图20所示。这样可以起到装配防呆的作用,便于快速识别各个汇流条2,进而定位汇流排与定子42绕组之间的相对位置,有利于进一步提高生产效率。
当然,多个条状支架12沿端子3的厚度方向的尺寸也可以均不一致,也能起到装配防呆的作用。
在一个具体实施例中,主体部21呈弧形结构,如图1、图4、图7和图13所示。
汇流条2的主体部21呈弧形结构,不是完整的环形。这样在保证具有同样数量的连接部22的基础上,可以缩小主体部21的周向长度,有利于节约原料,且便于加工成型,如通过折弯等方式进行成型。
在一个具体实施例中,端子3在骨架1的轴向端面上的投影呈长条状,且其投影的长度方向沿骨架1的径向方向延伸,如图18、图20和图24所示。
端子3在骨架1的轴向端面上的投影呈长条形,由于端子3一般为长条形的薄片状,且沿骨架1的轴线方向延伸,因而端子3在骨架1的轴向端面上的投影与端子3的横截面的形状基本相同。该投影的长度方向沿骨架1的径向方向延伸,如图20和图24所示,合理地利用了汇流排的径向空间,可以满足客户要求端子3径向布置的要求。
实施例四
一种汇流排,包括:骨架1、多个汇流条2和多个端子3,如图20所示。
具体地,骨架1为绝缘件。
每个汇流条2包括圆弧形的主体部21和多个连接部22,如图1至图9以及图13和图14所示。其中,主体部21内嵌在骨架1中(如图19和图20所示),且沿骨架1的周向方向延伸,如图1、图2、图4、图5、图7、图8、图13和图14所示;多个连接部22与主体部21相连并外凸于骨架1(如图20所示),且多个连接部22沿主体部21的周向均与分布,用于连接电机定子42绕组的接线端41,如图24和图25所示。所有的汇流条2分为中性汇流条24和多个相性汇流条。
多个端子3分别设在多个相性汇流条上,如图16至图18所示,用于连接电源。
其中,中性汇流条24的主体部21、多个相性汇流条的主体部21沿骨架的轴向方向依次层叠排布(如图16至图18所示)且相互间隔分开(如图21至图23所示),所有汇流条2的连接部22沿骨架的周向方向均匀分布。
进一步地,每个汇流条2的多个连接部22由其主体部21的缺口处开始沿同一旋转方向依次被记为第x个连接部22,多个相性汇流条沿骨架的轴向方向依次被记为第y个相性汇流条且第一个相性汇流条与中性汇流条24相邻布置。
中性汇流条24的第一个连接部22与相邻的第一个相性汇流条之间的轴心连线夹角α、第一个相性汇流条的第一个连接部22与相邻的第二个相性汇流条的第一个连接部22之间的轴心连线夹角β满足:
α=360°/(2×m×n)+360°×K/(m×n),β=360°×P/(m×n)且β≠360°×Q/n,m为相性汇流条的数量,n为每相定子绕组的数量,K∈[0,(m×n-1)],P∈(0,(m×n-1)],Q∈[1,m]。
本实施例提供的汇流排,能够利用多个汇流条2的连接部22来连接电机定子42的多个绕组的各接线端41,并利用汇流条2良好的导电性能实现对应接线端41的电性连接,而无需将对应的接线端41直接相连。由此降低了接线难度,便于产线高效快速操作,有利于提高产品的生产效率。
同时,中性汇流条24的主体部21、相性汇流条的主体部21沿骨架1的轴向方向一个接一个地层叠排布且相互间隔分开,并且各个相性汇流条在周向方向上按照设定的轴心连线夹角旋转错开,既便于汇流排快速组装,提高汇流排的生产效率,又使得所有的连接部22沿骨架1的周向方向均匀分布,与电机定子42上沿周向间隔分布的多个绕组的接线端41保持对应,便于快速接线。
具体而言,汇流排包括骨架1、多个汇流条2和多个端子3。骨架1是绝缘件,可以采用注塑方式成型,对多个汇流条2以及多个端子3起到支撑作用,并隔离相邻的汇流条2,起到电性绝缘作用。多个汇流条2均为导体,每个汇流条2包括主体部21和多个连接部22。每个汇流条2的多个连接部22用于连接电子定子42的多个绕组中需要连接在一起的接线端41,并通过主体部21实现这些接线端41的电性连接,实现汇流功能。
多个端子3分别设在多个相性汇流条上,且端子3可以与对应的相性汇流条一体成型,也可以分别成型然后安装在对应的相性汇流条上。每个端子3与对应汇流条2连接的接线 端41实现电性连接,多个端子3连接电源形成电回路,为电机定子42的多个绕组供电。其中,主体部21呈沿骨架1的周向方向延伸的圆弧形,不是完整的环形,这样在保证具有同样数量的连接部22的基础上,可以缩小主体部21的周向长度,有利于节约原料,且便于加工成型,如通过折弯等方式进行成型,同时也使得汇流条2不是旋转对称结构,其主体部21的缺口可以作为参照物,便于汇流条2在装配过程中进行定位。
进一步地,所有汇流条2分为中性汇流条24和相性汇流条,相性汇流条连接的接线端41(比如部分绕组的结束端)组成的电路、与中性汇流条24连接的接线端41(比如所有绕组的起始端)组成的电路可以实现多路并联,形成多相电路。由于制得的汇流排的所有连接部22沿骨架1的周向方向均匀分布,与电机定子42的多个接线端41的位置保持对应,则无需将接线端41预留很长的长度以保证其能够延伸到其他接线端41的位置与其他接线端41实现连接,这样既缩短了接线端41的长度,又可以有效防止接线过程中接线端41发生缠绕或者混淆,从而降低了接线难度。
其中,所有汇流条2的主体部21沿骨架1的轴向方向层叠排布,则多个主体部21的径向尺寸可以保持一致。这样,只需将连接有端子3的多个汇流条2按照设定的叠放方式排布在一起,如图16和图17所示,保证所有的连接部22沿骨架1的周向方向均匀分布,且多个端子3的位置正确,如图18所示,然后通过一体注塑成型的方式加工出骨架1即可,加工工艺较为简单,骨架1的结构也较为简单。
每个汇流条2的多个连接部22由其主体部21的缺口处开始沿同一旋转方向依次被记为第x个连接部22,比如沿顺时针方向由主体部21的缺口处开始数,依次为第一个连接部22、第二个连接部22、第三个连接部22,依此类推;多个相性汇流条沿骨架1的轴向方向依次被记为第y个相性汇流条且第一个相性汇流条与中性汇流条24相性布置,即:从与中性汇流条24轴向最为接近的相性汇流条开始数,依次为第一个相性汇流条、第二个相性汇流条,依此类推。
具体地,叠放时先以中性汇流条24为基准,一一叠放相性汇流条,在叠放第一个相性汇流条时,使其第一个连接部22与中性汇流条24的第一个连接部22之间产生α的轴心夹角;然后叠放第二个相性汇流条,使其第一个连接部22与第一个相性汇流条的第一个连接部22之间产生β的轴心夹角。此时第一个相性汇流条的多个连接部22以及第二个相性汇流条的多个连接部22分别占据了中性汇流条24的若干个相邻两个连接部22之间的周向间隙,对于还有第三个相性汇流条甚至更多个相性汇流条的方案而言,中性汇流条24还剩余少部分连接部22之间具有较大的周向空隙,表现为汇流排周向的连接部22有些部位相对集中,有些相对分散,因而剩下的相性汇流条只需使其连接部22分布在这些周向空隙,保证装配完成后所有的连接部22沿骨架1的周向方向均匀分布即可。由于相性汇流条连接的接线端41相对较少,如图1、图4、图7中只有四个连接部22,中性汇流条24连接的接线端41相对较多,如图13中有12个连接部22,因而相性汇流条的连接部22的数量也少于中性汇流条24的连接部22的数量,因而旋转相性汇流条更容易精确控制,降低产生视 觉混淆的概率,有利于提高装配效率。
其中,α=360°/(2×m×n)+360°×K/(m×n),β=360°×P/(m×n)且β≠360°×Q/n。m×n为汇流排适配的定子的槽数,即线圈绕组的总数量,360°/(2×m×n)即为中性汇流条24的相邻两个连接部22的轴心连线夹角的一半,360°×K/(m×n)以及360°×P/(m×n)即为中性汇流条2的相邻两个连接部22的轴心连线夹角的整数倍,360°/n即为相性汇流条的相邻两个连接部22的轴心连线夹角的一半,360°×Q/n即为相性汇流条的相邻两个连接部22的轴心连线夹角的整数倍。
这样,当中性汇流条24的第一个连接部22与第一个相性汇流条的第一个连接部22之间的轴心连接夹角为α时,表明第一个相性汇流条的第一个连接部22位于中性汇流条24的任意相邻的两个连接部22之间,接着第二个相性汇流条的第一个连接部22相对于第一个相性汇流条的第一个连接部22旋转β,既保证了第二个相性汇流条的每个连接部22位于中性汇流条24的相邻的两个连接部22之间,又避免了与第一个相性汇流条的部分连接部22在周向方向上重合,从而保证了中性汇流条24的连接部22、第一个相性汇流条的连接部22、第二个相性汇流条的连接部22在周向方向上相互错开。
值得说明的是,两个连接部22之间的轴心连线夹角,指的是一个连接部22的中心与骨架的中心轴线的垂直连线、以及另一个连接部22的中心与骨架的中心轴线的垂直连线之间的夹角。其中,连接部22的中心指的是连接部22与定子绕组的接线端相对应的部位的中心,即:在垂直于汇流排的中心轴线的平面上的投影中,连接部22的中心与定子绕组的接线端重合。对于所有的连接部22的形状和尺寸完全一致的方案而言,两个连接部22之间的轴心连线夹角,指的是两个连接部22的同一部位与骨架的中心轴线的垂直连线之间的夹角。
在一个具体实施例中,汇流条2的材质为铜,铜的导电性能较好,且价格相对低廉。在一个具体实施例中,汇流条2的材质为H65黄铜,易于冲压成型,且具有足够的硬度。
在一个具体实施例中,m为3。
m为3,则汇流条2的数量为四个,端子的数量为三个,通过合理连接可以构成三相电机。其中三个汇流条2为相性汇流条,分别与相等数量的接线端相连,分别形成U相汇流条251、V相汇流条252和W相汇流条253,另外一个汇流条2为中性汇流条24,与所有绕组的另一个接线端相连。其中,定义与中性汇流条24相邻的第一个相性汇流条为W相汇流条253,然后依次为V相汇流条252和U相汇流条251,则中性汇流条24、W相汇流条253和V相汇流条252叠放完成后,中性汇流条24恰好剩余n个空隙,与U相汇流条251的n个连接部22相对应,因而将U相汇流条251的n个连接部22对应放置在空隙位置即可。
进一步地,第二个相性汇流条的第一个连接部22与第三个相性汇流条的第一个连接部22之间的轴心连线夹角γ满足:γ=360°×P/(m×n)且γ≠360°×Q/n。
第二个相性汇流条的第一个连接部22与第三个相性汇流条的第一个连接部22之间的 轴心夹角为γ,由于γ=360°×P/(m×n)且γ≠360°×Q/n,因而γ=β,则叠放第三个相性汇流条与叠放第二个相性汇流条的过程相同,因而有利于进一步提高生产效率。比如:β=γ=30°,或者β=γ=120°。
在一个具体实施例中,K为0。
K=0,则α=360°/(2×m×n),则第一个相性汇流条的第一个连接部22恰好位于中性汇流条24的前两个连接部22之间的位置,这样α的数值较小,有利于进一步降低汇流条2的装配难度,有利于进一步提高生产效率。
当然,K也可以为1、2或者其他整数。
在一个具体实施例中,P与n满足:P=n。
P=n,则β=360°/m且β≠360°×Q/n,这简化了β的计算方法,有利于进一步降低汇流条2的装配难度,有利于进一步提高生产效率。
当然,P也可以不等于n。
在一个具体实施例中,n为4。
n为4,即每相定子绕组的数量为4。当然,n不限于4,也可以为1、2、3、5或者其他数值。
记主体部21的两端分别为第一端211和第二端212,比如所有的主体部21均沿顺时针方向延伸形成圆弧形,即可记任一主体部21的首端和末端分别为第一端211和第二端212,如图1、图4、图7、图10和图13所示,则与第一端211相邻的连接部22为第一个连接部22,与第二端212相邻的连接部22为第n个连接部22。则叠放汇流条2的过程中,均能以前一个汇流条2的主体部21的第一个连接部22为参照物,来旋转后续叠放的汇流条2,快速得到所需的轴心连线夹角。
如此,叠放完成后,第一个相性汇流条的第一个连接部22与中性汇流条24的第一个连接部22之间的轴心连线夹角为180°/(m×n),任意相邻的两个相性汇流条的第一个连接部22之间的轴心连线夹角为360°/m,这种排布方式简单,可操作性强。
比如:当m=3,n=P=4,K=0时,α=180°/(m×n)=15°,β=γ=360°/m=120°。先将W相汇流条253叠放在中性汇流条24上,使W相汇流条253的第一端211与中性汇流条24的第一端211之间的轴心连线夹角为15°,如图16所示。然后将V相汇流条252叠放在W相汇流条253上,使V相汇流条252的第一端211与W相汇流条253的第一端211之间的轴心连线夹角为120°,如图17所示。最后将U相汇流条251叠放在V相汇流条252上,使U相汇流条251的第一端211与V相汇流条252的第一端211之间的轴心连线夹角为120°,如图18所示。
其中,多个连接部22沿主体部21的周向方向均匀分布,且第一个连接部22和最后一个连接部22位于主体部21的两端,如图1、图4、图7和图13所示。
多个连接部22沿主体部21的周向方向均匀分布,使得汇流条2的结构较为规整,便于加工成型;且能够使装配完成后的汇流排的所有连接部22沿周向均匀分布。由于电机定 子绕组的接线端41一般也是沿周向均匀分布,因而保持了一一对应。
同时,第一个连接部22和最后一个连接部22位于主体部21的两端,即主体部21恰好缺失了两个连接部22之间的一部分,既保证了主体部21与多个连接部22的连接可靠性,又尽可能缩短了主体部21的长度,有利于进一步节约原料。
比如:连接部22的数量为4个时,主体部21的弧度为270°,如图1、图4和图7所示;连接部22的数量为6个时,主体部21的弧度为300°;连接部22的数量为12个时,主体部21的弧度为330°,如图13所示。
此外,该方案还使得位于主体部21两端的两个连接部22(即第一个连接部22和最后一个连接部22)与其他部位的连接部22明显区分开来,在叠放多个汇流条2时,可以作为参照物,以进一步提高叠放效率,从而进一步提高装配效率。
记主体部21的两端分别为第一端211和第二端212,比如所有的主体部21均沿顺时针方向延伸形成圆弧形,即可记任一主体部21的首端和末端分别为第一端211和第二端212,如图1、图4、图7、图10和图13所示,则与第一端211相连的连接部22为第一个连接部22,与第二端212相连的连接部22为第n个连接部22。则叠放汇流条2的过程中,均能以前一个汇流条2的主体部21的第一端211为参照物,来旋转后续叠放的汇流条2,快速得到所需的轴心连线夹角。
当然,主体部21的两端也可以适当延长。
进一步地,每个相性汇流条的连接部22的数量为n,每个端子与对应的相性汇流条的第x个连接部22相连,x∈[2,n-1]。
多个端子3与多个相性汇流条一一对应。每个相性汇流条的连接部22的数量为n,n个连接部22分别连接每相定子的n个线圈,每个端子与对应的相性汇流条的第x个连接部22相连,由于x大于等于2且小于等于n-1,因而连接端子的连接部22不是位于主体部21的缺口两侧的连接部22。相较于主体部21的两端,主体部21其他部位的强度相对高一些,发生变形的概率相对较低,因而将端子与相性汇流条主体部21远离缺口处的连接部22相连,有利于进一步提高端子的位置度、垂直度,进一步降低端子发生变形的概率。
在一个具体实施例中,x为2。
x为2,则端子与对应的相性汇流条的第二个连接部22相连,这样相性汇流条的第一个连接部22作为参照物,用于定位相性汇流条的位置,第二个连接部22用于连接端子,便于查找,有利于进一步提高生产效率。当然,x不局限于2,也可以是其他数值。
在一个具体实施例中,多个端子3沿汇流排的周向方向均匀排布,如图20和图24所示。
在一个具体实施例中,多个端子3沿汇流排的周向方向非均匀排布。
多个端子3沿汇流排的周向方向均匀分布,结构较为规整,有利于端子3增加端子3之间的距离,保证各端子3相互之间的电气绝缘性,且满足客户要求端子3沿周向均匀分布的要求。或者,多个端子3沿汇流排的周向方向非均匀排布,比如集中分布在汇流排的 一个区域,以满足客户要求端子3沿周向非均匀分布的要求。
其中,所有的主体部21的厚度t相等,如图21和图22所示。
所有的主体部21的厚度t相等,则所有的汇流条2可以采用同一种材料制备,有利于减少原料的种类,便于加工成型,也有利于节约成本。
在一个具体实施例中,主体部21的厚度在0.7mm-1.0mm的范围(如0.7mm、0.8mm、0.9mm、1.0mm等)内。
当然,所有的主体部21的厚度t也可以根据需要进行调整。
其中,相邻的主体部21之间的间距t2相等。
相邻的主体部21之间的间距相等,使得汇流排的内部结构规整,且保证了各汇流条2相互之间的电气绝缘性。
在一个具体实施例中,相邻的主体部21之间的间距为0.5mm-3mm(如0.5mm、1mm、2mm、3mm等)。
当然,相邻的主体部21之间的间距t2也可以根据需要进行调整。
在一个具体实施例中,多个汇流条2的主体部21的轴向两端面与骨架1的轴向两端面之间的间距t1小于相邻的主体部21之间的间距t2,如图21和图22所示。也就是说,中性汇流条24与骨架1的轴向端面之间的间距以及U相汇流条251与骨架1的轴向端面之间的间距相等,记为t1,则有t1<t2,这样有利于减小骨架1的纵向高度,从而有利于进一步减小汇流排的纵向尺寸,进一步减小电机的轴向长度。
当然,中性汇流条24与骨架1的轴向端面之间的间距以及U相汇流条251与骨架1的轴向端面之间的间距也可以根据需要进行调整。
进一步地,所有的主体部21的宽度相等。
所有的主体部21的宽度相等,即所有的主体部21沿骨架1的径向方向的尺寸相等,这样,所有汇流条2的主体部21沿骨架1的轴向叠放后,所有主体部21的内边缘位于同一个圆上,所有主体部21的外边缘也位于同一个圆上,使得汇流排的结构较为规整,既便于各汇流条2加工成型,也便于骨架1的加工成型。
进一步地,所有的相性汇流条的主体部21相同,如图1、图4和图7所示。
所有的相性汇流条的主体部21相同,即:形状、尺寸完全一致,有利于降低相性汇流条的加工难度,提高生产效率。
进一步地,在垂直于骨架1的轴线的平面上的投影中,所有的汇流条2的主体部21相互叠加形成圆环,如图20所示。
在垂直于骨架1的轴线的平面上的投影中,所有的汇流条2的主体部21相互叠加形成圆环,即:所有汇流条2的主体部21在垂直于骨架1的轴线的平面上的投影都位于同一个圆环内。由于每个主体部21具有缺口,其投影不是完整的圆环,而多个主体部21的投影叠加后形成了完整的圆环,这有利于提高汇流排的强度,也便于汇流条2相互之间旋转错位,保证所有的连接部22沿骨架1的周向方向均匀分布。
实施例五
将实施例三与实施例四相结合,则实施例五具有实施例三和实施例四的技术效果,在此不再赘述。
换言之,在实施例四的基础上,进一步地,骨架1包括环状支架11和多个条状支架12。具体地,多个条状支架12与环状支架11一体式相连,如图23所示。所有的汇流条2的主体部21内嵌在环状支架11内,如图21至图23所示。多个条状支架12与多个端子3一一对应,如图20所示,且每个端子3的一部分内嵌在对应的条状支架12内,如图23和图25所示。
在一个具体实施例中,条状支架12沿骨架1的轴线方向的尺寸c大于或等于端子3沿骨架1的轴线方向的尺寸c0的一半。
进一步地,端子3与对应的汇流条2的其中一个连接部22相连。在垂直于骨架1的中心轴线的平面的投影中,条状支架12在端子3的厚度方向上关于端子3非对称布置,如图20所示,且靠近对应的连接部22用于连接接线端41的部位的尺寸d1小于远离对应的连接部22用于连接接线端41的部位的尺寸d2。
进一步地,其中一个条状支架12沿端子3的厚度方向的尺寸d不同于其他条状支架12沿端子3的厚度方向的尺寸d,如图20所示。
在一个具体实施例中,端子3在骨架1的轴向端面上的投影呈长条状,且其投影的长度方向沿骨架1的径向方向延伸,如图18、图20和图24所示。
实施例六
将实施例一或实施例二与实施例五相结合,则实施例六具有实施例一或实施例二与实施例五的技术效果,在此不再赘述。
换言之,在实施例一或实施例二的基础上,进一步地,骨架1包括环状支架11和多个条状支架12。具体地,多个条状支架12与环状支架11一体式相连,如图23所示。所有的汇流条2的主体部21内嵌在环状支架11内,如图21至图23所示。多个条状支架12与多个端子3一一对应,如图20所示,且每个端子3的一部分内嵌在对应的条状支架12内,如图23和图25所示。
在一个具体实施例中,条状支架12沿骨架1的轴线方向的尺寸c大于或等于端子3沿骨架1的轴线方向的尺寸c0的一半。
进一步地,端子3与对应的汇流条2的其中一个连接部22相连。在垂直于骨架1的中心轴线的平面的投影中,条状支架12在端子3的厚度方向上关于端子3非对称布置,如图20所示,且靠近对应的连接部22用于连接接线端41的部位的尺寸d1小于远离对应的连接部22用于连接接线端41的部位的尺寸d2。
进一步地,其中一个条状支架12沿端子3的厚度方向的尺寸d不同于其他条状支架12沿端子3的厚度方向的尺寸d,如图20所示。
在一个具体实施例中,主体部21呈弧形结构,如图1、图4、图7和图13所示。
进一步地,每个汇流条2的多个连接部22由其主体部21的缺口处开始沿同一旋转方向依次被记为第x个连接部22,多个相性汇流条沿骨架的轴向方向依次被记为第y个相性汇流条且第一个相性汇流条与中性汇流条24相邻布置。
中性汇流条24的第一个连接部22与相邻的第一个相性汇流条之间的轴心连线夹角α、第一个相性汇流条的第一个连接部22与相邻的第二个相性汇流条的第一个连接部22之间的轴心连线夹角β满足:
α=360°/(2×m×n)+360°×K/(m×n),β=360°×P/(m×n)且β≠360°×Q/n,m为相性汇流条的数量,n为每相定子绕组的数量,K∈[0,(m×n-1)],P∈(0,(m×n-1)],Q∈[1,m]。
其中,α=360°/(2×m×n)+360°×K/(m×n),β=360°×P/(m×n)且β≠360°×Q/n。m×n为汇流排适配的定子的槽数,即线圈绕组的总数量,360°/(2×m×n)即为中性汇流条24的相邻两个连接部22的轴心连线夹角的一半,360°×K/(m×n)以及360°×P/(m×n)即为中性汇流条2的相邻两个连接部22的轴心连线夹角的整数倍,360°/n即为相性汇流条的相邻两个连接部22的轴心连线夹角的一半,360°×Q/n即为相性汇流条的相邻两个连接部22的轴心连线夹角的整数倍。
在一个具体实施例中,m为3。
进一步地,第二个相性汇流条的第一个连接部22与第三个相性汇流条的第一个连接部22之间的轴心连线夹角γ满足:γ=360°×P/(m×n)且γ≠360°×Q/n。
在一个具体实施例中,K为0。
在一个具体实施例中,P与n满足:P=n。
在一个具体实施例中,n为4。
其中,多个连接部22沿主体部21的周向方向均匀分布,且第一个连接部22和最后一个连接部22位于主体部21的两端,如图1、图4、图7和图13所示。
进一步地,每个相性汇流条的连接部22的数量为n,每个端子与对应的相性汇流条的第x个连接部22相连,x∈[2,n-1]。
在一个具体实施例中,x为2。
实施例七
与实施例一、实施例二或实施例六的区别在于:主体部21呈环形结构。
汇流条2的主体部21呈完整的环形结构,有利于提高汇流条2的强度,进而提高汇流排的稳定性和使用可靠性。
在一个具体实施例中,端子3在骨架1的轴向端面上的投影呈长条状,且其投影的长度方向沿骨架1的径向方向延伸,如图18、图20和图24所示。
端子3在骨架1的轴向端面上的投影呈长条形,由于端子3一般为长条形的薄片状,且沿骨架1的轴线方向延伸,因而端子3在骨架1的轴向端面上的投影与端子3的横截面的形状基本相同。该投影的长度方向沿骨架1的径向方向延伸,如图20和图24所示,合理地利用了汇流排的径向空间,可以满足客户要求端子3径向布置的要求。
实施例八
与实施例一、实施例二、实施例六或实施例八的区别在于:端子3在骨架1的轴向端面上的投影呈长条状,且其投影的长度方向沿骨架1的周向方向延伸。
端子3在骨架1的轴向端面上的投影呈长条形,由于端子3一般为长条形的薄片状,且沿骨架1的轴线方向延伸,因而端子3在骨架1的轴向端面上的投影与端子3的横截面的形状基本相同。该投影的长度方向也可以沿骨架1的周向方向延伸,合理地利用了汇流排的周向空间,可以满足客户要求端子3周向布置的要求,且有利于减小汇流排的径向尺寸。
在上述任一实施例中,在一个具体实施例中,所有的主体部21的厚度t相等,如图21和图22所示。
所有的主体部21的厚度相等,则所有的汇流条2可以采用同一种材料制备,有利于减少原料的种类,便于加工成型,也有利于节约成本。
在一个具体实施例中,汇流条2的厚度t在0.7mm-1.0mm的范围(如0.7mm、0.8mm、0.9mm、1.0mm等)内。
在一个具体实施例中,相邻的主体部21之间的间距t2相等,如图21和图22所示。
相邻的主体部21之间的间隔宽度相等,使得汇流排的内部结构规整,且保证了各汇流条2相互之间的电气绝缘性。
在一个具体实施例中,相邻的主体部21之间的间隔宽度t2为0.5mm-3mm(如0.5mm、1mm、2mm、3mm等)。
在一个具体实施例中,多个汇流条2的主体部21的轴向两端面与骨架1的轴向两端面之间的间距t1小于相邻的主体部21之间的间距t2,如图21和图22所示。也就是说,中性汇流条24与骨架1的轴向端面之间的间距以及U相汇流条251与骨架1的轴向端面之间的间距相等,记为t1,则有t1<t2,这样有利于减小骨架1的纵向高度,从而有利于进一步减小汇流排的纵向尺寸,进一步减小电机的轴向长度。
当然,中性汇流条24与骨架1的轴向端面之间的间距以及U相汇流条251与骨架1的轴向端面之间的间距也可以根据需要进行调整。进一步地,所有的主体部21的宽度相等。
所有的主体部21的宽度相等,即所有的主体部21沿骨架1的径向方向的尺寸相等,这样,所有汇流条2的主体部21沿骨架1的轴向叠放后,所有主体部21的内边缘位于同一个圆上,所有主体部21的外边缘也位于同一个圆上,使得汇流排的结构较为规整,既便于各汇流条2加工成型,也便于骨架1的加工成型。
进一步地,所有的相性汇流条的主体部21相同,如图1、图4和图7所示。
所有的相性汇流条的主体部21相同,即:形状、尺寸完全一致,有利于降低相性汇流条的加工难度,提高生产效率。
进一步地,在垂直于骨架1的轴线的平面上的投影中,所有的汇流条2的主体部21相互叠加形成圆环,如图20所示。
在垂直于骨架1的轴线的平面上的投影中,所有的汇流条2的主体部21相互叠加形成圆环,即:所有汇流条2的主体部21在垂直于骨架1的轴线的平面上的投影都位于同一个圆环内。由于每个主体部21具有缺口,其投影不是完整的圆环,而多个主体部21的投影叠加后形成了完整的圆环,这有利于提高汇流排的强度,也便于汇流条2相互之间旋转错位,保证所有的连接部22沿骨架1的周向方向均匀分布。
在一个具体实施例中,汇流条2的数量为四个,端子3的数量为三个,如图18所示,其中三个汇流条2的连接部22的数量相等,另外一个汇流条2的连接部22的数量是其他三个汇流条2的连接部22的数量的总和。
汇流条2的数量为四个,端子3的数量为三个,通过合理连接可以构成三相电机。其中三个汇流条2为相性汇流条2,分别与相等数量的接线端41相连,分别形成U相汇流条251(如图1至图3所示)、V相汇流条252(如图4至图6所示)和W相汇流条253(如图7至图10所示)。另外一个汇流条2为中性汇流条24(如图13至图15所示),与所有绕组的另一个接线端41相连。
当然,汇流条2的数量不局限于四个,也可以为三个、五个等。
进一步地,骨架1背离端子3的表面设有卡钩13,如图19所示,用于卡接电机定子42,如图25所示。
在骨架1背离端子3的表面设置卡钩13,便于与定子42卡接配合,防止焊接过程中汇流排发生晃动、倾斜、移位等情况,有利于进一步提高生产效率。
其中,卡钩13的数量可以为多个,多个卡钩13沿骨架1的周向方向均匀分布,卡钩13与骨架1可以采用注塑成型的方式一体成型。
进一步地,定子42一般也设有注塑成型的绝缘架,绝缘架上可以设置与卡钩13适配的卡槽,卡钩13直接插入卡槽,如图25所示,实现与定子42的卡接。
实施例九
如图24和图25所示,一种电机,包括:电机主体4和如上述实施例中任一项的汇流排。
具体地,电机主体4包括定子42,定子42设有绕组,如图26所示,绕组具有两个接线端41;汇流排的连接部22与接线端41相连,如图25所示。
本实施例提供的电机,因包括上述实施例中任一项的汇流排,因而具有上述任一实施例所具有的一切有益效果,在此不再赘述。
在一个具体实施例中,接线端41与汇流排采用电阻焊接的方式相连。当然,也可以采用超声波焊接等其他焊接方式或者其他固定连接的方式相连。
在一个具体实施例中,绕组的数量为12个,如图26和图27所示,12个绕组采用星型连接方式连接,如图28所示。
由于12个绕组具有24个接头,采用星型连接,需要将12个绕组的起始端的12个线头连接到一起,并将C1、C4、C7、C10绕组的结束端,C2、C5、C8、C11绕组的结束端, C3、C6、C9、C12绕组的结束端分别连接到一起,因而接线方式非常复杂。采用本申请的方案可以有效降低其接线难度,接线方式简洁牢靠。
当然,绕组的数量不局限于12个,也可以为8个、16个等;绕组的连接方式并不局限于上述方式,也可以为三角形连接或者其他方式。
实施例十
一种车辆,包括:车体和如实施例九的电机,安装在车体中。
本实施例提供的车辆,因包括实施例九的电机,因而具有上述任一实施例所具有的一切有益效果,在此不再赘述。
下面以8P12S永磁电机为例,进行详细解释说明。
对于8P12S永磁电机而言,共有12个齿,每个齿上绕线形成一个绕组,每个绕组具有1个起始端和1个结束端,因此12个齿共有24个线头,沿周向均匀分布,每15°一个,如图26所示。电机采用4路并联,星型连接,如图28所示。此种接线方式,需要将12个绕组的起始端12个线头连接到一起,如图27和图28所示,并将C1、C4、C7、C10绕组的结束端、及C2、C5、C8、C11绕组的结束端、及C3、C6、C9、C12绕组的结束端分别连接到一起,接线形式复杂。因此,需要一种简洁、牢靠的结构。
本申请旨在设计一种汇流排结构,能够满足8P12S型电机的接线要求,并且具有轴向空间和径向空间占用少、接线简单、结构牢靠等特点。
其中,汇流排包括绝缘骨架1、中心点铜排(即中性汇流条24)、U相铜排(即U相汇流条251)、V相铜排(即V相汇流条252)、W相铜排(即W相汇流条253)和3个端子3。绝缘骨架1采用整体注塑成型,用于支撑铜排和端子3,并使铜排之间绝缘,绝缘骨架1与电机定子42骨架1进行卡接固定。中心点铜排和U、V、W相铜排为厚度相等的铜排,通过冲压、折弯等工序制作成,主体区域为具有缺口的圆环,从主体区域伸出U型端子3(即具有U形限位槽26的连接部22),以与铜漆包线(即接线端41)进行焊接。3个端子3沿周向120°分布,与U、V、W相铜排电阻焊接,向电机绕组输入电流。
具体地,本电机为8P12S电机,共有12个齿。每个齿上缠绕铜线,共形成12个绕组C1-C12,每个绕组有1个起始端线头和1个结束端线头,如图26所示。依据电机电路设计(图27所示),需要将沿着周向30°均布的起始端线头连接到一起导通,定义为中心点连接,另将沿着周向30°均布的结束端线头分为三份,C1、C4、C7、C10绕组结束端连接,定义为U相连接;C2、C5、C8、C11绕组结束端连接,定义为V相连接;C3、C6、C9、C12绕组结束端连接,定义为W相连接。
为了满足上述连接要求,设计了中心点连接铜排(图13和图14所示)和U、V、W相铜排(如图10所示)。中心点铜排和U、V、W相铜排由等厚度铜排经过冲压和弯折成型。铜排的厚度t取0.7~1.0mm之间,材料为H65黄铜,易于冲压成型,且具有足够的硬度。铜排的端部设计为U型槽,便于将漆包线整入U型槽,然后施加电阻焊接。
本电机的3个端子3的宽度方向沿径向布置,3个端子3相互之间相隔120°。3个端子 3分布与3相铜排进行电阻焊接。为了满足电阻焊接的要求,将端子3的端部进行了弯折(如图11所示),对3相铜排的焊接区域进行了加宽(如图10所示)。
将4层铜排一层层叠放,中心点铜排放最下层,然后依次为W、V、U,如图16至图18所示。层与层之间相隔0.5mm-3mm(如0.5mm、1mm、2mm、3mm,当然不局限于此范围,也可以是其他数值)。W层铜排第1个U型槽与中心点铜排任意一槽之间相差15°,如图16所示,而V、U铜排连接的端子3与W相端子3相隔120°,如图17和图18所示。叠放好后,进行整体注塑,注塑后的形状如图20所示。注塑体完全包裹3个端子3,端子3的位置度、垂直度好,结构牢靠,使得控制器pin针插入端子3时,端子3不易发生变形失效。
由于中心点铜排、U、V、W三相铜排处于的高度不一致,所以还对铜排的U形槽部位进行向下弯折,弯折高度为h,如图3、图6和图9所示,三相铜排除了高度h不一致以外,其他部位相同,弯折后所有U形槽处于同一高度位置,如图19所示。此种设计的优点是:高度方向的空间占用少,有利于电机减小轴向长度;漆包线所留线头长度相等,易于控制剥漆位置,易于产线上电阻焊接,易于焊接完后剪掉多余的线头。
汇流排接线方案如下:
中心点铜排将C1~C12绕组起始端线头连接起来;
U相铜排将C1、C4、C7、C10绕组结束端线头连接起来;
V相铜排将C2、C5、C8、C11绕组结束端线头连接起来;
W相铜排将C3、C6、C9、C12绕组结束端线头连接起来;
U、V、W相铜排顺时针第2个连接部22与端子3焊接,如图10所示。
层层之间高度差为1mm,W相铜排第一个U形槽与中心点铜排任意一个U形槽相差15°。
V相铜排与W相铜排高度差1mm,端子3周向相差120°。
U相铜排与V相铜排高度差1mm,端子3周向相差120°。
骨架1端部做6个挂钩,如图19所示,挂在定子42骨架1开槽处,如图25所示。
综上,通过将漆包线与此种汇流排结构焊接,即可完成上述接线的功能。由此,该汇流排实现了以下技术效果:1)满足了4层并联的星型接线;2)一体式注塑环状骨架(即环状支架)与条状骨架(即条状支架),结构牢靠,端子的位置度、垂直度好,便于ECU安装,安装时端子变形小;3)铜排U形槽沿着周向大致均布,且分布在同一高度上,利于漆包线的电阻焊接,产线上漆包线剥皮和剪线方便;4)汇流排轴向高度小,有利于电机优化轴向长度;5)汇流排采用U形槽的样式,有利于漆包线整入U形槽;6)合理地利用了径向的空间,满足要求端子径向分布的产品的要求。
实施例十一
如图34、图44和图45所示,一种汇流排主体,包括:骨架2’和多个汇流条3’。
具体地,骨架2’为绝缘件,骨架2’设有多个卡钩23’,如图44和图45所示。至少一 个卡钩23’开设有避让槽233’,如图36和图44所示,避让槽233’用于使卡钩23’适于发生弹性变形。
每个汇流条3’包括内嵌在骨架2’中的主体部31’和与主体部31’相连并外凸于骨架2’的多个连接部32’,如图44和图45所示。
本实施例提供的汇流排主体,在骨架2’上设置多个卡钩23’,便于汇流排与定子4’钩挂配合,进而实现便捷装配。在至少一个卡钩23’上开设避让槽233’,便于卡钩23’在与定子4’装配过程中发生弹性变形,降低卡钩23’与定子4’装配过程中发生卡滞、干涉等现象的概率,从而降低装配难度,提高装配效率。同时,带有避让槽233’的卡钩23’在装配完成后会发生复位变形,与定子4’产生紧密的结合力,因而有利于提高装配完成后的稳定性。
具体地,汇流排主体包括骨架2’和多个汇流条3’,骨架2’是绝缘件,可以采用注塑方式成型,对多个汇流条3’以及多个端子1’起到支撑作用,并隔离相邻的汇流条3’,起到电性绝缘作用;多个汇流条3’均为导体,每个汇流条3’包括主体部31’和多个连接部32’,每个汇流条3’的多个连接部32’用于连接电机定子4’的多个绕组中需要连接在一起的接线端,并通过主体部31’实现这些接线端的电性连接,实现汇流功能;多个端子1’与多个汇流条3’相连,如图46所示,每个端子1’与对应汇流条3’连接的接线端实现电性连接,多个端子1’连接电源母端形成电回路,为电机定子4’的多个绕组供电。
具体地,卡钩23’包括:固定部231’和钩挂部232’,如图35所示。固定部231’与骨架2’相连,钩挂部232’与固定部231’相连。
其中,至少一个卡钩23’的钩挂部232’包括多个间隔设置的弹性卡扣2321’,如图35所示,相邻的弹性卡扣2321’之间形成避让槽233’。
卡钩23’包括固定部231’和钩挂部232’,固定部231’与骨架2’相连,实现卡钩23’与骨架2’的连接功能。钩挂部232’与固定部231’相连,用于与定子4’钩挂配合,实现钩挂功能。其中,至少一个卡钩23’的钩挂部232’包括多个弹性卡扣2321’,多个弹性卡扣2321’间隔设置,形成避让槽233’,则装配过程中,相邻的弹性卡扣2321’受到挤压作用力可以相互靠近,从而缩小卡钩23’的尺寸,便于卡钩23’快速顺畅地实现与定子4’的钩挂配合,而钩挂完成后,弹性卡扣2321’会发生复位变形,与定子4’紧密贴合,从而提高连接强度。
在一些实施例中,多个弹性卡扣2321’并排分布,如图35所示。
多个弹性卡扣2321’并排分布,结构简单,便于加工成型。并且,卡钩23’向一个方向钩挂,装配过程中卡钩23’主要表现为宽度方向的弹性变化,这时定子4’上相应的配合结构只需设置卡槽41’即可,而且可以设置在定子4’的边缘部位,结构简单,装配也较为方便。
在另一些实施例中,多个弹性卡扣2321’呈环状排布。
多个弹性卡扣2321’呈环状排布,则卡钩23’形成弹性柱扣的形式,向多个方向钩挂,则装配过程中卡钩23’主要表现为粗细的变化。这时定子4’上相应的配合结构需要设置卡孔,连接较为可靠,卡钩23’不易脱出。
进一步地,钩挂部232’连接固定部231’的一端凸出于固定部231’,如图44所示,并 与骨架2’相连。
相较于仅有固定部231’与骨架2’相连的方案,本方案中钩挂部232’也与骨架2’相连,且与骨架2’的连接方向不同,这既增加了卡钩23’与骨架2’的连接面积,也增加了卡钩23’与骨架2’的连接作用力的方向,从而进一步提高了卡钩23’与骨架2’的连接强度,进一步提高了卡钩23’的使用可靠性,有效防止卡钩23’产生裂纹、断裂或者脱落。
实施例十二
一种汇流排主体,包括:骨架2’和多个汇流条3’。
具体地,骨架2’为绝缘件,骨架2’包括环状支架21’和多个与环状支架21’相连的条状支架22’,如图31、图35、图44和图45所示。
每个汇流条3’包括内嵌在环状支架21’内的主体部31’和与主体部31’相连并外凸于骨架2’的多个连接部32’,如图44和图45所示。
其中,条状支架22’设有用于容纳端子1’的一部分的插槽221’,如图30、图31、图44和图45所示。插槽221’设有避让缺口223’,如图37和图44所示,避让缺口223’供端子1’的一端弯折延伸并凸出于插槽221’以与连接部32’相连。条状支架22’设有至少一个用于支撑端子1’的支撑配合面222’,如图44和图45所示。至少一个支撑配合面222’的至少一部分位于插槽221’内,如图44和图45所示,且连接部32’、支撑配合面222’及插槽221’的入口沿环状支架21’的轴向依次排布。
本实施例提供的汇流排主体,通过在条状支架22’上增设支撑配合面222’,能够对端子1’提供朝向母端的支撑力,从而防止端子1’在与母端对插时发生过大变形,降低装配难度,进而提高端子1’的装配良率。
具体而言,汇流排主体包括骨架2’和多个汇流条3’。骨架2’是绝缘件,可以采用注塑方式成型,对多个汇流条3’以及多个端子1’起到支撑作用,并隔离相邻的汇流条3’,起到电性绝缘作用;多个汇流条3’均为导体,每个汇流条3’包括主体部31’和多个连接部32’,每个汇流条3’的多个连接部32’用于连接电机定子的多个绕组中需要连接在一起的接线端,并通过主体部31’实现这些接线端的电性连接,实现汇流功能;多个端子1’与多个汇流条3’相连,如图46所示,每个端子1’与对应汇流条3’连接的接线端实现电性连接,多个端子1’连接电源母端形成电回路,为电机定子的多个绕组供电。
其中,骨架2’包括环状支架21’和条状支架22’,环状支架21’用于支撑多个汇流条3’并保证多个汇流条3’相互之间的绝缘性,多个条状支架22’用于支撑多个端子1’,并保证端子1’与其他结构之间的电气绝缘性。在条状支架22’上开设插槽221’,且插槽221’设有避让缺口223’,在骨架2’成型完成后,可以直接将端子1’插向插槽221’,装配较为方便,装配完毕后,端子1’的两端均位于插槽221’外,分别用于连接电源母端和连接部32’。由于连接部32’、支撑配合面222’及插槽221’的入口沿环状支架21’的轴向依次排布,且避让缺口223’供端子1’的一端弯折延伸并凸出于插槽221’,进而能够与连接部32’相连,因此端子1’的两端位于支撑配合面222’沿环状支架21’的轴向的两侧,且端子1’与支撑配合面 222’相配合的结构在端子1’上形成台阶结构。在装配过程中,支撑配合面222’与端子1’的该部位支撑配合,这样在后续与母端插接时,端子1’位于支撑配合面222’以上的部位会受到骨架2’的支撑作用,能够有效防止端子1’受到压力发生过大变形。
同时,当端子1’与条状支架22’的支撑配合面222’接触配合时,表明端子1’装配到位,从而实现端子1’与骨架2’的装配,装配方式简单,操作便捷。并且,端子1’的对应部位(定义为端子1’的支撑面131’)与支撑配合面222’的配合,在装配过程中还起到了定位作用,能够提供到位感,提示装配到位,进一步降低装配难度,并对端子1’和骨架2’起到一定的保护作用。
进一步地,支撑配合面222’的数量可以为一个,也可以为多个,与端子1’的支撑面131’的数量相等且一一对应。对于支撑配合面222’的数量为一个的情况,支撑配合面222’可以完全位于插槽221’内;也可以一部分位于插槽221’内,一部分位于插槽221’外,此时插槽221’的底壁形成支撑配合面222’的一部分,支撑配合面222’的另一部分穿过避让缺口223’伸出插槽221’,如图44所示。对于支撑配合面222’的数量为多个的情况,除了可以在插槽221’内设置支撑配合面222’,还可以在插槽221’外设置若干个支撑配合面222’,比如在图44的支撑配合面222’的下方增设若干个台阶,形成若干个支撑配合面222’。
可以理解的是,电源母端一般设有插孔,与端子1’采用插接配合的方式,当端子1’插入插孔内,端子1’与电源母端实现物理接触,从而实现电性连接。其中,电源母端可以设在电机的控制器上。
具体地,端子1’的插接部122’与插孔的形状可以根据需要设计。
比如:插接部122’为普通矩形片状结构(如图38所示),插孔为对应的矩形孔。
或者,插接部122’上开设避让槽,使得插接部122’包括两个并排设置且相互间隔开的插片,同时插接部122’的宽度方向的两侧设有凸点,插孔内对应设有凹槽或者支撑点,在端子1’插入电源母端的过程中,两个插片可以发生弹性变形相互靠近,便于端子1’快速插装,当插片插入到位时,凸点卡在对应的凹槽内,或者越过对应的支撑点并与支撑点相抵靠,这样能够有效防止端子1’脱离电源母端。
进一步地,插槽221’沿端子1’的厚度方向的宽度W’被配置为大于端子1’的厚度W1’,如图33所示。
当插槽221’沿端子1’的厚度方向的宽度大于端子1’的厚度时,端子1’与插槽221’间隙配合,如图32和图33所示,使得端子1’在周向方向上和径向方向上容易发生变形,这使得端子1’在周向、径向上具有变形的能力,即柔性能力,也便于端子1’与母端开口准确对位,来满足端子1’与母端的装配需求。
进一步地,插槽221’的入口处设有限位槽2211’,如图35、图44和图45所示,限位槽2211’用于容纳端子1’的支撑凸起,如图31和图46所示。
在插槽221’的入口处设限位槽2211’,端子1’对应设有支撑凸起,装配过程中支撑凸起会嵌入限位槽2211’内,当端子1’受到压力时,支撑凸起能够起到支撑作用,从而防止端 子1’因局部应力集中而发生失稳变形。
具体地,限位槽2211’设在插槽221’沿端子1’的宽度方向的至少一侧,如图44和图45所示。
将限位槽2211’设在插槽221’沿端子1’的宽度方向的至少一侧,则支撑凸起也设在端子1’的宽度方向的至少一侧,便于直接利用冲压成型的方式将支撑凸起与端子1’一体成型,从而简化端子1’的加工工艺。进一步地,在插槽221’沿端子1’的宽度方向的两侧对称设置限位槽2211’,在端子1’的宽度方向的两侧对称设置支撑凸起,有利于端子1’受力均衡,进而进一步提高端子1’的稳定性。
其中,限位槽2211’沿端子1’的厚度方向的宽度W2’被配置为大于端子1’的厚度W1’,如图33所示。
由于支撑凸起一般与端子1’等厚齐平,因而当限位槽2211’沿端子1’的厚度方向的宽度大于端子1’的厚度时,装配完成后,支撑凸起与限位槽2211’间隙配合,如图33所示,这样不限制端子1’在周向方向上和径向方向上的变形,这保证端子1’在周向、径向上具有变形的能力,即柔性能力,也便于端子1’与母端开口准确对位,来满足端子1’与母端的装配需求。
进一步地,限位槽2211’沿端子1’的厚度方向的宽度W2’被配置为小于插槽221’沿端子1’的厚度方向的宽度W’,如图33、图44和图45所示。
将端子1’与插槽221’之间沿端子1’的厚度方向的间隙记为第一间隙226’,将支撑凸起121’与限位槽2211’之间沿端子1’的厚度方向的间隙记为第二间隙227’。由于限位槽2211’沿端子1’的厚度方向的宽度小于插槽221’沿端子1’的厚度方向的宽度,当支撑凸起121’的厚度等于端子1’的厚度时,则第二间隙227’的宽度小于第一间隙226’的宽度,如图33所示。
第一间隙226’相对较大,有利于端子1’在周向、径向和垂直向上的方向上较好的变形;而第二间隙227’相对较小,有利于防止第二连接段12’受到压力时发生弯曲而失稳变形。
在一些实施例中,支撑配合面222’与环状支架21’的轴线垂直,如图44和图45所示。
支撑配合面222’与环状支架21’的轴线垂直,则端子1’的支撑面131’也与环状支架21’的轴线垂直,这样,端子1’和条状支架22’的结构均较为规整,便于加工成型。同时,该方案中,支撑配合面222’对端子1’提供的支撑力能够平行于端子1’与母端的对插方向,支撑可靠性较高。
在另一些实施例中,支撑配合面222’相对于环状支架21’的轴线倾斜设置。
支撑配合面222’也可以相对环状支架21’的轴线倾斜设置,同样能够提供平行于端子1’与母端的对插方向的分作用力,以防止端子1’过度变形。
实施例十三
将实施例十一与实施例十二相结合,则实施例十三具有实施例十一和实施例十二的技术效果,在此不再赘述。
换言之,在实施例十二的基础上,进一步地,至少一个条状支架22’设有定位标识部,定位标识部包括加强凸起224’,如图29、图44和图45所示,加强凸起224’与环状支架21’及条状支架22’相连。
进一步地,骨架2’设有多个卡钩23’,如图44和图45所示。至少一个卡钩23’开设有避让槽233’,如图31和图44所示,避让槽233’用于使卡钩23’适于发生弹性变形。
具体地,卡钩23’包括:固定部231’和钩挂部232’,如图35所示。固定部231’与骨架2’相连,钩挂部232’与固定部231’相连。
其中,至少一个卡钩23’的钩挂部232’包括多个间隔设置的弹性卡扣2321’,如图35所示,相邻的弹性卡扣2321’之间形成避让槽233’。
在一些实施例中,多个弹性卡扣2321’并排分布,如图35所示。
在另一些实施例中,多个弹性卡扣2321’呈环状排布。
进一步地,钩挂部232’连接固定部231’的一端凸出于固定部231’,如图44所示,并与骨架2’相连。
在本申请的一些实施例中,进一步地,骨架2’的条状支架22’沿环状支架21’的径向朝外凸出于环状支架21’,卡钩23’与条状支架22’相连,如图34、图44和图45所示。
进一步地,卡钩23’与条状支架22’的径向外侧面相连,如图44和图45所示。
进一步地,卡钩23’的顶端面234’相对于条状支架22’的径向外侧面倾斜设置,如图44和图47所示,且顶端面234’由内向外朝着靠近卡钩23’的钩挂部232’的方向倾斜延伸。
在上述实施例中,进一步地,多个卡钩23’用于与定子4’上的卡槽41’钩挂配合,如图47所示。多个卡钩23’中的一部分开设有避让槽233’,开设有避让槽233’的卡钩23’记为第一卡钩,其他卡钩23’记为第二卡钩。
其中,第一卡钩的总宽度B1’>卡槽41’的宽度B3’>第二卡钩的总宽度B2’,如图36和图37所示。
实施例十四
一种汇流排,包括:如实施例十一或实施例十二或实施例十三的汇流排主体和多个端子1’。多个端子1’与汇流排主体的多个汇流条3’相连,端子1’的一端与连接部32’相连,端子1’的另一端用于连接电源母端,端子1’设有支撑面131’,支撑面131’与支撑配合面222’接触配合。
本实施例提供的汇流排,因包括实施例十一至实施例十三中任一项的汇流排主体,因而具有上述实施例十一至实施例十三中所具有的一切有益效果,在此不再赘述。
实施例十五
一种端子1’(如图38、图42和图43所示),用于电机51’的汇流排,端子1’包括:第一连接段11’、支撑段13’和第二连接段12’,如图30所示。
具体地,支撑段13’的一端与第一连接段11’转折相连,如图30和图39所示,支撑段13’设有至少一个支撑面131’。
第二连接段12’与支撑段13’的另一端转折相连,且第二连接段12’向远离第一连接段11’的方向延伸,第一连接段11’、支撑段13’、第二连接段12’沿第一连接段11’的厚度方向依次排布。
其中,沿第一连接段11’的厚度方向,支撑面131’设在支撑段13’背离第二连接段12’的一侧,如图30所示,以使支撑面131’适于被支撑以向支撑段13’的至少一部分以及第二连接段12’提供支撑力。
本实施例提供的端子1’,通过增设支撑段13’,利用支撑段13’的支撑面131’受到的支撑作用,能够对端子1’提供朝向母端的支撑力,从而防止端子1’在与母端对插时发生过大变形,降低装配难度,进而提高端子1’的装配良率。
具体而言,端子1’包括第一连接段11’、支撑段13’和第二连接段12’,第一连接段11’用于与汇流条3’的连接部32’相连,第二连接段12’用于与母端插接相连,支撑段13’位于第一连接段11’与第二连接段12’之间,起支撑作用。具体地,支撑段13’与第一连接段11’转折相连,也与第二连接段12’转折相连,且第一连接段11’、支撑段13’和第二连接段12’沿第一连接段11’的厚度方向排布,则支撑段13’所在位置在端子1’上形成台阶结构,台阶结构的部分表面即形成支撑面131’,在装配过程中,支撑面131’会与汇流排的骨架2’支撑配合,这样在后续与母端插接时,受到骨架2’的支撑作用,能够有效防止端子1’受到压力发生过大变形。
可以理解的是,电源母端一般设有插孔,与端子1’采用插接配合的方式,当端子1’插入插孔内,端子1’与电源母端实现物理接触,从而实现电性连接。其中,电源母端可以设在电机51’的控制器上。
具体地,端子1’的插接部122’与插孔的形状可以根据需要设计。
比如:插接部122’为普通矩形片状结构(如图38所示),插孔为对应的矩形孔。
或者,插接部122’上开设避让槽,使得插接部122’包括两个并排设置且相互间隔开的插片,同时插接部122’的宽度方向的两侧设有凸点,插孔内对应设有凹槽或者支撑点,在端子1’插入电源母端的过程中,两个插片可以发生弹性变形相互靠近,便于端子1’快速插装,当插片插入到位时,凸点卡在对应的凹槽内,或者越过对应的支撑点并与支撑点相抵靠,这样能够有效防止端子1’脱离电源母端。
在本申请的一些实施例中,进一步地,第二连接段12’设有支撑凸起121’,如图31和图40所示。
在第二连接段12’上设置支撑凸起121’,则端子1’受到压力时,支撑凸起121’能够起到支撑作用,从而防止端子1’因局部应力集中而发生失稳变形。
进一步地,支撑凸起121’设在第二连接段12’的宽度方向的至少一侧,如图31和图40所示。
将支撑凸起121’设在第二连接段12’的宽度方向的至少一侧,便于直接利用冲压成型的方式与端子1’一体成型,从而简化端子1’的加工工艺。在第二连接段12’的宽度方向的两 侧对称设置支撑凸起121’,有利于端子1’受力均衡,进而进一步提高端子1’的稳定性。
在本申请的一些实施例中,支撑面131’与第一连接段11’相互平行,如图30所示。
支撑面131’与第一连接段11’相互平行,结构较为规整,便于加工成型,也便于汇流排的骨架2’加工成型。同时,该方案中,支撑面131’受到的支撑力能够平行于与母端的对插方向,支撑可靠性较高。
进一步地,支撑段13’包括至少一个L形段,如图30和图39所示。
支撑段13’包括至少一个L形段,则支撑段13’呈直角台阶结构,支撑面131’能够平行于第一连接段11’。由于第一连接段11’与第二连接段12’一般相互垂直,因而当支撑段13’包括一个L形段时,端子1’整体呈双L型,既稳定,且结构简单;当支撑段13’包括两个L形段时,端子1’整体呈三L形;当支撑段13’包括更多个L形段时,同理,以此类推。
在本申请的另一些实施例中,支撑面131’相对于第一连接段11’倾斜设置。
支撑面131’也可以相对第一连接段11’倾斜设置,同样能够提供平行于与母端的对插方向的分作用力,以防止端子1’过度变形。
进一步地,支撑段13’也可以是倾斜段,则支撑面131’能够相对于第一连接段11’倾斜设置;或者支撑段13’也可以包括多个倾斜段,只要具有支撑面131’,能够对端子1’起到支撑作用即可。
在上述任一实施例中,第一连接段11’与第二连接段12’相互垂直,如图30和图39所示,第一连接段11’设有焊接面111’,第二连接段12’设有插接部122’(如图38、图42和图43所示)。
第一连接段11’与第二连接段12’相互垂直,且第一连接段11’和第二连接段12’分别设有焊接面111’和插接部122’,既便于第一连接段11’与汇流条3’的连接部32’焊接相连,也便于第二连接段12’与母端插接相连。
定义母端插向端子1’的方向为向下的方向,则装配过程中,端子1’只受到焊接位置的约束力,当向上提拉端子1’时,而焊接点与提拉力的作用点不在一条线上,因而会产生力矩(力乘以力臂)的作用,使得端子1’受到拉力容易发生变形(也就是说,使得端子1’具有了向上变形的能力),便于合理调整端子1’与母端的相对位置。当端子1’受到向下的压力时,支撑面131’受到向上的支撑作用,使得端子1’不易发生变形,防止端子1’向下变形。
值得说明的是,母端开槽与端子1’过盈配合。因此,受到向下的压力时,端子1’不得产生大的变形,否则端子1’无法插入母端开槽内。由于公差的影响,母端开槽与端子1’对插时,不能保证精确的定位,通常只能通过在母端或者端子1’上设置导向,来保证能够完成对插。因此,端子1’在垂直向上的方向上具有变形的能力,即柔性能力,便于端子1’与母端开口准确对位,来满足端子1’与母端的装配需求。
在一些实施例中,进一步地,相对于第二连接段12’连接支撑段13’的一端,第一连接段11’沿汇流排的周向方向倾斜延伸,如图41所示。
本方案中,第一连接段11’的延伸方向,相对于第二连接段12’连接支撑段13’的一端, 并不是垂直设置的,而是沿汇流排的周向方向倾斜延伸的,这样有利于延长第一连接段11’的长度,既保证第一连接段11’能够与汇流排的对应连接部32’具有充足的接触面以保证连接可靠,又有利于延长端子1’受力时的力臂长度,有利于提高端子1’的柔性变形能力,且便于根据需要合理设计支撑段13’的长度和形状,以优化产品性能。
实施例十六
一种汇流排,如图29、图34和图46所示,包括:骨架2’、多个汇流条3’和多个如实施例十五的端子1’。
具体地,骨架2’为绝缘件,骨架2’设有支撑配合面222’,如图30、图44和图45所示。
每个汇流条3’包括内嵌在骨架2’中的主体部31’和与主体部31’相连并外凸于骨架2’的多个连接部32’,如图30和图31所示。
多个端子1’与多个汇流条3’相连,端子1’的第一连接段11’与连接部32’相连,如图30所示。端子1’的第二连接段12’用于连接电源母端,端子1’的支撑面131’与支撑配合面222’接触配合。
本实施例提供的汇流排,能够利用多个汇流条3’的连接部32’来连接电机51’定子4’的多个绕组的各接线端,并利用汇流条3’良好的导电性能实现对应接线端的电性连接,而无需将对应的接线端直接相连,因而降低了接线难度,便于产线高效快速操作,有利于提高产品的生产效率。
具体而言,汇流排包括骨架2’、多个汇流条3’和多个端子1’,骨架2’是绝缘件,可以采用注塑方式成型,对多个汇流条3’以及多个端子1’起到支撑作用,并隔离相邻的汇流条3’,起到电性绝缘作用;多个汇流条3’均为导体,每个汇流条3’包括主体部31’和多个连接部32’,每个汇流条3’的多个连接部32’用于连接电机定子4’的多个绕组中需要连接在一起的接线端,并通过主体部31’实现这些接线端的电性连接,实现汇流功能;多个端子1’与多个汇流条3’相连,每个端子1’与对应汇流条3’连接的接线端实现电性连接,多个端子1’连接电源母端形成电回路,为电机51’定子4’的多个绕组供电。
同时,本方案的汇流排因包括上述实施例中任一项的端子1’,因而具有上述任一实施例所具有的一切有益效果,在此不再赘述。
进一步地,本实施例还包括实施例十三的内容,因而具有实施例十三所具有的技术效果,在此不再赘述。
换言之,进一步地,骨架2’包括环状支架21’和多个与环状支架21’一体式相连的条状支架22’,如图31、图35、图44和图45所示。所有的汇流条3’的主体部31’内嵌在环状支架21’内,多个条状支架22’与多个端子1’一一对应,且每个端子1’的第二连接段12’的一部分内嵌在对应的条状支架22’内,如图46所示。
进一步地,条状支架22’设有插槽221’,如图30、图31、图44和图45所示。端子1’与插槽221’插接配合。插槽221’设有避让缺口223’,如图37和图44所示,避让缺口223’用于避让端子1’的支撑段13’和第一连接段11’。条状支架22’设有至少一个支撑配合面 222’,至少一个支撑配合面222’的至少一部分位于插槽221’内。
进一步地,端子1’与插槽221’间隙配合,如图32和图33所示。
进一步地,插槽221’的入口处设有限位槽2211’,如图35、图44和图45所示,限位槽2211’用于容纳端子1’的支撑凸起121’,如图31和图46所示。
其中,支撑凸起121’与限位槽2211’间隙配合,如图33所示。
具体地,端子1’与插槽221’之间沿端子1’的厚度方向的间隙记为第一间隙226’;支撑凸起121’与限位槽2211’之间沿端子1’的厚度方向的间隙记为第二间隙227’;第二间隙227’的宽度小于第一间隙226’的宽度,如图33所示。
进一步地,至少一个条状支架22’设有定位标识部,定位标识部包括加强凸起224’,如图29、图44和图45所示,加强凸起224’与环状支架21’及条状支架22’相连。
在本申请的一些实施例中,进一步地,骨架2’设有多个卡钩23’,如图44和图45所示。至少一个卡钩23’开设有避让槽233’,如图31和图44所示,避让槽233’用于使卡钩23’适于发生弹性变形。
具体地,卡钩23’包括:固定部231’和钩挂部232’,如图35所示。固定部231’与骨架2’相连,钩挂部232’与固定部231’相连。
其中,至少一个卡钩23’的钩挂部232’包括多个间隔设置的弹性卡扣2321’,如图35所示,相邻的弹性卡扣2321’之间形成避让槽233’。
在一些实施例中,多个弹性卡扣2321’并排分布,如图35所示。
在另一些实施例中,多个弹性卡扣2321’呈环状排布。
进一步地,钩挂部232’连接固定部231’的一端凸出于固定部231’,如图44所示,并与骨架2’相连。
在本申请的一些实施例中,进一步地,骨架2’的条状支架22’沿环状支架21’的径向朝外凸出于环状支架21’,卡钩23’与条状支架22’相连,如图34、图44和图45所示。
进一步地,卡钩23’与条状支架22’的径向外侧面相连,如图44和图45所示。
进一步地,卡钩23’的顶端面234’相对于条状支架22’的径向外侧面倾斜设置,如图44和图47所示,且顶端面234’由内向外朝着靠近卡钩23’的钩挂部232’的方向倾斜延伸。
在上述实施例中,进一步地,多个卡钩23’用于与定子4’上的卡槽41’钩挂配合,如图47所示。多个卡钩23’中的一部分开设有避让槽233’,开设有避让槽233’的卡钩23’记为第一卡钩,其他卡钩23’记为第二卡钩。
其中,第一卡钩的总宽度B1’>卡槽41’的宽度B3’>第二卡钩的总宽度B2’,如图36和图37所示。
实施例十七
与实施例十六的区别在于:在实施例十六的基础上,端子为如实施例十四所述的端子,因而具有实施例十四的技术效果,在此不再赘述。
具体地,如图38、图42和图43所示,端子1’包括:第一连接段11’、支撑段13’和第 二连接段12’,如图30所示。
具体地,支撑段13’的一端与第一连接段11’转折相连,如图30和图39所示,支撑段13’设有至少一个支撑面131’。
第二连接段12’与支撑段13’的另一端转折相连,且第二连接段12’向远离第一连接段11’的方向延伸,第一连接段11’、支撑段13’、第二连接段12’沿第一连接段11’的厚度方向依次排布。
其中,沿第一连接段11’的厚度方向,支撑面131’设在支撑段13’背离第二连接段12’的一侧,如图30所示,以使支撑面131’适于被支撑以向支撑段13’的至少一部分以及第二连接段12’提供支撑力。
进一步地,第二连接段12’设有支撑凸起121’,如图31和图40所示。
进一步地,支撑凸起121’设在第二连接段12’的宽度方向的至少一侧,如图31和图40所示。
在本申请的一些实施例中,支撑面131’与第一连接段11’相互平行,如图30所示。
进一步地,支撑段13’包括至少一个L形段,如图30和图39所示。
在本申请的另一些实施例中,支撑面131’相对于第一连接段11’倾斜设置。
在上述任一实施例中,第一连接段11’与第二连接段12’相互垂直,如图30和图39所示,第一连接段11’设有焊接面111’,第二连接段12’设有插接部122’(如图38、图42和图43所示)。
在一些实施例中,进一步地,相对于第二连接段12’连接支撑段13’的一端,第一连接段11’沿汇流排的周向方向倾斜延伸,如图41所示。
在一些实施例中,具体地,条状支架22’设有插槽221’,如图30、图31、图44和图45所示。端子1’与插槽221’插接配合。插槽221’设有避让缺口223’,如图37和图44所示,避让缺口223’用于避让端子1’的支撑段13’和第一连接段11’。条状支架22’设有至少一个支撑配合面222’,至少一个支撑配合面222’的至少一部分位于插槽221’内。
在条状支架22’上开设插槽221’,且插槽221’具有避让缺口223’,保证了端子1’可以在骨架2’成型完成后,直接插入插槽221’,当端子1’的支撑面131’与条状支架22’的支撑配合面222’接触配合时,表明端子1’装配到位,从而实现端子1’与骨架2’的装配,装配方式简单,操作便捷。并且,支撑面131’与支撑配合面222’,在装配过程中还起到了定位作用,能够提供到位感,提示装配到位,进一步降低装配难度,并对端子1’和骨架2’起到一定的保护作用。
进一步地,端子1’与插槽221’间隙配合,如图32和图33所示。
端子1’与插槽221’间隙配合,使得端子1’在周向方向上和径向方向上容易发生变形,这使得端子1’在周向、径向上具有变形的能力,即柔性能力,也便于端子1’与母端开口准确对位,来满足端子1’与母端的装配需求。
进一步地,插槽221’的入口处设有限位槽2211’,如图35、图44和图45所示,限位 槽2211’用于容纳端子1’的支撑凸起121’,如图31和图46所示。
插槽221’入口处的限位槽2211’与端子1’的支撑凸起121’支撑配合,能够对端子1’起到支撑作用,从而防止端子1’因局部应力集中而发生失稳变形。
其中,支撑凸起121’与限位槽2211’间隙配合,如图33所示。
支撑凸起121’与限位槽2211’间隙配合,不限制端子1’在周向方向上和径向方向上的变形,这保证端子1’在周向、径向上具有变形的能力,即柔性能力,也便于端子1’与母端开口准确对位,来满足端子1’与母端的装配需求。
具体地,端子1’与插槽221’之间沿端子1’的厚度方向的间隙记为第一间隙226’;支撑凸起121’与限位槽2211’之间沿端子1’的厚度方向的间隙记为第二间隙227’;第二间隙227’的宽度小于第一间隙226’的宽度,如图33所示。
第一间隙226’相对较大,有利于端子1’在周向、径向和垂直向上的方向上较好的变形;而第二间隙227’相对较小,有利于防止第二连接段12’受到压力时发生弯曲而失稳变形。
实施例十八
一种电机51’,如图47所示,包括:电机主体和如实施例十四、十六或十七的汇流排。具体地,电机主体包括定子4’,定子4’设有绕组,绕组具有两个接线端。汇流排的连接部32’与接线端相连。
本实施例提供的电机51’,因包括实施例十四或实施例十六或实施例十七的汇流排,因而具有上述任一实施例所具有的一切有益效果,在此不再赘述。
在一个实施例中,绕组的数量为12个,12个绕组采用星型连接方式连接。
由于12个绕组具有24个接头,采用星型连接,需要将12个绕组的起始端的12个线头连接到一起,并将1、4、7、10绕组的结束端、2、5、8、11绕组的结束端、3、6、9、12绕组的结束端分别连接到一起,因而接线方式非常复杂。采用本申请的方案可以有效降低其接线难度,接线方式简洁牢靠。当然,绕组的数量不局限于12个,也可以为9个、15个等;绕组的连接方式并不局限于上述方式,也可以为三角形连接或者其他方式。
实施例十九
一种电动助力转向系统5’,如图48所示,包括:如实施例十八的电机51’和控制装置52’,控制装置52’与电机51’电连接。
本实施例提供的电动助力转向系统5’,因包括实施例十八的电机51’,因而具有实施例十八所具有的一切有益效果,在此不再赘述。
具体地,控制装置52’包括但不局限于车速传感器、电子控制单元(ECU,Electronic Control Unit,又称“行车电脑”、“车载电脑”等)等。
可以理解的是,电动助力转向系统5’(Electric Power Steering,缩写EPS)是一种直接依靠电机51’提供辅助扭矩的动力转向系统,与传统的液压助力转向系统HPS(Hydraulic Power Steering)相比,EPS系统具有很多优点。EPS主要由扭矩传感器、车速传感器、电动机、减速机构和电子控制单元(ECU)等组成。
实施例二十
一种车辆6’,如图49所示,包括:车体61’和如第实施例十八的电机51’,电机51’安装在车体61’中。
本实施例提供的车辆6’,因包括实施例十八的电机51’,因而具有上述实施例十八所具有的一切有益效果,在此不再赘述。
下面以8P12S永磁电机51’为例,介绍一个具体示例。
一种8P12S永磁电机51’,包括具有柔性端子1’的汇流排。
汇流排先整体注塑,注塑之后的成型图,如图44和图45所示。
其中,注塑骨架2’预留插槽221’,方便后续装配端子1’,如图46所示。
骨架2’外圈均布3个挂钩(也可以叫卡钩23’),分别编号为第一挂钩、第二挂钩、第三挂钩。其中,第一挂钩、第二挂钩中间开槽,总宽度为B1’,第三挂钩中间不开槽,总宽度为B2’。汇流排装配时,需要将3个挂钩依次钩入定子4’的骨架开槽(即定子4’的卡槽41’)中,定子4’的骨架开槽宽度为B3’。现设计尺寸B2’<B3’<B1’。因此,第三挂钩能够轻易钩入开槽中,无干涉,而第一挂钩和第二挂钩与槽口有干涉,需要通过侧面挤压变形,使得第一挂钩和第二挂钩的整体宽度变窄,才能钩入槽中。此种设计的优点是:第一挂钩和第二挂钩钩入槽中之后,由于弹力的作用,使得第一挂钩和第二挂钩的侧面与槽口侧面紧密贴合,且具有一定的结合力,因此,汇流排的装配会比较牢靠。
若非如此设计,必然会遇到以下问题:若要3处挂钩能顺利钩入卡槽41’中,常规的做法是,将挂钩的宽度设计为小于槽口宽度,即挂钩与槽口之间为间隙配合。这样设计,会导致两个问题:1、若间隙过大,则汇流排易松动;2、若间隙过小,由于挂钩与槽口的尺寸公差和和位置公差,很可能导致某1个挂钩不易放入。
端子1’形状设计成双L型,如图38、图42和图43所示,装配入汇流排骨架2’预留槽口中,如图46所示。
当往上提端子1’时,只有焊接点对端子1’的约束,而焊接点与力的作用点不在一条直线上。因此,会形成力矩的作用(力乘以力臂),使得端子1’受拉力变形很容易。
当往下压端子1’时,骨架2’的支撑配合面222’对端子1’起支撑作用,保护端子1’不易产生变形。并且,端子1’的两处支撑凸起121’,保护端子1’在受到向下的压力时,不发生失稳变形。端子1’与汇流排的骨架2’,在径向和周向上都为间隙配合,因此这两个方向的受力变形很容易。
通过以上设计,使得端子1’在垂直向上、径向和周向上的变形容易,而垂直向下的变形困难。
此种设计模拟的是端子1’与母端插接时的受力情况。母端开槽与端子1’过盈配合。因此,端子1’受到垂向压力时,不得产生大变形。由于公差的影响,母端开槽与端子1’对插时,不能保证精确的定位,只能通过在母端或者端子1’上设置导向,来保证能够完成对插。因此,端子1’在周向、径向和垂直向上的方向上具有变形的能力,即柔性能力,能够有效降低装配难度,提高装配良率。此种设计正好满足以上的装配要求。
在本说明书的描述中,术语“第一”、“第二”、“第三”、“第四”、“第五”、“第六”、“第七”仅用于描述的目的,而不能理解为指示或暗示相对重要性,除非另有明确的规定和限定;术语“连接”、“安装”、“固定”等均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (32)

  1. 一种汇流排,其中,包括:
    骨架,所述骨架为绝缘件;
    多个汇流条,每个所述汇流条包括内嵌在所述骨架中且沿所述骨架的周向方向延伸的主体部和与所述主体部相连并外凸于所述骨架的多个连接部,多个所述连接部用于连接电机定子绕组的接线端;
    多个端子,与多个所述汇流条相连,用于连接电源;
    其中,所有所述汇流条的主体部沿所述骨架的轴向方向层叠排布且相互间隔分开,所有所述汇流条的连接部沿所述骨架的周向方向间隔分布,且所有所述汇流条的连接部远离所述定子绕组的端面在所述骨架的轴向方向上保持齐平。
  2. 根据权利要求1所述的汇流排,其中,
    所有所述汇流条的连接部靠近所述定子绕组的端面在所述骨架的轴向方向上保持齐平,使所有的所述连接部在所述骨架的轴向方向上保持齐平。
  3. 根据权利要求2所述的汇流排,其中,
    至少部分所述汇流条还包括延伸部,所述延伸部位于所述主体部的外周缘与所述连接部之间,用于连接所述主体部与所述连接部,且所述延伸部至少部分沿所述骨架的轴向方向延伸,使所有的所述连接部在所述骨架的轴向方向上保持齐平。
  4. 根据权利要求1至3中任一项所述的汇流排,其中,
    所述连接部设有与所述接线端适配的限位槽,所述限位槽供所述接线端穿过并适于与所述接线端焊接相连。
  5. 根据权利要求4所述的汇流排,其中,
    所述连接部包括连接片和弯折片,所述连接片与所述主体部相连并沿所述骨架的周向方向延伸,所述弯折片与所述连接片相连并弯折延伸,且与所述连接片围设出呈U形的所述限位槽。
  6. 根据权利要求5所述的汇流排,其中,
    所述连接片的厚度方向和所述弯折片的厚度方向垂直于所述骨架的轴线方向。
  7. 根据权利要求1至6中任一项所述的汇流排,其中,
    所述骨架包括环状支架和与所述环状支架一体式相连的多个条状支架,所有的所述汇流条的主体部内嵌在所述环状支架内,多个所述条状支架与多个所述端子一一对应,且每个所述端子的一部分内嵌在对应的所述条状支架内。
  8. 根据权利要求7所述的汇流排,其中,
    所述条状支架沿所述骨架的轴线方向的尺寸c大于或等于所述端子沿所述骨架的轴线方向的尺寸c0的一半。
  9. 根据权利要求7或8所述的汇流排,其中,
    所述端子与对应的所述汇流条的其中一个连接部相连,在垂直于所述骨架的中心轴线的平面的投影中,所述条状支架在所述端子的厚度方向上关于所述端子非对称布置,且靠近对应的所述连接部用于连接所述接线端的部位的尺寸d1小于远离对应的所述连接部用于连接所述接线端的部位的尺寸d2。
  10. 根据权利要求1至9中任一项所述的汇流排,其中,
    所述主体部呈圆弧形,所有的所述汇流条分为中性汇流条和多个相性汇流条;
    其中,所述中性汇流条的主体部、多个所述相性汇流条的主体部沿所述骨架的轴向方向依次层叠排布且相互间隔分开,所有所述汇流条的连接部沿所述骨架的周向方向均匀分布。
  11. 根据权利要求10所述的汇流排,其中,
    每个所述汇流条的多个连接部由其主体部的缺口处开始沿同一旋转方向依次被记为第x个连接部,多个所述相性汇流条沿所述骨架的轴向方向依次被记为第y个相性汇流条且第一个相性汇流条与所述中性汇流条相邻布置;所述中性汇流条的第一个连接部与相邻的第一个相性汇流条的第一个连接部之间的轴心连线夹角α、第一个相性汇流条的第一个连接部与相邻的第二个相性汇流条的第一个连接部之间的轴心连线夹角β满足:
    α=360°/(2×m×n)+360°×K/(m×n),β=360°×P/(m×n)且β≠360°×Q/n,所述m为所述相性汇流条的数量,所述n为每相定子绕组的数量,所述K∈[0,(m×n-1)],所述P∈(0,(m×n-1)),所述Q∈[1,m]。
  12. 根据权利要求11所述的汇流排,其中,
    第二个相性汇流条的第一个连接部与第三个相性汇流条的第一个连接部之间的轴心连线夹角γ满足:γ=360°×P/(m×n)且γ≠360°×Q/n。
  13. 根据权利要求11或12所述的汇流排,其中,
    所述P与所述n满足:P=n。
  14. 根据权利要求10至13中任一项所述的汇流排,其中,
    每个所述汇流条的第一个连接部和最后一个连接部位于所述主体部的两端。
  15. 根据权利要求11至14中任一项所述的汇流排,其中,
    每个所述相性汇流条的连接部的数量为n,每个所述端子与对应的所述相性汇流条的第x个连接部相连,所述x∈[2,n-1]。
  16. 根据权利要求1至15中任一项所述的汇流排,其中,
    所有所述汇流条的连接部沿所述骨架的轴向方向的两端不凸出于所述骨架的轴向两端面所在的平面。
  17. 一种汇流排主体,其中,包括:
    骨架,所述骨架为绝缘件,所述骨架包括环状支架和多个与所述环状支架相连的条状支架;
    多个汇流条,每个所述汇流条包括内嵌在所述环状支架内的主体部和与所述主体部相连并外凸于所述骨架的多个连接部;
    其中,所述条状支架设有用于容纳端子的一部分的插槽,所述插槽设有避让缺口,所述避让缺口供所述端子的一端弯折延伸并凸出于所述插槽以与所述连接部相连,所述条状支架设有至少一个用于支撑所述端子的支撑配合面,至少一个所述支撑配合面的至少一部分位于所述插槽内,且所述连接部、所述支撑配合面及所述插槽的入口沿所述环状支架的轴向依次排布。
  18. 根据权利要求17所述的汇流排主体,其中,
    所述插槽的入口处设有限位槽,所述限位槽用于容纳所述端子的支撑凸起。
  19. 根据权利要求18所述的汇流排主体,其中,
    所述限位槽设在所述插槽沿所述端子的宽度方向的至少一侧。
  20. 根据权利要求17至19中任一项所述的汇流排主体,其中,
    所述骨架设有多个卡钩,至少一个所述卡钩开设有避让槽,所述避让槽用于使所述卡钩适于发生弹性变形。
  21. 根据权利要求17至20中任一项所述的汇流排主体,其中,
    至少一个所述条状支架设有定位标识部,所述定位标识部包括加强凸起,所述加强凸起与所述环状支架及所述条状支架相连。
  22. 一种汇流排,其中,包括:
    如权利要求17至21中任一项所述的汇流排主体;和
    多个端子,与所述汇流排主体的多个汇流条相连,所述端子的一端与所述连接部相连,所述端子的另一端用于连接电源母端。
  23. 根据权利要求22所述的汇流排,其中,
    所述端子设有支撑面,所述支撑面与所述汇流排主体的支撑配合面接触配合。
  24. 根据权利要求23所述的汇流排,其中,所述端子包括:
    第一连接段;
    支撑段,所述支撑段的一端与所述第一连接段转折相连,所述支撑段设有至少一个支撑面;
    第二连接段,所述第二连接段与所述支撑段的另一端转折相连,且所述第二连接段向远离所述第一连接段的方向延伸,所述第一连接段、所述支撑段、所述第二连接段沿所述第一连接段的厚度方向依次排布;
    其中,沿所述第一连接段的厚度方向,所述支撑面设在所述支撑段背离所述第二连接段的一侧,以使所述支撑面适于被支撑以向所述支撑段的至少一部分以及所述第二连接段提供支撑力。
  25. 根据权利要求24所述的汇流排,其中,
    所述第二连接段设有支撑凸起。
  26. 根据权利要求24或25所述的汇流排,其中,
    所述支撑段包括至少一个L形段。
  27. 根据权利要求24至26中任一项所述的汇流排,其中,
    所述第一连接段与所述第二连接段相互垂直;
    所述第一连接段设有焊接面;
    所述第二连接段设有插接部。
  28. 根据权利要求24至27中任一项所述的汇流排,其中,
    相对于所述第二连接段连接所述支撑段的一端,所述第一连接段沿所述汇流排的周向方向倾斜延伸。
  29. 一种电机,其中,包括:
    电机主体,包括定子,所述定子设有绕组,所述绕组具有两个接线端;和
    如权利要求1至16中任一项所述的汇流排,所述汇流排的连接部与所述接线端相连。
  30. 一种电机,其中,包括:
    电机主体,包括定子,所述定子设有绕组,所述绕组具有两个接线端;和
    如权利要求22至28中任一项所述的汇流排,所述汇流排的连接部与所述接线端相连。
  31. 一种电动助力转向系统,其中,包括:
    如权利要求30所述的电机;和
    控制装置,与所述电机电连接。
  32. 一种车辆,其中,包括:
    车体;和
    如权利要求29或30所述的电机,安装在所述车体中。
PCT/CN2020/103676 2019-08-20 2020-07-23 汇流排、汇流排主体、电机、电动助力转向系统和车辆 WO2021031783A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20855059.0A EP3985845A4 (en) 2019-08-20 2020-07-23 BUS BAR, BUS BAR MAIN BODY, ENGINE, ELECTRIC POWER STEERING SYSTEM AND VEHICLE
JP2021578232A JP7270783B2 (ja) 2019-08-20 2020-07-23 母線、母線本体、モータ、電動パワーステアリングシステム及び車両
US17/675,102 US20220173558A1 (en) 2019-08-20 2022-02-18 Bus-barwire, bus-barwire body, motor, electric power steering system, and vehicle

Applications Claiming Priority (22)

Application Number Priority Date Filing Date Title
CN201910770454.X 2019-08-20
CN201910770966.6 2019-08-20
CN201910770460.5A CN112421275A (zh) 2019-08-20 2019-08-20 汇流排、电机及车辆
CN201921355173.XU CN210201093U (zh) 2019-08-20 2019-08-20 汇流排、电机及车辆
CN201921355173.X 2019-08-20
CN201910770454.XA CN112421274A (zh) 2019-08-20 2019-08-20 汇流排、电机及车辆
CN201910770460.5 2019-08-20
CN201921354424.2U CN210200991U (zh) 2019-08-20 2019-08-20 汇流排、电机及车辆
CN201921354424.2 2019-08-20
CN201921354472.1 2019-08-20
CN201910770966.6A CN112421320A (zh) 2019-08-20 2019-08-20 汇流排、电机及车辆
CN201921354472.1U CN210200992U (zh) 2019-08-20 2019-08-20 汇流排、电机及车辆
CN202010115588.0 2020-02-25
CN202010115589.5 2020-02-25
CN202020205579.6 2020-02-25
CN202020205583.2 2020-02-25
CN202020205579.6U CN211605464U (zh) 2020-02-25 2020-02-25 汇流排主体、汇流排、电机、电动助力转向系统和车辆
CN202010115588.0A CN113381212A (zh) 2020-02-25 2020-02-25 端子、汇流排、电机、电动助力转向系统和车辆
CN202020205583.2U CN211605465U (zh) 2020-02-25 2020-02-25 汇流排主体、汇流排、电机、电动助力转向系统和车辆
CN202020205586.6U CN211879639U (zh) 2020-02-25 2020-02-25 端子、汇流排、电机、电动助力转向系统和车辆
CN202020205586.6 2020-02-25
CN202010115589.5A CN113381213A (zh) 2020-02-25 2020-02-25 汇流排主体、汇流排、电机、电动助力转向系统和车辆

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/675,102 Continuation US20220173558A1 (en) 2019-08-20 2022-02-18 Bus-barwire, bus-barwire body, motor, electric power steering system, and vehicle

Publications (1)

Publication Number Publication Date
WO2021031783A1 true WO2021031783A1 (zh) 2021-02-25

Family

ID=74660165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/103676 WO2021031783A1 (zh) 2019-08-20 2020-07-23 汇流排、汇流排主体、电机、电动助力转向系统和车辆

Country Status (4)

Country Link
US (1) US20220173558A1 (zh)
EP (1) EP3985845A4 (zh)
JP (1) JP7270783B2 (zh)
WO (1) WO2021031783A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114430122A (zh) * 2021-12-24 2022-05-03 新沂市五联电气科技有限公司 一种电力电子模块铜排连接系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114026770A (zh) * 2019-06-28 2022-02-08 日本电产株式会社 母线及马达
CN117318359B (zh) * 2023-09-04 2024-05-10 安徽致钲电驱动技术有限公司 一种多相扁线电机绕组出线结构

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009060600A1 (ja) * 2007-11-09 2009-05-14 Mitsubishi Electric Corporation 回転電機の固定子及びその製造方法
CN104380578A (zh) * 2012-07-25 2015-02-25 株式会社安川电机 旋转电机
CN104753196A (zh) * 2013-12-30 2015-07-01 三星电子株式会社 电机以及用于制造该电机的方法
CN106716784A (zh) * 2015-02-26 2017-05-24 翰昂汽车零部件有限公司 马达用定子组件
CN107534357A (zh) * 2015-04-15 2018-01-02 Lg伊诺特有限公司 端子组件及包含该端子组件的电机
EP3352341A1 (de) * 2017-01-20 2018-07-25 Ovalo GmbH Statorpaket und verfahren zum herstellen eines statorpakets
CN210201093U (zh) * 2019-08-20 2020-03-27 安徽威灵汽车部件有限公司 汇流排、电机及车辆
CN210200991U (zh) * 2019-08-20 2020-03-27 安徽威灵汽车部件有限公司 汇流排、电机及车辆
CN210200992U (zh) * 2019-08-20 2020-03-27 安徽威灵汽车部件有限公司 汇流排、电机及车辆

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009290921A (ja) 2008-05-27 2009-12-10 Mitsuba Corp ブラシレスモータ
EP2562915B1 (en) * 2011-08-24 2015-05-20 Sumitomo Wiring Systems, Ltd. Central power supply member and method of assembling it
JP5813463B2 (ja) 2011-11-02 2015-11-17 株式会社東芝 回転電機の固定子、固定子用ホルダ、回転電機、及び自動車
JP5930801B2 (ja) * 2012-03-30 2016-06-08 日立オートモティブシステムズ株式会社 車載用モータ、及びそれを用いた電動パワーステアリング装置
JP6053000B2 (ja) * 2013-03-08 2016-12-27 Kyb株式会社 バスバーユニット及びその製造方法
JP6286129B2 (ja) 2013-03-08 2018-02-28 Kyb株式会社 バスバーユニット
DE102015200089B4 (de) * 2015-01-07 2017-03-02 Robert Bosch Gmbh Stator für eine elektrische Maschine und Verfahren zum Herstellen eines solchen
DE102016204935A1 (de) * 2016-03-24 2017-09-28 Robert Bosch Gmbh Verschaltungsplatte für einen Stator einer elektrischen Maschine und Verfahren zum Herstellen einer elektrischen Maschine

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009060600A1 (ja) * 2007-11-09 2009-05-14 Mitsubishi Electric Corporation 回転電機の固定子及びその製造方法
CN104380578A (zh) * 2012-07-25 2015-02-25 株式会社安川电机 旋转电机
CN104753196A (zh) * 2013-12-30 2015-07-01 三星电子株式会社 电机以及用于制造该电机的方法
CN106716784A (zh) * 2015-02-26 2017-05-24 翰昂汽车零部件有限公司 马达用定子组件
CN107534357A (zh) * 2015-04-15 2018-01-02 Lg伊诺特有限公司 端子组件及包含该端子组件的电机
EP3352341A1 (de) * 2017-01-20 2018-07-25 Ovalo GmbH Statorpaket und verfahren zum herstellen eines statorpakets
CN210201093U (zh) * 2019-08-20 2020-03-27 安徽威灵汽车部件有限公司 汇流排、电机及车辆
CN210200991U (zh) * 2019-08-20 2020-03-27 安徽威灵汽车部件有限公司 汇流排、电机及车辆
CN210200992U (zh) * 2019-08-20 2020-03-27 安徽威灵汽车部件有限公司 汇流排、电机及车辆

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3985845A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114430122A (zh) * 2021-12-24 2022-05-03 新沂市五联电气科技有限公司 一种电力电子模块铜排连接系统
CN114430122B (zh) * 2021-12-24 2024-05-17 新沂市五联电气科技有限公司 一种电力电子模块铜排连接系统

Also Published As

Publication number Publication date
US20220173558A1 (en) 2022-06-02
EP3985845A4 (en) 2022-09-07
EP3985845A1 (en) 2022-04-20
JP7270783B2 (ja) 2023-05-10
JP2022538477A (ja) 2022-09-02

Similar Documents

Publication Publication Date Title
WO2021031783A1 (zh) 汇流排、汇流排主体、电机、电动助力转向系统和车辆
JP3733313B2 (ja) 車両用薄型ブラシレスモータの集中配電部材
KR102522992B1 (ko) 스테이터 인슐레이터 및 스테이터
US9997972B2 (en) Bus bar unit and manufacturing method of bus bar unit
WO2014136496A1 (ja) バスバーユニットの製造方法
CN108183570B (zh) 用于多相电机的定子、用于制造线圈绕组的方法、以及用于手持式工具机的电机
EP2827476B1 (en) Stator and method for manufacturing stator
US20140091655A1 (en) Bus Bar for Use in Electric Motor
US8513843B2 (en) Insulating housing for motor terminal
KR20020005955A (ko) 회전전기용 권선도체
TW200531405A (en) Electric motor and method for producing the same
JP2001103700A (ja) 電動機のステーター
JP2003134716A (ja) 固定子コイルの並列結線方法とその固定子
CN210200991U (zh) 汇流排、电机及车辆
CN110829659A (zh) 一种发卡绕组式电机定子及电机
CN210200992U (zh) 汇流排、电机及车辆
JP2005341640A (ja) 電動機のステータ
CN107947420B (zh) 用于电机的绝缘框、绝缘框架和电机定子及其制作方法
JP2003230257A (ja) ステータコアへの巻線方法
JP2003204645A (ja) 電動機
JP4480085B2 (ja) モータの集中配電部材
CN107689700B (zh) 定子及应用该定子的电机
CN210201093U (zh) 汇流排、电机及车辆
CN214412428U (zh) 一种防松动型定子组件及电机
JP4101799B2 (ja) モータ、中性線端子及びその中性線の締結方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20855059

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021578232

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020855059

Country of ref document: EP

Effective date: 20220114

NENP Non-entry into the national phase

Ref country code: DE