WO2021024858A1 - 半導体製造装置用部材 - Google Patents

半導体製造装置用部材 Download PDF

Info

Publication number
WO2021024858A1
WO2021024858A1 PCT/JP2020/028876 JP2020028876W WO2021024858A1 WO 2021024858 A1 WO2021024858 A1 WO 2021024858A1 JP 2020028876 W JP2020028876 W JP 2020028876W WO 2021024858 A1 WO2021024858 A1 WO 2021024858A1
Authority
WO
WIPO (PCT)
Prior art keywords
rod
electrode
semiconductor manufacturing
ceramic
rods
Prior art date
Application number
PCT/JP2020/028876
Other languages
English (en)
French (fr)
Inventor
隆二 田村
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP2021537246A priority Critical patent/JP7331107B2/ja
Priority to CN202080056190.2A priority patent/CN114245936A/zh
Priority to KR1020227000620A priority patent/KR20220019030A/ko
Publication of WO2021024858A1 publication Critical patent/WO2021024858A1/ja
Priority to US17/644,361 priority patent/US11996313B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68792Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by the construction of the shaft
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4581Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber characterised by material of construction or surface finish of the means for supporting the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4586Elements in the interior of the support, e.g. electrodes, heating or cooling devices
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32577Electrical connecting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68757Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a coating or a hardness or a material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/28Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor embedded in insulating material
    • H05B3/283Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor embedded in insulating material the insulating material being an inorganic material, e.g. ceramic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/68Heating arrangements specially adapted for cooking plates or analogous hot-plates
    • H05B3/74Non-metallic plates, e.g. vitroceramic, ceramic or glassceramic hobs, also including power or control circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/68Heating arrangements specially adapted for cooking plates or analogous hot-plates
    • H05B3/74Non-metallic plates, e.g. vitroceramic, ceramic or glassceramic hobs, also including power or control circuits
    • H05B3/748Resistive heating elements, i.e. heating elements exposed to the air, e.g. coil wire heater
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/2007Holding mechanisms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder
    • H01J37/32724Temperature
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/016Heaters using particular connecting means

Definitions

  • the present invention relates to a member for a semiconductor manufacturing apparatus.
  • a member for semiconductor manufacturing equipment having a structure in which a cylindrical ceramic shaft is connected to the back surface of a disk-shaped ceramic plate whose front surface is a wafer mounting surface may be used. ..
  • a member for such a semiconductor manufacturing apparatus a member in which a high frequency electrode (RF electrode) is embedded in a ceramic plate and plasma is generated by using the RF electrode is known.
  • RF electrode high frequency electrode
  • a plurality of RF rods are connected to the RF electrodes, and the plurality of RF rods are branched from one RF connector arranged inside the hollow of the ceramic shaft.
  • Patent Document 1 since a plurality of RF rods are provided instead of one RF rod, the current flowing through each RF rod can be reduced, and the amount of heat generated per RF rod is also reduced accordingly. .. Therefore, hot spots are less likely to occur on the ceramic plate.
  • the RF connector when the RF connector is arranged inside the hollow of the ceramic shaft as in Patent Document 1, the temperature inside the hollow of the ceramic shaft may rise due to the heat generated by the RF connector. In that case, even if the calorific value of the RF rod is small, the temperature of the RF rod tends to rise, and there is a possibility that hot spots may occur on the ceramic plate.
  • the present invention has been made to solve such a problem, and an object of the present invention is to surely prevent hot spots from being generated on a ceramic plate in a member for a semiconductor manufacturing apparatus provided with a plurality of RF rods. To do.
  • the member for a semiconductor manufacturing apparatus of the present invention A member for a semiconductor manufacturing apparatus having a structure in which a hollow ceramic shaft is provided on the back surface of a ceramic plate whose front surface is a wafer mounting surface.
  • the RF link member has a branch portion composed of a plurality of RF rods, and the branch portion extends to the outside of the ceramic shaft. It is a thing.
  • the RF link member has a branch portion composed of a plurality of RF rods.
  • the surface area of the current flow path of the RF link member is increased, so that the increase in resistance due to the skin effect can be suppressed.
  • the amount of heat generated per RF rod decreases.
  • the RF connector is located outside the hollow interior of the ceramic shaft. As a result, even if the RF connector generates heat, the temperature inside the hollow of the ceramic shaft does not rise. Therefore, the temperature of the RF rod arranged inside the hollow of the ceramic shaft does not easily rise. Therefore, according to the member for the semiconductor manufacturing apparatus of the present invention, it is possible to reliably prevent the occurrence of hot spots on the ceramic plate.
  • the plurality of RF rods may be grouped together at a first aggregation portion in front of the back surface of the ceramic plate and connected to the RF electrode. In this way, when connecting the RF link member to the RF electrode, the number of holes provided in the ceramic plate can be reduced.
  • the plurality of RF rods may be individually connected to the RF electrodes. In this way, even if one of the plurality of RF rods is disconnected from the RF electrode for some reason, power can be supplied to the RF electrode from the other RF rod.
  • the RF electrode may be provided inside the ceramic plate over a plurality of surfaces having different heights. In this way, the density of plasma can be changed for each surface having different heights of the RF electrode.
  • the plurality of RF rods may be individually connected to each surface of the RF electrode. In this way, the distance between the RF rods can be secured. For example, by increasing the distance between the RF rods that generate heat, it is possible to prevent the RF rods from heating each other.
  • the RF rod is connected to each of the RF electrode near the back surface of the ceramic plate and the RF electrode far from the back surface of the ceramic plate, the depth of the hole of the RF rod connected to the RF electrode near the back surface of the ceramic plate is increased. The shallowness reduces the processing load on the ceramic plate and reduces the risk of breakage.
  • the depth of the holes of the plurality of RF rods becomes deep, and the processing load of the ceramic plate becomes large and the ceramic plate is damaged. The risk increases.
  • the plurality of RF rods may be grouped together at a second aggregation portion in front of the RF connector and connected to the RF connector. In this way, when the RF link member is connected to the RF connector, the number of connection points between the RF link member and the RF connector can be reduced.
  • the cross section when the RF rod is cut in the direction perpendicular to the longitudinal direction may have a shape having at least one recess on the outer peripheral portion.
  • the member for a semiconductor manufacturing apparatus of the present invention includes a resistance heating element embedded in the ceramic plate and a pair of resistance heating elements connected to the resistance heating element and provided through the hollow inside of the ceramic shaft to the outside of the ceramic shaft.
  • a heater rod may be provided, and the base end of the RF link member may be located closer to the ceramic shaft than the base end of the heater rod.
  • the member for a semiconductor manufacturing apparatus of the present invention includes a resistance heating element embedded in the ceramic plate and a pair of resistance heating elements connected to the resistance heating element and provided through the hollow inside of the ceramic shaft to the outside of the ceramic shaft.
  • a heater rod may be provided, and the RF rod is preferably thicker than the heater rod. That is, the diameter of the RF rod is preferably larger than the diameter of the heater rod. By doing so, the surface area of the RF rod becomes large, so that the resistance of the RF current flowing through the RF rod becomes low. Therefore, the amount of heat generated per RF rod is further reduced.
  • the semiconductor manufacturing apparatus member includes the first aggregation portion
  • the diameter of the first aggregation portion is preferably larger than the diameter of the heater rod.
  • the diameter of the second aggregation portion is preferably larger than the diameter of the heater rod.
  • FIG. 5 is a cross-sectional view of a modified example of the RF rod 42.
  • FIG. 1 is a vertical cross-sectional view of the ceramic heater 10.
  • the ceramic heater 10 is one of the members for semiconductor manufacturing equipment.
  • the ceramic heater 10 is used to support and heat a wafer to be subjected to a process such as CVD or etching using plasma, and is mounted inside a chamber for a semiconductor process (not shown).
  • the ceramic heater 10 includes a ceramic plate 12, a ceramic shaft 20, a heater rod 24, an RF connector 30, and an RF link member 40.
  • the ceramic plate 12 is a disk-shaped member containing AlN as a main component.
  • the ceramic plate 12 includes a wafer mounting surface 12a on which a wafer can be mounted.
  • the ceramic shaft 20 is joined to the surface (back surface) 12b of the ceramic plate 12 opposite to the wafer mounting surface 12a.
  • a resistance heating element 14 and an RF electrode 16 are embedded in the ceramic plate 12.
  • the resistance heating element 14 is obtained by wiring a coil containing Mo as a main component over the entire surface of the ceramic plate 12 so as to be substantially parallel to the wafer mounting surface 12a in a one-stroke manner.
  • the RF electrode 16 is a disk-shaped thin-layer electrode having a diameter slightly smaller than that of the ceramic plate 12, and is formed of a mesh in which a thin metal wire containing Mo as a main component is woven into a mesh to form a sheet.
  • the RF electrode 16 is embedded between the resistance heating element 14 and the wafer mounting surface 12a of the ceramic plate 12 so as to be substantially parallel to the wafer mounting surface 12a.
  • the material of the resistance heating element 14 and the RF electrode 16 is Mo because the coefficient of thermal expansion is close to that of AlN, which is the main component of the ceramic plate 12, and cracks are unlikely to occur during the production of the ceramic plate 12.
  • thermocouple (not shown) for detecting the temperature of the ceramic plate 12 is inserted in a region of the back surface 12b of the ceramic plate 12 surrounded by the ceramic shaft 20.
  • the ceramic shaft 20 is a cylindrical member containing AlN as a main component, and has a first flange 20a around the upper opening and a second flange 20b around the lower opening.
  • the end face of the first flange 20a is joined to the back surface 12b of the ceramic plate 12 by a solid phase joining method.
  • the end face of the second flange 20b is fixed to a chamber (not shown).
  • the heater rod 24 is a rod having a circular cross section made of a metal such as Mo.
  • the upper end of one of the pair of heater rods 24 is joined to one end of the resistance heating element 14, and the upper end of the other heater rod 24 is joined to the other end of the resistance heating element 14.
  • the lower ends of the pair of heater rods 24 are exposed to the outside of the hollow inner 22 of the ceramic shaft 20 and are connected to the heater power supply 28 via a cable 26.
  • the heater power supply 28 is an AC power supply in this embodiment, but a DC power supply may be adopted.
  • the RF connector 30 is arranged on the outside (lower side) of the hollow inner 22 of the ceramic shaft 20.
  • the RF connector 30 includes a socket 32 and an RF base rod 36.
  • the socket 32 is a substantially rectangular parallelepiped or substantially cylindrical member made of a conductive metal such as Ni.
  • On the upper surface of the socket 32 two insertion holes 34 for inserting the RF rod 42 of the RF link member 40 are provided.
  • the insertion hole 34 holds the inserted RF rod 42.
  • the RF base rod 36 is a rod made of a conductive metal such as Ni, and is integrated with the lower surface of the socket 32.
  • the RF base rod 36 is connected to the RF power supply 38 via a cable 37.
  • the RF link member 40 has a branch portion 44 composed of a plurality of (two in this case) RF rods 42.
  • the RF rod 42 is a rod having a circular cross section made of a conductive metal such as Ni.
  • the upper ends of the plurality of RF rods 42 are connected to the RF electrodes 16 through holes 13 provided in the back surface 12b of the ceramic plate 12 while being branched. Further, the lower ends of the plurality of RF rods 42 are inserted into the insertion holes 34 of the RF connector 30 while being branched.
  • the RF link member 40 is a branch portion 44, and reaches the RF connector 30 from the RF electrode 16 via the hollow inner 22 of the ceramic shaft 20.
  • a part of the branch portion 44 is arranged in the hollow inner 22 of the ceramic shaft 20.
  • the RF link member 40 is connected to the RF power supply 38 via the RF connector 30 and the cable 37.
  • the lower end of the RF rod 42 is closer to the ceramic shaft 20 than the lower end of the heater rod 24.
  • No heater rod 24 is arranged between the RF rods 42.
  • the distance between the RF rods 42 is equal to or larger than the diameter of the RF rods 42.
  • a ceramic heater 10 is arranged in a chamber (not shown), and a wafer is placed on the wafer mounting surface 12a. Then, the wafer is heated by applying the voltage of the heater power supply 28 to the resistance heating element 14 via the cable 26 and the heater rod 24. Specifically, the temperature of the wafer is obtained based on a thermocouple detection signal (not shown), and the voltage applied to the resistance heating element 14 is controlled so that the temperature becomes a set temperature (for example, 350 ° C. or 300 ° C.).
  • an opposed horizontal electrode and a ceramic plate 12 installed above in the chamber are applied.
  • a plasma is generated between the parallel plate electrodes composed of the RF electrodes 16 embedded in the wafer, and the plasma is used to perform CVD film formation or etching on the wafer. If a DC voltage is applied to the RF electrode 16, it can be used as an electrostatic electrode (ESC electrode).
  • ESC electrode electrostatic electrode
  • the RF link member 40 has a branch portion 44 composed of a plurality of RF rods 42.
  • the surface area of the current flow path of the RF link member 40 increases, so that an increase in resistance due to the skin effect can be suppressed. Further, since the current flowing per RF rod becomes small, the amount of heat generated per RF rod decreases.
  • the RF connector 30 is arranged outside the hollow inner 22 of the ceramic shaft 20. As a result, even if the RF connector 30 generates heat, the temperature of the hollow inside 22 of the ceramic shaft 20 does not increase. Therefore, the temperature of the RF rod 42 arranged in the hollow inner portion 22 of the ceramic shaft 20 does not easily rise.
  • the ceramic heater 10 it is possible to reliably prevent hot spots from being generated on the ceramic plate 12. Further, since the RF connector 30 is arranged outside the hollow inner 22 of the ceramic shaft 20, the connection work between the RF link member 40 and the RF connector 30 can be smoothly performed.
  • the plurality of RF rods 42 are individually connected to the RF electrode 16, even if one of the plurality of RF rods 42 is disconnected from the RF electrode 16 for some reason, RF from the other RF rods 42. Power can be supplied to the electrode 16. Further, since the plurality of RF rods 42 are connected to the RF electrodes 16, the amount of heat generated can be suppressed without increasing the resistance due to the skin effect.
  • the base end (lower end) of the RF link member 40 is closer to the ceramic shaft 20 than the base end (lower end) of the heater rod 24.
  • the work performed on the base end of the RF link member 40 and the work performed on the base end of the heater rod 24 are unlikely to interfere with each other, so that each work can be performed smoothly.
  • the length of the RF link member 40 can be made relatively short, the resistance of the RF link member 40 can be suppressed low, and the amount of heat generated by the RF link member 40 can be suppressed low.
  • the heater rod 24 does not have a skin effect because a high frequency current does not flow and has a lower resistance than the RF rod 42, the amount of heat generated by the heater rod 24 hardly increases even if it is lengthened.
  • the voltage applied to the heater rod 24 is applied to the RF rod 42 by not arranging the heater rod 24 between the RF rods 42. There is less risk of fluctuation due to the influence of high frequency voltage.
  • the distance between the RF rods 42 is equal to or larger than the diameter of the RF rods 42, and the plurality of RF rods 42 are arranged with a sufficient distance, so that one RF rod 42 generates heat from the other RF rods 42. Less likely to be affected.
  • the RF rod 42 is thicker than the heater rod 24 (the diameter of the RF rod 42 is larger than the diameter of the heater rod 24). By doing so, the surface area of the RF rod 42 becomes large, so that the resistance of the RF current flowing through the RF rod 42 becomes low. Therefore, the amount of heat generated per RF rod is further reduced.
  • the RF link member 140 is a columnar shape in which a branch portion 144 composed of a plurality of (two in this case) RF rods 142 and a plurality of RF rods 142 are grouped together in front of the back surface 12b of the ceramic plate 12. It is provided with an aggregation unit 145. The lower end of the RF rod 142 is inserted into the insertion hole 34 of the RF connector 30 while being branched.
  • the upper end of the RF rod 142 is aggregated into one rod by the aggregation portion 145 and connected to the RF electrode 16.
  • the RF link member 140 reaches the RF connector 30 from the RF electrode 16 via the hollow inner 22 of the ceramic shaft 20.
  • a part of the branch portion 144 is arranged in the hollow inner 22 of the ceramic shaft 20.
  • the lower end of the RF link member 140 is located closer to the ceramic shaft 20 than the lower end of the heater rod 24 (see FIG. 1).
  • FIG. 2 since most of the RF link member 140 is composed of a plurality of RF rods 142, heat generation can be suppressed. Further, when the RF link member 140 is connected to the RF electrode 16, the number of holes 13 provided in the ceramic plate 12 can be reduced.
  • the RF rod 142 and the aggregation portion 145 are preferably thicker than the heater rod 24. By doing so, since the surface area of the RF rod 142 and the aggregation portion 145 is increased, the resistance of the RF current flowing through the RF rod 142 and the aggregation portion 145 is lowered, and the amount of heat generated by them is reduced.
  • the RF link member 240 has a columnar shape in which a branch portion 244 composed of a plurality of (two in this case) RF rods 242 and a plurality of RF rods 242 are combined into one in front of the back surface 12b of the ceramic plate 12. It includes a first aggregation unit 245 and a columnar second aggregation unit 246 in which a plurality of RF rods 242 are combined into one in front of the RF connector 30.
  • the upper end of the RF rod 242 is aggregated into one rod by the first aggregation portion 245 and connected to the RF electrode 16.
  • the lower end of the RF rod 242 is aggregated into one rod by the second aggregation portion 246 and inserted into the insertion hole 34 of the RF connector 30.
  • the RF link member 240 reaches the RF connector 30 from the RF electrode 16 via the hollow inner 22 of the ceramic shaft 20.
  • a part of the branch portion 244 is arranged in the hollow inner 22 of the ceramic shaft 20.
  • the lower end of the RF link member 240 is located closer to the ceramic shaft 20 than the lower end of the heater rod 24 (see FIG. 1). In FIG.
  • a plurality of RF link members 240 may be provided between the RF electrode 16 and the RF connector 30.
  • the RF rod 242 and the first and second collecting portions 245 and 246 are preferably thicker than the heater rod 24.
  • the surface area of the RF rod 242 and the first and second aggregation portions 245 and 246 becomes large, so that the resistance of the RF current flowing through the RF rod 242 and the first and second aggregation portions 245 and 246 becomes low, and these The amount of heat generated is reduced.
  • the RF link member 340 of FIG. 4 may be adopted.
  • the RF link member 340 includes a branch portion 344 composed of a plurality of (here, two) RF rods 342, and an aggregation portion 346 in which a plurality of RF rods 342 are combined into one in front of the RF connector 30. ing.
  • the upper end of the RF rod 342 is connected to the RF electrode 16 while being branched.
  • the lower end of the RF rod 342 is aggregated into one rod by the aggregation portion 346 and inserted into the insertion hole 34 of the RF connector 30.
  • the RF link member 340 reaches the RF connector 30 from the RF electrode 16 via the hollow inner 22 of the ceramic shaft 20.
  • a part of the branch portion 344 is arranged in the hollow inner 22 of the ceramic shaft 20.
  • the lower end of the RF link member 340 is located closer to the ceramic shaft 20 than the lower end of the heater rod 24 (see FIG. 1). In FIG. 4, when the RF link member 340 is connected to the RF connector 30, the number of connection points (insertion holes 34) can be reduced as compared with the above-described embodiment.
  • a plurality of RF link members 340 may be provided between the RF electrode 16 and the RF connector 30.
  • the RF rod 342 and the aggregation portion 346 are preferably thicker than the heater rod 24. By doing so, since the surface area of the RF rod 342 and the aggregation portion 346 becomes large, the resistance of the RF current flowing through the RF rod 342 and the aggregation portion 346 becomes low, and the amount of heat generated by them becomes small.
  • the cross section of the RF rod 42 (the cross section when cut in the direction perpendicular to the longitudinal direction) is circular, but as shown in FIG. 5, at least one is formed on the outer peripheral portion of the cross section of the RF rod 42.
  • the shape may have one (here, five) recesses 42a.
  • the RF rod 42 may include at least one groove (here, five) extending along the longitudinal direction.
  • the shape of the RF electrode 16 is a mesh, but other shapes may be used. For example, it may be coiled or flat, or it may be punched metal.
  • AlN is used as the ceramic material, but the present invention is not particularly limited, and for example, alumina, silicon nitride, silicon carbide, or the like may be used. In that case, it is preferable to use a material of the resistance heating element 14 and the RF electrode 16 having a coefficient of thermal expansion close to that of the ceramic.
  • the resistance heating element 14 and the RF electrode 16 are embedded in the ceramic plate 12, but an electrostatic electrode may be further embedded. In this way, the ceramic heater 10 also functions as an electrostatic chuck.
  • a one-zone heater in which the resistance heating element 14 is wired over the entire surface of the ceramic plate 12 in a one-stroke manner is illustrated, but the present invention is not particularly limited to this.
  • a multi-zone heater may be adopted in which the entire surface of the ceramic plate 12 is divided into a plurality of zones and the resistance heating element is wired for each zone in a single stroke manner.
  • a pair of heater rods may be provided for each resistance heating element in each zone.
  • the RF electrode 416 of FIG. 6 may be adopted instead of the RF electrode 16 of the above-described embodiment.
  • the RF electrode 416 is formed by connecting the outer peripheral edge of the inner circular electrode 416a and the inner peripheral edge of the outer annular electrode 416b with a cylindrical connecting portion 416c.
  • the inner circular electrode 416a and the outer ring electrode 416b are arranged on surfaces having different heights in two upper and lower stages.
  • One of the two RF rods 42 constituting the RF link member 40 (branch portion 44) is connected to the back surface of the inner circular electrode 416a, and the other is connected to the back surface of the outer ring electrode 416b.
  • the two RF rods 42 are connected to the faces of the RF electrodes 416 having different heights. Even in this way, the same effect as that of the above-described embodiment can be obtained. Further, since the RF electrode 416 is provided inside the ceramic plate 12 over a plurality of surfaces having different heights, the plasma density can be changed for each surface having different heights of the RF electrode 416. Further, since the two RF rods 42 are individually connected to each surface of the RF electrode 416, the distance between the two RF rods 42 can be secured. For example, by increasing the distance between the two RF rods 42 that generate heat, it is possible to prevent the RF rods 42 from heating each other.
  • the RF rod 42 is connected to each of the outer ring electrode 416b near the back surface 12b and the inner ring electrode 416a far from the back surface 12b of the ceramic plate 12, it is connected to the outer ring electrode 416b near the back surface 12b.
  • the depth of the hole of the RF rod 42 becomes shallow, the processing load of the ceramic plate 12 becomes small, and the risk of breakage can be suppressed.
  • the two RF rods 42 are connected to the inner annular electrode 416a far from the back surface 12b, the depth of the holes of the two RF rods 42 becomes deeper, and the processing load of the ceramic plate 12 becomes deeper. Increases and the risk of damage increases.
  • the resistance heating element 14 and the heater rod 24 similar to those in the above-described embodiment may be provided.
  • the RF link member 340 of FIG. 4 may be adopted instead of the RF link member 40.
  • the present invention can be used as a member used in a semiconductor manufacturing apparatus such as an etching apparatus or a CVD apparatus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Drying Of Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

半導体製造装置用部材は、表面がウエハ載置面であるセラミックプレートの裏面に中空のセラミックシャフトを設けた構造である。この半導体製造装置用部材は、セラミックプレートに埋設されたRF電極と、セラミックシャフトの中空内部の外側に配置されたRFコネクタと、RFコネクタとRF電極との間に設けられたRFリンク部材とを備えている。RFリンク部材は、複数のRFロッドで構成された分岐部を有し、分岐部は、セラミックシャフトの外側まで続いている。

Description

半導体製造装置用部材
 本発明は、半導体製造装置用部材に関する。
 エッチング装置やCVD装置等の半導体製造装置において、表面がウエハ載置面である円盤状のセラミックプレートの裏面に円筒状のセラミックシャフトを繋いだ構造の半導体製造装置用部材が使用されることがある。こうした半導体製造装置用部材としては、セラミックプレートに高周波電極(RF電極)が埋設され、このRF電極を利用してプラズマを発生させるものが知られている。例えば、特許文献1の半導体製造装置用部材では、RF電極に複数のRFロッドが接続されており、複数のRFロッドはセラミックシャフトの中空内部に配置された1つのRFコネクタから分岐している。特許文献1では、1本のRFロッドではなく複数のRFロッドを備えているため、RFロッド1本当たりに流れる電流を小さくすることができ、それに伴いRFロッド1本当たりの発熱量も減少する。したがって、セラミックプレートにホットスポットが生じにくくなる。
特開2016-184642号公報
 しかしながら、特許文献1のようにセラミックシャフトの中空内部にRFコネクタが配置されていると、RFコネクタが発熱することによりセラミックシャフトの中空内部の温度が高くなることがあった。その場合、RFロッドの発熱量が小さくても、RFロッドの温度が上がりやすくなり、セラミックプレートにホットスポットが生じるおそれがあった。
 本発明はこのような課題を解決するためになされたものであり、複数のRFロッドを備えた半導体製造装置用部材において、セラミックプレートにホットスポットが生じるのを確実に防止することを主目的とする。
 本発明の半導体製造装置用部材は、
 表面がウエハ載置面であるセラミックプレートの裏面に中空のセラミックシャフトを設けた構造の半導体製造装置用部材であって、
 前記セラミックプレートに埋設されたRF電極と、
 前記セラミックシャフトの中空内部の外側に配置されたRFコネクタと、
 前記RFコネクタと前記RF電極との間に設けられたRFリンク部材と、
 を備え、
 前記RFリンク部材は、複数のRFロッドで構成された分岐部を有し、前記分岐部は、前記セラミックシャフトの外側まで続いている、
 ものである。
 この半導体製造装置用部材では、RFリンク部材は、複数のRFロッドで構成された分岐部を有している。これにより、RFリンク部材の電流流路の表面積が増加するため、表皮効果による抵抗の増加を抑えることができる。また、RFロッド1本当たりに流れる電流が小さくなるため、RFロッド1本当たりの発熱量が減少する。一方、RFコネクタは、セラミックシャフトの中空内部の外側に配置される。これにより、RFコネクタが発熱したとしてもそれによってセラミックシャフトの中空内部の温度が高くなることはない。そのため、セラミックシャフトの中空内部に配置されたRFロッドの温度が上がりやすいという状況を招くことはない。したがって、本発明の半導体製造装置用部材によれば、セラミックプレートにホットスポットが生じるのを確実に防止することができる。
 本発明の半導体製造装置用部材において、前記複数のRFロッドは、前記セラミックプレートの裏面の手前の第1集約部で1つにまとめられて前記RF電極に接続されていてもよい。こうすれば、RFリンク部材をRF電極に接続する際、セラミックプレートに設ける穴を少なくすることができる。
 本発明の半導体製造装置用部材において、前記複数のRFロッドは、個別に前記RF電極に接続されていてもよい。こうすれば、複数のRFロッドの1つが何らかの理由でRF電極から外れたとしても、他のRFロッドからRF電極に電力を供給することができる。
 本発明の半導体製造装置用部材において、RF電極は、セラミックプレートの内部で高さの異なる複数の面に亘って設けられていてもよい。こうすれば、RF電極の高さの異なる面ごとにプラズマの密度を変えることができる。この場合、複数のRFロッドは、RF電極の各面に個別に接続されていてもよい。こうすれば、RFロッド間の距離を確保できる。例えば、発熱するRFロッド間の距離を大きくすることにより、RFロッド同士が互いに加熱し合うことを防止できる。また、セラミックプレートの裏面に近いRF電極とセラミックプレートの裏面から遠いRF電極のそれぞれにRFロッドが接続されるため、セラミックプレートの裏面に近いRF電極に接続されるRFロッドの穴の深さが浅くなり、セラミックプレートの加工負荷が小さくなり破損リスクを抑えられる。これに対して、セラミックプレートの裏面から遠いRF電極に複数本のRFロッドが接続される場合には、複数本のRFロッドの穴の深さが深くなり、セラミックプレートの加工負荷が大きくなり破損リスクが高まる。
 本発明の半導体製造装置用部材において、前記複数のRFロッドは、前記RFコネクタの手前の第2集約部で1つにまとめられて前記RFコネクタに接続されていてもよい。こうすれば、RFリンク部材をRFコネクタに接続する際、RFリンク部材とRFコネクタとの接続箇所を少なくすることができる。
 本発明の半導体製造装置用部材において、前記RFロッドを長手方向に対して垂直方向に切断したときの断面は、外周部に少なくとも1つの凹部を有する形状であってもよい。こうすれば、RFロッドの表面積は凹部を有さない場合に比べて大きくなるため、表皮効果による抵抗の増加をより抑えることができ、RFロッド1本当たりの発熱量がより減少する。
 本発明の半導体製造装置用部材は、前記セラミックプレートに埋設された抵抗発熱体と、前記抵抗発熱体に接続され、前記セラミックシャフトの中空内部を通って前記セラミックシャフトの外側まで設けられた一対のヒータロッドと、を備えていてもよく、前記RFリンク部材の基端は、前記ヒータロッドの基端よりも前記セラミックシャフトに近い位置にあってもよい。こうすれば、RFリンク部材の発熱する部分が短くなるので、結果として発熱量が少なくなる。さらに、RFリンク部材の基端に対して行う作業とヒータロッドの基端に対して行う作業とは干渉しにくいため、それぞれの作業をスムーズに行いやすくなる。また、RFリンク部材の長さを比較的短くすることができるため、RFリンク部材の抵抗を低く抑えることができ、RFリンク部材の発熱量を低く抑えることができる。
 本発明の半導体製造装置用部材は、前記セラミックプレートに埋設された抵抗発熱体と、前記抵抗発熱体に接続され、前記セラミックシャフトの中空内部を通って前記セラミックシャフトの外側まで設けられた一対のヒータロッドと、を備えていてもよく、RFロッドは、ヒータロッドよりも太いことが好ましい。つまり、RFロッドの直径は、ヒータロッドの直径よりも大きいことが好ましい。こうすれば、RFロッドの表面積が大きくなるため、RFロッドを流れるRF電流の抵抗が低くなる。そのため、RFロッド1本当たりの発熱量が更に減少する。なお、半導体製造装置用部材が第1集約部を備えている場合には、第1集約部の直径はヒータロッドの直径よりも大きいことが好ましい。半導体製造装置用部材が第2集約部を備えている場合には、第2集約部の直径はヒータロッドの直径よりも大きいことが好ましい。
セラミックヒータ10の縦断面図。 RFリンク部材140の周辺部分の縦断面図。 RFリンク部材240の周辺部分の縦断面図。 RFリンク部材340の周辺部分の縦断面図。 RFロッド42の変形例の断面図。 RF電極416を備えたセラミックヒータの縦断面図。
 次に、本発明の好適な実施形態につき、図面を参照しながら以下に説明する。図1はセラミックヒータ10の縦断面図である。
 なお、本明細書において、「上」「下」は、絶対的な位置関係を表すものではなく、相対的な位置関係を表すものである。そのため、セラミックヒータ10の向きによって「上」「下」は「下」「上」になったり「左」「右」になったり「前」「後」になったりする。
 セラミックヒータ10は、半導体製造装置用部材の一つである。セラミックヒータ10は、プラズマを利用してCVDやエッチングなどの処理を施すウエハを支持して加熱するために用いられるものであり、図示しない半導体プロセス用のチャンバの内部に取り付けられる。このセラミックヒータ10は、セラミックプレート12と、セラミックシャフト20と、ヒータロッド24と、RFコネクタ30と、RFリンク部材40とを備えている。
 セラミックプレート12は、AlNを主成分とする円板状の部材である。このセラミックプレート12は、ウエハを載置可能なウエハ載置面12aを備えている。セラミックプレート12のウエハ載置面12aとは反対側の面(裏面)12bには、セラミックシャフト20が接合されている。セラミックプレート12には、抵抗発熱体14とRF電極16とが埋設されている。抵抗発熱体14は、Moを主成分とするコイルをセラミックプレート12の全面にわたってウエハ載置面12aと実質的に平行になるように一筆書きの要領で配線したものである。RF電極16は、セラミックプレート12よりもやや小径の円盤状の薄層電極であり、Moを主成分とする細い金属線を網状に編み込んでシート状にしたメッシュで形成されている。このRF電極16は、セラミックプレート12のうち抵抗発熱体14とウエハ載置面12aとの間にウエハ載置面12aと実質的に平行になるように埋設されている。抵抗発熱体14やRF電極16の材質をMoとしたのは、セラミックプレート12の主成分であるAlNと熱膨張係数が近く、セラミックプレート12の製造時にクラックが生じにくいからである。抵抗発熱体14やRF電極16は、Mo以外の材質であっても、AlNと熱膨張係数が近い導電性材料であれば使用することができる。なお、セラミックプレート12の裏面12bのうちセラミックシャフト20に囲まれた領域には、セラミックプレート12の温度を検出する熱電対(図示せず)が差し込まれている。
 セラミックシャフト20は、AlNを主成分とする円筒状の部材であり、上部開口の周囲に第1フランジ20a、下部開口の周囲に第2フランジ20bを有している。第1フランジ20aの端面は、セラミックプレート12の裏面12bに固相接合法により接合されている。第2フランジ20bの端面は、図示しないチャンバに固定される。
 ヒータロッド24は、Moなどの金属で形成された断面円形のロッドである。一対のヒータロッド24のうちの一方のヒータロッド24の上端は抵抗発熱体14の一端に接合され、他方のヒータロッド24の上端は抵抗発熱体14の他端に接合されている。一対のヒータロッド24の下端は、セラミックシャフト20の中空内部22の外側に露出しており、ケーブル26を介してヒータ電源28に接続されている。ヒータ電源28は、本実施形態ではAC電源であるが、DC電源を採用してもよい。
 RFコネクタ30は、セラミックシャフト20の中空内部22の外側(下側)に配置されている。このRFコネクタ30は、ソケット32とRFベースロッド36とを備えている。ソケット32は、Niなどの導電性金属で形成された略直方体又は略円柱形の部材である。ソケット32の上面には、RFリンク部材40のRFロッド42を差し込むための2つの差込穴34が設けられている。差込穴34は、差し込まれたRFロッド42を保持する。RFベースロッド36は、Niなどの導電性金属で形成されたロッドであり、ソケット32の下面に一体化されている。RFベースロッド36は、ケーブル37を介してRF電源38に接続されている。
 RFリンク部材40は、複数(ここでは2本)のRFロッド42で構成された分岐部44を有している。RFロッド42は、Niなどの導電性金属で形成された断面円形のロッドである。複数のRFロッド42は、分岐したまま、上端がセラミックプレート12の裏面12bに設けられた穴13を通してRF電極16に接続されている。また、複数のRFロッド42は、分岐したまま、下端がRFコネクタ30の差込穴34に差し込まれている。本実施形態では、RFリンク部材40は、分岐部44であり、RF電極16からセラミックシャフト20の中空内部22を経てRFコネクタ30に達している。そのため、分岐部44の一部は、セラミックシャフト20の中空内部22に配置されている。RFリンク部材40は、RFコネクタ30及びケーブル37を介してRF電源38に接続されている。RFロッド42の下端は、ヒータロッド24の下端よりもセラミックシャフト20に近い位置にある。RFロッド42同士の間にはヒータロッド24が配置されていない。RFロッド42同士の間隔は、RFロッド42の直径以上である。
 次に、セラミックヒータ10の使用例について説明する。図示しないチャンバ内にセラミックヒータ10を配置し、ウエハ載置面12aにウエハを載置する。そして、ケーブル26及びヒータロッド24を介して抵抗発熱体14にヒータ電源28の電圧を印加することにより、ウエハを加熱する。具体的には、図示しない熱電対の検出信号に基づいてウエハの温度を求め、その温度が設定温度(例えば350℃とか300℃)になるように抵抗発熱体14へ印加する電圧を制御する。また、ケーブル37、RFコネクタ30及びRFリンク部材40を介してRF電極16にRF電源38の交流高周波電圧を印加することにより、チャンバ内の上方に設置された図示しない対向水平電極とセラミックプレート12に埋設されたRF電極16とからなる平行平板電極間にプラズマを発生させ、そのプラズマを利用してウエハにCVD成膜を施したりエッチングを施したりする。RF電極16に直流電圧を印加すれば静電電極(ESC電極)として使用することができる。
 以上詳述したセラミックヒータ10では、RFリンク部材40は、複数のRFロッド42で構成された分岐部44を有している。これにより、RFリンク部材40の電流流路の表面積が増加するため、表皮効果による抵抗の増加を抑えることができる。また、RFロッド1本当たりに流れる電流が小さくなるため、RFロッド1本当たりの発熱量が減少する。一方、RFコネクタ30は、セラミックシャフト20の中空内部22の外側に配置される。これにより、RFコネクタ30が発熱したとしてもそれによってセラミックシャフト20の中空内部22の温度が高くなることはない。そのため、セラミックシャフト20の中空内部22に配置されたRFロッド42の温度が上がりやすいという状況を招くことはない。したがって、セラミックヒータ10によれば、セラミックプレート12にホットスポットが生じるのを確実に防止することができる。また、セラミックシャフト20の中空内部22の外側にRFコネクタ30が配置されるため、RFリンク部材40とRFコネクタ30との接続作業をスムーズに行うことができる。
 また、複数のRFロッド42は、個別にRF電極16に接続されているため、複数のRFロッド42のうちの1つが何らかの理由でRF電極16から外れたとしても、他のRFロッド42からRF電極16に電力を供給することができる。また、複数のRFロッド42がRF電極16に接続されるため、表皮効果による抵抗増を生じることなく、発熱量を抑えることができる。
 更に、RFリンク部材40の基端(下端)は、ヒータロッド24の基端(下端)よりもセラミックシャフト20に近い位置にある。これにより、RFリンク部材40の基端に対して行う作業とヒータロッド24の基端に対して行う作業とは干渉しにくいため、それぞれの作業をスムーズに行いやすくなる。またRFリンク部材40の長さを比較的短くすることができるため、RFリンク部材40の抵抗を低く抑えることができ、RFリンク部材40の発熱量を低く抑えることができる。更に、ヒータロッド24は、高周波電流が流れないため表皮効果がなく、RFロッド42よりも低抵抗なため、長くしてもヒータロッド24の発熱量はほとんど増えることはない。
 更にまた、ノイズの影響はノイズ発信源との距離が遠いほど弱くなるため、RFロッド42間にヒータロッド24を配置しないことで、ヒータロッド24に印加される電圧がRFロッド42に印加される高周波電圧の影響を受けて変動するおそれが少なくなる。
 そして、RFロッド42同士の間隔は、RFロッド42の直径以上であり、複数のRFロッド42は十分な間隔を持って配置されるため、1つのRFロッド42が他のRFロッド42の発熱の影響を受けるおそれが少ない。
 そしてまた、RFロッド42はヒータロッド24よりも太い(RFロッド42の直径はヒータロッド24の直径よりも大きい)ことが好ましい。こうすれば、RFロッド42の表面積が大きくなるため、RFロッド42を流れるRF電流の抵抗が低くなる。そのため、RFロッド1本当たりの発熱量が更に減少する。
 なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。
 例えば、上述した実施形態のRFリンク部材40の代わりに、図2のRFリンク部材140を採用してもよい。図2では、上述した実施形態と同じ構成要素については同じ符号を付した。RFリンク部材140は、複数(ここでは2本)のRFロッド142で構成された分岐部144と、セラミックプレート12の裏面12bの手前で複数のRFロッド142が1つにまとめられた円柱状の集約部145とを備えている。RFロッド142は、分岐したまま、下端がRFコネクタ30の差込穴34に差し込まれている。RFロッド142の上端は、集約部145で1つのロッドに集約されてRF電極16に接続されている。RFリンク部材140は、RF電極16からセラミックシャフト20の中空内部22を経てRFコネクタ30に達している。分岐部144の一部は、セラミックシャフト20の中空内部22に配置されている。RFリンク部材140の下端は、ヒータロッド24(図1参照)の下端よりもセラミックシャフト20に近い位置にある。図2では、RFリンク部材140のほとんどの部分が複数のRFロッド142で構成されているため、発熱を抑制することができる。また、RFリンク部材140をRF電極16に接続する際、セラミックプレート12に設ける穴13を少なくすることができる。RFロッド142や集約部145はヒータロッド24よりも太いことが好ましい。こうすれば、RFロッド142や集約部145の表面積が大きくなるため、RFロッド142や集約部145を流れるRF電流の抵抗が低くなり、それらの発熱量が小さくなる。
 上述した実施形態のRFリンク部材40の代わりに、図3のRFリンク部材240を採用してもよい。図3では、上述した実施形態と同じ構成要素については同じ符号を付した。RFリンク部材240は、複数(ここでは2本)のRFロッド242で構成された分岐部244と、セラミックプレート12の裏面12bの手前で複数のRFロッド242が1つにまとめられた円柱状の第1集約部245と、RFコネクタ30の手前で複数のRFロッド242が1つにまとめられた円柱状の第2集約部246とを備えている。RFロッド242の上端は、第1集約部245で1つのロッドに集約されてRF電極16に接続されている。RFロッド242の下端は、第2集約部246で1つのロッドに集約されてRFコネクタ30の差込穴34に差し込まれている。RFリンク部材240は、RF電極16からセラミックシャフト20の中空内部22を経てRFコネクタ30に達している。分岐部244の一部は、セラミックシャフト20の中空内部22に配置されている。RFリンク部材240の下端は、ヒータロッド24(図1参照)の下端よりもセラミックシャフト20に近い位置にある。図3では、RFリンク部材240をRF電極16に接続する際、セラミックプレート12に設ける穴13を少なくすることができる。また、RFリンク部材240をRFコネクタ30に接続する際、上述した実施形態に比べて接続箇所(差込穴34)を少なくすることができる。なお、RF電極16とRFコネクタ30との間に、複数のRFリンク部材240を設けてもよい。RFロッド242や第1及び第2集約部245,246はヒータロッド24よりも太いことが好ましい。こうすれば、RFロッド242や第1及び第2集約部245,246の表面積が大きくなるため、RFロッド242や第1及び第2集約部245,246を流れるRF電流の抵抗が低くなり、それらの発熱量が小さくなる。
 上述した実施形態のRFリンク部材40の代わりに、図4のRFリンク部材340を採用してもよい。図4では、上述した実施形態と同じ構成要素については同じ符号を付した。RFリンク部材340は、複数(ここでは2本)のRFロッド342で構成された分岐部344と、RFコネクタ30の手前で複数のRFロッド342が1つにまとめられた集約部346とを備えている。RFロッド342は、分岐したまま、上端がRF電極16に接続されている。RFロッド342の下端は、集約部346で1つのロッドに集約されてRFコネクタ30の差込穴34に差し込まれている。RFリンク部材340は、RF電極16からセラミックシャフト20の中空内部22を経てRFコネクタ30に達している。分岐部344の一部は、セラミックシャフト20の中空内部22に配置されている。RFリンク部材340の下端は、ヒータロッド24(図1参照)の下端よりもセラミックシャフト20に近い位置にある。図4では、RFリンク部材340をRFコネクタ30に接続する際、上述した実施形態に比べて接続箇所(差込穴34)を少なくすることができる。なお、RF電極16とRFコネクタ30との間に、複数のRFリンク部材340を設けてもよい。RFロッド342や集約部346はヒータロッド24よりも太いことが好ましい。こうすれば、RFロッド342や集約部346の表面積が大きくなるため、RFロッド342や集約部346を流れるRF電流の抵抗が低くなり、それらの発熱量が小さくなる。
 上述した実施形態では、RFロッド42の断面(長手方向に対して垂直方向に切断したときの断面)を円形としたが、図5に示すように、RFロッド42の断面の外周部に少なくとも1つ(ここでは5つ)の凹部42aを有する形状としてもよい。具体的には、RFロッド42は、長手方向に沿って延びる溝を少なくとも1つ(ここでは5つ)備えていてもよい。こうすれば、RFロッド42の表面積は凹部42aを有さない場合に比べて大きくなるため、表皮効果による抵抗の増加をより抑えることができ、RFロッド1本当たりの発熱量がより減少する。
 上述した実施形態では、RF電極16の形状をメッシュとしたが、その他の形状であってもよい。例えば、コイル状や平面状であってもよいし、パンチングメタルであってもよい。
 上述した実施形態では、セラミック材料としてAlNを採用したが、特にこれに限定されるものではなく、例えばアルミナや窒化珪素、炭化珪素などを採用してもよい。その場合、抵抗発熱体14やRF電極16の材質はそのセラミックの熱膨張係数に近いものを使用するのが好ましい。
 上述した実施形態では、セラミックプレート12に抵抗発熱体14とRF電極16とを埋設したが、更に静電電極を埋設してもよい。こうすれば、セラミックヒータ10は静電チャックとしての機能も果たすようになる。
 上述した実施形態では、セラミックプレート12の全面にわたって抵抗発熱体14を一筆書きの要領で配線する1ゾーンヒータを例示したが、特にこれに限定されない。例えば、セラミックプレート12の全面を複数のゾーンに分けてゾーンごとに抵抗発熱体を一筆書きの要領で配線する多ゾーンヒータを採用してもよい。この場合、各ゾーンの抵抗発熱体につき一対のヒータロッドを設けるようにすればよい。
 上述した実施形態のRF電極16の代わりに、図6のRF電極416を採用してもよい。図6では、上述した実施形態と同じ構成要素については同じ符号を付した。RF電極416は、内側円形電極416aの外周縁と外側円環電極416bの内周縁とを円筒状の連結部416cで繋いだものである。内側円形電極416aと外側円環電極416bとは高さの異なる面に上下二段になるように配置されている。RFリンク部材40(分岐部44)を構成する2本のRFロッド42のうち1本は内側円形電極416aの裏面に接続され、もう1本は外側円環電極416bの裏面に接続されている。つまり、2本のRFロッド42はRF電極416の高さの異なる各面に接続されている。このようにしても、上述した実施形態と同様の効果が得られる。また、RF電極416は、セラミックプレート12の内部で高さの異なる複数の面に亘って設けられているため、RF電極416の高さの異なる面ごとにプラズマの密度を変えることができる。更に、2本のRFロッド42は、RF電極416の各面に個別に接続されているため、2本のRFロッド42間の距離を確保できる。例えば、発熱する2本のRFロッド42間の距離を大きくすることにより、RFロッド42同士が互いに加熱し合うことを防止できる。更にまた、セラミックプレート12の裏面12bに近い外側円環電極416bと裏面12bから遠い内側円環電極416aのそれぞれにRFロッド42が接続されるため、裏面12bに近い外側円環電極416bに接続されるRFロッド42の穴の深さが浅くなり、セラミックプレート12の加工負荷が小さくなり破損リスクを抑えられる。これに対して、裏面12bから遠い内側円環電極416aに2本のRFロッド42が接続される場合には、2本のRFロッド42の穴の深さが深くなり、セラミックプレート12の加工負荷が大きくなり破損リスクが高まる。なお、図6において、上述した実施形態と同様の抵抗発熱体14やヒータロッド24を設けてもよい。また、図6において、RFリンク部材40の代わりに図4のRFリンク部材340を採用してもよい。
 本出願は、2019年8月8日に出願された日本国特許出願第2019-146413号を優先権主張の基礎としており、引用によりその内容の全てが本明細書に含まれる。
 本発明は、例えばエッチング装置やCVD装置等の半導体製造装置に用いられる部材として利用可能である。
10 セラミックヒータ、12 セラミックプレート、12a ウエハ載置面、12b 裏面、13 穴、14 抵抗発熱体、16 RF電極、20 セラミックシャフト、20a 第1フランジ、20b 第2フランジ、22 中空内部、24 ヒータロッド、26 ケーブル、28 ヒータ電源、30 RFコネクタ、32 ソケット、34 差込穴、36 RFベースロッド、37 ケーブル、38 RF電源、40 RFリンク部材、42 RFロッド、42a 凹部、44 分岐部、140 RFリンク部材、142 RFロッド、144 分岐部、145 集約部、240 RFリンク部材、242 RFロッド、244 分岐部、245 第1集約部、246 第2集約部、340 RFリンク部材、342 RFロッド、344 分岐部、346 集約部、416 RF電極、416a 内側円形電極、416b 外側円環電極、416c 連結部。

Claims (8)

  1.  表面がウエハ載置面であるセラミックプレートの裏面に中空のセラミックシャフトを設けた構造の半導体製造装置用部材であって、
     前記セラミックプレートに埋設されたRF電極と、
     前記セラミックシャフトの中空内部の外側に配置されたRFコネクタと、
     前記RFコネクタと前記RF電極との間に設けられたRFリンク部材と、
     を備え、
     前記RFリンク部材は、複数のRFロッドで構成された分岐部を有し、前記分岐部は、前記セラミックシャフトの外側まで続いている、
     半導体製造装置用部材。
  2.  前記複数のRFロッドは、前記セラミックプレートの裏面の手前の第1集約部で1つにまとめられて前記RF電極に接続されている、
     請求項1に記載の半導体製造装置用部材。
  3.  前記複数のRFロッドは、個別に前記RF電極に接続されている、
     請求項1に記載の半導体製造装置用部材。
  4.  前記RF電極は、前記セラミックプレートの内部で高さの異なる複数の面に亘って設けられ、
     前記複数のRFロッドは、前記RF電極の各面に個別に接続されている、
     請求項3に記載の半導体製造装置用部材。
  5.  前記複数のRFロッドは、前記RFコネクタの手前の第2集約部で1つにまとめられて前記RFコネクタに接続されている、
     請求項1~4のいずれか1項に記載の半導体製造装置用部材。
  6.  前記RFロッドを長手方向に対して垂直方向に切断したときの断面は、外周部に少なくとも1つの凹部を有する形状である、
     請求項1~5のいずれか1項に記載の半導体製造装置用部材。
  7.  請求項1~6のいずれか1項に記載の半導体製造装置用部材であって、
     前記セラミックプレートに埋設された抵抗発熱体と、
     前記抵抗発熱体に接続され、前記セラミックシャフトの中空内部を通って前記セラミックシャフトの外側まで設けられた一対のヒータロッドと、
     を備え、
     前記RFリンク部材の基端は、前記ヒータロッドの基端よりも前記セラミックシャフトに近い位置にある、
     半導体製造装置用部材。
  8.  請求項1~6のいずれか1項に記載の半導体製造装置用部材であって、
     前記セラミックプレートに埋設された抵抗発熱体と、
     前記抵抗発熱体に接続され、前記セラミックシャフトの中空内部を通って前記セラミックシャフトの外側まで設けられた一対のヒータロッドと、
     を備え、
     前記RFロッドは、前記ヒータロッドよりも太い、
     半導体製造装置用部材。
PCT/JP2020/028876 2019-08-08 2020-07-28 半導体製造装置用部材 WO2021024858A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021537246A JP7331107B2 (ja) 2019-08-08 2020-07-28 半導体製造装置用部材
CN202080056190.2A CN114245936A (zh) 2019-08-08 2020-07-28 半导体制造装置用构件
KR1020227000620A KR20220019030A (ko) 2019-08-08 2020-07-28 반도체 제조 장치용 부재
US17/644,361 US11996313B2 (en) 2019-08-08 2021-12-15 Member for semiconductor manufacturing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-146413 2019-08-08
JP2019146413 2019-08-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/644,361 Continuation US11996313B2 (en) 2019-08-08 2021-12-15 Member for semiconductor manufacturing apparatus

Publications (1)

Publication Number Publication Date
WO2021024858A1 true WO2021024858A1 (ja) 2021-02-11

Family

ID=74504096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/028876 WO2021024858A1 (ja) 2019-08-08 2020-07-28 半導体製造装置用部材

Country Status (6)

Country Link
US (1) US11996313B2 (ja)
JP (1) JP7331107B2 (ja)
KR (1) KR20220019030A (ja)
CN (1) CN114245936A (ja)
TW (1) TWI745006B (ja)
WO (1) WO2021024858A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220238316A1 (en) * 2020-12-31 2022-07-28 Mico Ceramics Ltd. Ceramic susceptor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005197391A (ja) * 2004-01-06 2005-07-21 Ibiden Co Ltd プラズマ発生装置用電極埋設部材
JP2009054871A (ja) * 2007-08-28 2009-03-12 Tokyo Electron Ltd 載置台構造及び処理装置
JP2010109316A (ja) * 2008-03-11 2010-05-13 Tokyo Electron Ltd 載置台構造及び処理装置
JP2015159283A (ja) * 2014-02-21 2015-09-03 ラム リサーチ コーポレーションLam Research Corporation プラズマ処理用の調整可能なrf給電構造
JP2016184642A (ja) * 2015-03-26 2016-10-20 日本碍子株式会社 半導体製造装置用部材
JP2017511980A (ja) * 2014-01-07 2017-04-27 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 広範囲の動作温度を有するpecvdセラミックヒータ
JP2018506853A (ja) * 2015-02-03 2018-03-08 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated プラズマ処理システム用の高温チャック
JP2018123348A (ja) * 2017-01-30 2018-08-09 日本碍子株式会社 ウエハ支持台
WO2018163935A1 (ja) * 2017-03-06 2018-09-13 日本碍子株式会社 ウエハ支持台

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5896595B2 (ja) 2010-10-20 2016-03-30 ラム リサーチ コーポレーションLam Research Corporation 2層rf構造のウエハ保持体
US8946058B2 (en) * 2011-03-14 2015-02-03 Plasma-Therm Llc Method and apparatus for plasma dicing a semi-conductor wafer
JP5807032B2 (ja) 2012-03-21 2015-11-10 日本碍子株式会社 加熱装置及び半導体製造装置
KR102339803B1 (ko) * 2014-01-24 2021-12-14 어플라이드 머티어리얼스, 인코포레이티드 산화제 없이 규소 및 산-함유 막들을 증착시키는 방법
US11532497B2 (en) * 2016-06-07 2022-12-20 Applied Materials, Inc. High power electrostatic chuck design with radio frequency coupling
US10147610B1 (en) * 2017-05-30 2018-12-04 Lam Research Corporation Substrate pedestal module including metallized ceramic tubes for RF and gas delivery
WO2020013938A1 (en) * 2018-07-07 2020-01-16 Applied Materials, Inc. Semiconductor processing apparatus for high rf power process

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005197391A (ja) * 2004-01-06 2005-07-21 Ibiden Co Ltd プラズマ発生装置用電極埋設部材
JP2009054871A (ja) * 2007-08-28 2009-03-12 Tokyo Electron Ltd 載置台構造及び処理装置
JP2010109316A (ja) * 2008-03-11 2010-05-13 Tokyo Electron Ltd 載置台構造及び処理装置
JP2017511980A (ja) * 2014-01-07 2017-04-27 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 広範囲の動作温度を有するpecvdセラミックヒータ
JP2015159283A (ja) * 2014-02-21 2015-09-03 ラム リサーチ コーポレーションLam Research Corporation プラズマ処理用の調整可能なrf給電構造
JP2018506853A (ja) * 2015-02-03 2018-03-08 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated プラズマ処理システム用の高温チャック
JP2016184642A (ja) * 2015-03-26 2016-10-20 日本碍子株式会社 半導体製造装置用部材
JP2018123348A (ja) * 2017-01-30 2018-08-09 日本碍子株式会社 ウエハ支持台
WO2018163935A1 (ja) * 2017-03-06 2018-09-13 日本碍子株式会社 ウエハ支持台

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220238316A1 (en) * 2020-12-31 2022-07-28 Mico Ceramics Ltd. Ceramic susceptor

Also Published As

Publication number Publication date
CN114245936A (zh) 2022-03-25
TW202111820A (zh) 2021-03-16
KR20220019030A (ko) 2022-02-15
US11996313B2 (en) 2024-05-28
JPWO2021024858A1 (ja) 2021-02-11
JP7331107B2 (ja) 2023-08-22
US20220108909A1 (en) 2022-04-07
TWI745006B (zh) 2021-11-01

Similar Documents

Publication Publication Date Title
US11476096B2 (en) Wafer support table
US10373853B2 (en) Electrostatic chuck and wafer processing apparatus
JP6615134B2 (ja) ウエハ支持台
KR101929278B1 (ko) 정전 척
JP7216710B2 (ja) マルチゾーンヒータ
WO2020153079A1 (ja) セラミックヒータ
WO2021024858A1 (ja) 半導体製造装置用部材
JP6278277B2 (ja) 静電チャック装置
TWI791814B (zh) 晶圓支撐台
TWI803534B (zh) 靜電卡盤裝置
US20210243848A1 (en) Ceramic heater
JP6475054B2 (ja) 半導体製造装置用部材
US20210235548A1 (en) Ceramic heater
JP7103340B2 (ja) セラミックスヒータ
US20220124874A1 (en) Wafer placement table
JP4662910B2 (ja) 真空チャック
JP2003045765A (ja) ウェハ支持部材
JP7185544B2 (ja) セラミックヒータ
KR20220000405A (ko) 개선된 기판 프로세싱을 위한 기판 페디스털
JP2018046079A (ja) 保持装置
US20220124875A1 (en) Wafer placement table
US20170372934A1 (en) Wafer holding apparatus and baseplate structure
WO2018135270A1 (ja) 試料保持具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20850109

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021537246

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227000620

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20850109

Country of ref document: EP

Kind code of ref document: A1