WO2021020325A1 - ケイ素イソシアナト化合物含有組成物及びその製造方法 - Google Patents

ケイ素イソシアナト化合物含有組成物及びその製造方法 Download PDF

Info

Publication number
WO2021020325A1
WO2021020325A1 PCT/JP2020/028634 JP2020028634W WO2021020325A1 WO 2021020325 A1 WO2021020325 A1 WO 2021020325A1 JP 2020028634 W JP2020028634 W JP 2020028634W WO 2021020325 A1 WO2021020325 A1 WO 2021020325A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
compound
isocyanato
containing composition
isocyanato compound
Prior art date
Application number
PCT/JP2020/028634
Other languages
English (en)
French (fr)
Inventor
隆治 橋本
大豆生田 勉
Original Assignee
マツモトファインケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マツモトファインケミカル株式会社 filed Critical マツモトファインケミカル株式会社
Priority to CN202080052675.4A priority Critical patent/CN114174307A/zh
Priority to KR1020227003738A priority patent/KR20220039729A/ko
Priority to JP2021537013A priority patent/JPWO2021020325A1/ja
Publication of WO2021020325A1 publication Critical patent/WO2021020325A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/10Compounds having one or more C—Si linkages containing nitrogen having a Si-N linkage
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof

Definitions

  • the present invention relates to a method for producing a silicon isocyanato compound-containing composition, and more particularly, to a method for producing a silicon isocyanato compound-containing composition, which comprises carrying out a dehydration step using an azeotropic solvent. ..
  • Silicon isocyanato compounds are used as polymer modifiers because they easily react with compounds containing active hydrogen such as alcohols, primary amines, secondary amines, and carboxylic acids in their molecules.
  • the silicon isocyanato compound can be easily introduced as a component of the polymer, and the characteristics of silicon can be added to the industrial material.
  • the silicon isocyanato compound reacts quickly with water, it reacts with water in the air or adsorbed water existing on the surface of glass, ceramics, metal, etc. to form a silicon oxide film with high adhesion. Can be made to.
  • a halogenated silane compound having a Si—X (X indicates halogen) bond and a cyanate or isocyanate in the presence of a solvent are used as an alkylamine, a nitroalkane or a crown ether.
  • a method of reacting in the presence of a silane compound (Patent Document 1) and a method of reacting a halogenated silane compound with a cyanate or isocyanate in the presence of an alkylene glycol compound (Patent Document 2). are known.
  • Patent Document 3 a method for producing hexaorganodisilazane by reacting it with carbon dioxide gas in the presence of iron chloride
  • Patent Document 4 trichlorosilane and an alkali cyanate are reacted in an organic solvent containing a small amount of acetonitrile.
  • Patent Document 5 a method of reacting an organotin isocyanate with an organosilicon compound having an active halogen atom
  • the silicon isocyanato compound is known to form a dimer compound or an oligomer compound by reacting with water (for example, Patent Document 6), and when water is mixed in the reaction system, the silicon isocyanato compound (monomer). ) Will lead to a decrease in purity. Therefore, in order to obtain a monomer of a high-purity silicon isocyanato compound, it is necessary to sufficiently remove water from the raw material compound.
  • a silicon isocyanato compound is produced using dehydrated cyanate or isocyanate, but dehydration of other compounds used in the reaction such as the solvent used or alkylene glycol is not carried out. As long as the silane halide compound reacts with the contained water before reacting with cyanate or isocyanate.
  • dehydration methods include dehydration methods using solid adsorbents such as molecular sieves, activated clay, and silica gel.
  • solid adsorbents such as molecular sieves, activated clay, and silica gel.
  • the solution consisting of cyanate or isocyanate, reaction accelerator, and solvent is in a slurry state, and it is difficult to separate only the solid adsorbent from this mixed solution.
  • the solid adsorbent is reacted with the halogenated silane compound in a state where it remains, it reacts with water contained in the solid adsorbent, leading to a decrease in yield and / or purity.
  • a silicon isocyanato compound-containing composition having a high monomer purity is required, and development of a new production method for producing such a silicon isocyanato compound-containing composition is required. Is required.
  • the present invention has been made in view of the above background art, and the subject thereof is a method capable of producing a silicon isocyanato compound-containing composition having a high purity of a monomer of a silicon isocyanato compound, at an industrial level. It is an object of the present invention to provide a method capable of producing a silicon isocyanato compound-containing composition at low cost.
  • a halogenated silane compound with a cyanate or an isocyanate in the presence of an alkylene glycol compound to form a silicon isocyanato compound-containing composition.
  • a co-boiling solvent is added to a liquid containing a cyanate or an isocyanate and an alkylene glycol compound, and the co-boiling solvent and water are co-boiling.
  • the present invention is a method for producing a silicon isocyanato compound-containing composition, which produces a silicon isocyanato compound by reacting a silicon halide compound with a cyanate or isocyanate in the presence of a solvent and an alkylene glycol-based compound.
  • the present invention provides a method for producing a silicon isocyanato compound-containing composition, which comprises the following steps (A) to (D).
  • B The liquid is heated and coexisted with water.
  • C Step of adding the silicon halide compound to the liquid to produce the silicon isocyanato compound
  • D Step of heating the liquid and distilling off the silicon isocyanato compound to recover the liquid.
  • the present invention also provides a silicon isocyanato compound-containing composition, which comprises 80% by mass or more of a silicon isocyanato compound.
  • the present invention provides a method for producing a silicon oxide or a silicon oxide film, which comprises using the silicon isocyanato compound-containing composition produced by the above-mentioned method for producing a silicon isocyanato compound-containing composition as a silicon precursor. It is to provide.
  • the present invention it is possible to provide a method for producing a silicon isocyanato compound-containing composition having a high purity of a monomer of a silicon isocyanato compound.
  • the present invention can provide a silicon isocyanato compound-containing composition in which the purity of the monomer of the silicon isocyanato compound is 80% by mass or more before purification.
  • the method of the present invention can be carried out at an industrial level, and a silicon isocyanato compound-containing composition can be produced at low cost.
  • a silicon isocyanato compound is produced by reacting a silicon halide compound with cyanate or isocyanate in the presence of a solvent and an alkylene glycol-based compound.
  • the monomer of the silicon isocyanato compound is suitable for production by the production method of the present invention.
  • the monomer of such a silicon isocyanato compound include those represented by the following formula (1).
  • R is a hydrocarbon group which may be substituted, and when a plurality of Rs are present, each R may be different.
  • n and m are integers of 0 or more and 3 or less, respectively, and the sum of n and m is an integer of 0 or more and 3 or less.
  • R may be saturated, unsaturated, or have an aromatic ring.
  • Examples thereof include a propargyl group, a phenyl group, a naphthyl group, a benzyl group, an ethoxymethyl group, an ethoxyethyl group, an ethoxypropyl group, a butoxydiethylene glycolixethyl group, a pentafluoroethyl group and a heptafluoropropyl group.
  • those represented by the following formula (1a) are in demand for various uses such as precursors of silicon oxide films. It is particularly suitable for producing high-purity products by the production method of the present invention.
  • Specific compound names of the monomer of the silicon isocyanato compound produced by the production method of the present invention include tetraisosianatosilane, methyltriisocyanatosilane, ethyltriisocyanatosilane, dimethyldiisocyanatosilane, and diethyldi. Examples thereof include isocyanatosilane, trimethylisocyanatosilane, triethylisocyanatosilane, etc., which are in demand for various applications such as precursors of silicon oxide films, and books capable of producing these with high purity. It is particularly preferable as an application target of the present invention.
  • the silicon halide compound is a raw material for producing a silicon isocyanato compound by reaction with cyanate or isocyanate, which will be described later.
  • the "silicon halide compound” is a compound containing silicon and a halogen bonded to the silicon. Although not limited, typical examples of the silicon halide compound include those represented by the following formula (2).
  • R is a hydrocarbon group which may be substituted, and when a plurality of Rs are present, each R may be different.
  • X is a halogen.
  • n and m are integers of 0 or more and 3 or less, respectively, and the sum of n and m is an integer of 0 or more and 3 or less.
  • R in the formula (2) may be saturated, unsaturated, or may have an aromatic ring.
  • the specific example of R in the formula (2) is the same as the specific example of R in the above-mentioned formula (1).
  • X in the formula (2) chlorine (Cl), bromine (Br) and iodine (I) are preferable, and chlorine or bromine is particularly preferable.
  • silicon halide compound represented by the formula (2) examples include tetrachlorosilane, methyltrichlorosilane, ethyltrichlorosilane, dimethyldichlorosilane, diethyldichlorosilane, trimethylchlorosilane, triethylchlorosilane, tetrabromosilane, and methyltribromo.
  • Examples thereof include silane, ethyltribromosilane, dimethyldibromosilane, diethyldibromosilane, trimethylbromosilane, and triethylbromosilane.
  • Cyanate and isocyanate are raw materials for producing a silicon isocyanato compound by reaction with the above-mentioned silicon halide compound.
  • Cyanate is a salt of cyanic acid (HOC ⁇ N) represented by M (OCN) m (M is a metal, m is a natural number) and a metal.
  • the cyanate in the production method of the present invention is preferably a salt with an alkali metal or an alkaline earth metal. Lithium (Li), sodium (Na), potassium (K) and the like are more preferable as the alkali metal, and magnesium (Mg), calcium (Ca), barium (Ba) and the like are more preferable as the alkaline earth metal.
  • M isocyanic acid
  • NCO NCO
  • M is a metal
  • m is a natural number
  • examples of the isocyanate in the production method of the present invention include salts with silver (Ag), ammonium and the like.
  • cyanic acid HOC ⁇ N
  • salts such as silver and ammonium are usually alkali metals as isocyanate.
  • salts such as lead are known to exist in the form of cyanate.
  • sodium cyanate, potassium cyanate, and lithium cyanate are particularly preferable, and sodium cyanate is the most preferable, from the viewpoint of practicality such as availability, reactivity, and ease of handling. ..
  • the cyanate or isocyanate is preferably used in an equimolar amount or more with the halogen to be substituted contained in the silicon halide compound, and the cyanate or isocyanate is 0. It is particularly preferable that the amount is 1 to 2 equivalents excessive.
  • the silicon isocyanato compound is obtained by reacting the above-mentioned silicon halide compound with cyanate or isocyanate, and is reacted in combination with various reaction accelerators in order to increase the reaction yield.
  • an alkylene glycol compound is used as such a reaction accelerator.
  • alkylene glycol-based compound in the production method of the present invention examples include alkylene glycols such as ethylene glycol, propylene glycol, butylene glycol and octylene glycol; halogen substituents of alkylene glycols; polyethylene glycol, polypropylene glycol, polybutylene glycol and the like. Polyalkylene glycols; halogen-substituted products of polyalkylene glycols and the like can be mentioned.
  • ether derivatives and ester derivatives of polyalkylene glycols and their halogen-substituted products are also mentioned as examples of alkylene glycol-based compounds in the production method of the present invention.
  • the ether derivative may be a monoether derivative in which only one end of the polyalkylene glycol chain is substituted with a substituent, or a diether derivative in which both ends are substituted with a substituent.
  • a hydrocarbon group such as a methyl group, an ethyl group, a propyl group, a butyl group, an oleyl group, a stearyl group, a benzyl group and a phenyl group; a furfuryl group; a glyceryl group; Residues of valent hydroxy compounds; etc.
  • the hydrogen atom in these substituents may be substituted with halogen.
  • the ester derivative may be a monoester derivative in which only one end of the polyalkylene glycol chain is substituted with a substituent, or a diester derivative in which both ends are substituted with a substituent.
  • substituent of the ester derivative include a formyl group, an acetyl group, a propionyl group, a butanoyl group, a benzoyl group and the like.
  • the hydrogen atom in these substituents may be substituted with halogen.
  • a compound in which one end of the polyalkylene glycol chain is substituted with the above-mentioned ether derivative substituent and the other end is substituted with the above-mentioned ester derivative substituent is also used as the alkylene glycol-based compound in the production method of the present invention. Can be done.
  • alkylene glycol compounds may be used alone or in admixture of two or more, depending on the desired reactivity.
  • ethylene glycol, polyethylene glycol and various derivatives thereof have particularly good reactivity and are preferable as the reaction accelerator in the present invention.
  • a monomer of a high-purity silicon isocyanato compound can be obtained by removing water from the reaction system by azeotropic dehydration, it is particularly active in the structure among alkylene glycol compounds.
  • a compound containing no hydrogen can be preferably used.
  • the amount of the alkylene glycol compound added is preferably 0.01 part by mass or more, and particularly preferably 0.05 part by mass or more, based on 100 parts by mass of the silicon halide compound. Further, it is preferably 20 parts by mass or less, and particularly preferably 10 parts by mass or less.
  • the reaction time can be sufficiently shortened and the productivity is likely to be improved (when the addition amount is less than 0.01 parts by mass, the time required to complete the reaction may reach 5 hours or more. ).
  • the yield tends to be high (for example, when the addition amount exceeds 20 parts by mass, the reaction rate becomes high, but when the alkylene glycol compound has an OH group, the silicon compound is the same. Yield may decrease due to reaction).
  • the above-mentioned cyanic acid or isocyanate, an alkylene glycol-based compound, and an azeotropic solvent described later are added to the solvent and mixed to generate a liquid.
  • the solution may be a solution in which each component is dissolved in a solvent, or a suspension such as a slurry.
  • a silicon isocyanato compound-containing composition is obtained by removing water from the solution by azeotropic dehydration and then adding a silicon halide compound to the solution and causing a heating reaction.
  • the solvent it is necessary to use a reaction raw material or a substance that does not alter the reaction product.
  • a solvent include organic solvents such as hydrocarbons and halogenated hydrocarbons. Specifically, n-hexane, cyclohexane, petroleum ether, liquid paraffin, benzene, toluene, xylene, chloroform, trichlorethylene, 1,1,2,2-tetrachloroethane, chlorobenzene, triethylene glycol monomethyl ether, polyethylene glycol mono. Examples thereof include ethyl ether, diisononyl phthalate, and dibutyl phthalate.
  • ⁇ Azeotropic solvent> an azeotropic solvent is added to the solvent in addition to cyanic acid, isocyanate, and an alkylene glycol-based compound before the reaction.
  • an azeotropic solvent is added to the solvent to perform azeotropic dehydration.
  • water can be sufficiently removed as compared with the method of preliminarily dehydrating cyanate or isocyanate as a raw material as in Patent Document 2, and therefore silicon isocyanato having a high purity of the silicon isocyanato compound monomer.
  • a compound-containing composition can be obtained.
  • the azeotropic solvent it is necessary to use a solvent that does not alter the reaction raw material and reaction product.
  • examples of the azeotropic solvent include organic solvents that do not contain active hydrogen in their chemical structure.
  • hydrocarbons are preferable, and aromatic hydrocarbons are particularly preferable.
  • aromatic hydrocarbons are particularly preferable.
  • Specific examples of the compound include benzene, toluene, xylene, ethylbenzene and the like.
  • the azeotropic solvent may be used alone or in combination of two or more.
  • the method for producing a silicon isocyanato compound-containing composition of the present invention includes steps (A) to (D) described below.
  • Step (A) In the step (A), the above-mentioned cyanate or isocyanic acid, an azeotropic solvent, an alkylene glycol compound, and a solvent are mixed to generate a liquid.
  • the solution may be a solution in which each component is dissolved in a solvent, or a suspension such as a slurry.
  • step (A) there is no particular limitation on the order in which each component is added. It is desirable to carry out step (A) while stirring the inside of the reaction vessel so that each component is sufficiently mixed.
  • Step (B) In the step (B), the liquid produced in the step (A) is heated to remove water and an azeotropic solvent. By carrying out the step (B), water is removed from the liquid, and as a result, in the reaction of cyanate or isocyanic acid with the silicon halide compound, it is possible to prevent a mass reaction due to the reaction with water. A high-purity silicon-isocyanato compound-containing composition of a silicon-isocyanato compound monomer can be obtained.
  • the conditions for performing azeotropic dehydration in step (B) are not particularly limited, but it is preferable to perform azeotropic dehydration under normal pressure and then reduce the pressure to further perform azeotropic dehydration.
  • the liquid temperature in azeotropic dehydration under normal pressure is preferably 20 ° C. or higher, more preferably 50 ° C. or higher, and particularly preferably 100 ° C. or higher. Further, it is preferably 250 ° C. or lower, more preferably 230 ° C. or lower, and particularly preferably 200 ° C. or lower.
  • the liquid temperature is in the above range, it is possible to produce a silicon isocyanato compound-containing composition without lowering the purity and yield of the silicon isocyanato compound monomer.
  • the liquid temperature at the time of performing azeotropic dehydration under normal pressure and then reducing the pressure to further perform azeotropic dehydration is preferably 20 ° C. or higher, more preferably 50 ° C. or higher, and 100 ° C. or higher. It is particularly preferable to have. Further, it is preferably 250 ° C. or lower, more preferably 230 ° C. or lower, and particularly preferably 200 ° C. or lower.
  • the degree of decompression (pressure) is preferably 0.1 kPa or more, more preferably 0.3 kPa or more, and particularly preferably 0.5 kPa or more.
  • liquid temperature and the degree of pressure reduction (pressure) are within the above ranges, it is possible to produce a silicon isocyanato compound-containing composition without lowering the purity and yield of the silicon isocyanato compound monomer.
  • Step (C) In the step (C), the above-mentioned silicon halide compound is added to the solution from which water and the azeotropic solvent have been removed in the step (B), and a silicon isocyanato compound is produced by reaction with cyanic acid or isocyanate.
  • the reaction temperature in the step (C) can be lower than room temperature, but at room temperature, it often takes a long time of 5 hours or more.
  • the reaction temperature is preferably room temperature or higher, more preferably 50 ° C. or higher, and particularly preferably 100 ° C. or higher. Further, it is preferably 200 ° C. or lower, more preferably 190 ° C. or lower, and particularly preferably 180 ° C. or lower.
  • the reaction can be completed in a short time (up to about 2 hours). Further, when it is not more than the above upper limit, it is easy to suppress the side reaction of the silicon isocyanato compound.
  • Step (D) In the step (D), the liquid containing the silicon isocyanato compound produced in the reaction in the step (C) is heated, and the silicon isocyanato compound is distilled off and recovered.
  • the silicon isocyanato compound may be distilled off by heating the liquid under normal pressure, or may be distilled off under reduced pressure. At first, it may be distilled off under normal pressure, and then it may be distilled off under reduced pressure, and in that case, the yield is likely to be improved.
  • the liquid temperature for distilling off the silicon isocyanato compound under normal pressure is preferably 100 ° C. or higher, more preferably 120 ° C. or higher, and particularly preferably 150 ° C. or higher. Further, it is preferably 250 ° C. or lower, more preferably 200 ° C. or lower, and particularly preferably 190 ° C. or lower. When the liquid temperature is in the above range, it is possible to produce a silicon isocyanato compound-containing composition without lowering the purity and yield of the silicon isocyanato compound monomer.
  • the liquid temperature in the case of distilling off under normal pressure and then further reducing the pressure to distill off is preferably 100 ° C. or higher, more preferably 120 ° C. or higher, and particularly preferably 150 ° C. or higher. .. Further, it is preferably 250 ° C. or lower, more preferably 200 ° C. or lower, and particularly preferably 190 ° C. or lower.
  • the degree of decompression (pressure) is preferably 0.1 kPa or more, more preferably 0.3 kPa or more, and particularly preferably 0.5 kPa or more. Further, it is preferably 101.3 kPa or less, more preferably 90 kPa or less, and particularly preferably 80 kPa or less.
  • step (C) water is removed from the liquid by azeotropic dehydration in step (B) prior to the reaction of the silicon halide compound with cyanic acid or isocyanate in step (C). Therefore, the silicon isocyanato compound produced in the step (C) contains an extremely small amount of a compound having a dimer or more, which is an undesired side reaction product, and a large amount of a monomer. Therefore, the composition recovered by distilling off the silicon isocyanato compound in the step (D) (silicon isocyanato compound-containing composition) contains a large amount of the silicon isocyanato compound monomer.
  • the silicon isocyanato compound-containing composition recovered in the step (D) usually contains 80% by mass or more of the silicon isocyanato compound monomer (purity of the silicon isocyanato compound monomer is 80% by mass or more). Is).
  • 90 is a silicon isocyanato compound-containing composition containing 85% by mass or more of a silicon isocyanato compound monomer, or 90 is a silicon isocyanato compound monomer. It is also possible to obtain a silicon isocyanato compound-containing composition containing a mass% or more.
  • the purity of the silicon isocyanato compound monomer in the present specification is a numerical value calculated from the area ratio measured by gas chromatography using a hydrogen flame ionization detector.
  • a silicon isocyanato compound-containing composition having a purity of the silicon isocyanato compound monomer of 80% by mass or more can be obtained at the stage of recovery in the step (D).
  • the silicon isocyanato compound-containing composition recovered in the step (D) is further heated and distilled under normal pressure and / or reduced pressure to further enhance (purify) the purity of the silicon isocyanato compound monomer. )be able to.
  • a known method can be used for distillation, and examples thereof include a method using a rectification column.
  • the purity of the silicon isocyanato compound monomer in the silicon isocyanato compound-containing composition is already higher than that obtained by the conventional method at the stage of recovery in the step (D), so that the method is distilled.
  • the purity of the silicon isocyanato compound monomer in the silicon isocyanato compound-containing composition that has undergone the step is also high.
  • the purity of the silicon isocyanato compound monomer in the silicon isocyanato compound-containing composition after undergoing the distillation step (purification step) is preferably 90% by mass or more, preferably 95% by mass or more. Is more preferable, 98% by mass or more is particularly preferable, 99.1% by mass or more is further preferable, and 99.5% by mass or more is most preferable.
  • the present invention also relates to a method for producing a silicon oxide or a silicon oxide film, which comprises using the silicon isocyanato compound-containing composition produced by the above-mentioned method for producing a silicon isocyanato compound-containing composition as a silicon precursor. ..
  • the silicon isocyanato compound-containing composition produced by the method for producing a silicon isocyanato compound-containing composition of the present invention and the silicon isocyanato compound-containing composition obtained by purifying such a silicon isocyanato compound-containing composition have the purity of the silicon isocyanato compound monomer. Due to its high price, it is suitable as a silicon oxide or a silicon precursor for producing a silicon oxide film.
  • the silicon isocyanato compound-containing composition in the present invention contains a silicon isocyanato compound having a Si—NCO bond, and is a compound containing an active hydrogen such as an alcohol, a primary amine, a secondary amine, or a carboxylic acid in the molecule. Since it reacts easily, it can be easily introduced as a polymer modifier or as a component of a polymer, and the characteristics of silicon can be added to industrial materials. Further, since it reacts quickly with water, it can react with moisture in the air or adsorbed water existing on the surface of glass, ceramics, metal or the like to form a silicon oxide film having high adhesion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)

Abstract

ケイ素イソシアナト化合物の単量体の純度の高いケイ素イソシアナト化合物含有組成物を、産業レベルで低コストに製造する方法を提供する。 下記工程(A)から工程(D)を有する方法によって、ハロゲン化ケイ素化合物とシアン酸塩又はイソシアン酸塩とを、溶媒及びアルキレングリコール系化合物の存在下で反応させることで、ケイ素イソシアナト化合物含有組成物を製造する。 (A)該シアン酸塩又はイソシアン酸塩と、共沸溶剤と、該アルキレングリコール系化合物と、該溶媒とを混合させて液を生成させる工程 (B)該液を加熱し、水と該共沸溶剤を除去する工程 (C)該液に該ハロゲン化ケイ素化合物を添加し該ケイ素イソシアナト化合物を生成させる工程 (D)該液を加熱し該ケイ素イソシアナト化合物を留去して回収する工程

Description

ケイ素イソシアナト化合物含有組成物及びその製造方法
 本発明は、ケイ素イソシアナト化合物含有組成物の製造方法に関するものであり、より詳細には、共沸溶剤を使用して脱水工程を実施することを特徴としたケイ素イソシアナト化合物含有組成物の製造方法に関する。
 ケイ素イソシアナト化合物は、例えばアルコールや第一アミン、第二アミン、カルボン酸等の活性水素を分子中に含む化合物と容易に反応するため、ポリマーの改質剤として使用される。また、ケイ素イソシアナト化合物は、重合物の成分として容易に導入でき、ケイ素の特性を工業材料に付加できる。更に、ケイ素イソシアナト化合物は、水と素早く反応することから、空気中の水分、又は、ガラス、セラミックス、金属等の表面に存在する吸着水等と反応し、密着性の高いケイ素酸化物皮膜を形成させることができる。
 ケイ素イソシアナト化合物の製造方法としては、溶剤存在下でSi-X(Xはハロゲンを示す)結合を有するハロゲン化シラン化合物とシアン酸塩又はイソシアン酸塩とを、アルキルアミン、ニトロアルカン又はクラウンエーテルの存在下で反応させて製造する方法(特許文献1)や、ハロゲン化シラン化合物とシアン酸塩又はイソシアン酸塩とを、アルキレングリコール化合物の存在下で反応させて製造する方法(特許文献2)が知られている。
 また、ヘキサオルガノジシラザンを、塩化鉄の存在下で、炭酸ガスと反応させて製造する方法(特許文献3)、トリクロロシランとシアン酸アルカリとを、アセトニトリルを少量含有する有機溶媒中で反応させて製造する方法(特許文献4)、有機スズイソシアネート類と、活性ハロゲン原子を有する有機ケイ素化合物を反応させて製造する方法(特許文献5)が知られている。
 一方、ケイ素イソシアナト化合物は、水との反応により、ダイマー化合物やオリゴマー化合物を形成することが知られており(例えば、特許文献6)、反応系に水が混入した場合、ケイ素イソシアナト化合物(のモノマー)の純度低下につながる。
 このため、高純度のケイ素イソシアナト化合物のモノマーを得るためには、原料となる化合物から水を十分に除去する必要がある。
 特許文献2の実施例においては、脱水したシアン酸塩やイソシアン酸塩を使用してケイ素イソシアナト化合物を製造しているが、使用する溶剤やアルキレングリコールといった反応に使用する他化合物の脱水を実施しない限り、ハロゲン化シラン化合物がシアン酸塩又はイソシアン酸塩と反応する前に、含有する水と反応してしまう。
 シアン酸塩又はイソシアン酸塩の脱水方法として、減圧下で直火にて加熱して脱水する方法が知られているが、加熱して脱水する工程と反応工程との2回の工程を経る必要がある。また、産業レベルでの実施を考慮した場合、製造釜を直火で加熱して製造する工程にて製造することは困難である。更には、均一に脱水されたシアン酸塩又はイソシアン酸塩を得ることが難しい。
 更に、特許文献2の方法において、反応促進剤、溶剤について直火で加熱した場合、熱分解を回避しながら脱水することは困難である。
 その他の脱水方法としては、モレキュラーシーブス、活性白土、シリカゲル等の固体吸着剤を使用した脱水方法が挙げられる。しかしながら、シアン酸塩又はイソシアン酸塩、反応促進剤、溶剤からなる溶液はスラリー状態であり、この混合溶液から固体吸着剤のみを分離することが困難である。固体吸着剤が残存した状態でハロゲン化シラン化合物と反応させた場合、固体吸着剤に含まれる水と反応し、収率及び/又は純度の低下につながる。
 より高品質なケイ素酸化物皮膜を得るために、単量体の純度の高いケイ素イソシアナト化合物含有組成物が求められており、かかるケイ素イソシアナト化合物含有組成物を製造するための新たな製造方法の開発が求められている。
特開昭56-26895号公報 特開昭62-167785号公報 特開昭54-119419号公報 特開平7-188257号公報 特開昭55-102589号公報 特開2000-247982号公報
 本発明は上記背景技術に鑑みてなされたものであり、その課題は、ケイ素イソシアナト化合物の単量体の純度の高いケイ素イソシアナト化合物含有組成物を製造することができる方法であり、産業レベルでの実施が可能で、低コストにケイ素イソシアナト化合物含有組成物を製造することができる方法を提供することにある。
 本発明者は、上記の課題を解決すべく鋭意検討を重ねた結果、ハロゲン化シラン化合物とシアン酸塩又はイソシアン酸塩とを、アルキレングリコール化合物の存在下で反応させてケイ素イソシアナト化合物含有組成物を製造する方法において、ハロゲン化シラン化合物を添加する前に、シアン酸塩又はイソシアン酸塩とアルキレングリコール化合物を含有する液に、共沸溶剤を添加し、該共沸溶剤と水との共沸による脱水工程を実施することにより、従来の製造方法において問題となっていた、水の混入によるケイ素イソシアナト化合物単量体の純度の低下の問題を解決できることを見出して、本発明を完成するに至った。
 すなわち、本発明は、ハロゲン化ケイ素化合物とシアン酸塩又はイソシアン酸塩とを、溶媒及びアルキレングリコール系化合物の存在下で反応させることでケイ素イソシアナト化合物を生成させるケイ素イソシアナト化合物含有組成物の製造方法であって下記工程(A)から工程(D)までを有することを特徴とするケイ素イソシアナト化合物含有組成物の製造方法を提供するものである。
(A)該シアン酸塩又はイソシアン酸塩と、共沸溶剤と、該アルキレングリコール系化合物と、該溶媒とを混合させて液を生成させる工程
(B)該液を加熱し、水と該共沸溶剤を除去する工程
(C)該液に該ハロゲン化ケイ素化合物を添加し該ケイ素イソシアナト化合物を生成させる工程
(D)該液を加熱し該ケイ素イソシアナト化合物を留去して回収する工程
 また、本発明は、ケイ素イソシアナト化合物を80質量%以上含有することを特徴とするケイ素イソシアナト化合物含有組成物を提供するものである。
 また、本発明は、上記のケイ素イソシアナト化合物含有組成物の製造方法で製造したケイ素イソシアナト化合物含有組成物をケイ素前駆体として使用することを特徴とするケイ素酸化物又はケイ素酸化物皮膜の製造方法を提供するものである。
 本発明によれば、ケイ素イソシアナト化合物の単量体の純度の高いケイ素イソシアナト化合物含有組成物の製造方法を提供することができる。具体的には、本発明では、精製を行う前の段階でケイ素イソシアナト化合物の単量体の純度が80質量%以上であるケイ素イソシアナト化合物含有組成物を提供することができる。
 また、本発明の方法は、産業レベルでの実施が可能であり、低コストにケイ素イソシアナト化合物含有組成物を製造することができる。
 以下、本発明について説明するが、本発明は以下の実施の形態に限定されるものではなく、任意に変形して実施することができる。
 本発明のケイ素イソシアナト化合物含有組成物の製造方法は、ハロゲン化ケイ素化合物とシアン酸塩又はイソシアン酸塩とを、溶媒及びアルキレングリコール系化合物の存在下で反応させることでケイ素イソシアナト化合物を生成させる。
<ケイ素イソシアナト化合物>
 「ケイ素イソシアナト化合物」とは、ケイ素(Si)とイソシアナト基(-N=C=O)が直接結合した化合物全般をいう。
 ケイ素イソシアナト化合物のうち、特に、分子内にケイ素原子を1つのみ有するもの、すなわち、ケイ素イソシアナト化合物の単量体(モノマー)は、本発明の製造方法で製造するのに適している。
 かかるケイ素イソシアナト化合物の単量体の例としては、下記式(1)で表されるものが挙げられる。
 R(OR)Si(NCO)4-nーm    (1)
 式(1)において、Rは置換されていてもよい炭化水素基であり、Rが複数存在する場合、それぞれのRは異なっていてもよい。n及びmはそれぞれ0以上3以下の整数であり、nとmの和は、0以上3以下の整数である。
 Rは、飽和であってもよいし、不飽和であってもよいし、芳香族環を有していてもよい。Rの具体例としては、メチル基、エチル基、プロピル基、ブチル基、オクチル基、デシル基、ステアリル基、ベヘニル基、ビニル基(但し、m=0の場合に限られる。)、アリル基、プロパルギル基、フェニル基、ナフチル基、ベンジル基、エトキシメチル基、エトキシエチル基、エトキシプロピル基、ブトキシジエチレングリコキシエチル基、ペンタフロロエチル基、ヘプタフロロプロピル基、等が挙げられる。
 上記式(1)で表されるケイ素イソシアナト化合物の単量体の中でも、下記式(1a)で表されるものは、ケイ素酸化物皮膜の前駆体等の様々な用途での需要があり、本発明の製造方法で高純度なものを製造するのに特に適している。
 RSi(NCO)4-n    (1a)
 本発明の製造方法で製造されるケイ素イソシアナト化合物の単量体の具体的な化合物名としては、テトライソシアナトシラン、メチルトリイソシアナトシラン、エチルトリイソシアナトシラン、ジメチルジイソシアナトシラン、ジエチルジイソシアナトシラン、トリメチルイソシアナトシラン、トリエチルイソシアナトシラン等が例示でき、これらは、ケイ素酸化物皮膜の前駆体等の様々な用途での需要があり、高純度にこれらを製造することのできる本発明の適用対象として、特に好ましい。
<ハロゲン化ケイ素化合物>
 ハロゲン化ケイ素化合物は、後記するシアン酸塩又はイソシアン酸塩との反応によってケイ素イソシアナト化合物を生成させるための原料である。
 「ハロゲン化ケイ素化合物」とは、ケイ素と、該ケイ素に結合したハロゲンを含有する化合物である。
 限定はされないが、ハロゲン化ケイ素化合物の典型例としては、下記式(2)で表されるものが挙げられる。
 R(OR)SiX4-nーm    (2)
 式(2)において、Rは置換されていてもよい炭化水素基であり、Rが複数存在する場合、それぞれのRは異なっていてもよい。Xはハロゲンである。n及びmはそれぞれ0以上3以下の整数であり、nとmの和は、0以上3以下の整数である。
 式(2)におけるRは、飽和であってもよいし、不飽和であってもよいし、芳香族環を有していてもよい。式(2)におけるRの具体例は、前記した式(1)におけるRの具体例と同様である。
 式(2)におけるXとしては、塩素(Cl)、臭素(Br)、ヨウ素(I)が好ましく、塩素又は臭素が特に好ましい。
 式(2)で表されるハロゲン化ケイ素化合物の具体的としては、テトラクロロシラン、メチルトリクロロシラン、エチルトリクロロシラン、ジメチルジクロロシラン、ジエチルジクロロシラン、トリメチルクロロシラン、トリエチルクロロシラン、テトラブロモシラン、メチルトリブロモシラン、エチルトリブロモシラン、ジメチルジブロモシラン、ジエチルジブロモシラン、トリメチルブロモシラン、トリエチルブロモシラン等が例示できる。
<シアン酸塩・イソシアン酸塩>
 シアン酸塩、イソシアン酸塩は、前記のハロゲン化ケイ素化合物との反応によってケイ素イソシアナト化合物を生成させるための原料である。
 シアン酸塩は、M(OCN)で表される(Mは金属、mは自然数)、シアン酸(H-O-C≡N)と、金属との塩である。本発明の製造方法におけるシアン酸塩は、アルカリ金属又はアルカリ土類金属との塩であることが好ましい。アルカリ金属としてはリチウム(Li)、ナトリウム(Na)、カリウム(K)等がより好ましく、アルカリ土類金属としてはマグネシウム(Mg)、カルシウム(Ca)、バリウム(Ba)等がより好ましい。
 イソシアン酸塩は、M(NCO)で表される(Mは金属、mは自然数)、イソシアン酸(H-N=C=O)と、金属との塩である。本発明の製造方法におけるイソシアン酸塩としては、銀(Ag)、アンモニウム等との塩が例示できる。
 なお、イソシアン酸(H-N=C=O)とシアン酸(H-O-C≡N)とは互変異性体であり、通常、銀やアンモニウム等の塩はイソシアン酸塩として、アルカリ金属や鉛等の塩はシアン酸塩の形で存在することが知られている。相当するケイ素化合物については、ほとんどがSi-N=C=Oのイソシアン酸塩の形態をとるとされている。
 シアン酸塩・イソシアン酸塩の中でも、入手の容易性、反応性、取り扱いのしやすさ等の実用面から、シアン酸ナトリウム、シアン酸カリウム、シアン酸リチウムが特に好ましく、シアン酸ナトリウムが最も好ましい。
 シアン酸塩やイソシアン酸塩は、ハロゲン化ケイ素化合物中に含有される置換させようとするハロゲンと等モル又はそれ以上使用するのが好ましく、シアン酸塩やイソシアン酸塩がハロゲンに対して0.1~2当量過剰であるのが特に好ましい。
<アルキレングリコール系化合物>
 ケイ素イソシアナト化合物は、上記したハロゲン化ケイ素化合物とシアン酸塩又はイソシアン酸塩とを反応させることにより得られるが、反応収率を高めるために種々の反応促進剤を併用して反応させる。
 本発明においては、アルキレングリコール系化合物をかかる反応促進剤として使用する。
 本発明の製造方法におけるアルキレングリコール系化合物としては、エチレングリコール、プロピレングリコール、ブチレングリコール、オクチレングリコール等のアルキレングリコール類;アルキレングリコール類のハロゲン置換体;ポリエチレングリコール、ポリプロピレングリコール、ポリブチレングリコール等のポリアルキレングリコール類;ポリアルキレングリコール類のハロゲン置換体等が挙げられる。
 また、ポリアルキレングリコール類やそのハロゲン置換体のエーテル誘導体やエステル誘導体も、本発明の製造方法におけるアルキレングリコール系化合物の例として挙げられる。
 エーテル誘導体は、ポリアルキレングリコール鎖の片末端のみが置換基で置換されたモノエーテル誘導体であってもよいし、両末端が置換基で置換されたジエーテル誘導体であってもよい。エーテル誘導体の置換基としては、メチル基、エチル基、プロピル基、ブチル基、オレイル基、ステアリル基、ベンジル基、フェニル基等の炭化水素基;フルフリル基;グリセリル基;ソルビトール、サッカロース等の環状多価ヒドロキシ化合物の残基;等が挙げられる。これらの置換基における水素原子は、ハロゲンで置換されていてもよい。
 エステル誘導体は、ポリアルキレングリコール鎖の片末端のみが置換基で置換されたモノエステル誘導体であってもよいし、両末端が置換基で置換されたジエステル誘導体であってもよい。エステル誘導体の置換基としては、ホルミル基、アセチル基、プロピオニル基、ブタノイル基、ベンゾイル基等が挙げられる。これらの置換基における水素原子は、ハロゲンで置換されていてもよい。
 ポリアルキレングリコール鎖の片方の末端が上記したエーテル誘導体の置換基、もう一方の末端が上記したエステル誘導体の置換基で置換された化合物も、本発明の製造方法におけるアルキレングリコール系化合物として使用することができる。
 これらのアルキレングリコール系化合物は、所望する反応性に対応させて1種単独で使用してもよいし、2種以上を混合して使用してもよい。
 これらのアルキレングリコール系化合物の中でも、エチレングリコールやポリエチレングリコールやその各種誘導体は特に反応性が良好であり、本発明における反応促進剤として好ましい。
 また、本発明では、共沸脱水により、反応系から水を除去することにより、高純度なケイ素イソシアナト化合物の単量体を得ることができるので、アルキレングリコール系化合物の中でも、特に構造内に活性水素を含まない化合物が好適に使用できる。
 上記したアルキレングリコール系化合物は、界面活性剤の定法に従いHLB計算をした時、少なくとも10.5以上、特に13.5以上のHLBを計算上示す構造の化合物が、一般的に良好な結果を与える。
 アルキレングリコール系化合物の添加量は、ハロゲン化ケイ素化合物100質量部に対して、0.01質量部以上であることが好ましく、0.05質量部以上であることが特に好ましい。また、20質量部以下であることが好ましく、10質量部以下であることが特に好ましい。
 上記下限以上であると、反応時間を十分に短くでき、生産性が向上しやすい(0.01質量部未満の添加量では、反応を完結するのに要する時間が5時間以上に及ぶことがある)。また、上記上限以下であると、収率が高くなりやすい(例えば、20質量部を超える添加量の場合、反応速度が大きくなる反面、アルキレングリコール系化合物がOH基を持つときケイ素化合物がこれと反応するために収率が低下することがある)。
<溶媒>
 本発明では、前述のシアン酸又はイソシアン酸塩と、アルキレングリコール系化合物と、後記する共沸溶剤を、溶媒に添加して混合し、液を生成させる。該液は、各成分が溶媒に溶解した溶液であってもよいし、スラリー等の懸濁液であってもよい。
 共沸脱水により該液から水を除去した後、該液にハロゲン化ケイ素化合物を添加して加熱反応させることによって、ケイ素イソシアナト化合物含有組成物が得られる。
 溶媒としては、反応原料、反応生成物を変質させることの無い物質を用いる必要がある。
 このような溶媒としては、炭化水素、ハロゲン化炭化水素等の有機溶剤が挙げられる。具体的には、n-へキサン、シクロヘキサン、石油エーテル、流動パラフィン、ベンゼン、トルエン、キシレン、クロロホルム、トリクロロエチレン、1,1,2,2-テトラクロロエタン、クロロベンゼン、トリエチレングリコールモノメチルエーテル、ポリエチレングリコールモノエチルエーテル、フタル酸ジイソノニル、フタル酸ジブチル等を例示できる。
 これらの溶媒は、シアン酸塩又はイソシアン酸塩を撹拌により均一に溶解又は分散させるのに必要な量を用いるのが好ましい。
 <共沸溶剤>
 本発明では、反応前に、シアン酸又はイソシアン酸塩、アルキレングリコール系化合物に加えて、共沸溶剤を溶媒に添加する。
 シアン酸又はイソシアン酸塩とハロゲン化ケイ素化合物との反応において、水が存在すると、ハロゲン化ケイ素化合物との反応、又は、生成物であるケイ素イソシアナト化合物と反応することで、2量体以上のケイ素イソシアナト化合物が生成されるため、ケイ素イソシアナト化合物単量体の純度の低下、収率の低下につながる。水は、イソシアン酸又はイソシアン酸塩、反応促進剤(アルキレングリコール系化合物)、溶媒に不純物として含有されている。
 本発明においては、これらに含有される水を除去するために、共沸溶剤を溶媒に添加し、共沸脱水を行う。
 本発明では、特許文献2のように、原料であるシアン酸塩やイソシアン酸塩を予め脱水する方法と比べて、水を十分に除去できるので、ケイ素イソシアナト化合物単量体の純度の高いケイ素イソシアナト化合物含有組成物を得ることができる。
 共沸溶剤としては、反応原料、反応生成物を変質させることの無い溶剤を用いる必要がある。共沸溶剤として、例えば、化学構造中に活性水素を含まない有機溶剤が挙げられる。
 かかる共沸溶剤としては、炭化水素が好ましく、芳香族炭化水素が特に好ましい。具体的な化合物としては、ベンゼン、トルエン、キシレン、エチルベンゼン等が例示できる。
 共沸溶剤は、1種単独で用いてもよいし、2種以上を併用してもよい。
 本発明のケイ素イソシアナト化合物含有組成物の製造方法は、以下に述べる工程(A)から工程(D)までを有する。
[工程(A)]
 工程(A)では、それぞれ前記した、シアン酸塩又はイソシアン酸、共沸溶剤、アルキレングリコール系化合物、溶媒を混合させて液を生成させる。該液は、各成分が溶媒に溶解した溶液であってもよいし、スラリー等の懸濁液であってもよい。
 工程(A)において、各成分の投入の順序に特に限定はない。各成分が十分に混合されるよう、反応容器内を撹拌しながら工程(A)を実施するのが望ましい。
[工程(B)]
 工程(B)では、工程(A)で生成させた液を加熱し、水と共沸溶剤を除去する。工程(B)を実施することにより、液から水が除去され、その結果、シアン酸塩又はイソシアン酸とハロゲン化ケイ素化合物との反応の際に、水との反応による多量化反応を防止でき、ケイ素イソシアナト化合物単量体の純度の高いケイ素イソシアナト化合物含有組成物を得ることができる。
 工程(B)で、共沸脱水を行う際の条件について特に限定はないが、常圧下において共沸脱水を行った後に、減圧して更に共沸脱水を実施することが好ましい。
 常圧下での共沸脱水における液温度は、20℃以上であることが好ましく、50℃以上であることがより好ましく、100℃以上であることが特に好ましい。また、250℃以下であることが好ましく、230℃以下であることがより好ましく、200℃以下であることが特に好ましい。
 液温度が上記範囲であると、ケイ素イソシアナト化合物単量体の純度、収率を低下させずにケイ素イソシアナト化合物含有組成物を製造することが可能である。
 また、常圧下で共沸脱水を行った後に減圧して更に共沸脱水を行う際の液温度は、20℃以上であることが好ましく、50℃以上であることがより好ましく、100℃以上であることが特に好ましい。また、250℃以下であることが好ましく、230℃以下であることがより好ましく、200℃以下であることが特に好ましい。
 減圧度(圧力)は、0.1kPa以上であることが好ましく、0.3kPa以上であることがより好ましく、0.5kPa以上であることが特に好ましい。また、101.3kPa以下あることが好ましく、90kPa以下であることがより好ましく、50kPa以下であることが特に好ましい。
 液温度、減圧度(圧力)が上記範囲であると、ケイ素イソシアナト化合物単量体の純度、収率を低下させずにケイ素イソシアナト化合物含有組成物を製造することが可能である。
[工程(C)]
 工程(C)では、工程(B)で水と共沸溶剤を除去した液に、前記したハロゲン化ケイ素化合物を添加し、シアン酸又はイソシアン酸塩との反応により、ケイ素イソシアナト化合物を生成させる。
 工程(C)における反応温度は室温以下で行うこともできるが、室温だと5時間ないしそれ以上の長時間を要する場合が多い。一方、200℃より高い温度では、反応時間は短いものの、生成物であるケイ素イソシアナト化合物が副反応を起こすことがある。
 このため、反応温度は、室温以上であることが好ましく、50℃以上であることがより好ましく、100℃以上であることが特に好ましい。また、200℃以下であることが好ましく、190℃以下であることがより好ましく、180℃以下であることが特に好ましい。
 上記下限以上であると、短時間で(最大2時間程度で)反応を終了させることができる。また、上記上限以下であると、ケイ素イソシアナト化合物の副反応を抑制しやすい。
[工程(D)]
 工程(D)では、工程(C)における反応で生じたケイ素イソシアナト化合物を含有する液を加熱し該ケイ素イソシアナト化合物を留去して回収する。
 工程(D)においては、常圧下で液を加熱してケイ素イソシアナト化合物を留去してもよいし、減圧状態で留去してもよい。最初は常圧下で留去し、更に、減圧状態で留去してもよく、そのようにすると、収率が向上しやすい。
 ケイ素イソシアナト化合物の常圧下での留去における液温度は、100℃以上であることが好ましく、120℃以上であることがより好ましく、150℃以上であることが特に好ましい。また、250℃以下であることが好ましく、200℃以下であることがより好ましく、190℃以下であることが特に好ましい。
 液温度が上記範囲であると、ケイ素イソシアナト化合物単量体の純度、収率を低下させずにケイ素イソシアナト化合物含有組成物を製造することが可能である。
 また、常圧下で留去した後に更に減圧を行い留去する場合の液温度は、100℃以上であることが好ましく、120℃以上であることがより好ましく、150℃以上であることが特に好ましい。また、250℃以下であることが好ましく、200℃以下であることがより好ましく、190℃以下であることが特に好ましい。
 減圧度(圧力)は、0.1kPa以上であることが好ましく、0.3kPa以上であることがより好ましく、0.5kPa以上であることが特に好ましい。また、101.3kPa以下であることが好ましく、90kPa以下であることがより好ましく、80kPa以下であることが特に好ましい。
 液温度、減圧度(圧力)が上記範囲であると、ケイ素イソシアナト化合物単量体の純度、収率を低下させずにケイ素イソシアナト化合物含有組成物を製造することが可能である。
 本発明では、工程(C)におけるハロゲン化ケイ素化合物とシアン酸又はイソシアン酸塩との反応の前に、工程(B)において、共沸脱水によって液から水を除去している。このため、工程(C)で生成するケイ素イソシアナト化合物には、望ましくない副反応生成物である2量体以上の化合物の含有量が極めて少なく、単量体が多く含まれている。
 したがって、工程(D)においてケイ素イソシアナト化合物を留去することにより回収した組成物(ケイ素イソシアナト化合物含有組成物)には、ケイ素イソシアナト化合物単量体が、多く含まれている。
 具体的には、工程(D)で回収されたケイ素イソシアナト化合物含有組成物は、通常、ケイ素イソシアナト化合物単量体を80質量%以上含有する(ケイ素イソシアナト化合物単量体の純度が80質量%以上である)。また、本発明の方法によれば、工程(D)で回収された段階で、ケイ素イソシアナト化合物単量体を85質量%以上含有するケイ素イソシアナト化合物含有組成物や、ケイ素イソシアナト化合物単量体を90質量%以上含有するケイ素イソシアナト化合物含有組成物を得ることも可能である。
 なお、本明細書におけるケイ素イソシアナト化合物単量体の純度は、水素炎イオン化型検出器を使用したガスクロマトグラフィにて測定し、その面積比から算出された数値である。
[蒸留工程(精製工程)]
 上記のように、本発明の方法では、工程(D)で回収された段階で、ケイ素イソシアナト化合物単量体の純度が80質量%以上のケイ素イソシアナト化合物含有組成物を得ることができる。
 工程(D)で回収されたケイ素イソシアナト化合物含有組成物を、更に、常圧及び/又は減圧下で加熱して蒸留することによって、ケイ素イソシアナト化合物単量体の純度を更に高める(高純度化する)ことができる。
 蒸留には、公知の方法を使用することができ、例えば、精留塔を使用した方法が挙げられる。
 本発明の方法では、工程(D)で回収された段階において既に、ケイ素イソシアナト化合物含有組成物中のケイ素イソシアナト化合物単量体の純度が、従来の方法で得られたものよりも高いため、蒸留工程を経たケイ素イソシアナト化合物含有組成物中のケイ素イソシアナト化合物単量体の純度も高い。
 具体的には、蒸留工程(精製工程)を経た後のケイ素イソシアナト化合物含有組成物中のケイ素イソシアナト化合物単量体の純度は、90質量%以上であることが好ましく、95質量%以上であることがより好ましく、98質量%以上であることが特に好ましく、99.1質量%以上であることが更に好ましく、99.5質量%以上であることが最も好ましい。
 本発明は、前記したケイ素イソシアナト化合物含有組成物の製造方法で製造したケイ素イソシアナト化合物含有組成物をケイ素前駆体として使用することを特徴とするケイ素酸化物又はケイ素酸化物皮膜の製造方法にも関する。
 本発明のケイ素イソシアナト化合物含有組成物の製造方法で製造したケイ素イソシアナト化合物含有組成物や、かかるケイ素イソシアナト化合物含有組成物を精製したケイ素イソシアナト化合物含有組成物は、ケイ素イソシアナト化合物単量体の純度が高いので、ケイ素酸化物又はケイ素酸化物皮膜を製造するためのケイ素前駆体として適している。
 以下に、実施例を挙げて本発明を更に具体的に説明するが、本発明は、その要旨を超えない限りこれらの実施例に限定されるものではない。
製造例1
 シアン酸ナトリウム(純正化学株式会社製)26.0質量部(0.4モル部)、ポリオキシエチレンアルキルエーテル0.4質量部、流動パラフィン(新日本石油株式会社製、商品名:ハイホワイト350)23.8質量部を、トルエン17.9質量部に混合した後、常圧下、液体温度110~200℃の条件でトルエンと水の共沸脱水を行った。その後、液体温度200℃、減圧度を3kPaの条件にて更に共沸脱水を行った。
 共沸脱水後、メチルトリクロロシラン(東京化成工業株式会社製)14.9質量部(0.1モル部)を滴下し、170℃で1時間反応させた後、常圧下で液体温度150~190℃の範囲で液体を留出させ、純度80質量%のメチルトリイソシアナトシランを含有する組成物を13.5質量部得た。
 更に、得られた組成物10.0質量部を常圧下で液体温度150~190℃の範囲で蒸留し、純度99%を超えるメチルトリイソシアナトシランを含有する組成物を5.0質量部得た。
製造例2
 シアン酸ナトリウム(純正化学株式会社製)39.8質量部(0.6モル部)、ポリオキシエチレンアルキルエーテル0.3質量部、流動パラフィン(新日本石油株式会社製、商品名:ハイホワイト350)26.3質量部を、エチルベンゼン26.3質量部に混合した後、常圧下、液体温度110~200℃の条件でエチルベンゼンと水の共沸脱水を行った。その後、液体温度200℃、減圧度を3kPaの条件にて更に共沸脱水を行った。
 共沸脱水後、テトラクロロシラン(東京化成工業株式会社製)17.0部(0.1モル部)を滴下し、170℃で1時間反応させた後、液体温度160~180℃、減圧度60~80kPaの範囲で液体を留出させ、純度80質量%のテトライソシアナトシランを含有する組成物を13.7質量部得た。
 更に、得られた組成物10.0質量部を常圧下で液体温度150~190℃の範囲で蒸留し、純度99%を超えるテトライソシアナトシランを含有する組成物を5.0質量部得た。
製造例3
 シアン酸ナトリウム(純正化学株式会社製)26.0質量部(0.4モル部)、ポリオキシエチレンアルキルエーテル0.4質量部、流動パラフィン(新日本石油株式会社製、商品名:ハイホワイト350)23.8質量部にメチルトリクロロシラン(東京化成工業株式会社製)14.9質量部(0.1モル部)を滴下し、170℃で1時間反応させた後、常圧下で液体温度150~190℃の範囲で液体を留出させたところ、純度70質量%のメチルトリイソシアナトシランを含有する組成物を13.0質量部得た。
 更に、得られた組成物10.0質量部を実施例1と同様の条件で蒸留したところ、純度90質量%のメチルトリイソシアナトシランを含有する組成物を5.0質量部得た。
製造例4
 シアン酸ナトリウム(純正化学株式会社製)26.0質量部(0.4モル部)、ポリオキシエチレンアルキルエーテル0.4質量部、流動パラフィン(新日本石油株式会社製商品名:ハイホワイト350)23.8質量部に、モレキュラーシーブス10.0質量部を混合し24時間静置した。
 その後、モレキュラーシーブスの除去を試みたが、スラリー状であり、シアン酸ナトリウムと混合状態であったため分離することできず脱水することができなかった。
 本発明におけるケイ素イソシアナト化合物含有組成物は、Si-NCO結合を有するケイ素イソシアナト化合物を含有しており、例えばアルコールや第一アミン、第二アミン、カルボン酸等の活性水素を分子中に含む化合物と容易に反応するため、ポリマーの改質剤として、あるいは重合物の成分として容易に導入でき、ケイ素の特性を工業材料に付加できる。また、水と素早く反応することから、空気中の水分または、ガラス、セラミックス、金属等の表面に存在する吸着水等と反応し、密着性の高い酸化ケイ素膜を形成させることができる。

Claims (7)

  1.  ハロゲン化ケイ素化合物とシアン酸塩又はイソシアン酸塩とを、溶媒及びアルキレングリコール系化合物の存在下で反応させることでケイ素イソシアナト化合物を生成させるケイ素イソシアナト化合物含有組成物の製造方法であって下記工程(A)から工程(D)までを有することを特徴とするケイ素イソシアナト化合物含有組成物の製造方法。
    (A)該シアン酸塩又はイソシアン酸塩と、共沸溶剤と、該アルキレングリコール系化合物と、該溶媒とを混合させて液を生成させる工程
    (B)該液を加熱し、水と該共沸溶剤を除去する工程
    (C)該液に該ハロゲン化ケイ素化合物を添加し該ケイ素イソシアナト化合物を生成させる工程
    (D)該液を加熱し該ケイ素イソシアナト化合物を留去して回収する工程
  2.  前記共沸溶剤が化学構造中に活性水素を含まない溶剤である、請求項1に記載のケイ素イソシアナト化合物含有組成物の製造方法。
  3.  前記共沸溶剤が芳香族炭化水素である、請求項1に記載のケイ素イソシアナト化合物含有組成物の製造方法。
  4.  前記共沸溶剤がトルエン、キシレン及びエチルベンゼンからなる群より選ばれる1種以上の溶剤である、請求項1に記載のケイ素イソシアナト化合物含有組成物の製造方法。
  5.  製造されるケイ素イソシアナト化合物含有組成物が、ケイ素イソシアナト化合物の単量体を80質量%以上含有するものである、請求項1ないし請求項4の何れかの請求項に記載のケイ素イソシアナト化合物含有組成物の製造方法。
  6.  ケイ素イソシアナト化合物の単量体を80質量%以上含有することを特徴とするケイ素イソシアナト化合物含有組成物。
  7.  請求項1ないし請求項5の何れかの請求項に記載のケイ素イソシアナト化合物含有組成物の製造方法で製造したケイ素イソシアナト化合物含有組成物をケイ素前駆体として使用することを特徴とするケイ素酸化物又はケイ素酸化物皮膜の製造方法。
PCT/JP2020/028634 2019-07-30 2020-07-27 ケイ素イソシアナト化合物含有組成物及びその製造方法 WO2021020325A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080052675.4A CN114174307A (zh) 2019-07-30 2020-07-27 含有异氰酸硅化合物的组合物及其制造方法
KR1020227003738A KR20220039729A (ko) 2019-07-30 2020-07-27 규소이소시아네이트 화합물 함유 조성물 및 그 제조 방법
JP2021537013A JPWO2021020325A1 (ja) 2019-07-30 2020-07-27

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-139392 2019-07-30
JP2019139392 2019-07-30

Publications (1)

Publication Number Publication Date
WO2021020325A1 true WO2021020325A1 (ja) 2021-02-04

Family

ID=74229129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/028634 WO2021020325A1 (ja) 2019-07-30 2020-07-27 ケイ素イソシアナト化合物含有組成物及びその製造方法

Country Status (5)

Country Link
JP (1) JPWO2021020325A1 (ja)
KR (1) KR20220039729A (ja)
CN (1) CN114174307A (ja)
TW (1) TW202112789A (ja)
WO (1) WO2021020325A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5444689A (en) * 1977-09-12 1979-04-09 Nippon Kasei Chem Manufacture of isocyanic acid ester
JPS54119419A (en) * 1978-03-09 1979-09-17 Toshiba Silicone Manufacture of organoisocyanate silane
JPS62167785A (ja) * 1987-01-08 1987-07-24 Matsumoto Seiyaku Kogyo Kk ケイ素イソシアネ−トの製造法
JP2001240796A (ja) * 2000-02-29 2001-09-04 Ube Nitto Kasei Co Ltd 有機無機ハイブリッド−無機複合傾斜材料およびその用途
JP2005314325A (ja) * 2004-04-30 2005-11-10 Shin Etsu Chem Co Ltd β−ケトエステル構造含有有機ケイ素化合物の製造方法
JP2012500804A (ja) * 2008-08-22 2012-01-12 バクスター・インターナショナル・インコーポレイテッド ポリマーベンジルカルボネート誘導体

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5626895A (en) 1979-08-09 1981-03-16 Ichiro Kijima Preparation of silicon isocyanate compound
JPS55102589A (en) 1980-01-26 1980-08-05 Toyama Chem Co Ltd Preparation of organo-silicon isocyanates
JPS5832887A (ja) * 1981-08-19 1983-02-25 Matsumoto Seiyaku Kogyo Kk ケイ素イソシアネ−トの製造法
JP3452598B2 (ja) 1993-03-10 2003-09-29 芳首 阿部 トリイソシアナトシランの製造法
JP3522902B2 (ja) * 1995-06-03 2004-04-26 信越化学工業株式会社 ウレイド基含有アルコキシシランの製造方法
JP2000247982A (ja) 1999-02-26 2000-09-12 Matsumoto Seiyaku Kogyo Kk イソシアナトジシロキサンの製造法
EP1428829B1 (en) * 2001-09-21 2009-02-18 Dow Corning Toray Co., Ltd. Process for preparation of thiocyanato-bearing organoalkoxysilanes
JP6243215B2 (ja) * 2013-12-18 2017-12-06 大陽日酸株式会社 トリイソシアナトシランの精製方法及び供給方法
US10266554B2 (en) * 2017-05-31 2019-04-23 Momentive Performance Materials Inc. Preparation of isocyanatosilanes

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5444689A (en) * 1977-09-12 1979-04-09 Nippon Kasei Chem Manufacture of isocyanic acid ester
JPS54119419A (en) * 1978-03-09 1979-09-17 Toshiba Silicone Manufacture of organoisocyanate silane
JPS62167785A (ja) * 1987-01-08 1987-07-24 Matsumoto Seiyaku Kogyo Kk ケイ素イソシアネ−トの製造法
JP2001240796A (ja) * 2000-02-29 2001-09-04 Ube Nitto Kasei Co Ltd 有機無機ハイブリッド−無機複合傾斜材料およびその用途
JP2005314325A (ja) * 2004-04-30 2005-11-10 Shin Etsu Chem Co Ltd β−ケトエステル構造含有有機ケイ素化合物の製造方法
JP2012500804A (ja) * 2008-08-22 2012-01-12 バクスター・インターナショナル・インコーポレイテッド ポリマーベンジルカルボネート誘導体

Also Published As

Publication number Publication date
TW202112789A (zh) 2021-04-01
KR20220039729A (ko) 2022-03-29
CN114174307A (zh) 2022-03-11
JPWO2021020325A1 (ja) 2021-02-04

Similar Documents

Publication Publication Date Title
JP3543352B2 (ja) 含硫黄有機珪素化合物の製造方法
JP5455304B2 (ja) オルガノシランエステルの製法
TWI511924B (zh) 高階(high order)矽烷之選擇性分裂
EP3275886B1 (en) Method for producing dialkylaminosilane
US4228092A (en) Process for the preparation of organoalkoxysilanes
JP5115729B2 (ja) トリアルキルシリル基で保護されたアセト酢酸エステル基含有有機ケイ素化合物及びその製造方法
WO2021020325A1 (ja) ケイ素イソシアナト化合物含有組成物及びその製造方法
JP4054957B2 (ja) テトラキス(ジメチルアミノ)シランの塩素分低減方法
RU2299213C1 (ru) Способ получения алкоксисиланов
JP6074670B2 (ja) ペルフルオロアルケニルオキシ基含有アレーン化合物の製造法
JPS62167785A (ja) ケイ素イソシアネ−トの製造法
CN105732692B (zh) 甲基苯基二甲氧基硅烷的合成方法
CN1164595C (zh) 一种α-氯代烃基硅氧烷的制备方法
CN102803275B (zh) 制备有机烷氧基氢硅烷的方法
JP6095129B2 (ja) 光学異性体用分離剤
JP3210850B2 (ja) フルオロアルキルアルコキシシランの製法
JP5803420B2 (ja) β,β−ジフルオロ−α,β−不飽和カルボニル化合物の製造方法
JP2004026660A (ja) シリル(メタ)アクリレート化合物の製造方法
JP3089983B2 (ja) 有機シラン化合物及び反応用試剤
JP2000327685A (ja) シリル化されたアニリン誘導体の製造方法
JPS5832887A (ja) ケイ素イソシアネ−トの製造法
JP4064272B2 (ja) オルガノシリルクロライドの製造法
JP4904030B2 (ja) ボラジン化合物の製造方法
JPH05126816A (ja) 液体クロマトグラフイー用充填剤
JP2005529957A (ja) リン・ジアミダイト合成物を生成する工程

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20848393

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021537013

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227003738

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20848393

Country of ref document: EP

Kind code of ref document: A1