WO2021020258A1 - 芳香族アミノメチルの製造方法 - Google Patents

芳香族アミノメチルの製造方法 Download PDF

Info

Publication number
WO2021020258A1
WO2021020258A1 PCT/JP2020/028369 JP2020028369W WO2021020258A1 WO 2021020258 A1 WO2021020258 A1 WO 2021020258A1 JP 2020028369 W JP2020028369 W JP 2020028369W WO 2021020258 A1 WO2021020258 A1 WO 2021020258A1
Authority
WO
WIPO (PCT)
Prior art keywords
aromatic
aminomethyl
catalyst
solvent
preferable
Prior art date
Application number
PCT/JP2020/028369
Other languages
English (en)
French (fr)
Inventor
圭祐 戸巻
詩織 品川
慎洋 白井
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to EP20848300.8A priority Critical patent/EP4006008B1/en
Priority to CN202080054321.3A priority patent/CN114206825A/zh
Priority to JP2021536988A priority patent/JPWO2021020258A1/ja
Priority to US17/629,906 priority patent/US20220251022A1/en
Publication of WO2021020258A1 publication Critical patent/WO2021020258A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/44Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-ethers
    • C07C209/48Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-ethers by reduction of nitriles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel

Definitions

  • Aromatic aminomethyl is useful as a raw material or intermediate for chemicals, pesticides, resins, curing agents, etc.
  • xylene diamine having two aminomethyl groups is a very useful compound as a raw material such as a polyamide resin and a curing agent, and an intermediate of isocyanate.
  • Patent Document 2 a palladium catalyst is used for the purpose of obtaining aromatic cyanoaminomethyl, which is one of aromatic aminomethyls, in a high yield, and in the presence of alcohol and tetraalkylammonium hydroxide.
  • a method for producing aromatic cyanoaminomethyl, which hydrogenates aromatic nitriles is disclosed.
  • the present invention hydrogenates an aromatic nitrile in the presence of a quaternary ammonium compound and a hydrogenation catalyst in a mixed solvent containing a hydrocarbon solvent and a polar organic solvent having a solubility parameter (SP value) of 10 or more.
  • SP value solubility parameter
  • aromatic aminomethyl can be obtained in a high yield without substantially using liquid ammonia, and deterioration of the catalyst can be suppressed.
  • the method for producing aromatic aminomethyl of the present invention is aromatic in the presence of a quaternary ammonium compound and a hydrogenation catalyst in a mixed solvent containing a hydrocarbon solvent and a polar organic solvent having a solubility parameter (SP value) of 10 or more. Hydrogenate the nitrile.
  • SP value solubility parameter
  • the hydrocarbon solvent used in the present invention is at least one selected from an aromatic hydrocarbon solvent and an aliphatic hydrocarbon solvent, and an aromatic hydrocarbon solvent is preferable.
  • the solubility parameter (hereinafter, also referred to as SP value) of the hydrocarbon solvent is preferably 9.5 or less, and more preferably 9.0 or less.
  • the lower limit value is preferably 7.0 or more, and more preferably 8.0 or more.
  • the hydrocarbon solvent is an aromatic hydrocarbon solvent
  • the aromatic hydrocarbon solvent preferably has 7 to 12 carbon atoms, more preferably 7 to 9 carbon atoms, and even more preferably 8 to 9 carbon atoms.
  • Specific examples of aromatic hydrocarbon solvents include monocyclic aromatic hydrocarbon compounds such as the triisomers of toluene, ethylbenzene, and xylene (o-xylene, m-xylene, and p-xylene), mecitylene, and pseudocumene, and naphthalene and methyl.
  • Examples thereof include polycyclic aromatic hydrocarbon compounds such as naphthalene, monocyclic aromatic hydrocarbon compounds are preferable, and xylene and mecitylene are more preferable because they are easily available industrially, and xylene (SP value 8.8). Is even more preferable, m-xylene and p-xylene are even more preferable, and m-xylene is even more preferable.
  • the polar organic solvent used in the present invention has a solubility parameter (SP value) of 10 or more, preferably 11 or more, more preferably 12 or more, and even more preferably 13 or more.
  • the upper limit is preferably 20 or less, more preferably 17 or less, and even more preferably 15 or less.
  • the SP value in the present invention is a value obtained by the following Hildebrand solubility parameter formula.
  • Solubility parameter (SP value) ( ⁇ H A V -RT) 0.5 / V A 0.5 ⁇ H A V : Evaporative enthalpy of liquid A (polar organic solvent) R: Gas constant T: Temperature V A : Molar volume of liquid A
  • the polar organic solvent used in the present invention is at least one selected from alcohol, ester, amide, sulfoxide, ketone and amine, and alcohol is preferable.
  • the alcohol include monohydric alcohol and polyhydric alcohol, and monohydric alcohol is preferable.
  • the monohydric alcohol include aliphatic alcohols and aromatic alcohols, and aliphatic alcohols are preferable.
  • the number of carbon atoms of the aliphatic alcohol is preferably 1 to 8 from the viewpoint of industrial availability, more preferably 1 to 4, and even more preferably 1 and 2.
  • aliphatic alcohol examples include methanol (SP value 14.5), ethanol (SP value 12.7), n-propanol (SP value 11.9), isopropanol (SP value 11.5), and n-.
  • the mixed solvent in the present invention refers to the entire liquid compound contained in the solution during the hydrogenation reaction, excluding the raw material aromatic nitrile and the product aromatic aminomethyl.
  • the mass ratio (hydrocarbon solvent / polar organic solvent) of the hydrocarbon solvent to the polar organic solvent in the mixed solvent is preferably 60/40 to 99/1, more preferably 70/30 to 99/1, and 80/20. ⁇ 99/1 is more preferable, and 82/18 to 99/1 is even more preferable.
  • the total content of the hydrocarbon solvent and the polar organic solvent in the mixed solvent is preferably 90 to 100% by mass, more preferably 95 to 100% by mass, still more preferably 99 to 100% by mass.
  • the content of water in the mixed solvent is preferably 5% by mass or less, more preferably 2% by mass or less, and even more preferably 1% by mass or less. It is considered that by setting the water content to 5% by mass or less, the side reaction with the raw material can be suppressed and the yield of the product can be improved. Further, it is preferable that the mixed solvent of the present invention does not contain liquid ammonia. By not containing liquid ammonia, it is possible to reduce the manufacturing load on the recovery of ammonia.
  • the difference in SP value between the hydrocarbon solvent and the polar organic solvent in the mixed solvent is preferably 0.5 or more, more preferably 1.0 or more, further preferably 2.0 or more, still more preferably 4.0 or more. preferable. Further, 12 or less is preferable, 10 or less is more preferable, 8 or less is further preferable, and 6 or less is further preferable.
  • a monocyclic aromatic hydrocarbon compound and alcohol are preferable, xylene and an aliphatic alcohol having 1 or 2 carbon atoms are more preferable, and m-xylene and methanol are preferable. Is more preferable.
  • quaternary ammonium compound examples include tetraalkylammonium hydroxide and tetraalkylammonium organic acid, and it is preferable to use one or more selected from these, and among these, tetraalkylammonium hydroxide is used. More preferred. Since the quaternary ammonium compound is not a strong alkali like an alkali metal hydroxide, it is possible to stably obtain aromatic aminomethyl in a high yield without causing corrosion of the reaction vessel or deterioration of the catalyst. ..
  • tetraalkylammonium hydroxide examples include tetramethylammonium hydroxide, tetraethylammonium hydroxide, and tetrabutylammonium hydroxide, and tetramethylammonium hydroxide and tetraethylammonium hydroxide are preferable, from the viewpoint of improving the yield and impurities. Tetraethylammonium hydroxide is preferable from the viewpoint of reduction, and tetramethylammonium hydroxide is more preferable from the viewpoint of availability.
  • tetraalkylammonium organic acid examples include tetraalkylammonium phenoxide, fatty acid tetraalkylammonium, and tetraalkylammonium tetraphenylborate.
  • fatty acid tetraalkylammonium examples include tetramethylammonium acetate.
  • the amount of the quaternary ammonium compound is preferably 0.1 to 10 mmol, more preferably 0.2 to 5 mmol, still more preferably 0.5 to 1 mmol with respect to 1 g of the hydrogenation catalyst. Further, it is preferably 1 to 20% by mass, more preferably 3 to 10% by mass, still more preferably 5 to 10% by mass, based on the hydrogenation catalyst.
  • the reaction rate can be maintained and the desired aromatic aminomethyl can be obtained in a high yield without deterioration even when the catalyst is used repeatedly. Further, when the content is 20% by mass or less with respect to the hydrogenation catalyst, the amount of water brought in can be suppressed even when the quaternary ammonium compound is used in an aqueous solution.
  • the hydrogenation catalyst used in the production method of the present invention is not limited as long as it is a catalyst used for hydrogenation of an organic compound, but a metal catalyst is preferable, and examples of the metal include cobalt, nickel, palladium, and platinum.
  • a metal catalyst is preferable, and examples of the metal include cobalt, nickel, palladium, and platinum.
  • cobalt and nickel are preferable, and cobalt is more preferable. That is, a metal catalyst containing at least one selected from cobalt, nickel, palladium, and platinum is preferable, a metal catalyst containing at least one selected from nickel and cobalt is more preferable, and a metal catalyst containing cobalt is further preferable. ..
  • cobalt catalyst By using a cobalt catalyst, it is possible to suppress the formation of a high boiling point substance on the catalyst, improve the yield, and reduce the deterioration of the catalyst.
  • the metal catalyst containing at least one selected from nickel and cobalt include a metal-supported catalyst and a sponge metal catalyst, and a sponge metal catalyst is preferable.
  • the metal-supporting catalyst include catalysts in which one or more selected from nickel and cobalt are supported on Al 2 O 3 , SiO 2 , diatomaceous earth, SiO 2- Al 2 O 3 , and ZrO 2 by a precipitation method.
  • the sponge metal catalyst examples include catalysts made by eluting some components from alloys of two or more components (nickel, cobalt, aluminum, iron, copper, etc.) using an acid or alkali, and sponge cobalt catalysts and sponges.
  • a nickel catalyst is preferable, and a sponge cobalt catalyst is more preferable.
  • the catalyst may be used alone or in combination of two or more.
  • the amount of the catalyst is preferably 0.1 to 100 parts by mass, more preferably 1 to 50 parts by mass, still more preferably 10 to 20 parts by mass with respect to 100 parts by mass of the aromatic nitrile. By using the above amount of catalyst, the yield of the obtained aromatic aminomethyl can be increased.
  • the aromatic nitrile used as a raw material in the production method of the present invention is one in which a nitrile group is bonded to an aromatic ring (benzene ring), and the number of nitrile groups is preferably 1 or 2, more preferably 2. Further, another substituent may be bonded to the aromatic ring.
  • aromatic nitrile include benzonitrile and dicyanobenzene, and it is preferable to use dicyanobenzene.
  • dicyanobenzene there are three types of isomers, phthalonitrile (1,2-dicyanobenzene), isophthalonitrile (1,3-dicyanobenzene), and terephthalonitrile (1,4-dicyanobenzene). Isophthalonitrile and terephthalonitrile are preferable, and terephthalonitrile is more preferable.
  • the concentration of the aromatic nitrile during the hydrogenation reaction is preferably 2 to 30% by mass, more preferably 5 to 25% by mass, still more preferably 7 to 20% by mass in the reaction solution.
  • the reaction solution does not contain a catalyst.
  • the aromatic aminomethyl obtained by the production method of the present invention is one in which an aminomethyl group is bonded to an aromatic ring (benzene ring), and the number of aminomethyl groups is preferably 1 or 2, more preferably 2. Further, another substituent may be bonded to the aromatic ring.
  • Specific examples of the aromatic aminomethyl include benzylamine and xylene diamine, and xylene diamine is preferable.
  • the isomers of these xylene diamines can be obtained by the production method of the present invention using the corresponding dicyanobenzene as a raw material.
  • the method for producing aromatic aminomethyl of the present invention is aromatic in the presence of a quaternary ammonium compound and a hydrogenation catalyst in a mixed solvent containing a hydrocarbon solvent and a polar organic solvent having a solubility parameter (SP value) of 10 or more. It hydrogenates nitrile.
  • SP value solubility parameter
  • the blending order of the raw materials and the like is not particularly limited, and the hydrocarbon solvent, the polar organic solvent, the quaternary ammonium compound, and the hydrogenation catalyst are placed in a pressure vessel to introduce hydrogen. Is preferable.
  • the hydrogenation catalyst may be added as a catalyst slurry by immersing the catalyst in water and then replacing it with the polar organic solvent. preferable.
  • a batch method or a distribution method can be used, but a batch method is preferable.
  • the raw material hydrogen used for hydrogenation does not have to be particularly purified, and may be of industrial grade.
  • the hydrogen pressure during the reaction is preferably 2.0 to 20.0 MPa, more preferably 3.0 to 15.0 MPa, and even more preferably 5.0 to 10.0 MPa.
  • the reaction temperature is preferably 20 to 150 ° C., more preferably 50 to 130 ° C., and even more preferably 60 to 120 ° C. Within this range, the conversion rate of the aromatic dinitrile as a raw material is good, and the production of by-products is suppressed, so that the yield is improved.
  • the reaction time varies depending on the reaction temperature, hydrogen pressure, etc., but under the above conditions, it is usually 0.1 to 100 hours, preferably 0.5 to 10 hours.
  • the obtained aromatic aminomethyl can be recovered by using a known method. For example, it is preferable to separate the gas component and the liquid component from the reaction mixture at the end of the reaction, filter out the solid component such as a catalyst, and then distill and recover the liquid component. It is also preferable to further distill the obtained aromatic aminomethyl to increase the purity.
  • GC analysis conditions Gas chromatography analysis was performed under the following conditions.
  • Equipment used Gas chromatography Nexus GC-2030 (manufactured by Shimadzu Corporation) Column: DB-1 (length 30 m, inner diameter 0.53 mm, film thickness 1.5 ⁇ m)
  • Detector FID (H 2 30 mL / min, Air 300 mL / min)
  • Carrier gas He (constant flow; average linear speed 38 cm / sec)
  • Split ratio 28.1
  • Detector temperature 300 ° C
  • Injection volume 1.0 ⁇ L
  • Oven temperature The temperature was raised from 50 ° C.
  • ⁇ Conversion rate and yield> The conversion rate of the raw material (terephthalonitrile) and the yield of the product (paraxylene diamine) were calculated from the amounts of the raw material and the product in the reaction mixture measured by the internal standard method using the gas chromatography. Since diphenylmethane is used as an internal standard, a calibration curve was prepared in advance using a known concentration of terephthalonitrile and a paraxylene diamine solution. A sample was prepared by adding 0.5 g of diphenylmethane to 5.0 g of the reaction mixture, gas chromatography was measured under the above conditions, and the conversion rate and yield were determined by the following formula.
  • Example 1 Manufacturing of para-xylene diamine
  • the methanol slurry of the catalyst (catalyst amount 5.90 g) was charged into a 500 mL autoclave container, and the total mass of methanol was adjusted to 39.5 g. Subsequently, 51.8 g of terephthalonitrile, 197.3 g of m-xylene, and 1.52 g of a 25% tetramethylammonium hydroxide aqueous solution (4.2 mmol, 0.38 g of tetramethylammonium hydroxide) were charged. Nitrogen substitution was performed by pressurizing the inside of the reactor with nitrogen to 0.5 MPa and returning to atmospheric pressure.
  • This nitrogen substitution was carried out a total of 3 times, and then hydrogen was used and hydrogen substitution was carried out a total of 3 times in the same manner.
  • the hydrogen pressure was set to 8.0 MPa, the temperature was raised to 100 ° C. while stirring at 1200 rpm, and the reaction was carried out under the conditions of 8.0 MPa and 100 ° C. while supplying hydrogen. The reaction was terminated when hydrogen was no longer consumed. From the end of the reaction, the reaction mixture was cooled to 50 ° C., pressure filtered at a pressure of 0.4 MPa, and the catalyst was filtered off to obtain a reaction mixture containing paraxylene diamine, which is a reaction product.
  • the conversion of terephthalonitrile was 100 mol%, and the yield of paraxylene diamine was 94.8 mol%. Further, the hydrogenation reaction was carried out four times, for a total of five times, using the filtered catalyst. Table 2 shows the reaction time and the amount of aluminum dissolved during the fifth reaction.
  • Examples 2 to 4> The same operation as in Example 1 was performed except that the total amount of methanol and m-xylene was the same as in Example 1 and the mass ratio of methanol and m-xylene was adjusted to be the ratio shown in Table 1. , Reacted. Table 1 shows the conversion rate of terephthalonitrile and the yield of paraxylene diamine.
  • Example 6 The reaction was carried out in the same manner as in Example 1 using sodium hydroxide instead of the aqueous solution of tetramethylammonium hydroxide of Example 1.
  • Table 2 shows the conversion rate of terephthalonitrile and the yield of paraxylene diamine. Further, the hydrogenation reaction was carried out twice, for a total of three times, using the filtered catalyst. Table 2 shows the reaction time and the amount of aluminum dissolved during the third reaction.
  • Example 7 The reaction was carried out in the same manner as in Example 1 by using potassium t-butoxide instead of the aqueous solution of tetramethylammonium hydroxide of Example 1.
  • Table 2 shows the conversion rate of terephthalonitrile and the yield of paraxylene diamine. Further, the hydrogenation reaction was carried out four times, for a total of five times, using the filtered catalyst. Table 2 shows the reaction time at the time of the fifth reaction.
  • Example 5 The reaction was carried out in the same manner as in Example 1 using an aqueous solution of tetraethylammonium instead of the aqueous solution of tetramethylammonium hydroxide of Example 1.
  • Table 3 shows the conversion rate of terephthalonitrile and the yield of paraxylene diamine.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

炭化水素溶媒と溶解度パラメータ(SP値)が10以上の極性有機溶媒を含有する混合溶媒中、4級アンモニウム化合物及び水素化触媒の存在下、芳香族ニトリルを水素化する、芳香族アミノメチルの製造方法である。

Description

芳香族アミノメチルの製造方法
 芳香族ニトリルを水素化することにより芳香族アミノメチルを製造する方法に関する。
 芳香族アミノメチルは、薬品、農薬、樹脂、硬化剤等の原料又は中間体として有用である。特に、アミノメチル基を2つ有するキシレンジアミンは、ポリアミド樹脂、硬化剤等の原料、イソシアネートの中間体として非常に有用な化合物である。
 芳香族アミノメチルの製造法として、芳香族ニトリルを水素化する方法が行われている。
 芳香族ニトリルの水素化において、溶媒として液体アンモニアを用いる方法が知られている。しかし、環境への配慮から、水素化反応後に液体アンモニアを外部に放出せず、回収する必要があるため、生産上の負荷が大きく、液体アンモニアを用いない製造方法について、様々な検討がなされている。
 たとえば、特許文献1には、芳香族アミノメチルをはじめとした第一アミンを高い収率で得ることを目的として、アルカリまたはアルカリ土類金属の水酸化物またはアルコラートおよびラネーニッケルまたはラネーコバルト触媒の存在下、低級アルコール類と環式炭化水素類との混合溶媒中でニトリルを水素化する方法が開示されている。
 また、特許文献2には、芳香族アミノメチルの1つである、芳香族シアノアミノメチルを高収率で得ることを目的として、パラジウム触媒を使用し、アルコール及びテトラアルキルアンモニウムヒドロキシドの存在下で芳香族ニトリルを水素化する芳香族シアノアミノメチルの製造方法が開示されている。
特開昭54-41804号公報 特開2002-205980号公報
 ポリアミド樹脂、硬化剤等の原料、イソシアネートの中間体に用いるためには、非常に高純度の芳香族アミノメチルが求められており、液体アンモニアを用いない製造方法において、高収率で芳香族アミノメチルを得る方法が求められていた。
 また、特許文献1のように、液体アンモニアを用いず、アルカリを添加することによって、芳香族アミノメチルを得る試みがなされているが、アルカリ金属などを用いると触媒の劣化が進みやすく、生産性が悪化するという問題もあった。
 そのため、高収率で、触媒の劣化を抑え、生産性を向上させる合成方法が求められていた。
 そこで、本発明は、実質的に液体アンモニアを用いず、高収率で芳香族アミノメチルが得られ、触媒の劣化を抑制できる製造方法を提供することを課題とする。
 本発明者らが鋭意検討した結果、特定の混合溶媒中、4級アンモニウム化合物と触媒の存在下、芳香族ニトリルの水素化を行うことで、前記課題を解決できることを見出した。
 すなわち、本発明は、炭化水素溶媒と溶解度パラメータ(SP値)が10以上の極性有機溶媒を含有する混合溶媒中、4級アンモニウム化合物及び水素化触媒の存在下、芳香族ニトリルを水素化する、芳香族アミノメチルの製造方法である。
 本発明の製造方法によれば、実質的に液体アンモニアを用いず、高収率で芳香族アミノメチルを得ることができ、触媒の劣化も抑制できる。
 本発明の芳香族アミノメチルの製造方法は、炭化水素溶媒と溶解度パラメータ(SP値)が10以上の極性有機溶媒を含有する混合溶媒中、4級アンモニウム化合物及び水素化触媒の存在下、芳香族ニトリルを水素化する。
 以下に本発明の製造方法ついて詳細に説明する。
(炭化水素溶媒)
 本発明で用いられる炭化水素溶媒は、芳香族炭化水素溶媒及び脂肪族炭化水素溶媒から選ばれる1種以上であり、芳香族炭化水素溶媒が好ましい。
 炭化水素溶媒の溶解度パラメータ(以下、SP値ともいう)は、9.5以下が好ましく、9.0以下がより好ましい。下限値は7.0以上が好ましく、8.0以上がより好ましい。炭化水素溶媒が芳香族炭化水素溶媒であると、原料である芳香族ニトリル及び水素が良好に溶解し、効率的に水素化反応を行うことができるものと考えられる。また、SP値が、9.5以下であることによっても、原料である芳香族ニトリル及び水素が良好に溶解し、効率的に水素化反応を行うことができるものと考えられる。
 炭化水素溶媒が芳香族炭化水素溶媒である場合、芳香族炭化水素溶媒は、炭素数が7~12が好ましく、7~9がより好ましく、8~9が更に好ましい。
 芳香族炭化水素溶媒の具体例として、トルエン、エチルベンゼン、キシレンの3異性体(o-キシレン、m-キシレン、p-キシレン)、メシチレン、プソイドキュメン等の単環芳香族炭化水素化合物、及びナフタレン、メチルナフタレン等の多環芳香族炭化水素化合物が挙げられ、単環芳香族炭化水素化合物が好ましく、工業的に入手が容易である点から、キシレン及びメシチレンがより好ましく、キシレン(SP値8.8)が更に好ましく、m-キシレン、p-キシレンがより更に好ましく、m-キシレンがより更に好ましい。
(溶解度パラメータ(SP値)が10以上の極性有機溶媒)
 本発明で用いられる極性有機溶媒は、溶解度パラメータ(SP値)が、10以上であり、11以上が好ましく、12以上がより好ましく、13以上が更に好ましい。上限値は20以下が好ましく、17以下がより好ましく、15以下が更に好ましい。
 なお、本発明におけるSP値は、下記Hildebrandの溶解度パラメータ式によって求められる値である。
 溶解度パラメータ(SP値)=(ΔHA V-RT)0.5/VA 0.5
   ΔHA V:液体A(極性有機溶媒)の蒸発エンタルピー
   R:気体定数
   T:温度
   VA:液体Aのモル容積
 本発明の製造方法において、SP値が10以上の極性有機溶媒を用いることによって、生成物である芳香族アミノメチルがこれに分配し、水素化反応を効率的に進行させることができるものと考えられる。
 本発明で用いられる極性有機溶媒は、アルコール、エステル、アミド、スルホキシド、ケトン及びアミンから選ばれる1種以上であり、アルコールが好ましい。
 アルコールは、1価のアルコールと多価アルコールが挙げられ、1価のアルコールが好ましい。1価のアルコールは、脂肪族アルコールと芳香族アルコールが挙げられ、脂肪族アルコールが好ましい。
 脂肪族アルコールの炭素数は、1~8が工業的に入手容易な観点から好ましく、1~4がより好ましく、1及び2が更に好ましい。
 脂肪族アルコールとして、具体的には、メタノール(SP値14.5)、エタノール(SP値12.7)、n-プロパノール(SP値11.9)、イソプロパノール(SP値11.5)、n-ブタノール(SP値11.4)、sec-ブタノール(SP値10.8)、tert-ブタノール(SP値10.6)、ペンタノール、ヘキサノール(SP値10.7)、ヘプタノール(SP値10.6)、n-オクタノール(SP値10.3)等が挙げられ、メタノール及びエタノールが好ましく、メタノールがより好ましい。
(混合溶媒)
 本発明における混合溶媒は、原料である芳香族ニトリル、生成物である芳香族アミノメチルを除く、水素化反応時の溶液に含まれる液状の化合物全体をいう。
 混合溶媒中の前記炭化水素溶媒と前記極性有機溶媒の質量比(炭化水素溶媒/極性有機溶媒)は60/40~99/1が好ましく、70/30~99/1がより好ましく、80/20~99/1がより好ましく、82/18~99/1がより更に好ましい。炭化水素溶媒を極性有機溶媒より多く用いることで、炭化水素溶媒に溶解するニトリル濃度が少なくなり、触媒上で高沸点物を生成しにくくなる。
 混合溶媒中の前記炭化水素溶媒と前記極性有機溶媒の合計含有量は、90~100質量%が好ましく、95~100質量%がより好ましく、99~100質量%が更に好ましい。
 混合溶媒中の水の含有量は、5質量%以下が好ましく、2質量%以下がより好ましく、1質量%以下が更に好ましい。水の含有量を5質量%以下とすることで原料との副反応を抑制することができ、生成物の収率を向上させることができると考えられる。
 また、本発明の混合溶媒中は液体アンモニアを含まないことが好ましい。液体アンモニアを含まないことで、アンモニアの回収にかかる製造時の負荷を削減することができる。
 混合溶媒中の前記炭化水素溶媒と前記極性有機溶媒のSP値の差は、0.5以上が好ましく、1.0以上がより好ましく、2.0以上が更に好ましく、4.0以上がより更に好ましい。また、12以下が好ましく、10以下がより好ましく、8以下が更に好ましく、6以下がより更に好ましい。
 混合溶媒中の前記炭化水素溶媒と前記極性有機溶媒の組み合わせとしては、単環芳香族炭化水素化合物とアルコールが好ましく、キシレンと炭素数1又は2の脂肪族アルコールがより好ましく、m-キシレンとメタノールが更に好ましい。
(4級アンモニウム化合物)
 本発明に用いられる4級アンモニウム化合物としては、水酸化テトラアルキルアンモニウム及び有機酸テトラアルキルアンモニウムが挙げられ、これらから選ばれる1種以上を用いることが好ましく、これらのなかでも水酸化テトラアルキルアンモニウムがより好ましい。
 4級アンモニウム化合物は、アルカリ金属水酸化物のような強いアルカリではないため、反応容器等の腐食や触媒の劣化等も生じることなく、安定に高収率で芳香族アミノメチルを得ることができる。
 水酸化テトラアルキルアンモニウムとしては、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラブチルアンモニウムが挙げられ、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウムが好ましく、収率を向上させる観点及び不純物を低減する観点から、水酸化テトラエチルアンモニウムが好ましく、入手性の観点から、水酸化テトラメチルアンモニウムがより好ましい。
 有機酸テトラアルキルアンモニウムとしては、テトラアルキルアンモニウムフェノキシド、脂肪酸テトラアルキルアンモニウム、テトラフェニルホウ酸テトラアルキルアンモニウムが挙げられる。
 脂肪酸テトラアルキルアンモニウムとしては、酢酸テトラメチルアンモニウムが挙げられる。
 4級アンモニウム化合物の量は、水素化触媒1gに対して、0.1~10mmolが好ましく、0.2~5mmolがより好ましく、0.5~1mmolが更に好ましい。また、水素化触媒に対して、1~20質量%が好ましく、3~10質量%がより好ましく、5~10質量%が更に好ましい。4級アンモニウム化合物を前記の量用いることで、触媒を繰り返し用いた場合にも劣化することなく、反応速度を維持し、高い収率で目的の芳香族アミノメチルを得ることができる。また、水素化触媒に対して、20質量%以下であると、4級アンモニウム化合物を水溶液で用いる場合にも水の持ち込み量を抑制することができる。
(水素化触媒)
 本発明の製造方法に用いられる水素化触媒としては、有機化合物の水素化に用いる触媒であれば制限はないが、金属触媒が好ましく、金属としては、コバルト、ニッケル、パラジウム、白金が挙げられ、コバルト及びニッケルから選ばれる1種以上が好ましく、コバルトがより好ましい。すなわち、コバルト、ニッケル、パラジウム、白金から選ばれる1種以上を含有する金属触媒が好ましく、ニッケル及びコバルトから選ばれる1種以上を含有する金属触媒がより好ましく、コバルトを含有する金属触媒が更に好ましい。コバルト触媒を用いることで、触媒上での高沸点物の生成を抑制し、収率を向上させることができ、かつ触媒の劣化も低減することができる。
 ニッケル及びコバルトから選ばれる1種以上を含有する金属触媒としては、金属担持触媒、スポンジ金属触媒が挙げられ、スポンジ金属触媒が好ましい。
 金属担持触媒としては、ニッケル及びコバルトから選ばれる1種以上をAl、SiO、珪藻土、SiO-Al、ZrOに沈殿法で担持した触媒が挙げられる。
 スポンジ金属触媒としては、2成分以上の合金(ニッケル、コバルト、アルミニウム、鉄、銅等)から酸又はアルカリを用いて一部の成分を溶出させて作られる触媒が挙げられ、スポンジコバルト触媒及びスポンジニッケル触媒が好ましく、スポンジコバルト触媒がより好ましい。前記触媒は1種を単独で又は2種以上を組み合わせて用いてもよい。
 触媒の量は、芳香族ニトリル100質量部に対して、0.1~100質量部が好ましく、1~50質量部がより好ましく、10~20質量部が更に好ましい。触媒を前記の量用いることで、得られる芳香族アミノメチルの収率を高めることができる。
(芳香族ニトリル)
 本発明の製造方法で原料として用いる芳香族ニトリルは、芳香族環(ベンゼン環)にニトリル基が結合したものであり、ニトリル基の数は1又は2が好ましく、2がより好ましい。
 また、芳香族環には他の置換基が結合していてもよい。
 具体的な芳香族ニトリルとしては、ベンゾニトリル及びジシアノベンゼンが挙げられ、ジシアノベンゼンを用いることが好ましい。
 ジシアノベンゼンとしては、フタロニトリル(1,2-ジシアノベンゼン)、イソフタロニトリル(1,3-ジシアノベンゼン)、テレフタロニトリル(1,4-ジシアノベンゼン)の3種の異性体が存在するが、イソフタロニトリル及びテレフタロニトリルが好ましく、テレフタロニトリルがより好ましい。
 芳香族ニトリルの水素化反応時の濃度は、反応溶液中、2~30質量%が好ましく、5~25質量%がより好ましく、7~20質量%が更に好ましい。なお、反応溶液には触媒は含まれない。
(芳香族アミノメチル)
 本発明の製造方法で得られる芳香族アミノメチルは、芳香族環(ベンゼン環)にアミノメチル基が結合したものであり、アミノメチル基の数は1又は2が好ましく、2がより好ましい。
 また、芳香族環には他の置換基が結合していてもよい。
 具体的な芳香族アミノメチルとしては、ベンジルアミン、キシレンジアミン等が挙げられ、キシレンジアミンが好ましい。
 キシレンジアミンには、オルトキシレンジアミン、メタキシレンジアミン、パラキシレンジアミンの3種の異性体が存在するが、メタキシレンジアミン及びパラキシレンジアミンが好ましく、パラキシレンジアミンがより好ましい。
 これらのキシレンジアミンの異性体は、対応するジシアノベンゼンを原料として、本発明の製造方法により得ることができる。
(芳香族アミノメチルの製造方法)
 本発明の芳香族アミノメチルの製造方法は、炭化水素溶媒と溶解度パラメータ(SP値)が10以上の極性有機溶媒を含有する混合溶媒中、4級アンモニウム化合物及び水素化触媒の存在下、芳香族ニトリルを水素化するものである。
 本製造方法において、原料等の配合順序には特に制限はなく、圧力容器内に、前記炭化水素溶媒、前記極性有機溶媒、前記4級アンモニウム化合物、及び前記水素化触媒を入れ、水素を導入することが好ましい。
 水素化触媒は、水素化触媒中に空気等の水素以外のガスや水を含有させないために、触媒を水で浸漬したのちに、前記極性有機溶媒で置換し、触媒のスラリーとして添加することが好ましい。
 本製造方法における反応は、回分式および流通式のいずれの方法を用いることもできるが、回分式が好ましい。
 本発明において、水素化に用いられる原料の水素は特に精製されたものを使用しなくても良く、工業用グレードでよい。反応時の水素圧は、2.0~20.0MPaが好ましく、3.0~15.0MPaがより好ましく、5.0~10.0MPaが更に好ましい。水素圧が上記範囲内であると、生成物の収率が十分であり、圧力の高い耐圧反応器が不要となりコストを低減することができるので好ましい。
 反応温度は、20~150℃が好ましく、50~130℃がより好ましく、60~120℃が更に好ましい。この範囲であると、原料である芳香族ジニトリルの転化率が良く、副生成物の生成が抑制されるので、収率が向上する。
 反応時間は、反応温度や水素圧等によって異なるが、前記の条件であれば、通常0.1~100時間であり、0.5~10時間とすることが好ましい。
 得られた芳香族アミノメチルは、公知の方法を用いて回収することができる。たとえば、反応終了時の反応混合物から気体成分と液体成分を分離し、触媒など固体成分を濾別後、液体成分を蒸留して回収することが好ましい。また、得られた芳香族アミノメチルを更に蒸留して、純度を上げることも好ましい。
 以下に示す実施例に基づいて本発明を具体的に説明するが、本発明はこれらの実施例により制限されるものではない。なお、以下の実施例において、組成分析はガスクロマトグラフを用いた。
<ガスクロマトグラフィー(GC)分析条件>
 ガスクロマトグラフィー分析は、以下の条件で行った。
  使用機器:ガスクロマトグラフィー Nexis GC-2030(株式会社島津製作所製)
  カラム:DB-1 (長さ30m、内径0.53mm、膜厚1.5μm)
  検出器:FID(H2 30mL/分、Air 300mL/分)
  キャリアガス:He(コンスタントフロー;平均線速38cm/秒)
  スプリット比:28.1
  注入口温度:300℃
  検出器温度:300℃
  注入量:1.0μL
  オーブン温度:50℃から5℃/分で150℃まで昇温し、150℃に到達してから10℃/分で280℃まで昇温した後、7分間保持した。その後10℃/分で300℃まで昇温し5分間保持した。
<転化率及び収率>
 原料(テレフタロニトリル)の転化率及び生成物(パラキシレンジアミン)の収率は、前記ガスクロマトグラフィーを用いた内部標準法により測定した、反応混合物中の原料及び生成物の量から算出した。内部標準としてジフェニルメタンを用いるため、予め既知濃度のテレフタロニトリルとパラキシレンジアミン溶液を用いて、検量線を作成した。
 反応混合物5.0gに対して、ジフェニルメタンを0.5g加えた試料を調製し、前記条件によりガスクロマトグラフィーを測定し、下記の式によって転化率と収率を求めた。
  転化率(モル%)=[1-(反応混合物中のテレフタロニトリル量[モル])/(仕込み時のテレフタロニトリル量[モル])]×100
  収率(モル%)=(反応混合物中のパラキシレンジアミン量[モル])/(仕込み時のテレフタロニトリル量[モル])×100
<繰り返し水素化反応後の反応時間(触媒劣化評価)>
 前反応後に濾別した触媒を用いて、後述の実施例1と同様の操作を行った。水素置換後、水素圧を8.0MPaとした時点から、水素が消費されなくなるまでの時間を、繰り返し水素化反応後の反応時間とした。繰り返し水素化反応後の反応時間が短いほど、触媒の劣化が抑制されている。
<繰り返し水素化反応後のアルミニウム溶解量(触媒劣化評価)>
 反応終了後の反応混合物から下記試料調製手順でアルミニウム溶解量測定用の試料を調製し、ICP発光分光分析法によって、アルミニウムを測定した。アルミニウムはラネーコバルト触媒に含まれるものであり、アルミニウムの溶解によって触媒の劣化が生じていることがわかる。そのため、アルミニウム溶解量が少ないものほど、触媒の劣化が抑制されている。
(試料調製手順)
 白金るつぼに反応混合物を5.0g精秤した後、加熱して溶媒を除去した。その後600℃、3時間で灰化処理を行った。試料と容器を冷却した後、12質量%の塩酸水溶液を10mL加え、加熱溶解させた。白金るつぼの内容物を25mLメスフラスコへ移して純水で25mLに希釈後、ICP分析を行った。
<触媒スラリーの調製>
 以下の操作は50mLビーカーを用いた。ラネーコバルト触媒(スポンジコバルト触媒)(RANEY2724、W・R・Grace社製)5.90gを、30mLの水の中に入れ、静置させて触媒を沈降させた後、上澄みをデカンテーションによって除いた。次にメタノール30mLを加えて、1分間攪拌した後、同様にして、上澄みを除いた。前記のメタノールでの置換を5回行い、触媒のメタノールスラリーを調製した。
<実施例1>
(パラキシレンジアミンの製造)
 500mLのオートクレーブ容器に、前記触媒のメタノールスラリー(触媒量5.90g)を仕込み、メタノールの全質量が39.5gとなるように調整した。続いて、テレフタロニトリル51.8g、m-キシレンを197.3g、25%水酸化テトラメチルアンモニウム水溶液を1.52g(水酸化テトラメチルアンモニウムとして4.2mmol、0.38g)を仕込んだ。
 反応器内を窒素で0.5MPaまで加圧し、大気圧まで戻す方法により窒素置換を行った。この窒素置換を計3回行い、次に水素を用い、同様の方法で水素置換を計3回行った。
 水素圧を8.0MPaとし、1200rpmで攪拌しながら、100℃まで昇温し、水素を供給しながら8.0MPa、100℃の条件で反応を行った。水素が消費されなくなった時点で反応を終了とした。反応の終了から反応混合物を50℃まで冷却した後、0.4MPaの圧力で加圧濾過し、触媒を濾別し反応生成物であるパラキシレンジアミンを含む反応混合物を得た。テレフタロニトリルの転化率は100モル%であり、パラキシレンジアミンの収率は94.8モル%であった。
 さらに、濾別した触媒を用いて、前記の水素化反応を4回、計5回行った。5回目の反応時の反応時間とアルミニウム溶解量を表2に示す。
<実施例2~4>
 メタノールとm-キシレンの量の合計が実施例1と同様であり、かつメタノールとm-キシレンの質量比が表1の割合になるように調整した以外は、実施例1と同様の操作を行い、反応を行った。テレフタロニトリルの転化率とパラキシレンジアミンの収率を表1に示す。
<比較例1>
 m-キシレンの量を236.8gとし、メタノールを用いなかった以外は、実施例1と同様の操作を行い、反応を行った。なお、触媒はメタノールスラリーからm-キシレンスラリーに置き換えて用いた。テレフタロニトリルの転化率とパラキシレンジアミンの収率を表1に示す。
<比較例2>
 メタノールの量を236.8gとし、m-キシレンを用いなかった以外は、実施例1と同様の操作を行い、反応を行った。テレフタロニトリルの転化率とパラキシレンジアミンの収率を表1に示す。
Figure JPOXMLDOC01-appb-T000001
<比較例3>
 水酸化テトラメチルアンモニウム水溶液を用いなかった以外は、実施例1と同様の操作を行い、反応を行った。テレフタロニトリルの転化率とパラキシレンジアミンの収率を表2に示す。
<比較例4及び5>
 実施例1の水酸化テトラメチルアンモニウム水溶液に替えて、表2に示す塩基性化合物を用いて、実施例1と同様の操作を行い、反応を行った。テレフタロニトリルの転化率とパラキシレンジアミンの収率を表2に示す。
<比較例6>
 実施例1の水酸化テトラメチルアンモニウム水溶液に替えて、水酸化ナトリウムを用いて、実施例1と同様の操作を行い、反応を行った。テレフタロニトリルの転化率とパラキシレンジアミンの収率を表2に示す。
 さらに、濾別した触媒を用いて、前記の水素化反応を2回、計3回行った。3回目の反応時の反応時間とアルミニウム溶解量を表2に示す。
<比較例7>
 実施例1の水酸化テトラメチルアンモニウム水溶液に替えて、カリウムt-ブトキシドを用いて、実施例1と同様の操作を行い、反応を行った。テレフタロニトリルの転化率とパラキシレンジアミンの収率を表2に示す。
 さらに、濾別した触媒を用いて、前記の水素化反応を4回、計5回行った。5回目の反応時の反応時間を表2に示す。
Figure JPOXMLDOC01-appb-T000002
<実施例5>
 実施例1の水酸化テトラメチルアンモニウム水溶液に替えて、テトラエチルアンモニウム水溶液を用いて、実施例1と同様の操作を行い、反応を行った。テレフタロニトリルの転化率とパラキシレンジアミンの収率を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表1~3の結果から、実施例の製造方法を用いると、パラキシレンジアミンを高収率で得ることができ、更に、繰り返して反応を行った際にも触媒が劣化することなく、短時間で反応を行うことができることがわかる。

Claims (13)

  1.  炭化水素溶媒と溶解度パラメータ(SP値)が10以上の極性有機溶媒とを含有する混合溶媒中、4級アンモニウム化合物及び水素化触媒の存在下、芳香族ニトリルを水素化する、芳香族アミノメチルの製造方法。
  2.  前記4級アンモニウム化合物が、水酸化テトラアルキルアンモニウム及び有機酸テトラアルキルアンモニウムから選ばれる1種以上である、請求項1に記載の芳香族アミノメチルの製造方法。
  3.  前記混合溶媒中の前記炭化水素溶媒と前記極性有機溶媒との質量比(炭化水素溶媒/極性有機溶媒)が、60/40~99/1である、請求項1又は2に記載の芳香族アミノメチルの製造方法。
  4.  前記混合溶媒中の前記炭化水素溶媒と前記極性有機溶媒との合計量が、90~100質量%である、請求項1~3のいずれか1つに記載の芳香族アミノメチルの製造方法。
  5.  前記水素化触媒が、ニッケル及びコバルトから選ばれる1種以上を含有する金属触媒である、請求項1~4のいずれか1つに記載の芳香族アミノメチルの製造方法。
  6.  前記4級アンモニウム化合物の量が、前記水素化触媒に対して、1~20質量%である、請求項1~5のいずれか1つに記載の芳香族アミノメチルの製造方法。
  7.  前記炭化水素溶媒が芳香族炭化水素溶媒である、請求項1~6のいずれか1つに記載の芳香族アミノメチルの製造方法。
  8.  前記極性有機溶媒がアルコールである、請求項1~7のいずれか1つに記載の芳香族アミノメチルの製造方法。
  9.  前記混合溶媒が液体アンモニアを含まない、請求項1~8のいずれか1つに記載の芳香族アミノメチルの製造方法。
  10.  前記混合溶媒中の水の含有量が5質量%以下である、請求項1~9のいずれか1つに記載の芳香族アミノメチルの製造方法。
  11.  前記芳香族ニトリルが、ジシアノベンゼンである、請求項1~10のいずれか1つに記載の芳香族アミノメチルの製造方法。
  12.  前記芳香族ニトリルが、テレフタロニトリルである、請求項1~11のいずれか1つに記載の芳香族アミノメチルの製造方法。
  13.  前記芳香族アミノメチルが、キシレンジアミンである、請求項1~12のいずれか1つに記載の芳香族アミノメチルの製造方法。
PCT/JP2020/028369 2019-07-31 2020-07-22 芳香族アミノメチルの製造方法 WO2021020258A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20848300.8A EP4006008B1 (en) 2019-07-31 2020-07-22 Method for producing aromatic aminomethyl
CN202080054321.3A CN114206825A (zh) 2019-07-31 2020-07-22 氨甲基芳香族的制造方法
JP2021536988A JPWO2021020258A1 (ja) 2019-07-31 2020-07-22
US17/629,906 US20220251022A1 (en) 2019-07-31 2020-07-22 Method for producing aromatic aminomethyl

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-141419 2019-07-31
JP2019141419 2019-07-31

Publications (1)

Publication Number Publication Date
WO2021020258A1 true WO2021020258A1 (ja) 2021-02-04

Family

ID=74229075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/028369 WO2021020258A1 (ja) 2019-07-31 2020-07-22 芳香族アミノメチルの製造方法

Country Status (5)

Country Link
US (1) US20220251022A1 (ja)
EP (1) EP4006008B1 (ja)
JP (1) JPWO2021020258A1 (ja)
CN (1) CN114206825A (ja)
WO (1) WO2021020258A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11222465A (ja) * 1997-10-30 1999-08-17 Degussa Ag イミンまたはニトリルからのアミンの製造法
JP2002322138A (ja) * 2001-04-27 2002-11-08 Mitsubishi Gas Chem Co Inc アミノメチルシクロヘキサンカルボン酸の製造方法
WO2003029194A1 (en) * 2001-10-02 2003-04-10 E.I. Du Pont De Nemours And Company Aminonitrile production
JP2003327563A (ja) * 2002-05-10 2003-11-19 Mitsubishi Gas Chem Co Inc 芳香族ジメチルアミンの製造法
US20050101797A1 (en) * 2003-11-12 2005-05-12 Allgeier Alan M. Use of modifiers in a dinitrile hydrogenation process

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6049180B2 (ja) * 1977-09-02 1985-10-31 武田薬品工業株式会社 第一アミンの製造法
JP4692700B2 (ja) * 2001-01-11 2011-06-01 三菱瓦斯化学株式会社 芳香族シアノアミノメチルの製造方法
DE602004019000D1 (de) * 2003-02-20 2009-03-05 Mitsubishi Gas Chemical Co Hoch-selektives Herstellungsverfahren von Di(aminomethyl)-substituierten aromatischen Verbindungen
JPWO2022019105A1 (ja) * 2020-07-22 2022-01-27

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11222465A (ja) * 1997-10-30 1999-08-17 Degussa Ag イミンまたはニトリルからのアミンの製造法
JP2002322138A (ja) * 2001-04-27 2002-11-08 Mitsubishi Gas Chem Co Inc アミノメチルシクロヘキサンカルボン酸の製造方法
WO2003029194A1 (en) * 2001-10-02 2003-04-10 E.I. Du Pont De Nemours And Company Aminonitrile production
JP2003327563A (ja) * 2002-05-10 2003-11-19 Mitsubishi Gas Chem Co Inc 芳香族ジメチルアミンの製造法
US20050101797A1 (en) * 2003-11-12 2005-05-12 Allgeier Alan M. Use of modifiers in a dinitrile hydrogenation process

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GREGG, BRIAN A. ET AL.: "Doping molecular semiconductors . n-Type doping of a liquid crystal perylene diimide", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 123, no. 32, 2001, pages 7959 - 7960, XP008154037, ISSN: 0002-7863, DOI: 10.1021/ja016410k *

Also Published As

Publication number Publication date
EP4006008A4 (en) 2022-10-26
EP4006008B1 (en) 2023-10-25
JPWO2021020258A1 (ja) 2021-02-04
US20220251022A1 (en) 2022-08-11
EP4006008A1 (en) 2022-06-01
CN114206825A (zh) 2022-03-18

Similar Documents

Publication Publication Date Title
CN1100608C (zh) 在载钌催化剂存在下进行有机化合物反应的方法
US6476269B2 (en) Method for producing xylylenediamine
US20080154061A1 (en) Method For Producing a Xylylenediamine
US20080214871A1 (en) Method For Producing A Xylylene Diamine
HU216575B (hu) Raney típusú katalizátorkészítmény és eljárás a készítmény alkalmazására halogénezett aromás nitrovegyületek halogénezett aromás aminovegyületekké történő hidrogénezéséhez
TWI394739B (zh) 伸茬基二胺之製法
WO2012046781A1 (ja) ビス(アミノメチル)シクロヘキサン類の製造方法
JPH06279368A (ja) ビスアミノメチルシクロヘキサンの製造法
WO2022019105A1 (ja) 芳香族アミノメチルの製造方法
WO2021020258A1 (ja) 芳香族アミノメチルの製造方法
JP5040460B2 (ja) キシリレンジアミンの製造方法
JP6806290B1 (ja) キシリレンジアミンの製造方法
TWI363051B (en) Process of making 3-aminopentanenitrile
Row et al. Effect of Reaction Solvent on the Hydrogenation of Isophthalonitrile for Meta‐Xylylendiamine Preparation
JP4388522B2 (ja) イミダゾール類を溶媒として用いたキシリレンジアミンの製造方法
KR101754332B1 (ko) 방향족 니트릴 화합물의 수소화 반응을 통한 방향족 디아민 화합물의 제조방법
JP2004269510A (ja) ジ(アミノメチル)置換芳香族化合物の高選択的な製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20848300

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021536988

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020848300

Country of ref document: EP

Effective date: 20220228