WO2021018268A1 - 一种碳负载纳米银催化剂的制备方法 - Google Patents

一种碳负载纳米银催化剂的制备方法 Download PDF

Info

Publication number
WO2021018268A1
WO2021018268A1 PCT/CN2020/106046 CN2020106046W WO2021018268A1 WO 2021018268 A1 WO2021018268 A1 WO 2021018268A1 CN 2020106046 W CN2020106046 W CN 2020106046W WO 2021018268 A1 WO2021018268 A1 WO 2021018268A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
preparation
functional group
organic solvent
catalyst
Prior art date
Application number
PCT/CN2020/106046
Other languages
English (en)
French (fr)
Inventor
戴李宗
刘玲
李云同
吴俣哲
曾碧榕
陈国荣
许一婷
Original Assignee
厦门大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门大学 filed Critical 厦门大学
Publication of WO2021018268A1 publication Critical patent/WO2021018268A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/399Distribution of the active metal ingredient homogeneously throughout the support particle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/086Decomposition of an organometallic compound, a metal complex or a metal salt of a carboxylic acid

Definitions

  • the invention belongs to the technical field of organic synthesis electrochemistry, and specifically relates to a method for preparing a carbon-loaded nano-silver catalyst.
  • Platinum (Pt)-based catalysts are currently the most widely used and most effective ORR catalysts, but they still face many problems, such as: high cost; easy to CO poisoning; Pt nanoparticles are easy to be oxidized and easy to agglomerate in acidic media. All these make the catalyst service life limited and hinder the commercial development of fuel cells. In order to accelerate the commercialization of fuel cells, a variety of carbon-supported catalysts with other metal particles have emerged. Among the many precious metals, Ag has relatively high activity in alkaline media due to its relatively low price and wide sources, making it the best candidate for ORR electrocatalysts. Soo L T etc. [Soo L T, Loh K S, Mohamad A B, et al.
  • Ag/N-rGO catalyst was prepared by high temperature calcination using metal salt, graphene oxide and melamine as raw materials. This method is simple and easy to operate, but the Ag/N-rGO catalyst prepared with a mixture of small molecules as a precursor has uneven distribution of active sites and low catalytic efficiency. Guo J et al. [Guo J, Hsu A, Chu D, et al. Improving oxygen reduction reaction activities on carbon-supported Ag nanoparticles in alkaline solutions[J].
  • the purpose of the present invention is to overcome the defects of the prior art and provide a method for preparing a carbon-supported nano-silver catalyst.
  • a preparation method of carbon-loaded nano silver catalyst includes the following steps:
  • step (3) Add the material obtained in step (2) dropwise to the material obtained in step (1) at a uniform speed, stir and react at room temperature for 10-15 hours after the addition is complete, and then centrifuge to obtain a precipitate. After the precipitate is vacuum dried, a high Molecular metal complexes;
  • the above -NH 2 functional group-containing compound is tris(tetraaminophenyl)benzene, tris(tetraaminophenyl)amine or polyethyleneimine.
  • the -NH 2 functional group-containing compound is tris(tetraaminophenyl)benzene or tris(tetraaminophenyl)amine.
  • the organic solvent is dichloromethane, chloroform or 1-methyl-2-pyrrolidone.
  • the organic solvent is dichloromethane or chloroform.
  • the molar ratio of the -NH 2 functional group-containing compound to AgNO 3 is 1:1-6.
  • the ratio of the -NH 2 functional group-containing compound and the organic solvent is 0.1 mmol: 15-25 mL.
  • the ratio of AgNO 3 to the organic solvent is 1 mmol: 10-20 mL.
  • the inert gas is argon.
  • the temperature of the vacuum drying is 55-65°C, and the time is 10-15h.
  • the calcination temperature is 850-950°C.
  • the raw materials used in the present invention have a wide range of sources, low prices, and simple experimental operations.
  • the catalyst prepared by the present invention has a uniform distribution of Ag nanoparticles at active sites and exhibits excellent ORR performance.
  • the present invention has universal applicability and can be prepared by using different NH 2 functional group-containing compounds and solvents.
  • Fig. 1 is a transmission electron micrograph of carbon-supported nano-silver catalysts with different Ag loadings in Examples 1 and 2 of the present invention.
  • Example 2 is a graph of electrochemical performance of a carbon-supported nano-silver catalyst with an Ag loading of 1 eq in Example 1 of the present invention.
  • Figure 3 is a transmission electron microscope image of the carbon-supported iron catalyst in Comparative Example 1.
  • Figure 1 is a transmission electron micrograph of the carbon-supported nanosilver catalysts with different Ag loadings prepared in Examples 1 and 2.
  • Figure a is a transmission electron microscope image of Example 1, that is, a carbon-supported nanosilver catalyst with a loading amount of Ag of 1 eq. It can be seen that the particle size and distribution of the simple substance of Ag is relatively uniform, and its size is about 50 nm.
  • Figure b is a transmission electron microscope image of Example 2, that is, a carbon-supported nanosilver catalyst with a loading of Ag of 1.5eq. The particle size of Ag elementary substance is different.
  • the size of large particles can reach 90-100nm, while the size of small particles is only There are 10-20nm, indicating that the loading amount has an effect on the morphology of the synthesized carbon-based material loaded with metal Ag, which may affect its electrochemical catalytic performance.
  • Figure 2 is the cyclic voltammogram (CV) of the carbon-supported nanosilver catalyst prepared in Example 1 in 0.1M KOH, where the dotted line represents the condition of argon saturation, and the solid line represents the condition of oxygen saturation. It can be seen that, The CV diagram measured under oxygen saturation has obvious oxygen reduction peaks, which proves that the catalyst catalyzes the ORR reaction under oxygen saturation conditions.
  • the figure shows the linear scanning voltammogram (LSV) of the samples in Comparative Example 1 and Example 1. The test conditions are 0.1 M KOH saturated with oxygen at a scanning speed of 5 mV/s at 1600 rpm.
  • the catalytic ORR activity of the carbon-supported nano-silver catalyst of Example 1 is significantly higher than that of the carbon-supported iron catalyst, and the performance is equivalent to that of the commercial Pt/C catalyst (in terms of price and cost, it is much higher than the product of Example 1).
  • the half-wave potential and the limiting diffusion current density are shown in Table 1.
  • Figure 3 is a transmission electron microscope image of the carbon-supported iron catalyst in Comparative Example 1.
  • the invention discloses a method for preparing a carbon-loaded nano-silver catalyst. It uses a compound containing -NH 2 functional group and AgNO 3 as raw materials to synthesize a polymer metal complex through coordination reaction, and then High-temperature calcination and other post-treatments prepare carbon-supported nano-silver catalysts that can be used for ORR.
  • the raw materials used in the invention have wide sources, low prices, and simple experimental operations.
  • the catalyst prepared by the invention has a uniform distribution of active site Ag nanoparticles and shows excellent ORR performance.
  • the present invention is universal, various compounds containing the functional group NH 2 and a solvent system, has industrial applicability can be employed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

一种碳负载纳米银催化剂的制备方法,以含-NH 2官能团化合物与AgNO 3为原料,通过配位反应合成高分子金属络合物,然后,将该高分子金属络合物高温煅烧,经过其他后处理,制备可用于ORR的碳负载纳米银催化剂。该催化剂使用的原料来源广泛,价格低廉,且实验操作简单,其活性位点Ag纳米颗粒分布均匀,表现出优秀的ORR性能,具有普适性,可以采用不同含NH 2官能团化合物及溶剂制。

Description

一种碳负载纳米银催化剂的制备方法 技术领域
本发明属于有机合成电化学技术领域,具体涉及一种碳负载纳米银催化剂的制备方法。
背景技术
能源是人类赖以生存和发展的基础,伴随社会不断发展,能源过度消耗,多种非可再生资源濒临枯竭,人们面临的能源危机日渐严重,寻找新的替代能源迫在眉睫。燃料电池作为一种高效、清洁的能源装置,受到科研人员广泛关注。但是,燃料电池阴极的氧气还原反应动力学迟缓,比阳极氢气氧化反应慢6个数量级,这一特性极大阻碍了燃料电池的商业发展。因此,研究出高效的氧还原反应(ORR)催化剂至关重要。
铂(Pt)基催化剂是目前使用最广泛且效果最好的ORR催化剂,但其依然面临诸多问题,如:成本高;容易CO中毒;在酸性介质中Pt纳米粒子易被氧化且易团聚等。这些都使得催化剂使用寿命有限,阻碍燃料电池商业化发展。为加快燃料电池的商业化发展,多种碳负载其他金属粒子的催化剂应运而生。在众多的贵金属中,Ag由于价格相对低廉,来源广泛,在碱性介质中具有相对较高的活性,成为ORR电催化剂的最佳候选者。Soo L T等[Soo L T,Loh K S,Mohamad A B,et al.Synthesis of silver/nitrogen-doped reduced graphene oxide through a one-step thermal solid-state reaction for oxygen reduction in an alkaline medium[J].Journal of Power Sources,2016,324:412-420.]以金属盐、氧化石墨烯以及三聚氰胺为原料,通过高温煅烧,制备了Ag/N-rGO催化剂。该方法简单易操作,但是以小分子混合物为前驱体制备的Ag/N-rGO催化剂的活性位点分布不均,催化效率不高。Guo J等[Guo J,Hsu A,Chu D,et al.Improving oxygen reduction reaction activities on carbon-supported Ag nanoparticles in alkaline solutions[J].The Journal of Physical Chemistry C,2010,114(10):4324-4330.]通过柠檬酸盐保护方法制备了四种不同金属Ag负载量的Ag/C催化剂,研究了碱性条件下影响Ag/C催化剂ORR活性的因素,对如何设计高效的Ag/C催化剂有重要的指导意义。近年来,尽管金属纳米粒子/C催化剂在诸多方面取得了长足进步,但仍未研发出可以取代Pt/C(20wt%)的催化剂。因此,采用简单易操作的方法设计金属配位络合物,进而制备ORR性能优异的催化剂对促进燃料电池的商业化进展具有重 要的意义。
发明内容
本发明的目的在于克服现有技术缺陷,提供一种碳负载纳米银催化剂的制备方法。
本发明的技术方案如下:
一种碳负载纳米银催化剂的制备方法,包括如下步骤:
(1)将含-NH 2官能团化合物与适量有机溶剂混合后,于室温下搅拌至完全溶解;
(2)将AgNO 3溶解于适量有机溶剂;
(3)将步骤(2)所得的物料匀速滴加至步骤(1)所得的物料中,滴加完毕后于室温搅拌反应10-15h,接着离心得沉淀,将该沉淀真空干燥后,得到高分子金属络合物;
(4)将上述高分子金属络合物在氮气气氛、惰性气体气氛或惰性气体与氢气的混合气氛下,以4-6℃/min的升温速率升温至750-950℃煅烧1.5-3h,即得所述碳负载纳米银催化剂;
上述含-NH 2官能团化合物为三(四氨基苯基)苯、三(四氨基苯基)胺或聚乙烯亚胺。
在本发明的一个优选实施方案中,所述含-NH 2官能团化合物为三(四氨基苯基)苯或三(四氨基苯基)胺。
在本发明的一个优选实施方案中,所述有机溶剂为二氯甲烷、氯仿或1-甲基-2-吡咯烷酮。
进一步优选的,所述有机溶剂为二氯甲烷或氯仿。
在本发明的一个优选实施方案中,所述含-NH 2官能团化合物和AgNO 3的摩尔比为1:1-6。
在本发明的一个优选实施方案中,所述步骤(1)中,含-NH 2官能团化合物和有机溶剂的比例为0.1mmol:15-25mL。
在本发明的一个优选实施方案中,所述步骤(2)中,AgNO 3和有机溶剂的比例为1mmol:10-20mL。
在本发明的一个优选实施方案中,所述惰性气体为氩气。
在本发明的一个优选实施方案中,所述真空干燥的温度为55-65℃,时间为10-15h。
在本发明的一个优选实施方案中,所述煅烧的温度为850-950℃。
本发明的有益效果是:
1、本发明使用的原料来源广泛,价格低廉,且实验操作简单。
2、本发明制备的催化剂,其活性位点Ag纳米颗粒分布均匀,表现出优秀的ORR性能。
3、本发明具有普适性,可以采用不同含NH 2官能团化合物及溶剂制。
附图说明
图1为本发明实施例1和2中不同Ag负载量的碳载纳米银催化剂的透射电镜图。
图2为本发明实施例1中Ag负载量为1eq的碳载纳米银催化剂的电化学性能图。
图3为对比例1中碳载铁催化剂的透射电镜图。
具体实施方式
以下通过具体实施方式结合附图对本发明的技术方案进行进一步的说明和描述。
实施例1
将70.2mg(0.2mmol)三(四氨基苯基)苯,35mL二氯甲烷加入到100mL圆底烧瓶中,室温下磁力搅拌至完全溶解;称量102mg(0.6mmol)AgNO 3固体,用10mL二氯甲烷溶解,匀速滴加至上述圆底烧瓶中;滴加完毕后,室温搅拌反应12h,离心得到沉淀。所得沉淀于60℃恒温烘箱中真空干燥12h,得到高分子金属络合物。
将0.2g上述步骤获得的高分子金属络合物置于马弗炉中,于Ar气体氛围下,以5℃/min的升温速率升温至850℃煅烧120min,自然冷却至室温得到Ag负载量为1eq的碳载纳米银催化剂。(起始电势:0.92V;半波电势:0.72V)
实施例2
将70.2mg(0.2mmol)三(四氨基苯基)苯,35mL二氯甲烷加入到100mL圆底烧瓶中,室温下磁力搅拌至完全溶解;称量153mg(0.9mmol)AgNO 3固体,用18mL 二氯甲烷溶解,匀速滴加至上述圆底烧瓶中;滴加完毕后,室温搅拌反应12h,离心得到沉淀。所得沉淀于60℃恒温烘箱中真空干燥12h,得到高分子金属络合物。
将0.2g上述步骤获得的高分子金属络合物置于马弗炉中,于Ar气体氛围下,以5℃/min的升温速率升温至850℃煅烧120min,自然冷却至室温得到Ag负载量为1.5eq的碳载纳米银催化剂。(起始电势:0.93V;半波电势:0.73V)
实施例3
将58mg(0.2mmol)三(四氨基苯基)胺,29mL氯仿加入到100mL圆底烧瓶中,室温下磁力搅拌至完全溶解;称量102mg(0.6mmol)AgNO 3固体,用10mL氯仿溶解,匀速滴加至上述圆底烧瓶中;滴加完毕后,室温搅拌反应12h,离心得到沉淀。所得沉淀于60℃恒温烘箱中真空干燥12h,得到高分子金属络合物。
将0.2g上述步骤获得的高分子金属络合物置于马弗炉中,于Ar气体氛围下,以5℃/min的升温速率升温至850℃煅烧120min,自然冷却至室温得到Ag负载量为1eq的碳载纳米银催化剂。(起始电势:0.91V;半波电势:0.70V)
实施例4
将58mg(0.2mmol)三(四氨基苯基)胺,29mL氯仿加入到100mL圆底烧瓶中,室温下磁力搅拌至完全溶解;称量102mg(0.6mmol)AgNO 3固体,用10mL氯仿溶解,匀速滴加至上述圆底烧瓶中;滴加完毕后,室温搅拌反应12h,离心得到沉淀。所得沉淀于60℃恒温烘箱中真空干燥12h。
将0.2g上述步骤获得的高分子金属络合物置于马弗炉中,于Ar气体氛围下,以5℃/min的升温速率升温至950℃煅烧120min,自然冷却至室温得到Ag负载量为1eq的碳载纳米银催化剂。(起始电势:0.90V;半波电势:0.70V)
对比例1
将70.2mg(0.2mmol)三(四氨基苯基)苯,35mL二氯甲烷加入到100mL圆底烧瓶中,室温下磁力搅拌至完全溶解;称量54mg(0.2mmol)FeCl 3·6H 2O固体,用10mL二氯甲烷溶解,匀速滴加至上述圆底烧瓶中;滴加完毕后,室温搅拌反应12h,离心得到沉淀。所得沉淀于60℃恒温烘箱中真空干燥12h,得到高分子金属 络合物。
将0.2g上述步骤获得的高分子金属络合物置于马弗炉中,于Ar气体氛围下,以5℃/min的升温速率升温至850℃煅烧120min,自然冷却至室温得到Fe负载量为1eq的碳载铁催化剂作为对比例1。
图1为实施例1和2制得的不同Ag负载量的碳载纳米银催化剂的透射电镜图。其中图a为实施例1,即Ag的负载量为1eq的碳载纳米银催化剂的透射电镜图,可以看到Ag单质的粒径及分布较为均一,其尺寸大约为50nm左右。图b为实施例2,即Ag的负载量为1.5eq的碳载纳米银催化剂的透射电镜图,Ag单质的粒径大小不一,大的粒子尺寸可以达到90-100nm,而小粒子尺寸仅有10-20nm,说明负载量对所合成的负载金属Ag的碳基材料的形貌有所影响,进而可能影响其电化学催化性能。
图2为实施例1制得的碳载纳米银催化剂的在0.1M KOH中的循环伏安图(CV),其中虚线代表氩气饱和条件下,实线代表氧气饱和条件下,可以看到,在氧气饱和下测得的CV图有明显的氧气还原峰,证明了在氧气饱和条件下催化剂催化ORR反应的发生。(b)图为对比例1和实施例1中样品的线性扫描伏安图(LSV),测试条件为氧气饱和的0.1M KOH中1600rpm下以5mV/s的扫描速度。其中实施例1的碳载纳米银催化剂的催化ORR活性明显要高于碳载铁催化剂,性能与商业化Pt/C催化剂相当(在价格成本上远高于实施例1产品),起峰电势、半波电势和极限扩散电流密度如表1所示。
图3为对比例1中碳载铁催化剂的透射电镜图。
表1
Figure PCTCN2020106046-appb-000001
以上所述,仅为本发明的较佳实施例而已,故不能依此限定本发明实施的范围,即依本发明专利范围及说明书内容所作的等效变化与修饰,皆应仍属本发明涵盖的范围内。
工业实用性
本发明公开了一种碳负载纳米银催化剂的制备方法,以含-NH 2官能团化合物与AgNO 3为原料,通过配位反应合成高分子金属络合物,然后,将该高分子金属络合物高温煅烧,经过其他后处理,制备可用于ORR的碳负载纳米银催化剂。本发明使用的原料来源广泛,价格低廉,且实验操作简单。本发明制备的催化剂,其活性位点Ag纳米颗粒分布均匀,表现出优秀的ORR性能。本发明具有普适性,可以采用不同含NH 2官能团化合物及溶剂制,具有工业实用性。

Claims (6)

  1. 一种碳负载纳米银催化剂的制备方法,其特征在于:包括如下步骤:
    (1)将含-NH 2官能团化合物与适量有机溶剂混合后,于室温下搅拌至完全溶解;
    (2)将AgNO 3溶解于适量有机溶剂;
    (3)将步骤(2)所得的物料匀速滴加至步骤(1)所得的物料中,滴加完毕后于室温搅拌反应10-15h,接着离心得沉淀,将该沉淀真空干燥后,得到高分子金属络合物;
    (4)将上述高分子金属络合物在氮气气氛、惰性气体气氛或惰性气体与氢气的混合气氛下,以4-6℃/min的升温速率升温至750-950℃煅烧1.5-3h,即得所述碳负载纳米银催化剂;
    上述含-NH 2官能团化合物为三(四氨基苯基)苯、三(四氨基苯基)胺或聚乙烯亚胺。
  2. 如权利要求1所述的制备方法,其特征在于:所述有机溶剂为二氯甲烷、氯仿或1-甲基-2-吡咯烷酮。
  3. 如权利要求1所述的制备方法,其特征在于:所述含-NH 2官能团化合物和AgNO 3的摩尔比为1:1-6。
  4. 如权利要求1所述的制备方法,其特征在于:所述步骤(1)中,含-NH 2官能团化合物和有机溶剂的比例为0.1mmol:15-25mL。
  5. 如权利要求1所述的制备方法,其特征在于:所述步骤(2)中,AgNO 3和有机溶剂的比例为1mmol:10-20mL。
  6. 如权利要求1所述的制备方法,其特征在于:所述煅烧的温度为850-950℃。
PCT/CN2020/106046 2019-08-01 2020-07-31 一种碳负载纳米银催化剂的制备方法 WO2021018268A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910709606.5A CN110548507B (zh) 2019-08-01 2019-08-01 一种碳负载纳米银催化剂的制备方法
CN201910709606.5 2019-08-01

Publications (1)

Publication Number Publication Date
WO2021018268A1 true WO2021018268A1 (zh) 2021-02-04

Family

ID=68736912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/106046 WO2021018268A1 (zh) 2019-08-01 2020-07-31 一种碳负载纳米银催化剂的制备方法

Country Status (2)

Country Link
CN (1) CN110548507B (zh)
WO (1) WO2021018268A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110548507B (zh) * 2019-08-01 2020-11-13 厦门大学 一种碳负载纳米银催化剂的制备方法
WO2023106391A1 (ja) * 2021-12-10 2023-06-15 日産化学株式会社 焼成体及び該焼成体を用いた燃料電池
CN114959761B (zh) * 2022-05-05 2023-11-03 中国科学院上海高等研究院 一种银中空纤维电极的制备方法及应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1767269A2 (en) * 2005-09-27 2007-03-28 Tanaka Kikinzoku Kogyo K.K. Method for producing catalyst
CN104801724A (zh) * 2015-04-03 2015-07-29 浙江理工大学 一种Ag/C纳米空心球及其制备方法
CN105800587A (zh) * 2016-03-07 2016-07-27 常州大学 一种多孔炭负载纳米材料的制备方法
CN107180974A (zh) * 2017-05-18 2017-09-19 厦门大学 一种多孔碳/贵金属纳米杂化材料及其制备方法
CN108452799A (zh) * 2018-05-10 2018-08-28 北京化工大学 一种负载型银催化剂的制备方法及其催化苯甲醇无氧脱氢制苯甲醛的应用
CN110548507A (zh) * 2019-08-01 2019-12-10 厦门大学 一种碳负载纳米银催化剂的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7819939B1 (en) * 2006-08-07 2010-10-26 Ferro Corporation Synthesis of nickel nanopowders
CN101740226A (zh) * 2008-11-05 2010-06-16 健鼎(无锡)电子有限公司 形成含触媒层的电极的方法
CN102220045A (zh) * 2010-04-16 2011-10-19 上海亿金纳米科技有限公司 一种低温烧结的溶剂型纳米银导电油墨及其制备方法
CN102974365B (zh) * 2012-12-12 2016-03-30 天津工业大学 负载型高分散多组份贵金属纳米颗粒催化剂的制备方法
CN108940269B (zh) * 2017-11-03 2021-04-06 深圳大学 一种纳米合金及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1767269A2 (en) * 2005-09-27 2007-03-28 Tanaka Kikinzoku Kogyo K.K. Method for producing catalyst
CN104801724A (zh) * 2015-04-03 2015-07-29 浙江理工大学 一种Ag/C纳米空心球及其制备方法
CN105800587A (zh) * 2016-03-07 2016-07-27 常州大学 一种多孔炭负载纳米材料的制备方法
CN107180974A (zh) * 2017-05-18 2017-09-19 厦门大学 一种多孔碳/贵金属纳米杂化材料及其制备方法
CN108452799A (zh) * 2018-05-10 2018-08-28 北京化工大学 一种负载型银催化剂的制备方法及其催化苯甲醇无氧脱氢制苯甲醛的应用
CN110548507A (zh) * 2019-08-01 2019-12-10 厦门大学 一种碳负载纳米银催化剂的制备方法

Also Published As

Publication number Publication date
CN110548507A (zh) 2019-12-10
CN110548507B (zh) 2020-11-13

Similar Documents

Publication Publication Date Title
CN109216712B (zh) 基于金属有机框架的非贵金属/碳复合材料的制备方法、非贵金属/碳复合材料及其应用
WO2021018268A1 (zh) 一种碳负载纳米银催化剂的制备方法
CN108736028B (zh) 一种多孔氮掺杂碳负载钴纳米材料、制备方法及其应用
CN113113621B (zh) 有序低铂合金催化剂的制备方法和应用
CN111276708B (zh) 一种基于MOF-5的Fe/N/C氧还原催化剂及其制备方法和应用
CN107649160B (zh) 一种石墨烯负载过渡族金属单分散原子催化剂及其制备方法和应用
CN106944057A (zh) 一种用于电催化反应的单原子金属‑碳复合催化剂的制备方法
CN109546162B (zh) 一种微孔化铁-氮掺杂碳催化剂材料的可循环制备方法
CN103170334B (zh) 一种碳载钴氧化物催化剂及其制备和应用
CN103811775A (zh) 一种用于燃料电池氧还原催化剂的多孔纳米复合材料
CN112652780B (zh) 一种Fe/Fe3C纳米颗粒负载多孔氮掺杂碳基氧还原催化剂的制备方法
WO2012071709A1 (zh) 一种ag/mnyox/c催化剂及其制备和应用
KR102123148B1 (ko) 금속착물을 활용한 탄소껍질을 가진 금속 촉매의 합성방법
CN110854392A (zh) 一种基于金属有机骨架的谷穗状碳材料及制备和应用
CN113013427A (zh) 一种基于金属有机框架(mof)材料衍生的高性能电催化剂载体及其制备方法
CN113881965B (zh) 一种以生物质碳源为模板负载金属纳米颗粒催化剂及其制备方法和应用
Huang et al. Chelating agent assisted heat treatment of carbon supported cobalt oxide nanoparticle for use as cathode catalyst of polymer electrolyte membrane fuel cell (PEMFC)
CN111072018A (zh) 一种负载金属的氮掺杂褶皱石墨烯的制备方法及应用
CN110961162A (zh) 一种催化剂载体、贵金属催化剂及其制备方法和应用
CN111755705A (zh) 三原子级分散的金属团簇负载氮掺杂纳米碳燃料电池催化剂
CN115020722A (zh) 一种双金属含氮多孔碳催化剂的制备方法
CN112421062A (zh) 一种单原子铁分散/银纳米颗粒复合结构催化剂的制备方法
CN112725819A (zh) 一种钨钼基氮碳化物纳米材料及其制备方法与应用
CN109499602B (zh) 一种系统化调控负载型铁原子团簇原子个数的合成方法
CN109546166B (zh) 一种Pt/金属碳化物/碳纳米材料催化剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20847595

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20847595

Country of ref document: EP

Kind code of ref document: A1