WO2021015283A1 - オーステナイト系ステンレス鋼材及び溶接継手 - Google Patents

オーステナイト系ステンレス鋼材及び溶接継手 Download PDF

Info

Publication number
WO2021015283A1
WO2021015283A1 PCT/JP2020/028586 JP2020028586W WO2021015283A1 WO 2021015283 A1 WO2021015283 A1 WO 2021015283A1 JP 2020028586 W JP2020028586 W JP 2020028586W WO 2021015283 A1 WO2021015283 A1 WO 2021015283A1
Authority
WO
WIPO (PCT)
Prior art keywords
content
steel material
austenitic stainless
stainless steel
less
Prior art date
Application number
PCT/JP2020/028586
Other languages
English (en)
French (fr)
Inventor
孝裕 小薄
悠平 鈴木
翔伍 青田
岡田 浩一
雅浩 ▲瀬▼戸
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to CN202080053114.6A priority Critical patent/CN114144537A/zh
Priority to KR1020227005913A priority patent/KR20220036969A/ko
Priority to JP2021534088A priority patent/JP7173348B2/ja
Priority to CN202210952209.2A priority patent/CN115341144B/zh
Priority to EP20843320.1A priority patent/EP4006179A4/en
Priority to US17/597,682 priority patent/US20220259688A1/en
Publication of WO2021015283A1 publication Critical patent/WO2021015283A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/167Arc welding or cutting making use of shielding gas and of a non-consumable electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/32Accessories
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/007Heat treatment of ferrous alloys containing Co
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • B23K2103/05Stainless steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present disclosure relates to steel materials, and more particularly to austenitic stainless steel materials and welded joints using the austenitic stainless steel materials.
  • Austenitic stainless steel is used as the steel for these chemical plant equipment applications.
  • Chemical plant equipment includes multiple equipment.
  • Each device of the chemical plant equipment is, for example, an atmospheric distillation device, a vacuum distillation device, a direct desulfurization device, a catalytic reformer, and the like.
  • These devices include heating furnace tubes, reaction towers, tanks, heat exchangers, piping and the like. These devices are welded structures formed by welding steel materials.
  • the average temperature during operation of each device is different.
  • the average temperature during operation is referred to as "average operating temperature”.
  • a vacuum distillation apparatus is operated at 400-450 ° C.
  • the direct desulfurization equipment is operated at 400-450 ° C.
  • the catalytic reformer operates at 420-700 ° C. Therefore, the steel materials used for the heating furnace pipes, reaction towers, tanks, heat exchangers, pipes, etc. of these devices are maintained at an average operating temperature of about 400 to 700 ° C. for a long time during the operation of the devices.
  • some of the equipment of chemical plant equipment operates at a temperature of more than 700 ° C.
  • the steel materials used for the equipment in the chemical plant equipment are the planned construction site of the chemical plant or the site where the chemical plant is located. Will be welded at. In recent welding work, in order to reduce the number of welding passes, large heat input welding with a large amount of heat input is often adopted.
  • Stabilized austenitic stainless steel has been developed for the purpose of suppressing the sensitization of austenitic stainless steel in HAZ.
  • the stabilized austenitic stainless steel material contains Nb or Ti.
  • the affinity with C is higher in Nb and Ti than in Cr. Therefore, in the stabilized austenitic stainless steel material, Nb carbide and Ti carbide are generated by Nb and Ti, and the formation of Cr carbide is suppressed. As a result, the formation of Cr-deficient regions near the grain boundaries is suppressed. As a result, the stabilized austenitic stainless steel material can suppress the sensitization of HAZ.
  • Knife line attack means the following phenomenon.
  • the temperature of the portion near the weld metal (the portion corresponding to HAZ) of the stabilized austenitic stainless steel material rises to near the melting point.
  • the temperature of the portion near the weld metal described above rises to about 1200 ° C.
  • the Nb carbide and Ti carbide that fixed C in the steel material are melted.
  • the solidification stage (cooling stage) of the weld metal Nb and Ti try to combine with C again.
  • the cooling rate of the vicinity portion in the solidification stage is high.
  • the temperature of the vicinity portion is lowered to 800 to 500 ° C., which is the temperature range for forming Cr carbides, while Nb and Ti cannot be completely bonded to C.
  • Nb and Ti cannot be bonded to C
  • Cr is bonded to C
  • Cr carbide is formed.
  • sharp cracks occur in the portion of HAZ near the boundary with the weld metal. This phenomenon is called knife line attack. Knife line attack is a type of sensitization. Therefore, it is desired that the occurrence of sensitization can be suppressed even when high heat input welding is performed.
  • Patent Document 1 proposes an austenitic stainless steel having excellent embrittlement and cracking resistance of HAZ when used at a high temperature for a long time.
  • the austenitic stainless steel disclosed in Patent Document 1 has a mass% of C: less than 0.04%, Si: 1.5% or less, Mn: 2% or less, Cr: 15 to 25%, Ni: 6 to. 30%, N: 0.02 to 0.35%, sol.
  • Al 0.03% or less
  • Nb 0.5% or less
  • Ti 0.4% or less
  • V 0.4% or less
  • Ta 0.2% or less
  • Hf 0.2%
  • P, S, Sn, As, Zn, Pb and Sb in the impurities are P, respectively.
  • F1 and F2 which are 0.01% or less and are represented by the following equations (1) and (2), are F1 ⁇ 0.075 and 0.05 ⁇ F2 ⁇ 1.7-9, respectively. Satisfy F1.
  • F1 S + ⁇ (P + Sn) / 2 ⁇ + ⁇ (As + Zn + Pb + Sb) / 5 ⁇ (1)
  • F2 Nb + Ta + Zr + Hf + 2Ti + (V / 10) Equation (2)
  • Patent Document 1 The austenitic stainless steel proposed in Patent Document 1 enhances the embrittlement cracking resistance of HAZ when used at high temperature for a long time.
  • Patent Document 1 does not assume large heat input welding. Therefore, Patent Document 1 does not study the sensitization resistance property after long-term use at an average operating temperature of 400 to 700 ° C. after large heat input welding.
  • An object of the present disclosure is to provide an austenitic stainless steel material having excellent sensitization resistance properties even after long-term use at an average operating temperature of 400 to 700 ° C. after large heat welding.
  • the austenitic stainless steel material according to the present disclosure is Chemical composition is C: 0.020% or less in mass%, Si: 1.50% or less, Mn: 2.00% or less, P: 0.045% or less, S: 0.0300% or less, Cr: 15.00 to 25.00%, Ni: 9.00 to 20.00%, N: 0.05 to 0.15%, Nb: 0.1-0.8%, Mo: 0.10 to 4.50%, W: 0.01-1.00%, Ti: 0 to 0.50%, Ta: 0 to 0.50%, V: 0 to 1.00%, Zr: 0 to 0.10%, Hf: 0 to 0.10%, Cu: 0-2.00%, Co: 0 to 1.00%, sol.
  • the rest consists of Fe and impurities Satisfy equation (1)
  • the Nb content in the residue obtained by the extraction residue method is 0.050 to 0.267% by mass, and the Cr content in the residue is 0.125% or less by mass. 21.9Mo + 5.9W-5.0 ⁇ 0 (1)
  • the content (mass%) of the corresponding element in the chemical composition is substituted for each element symbol in the formula (1).
  • the austenitic stainless steel material of the present disclosure has excellent sensitization resistance even after being used for a long time at an average operating temperature of 400 to 700 ° C. after large heat welding.
  • FIG. 1 is a plan view showing an example of a welded joint of the present embodiment.
  • FIG. 2 is a cross-sectional view of the welded joint of FIG. 1 cut in the width direction of the weld metal.
  • FIG. 3 is a cross-sectional view of the welded joint of FIG. 1 cut in the weld metal extending direction.
  • FIG. 4 is a cross-sectional view of the welded joint cut in the weld metal extending direction, which is different from FIG.
  • FIG. 5 is a view showing a cross section in a direction perpendicular to the welding metal extending direction in the welded joint of the present embodiment.
  • FIG. 6 is a side view of the large heat input welded joint simulated test piece produced in the examples.
  • the present inventors have studied an austenitic stainless steel material having excellent sensitization resistance characteristics even after long-term use at an average operating temperature of 400 to 700 ° C. after large heat welding.
  • the present inventors first examined the chemical composition of steel materials. In order to enhance the sensitization resistance property, it is effective to suppress the formation of Cr-deficient regions at the grain boundaries. In order to suppress the formation of Cr-deficient regions at the grain boundaries, it is effective to suppress the formation of Cr carbides in the steel material. In order to suppress the formation of Cr carbides, it is effective to reduce the C content in the chemical composition of the steel material. Further, in order to suppress the bond of C in the steel material with Cr, it is effective to contain Nb in the steel material and bond C in the steel material with Nb. Therefore, the present inventors first examined the chemical composition of the steel material in order to enhance the sharpening resistance property of the steel material.
  • the chemical composition is C: 0.020% or less, Si: 1.50% or less, Mn: 2.00% or less, P: 0.045% or less, S: 0.0300% or less, Cr: 15 .00 to 25.00%, Ni: 9.00 to 20.00%, N: 0.05 to 0.15%, Nb: 0.1 to 0.8%, Ti: 0 to 0.50%, Ta: 0 to 0.50%, V: 0 to 1.00%, Zr: 0 to 0.10%, Hf: 0 to 0.10%, Cu: 0 to 2.00%, Co: 0-1 .00%, sol.
  • Al 0 to 0.030%
  • B 0 to 0.0100%
  • Ca 0 to 0.0200%
  • Mg 0 to 0.0200%
  • rare earth elements 0 to 0.100%
  • Sn 0 to 0.010%
  • Zn 0 to 0.010%
  • Pb 0 to 0.010%
  • Sb 0 to 0.010%
  • the balance consists of Fe and impurities. It was thought that the formation of Cr carbide could be suppressed if the austenite-based stainless steel material was used.
  • large heat input welding may be performed on austenitic stainless steel materials at the time of new construction or repair of chemical plant equipment.
  • the temperature of the portion of the steel material in the vicinity of the weld metal exceeds 1200 ° C. due to the welding heat during the large heat input welding. Therefore, even if a large amount of Cr carbides are not present in the steel material before the large heat input welding, Cr carbides may be generated in the steel material after the large heat input welding.
  • the austenitic stainless steel material may become sensitized when the chemical plant equipment is operated and held at an average operating temperature of 400 to 700 ° C. for a long time.
  • the present inventors further investigated a means capable of suppressing the occurrence of sensitization even when the austenitic stainless steel material is heat-welded and then held at an average operating temperature of 400 to 700 ° C. for a long time. did. As a result, the present inventors obtained the following findings.
  • Mo 0.10 to 4.50% and W: 0.01 to 1.00% are contained as essential elements in place of a part of Fe.
  • the Cr carbides formed in the steel materials during the manufacturing process of the steel materials and during the high heat input welding are M 23 C 6 type carbides. Mo and W enter the Cr site (M site) of the Cr carbide of M 23 C 6 type by replacing Cr, and lower the free energy of the Cr carbide. Further, the diffusion rate of Mo and the diffusion rate of W are slower than the diffusion rate of Cr. Therefore, the growth rate of Cr carbide in which Mo and / or W enter the M site in place of Cr becomes significantly slower. Based on the above mechanism, the present inventors considered that the inclusion of Mo and W suppresses the formation and growth of Cr carbides during the production of steel materials and high heat input welding.
  • the present inventors further, in an austenitic stainless steel material in which the content of each element in the chemical composition is within the above range and satisfies the formula (1), the average operating temperature of 400 to 700 ° C. after high heat input welding.
  • the proportion of CrNb nitride in the precipitate in the austenitic stainless steel material having the above-mentioned chemical composition is increased. That is, the proportion of CrNb nitride in the precipitate is increased.
  • the CrNb nitride is a fine precipitate (nitride) containing Cr and Nb. CrNb nitride increases the grain boundary area of the steel material. If the grain boundary area is increased, the sharpening resistance property is enhanced even when the crystal grain boundary area is maintained at an average operating temperature of 400 to 700 ° C. for a long time after high heat input welding.
  • the Nb content in the residue is 0.050 to 0.267% in mass% and the Cr content in the residue is 0.125% or less in mass%, in the precipitate in the steel material.
  • the proportion of CrNb nitride becomes sufficiently high. As a result, it was found that excellent sharpening resistance characteristics can be obtained even when the product is held at an average operating temperature of 400 to 700 ° C. for a long time after high heat input welding.
  • the austenitic stainless steel material of the present embodiment completed based on the above knowledge has the following constitution.
  • Austenitic stainless steel Chemical composition is C: 0.020% or less in mass%, Si: 1.50% or less, Mn: 2.00% or less, P: 0.045% or less, S: 0.0300% or less, Cr: 15.00 to 25.00%, Ni: 9.00 to 20.00%, N: 0.05 to 0.15%, Nb: 0.1-0.8%, Mo: 0.10 to 4.50%, W: 0.01-1.00%, Ti: 0 to 0.50%, Ta: 0 to 0.50%, V: 0 to 1.00%, Zr: 0 to 0.10%, Hf: 0 to 0.10%, Cu: 0-2.00%, Co: 0 to 1.00%, sol.
  • the "Nb content in the residue” is the ratio (mass) of the mass of the Nb content in the residue to the mass of the austenitic stainless steel material (the mass of the austenitic stainless steel material electrolyzed by the extraction residue method). %) Means.
  • the “Cr content in the residue” is the ratio (mass%) of the mass of the Cr content in the residue to the mass of the austenitic stainless steel material (the mass of the austenitic stainless steel material electrolyzed by the extraction residue method). means.
  • the austenitic stainless steel material of the present embodiment has excellent sensitization resistance even after being used for a long time at an average operating temperature of 400 to 700 ° C. after large heat welding.
  • the chemical composition is Mo: 2.50 to 4.50%, and Co: 0.01-1.00%, , And further satisfy the formulas (2) and (3),
  • the Nb content in the residue obtained by the extraction residue method is 0.065 to 0.245% by mass, and the Cr content in the residue is 0.104% or less in mass%.
  • the austenitic stainless steel material of the above [2] further has excellent polythionic acid SCC resistance, excellent liquefaction cracking resistance, and excellent naphthenic acid corrosion resistance.
  • the chemical composition contains at least one element or two or more elements belonging to any of the first to fifth groups.
  • Group 1 Ti: 0.01-0.50%, Ta: 0.01-0.50%, V: 0.01-1.00%, Zr: 0.01 to 0.10%, and Hf: 0.01 to 0.10%
  • Group 2 Cu: 0.01 to 2.00% and Co: 0.01-1.00%
  • Group 3 sol.
  • Al 0.001 to 0.030%
  • Group 5 Ca: 0.0001-0.0200%
  • Mg 0.0001 to 0.0200%
  • Rare earth element 0.001 to 0.100%.
  • the chemical composition of the austenitic stainless steel material of the present embodiment contains the following elements.
  • C 0.020% or less Carbon (C) is inevitably contained. That is, the C content is more than 0%. C produces M 23 C 6 type Cr carbides at the grain boundaries. If the C content exceeds 0.020%, even if the content of other elements is within the range of the present embodiment, Cr carbides are excessively generated and the sharpening resistance property of the steel material is remarkably lowered. Therefore, the C content is 0.020% or less.
  • the preferable upper limit of the C content is 0.018%, more preferably 0.016%, further preferably 0.014%, still more preferably 0.012%.
  • the C content is preferably as low as possible. However, excessive reduction of C content increases manufacturing costs. Therefore, in terms of industrial production, the preferable lower limit of the C content is 0.001%, and more preferably 0.002%.
  • Si 1.50% or less Silicon (Si) is inevitably contained. That is, the Si content is more than 0%. Si deoxidizes steel in the steelmaking process. If even a small amount of Si is contained, the above effect can be obtained to some extent. However, if the Si content exceeds 1.50%, the weld cracking sensitivity is remarkably increased even if the other element content is within the range of the present embodiment. Furthermore, since Si is a ferrite stabilizing element, the stability of austenite is reduced. In this case, a sigma phase ( ⁇ phase) is formed in the steel material during long-term use at an average operating temperature of 400 to 700 ° C.
  • ⁇ phase sigma phase
  • the ⁇ phase reduces the toughness and ductility of the steel material during use at an average operating temperature of 400-700 ° C. Therefore, the Si content is 1.50% or less.
  • the lower limit of the Si content is preferably 0.01%, more preferably 0.05%, still more preferably 0.10%, still more preferably 0.15%, still more preferably 0.20. %.
  • the preferred upper limit of the Si content is 1.40%, more preferably 1.20%, still more preferably 1.00%, still more preferably 0.80%, still more preferably 0.70. %, More preferably 0.60%, still more preferably 0.50%.
  • Mn 2.00% or less Manganese (Mn) is inevitably contained. That is, the Mn content is more than 0%. Mn combines with S in the steel material to form MnS, which enhances the hot workability of the steel material. Mn further deoxidizes the welded portion of the steel material during welding. If even a small amount of Mn is contained, the above effect can be obtained to some extent. However, if the Mn content exceeds 2.00%, even if the content of other elements is within the range of this embodiment, the sigma phase in the steel material when used at an average operating temperature of 400 to 700 ° C. ( ⁇ phase) is easily generated.
  • ⁇ phase the sigma phase in the steel material when used at an average operating temperature of 400 to 700 ° C.
  • the Mn content is 2.00% or less.
  • the preferable lower limit of the Mn content is 0.01%, more preferably 0.10%, further preferably 0.50%, still more preferably 1.00%, still more preferably 1.20. %, More preferably 1.30%.
  • the preferred upper limit of the Mn content is 1.80%, more preferably 1.60%, still more preferably 1.55%.
  • P 0.045% or less Phosphorus (P) is an impurity that is inevitably contained. That is, the P content is more than 0%. P segregates at the grain boundaries of the steel material during large heat input welding. As a result, the sharpening resistance property of the steel material is lowered. P further increases the weld crack sensitivity of the steel material during welding. When the P content exceeds 0.045%, even if the content of other elements is within the range of the present embodiment, the sharpening resistance property of the steel material is lowered and the weld cracking sensitivity is increased. Therefore, the P content is 0.045% or less.
  • the preferred upper limit of the P content is 0.040%, more preferably 0.035%, still more preferably 0.030%. It is preferable that the P content is as low as possible. However, excessive reduction of P content raises the manufacturing cost of steel materials. Therefore, considering normal industrial production, the preferable lower limit of the P content is 0.001%, more preferably 0.002%.
  • S 0.0300% or less Sulfur (S) is an impurity that is inevitably contained. That is, the S content is more than 0%. S segregates at grain boundaries during use of steel materials in a high temperature environment. As a result, the sharpening resistance property of the steel material is lowered. S further increases the weld crack sensitivity of the steel material during welding. When the S content exceeds 0.0300%, even if the content of other elements is within the range of the present embodiment, the sharpening resistance property of the steel material is lowered and the welding crack sensitivity is increased. Therefore, the S content is 0.0300% or less.
  • the preferred upper limit of the S content is 0.0200%, more preferably 0.0150%, even more preferably 0.0100%, even more preferably 0.0060%, still more preferably 0.0050. %, More preferably 0.0040%, still more preferably 0.0030%. It is preferable that the S content is as low as possible. However, excessive reduction of S content raises the manufacturing cost of steel materials. Therefore, considering normal industrial production, the preferred lower limit of the S content is 0.0001%, more preferably 0.0002%.
  • Chromium (Cr) enhances the oxidation resistance and corrosion resistance of the steel material when the steel material is used at an average operating temperature of 400 to 700 ° C. If the Cr content is less than 15.00%, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the Cr content exceeds 25.00%, the stability of austenite in the steel material at an average operating temperature of 400 to 700 ° C. decreases even if the content of other elements is within the range of this embodiment. To do. In this case, the creep strength of the steel material decreases. Therefore, the Cr content is 15.00 to 25.00%.
  • the lower limit of the Cr content is preferably 15.50%, more preferably 16.00%, still more preferably 16.20%, still more preferably 16.40%.
  • the preferred upper limit of the Cr content is 24.00%, more preferably 23.00%, further preferably 22.00%, still more preferably 21.00%, still more preferably 20.00. %, More preferably 19.00%.
  • Ni 9.00 to 20.00%
  • Nickel (Ni) stabilizes austenite and increases the creep strength of steel materials at an average operating temperature of 400-700 ° C. If the Ni content is less than 9.00%, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the Ni content exceeds 20.00%, the above effect is saturated and the manufacturing cost is further increased. Therefore, the Ni content is 9.00 to 20.00%.
  • the preferred lower limit of the Ni content is 9.50%, more preferably 9.80%, still more preferably 10.00%.
  • the preferred upper limit of the Ni content is 18.00%, more preferably 16.00%, still more preferably 15.00%, still more preferably 14.50%, still more preferably 14.00. %, More preferably 13.50%.
  • N 0.05 to 0.15% Nitrogen (N) dissolves in the matrix (matrix) to stabilize austenite. N further produces CrNb nitride in the steel. CrNb nitride increases the total area of grain boundaries. Therefore, even when the product is operated for a long time at an average operating temperature of 400 to 700 ° C., the formation of Cr carbide can be suppressed. As a result, the sharpening resistance property of the steel material is enhanced. If the N content is less than 0.05%, the above effect cannot be sufficiently obtained. On the other hand, if the N content exceeds 0.15%, Cr nitride (Cr 2 N) is formed at the grain boundaries.
  • the N content is 0.05 to 0.15%.
  • the preferred lower limit of the N content is 0.06%, more preferably 0.07%.
  • the preferred upper limit of the N content is 0.14%, more preferably 0.12%, still more preferably 0.10%, still more preferably 0.09%.
  • Nb 0.1-0.8% Niobium (Nb), together with N, produces CrNb nitride in the austenite crystal grains, increasing the total area of grain boundaries. Therefore, even when the product is operated for a long time at an average operating temperature of 400 to 700 ° C., the formation of Cr carbide can be suppressed. As a result, the sharpening resistance property of the steel material is enhanced. Nb further combines with C to form MX-type Nb carbides. By generating Nb carbide and fixing C, the amount of solid solution C in the steel material is reduced.
  • the formation of Cr carbides at the grain boundaries is suppressed, and the sharpening resistance property of the steel material is enhanced.
  • the Nb carbide further enhances the creep strength of the steel material at an average operating temperature of 400-700 ° C. by precipitation strengthening. If the Nb content is less than 0.1%, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the Nb content exceeds 0.8%, CrNb nitride and Nb carbide are excessively produced even if the content of other elements is within the range of the present embodiment.
  • the Nb content is 0.1-0.8%.
  • the preferred lower limit of the Nb content is 0.2%, more preferably 0.3%.
  • the preferred upper limit of the Nb content is 0.7%, more preferably 0.6%, still more preferably 0.5%, still more preferably 0.4%.
  • Mo 0.10 to 4.50%
  • Molybdenum (Mo) suppresses the formation and growth of M 23 C 6 type Cr carbides at grain boundaries during the use of steel materials at an average operating temperature of 400-700 ° C.
  • Mo as a solid solution strengthening element, further enhances the creep strength of the steel material at an average operating temperature of 400 to 700 ° C. If the Mo content is less than 0.10%, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the Mo content exceeds 4.50%, the formation of intermetallic compounds such as the LAVES phase is promoted in the crystal grains even if the content of other elements is within the range of the present embodiment.
  • the strength in the crystal grains becomes excessively high, and the strength difference between the inside of the crystal grains and the grain boundaries becomes large. Therefore, stress concentration occurs at the grain interface, and welding cracks and embrittlement cracks are likely to occur. Therefore, the Mo content is 0.10 to 4.50%.
  • the Mo content is 2.50% or more, the average operating temperature of 400 to 700 ° C.
  • polythionic acid SCC resistance and naphthenic acid corrosion resistance can be enhanced. Therefore, if sufficient polythionic acid SCC resistance and sufficient naphthenic acid corrosion resistance are required for steel materials used at an average operating temperature of 400 to 700 ° C., the Mo content is 2.50 to 4.50%. is there.
  • the preferable lower limit of the Mo content is 0.15%, more preferably 0.20%, and further. It is preferably 0.25%, more preferably 0.27%, still more preferably 0.30%.
  • the upper limit of Mo content is preferably less than 2.50%, more preferably 2.45%. It is even more preferably 2.20%, even more preferably 2.00%, even more preferably 1.70%, even more preferably 1.50%, still more preferably 1.30%. It is even more preferably 1.00%, even more preferably 0.90%, even more preferably 0.80%, even more preferably 0.70%, still more preferably 0.60%, and more preferably 0.60%. More preferably, it is 0.50%.
  • the preferable lower limit of the Mo content is 2.50% as described above, and more preferably 2.70%. Yes, more preferably 2.90%, still more preferably 3.00%, still more preferably 3.05%, still more preferably 3.10%.
  • the preferable upper limit of the Mo content is 4.30%, more preferably 4.20%, and further. It is preferably 4.15%, more preferably 4.05%, and even more preferably 3.95%.
  • W 0.01 to 1.00% Tungsten (W), like Mo, suppresses the formation and growth of M 23 C 6 type Cr carbides at grain boundaries during the use of steel materials at average operating temperatures of 400-700 ° C. W, as a solid solution strengthening element, further enhances the creep strength of the steel material at an average operating temperature of 400 to 700 ° C. If the W content is less than 0.01%, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the W content exceeds 1.00%, the formation of intermetallic compounds such as the LAVES phase is promoted in the crystal grains even if the content of other elements is within the range of the present embodiment.
  • the W content is 0.01 to 1.00%.
  • the preferable lower limit of the W content is 0.02%, more preferably 0.04%, further preferably 0.06%, still more preferably 0.08%, still more preferably 0.10. %.
  • the preferable upper limit of the W content is 0.80%, more preferably 0.60%, further preferably 0.40%, further preferably 0.35%, still more preferably 0.30. %.
  • the rest of the chemical composition of the austenitic stainless steel material according to this embodiment consists of Fe and impurities.
  • the impurities are those mixed from ore, scrap, or the manufacturing environment as a raw material when the austenitic stainless steel material is industrially manufactured, and adversely affect the austenitic stainless steel material of the present embodiment. Means what is allowed within the range that does not give.
  • Sn 0 to 0.010% As: 0 to 0.010%
  • Zn 0 to 0.010%
  • Pb 0 to 0.010%
  • Sb 0 to 0.010%
  • Tin (Sn), arsenic (As), zinc (Zn), lead (Pb) and antimony (Sb) are all impurities.
  • the Sn content may be 0%.
  • the As content may be 0%.
  • the Zn content may be 0%.
  • the Pb content may be 0%.
  • the Sb content may be 0%. When contained, all of these elements segregate at the grain boundaries to lower the melting point of the grain boundaries or reduce the binding force of the grain boundaries.
  • the hot workability and weldability of the steel material are lowered even if the content of other elements is within the range of the present embodiment.
  • the As content exceeds 0.010%
  • the hot workability and weldability of the steel material are lowered even if the content of other elements is within the range of the present embodiment.
  • the Zn content exceeds 0.010%
  • the hot workability and weldability of the steel material are lowered even if the other element content is within the range of this embodiment.
  • the Pb content exceeds 0.010%, the hot workability and weldability of the steel material are lowered even if the content of other elements is within the range of this embodiment.
  • the Sn content is 0 to 0.010%.
  • the As content is 0 to 0.010%.
  • the Zn content is 0 to 0.010%.
  • the Pb content is 0 to 0.010%.
  • the Sb content is 0 to 0.010%.
  • the lower limit of the Sn content may be more than 0% or 0.001%.
  • the lower limit of the As content may be more than 0% or 0.001%.
  • the lower limit of the Zn content may be more than 0% or 0.001%.
  • the lower limit of the Pb content may be more than 0% or 0.001%.
  • the lower limit of the Sb content may be more than 0% or 0.001%.
  • the chemical composition of the austenitic stainless steel material according to the present embodiment may further contain one element or two or more elements selected from the group consisting of Ti, Ta, V, Zr and Hf instead of a part of Fe. .. All of these elements combine with C to form carbides. Therefore, the solid solution C is reduced, and the sharpening resistance property of the steel material is enhanced.
  • Titanium (Ti) is an optional element and may not be contained. That is, the Ti content may be 0%. When contained, Ti combines with C in the steel to form carbides. As a result, the formation of Cr carbide is suppressed, and the sharpening resistance property of the steel material is enhanced. If even a small amount of Ti is contained, the above effect can be obtained to some extent. However, if the Ti content exceeds 0.50%, carbides will be excessively precipitated in the crystal grains even if the content of other elements is within the range of the present embodiment. In this case, the strength in the crystal grains becomes excessively high, and the strength difference between the inside of the crystal grains and the grain boundaries becomes large.
  • the Ti content is 0 to 0.50%.
  • the preferred lower limit of the Ti content is more than 0%, more preferably 0.01%, still more preferably 0.02%.
  • the preferred upper limit of the Ti content is 0.45%, more preferably 0.40%, still more preferably 0.35%, still more preferably 0.30%.
  • Tantalum (Ta) is an optional element and may not be contained. That is, the Ta content may be 0%. When contained, Ta combines with C to form carbides. As a result, the formation of Cr carbide is suppressed, and the sharpening resistance property of the steel material is enhanced. If even a small amount of Ta is contained, the above effect can be obtained to some extent. However, if the Ta content exceeds 0.50%, carbides will be excessively precipitated in the crystal grains even if the content of other elements is within the range of the present embodiment. In this case, the strength in the crystal grains becomes excessively high, and the strength difference between the inside of the crystal grains and the grain boundaries becomes large.
  • the Ta content is 0 to 0.50%.
  • the preferred lower limit of the Ta content is more than 0%, more preferably 0.01%, still more preferably 0.02%.
  • the preferred upper limit of the Ta content is 0.45%, more preferably 0.40%, still more preferably 0.35%, still more preferably 0.30%.
  • V 0 to 1.00%
  • Vanadium (V) is an optional element and may not be contained. That is, the V content may be 0%. When contained, V combines with C to form carbides. As a result, the formation of Cr carbide is suppressed, and the sharpening resistance property of the steel material is enhanced. If even a small amount of V is contained, the above effect can be obtained to some extent. However, if the V content exceeds 1.00%, carbides will be excessively precipitated in the crystal grains even if the content of other elements is within the range of the present embodiment. In this case, the strength in the crystal grains becomes excessively high, and the strength difference between the inside of the crystal grains and the grain boundaries becomes large.
  • the V content is 0 to 1.00%.
  • the preferable lower limit of the V content is more than 0%, more preferably 0.01%, further preferably 0.02%, still more preferably 0.04%, still more preferably 0.06. %.
  • the preferred upper limit of the V content is 0.80%, more preferably 0.70%, still more preferably 0.50%, still more preferably 0.40%, still more preferably 0.35. %, More preferably 0.30%.
  • Zr Zirconium
  • Zr Zirconium
  • the Zr content may be 0%.
  • Zr combines with C to form carbides.
  • the formation of Cr carbide is suppressed, and the sharpening resistance property of the steel material is enhanced.
  • the above effect can be obtained to some extent.
  • the Zr content exceeds 0.10%, carbides will be excessively precipitated in the crystal grains even if the content of other elements is within the range of the present embodiment. In this case, the strength in the crystal grains becomes excessively high, and the strength difference between the inside of the crystal grains and the grain boundaries becomes large.
  • the Zr content is 0 to 0.10%.
  • the preferred lower limit of the Zr content is more than 0%, more preferably 0.01%, still more preferably 0.02%.
  • the preferred upper limit of the Zr content is 0.09%, more preferably 0.08%, still more preferably 0.07%, still more preferably 0.06%.
  • Hf 0 to 0.10%
  • Hafnium (Hf) is an optional element and may not be contained. That is, the Hf content may be 0%. When contained, Hf combines with C to form carbides. As a result, the formation of Cr carbide is suppressed, and the sharpening resistance property of the steel material is enhanced. If even a small amount of Hf is contained, the above effect can be obtained to some extent. However, if the Hf content exceeds 0.10%, carbides will be excessively precipitated in the crystal grains even if the content of other elements is within the range of the present embodiment. In this case, the strength in the crystal grains becomes excessively high, and the strength difference between the inside of the crystal grains and the grain boundaries becomes large.
  • the Hf content is 0 to 0.10%.
  • the preferred lower limit of the Hf content is more than 0%, more preferably 0.01%, still more preferably 0.02%.
  • the preferred upper limit of the Hf content is 0.09%, more preferably 0.08%, still more preferably 0.07%, still more preferably 0.06.
  • the chemical composition of the austenitic stainless steel material according to the present embodiment may further contain one or more elements selected from the group consisting of Cu and Co instead of a part of Fe. All of these elements increase the creep strength of steel at average operating temperatures of 400-700 ° C.
  • Cu 0 to 2.00% Copper (Cu) is an optional element and may not be contained. That is, Cu may be 0%. When contained, Cu precipitates as a Cu phase in the grains during use of the steel material at an average operating temperature of 400 to 700 ° C., and the creep strength of the steel material is increased by precipitation strengthening. If even a small amount of Cu is contained, the above effect can be obtained to some extent. However, if the Cu content exceeds 2.00%, the Cu phase is excessively precipitated even if the content of other elements is within the range of this embodiment. In this case, the embrittlement cracking sensitivity in HAZ after welding increases. Therefore, the Cu content is 0 to 2.00%.
  • the lower limit of the Cu content is more than 0%, more preferably 0.01%, still more preferably 0.03%, still more preferably 0.05%, still more preferably 0.10%. Is.
  • the preferable upper limit of the Cu content is 1.50%, more preferably 1.00%, still more preferably 0.80%, still more preferably 0.60%.
  • Co is an optional element and may not be contained. That is, the Co content may be 0%. When contained, Co stabilizes austenite and increases the creep strength of the steel at an average operating temperature of 400-700 ° C. Co, like W, further enhances the polythionic acid SCC resistance of steel materials. If even a small amount of Co is contained, the above effect can be obtained to some extent. However, if the Co content exceeds 1.00%, the raw material cost increases even if the content of other elements is within the range of the present embodiment. Therefore, the Co content is 0 to 1.00%.
  • the lower limit of the Co content is more than 0%, more preferably 0.01%, still more preferably 0.05%, still more preferably 0.10%, still more preferably 0.20%. Is.
  • the preferred upper limit of the Co content is 0.90%, more preferably 0.80%, still more preferably 0.70%, still more preferably 0.60%.
  • the chemical composition of the austenitic stainless steel material according to the present embodiment may further contain Al instead of a part of Fe. Al deoxidizes the steel in the steelmaking process.
  • sol. Al 0 to 0.030%
  • Aluminum (Al) is an optional element and may not be contained. That is, the Al content may be 0%. When contained, Al deoxidizes the steel in the steelmaking process. If even a small amount of Al is contained, the above effect can be obtained to some extent. However, sol. If the Al content exceeds 0.030%, the workability and ductility of the steel material will decrease even if the content of other elements is within the range of this embodiment. Therefore, sol.
  • the Al content is 0 to 0.030%. sol.
  • the lower limit of the Al content is more than 0%, more preferably 0.001%, still more preferably 0.005%, still more preferably 0.010%. sol.
  • the preferred upper limit of the Al content is 0.029%, more preferably 0.028%, still more preferably 0.025%. In this embodiment, sol.
  • the Al content means the content of acid-soluble Al (sol.Al).
  • the chemical composition of the austenitic stainless steel material according to the present embodiment may further contain B instead of a part of Fe. B segregates at the grain boundaries to strengthen the grain boundaries.
  • B 0 to 0.0100% Boron (B) is an optional element and may not be contained. That is, the B content may be 0%. When contained, B segregates at the grain boundaries during use of the steel material at an average operating temperature of 400 to 700 ° C., increasing the grain boundary strength. If B is contained even in a small amount, the above effect can be obtained to some extent. However, if the B content exceeds 0.0100%, the formation of Cr carbides at the grain boundaries is promoted even if the content of other elements is within the range of the present embodiment. Therefore, the sharpening resistance property of the steel material is lowered.
  • the B content is 0 to 0.0100%.
  • the preferable lower limit of the B content is more than 0%, more preferably 0.0001%, still more preferably 0.0005%, still more preferably 0.0010%.
  • the preferred upper limit of the B content is 0.0050%, more preferably 0.0040%, still more preferably 0.0030%, still more preferably 0.0020%.
  • the chemical composition of the austenitic stainless steel material according to the present embodiment may further contain one element or two or more elements selected from the group consisting of Ca, Mg and rare earth elements (REM) instead of a part of Fe. .. All of these elements enhance the hot workability of steel materials.
  • REM rare earth elements
  • Ca 0-0.0200% Calcium (Ca) is an optional element and may not be contained. That is, the Ca content may be 0%. When contained, Ca fixes O (oxygen) and S (sulfur) as inclusions and enhances the hot workability of the steel material. Ca further fixes S and suppresses grain boundary segregation of S. This reduces embrittlement cracking of HAZ during welding. If even a small amount of Ca is contained, the above effect can be obtained to some extent. However, if the Ca content exceeds 0.0200%, the cleanliness of the steel material is lowered, and the hot workability of the steel material is rather lowered. Therefore, the Ca content is 0 to 0.0200%.
  • the preferable lower limit of the Ca content is more than 0%, more preferably 0.0001%, further preferably 0.0002%, still more preferably 0.0005%.
  • the preferred upper limit of the Ca content is 0.0150%, more preferably 0.0100%, even more preferably 0.0080%, even more preferably 0.0050%, still more preferably 0.0040. %.
  • Mg 0 to 0.0200%
  • Magnesium (Mg) is an optional element and may not be contained. That is, the Mg content may be 0%. When contained, Mg fixes O (oxygen) and S (sulfur) as inclusions and enhances the hot workability of the steel material. Mg further fixes S and suppresses grain boundary segregation of S. This reduces embrittlement cracking of HAZ during welding. If even a small amount of Mg is contained, the above effect can be obtained to some extent. However, if the Mg content exceeds 0.0200%, the cleanliness of the steel material is lowered, and the hot workability of the steel material is rather lowered. Therefore, the Mg content is 0 to 0.0200%.
  • the preferable lower limit of the Mg content is more than 0%, more preferably 0.0001%, still more preferably 0.0002%, still more preferably 0.0005%.
  • the preferred upper limit of the Mg content is 0.0150%, more preferably 0.0100%, even more preferably 0.0080%, even more preferably 0.0050%, still more preferably 0.0040. %.
  • Rare earth element 0 to 0.100%
  • Rare earth elements are optional elements and may not be contained. That is, the REM content may be 0%. When contained, REM immobilizes O (oxygen) and S (sulfur) as inclusions to enhance hot workability and creep ductility of the base metal. However, if the REM content is too high, the hot workability and creep ductility of the base metal will decrease. Therefore, the REM content is 0 to 0.100%.
  • the preferable lower limit of the REM content is more than 0%, more preferably 0.001%, still more preferably 0.002%.
  • the preferred upper limit of the REM content is 0.080%, more preferably 0.060%.
  • the REM in the present specification contains at least one element or two or more elements of Sc, Y, and a lanthanoid (Atomic number 57 La to 71 Lu), and the REM content is the total content of these elements. Means quantity.
  • F1 21.9Mo + 5.9W-5.0.
  • F1 is an index of the amount of M 23 C 6 type Cr carbide produced in the steel material. Both Mo and W replace Cr at the M site of Cr carbide to reduce the free energy of Cr carbide. Therefore, Mo and W suppress the formation of Cr carbides. Furthermore, the diffusion rates of Mo and W are slower than the diffusion rates of Cr. Therefore, the growth rate of the Cr carbide in which Cr at the M site is replaced with Mo or W becomes slow.
  • F1 When F1 is 0 or more, Mo and W in an amount capable of suppressing the formation of Cr carbide are sufficiently contained. Therefore, it is possible to sufficiently suppress the formation and growth of Cr carbides during welding and when steel materials are used at an average operating temperature of 400 to 700 ° C. As a result, excellent sharpening resistance can be obtained even when the steel material is operated for a long time at the above-mentioned average operating temperature after the large heat input welding is performed on the steel material.
  • the preferred lower limit of F1 is 0.1, more preferably 0.2, even more preferably 0.5, even more preferably 1.0, even more preferably 1.5, even more preferably. It is 2.0.
  • the upper limit of F1 is not particularly limited, but is 99.45 in consideration of the maximum content of Mo and the maximum content of W in the chemical composition.
  • F1 is a value obtained by rounding off the second decimal place of the obtained numerical value (that is, F1 is the first decimal place).
  • the chemical composition of the austenitic stainless steel material of the present embodiment can be determined by a well-known component analysis method. Specifically, when the austenitic stainless steel material is a steel pipe, a drill is used to drill at the center position of the wall thickness to generate chips, and the chips are collected. When the austenitic stainless steel material is a steel plate, a drill is used to drill at the center of the plate width and the center of the plate thickness to generate chips, and the chips are collected. When the austenitic stainless steel material is steel bar, drilling is performed at the R / 2 position using a drill to generate chips, and the chips are collected.
  • the R / 2 position means the central position of the radius R in the cross section perpendicular to the longitudinal direction of the steel bar.
  • ICP-OES Inductively Coupled Plasma Optical Mission Spectrum
  • the C content and S content are determined by a well-known high-frequency combustion method. Specifically, the above solution is burned by high-frequency heating in an oxygen stream, and the generated carbon dioxide and sulfur dioxide are detected to determine the C content and the S content. From the above analysis method, the chemical composition of austenitic stainless steel can be determined.
  • the Nb content in the residue obtained by the extraction residue method is 0.050 to 0.267% by mass, and the Cr content in the residue is mass. % Is 0.125% or less.
  • the "Nb content in the residue” is the ratio (mass) of the mass of the Nb content in the residue to the mass of the austenitic stainless steel material (the mass of the austenitic stainless steel material electrolyzed by the extraction residue method). %) Means.
  • the “Cr content in the residue” is the ratio (mass%) of the mass of the Cr content in the residue to the mass of the austenitic stainless steel material (the mass of the austenitic stainless steel material electrolyzed by the extraction residue method). means.
  • the Nb content in the residue extracted by the extraction residue method is 0.050 to 0.267% by mass and the Cr content in the residue is 0.125% or less by mass, austenitic stainless steel.
  • CrNb nitride accounts for a large proportion of the precipitates in the austenitic stainless steel material. That is, the Nb content in the residue extracted by the extraction residue method is 0.050 to 0.267% in mass%, and the Cr content in the residue is 0.125% or less in mass%. If, precipitates other than the CrNb nitride (Cr carbides, Cr 2 N, other carbides, nitrides, and carbonitrides, etc.) the amount of means that sufficiently small for the amount of CrNb nitride ..
  • the Nb content in the residue is less than 0.050%, it means that CrNb nitride is not sufficiently precipitated in the steel material.
  • the steel material after high heat input welding is held at an average operating temperature of 400 to 700 ° C. for a long time, sufficient sharpening resistance characteristics cannot be obtained.
  • the lower limit of the Nb content is preferably 0.052%, more preferably 0.054%, still more preferably 0.055%.
  • the preferred upper limit of the Nb content in the residue is 0.265%, more preferably 0.263%, even more preferably 0.260%, even more preferably 0.250%, still more preferably 0. .240%.
  • the preferable upper limit of the Cr content in the residue obtained by the extraction residue method is 0.120%, more preferably 0.110%, further preferably 0.100%, still more preferably 0.090. %, More preferably 0.080%.
  • the lower limit of the Cr content is not particularly limited.
  • the preferred lower limit of the Cr content is 0.001%, more preferably 0.003%, still more preferably 0.005%.
  • the Nb content and Cr content in the residue can be measured by the following method.
  • Specimens are collected from austenitic stainless steel.
  • the cross section perpendicular to the longitudinal direction of the test piece may be circular or rectangular.
  • the austenitic stainless steel material is a steel pipe
  • the test piece is collected so that the center of the cross section perpendicular to the longitudinal direction of the test piece is the center position of the wall thickness of the steel pipe and the longitudinal direction of the test piece is the longitudinal direction of the steel pipe. ..
  • the center of the cross section perpendicular to the longitudinal direction of the test piece is the center position of the plate width and the center of the plate thickness of the steel plate, and the longitudinal direction of the test piece is the longitudinal direction of the steel plate.
  • Collect a test piece When the austenitic stainless steel material is steel bar, the test piece is sampled so that the center of the cross section perpendicular to the longitudinal direction of the test piece is the R / 2 position of the steel bar and the longitudinal direction of the test piece is the longitudinal direction of the steel bar. ..
  • the surface of the collected test piece is polished by about 50 ⁇ m by preliminary electrolytic polishing to obtain a new surface.
  • the electropolished test piece is electrolyzed (mainly electrolyzed) with an electrolytic solution (10% acetylacetone + 1% tetraammonium + methanol).
  • the electrolytic solution after the main electrolysis is passed through a 0.2 ⁇ m filter to capture the residue.
  • the obtained residue is acid-decomposed, and the mass of Nb in the residue and the mass of Cr in the residue are determined by ICP (inductively coupled plasma) emission spectrometry. Further, the mass of the electrolyzed base material (austenitic stainless steel material) is determined.
  • the mass of the test piece before the main electrolysis and the mass of the test piece after the main electrolysis are measured. Then, the value obtained by subtracting the mass of the test piece after the main electrolysis from the mass of the test piece before the main electrolysis is defined as the amount of the base material subjected to the main electrolysis.
  • the austenitic stainless steel material of the present embodiment has the content of each element in the chemical composition within the above range and satisfies the formula (1). Further, the Nb content in the residue obtained by the extraction residue method is 0.050 to 0.267% by mass, and the Cr content in the residue is 0.125% or less by mass. Therefore, the austenitic stainless steel material of the present embodiment has excellent sensitization resistance characteristics even after being used for a long time with an average operating time of 400 to 700 ° C. after large heat welding.
  • Collect a square test piece from austenitic stainless steel When the austenitic stainless steel material is a steel pipe, the square test piece is placed so that the center of the cross section perpendicular to the longitudinal direction of the test piece is the center position of the wall thickness of the steel pipe and the longitudinal direction of the test piece is the longitudinal direction of the steel pipe. Collect. When the austenitic stainless steel material is a steel plate, the center of the cross section perpendicular to the longitudinal direction of the test piece is the center position of the plate width and the center of the plate thickness of the steel plate, and the longitudinal direction of the test piece is the longitudinal direction of the steel plate. Collect a horny test piece.
  • the square test piece is placed so that the center of the cross section perpendicular to the longitudinal direction of the test piece is the R / 2 position of the steel bar and the longitudinal direction of the test piece is the longitudinal direction of the steel bar. Collect.
  • the length of the square test piece is not particularly limited, but is, for example, 100 mm.
  • the cross section (cross section) perpendicular to the longitudinal direction of the angular test piece is not particularly limited, but is, for example, a rectangle of 10 mm ⁇ 10 mm.
  • the central portion having a predetermined width (for example, 10 mm) at the central position in the longitudinal direction of the angular test piece is heated from room temperature to 1350 to 1400 ° C. at 70 to 100 ° C./sec in the atmosphere. Hold at a further raised temperature for 1 to 60 seconds. Then, the angular test piece is cooled to room temperature at a cooling rate of 20 ° C./sec.
  • the large heat input welded joint simulation test piece is charged into the heat treatment furnace.
  • the large heat input welded joint simulated test piece is held in the air at atmospheric pressure at 550 ° C. for 10,000 hours (sensitization treatment). After 10000 hours have passed, the large heat input welded joint simulated test piece is extracted from the heat treatment furnace and allowed to cool.
  • the Strauss test in accordance with ASTM A262-15 PRACTICE E will be conducted as follows. From the large heat input welded joint simulated test piece that has been sensitized for a long time, the plate-shaped test piece is collected so that the central part is at the center position in the longitudinal direction of the plate-shaped test piece.
  • the size of the plate-shaped test piece is not particularly limited. The size of the plate-shaped test piece is, for example, 2 mm in thickness, 10 mm in width, and 80 mm in length.
  • the plate-shaped test piece is immersed in a copper sulfate test solution containing 16% sulfuric acid and boiled for 15 hours.
  • the plate-shaped test piece is taken out from the copper sulfate test solution.
  • a bending test is performed on the removed plate-shaped test piece. In the bending test, the plate-shaped test piece is bent 180 ° in the atmosphere around the center position in the longitudinal direction of the large heat input welded joint simulated test piece. Cut the bent part of the bent test piece. Observe the cut surface with a 20x optical microscope. If cracks are observed, determine the length of the cracks. If no cracks are observed, or if the cracks are observed but the length of the cracks is 100 ⁇ m or less, it is judged that the sharpening resistance is excellent.
  • the plate-shaped test piece is scanned in the noble direction from the natural potential to 300 mV with a linear polarization at a polarization rate of 100 mV / min.
  • scanning is performed in the base direction to the original natural potential.
  • the current that flows when the voltage is applied in the base direction (return path) is measured.
  • polythionic acid stress corrosion cracking (hereinafter, also referred to as polythionic acid SCC) is likely to occur in the steel material. Therefore, steel materials used in chemical plant equipment may also be required to have excellent polythionic acid SCC resistance.
  • the austenitic stainless steel material of the present embodiment further satisfies the following requirements.
  • the Mo content is 2.50 to 4.50%, and the Co content is 0.01 to 1.00%.
  • the chemical composition of the steel material satisfies the formulas (2) and (3). 2 ⁇ 73W + 5Co ⁇ 60 (2) 0.20 ⁇ Nb + 0.1W ⁇ 0.58 (3)
  • the Nb content in the residue obtained by the extraction residue method is 0.065 to 0.245% by mass, and the Cr content in the residue is 0.104% or less in mass%.
  • F2 73W + 5Co.
  • F2 is an index related to polythionic acid SCC resistance and liquefaction crack resistance during large heat input welding. If F2 is less than 2, the total content of W and Co in the chemical composition of the austenitic stainless steel material is not sufficient. In this case, the polythionic acid SCC resistance of the steel material is lowered. On the other hand, when F2 exceeds 60, W and Co promote the formation of intermetallic compounds such as the LAVES phase when the Mo content is 2.50% or more. In this case, the intermetallic compound is excessively produced. Therefore, the strength in the crystal grains becomes excessively high, and the strength difference between the inside of the crystal grains and the grain boundaries becomes large. Therefore, stress concentration occurs at the grain interface. As a result, the liquefaction cracking resistance is lowered during large heat input welding.
  • the Mo content is 2.50 to 4.50%
  • the Co content is 0.01 to 1.00%
  • F2 is 2. If it is ⁇ 60, on the premise that the content of other elements is within the range of this embodiment, sufficient polythionic acid SCC resistance can be obtained, and the occurrence of liquefaction cracking can be suppressed during large heat input welding. ..
  • the preferred lower limit of F2 is 3, more preferably 4, and even more preferably 5.
  • the preferred upper limit of F2 is 58, more preferably 55, even more preferably 53, still more preferably 50.
  • F2 is a value obtained by rounding off the first decimal place of the obtained numerical value.
  • F3 Nb + 0.1W.
  • F3 means the amount of effective Nb. Both Nb and W combine with C to form carbides and reduce the amount of solid solution C in the steel material. This suppresses the formation of Cr carbides in the steel material and enhances the polythionic acid SCC resistance of the steel material.
  • Nb precipitates typified by the Laves phase are excessively generated. In this case, liquefaction cracking in HAZ may occur at the time of large heat input welding, and the liquefaction cracking resistance may decrease.
  • the preferable lower limit of F3 is 0.22, more preferably 0.24, and even more preferably 0.26.
  • the preferred upper limit of F3 is 0.56, more preferably 0.54, even more preferably 0.50, still more preferably 0.48, still more preferably 0.45.
  • F3 is a value obtained by rounding off the third decimal place of the obtained numerical value.
  • the Nb content in the residue extracted by the extraction residue method is 0.065 to 0.245% by mass and the Cr content in the residue is 0.104% or less in mass%
  • austenitic acid is used. Since CrNb nitride accounts for a sufficiently large proportion of the precipitates in the austenitic stainless steel material and the grain boundary area is sufficiently increased, excellent polythionic acid SCC resistance can be obtained.
  • the Nb content in the residue is less than 0.065%, it means that CrNb nitride is not sufficiently precipitated in the steel material to the extent that sufficient polythionic acid SCC resistance can be obtained.
  • the steel material after the large heat input welding is held at an average operating temperature of 400 to 700 ° C. for a long time, sufficient polythionic acid SCC resistance cannot be obtained.
  • the Nb content in the residue obtained by the extraction residue method is 0.065 to 0.245% by mass.
  • the Cr content in the residue is 0.104% or less in mass%, excellent polythionic acid SCC resistance and naphthenitic acid corrosion resistance can be obtained.
  • the preferable lower limit of the Nb content in the residue extracted by the extraction residue method is 0.070%, more preferably 0.075%, further preferably 0.085%, still more preferably 0.090. %.
  • the preferred upper limit of the Nb content in the residue is 0.240%, more preferably 0.235%, still more preferably 0.230%.
  • the upper limit of the Cr content in the residue extracted by the extraction residue method is 0.100%, more preferably 0.095%, still more preferably 0.090%, and the lower limit of the Cr content is There is no particular limitation.
  • the preferred lower limit of the Cr content is 0.001%, more preferably 0.003%, still more preferably 0.005%.
  • the content of each element in the chemical composition of the austenitic stainless steel material of the present embodiment is within the range of the present embodiment, the formula (1) is satisfied, and the above-mentioned (I) to (III) are satisfied. ) Is satisfied, excellent naphthenic acid corrosion resistance, excellent polythionic acid SCC resistance, and excellent liquefaction cracking resistance can be obtained.
  • excellent naphthenic acid corrosion resistance, excellent polythionic acid SCC resistance, and excellent liquefaction cracking resistance mean the following items.
  • [Naphthenic acid corrosion resistance] Collect test pieces from austenitic stainless steel.
  • the austenitic stainless steel material is a steel pipe
  • the test piece is collected so that the center of the cross section perpendicular to the longitudinal direction of the test piece is the center position of the wall thickness of the steel pipe and the longitudinal direction of the test piece is the longitudinal direction of the steel pipe. ..
  • the center of the cross section perpendicular to the longitudinal direction of the test piece is the center position of the plate width and the center of the plate thickness of the steel plate
  • the longitudinal direction of the test piece is the longitudinal direction of the steel plate.
  • the test piece is sampled so that the center of the cross section perpendicular to the longitudinal direction of the test piece is the R / 2 position of the steel bar and the longitudinal direction of the test piece is the longitudinal direction of the steel bar. ..
  • the size of the test piece is not particularly limited. The size of the test piece is, for example, 2 mm in thickness, 10 mm in width, and 30 mm in length.
  • the collected test piece is immersed in a 100% cyclohexanecarboxylic acid solution at 200 ° C. for 720 hours under normal pressure. After soaking for 720 hours, the test piece is ultrasonically cleaned with acetone for 3 minutes.
  • the difference between the mass of the test piece before the test and the mass of the test piece after ultrasonic cleaning is calculated as the corrosion weight loss. Further, the corrosion rate (mm / year) is determined from the surface area, specific gravity, and test time of the test piece. When the corrosion rate is 0.01 mm / year or less, it is judged that the naphthenic acid corrosion resistance is excellent.
  • a large heat input welded joint simulation test piece similar to the above-mentioned evaluation test for sensitization resistance is produced.
  • the above-mentioned long-term sensitization treatment is carried out on the large heat input welded joint simulated test piece.
  • the plate-shaped test piece is collected so that the central part is at the center position in the longitudinal direction of the plate-shaped test piece.
  • the size of the plate-shaped test piece is not particularly limited.
  • the size of the plate-shaped test piece is, for example, 2 mm in thickness, 10 mm in width, and 75 mm in length.
  • the polythionic acid SCC resistance evaluation test is carried out by the following method using the collected plate-shaped test piece.
  • the plate-shaped test piece is bent around a punch having an inner radius of 5 mm to form a U-bend shape.
  • the bent portion of the bent test piece is cut in a direction perpendicular to the longitudinal direction, and the cut surface is observed with a 20x optical microscope. If cracks are observed, determine the crack depth on the cut surface. If no cracks are observed, or if cracks are observed but the crack depth is less than 20 ⁇ m, it is judged that the polythionic acid SCC resistance is excellent.
  • the shape of the austenitic stainless steel material of the present embodiment is not particularly limited.
  • the austenitic stainless steel material of the present embodiment may be a steel pipe, a steel plate, or a steel bar.
  • the austenitic stainless steel material of the present embodiment may be a forged product or a cast product.
  • the austenitic stainless steel material of the present embodiment is suitable for equipment applications used at an average operating temperature of 400 to 700 ° C.
  • the austenitic stainless steel material of the present embodiment is particularly suitable for equipment applications that are used for a long period of time at an average operating temperature of 400 to 700 ° C. after high heat input welding is performed.
  • 400 to 700 ° C is the average operating temperature, and even if the operating temperature temporarily exceeds 700 ° C, if the average operating temperature is 400 to 700 ° C, the austenitic stainless steel material of the present embodiment can be used. Suitable for use.
  • the maximum temperature reached by these devices may be 750 ° C.
  • Such equipment is, for example, equipment for chemical plant equipment represented by petroleum refining and petrochemistry. These devices include, for example, heating furnace pipes, tanks, pipes and the like. Further, the austenitic stainless steel material of the present embodiment may be used for chemical plant equipment having an average operating temperature of less than 400 ° C.
  • the steel material of the present embodiment satisfies the above (I) to (III), that is, in the chemical composition, Mo: 2.50 to 4.50% and Co: 0.01 to 1.00% are contained. Further, the formulas (2) and (3) are satisfied, and the Nb content in the residue obtained by the extraction residue method is 0.065 to 0.245% in mass%, and the residue is contained.
  • the Cr content of is 0.104% or less in mass%, it is suitable for chemical plant equipment applications where polythionic acid SCC resistance and naphthenic acid corrosion resistance are required.
  • austenitic stainless steel material of the present embodiment can naturally be used for equipment other than chemical plant equipment.
  • Equipment other than chemical plant equipment is, for example, thermal power generation boiler equipment (for example, boiler tube, etc.), which is expected to be used at an average operating temperature of about 400 to 700 ° C. like chemical plant equipment.
  • FIG. 1 is a plan view showing an example of a welded joint of the present embodiment.
  • the welded joint 1 according to the present embodiment includes a pair of austenitic stainless steel materials 100 and a weld metal 200.
  • the weld metal 200 is arranged between a pair of austenitic stainless steel materials 100.
  • the weld metal 200 is formed between a pair of austenitic stainless steel materials 100, and is connected to the pair of austenitic stainless steel materials 100.
  • the austenitic stainless steel material 100 is also referred to as a "base material" 100.
  • the ends of the pair of base materials 100 are grooved, for example.
  • the weld metal 200 is formed by associating the ends of a pair of base materials 100 having grooved ends with each other and then performing single-layer welding or multi-layer welding.
  • the welding methods include, for example, TIG welding (Gas Tungsten Arc Welding: GTAW), coated arc welding (Shelded Metal Arc Welding: SMAW), flux-welded wire arc welding (Flux Code Arc Welding: FCAW), and gas metal arc welding (GasArc). Welding (GMAW) and submerged arc welding (Submerged Arc Welding: SAW).
  • FIG. 1 the direction in which the weld metal 200 extends is defined as the weld metal extension direction L.
  • the direction perpendicular to the weld metal extension direction L is defined as the weld metal width direction W.
  • the direction perpendicular to the weld metal extension direction L and the weld metal width direction W is defined as the weld metal thickness direction T.
  • FIG. 2 is a cross-sectional view of the welded joint 1 of FIG. 1 cut in the weld metal width direction W. As shown in FIGS. 1 and 2, the weld metal 200 is formed (arranged) between a pair of base materials 100.
  • FIG. 3 is a cross-sectional view of the welded joint 1 of FIG. 1 cut in the weld metal extending direction L
  • FIG. 4 is a cross-sectional view of the welded joint 1 cut in the weld metal extending direction L, which is different from FIG. is there.
  • the base material 100 may be a steel plate.
  • the cross section of the base material 100 perpendicular to the longitudinal direction may be a circular pipe (that is, a steel pipe).
  • the base metal 100 may be a steel bar.
  • Each of the pair of base materials 100 is the austenitic stainless steel material of the present embodiment having the above-mentioned excellent polythionic acid SCC resistance and excellent naphthenic acid corrosion resistance. That is, the base material 100 has a chemical composition of mass%, C: 0.020% or less, Si: 1.50% or less, Mn: 2.00% or less, P: 0.045% or less, S: 0.
  • the Nb content in the residue obtained by the extraction residue method satisfying the formulas (1) to (3) is 0.065 to 0.245% in mass%, and the Cr content is 0 in mass%. It is 104% or less.
  • the chemical composition of the weld metal 200 is not particularly limited.
  • the weld metal 200 may be formed using a well-known welding material.
  • Well-known welding materials are, for example, based on AWS A5.9, standard names: ER NiCrCoMo-1, ER NiCrMo-3, NiCrCoMo-1, 22Cr-12Co-1Al-9Mo-Ni, NiCrMo-3, 22Cr-8Mo- It is 3.5Nb-Ni or the like.
  • FIG. 5 is a view showing a cross section of the welded joint 1 of the present embodiment in a direction perpendicular to the weld metal extending direction L.
  • the base metal (austenitic stainless steel material) 100 has a weld heat affected zone (HAZ) 101 and a portion other than the HAZ 101.
  • HAZ101 is a region of the base metal 100 adjacent to the molten wire 200E of the weld metal 200 and is affected by heat during welding.
  • the portion of the base material 100 other than the HAZ 101 is referred to as a normal portion 102.
  • the normal portion 102 is a portion that is substantially unaffected by heat during welding.
  • a range of 200 ⁇ m in the HAZ101 from the fusion line 200E to the weld metal width direction W (broken line in FIG. 5).
  • the area hatched in) is defined as the range Dref.
  • the range Dref is part of HAZ101.
  • the average crystal grain size in the range Dref is defined as the average crystal grain size R1 ( ⁇ m).
  • the average crystal grain size of the portion other than HAZ101 (that is, the normal portion 102) of the cross section of the base metal 100 is defined as the average crystal grain size R2 ( ⁇ m).
  • the average crystal grain size R1 and the average crystal grain size R2 satisfy the formula (4).
  • the average crystal grain size R1 is measured by the following method. From the welded joint 1, a test piece including a cross section in the direction perpendicular to the weld metal extending direction L is collected. The cross section in the direction perpendicular to the weld metal extending direction L is used as the observation surface. Mirror polish the observation surface. After mirror polishing, etching is performed with a 10% oxalic acid solution. Of the etched observation surfaces, any three fields of view within the range Dref are observed with a 200x optical microscope to generate a photographic image. Each field of view is 100 ⁇ m ⁇ 100 ⁇ m. In each field of view, the crystal particle size number is obtained by the cutting method in accordance with JIS G 0551 (2013). The arithmetic mean value of the obtained three crystal particle size numbers is obtained and defined as the average crystal particle size number. The average crystal grain size R1 ( ⁇ m) is obtained from the obtained average crystal grain size number.
  • the average crystal grain size R2 is measured by the following method.
  • a test piece including a cross section in a direction perpendicular to the welding metal extending direction L is collected from the normal portion 102 of the base metal 100 of the welded joint 1.
  • the cross section in the direction perpendicular to the weld metal extending direction L is used as the observation surface.
  • the crystal particle size number is obtained by the cutting method in accordance with JIS G 0551 (2013).
  • the arithmetic mean value of the obtained three crystal particle size numbers is obtained and defined as the average crystal particle size number.
  • the average crystal particle size R2 ( ⁇ m) is obtained from the obtained average crystal particle size number.
  • the base material 100 is the austenitic stainless steel material of the present embodiment described above, and the average grain size R1 at HAZ101 near the fusion line 200E and the average crystal at the normal portion 102. If the particle size R2 satisfies the formula (4), the welded joint 1 of the present embodiment has further excellent polythionic acid SCC resistance and further excellent liquefaction cracking resistance even after high heat input welding. ..
  • the method for producing an austenitic stainless steel material described below is merely an example of the method for producing an austenitic stainless steel material according to the present embodiment. Therefore, the austenitic stainless steel material having the above-mentioned structure may be manufactured by a manufacturing method other than the manufacturing methods described below. However, the manufacturing method described below is a preferable example of the manufacturing method of the austenitic stainless steel material of the present embodiment.
  • the method for producing an austenitic stainless steel material of the present embodiment includes the following steps. 1. 1. Process of preparing materials (preparation process) 2. 2. Process of manufacturing intermediate steel by performing hot working on the material (hot working process) 3. 3. If necessary, a step of performing a pickling treatment on the intermediate steel material after the hot working step and then performing a cold working (cold working step). 4. A step of precipitating CrNb nitride on the intermediate steel material after the hot working step or the cold working step (CrNb nitride formation treatment step).
  • steps will be described.
  • a material having the above-mentioned chemical composition is prepared.
  • the material may be supplied by a third party or may be manufactured.
  • the material may be ingot, slab, bloom, billet.
  • the material is manufactured by the following method.
  • a molten steel having the above-mentioned chemical composition is produced.
  • the ingot is manufactured by the ingot method using the manufactured molten steel.
  • Slabs, blooms, and billets may be produced by a continuous casting method using the produced molten steel.
  • the billets may be produced by hot working the produced ingots, slabs and blooms.
  • the ingot may be hot forged to produce a cylindrical billet, and this billet may be used as a material.
  • the temperature of the material immediately before the start of hot forging is not particularly limited, but is, for example, 1000 to 1300 ° C.
  • the cooling method of the material after hot forging is not particularly limited.
  • the intermediate steel material may be, for example, a steel pipe, a steel plate, or a steel bar.
  • the intermediate steel material is a steel pipe
  • the following processing is performed in the hot processing process.
  • An intermediate steel material (steel pipe) is manufactured by performing hot extrusion represented by the Eugene Sejurne method on a cylindrical material in which through holes are formed.
  • the temperature of the material immediately before hot extrusion is not particularly limited.
  • the temperature of the material immediately before hot extrusion is, for example, 1000 to 1300 ° C.
  • a hot punching pipe manufacturing method may be carried out.
  • a steel pipe may be manufactured by performing perforation rolling by the Mannesmann method.
  • the round billet is drilled and rolled by a drilling machine.
  • the drilling ratio is not particularly limited, but is, for example, 1.0 to 4.0.
  • the perforated round billet is further hot-rolled with a mandrel mill, reducer, sizing mill or the like to form a raw pipe.
  • the cumulative surface reduction rate in the hot working process is not particularly limited, but is, for example, 20 to 80%.
  • the steel pipe temperature (finishing temperature) immediately after the hot working is completed is not particularly limited, but is preferably 900 ° C. or higher.
  • the hot working process uses, for example, one or more rolling mills equipped with a pair of work rolls.
  • a steel plate is manufactured by hot rolling a material such as a slab using a rolling mill.
  • the material is heated before hot rolling, and hot rolling is performed on the heated material.
  • the temperature of the material immediately before hot rolling is, for example, 1000 to 1300 ° C.
  • the temperature of the steel sheet (finishing temperature) immediately after the hot working is completed is not particularly limited, but is preferably 900 ° C. or higher.
  • the hot working process includes, for example, a rough rolling process and a finish rolling process.
  • the material is hot-processed to produce billets.
  • a bulk rolling mill is used for the rough rolling process. Billets are manufactured by performing slab rolling on the material with a slab rolling mill.
  • a continuous rolling mill is installed downstream of the ingot rolling mill, hot rolling is further performed on the billet after the ingot rolling using the continuous rolling mill to produce a smaller billet. You may.
  • a continuous rolling mill for example, horizontal stands having a pair of horizontal rolls and vertical stands having a pair of vertical rolls are alternately arranged in a row.
  • the material temperature immediately before the rough rolling step is not particularly limited, but is, for example, 1000 to 1300 ° C.
  • the finish rolling process the billet is first heated.
  • the billets after heating are hot-rolled using a continuous rolling mill to produce steel bars.
  • the heating temperature in the heating furnace in the finish rolling step is not particularly limited, but is, for example, 1000 to 1300 ° C.
  • the steel bar temperature (finishing temperature) immediately after the hot working is completed is not particularly limited, but is preferably 900 ° C. or higher.
  • the cold working process is carried out as needed. That is, the cold working process does not have to be carried out.
  • the intermediate steel material after hot working is pickled and then cold worked.
  • the cold working is, for example, cold drawing or cold rolling.
  • the intermediate steel material is a steel plate
  • the cold working is, for example, cold rolling.
  • strain is applied to the intermediate steel material before the CrNb nitride formation treatment step.
  • recrystallization and sizing can be performed during the CrNb nitride formation treatment step.
  • the surface reduction rate in the cold working process is not particularly limited, but is, for example, 10 to 90%.
  • the CrNb nitride formation treatment step the CrNb nitride formation treatment is carried out on the intermediate steel material after the hot working step or the cold working step.
  • other precipitates Cr carbides, Cr 2 N, other carbides, nitrides, and carbonitrides, etc.
  • Cr content in the residue obtained by the extraction residue method from the produced austenitic stainless steel material can be set to 0.050 to 0.267% by mass, and the Cr content in the residue. Can be 0.125% or less in mass%.
  • the CrNb nitride formation process is carried out by the following method.
  • An intermediate steel material is charged into a heat treatment furnace in which the atmosphere inside the furnace is an atmospheric atmosphere.
  • the atmospheric atmosphere referred to here means an atmosphere containing 78% or more by volume of nitrogen, which is a gas constituting the atmosphere, and 20% or more by volume of oxygen.
  • T max T x- 100 (Mo + W) + 200C-80Nb ⁇ 2>
  • T max T x -50 (Mo + W) + 200C-80Nb ⁇ 3>
  • T max T x -20 (Mo + W) + 200C-80Nb
  • T x 1300.
  • the heat treatment temperature T is less than 1000 ° C.
  • the precipitates such as Cr carbides precipitated in the steel material in the hot working process do not sufficiently dissolve.
  • the ratio of Nb carbide and Cr carbide in the precipitate is remarkably high in the austenitic stainless steel material in which the element content in the chemical composition is within the range of the present embodiment and the formula (1) is satisfied. Therefore, the proportion of CrNb nitride becomes significantly low. Therefore, the Nb content in the residue exceeds 0.267% by mass and / or the Cr content in the residue exceeds 0.125% by mass.
  • the element content in the chemical composition of the steel material is within the range of this embodiment, the Mo content is 2.50 to 4.50%, and Co: 0.01 to 1.00%.
  • the heat treatment temperature T is less than 1000 ° C.
  • the Nb content in the residue exceeds 0.245% by mass and / or in the residue.
  • Cr content exceeds 0.104% by mass.
  • the heat treatment temperature T exceeds T max , not only the Nb carbides and Cr carbides generated in the steel material in the hot working process are solid-solved, but also the precipitation of CrNb nitrides in the CrNb nitride formation process is insufficient. To do. Therefore, the element content in the chemical composition is within the range of the present embodiment, and the proportion of CrNb nitride present in the austenitic stainless steel material satisfying the formula (1) is remarkably reduced. As a result, the Nb content in the residue is less than 0.050% by mass.
  • the element content in the chemical composition of the steel material is within the range of this embodiment, the Mo content is 2.50 to 4.50%, and Co: 0.01 to 1.00%.
  • the heat treatment temperature T exceeds T max , the Nb content in the residue is less than 0.065% by mass.
  • the heat treatment temperature T is 1000 ° C. or higher and T max or lower
  • the Cr carbides produced in the hot working step can be sufficiently dissolved, the excessive formation of Nb carbides can be suppressed, and an appropriate amount can be obtained.
  • CrNb nitride can be produced.
  • the Nb content in the residue is 0.050 to 0. It is 267% and the Cr content is 0.125% or less. Therefore, the austenitic stainless steel material has improved sensitization resistance.
  • the element content in the chemical composition of the steel material is within the range of this embodiment, the Mo content is 2.50 to 4.50%, and Co: 0.01 to 1.00%.
  • the Nb content in the residue is 0.065 to 0.245% by mass, and the Cr content is 0.104% or less. Therefore, the polythionic acid SCC resistance of the austenitic stainless steel material is enhanced.
  • the preferred T x is 1290, more preferably 1280.
  • the heat treatment temperature T (° C.) and the holding time t (minutes) at the heat treatment temperature T satisfy the following conditions.
  • f1 to f3 are defined as follows.
  • F2 is a parameter of the heat treatment temperature T and the holding time t required to produce an appropriate amount of CrNb nitride in the steel material in which the content of each element in the chemical composition is within the range of the present embodiment.
  • f2 is referred to as "CrNb nitride formation parameter”.
  • Cr and Nb in the chemical composition are elements constituting CrNb nitride.
  • Mo is an element that affects the formation of CrNb nitrides and induces the formation of the LAVES phase.
  • the CrNb nitride formation parameter is too low.
  • the ratio of Nb carbide and Cr carbide in the precipitate is high in the austenitic stainless steel material in which the element content in the chemical composition is within the range of the present embodiment and the formula (1) is satisfied.
  • the proportion of CrNb nitride is significantly reduced. Therefore, the Nb content in the residue exceeds 0.267% by mass and / or the Cr content in the residue exceeds 0.125% by mass.
  • the element content in the chemical composition of the steel material is within the range of this embodiment, the Mo content is 2.50 to 4.50%, and Co: 0.01 to 1.00%.
  • the Nb content in the residue exceeds 0.245% by mass, and / or Cr content in the residue. The amount exceeds 0.104%.
  • the CrNb nitride formation parameter is too high. In this case, the precipitation of CrNb nitride is insufficient. Therefore, the proportion of CrNb nitride present in the austenitic stainless steel material is significantly reduced. As a result, the element content in the chemical composition is within the range of the present embodiment, and the Nb content in the residue is less than 0.050% by mass in the austenitic stainless steel material satisfying the formula (1). ..
  • the element content in the chemical composition of the steel material is within the range of this embodiment, the Mo content is 2.50 to 4.50%, and Co: 0.01 to 1.00%.
  • the formulas (1) to (3) are satisfied, if f2 exceeds f3, the Nb content in the residue is less than 0.065% by mass.
  • the CrNb nitride formation parameter is within an appropriate range. In this case, an appropriate amount of CrNb nitride is precipitated. Therefore, in the austenitic stainless steel material in which the element content in the chemical composition is within the range of the present embodiment and the formula (1) is satisfied, the Nb content in the residue is 0.050 to 0. It is 267%, and the Cr content in the residue is 0.125% or less in mass%. As a result, the austenitic stainless steel material has excellent sensitization resistance.
  • the element content in the chemical composition of the steel material is within the range of this embodiment, the Mo content is 2.50 to 4.50%, and Co: 0.01 to 1.00%.
  • the formulas (1) to (3) are satisfied, if f2 is f1 or more and f2 is f3 or less, the Nb content in the residue of the austenitic stainless steel material is 0. It is 065 to 0.245%, and the Cr content in the residue is 0.104% or less in mass%. As a result, the austenitic stainless steel material has excellent polythionic acid SCC resistance.
  • the CrNb nitride formation treatment is further held at a heat treatment temperature of T ° C. for a holding time of t, and then cooled.
  • the average cooling rate CR in a temperature range where the steel material temperature is at least 800 to 500 ° C. is cooled at 15 ° C./sec or more. If the average cooling rate CR is lower than 15 ° C. / sec, while cooling the temperature range of 800 ⁇ 500 ° C., CrNb nitrides in the steel material is precipitated in the grain boundary, and further, M 23 C 6 type Cr carbides are also generated at the grain boundaries.
  • the element content in the chemical composition is within the range of the present embodiment, and the Nb content in the residue exceeds 0.267% by mass in the austenitic stainless steel material satisfying the formula (1). And / or the Cr content exceeds 0.125%. In this case, the austenitic stainless steel material has a reduced sensitization resistance.
  • the element content in the chemical composition of the steel material is within the range of this embodiment, the Mo content is 2.50 to 4.50%, and Co: 0.01 to 1.00%.
  • the average cooling rate CR is less than 15 ° C./sec, the Nb content in the residue exceeds 0.245% by mass. And / or the Cr content exceeds 0.104%. In this case, the polythionic acid SCC resistance of the austenitic stainless steel material is lowered.
  • the average cooling rate CR is 15 ° C./sec or more, it is possible to suppress excessive formation of Cr carbides in the steel material while cooling in the temperature range of 800 to 500 ° C. Therefore, on the premise that the first condition and the second condition are satisfied, the element content in the chemical composition is within the range of the present embodiment, and the austenitic stainless steel material satisfying the formula (1) is used.
  • the Nb content in the residue is 0.050 to 0.267% by mass, and the Cr content in the residue is 0.125% or less by mass. Therefore, the austenitic stainless steel material can be enhanced in sharpening resistance.
  • the element content in the chemical composition of the steel material is within the range of this embodiment, the Mo content is 2.50 to 4.50%, and Co: 0.01 to 1.00%.
  • the average cooling rate CR is 15 ° C./sec or more
  • the austenitic stainless steel material is premised on satisfying the first condition and the second condition.
  • the Nb content in the residue is 0.065 to 0.245% by mass, and the Cr content in the residue is 0.104% or less. Therefore, the polythionic acid SCC resistance of the austenitic stainless steel material is enhanced.
  • the austenitic stainless steel material of the present embodiment can be manufactured.
  • the above-mentioned manufacturing method is an example of the manufacturing method of the austenitic stainless steel material of the present embodiment. Therefore, the method for producing the austenitic stainless steel material of the present embodiment is not limited to the above-mentioned production method.
  • the content of each element in the chemical composition of the steel material is within the range of this embodiment, the formula (1) is satisfied, the Nb content in the residue is 0.050 to 0.267% by mass, and
  • the austenitic stainless steel material of the present embodiment is not limited to the above-mentioned production method as long as the Cr content in the residue is 0.125% or less in mass%.
  • each element in the chemical composition is within the range of the present embodiment and satisfies the formula (1).
  • the Nb content in the residue is 0.050 to 0.267% by mass
  • the Cr content in the residue is 0.125% or less by mass. Therefore, the austenitic stainless steel material of the present embodiment has excellent sensitization resistance.
  • the austenitic stainless steel material of the present embodiment further satisfies the above (I) to (III), that is, in the chemical composition, Mo: 2.50 to 4.50% and Co: 0.01 to 1
  • the Nb content in the residue obtained by the extraction residue method which contains .00% and further satisfies the formulas (2) and (3), is 0.065 to 0.245% in mass%.
  • the Cr content in the residue is 0.104% or less in mass%, the austenitic stainless steel material of the present embodiment has sufficient polythionic acid SCC resistance and naphthenic acid corrosion resistance.
  • the austenitic stainless steel material of the present embodiment will be specifically described with reference to Examples.
  • the conditions in the following examples are one condition example adopted for confirming the feasibility and effect of the austenitic stainless steel material of the present embodiment. Therefore, the austenitic stainless steel material of the present embodiment is not limited to this one condition example.
  • test number A3 indicates that Ti was contained in 0.02%, V was contained in 0.04%, and B was contained in 0.0014%.
  • the Sn content is 0 to 0.010% and the As content is 0 to 0.010% in any of the test numbers.
  • the Zn content was 0 to 0.010%
  • the Pb content was 0 to 0.010%
  • the Sb content was 0 to 0.010%.
  • an ingot having the chemical composition shown in Table 1 and having an outer diameter of 120 mm and a diameter of 30 kg was produced.
  • Hot forging was carried out on the ingot to obtain a material having a thickness of 30 mm.
  • the temperature of the ingot before hot forging was 1250 ° C.
  • the material was hot-rolled to produce an intermediate steel material (steel plate) having a thickness of 15 mm.
  • the material temperature immediately before hot working (hot rolling) was 1250 ° C.
  • the finishing temperature of the intermediate steel materials after hot rolling was 900 ° C. or higher.
  • the intermediate steel material after hot rolling was subjected to CrNb nitride formation treatment.
  • the T max of each test number was as shown in Table 2.
  • the heat treatment temperatures T of test numbers A1 to A18 and B1 to B6, B9, B10, and B13 to B17 were all 1000 ° C. or higher and T max or lower.
  • the heat treatment temperature T of test number B8 was less than 1000 ° C.
  • the heat treatment temperatures T of test numbers B7, B11 and B12 exceeded T max .
  • the CrNb nitride formation parameters f2, f1 and f3 of each test number are as shown in Table 2.
  • Table 2 the CrNb nitride formation parameters f2, f1 and f3 of each test number are as shown in Table 2.
  • T indicates that f1 ⁇ f2.
  • F indicates that f1> f2.
  • T indicates that f2 ⁇ f3.
  • F indicates that f2> f3.
  • the average cooling rate CR from 800 to 500 ° C. in the CrNb nitride formation treatment of test numbers A1 to A18, B1 to B5, B7 to B14, B16 and B17 was 15 ° C./sec or more.
  • the average cooling rate CR of test numbers B6 and B15 from 800 to 500 ° C. was 5 ° C./sec.
  • Square test pieces including the center position of the plate width and the center position of the plate thickness of the austenitic stainless steel material of each test number were collected.
  • the longitudinal direction of the angular test piece was parallel to the longitudinal direction of the austenitic stainless steel material.
  • the length of the angular test piece was 100 mm.
  • the cross section (cross section) perpendicular to the longitudinal direction of the square test piece was a rectangle of 10 mm ⁇ 10 mm.
  • the center position of the cross section of the square test piece almost coincided with the center position of the plate width and the center position of the plate thickness of the austenitic stainless steel material.
  • the following thermal history was given to the angular test piece using a high frequency thermal cycle device. Specifically, with reference to FIG. 6, a central portion 60 having a width of 10 mm at the center position in the longitudinal direction of the angular test piece (that is, a width of 5 mm to the left and right from the center position in the longitudinal direction) is set in the atmosphere. The temperature was raised from room temperature to 1400 ° C. at 70 ° C./sec. It was further held at 1400 ° C. for 10 seconds. Then, the angular test piece was cooled to room temperature at a cooling rate of 20 ° C./sec. By applying the above thermal history to the angular test piece, a large heat input welded joint simulated test piece was produced.
  • a Strauss test compliant with ASTM A262-15 PRACTICE E was conducted as follows. From the large heat input welded joint simulated test piece that had been sensitized for a long time, a plate-shaped test piece having a thickness of 2 mm, a width of 10 mm, and a length of 80 mm was collected so that the central portion 60 was located at the center position in the longitudinal direction. The plate-shaped test piece was immersed in a copper sulfate test solution containing 16% sulfuric acid and boiled for 15 hours. Then, the plate-shaped test piece was taken out from the copper sulfate test solution.
  • a bending test was performed on the plate-shaped test piece taken out.
  • the plate-shaped test piece was bent 180 ° in the atmosphere around the center position in the longitudinal direction of the large heat input welded joint simulated test piece.
  • the bent portion of the bent test piece was cut.
  • the cut surface was observed with a 20x optical microscope. If cracks were observed, the length of the cracks was determined. If no crack was observed, or if the crack was observed but the length of the crack was 100 ⁇ m or less, the Strauss test was judged to be acceptable (“E” (Excellent) in Table 2). On the other hand, when cracks exceeding 100 ⁇ m were observed, the Strauss test was judged to be unacceptable (“B” (Bad) in Table 2).
  • the plate-shaped test piece was scanned in the noble direction from the natural potential to 300 mV with a linear polarization at a polarization rate of 100 mV / min.
  • scanning was performed in the base direction to the original natural potential.
  • the current that flowed when the voltage was applied in the noble direction (outward route) was measured.
  • the current flowing when the voltage was applied in the base direction (return path) was measured.
  • the austenitic stainless steel material has excellent resistance. It was judged to have sensitization characteristics.
  • test numbers A1 to A18 the content of each element in the chemical composition was appropriate, and F1 satisfied the formula (1). Further, the Nb content in the residue was 0.050 to 0.267% by mass, and the Cr content in the residue was 0.125% or less. Furthermore, in the Strauss test, no cracks exceeding 100 ⁇ m were confirmed. Further, in the reactivation rate measurement test, the reactivation rate was 10% or less. Therefore, the austenitic stainless steel materials of test numbers A1 to A18 exhibited excellent sensitization resistance even when the sensitization treatment was performed at 550 ° C. for 10,000 hours after the large heat input welding.
  • test numbers B1 to B3 the Mo content and / or W content was low. Therefore, in the Strauss test, cracks exceeding 100 ⁇ m were confirmed. Furthermore, in the reactivation rate measurement test, the reactivation rate exceeded 10%. That is, when the sensitization treatment was carried out at 550 ° C. for 10,000 hours after the large heat input welding, the sensitization resistance property was low.
  • test number B4 F1 did not satisfy equation (1). Therefore, in the Strauss test, cracks exceeding 100 ⁇ m were confirmed. Furthermore, in the reactivation rate measurement test, the reactivation rate exceeded 10%. That is, when the sensitization treatment was carried out at 550 ° C. for 10,000 hours after the large heat input welding, the sensitization resistance property was low.
  • test number B5 the C content was high. Therefore, in the Strauss test, cracks exceeding 100 ⁇ m were confirmed. Furthermore, in the reactivation rate measurement test, the reactivation rate exceeded 10%. That is, when the sensitization treatment was carried out at 550 ° C. for 10,000 hours after the large heat input welding, the sensitization resistance property was low.
  • the heat treatment temperature T was higher than T max in the CrNb nitride formation treatment. Therefore, the Nb content in the residue was too low. Therefore, in the Strauss test, cracks exceeding 100 ⁇ m were confirmed. Furthermore, in the reactivation rate measurement test, the reactivation rate exceeded 10%. That is, when the sensitization treatment was carried out at 550 ° C. for 10,000 hours after the large heat input welding, the sensitization resistance property was low.
  • the heat treatment temperature T was less than 1000 ° C. in the CrNb nitride formation treatment. Therefore, the Nb content in the residue and the Cr content in the residue were too high. Therefore, cracks exceeding 100 ⁇ m were confirmed in the Strauss test, and the reactivation rate exceeded 10% in the reactivation rate measurement test. That is, when the sensitization treatment was performed at 550 ° C. for 10,000 hours after the large heat input welding, the sensitization resistance property was low.
  • test number B9 although the chemical composition was appropriate and the formula (1) was satisfied, the CrNb nitride formation parameter f2 was less than f1 in the CrNb nitriding treatment step. Therefore, the Cr content in the residue was too high. As a result, in the Strauss test, cracks exceeding 100 ⁇ m were confirmed. Furthermore, in the reactivation rate measurement test, the reactivation rate exceeded 10%. That is, when the sensitization treatment was carried out at 550 ° C. for 10,000 hours after the large heat input welding, the sensitization resistance property was low.
  • test number B10 Although the chemical composition was appropriate and the formula (1) was satisfied, the CrNb nitride formation parameter f2 exceeded f3 in the CrNb nitriding treatment step. Therefore, the Nb content in the residue was too low. As a result, in the Strauss test, cracks exceeding 100 ⁇ m were confirmed. Furthermore, in the reactivation rate measurement test, the reactivation rate exceeded 10%. That is, when the sensitization treatment was carried out at 550 ° C. for 10,000 hours after the large heat input welding, the sensitization resistance property was low.
  • the heat treatment temperature T was higher than T max in the CrNb nitride formation treatment. Therefore, the Nb content in the residue was too low. Therefore, in the Strauss test, cracks exceeding 100 ⁇ m were confirmed. Furthermore, in the reactivation rate measurement test, the reactivation rate exceeded 10%. That is, when the sensitization treatment was carried out at 550 ° C. for 10,000 hours after the large heat input welding, the sensitization resistance property was low.
  • test number B12 the heat treatment temperature T was higher than T max in the CrNb nitride formation treatment. Therefore, the Nb content in the residue was too low. Therefore, in the Strauss test, cracks exceeding 100 ⁇ m were confirmed. Furthermore, in the reactivation rate measurement test, the reactivation rate exceeded 10%. That is, when the sensitization treatment was carried out at 550 ° C. for 10,000 hours after the large heat input welding, the sensitization resistance property was low.
  • test number B14 Although the chemical composition was appropriate and the formula (1) was satisfied, the CrNb nitride formation parameter f2 exceeded f3 in the CrNb nitriding treatment step. Therefore, the Nb content in the residue was too low. As a result, in the Strauss test, cracks exceeding 100 ⁇ m were confirmed. Furthermore, in the reactivation rate measurement test, the reactivation rate exceeded 10%. That is, when the sensitization treatment was performed at 550 ° C. for 10,000 hours after the large heat input welding, the sensitization resistance property was low.
  • test number B15 although the chemical composition was appropriate and the formula (1) was satisfied, the average cooling rate CR at 800 to 500 ° C. was less than 15 ° C./sec in the CrNb nitriding treatment step. Therefore, the Cr content in the residue was too high. As a result, in the Strauss test, cracks exceeding 100 ⁇ m were confirmed. Furthermore, in the reactivation rate measurement test, the reactivation rate exceeded 10%. That is, when the sensitization treatment was carried out at 550 ° C. for 10,000 hours after the large heat input welding, the sensitization resistance property was low.
  • test number B16 Although the chemical composition was appropriate and the formula (1) was satisfied, the CrNb nitride formation parameter f2 was less than f1 in the CrNb nitriding treatment step. Therefore, the Cr content in the residue was too high. As a result, in the Strauss test, cracks exceeding 100 ⁇ m were confirmed. Furthermore, in the reactivation rate measurement test, the reactivation rate exceeded 10%. That is, when the sensitization treatment was carried out at 550 ° C. for 10,000 hours after the large heat input welding, the sensitization resistance property was low.
  • test number B17 Although the chemical composition was appropriate and the formula (1) was satisfied, the CrNb nitride formation parameter f2 exceeded f3 in the CrNb nitriding treatment step. Therefore, the Nb content in the residue was too low. As a result, in the Strauss test, cracks exceeding 100 ⁇ m were confirmed. Furthermore, in the reactivation rate measurement test, the reactivation rate exceeded 10%. That is, when the sensitization treatment was performed at 550 ° C. for 10,000 hours after the large heat input welding, the sensitization resistance property was low.
  • Blanks in Table 3 indicate that the corresponding element content was below the detection limit. If it was below the detection limit, it was considered that the element was not contained.
  • the contained arbitrary element or impurity element and its content (mass%) are described.
  • test number A3 indicates that Ti was contained in 0.08%, V was contained in 0.16%, and Sn, which is an impurity, was contained in 0.005%.
  • the impurity elements Sn, As, Zn, Pb, and Sb the Sn content is 0 to 0.010%, the As content is 0 to 0.010%, and Zn is obtained in any of the test numbers. The content was 0 to 0.010%, the Pb content was 0 to 0.010%, and the Sb content was 0 to 0.010%.
  • an ingot having the chemical composition shown in Table 3 and having an outer diameter of 120 mm and a diameter of 30 kg was produced.
  • Hot forging was carried out on the ingot to obtain a material having a thickness of 30 mm.
  • the temperature of the ingot before hot forging was 1150 ° C.
  • the material was hot-rolled to produce a steel material (steel plate) having a thickness of 15 mm.
  • the material temperature before hot working (hot rolling) was 1150 ° C.
  • the finishing temperature of the steel material after hot rolling was 900 ° C. or higher.
  • a CrNb nitride formation treatment was carried out on the steel material after hot rolling.
  • the T max of each test number in the CrNb nitride formation treatment was as shown in Table 4.
  • the heat treatment temperature T was 1000 ° C. or higher and T max or lower.
  • the heat treatment temperature T exceeded T max .
  • the heat treatment temperature T was less than 1000 ° C.
  • the CrNb nitride formation parameters f2, f1 and f3 of each test number are as shown in Table 4.
  • Table 4 In the "f1 ⁇ f2" column in Table 4, “T” indicates that f1 ⁇ f2. “F” indicates that f1> f2. In the “f2 ⁇ f3" column in Table 4, “T” indicates that f2 ⁇ f3. “F” indicates that f2> f3.
  • the average cooling rate CR from 800 to 500 ° C. in the CrNb nitride formation treatment of test numbers A1 to A13, B1 to B10, and B12 to B14 was 15 ° C./sec or more.
  • the average cooling rate CR of test number B11 from 800 to 500 ° C. was less than 15 ° C./sec.
  • test piece having a thickness of 2 mm, a width of 10 mm, and a length of 30 mm was collected from the austenitic stainless steel material of each test number at the center width position and the center plate thickness position.
  • the longitudinal direction of the test piece was parallel to the longitudinal direction (rolling direction) of the steel material.
  • the collected test piece was immersed in a 100% cyclohexanecarboxylic acid solution at 200 ° C. for 720 hours under normal pressure. After immersion for 720 hours, the test piece was ultrasonically cleaned with acetone for 3 minutes.
  • the difference between the mass of the test piece before the test and the mass of the test piece after ultrasonic cleaning was calculated as the corrosion weight loss. Furthermore, the corrosion rate (mm / year) was determined from the surface area, specific gravity, and test time of the test piece. When the corrosion rate was 0.01 mm / year or less, it was judged that the naphthenic acid corrosiveness was excellent (indicated as "E” in the "naphthenic acid corrosiveness” column in Table 4). On the other hand, when the corrosion rate exceeded 0.01 mm / year, it was judged that the naphthenic acid corrosiveness was low (indicated as "B” in the "naphthenic acid corrosiveness” column in Table 4).
  • Square test pieces including the center position of the plate width and the center position of the plate thickness of the austenitic stainless steel material of each test number were collected.
  • the longitudinal direction of the angular test piece was parallel to the longitudinal direction of the austenitic stainless steel material.
  • the length of the angular test piece was 100 mm.
  • the cross section (cross section) perpendicular to the longitudinal direction of the square test piece was a rectangle of 10 mm ⁇ 10 mm.
  • the center position of the cross section of the square test piece almost coincided with the center position of the plate width and the center position of the plate thickness of the austenitic stainless steel material.
  • the following thermal history was given to the angular test piece using a high frequency thermal cycle device. Specifically, with reference to FIG. 6, the 10 mm wide portion 60 at the center position in the longitudinal direction of the angular test piece was heated from room temperature to 1350 ° C. at 100 ° C./sec in the atmosphere. Further, it was held at 1350 ° C. for 1 to 60 seconds. Then, the angular test piece was cooled to room temperature at a cooling rate of 20 ° C./sec. By applying the above heat history to the angular test piece, a large heat input welded joint simulated test piece 50 was produced.
  • the average crystal grain sizes R1 and R2 were measured by the following methods using the large heat input welded joint simulated test piece 50.
  • the region 60 of the 10 mm wide portion at the center position in the length direction of the large heat-affected zone simulated test piece 50 corresponds to the HAZ range Dr (reproduced HAZ structure) of the welded joint. Therefore, the region 60 was identified as the HAZ range Dr (reproduced HAZ structure) 60.
  • a sample was taken with the surface of the range Dref 60 as the observation surface. The observation surface was mirror-polished. Then, in accordance with JIS G 0551 (2013), the crystal particle size numbers in any of the three fields of view were determined by the cutting method.
  • Each field of view was 100 ⁇ m ⁇ 100 ⁇ m.
  • the arithmetic mean value of the obtained three crystal particle size numbers was obtained and defined as the average crystal particle size number.
  • the average crystal particle size R1 ( ⁇ m) was determined from the obtained average crystal particle size number.
  • the position 25 mm from the end in the longitudinal direction of the large heat input welded joint simulated test piece 50 was certified as the normal part 70.
  • the average crystal grain size R2 was measured by the following method. A sample was taken with the surface of the normal portion 70 of the large heat input welded joint simulated test piece 50 as the observation surface. The observation surface was mirror-polished. Then, in accordance with JIS G 0551 (2013), the crystal particle size numbers in any of the three fields of view were determined by the cutting method. Each field of view was 100 ⁇ m ⁇ 100 ⁇ m. The arithmetic mean value of the obtained three crystal particle size numbers was obtained and defined as the average crystal particle size number. The average crystal particle size R2 ( ⁇ m) was determined from the obtained average crystal particle size number.
  • R1 / R2 was determined using the average crystal grain size R1 in the obtained range Dref60 and the average crystal grain size R2 in the normal part 70.
  • the obtained R1 / R2 is shown in the "R1 / R2" column of Table 4.
  • T means that R1 / R2 is 4.8 or less and satisfies the equation (4).
  • F in the “Equation (4)” column means that R1 / R2 exceeded 4.8 and did not satisfy the equation (4).
  • a plate-shaped test piece having a thickness of 2 mm, a width of 10 mm, and a length of 75 mm was collected so that the range Dref60 was located at the center position in the longitudinal direction.
  • the polythionic acid SCC resistance evaluation test was carried out by the following method using the collected plate-shaped test pieces.
  • the plate-shaped test piece was bent around a punch having an inner radius of 5 mm to form a U-bend shape.
  • the average crystal grain size R1 of the range Dref in the large heat input welded joint simulated test piece and the average crystal grain size R2 of the normal portion satisfied the formula (4). Therefore, the polythionic acid SCC resistance was extremely high, and the liquefaction cracking corrosion resistance was extremely high.
  • test number B1 although the content of each element in the chemical composition was appropriate, F2 exceeded the upper limit of the formula (2) and F3 exceeded the upper limit of the formula (3). As a result, the liquid resistance and cracking resistance were low.
  • test number B4 F3 was less than the lower limit of equation (3). Therefore, the polythionic acid SCC resistance was low.
  • test number B5 F2 was less than the lower limit of equation (2). Therefore, the polythionic acid SCC resistance was low.
  • test number B6 F2 exceeded the upper limit of equation (2). As a result, the liquid resistance and cracking resistance were low.
  • test number B7 F3 was less than the lower limit of equation (3). As a result, the polythionic acid SCC resistance was low.
  • test number B8 F3 exceeded the upper limit of equation (3). As a result, the liquid resistance and cracking resistance were low.
  • test number B9 the heat treatment temperature T of the CrNb nitride formation treatment exceeded T max . Therefore, the Nb content in the residue was too low. As a result, the polythionic acid SCC resistance was low.
  • test number B10 the heat treatment temperature T of the CrNb nitride formation treatment was too low. Therefore, the Cr content in the residue was high. As a result, the liquid resistance and cracking resistance were low.
  • test number B11 the average cooling rate CR was too slow in the CrNb nitride formation process. Therefore, the Nb content in the residue was high, and the Cr content in the residue was high. As a result, the polythionic acid SCC resistance was low.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Heat Treatment Of Steel (AREA)
  • Arc Welding In General (AREA)

Abstract

大入熱溶接後に400~700℃の平均操業温度で長時間使用した後であっても、優れた耐鋭敏化特性を有する、オーステナイト系ステンレス鋼材を提供する。本開示の鋼材は、化学組成が、質量%で、C:0.020%以下、Si:1.50%以下、Mn:2.00%以下、P:0.045%以下、S:0.0300%以下、Cr:15.00~25.00%、Ni:9.00~20.00%、N:0.05~0.15%、Nb:0.1~0.8%、Mo:0.10~4.50%、W:0.01~1.00%を含有し、式(1)を満たし、抽出残渣法により得られた残渣中のNb含有量が質量%で0.050~0.267%であり、かつ、前記残渣中のCr含有量が質量%で0.125%以下である。 21.9Mo+5.9W-5.0≧0 (1)

Description

オーステナイト系ステンレス鋼材及び溶接継手
 本開示は、鋼材に関し、さらに詳しくは、オーステナイト系ステンレス鋼材、及び、そのオーステナイト系ステンレス鋼材を用いた溶接継手に関する。
 石油精製プラントや石油化学プラント等の化学プラント設備に用いられる鋼材は、高温強度が求められる。これらの化学プラント設備用途の鋼材として、オーステナイト系ステンレス鋼材が用いられている。
 化学プラント設備は複数の装置を含む。化学プラント設備の各装置は例えば、常圧蒸留装置、減圧蒸留装置、直接脱硫装置、接触改質装置等である。これらの装置は、加熱炉管、反応塔、槽、熱交換器、配管等を含む。これらの装置は、鋼材を溶接して形成された溶接構造物である。
 各装置の操業時の平均温度は異なる。以下、操業時の平均温度を「平均操業温度」という。例えば、減圧蒸留装置は、400~450℃で操業される。直接脱硫装置は、400~450℃で操業される。接触改質装置は、420~700℃で操業される。したがって、これらの装置の加熱炉管、反応塔、槽、熱交換器、配管等に使用される鋼材では、装置の操業時において、400~700℃程度の平均操業温度で長時間保持される場合がある。なお、化学プラント設備の装置には、700℃超の温度で稼働する装置もある。
 さらに、化学プラント設備を新規に建設したり、化学プラント設備を補修したりする場合、化学プラント設備内の装置に使用される鋼材は、化学プラントの建設予定地、又は、化学プラントが所在する現地にて、溶接される。最近の溶接施工では、溶接のパス数を低減するために、入熱量を大きくした大入熱溶接が採用される場合が多い。
 ところで、オーステナイト系ステンレス鋼材が溶接された場合、溶接熱影響部(以下、HAZ(Heat Affected Zone)ともいう)においてCr炭化物に起因した鋭敏化が生じることが知られている。鋭敏化が生じた場合、粒界において固溶Crが欠乏する。このような固溶Crが欠乏している領域を、「Cr欠乏領域」という。粒界近傍でのCr欠乏領域は、粒界腐食や応力腐食割れを発生させる。
 オーステナイト系ステンレス鋼材のHAZでの鋭敏化の抑制を目的として、安定化オーステナイト系ステンレス鋼材が開発されている。安定化オーステナイト系ステンレス鋼材は、Nb又はTiを含有する。Cとの親和性は、Nb及びTiの方がCrよりも高い。そのため、安定化オーステナイト系ステンレス鋼材では、Nb及びTiによりNb炭化物及びTi炭化物を生成し、Cr炭化物の生成を抑制する。これにより、粒界近傍でのCr欠乏領域の生成が抑制される。その結果、安定化オーステナイト系ステンレス鋼材では、HAZの鋭敏化を抑制できる。
 しかしながら、安定化オーステナイト系ステンレス鋼材では、大入熱溶接を実施した場合にナイフラインアタックが生じる可能性がある。ナイフラインアタックとは、次の現象を意味する。大入熱溶接を実施したとき、安定化オーステナイト系ステンレス鋼材のうち、溶接金属の近傍部分(HAZに相当する部分)の温度が、融点近くまで上がる。具体的には、上述の溶接金属の近傍部分の温度が1200℃程度まで上がる。このとき、鋼材中でCを固定していたNb炭化物及びTi炭化物が溶融する。溶接金属の凝固段階(冷却段階)において、Nb及びTiは再びCと結合しようとする。しかしながら、凝固段階での上記近傍部分の冷却速度は速い。そのため、凝固段階において、Nb及びTiがCと結合しきれないまま、上記近傍部分の温度が、Cr炭化物の生成温度域である800~500℃まで下がる。この場合、Nb及びTiがCと結合できずにCrがCと結合して、Cr炭化物が生成する。その結果、HAZのうち溶接金属との境界近傍の部分で鋭い割れが発生する。この現象をナイフラインアタックという。ナイフラインアタックは、鋭敏化の一種である。したがって、大入熱溶接を実施した場合においても、鋭敏化の発生を抑制できることが望まれている。
 さらに、上述の化学プラント設備のうち、平均操業温度が400~700℃となる装置で使用される鋼材の場合、装置の操業期間中においても、鋭敏化を抑制できる方が好ましい。従前の研究では、平均操業温度が400~700℃程度の装置用途の鋼材に対しては、550℃の温度域で1000時間保持し、鋭敏化の発生有無を検討していた。しかしながら、化学プラントの稼働期間を考慮すると、550℃で1000時間の保持は短すぎる。したがって、550℃で1000時間よりもはるかに長い、550℃で10000時間保持した後であっても、鋼材の鋭敏化を抑制できる方が好ましい。
 特許文献1は、高温で長時間使用された場合のHAZの耐脆化割れ性に優れたオーステナイト系ステンレス鋼を提案する。特許文献1に開示されたオーステナイト系ステンレス鋼は、質量%で、C:0.04%未満、Si:1.5%以下、Mn:2%以下、Cr:15~25%、Ni:6~30%、N:0.02~0.35%、sol.Al:0.03%以下を含有するとともに、Nb:0.5%以下、Ti:0.4%以下、V:0.4%以下、Ta:0.2%以下、Hf:0.2%以下及びZr:0.2%以下のうちの1種又は2種以上を含有し、残部がFe及び不純物からなり、不純物中のP、S、Sn、As、Zn、Pb及びSbがそれぞれ、P:0.04%以下、S:0.03%以下、Sn:0.1%以下、As:0.01%以下、Zn:0.01%以下、Pb:0.01%以下及びSb:0.01%以下であり、かつ、下記の(1)式及び(2)式で表されるF1及びF2の値がそれぞれ、F1≦0.075及び0.05≦F2≦1.7-9×F1を満足する。
 F1=S+{(P+Sn)/2}+{(As+Zn+Pb+Sb)/5} (1)式
 F2=Nb+Ta+Zr+Hf+2Ti+(V/10) (2)式
国際公開第2009/044802号
 特許文献1に提案されたオーステナイト系ステンレス鋼は、高温で長時間使用された場合のHAZの耐脆化割れ性を高める。しかしながら、特許文献1では、大入熱溶接を想定していない。そのため、特許文献1では、大入熱溶接後に400~700℃の平均操業温度で長時間使用した後の耐鋭敏化特性について検討されていない。
 本開示の目的は、大入熱溶接後に400~700℃の平均操業温度で長時間使用した後であっても、優れた耐鋭敏化特性を有する、オーステナイト系ステンレス鋼材を提供することである。
 本開示によるオーステナイト系ステンレス鋼材は、
 化学組成が、質量%で
 C:0.020%以下、
 Si:1.50%以下、
 Mn:2.00%以下、
 P:0.045%以下、
 S:0.0300%以下、
 Cr:15.00~25.00%、
 Ni:9.00~20.00%、
 N:0.05~0.15%、
 Nb:0.1~0.8%、
 Mo:0.10~4.50%、
 W:0.01~1.00%、
 Ti:0~0.50%、
 Ta:0~0.50%、
 V:0~1.00%、
 Zr:0~0.10%、
 Hf:0~0.10%、
 Cu:0~2.00%、
 Co:0~1.00%、
 sol.Al:0~0.030%、
 B:0~0.0100%、
 Ca:0~0.0200%、
 Mg:0~0.0200%、
 希土類元素:0~0.100%、
 Sn:0~0.010%、
 As:0~0.010%、
 Zn:0~0.010%、
 Pb:0~0.010%、
 Sb:0~0.010%、及び、
 残部がFe及び不純物からなり、
 式(1)を満たし、
 抽出残渣法により得られた残渣中のNb含有量が質量%で0.050~0.267%であり、かつ、前記残渣中のCr含有量が質量%で0.125%以下である。
 21.9Mo+5.9W-5.0≧0 (1)
 ここで、式(1)中の各元素記号には、前記化学組成中の対応する元素の含有量(質量%)が代入される。
 本開示のオーステナイト系ステンレス鋼材は、大入熱溶接後に400~700℃の平均操業温度で長時間使用した後であっても、優れた耐鋭敏化特性を有する。
図1は、本実施形態の溶接継手の一例を示す平面図である。 図2は、図1の溶接継手を溶接金属幅方向で切断した断面図である。 図3は、図1の溶接継手を溶接金属延在方向で切断した断面図である。 図4は、図3と異なる、溶接継手を溶接金属延在方向で切断した断面図である。 図5は、本実施形態の溶接継手において、溶接金属延在方向に垂直な方向の断面を示す図である。 図6は、実施例で作製した大入熱溶接継手模擬試験片の側面図である。
 本発明者らは、大入熱溶接後に400~700℃の平均操業温度で長時間使用した後であっても、優れた耐鋭敏化特性を有するオーステナイト系ステンレス鋼材について検討を行った。
 本発明者らは初めに、鋼材の化学組成について検討を行った。耐鋭敏化特性を高めるためには、粒界でのCr欠乏領域の生成を抑制することが有効である。粒界でのCr欠乏領域の生成を抑制するためには、鋼材中にCr炭化物が生成するのを抑制することが有効である。Cr炭化物の生成を抑制するためには、鋼材の化学組成中のC含有量を低減することが有効である。さらに、鋼材中のCがCrと結合するのを抑制するため、鋼材にNbを含有して鋼材中のCをNbと結合させることが有効である。そこで、本発明者らは初めに、鋼材の耐鋭敏化特性を高めるために、鋼材の化学組成について検討を行った。その結果、化学組成が、C:0.020%以下、Si:1.50%以下、Mn:2.00%以下、P:0.045%以下、S:0.0300%以下、Cr:15.00~25.00%、Ni:9.00~20.00%、N:0.05~0.15%、Nb:0.1~0.8%、Ti:0~0.50%、Ta:0~0.50%、V:0~1.00%、Zr:0~0.10%、Hf:0~0.10%、Cu:0~2.00%、Co:0~1.00%、sol.Al:0~0.030%、B:0~0.0100%、Ca:0~0.0200%、Mg:0~0.0200%、希土類元素:0~0.100%、Sn:0~0.010%、As:0~0.010%、Zn:0~0.010%、Pb:0~0.010%、Sb:0~0.010%、及び、残部がFe及び不純物からなるオーステナイト系ステンレス鋼材であれば、Cr炭化物の生成を抑えることができると考えた。
 ところで、上述のとおり、化学プラント設備の新規建設時又は補修時において、オーステナイト系ステンレス鋼材に対して大入熱溶接を実施する場合がある。大入熱溶接を実施した場合、大入熱溶接時の溶接熱により、鋼材のうち、溶接金属の近傍部分(HAZに相当する部分)の温度は1200℃を超える。そのため、大入熱溶接前の鋼材にCr炭化物がそれほど多く存在していなくても、大入熱溶接後の鋼材中に、Cr炭化物が生成してしまう場合がある。この場合、化学プラント設備を稼働して、400~700℃の平均操業温度で長時間保持された場合に、オーステナイト系ステンレス鋼材に鋭敏化が発生する可能性がある。
 そこで、本発明者らはさらに、オーステナイト系ステンレス鋼材を大入熱溶接した後に、400~700℃の平均操業温度で長時間保持した場合であっても、鋭敏化の発生を抑制できる手段を検討した。その結果、本発明者らは、次の知見を得た。
 上述のオーステナイト系ステンレス鋼材の化学組成において、Feの一部に代えて、Mo:0.10~4.50%、及び、W:0.01~1.00%を必須元素として含有する。鋼材の製造工程時及び大入熱溶接時に鋼材中に生成するCr炭化物は、M23型の炭化物である。Mo及びWは、M23型のCr炭化物のCrのサイト(Mサイト)にCrと置換して入り、Cr炭化物の自由エネルギーを下げる。さらに、Moの拡散速度及びWの拡散速度は、Crの拡散速度よりも遅い。そのため、Crと置換してMo及び/又はWがMサイトに入ったCr炭化物の成長速度は顕著に遅くなる。以上のメカニズムにより、Mo及びWを含有することにより、鋼材製造時及び大入熱溶接時におけるCr炭化物の生成及び成長が抑制されると本発明者らは考えた。
 しかしながら、本発明者らが検討した結果、鋼材に上述の含有量のMo及びWを含有しても、大入熱溶接後に400~700℃の平均操業温度で長時間保持した場合、鋭敏化を十分に抑制できない場合があった。そこで、本発明者らはさらなる検討を行った。その結果、鋼材中のMo含有量(質量%)及びW含有量(質量%)が式(1)を満たせば、大入熱溶接後に400~700℃の平均操業温度で長時間保持された場合であっても、耐鋭敏化特性が高まることがわかった。
 21.9Mo+5.9W-5.0≧0 (1)
 ここで、式(1)中の各元素記号には、化学組成中の対応する元素の含有量(質量%)が代入される。
 本発明者らはさらに、化学組成中の各元素含有量が上述の範囲内であり、かつ、式(1)を満たすオーステナイト系ステンレス鋼材において、大入熱溶接後に400~700℃の平均操業温度で長時間保持されても、耐鋭敏化特性をさらに高めることができる手段を検討した。
 ここで、本発明者らは、鋼材中の析出物に注目した。上述の化学組成を有するオーステナイト系ステンレス鋼材中の析出物のうち、CrNb窒化物の占める割合を高める。つまり、析出物中におけるCrNb窒化物の割合を高める。CrNb窒化物は、Cr及びNbを含有する微細な析出物(窒化物)である。CrNb窒化物は、鋼材の結晶粒界面積を増加させる。結晶粒界面積が増加すれば、大入熱溶接した後に、400~700℃の平均操業温度で長時間保持した場合であっても、耐鋭敏化特性が高まる。
 CrNb窒化物は非常に微細である。そのため、走査型電子顕微鏡等でCrNb窒化物の個数密度を定量的に測定することは現時点の測定技術では困難である。しかしながら、鋼材に対して抽出残渣法を実施し、抽出残渣法により得られた残渣の化学組成を定量すれば、鋼材中の析出物を予想することができる。本発明者らの検討の結果、化学組成中の各元素含有量が上述の範囲内であり、かつ、式(1)を満たすオーステナイト系ステンレス鋼材に対して抽出残渣法を実施して得られた残渣中のNb含有量が、質量%で0.050~0.267%であり、かつ、残渣中のCr含有量が質量%で0.125%以下であれば、鋼材中の析出物中においてCrNb窒化物が占める割合が十分に高くなる。その結果、大入熱溶接した後に、400~700℃の平均操業温度で長時間保持した場合であっても、優れた耐鋭敏化特性が得られることが判明した。
 以上の知見に基づいて完成した本実施形態のオーステナイト系ステンレス鋼材は、次の構成を有する。
 [1]
 オーステナイト系ステンレス鋼材であって、
 化学組成が、質量%で
 C:0.020%以下、
 Si:1.50%以下、
 Mn:2.00%以下、
 P:0.045%以下、
 S:0.0300%以下、
 Cr:15.00~25.00%、
 Ni:9.00~20.00%、
 N:0.05~0.15%、
 Nb:0.1~0.8%、
 Mo:0.10~4.50%、
 W:0.01~1.00%、
 Ti:0~0.50%、
 Ta:0~0.50%、
 V:0~1.00%、
 Zr:0~0.10%、
 Hf:0~0.10%、
 Cu:0~2.00%、
 Co:0~1.00%、
 sol.Al:0~0.030%、
 B:0~0.0100%、
 Ca:0~0.0200%、
 Mg:0~0.0200%、
 希土類元素:0~0.100%、
 Sn:0~0.010%、
 As:0~0.010%、
 Zn:0~0.010%、
 Pb:0~0.010%、
 Sb:0~0.010%、及び、
 残部がFe及び不純物からなり、
 式(1)を満たし、
 抽出残渣法により得られた残渣中のNb含有量が質量%で0.050~0.267%であり、かつ、前記残渣中のCr含有量が質量%で0.125%以下である、
 オーステナイト系ステンレス鋼材。
 21.9Mo+5.9W-5.0≧0 (1)
 ここで、式(1)中の各元素記号には、前記化学組成中の対応する元素の含有量(質量%)が代入される。
 ここで、「残渣中のNb含有量」とは、オーステナイト系ステンレス鋼材の質量(抽出残渣法で本電解されたオーステナイト系ステンレス鋼材の質量)に対する、残渣中のNb含有量の質量の割合(質量%)を意味する。「残渣中のCr含有量」とは、オーステナイト系ステンレス鋼材の質量(抽出残渣法で本電解されたオーステナイト系ステンレス鋼材の質量)に対する、残渣中のCr含有量の質量の割合(質量%)を意味する。
 上記本実施形態のオーステナイト系ステンレス鋼材は、大入熱溶接後に400~700℃の平均操業温度で長時間使用した後であっても、優れた耐鋭敏化特性を有する。
 [2]
 [1]に記載のオーステナイト系ステンレス鋼材であって、
 前記化学組成は、
 Mo:2.50~4.50%、及び、
 Co:0.01~1.00%、
 を含有し、さらに、式(2)及び式(3)を満たし、
 前記抽出残渣法により得られた前記残渣中のNb含有量は質量%で0.065~0.245%であり、かつ、前記残渣中のCr含有量が質量%で0.104%以下である、
 オーステナイト系ステンレス鋼材。
 2≦73W+5Co≦60 (2)
 0.20≦Nb+0.1W≦0.58 (3)
 上記[2]のオーステナイト系ステンレス鋼材はさらに、優れた耐ポリチオン酸SCC性、優れた耐液化割れ性、及び、優れた耐ナフテン酸腐食性を有する。
 [3]
 [1]又は[2]に記載のオーステナイト系ステンレス鋼材であって、
 前記化学組成は、第1群~第5群のいずれかの群に属する少なくとも1元素又は2元素以上を含有する、
 オーステナイト系ステンレス鋼材。
 第1群:
 Ti:0.01~0.50%、
 Ta:0.01~0.50%、
 V:0.01~1.00%、
 Zr:0.01~0.10%、及び、
 Hf:0.01~0.10%、
 第2群:
 Cu:0.01~2.00%、及び、
 Co:0.01~1.00%、
 第3群:
 sol.Al:0.001~0.030%、
 第4群:
 B:0.0001~0.0100%、
 第5群:
 Ca:0.0001~0.0200%、
 Mg:0.0001~0.0200%、及び、
 希土類元素:0.001~0.100%。
 [4]
 溶接継手であって、
 [2]又は[3]に記載の一対のオーステナイト系ステンレス鋼材と、
 前記一対のオーステナイト系ステンレス鋼材の間に配置された溶接金属とを備え、
 前記溶接金属の延在方向と垂直な前記オーステナイト系ステンレス鋼材の断面のうち、溶接熱影響部内であって溶融線から前記溶接金属の幅方向に200μmの範囲における平均結晶粒径を平均結晶粒径R1と定義し、前記溶接熱影響部以外の部分の平均結晶粒径を平均結晶粒径R2と定義したとき、
 前記平均結晶粒径R1と前記平均結晶粒径R2とは式(4)を満たす、
 溶接継手。
 R1/R2≦4.8 (4)
 以下、本実施形態のオーステナイト系ステンレス鋼材及び溶接継手について詳述する。元素に関する「%」は、特に断りがない限り、質量%を意味する。
 [化学組成について]
 本実施形態のオーステナイト系ステンレス鋼材の化学組成は、次の元素を含有する。
 C:0.020%以下
 炭素(C)は不可避に含有される。つまり、C含有量は0%超である。Cは、粒界にM23型のCr炭化物を生成する。C含有量が0.020%を超えれば、他の元素含有量が本実施形態の範囲内であっても、Cr炭化物が過剰に生成して鋼材の耐鋭敏化特性が顕著に低下する。したがって、C含有量は0.020%以下である。C含有量の好ましい上限は0.018%であり、さらに好ましくは0.016%であり、さらに好ましくは0.014%であり、さらに好ましくは0.012%である。C含有量はなるべく低い方が好ましい。しかしながら、C含有量の過剰な低減は製造コストを高くする。したがって、工業生産上、C含有量の好ましい下限は0.001%であり、さらに好ましくは0.002%である。
 Si:1.50%以下
 シリコン(Si)は不可避に含有される。つまり、Si含有量は0%超である。Siは、製鋼工程において、鋼を脱酸する。Siが少しでも含有されれば、上記効果がある程度得られる。しかしながら、Si含有量が1.50%を超えれば、他の元素含有量が本実施形態の範囲内であっても、溶接割れ感受性が顕著に高まる。さらに、Siはフェライト安定化元素であるため、オーステナイトの安定性が低下する。この場合、400~700℃の平均操業温度での長時間使用時において、鋼材中にシグマ相(σ相)が生成する。σ相は、400~700℃の平均操業温度での使用時における鋼材の靱性及び延性を低下する。したがって、Si含有量は1.50%以下である。Si含有量の好ましい下限は0.01%であり、さらに好ましくは0.05%であり、さらに好ましくは0.10%であり、さらに好ましくは0.15%であり、さらに好ましくは0.20%である。Si含有量の好ましい上限は1.40%であり、さらに好ましくは1.20%であり、さらに好ましくは1.00%であり、さらに好ましくは0.80%であり、さらに好ましくは0.70%であり、さらに好ましくは0.60%であり、さらに好ましくは0.50%である。
 Mn:2.00%以下
 マンガン(Mn)は不可避に含有される。つまり、Mn含有量は0%超である。Mnは、鋼材中のSと結合してMnSを形成し、鋼材の熱間加工性を高める。Mnはさらに、溶接時において鋼材の溶接部を脱酸する。Mnが少しでも含有されれば、上記効果がある程度得られる。しかしながら、Mn含有量が2.00%を超えれば、他の元素含有量が本実施形態の範囲内であっても、400~700℃の平均操業温度での使用時において、鋼材中にシグマ相(σ相)が生成しやすくなる。σ相は、400~700℃の平均操業温度での使用時における鋼材の靱性及び延性を低下する。したがって、Mn含有量は2.00%以下である。Mn含有量の好ましい下限は0.01%であり、さらに好ましくは0.10%であり、さらに好ましくは0.50%であり、さらに好ましくは1.00%であり、さらに好ましくは1.20%であり、さらに好ましくは1.30%である。Mn含有量の好ましい上限は1.80%であり、さらに好ましくは1.60%であり、さらに好ましくは1.55%である。
 P:0.045%以下
 燐(P)は不可避に含有される不純物である。つまり、P含有量は0%超である。Pは、大入熱溶接時において、鋼材の粒界に偏析する。その結果、鋼材の耐鋭敏化特性が低下する。Pはさらに、溶接時において、鋼材の溶接割れ感受性を高める。P含有量が0.045%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の耐鋭敏化特性が低下し、溶接割れ感受性が高まる。したがって、P含有量は0.045%以下である。P含有量の好ましい上限は0.040%であり、さらに好ましくは0.035%であり、さらに好ましくは0.030%である。P含有量はなるべく低い方が好ましい。しかしながら、P含有量の過剰な低減は、鋼材の製造コストを引き上げる。したがって、通常の工業生産を考慮すれば、P含有量の好ましい下限は0.001%であり、さらに好ましくは0.002%である。
 S:0.0300%以下
 硫黄(S)は不可避に含有される不純物である。つまり、S含有量は0%超である。Sは、高温環境下での鋼材使用中において、粒界に偏析する。その結果、鋼材の耐鋭敏化特性が低下する。Sはさらに、溶接時において、鋼材の溶接割れ感受性を高める。S含有量が0.0300%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の耐鋭敏化特性が低下し、溶接割れ感受性が高まる。したがって、S含有量は0.0300%以下である。S含有量の好ましい上限は0.0200%であり、さらに好ましくは0.0150%であり、さらに好ましくは0.0100%であり、さらに好ましくは0.0060%であり、さらに好ましくは0.0050%であり、さらに好ましくは0.0040%であり、さらに好ましくは0.0030%である。S含有量はなるべく低い方が好ましい。しかしながら、S含有量の過剰な低減は、鋼材の製造コストを引き上げる。したがって、通常の工業生産を考慮すれば、S含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0002%である。
 Cr:15.00~25.00%
 クロム(Cr)は、400~700℃の平均操業温度での鋼材使用時において、鋼材の耐酸化性及び耐食性を高める。Cr含有量が15.00%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、Cr含有量が25.00%を超えれば、他の元素含有量が本実施形態の範囲内であっても、400~700℃の平均操業温度での鋼材中のオーステナイトの安定性が低下する。この場合、鋼材のクリープ強度が低下する。したがって、Cr含有量は15.00~25.00%である。Cr含有量の好ましい下限は15.50%であり、さらに好ましくは16.00%であり、さらに好ましくは16.20%であり、さらに好ましくは16.40%である。Cr含有量の好ましい上限は24.00%であり、さらに好ましくは23.00%であり、さらに好ましくは22.00%であり、さらに好ましくは21.00%であり、さらに好ましくは20.00%であり、さらに好ましくは、19.00%である。
 Ni:9.00~20.00%
 ニッケル(Ni)はオーステナイトを安定化して、400~700℃の平均操業温度での鋼材のクリープ強度を高める。Ni含有量が9.00%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、Ni含有量が20.00%を超えれば、上記効果が飽和し、さらに、製造コストが高くなる。したがって、Ni含有量は9.00~20.00%である。Ni含有量の好ましい下限は、9.50%であり、さらに好ましくは9.80%であり、さらに好ましくは10.00%である。Ni含有量の好ましい上限は18.00%であり、さらに好ましくは16.00%であり、さらに好ましくは15.00%であり、さらに好ましくは14.50%であり、さらに好ましくは14.00%であり、さらに好ましくは13.50%である。
 N:0.05~0.15%
 窒素(N)はマトリクス(母相)に固溶してオーステナイトを安定化する。Nはさらに、鋼材中にCrNb窒化物を生成する。CrNb窒化物は、結晶粒界の総面積を増大する。そのため、400~700℃の平均操業温度で長時間操業した場合であっても、Cr炭化物の生成を抑えることができる。その結果、鋼材の耐鋭敏化特性が高まる。N含有量が0.05%未満であれば、上記効果が十分に得られない。一方、N含有量が0.15%を超えれば、結晶粒界にCr窒化物(CrN)が生成する。この場合、鋼材中の固溶Cr量が低減してしまい、その結果、鋼材の耐鋭敏化特性が低下する。したがって、N含有量は0.05~0.15%である。N含有量の好ましい下限は0.06%であり、さらに好ましくは0.07%である。N含有量の好ましい上限は0.14%であり、さらに好ましくは0.12%であり、さらに好ましくは0.10%であり、さらに好ましくは0.09%である。
 Nb:0.1~0.8%
 ニオブ(Nb)は、Nとともに、オーステナイト結晶粒内にCrNb窒化物を生成し、結晶粒界の総面積を増大する。そのため、400~700℃の平均操業温度で長時間操業した場合であっても、Cr炭化物の生成を抑えることができる。その結果、鋼材の耐鋭敏化特性が高まる。Nbはさらに、Cと結合してMX型のNb炭化物を生成する。Nb炭化物を生成してCを固定することにより、鋼材中の固溶C量が低減する。これにより、400~700℃の平均操業温度での鋼材の使用中において、粒界でのCr炭化物の生成が抑制され、鋼材の耐鋭敏化特性が高まる。Nb炭化物はさらに、析出強化により、400~700℃の平均操業温度での鋼材のクリープ強度を高める。Nb含有量が0.1%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、Nb含有量が0.8%を超えれば、他の元素含有量が本実施形態の範囲内であっても、CrNb窒化物及びNb炭化物が過剰に生成する。この場合、結晶粒内の強度が過剰に高くなり、結晶粒内と結晶粒界との強度差が大きくなる。そのため、粒界面で応力集中が発生し、溶接割れや脆化割れが発生しやすくなる。したがって、Nb含有量は0.1~0.8%である。Nb含有量の好ましい下限は0.2%であり、さらに好ましくは0.3%である。Nb含有量の好ましい上限は0.7%であり、さらに好ましくは0.6%であり、さらに好ましくは0.5%であり、さらに好ましくは0.4%である。
 Mo:0.10~4.50%
 モリブデン(Mo)は、400~700℃の平均操業温度での鋼材の使用中において、粒界でM23型のCr炭化物が生成及び成長するのを抑制する。Moはさらに、固溶強化元素として、400~700℃の平均操業温度での鋼材のクリープ強度を高める。Mo含有量が0.10%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、Mo含有量が4.50%を超えれば、他の元素含有量が本実施形態の範囲内であっても、結晶粒内において、LAVES相等の金属間化合物の生成を促進する。この場合、結晶粒内の強度が過剰に高くなり、結晶粒内と結晶粒界との強度差が大きくなる。そのため、粒界面で応力集中が発生し、溶接割れや脆化割れが発生しやすくなる。したがって、Mo含有量は0.10~4.50%である。
 なお、鋼材の化学組成において、Mo以外の他の元素の含有量が本実施形態の範囲内である場合、Mo含有量が2.50%以上であればさらに、400~700℃の平均操業温度で使用される鋼材において、耐ポリチオン酸SCC性及び耐ナフテン酸腐食性を高めることができる。したがって、400~700℃の平均操業温度で使用される鋼材において十分な耐ポリチオン酸SCC性及び十分な耐ナフテン酸腐食性が必要である場合、Mo含有量は2.50~4.50%である。
 耐ポリチオン酸SCC性及び耐ナフテン酸腐食性を特に要求されない用途にオーステナイト系ステンレス鋼材を用いる場合、Mo含有量の好ましい下限は0.15%であり、さらに好ましくは0.20%であり、さらに好ましくは0.25%であり、さらに好ましくは0.27%であり、さらに好ましくは0.30%である。
 耐ポリチオン酸SCC性及び耐ナフテン酸腐食性を特に要求されない用途にオーステナイト系ステンレス鋼材を用いる場合、Mo含有量の好ましい上限は2.50%未満であり、さらに好ましくは2.45%であり、さらに好ましくは2.20%であり、さらに好ましくは2.00%であり、さらに好ましくは1.70%であり、さらに好ましくは1.50%であり、さらに好ましくは1.30%であり、さらに好ましくは1.00%であり、さらに好ましくは0.90%であり、さらに好ましくは0.80%であり、さらに好ましくは0.70%であり、さらに好ましくは0.60%であり、さらに好ましくは0.50%である。
 耐ポリチオン酸SCC性及び耐ナフテン酸腐食性が要求される用途にオーステナイト系ステンレス鋼材を用いる場合、Mo含有量の好ましい下限は上述のとおり2.50%であり、さらに好ましくは2.70%であり、さらに好ましくは2.90%であり、さらに好ましくは3.00%であり、さらに好ましくは3.05%であり、さらに好ましくは3.10%である。耐ポリチオン酸SCC性及び耐ナフテン酸腐食性が要求される用途にオーステナイト系ステンレス鋼材を用いる場合、Mo含有量の好ましい上限は4.30%であり、さらに好ましくは4.20%であり、さらに好ましくは4.15%であり、さらに好ましくは4.05%であり、さらに好ましくは3.95%である。
 W:0.01~1.00%
 タングステン(W)は、Moと同様に、400~700℃の平均操業温度での鋼材の使用中において、粒界でのM23型のCr炭化物が生成及び成長するのを抑制する。Wはさらに、固溶強化元素として、400~700℃の平均操業温度での鋼材のクリープ強度を高める。W含有量が0.01%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、W含有量が1.00%を超えれば、他の元素含有量が本実施形態の範囲内であっても、結晶粒内において、LAVES相等の金属間化合物の生成を促進する。この場合、結晶粒内の強度が過剰に高くなり、結晶粒内と結晶粒界との強度差が大きくなる。そのため、粒界面で応力集中が発生し、溶接割れや脆化割れが発生しやすくなる。したがって、W含有量は0.01~1.00%である。W含有量の好ましい下限は0.02%であり、さらに好ましくは0.04%であり、さらに好ましくは0.06%であり、さらに好ましくは0.08%であり、さらに好ましくは0.10%である。W含有量の好ましい上限は0.80%であり、さらに好ましくは0.60%であり、さらに好ましくは0.40%であり、さらに好ましくは0.35%であり、さらに好ましくは0.30%である。
 本実施形態によるオーステナイト系ステンレス鋼材の化学組成の残部は、Fe及び不純物からなる。ここで、不純物とは、オーステナイト系ステンレス鋼材を工業的に製造する際に、原料としての鉱石、スクラップ、又は製造環境などから混入されるものであって、本実施形態のオーステナイト系ステンレス鋼材に悪影響を与えない範囲で許容されるものを意味する。
 不純物のうち、Sn、As、Zn、Pb及びSbの含有量はそれぞれ、次のとおりである。
 Sn:0~0.010%
 As:0~0.010%
 Zn:0~0.010%
 Pb:0~0.010%
 Sb:0~0.010%
 すず(Sn)、ヒ素(As)、亜鉛(Zn)、鉛(Pb)及びアンチモン(Sb)はいずれも、不純物である。Sn含有量は0%であってもよい。同様に、As含有量は0%であってもよい。Zn含有量は0%であってもよい。Pb含有量は0%であってもよい。Sb含有量は0%であってもよい。含有される場合、これらの元素はいずれも、粒界に偏析して粒界の融点を下げたり、粒界の結合力を低下したりする。Sn含有量が0.010%を超える場合、他の元素含有量が本実施形態の範囲内であっても、鋼材の熱間加工性及び溶接性が低下する。同様に、As含有量が0.010%を超える場合、他の元素含有量が本実施形態の範囲内であっても、鋼材の熱間加工性及び溶接性が低下する。Zn含有量が0.010%を超える場合、他の元素含有量が本実施形態の範囲内であっても、鋼材の熱間加工性及び溶接性が低下する。Pb含有量が0.010%を超える場合、他の元素含有量が本実施形態の範囲内であっても、鋼材の熱間加工性及び溶接性が低下する。Sb含有量が0.010%を超える場合、他の元素含有量が本実施形態の範囲内であっても、鋼材の熱間加工性及び溶接性が低下する。したがって、Sn含有量は0~0.010%である。As含有量は0~0.010%である。Zn含有量は0~0.010%である。Pb含有量は0~0.010%である。Sb含有量は0~0.010%である。Sn含有量の下限は0%超であってもよいし、0.001%であってもよい。As含有量の下限は0%超であってもよいし、0.001%であってもよい。Zn含有量の下限は0%超であってもよいし、0.001%であってもよい。Pb含有量の下限は0%超であってもよいし、0.001%であってもよい。Sb含有量の下限は0%超であってもよいし、0.001%であってもよい。
 [任意元素について]
 [第1群任意元素]
 本実施形態によるオーステナイト系ステンレス鋼材の化学組成はさらに、Feの一部に代えて、Ti、Ta、V、Zr及びHfからなる群から選択される1元素又は2元素以上を含有してもよい。これらの元素はいずれも、Cと結合して炭化物を生成する。そのため、固溶Cを低減して、鋼材の耐鋭敏化特性が高まる。
 Ti:0~0.50%
 チタン(Ti)は任意元素であり、含有されなくてもよい。つまり、Ti含有量は0%であってもよい。含有される場合、Tiは、鋼材中のCと結合して炭化物を生成する。これにより、Cr炭化物の生成が抑制され、鋼材の耐鋭敏化特性が高まる。Tiが少しでも含有されれば、上記効果がある程度得られる。しかしながら、Ti含有量が0.50%を超えれば、他の元素含有量が本実施形態の範囲内であっても、炭化物が結晶粒内に過剰に析出する。この場合、結晶粒内の強度が過剰に高くなり、結晶粒内と結晶粒界との強度差が大きくなる。そのため、粒界面で応力集中が発生し、溶接割れや脆化割れが発生しやすくなる。したがって、Ti含有量は0~0.50%である。Ti含有量の好ましい下限は0%超であり、さらに好ましくは0.01%であり、さらに好ましくは0.02%である。Ti含有量の好ましい上限は0.45%であり、さらに好ましくは0.40%であり、さらに好ましくは0.35%であり、さらに好ましくは0.30%である。
 Ta:0~0.50%
 タンタル(Ta)は任意元素であり、含有されなくてもよい。つまり、Ta含有量は0%であってもよい。含有される場合、Taは、Cと結合して炭化物を生成する。これにより、Cr炭化物の生成が抑制され、鋼材の耐鋭敏化特性が高まる。Taが少しでも含有されれば、上記効果がある程度得られる。しかしながら、Ta含有量が0.50%を超えれば、他の元素含有量が本実施形態の範囲内であっても、炭化物が結晶粒内に過剰に析出する。この場合、結晶粒内の強度が過剰に高くなり、結晶粒内と結晶粒界との強度差が大きくなる。そのため、粒界面で応力集中が発生し、溶接割れや脆化割れが発生しやすくなる。したがって、Ta含有量は0~0.50%である。Ta含有量の好ましい下限は0%超であり、さらに好ましくは0.01%であり、さらに好ましくは0.02%である。Ta含有量の好ましい上限は0.45%であり、さらに好ましくは0.40%であり、さらに好ましくは0.35%であり、さらに好ましくは0.30%である。
 V:0~1.00%
 バナジウム(V)は任意元素であり、含有されなくてもよい。つまり、V含有量は0%であってもよい。含有される場合、Vは、Cと結合して炭化物を生成する。これにより、Cr炭化物の生成が抑制され、鋼材の耐鋭敏化特性が高まる。Vが少しでも含有されれば、上記効果がある程度得られる。しかしながら、V含有量が1.00%を超えれば、他の元素含有量が本実施形態の範囲内であっても、炭化物が結晶粒内に過剰に析出する。この場合、結晶粒内の強度が過剰に高くなり、結晶粒内と結晶粒界との強度差が大きくなる。そのため、粒界面で応力集中が発生し、溶接割れや脆化割れが発生しやすくなる。したがって、V含有量は0~1.00%である。V含有量の好ましい下限は0%超であり、さらに好ましくは0.01%であり、さらに好ましくは0.02%であり、さらに好ましくは、0.04%であり、さらに好ましくは0.06%である。V含有量の好ましい上限は0.80%であり、さらに好ましくは0.70%であり、さらに好ましくは0.50%であり、さらに好ましくは0.40%であり、さらに好ましくは0.35%であり、さらに好ましくは0.30%である。
 Zr:0~0.10%
 ジルコニウム(Zr)は任意元素であり、含有されなくてもよい。つまり、Zr含有量は0%であってもよい。含有される場合、Zrは、Cと結合して炭化物を生成する。これにより、Cr炭化物の生成が抑制され、鋼材の耐鋭敏化特性が高まる。Zrが少しでも含有されれば、上記効果がある程度得られる。しかしながら、Zr含有量が0.10%を超えれば、他の元素含有量が本実施形態の範囲内であっても、炭化物が結晶粒内に過剰に析出する。この場合、結晶粒内の強度が過剰に高くなり、結晶粒内と結晶粒界との強度差が大きくなる。そのため、粒界面で応力集中が発生し、溶接割れや脆化割れが発生しやすくなる。したがって、Zr含有量は0~0.10%である。Zr含有量の好ましい下限は0%超であり、さらに好ましくは0.01%であり、さらに好ましくは0.02%である。Zr含有量の好ましい上限は0.09%であり、さらに好ましくは0.08%であり、さらに好ましくは0.07%であり、さらに好ましくは0.06%である。
 Hf:0~0.10%
 ハフニウム(Hf)は任意元素であり、含有されなくてもよい。つまり、Hf含有量は0%であってもよい。含有される場合、Hfは、Cと結合して炭化物を生成する。これにより、Cr炭化物の生成が抑制され、鋼材の耐鋭敏化特性が高まる。Hfが少しでも含有されれば、上記効果がある程度得られる。しかしながら、Hf含有量が0.10%を超えれば、他の元素含有量が本実施形態の範囲内であっても、炭化物が結晶粒内に過剰に析出する。この場合、結晶粒内の強度が過剰に高くなり、結晶粒内と結晶粒界との強度差が大きくなる。そのため、粒界面で応力集中が発生し、溶接割れや脆化割れが発生しやすくなる。したがって、Hf含有量は0~0.10%である。Hf含有量の好ましい下限は0%超であり、さらに好ましくは0.01%であり、さらに好ましくは0.02%である。Hf含有量の好ましい上限は0.09%であり、さらに好ましくは0.08%であり、さらに好ましくは0.07%であり、さらに好ましくは0.06である。
 [第2群任意元素]
 本実施形態によるオーステナイト系ステンレス鋼材の化学組成はさらに、Feの一部に代えて、Cu及びCoからなる群から選択される1元素以上を含有してもよい。これらの元素はいずれも、400~700℃の平均操業温度での鋼材のクリープ強度を高める。
 Cu:0~2.00%
 銅(Cu)は任意元素であり、含有されなくてもよい。つまり、Cuは0%であってもよい。含有される場合、Cuは400~700℃の平均操業温度での鋼材の使用中において、粒内にCu相として析出して、析出強化により鋼材のクリープ強度を高める。Cuが少しでも含有されれば、上記効果がある程度得られる。しかしながら、Cu含有量が2.00%を超えれば、他の元素含有量が本実施形態の範囲内であっても、Cu相が過剰に析出する。この場合、溶接後のHAZでの脆化割れ感受性が高まる。したがって、Cu含有量は0~2.00%である。Cu含有量の好ましい下限は0%超であり、さらに好ましくは0.01%であり、さらに好ましくは0.03%であり、さらに好ましくは0.05%であり、さらに好ましくは0.10%である。Cu含有量の好ましい上限は1.50%であり、さらに好ましくは1.00%であり、さらに好ましくは0.80%であり、さらに好ましくは0.60%である。
 Co:0~1.00%
 コバルト(Co)は任意元素であり、含有されなくてもよい。つまり、Co含有量は0%であってもよい。含有される場合、Coはオーステナイトを安定化して、400~700℃の平均操業温度での鋼材のクリープ強度を高める。Coはさらに、Wと同様に、鋼材の耐ポリチオン酸SCC性を高める。Coが少しでも含有されれば、上記効果がある程度得られる。しかしながら、Co含有量が1.00%を超えれば、他の元素含有量が本実施形態の範囲内であっても、原料コストが高まる。したがって、Co含有量は0~1.00%である。Co含有量の好ましい下限は0%超であり、さらに好ましくは0.01%であり、さらに好ましくは0.05%であり、さらに好ましくは0.10%であり、さらに好ましくは0.20%である。Co含有量の好ましい上限は0.90%であり、さらに好ましくは0.80%であり、さらに好ましくは0.70%であり、さらに好ましくは0.60%である。
 [第3群任意元素]
 本実施形態によるオーステナイト系ステンレス鋼材の化学組成はさらに、Feの一部に代えて、Alを含有してもよい。Alは製鋼工程において、鋼を脱酸する。
 sol.Al:0~0.030%
 アルミニウム(Al)は任意元素であり、含有されなくてもよい。つまり、Al含有量は0%であってもよい。含有される場合、Alは製鋼工程において、鋼を脱酸する。Alが少しでも含有されれば、上記効果がある程度得られる。しかしながら、sol.Al含有量が0.030%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の加工性及び延性が低下する。したがって、sol.Al含有量は0~0.030%である。sol.Al含有量の好ましい下限は0%超であり、さらに好ましくは0.001%であり、さらに好ましくは0.005%であり、さらに好ましくは0.010%である。sol.Al含有量の好ましい上限は0.029%であり、さらに好ましくは0.028%であり、さらに好ましくは0.025%である。本実施形態においてsol.Al含有量は、酸可溶Al(sol.Al)の含有量を意味する。
 [第4群任意元素]
 本実施形態によるオーステナイト系ステンレス鋼材の化学組成はさらに、Feの一部に代えて、Bを含有してもよい。Bは、粒界に偏析して粒界を強化する。
 B:0~0.0100%
 ボロン(B)は、任意元素であり、含有されなくてもよい。つまり、B含有量は0%であってもよい。含有される場合、Bは、400~700℃の平均操業温度での鋼材の使用中において、粒界に偏析し、粒界強度を高める。Bが少しでも含有されれば、上記効果がある程度得られる。しかしながら、B含有量が0.0100%を超えれば、他の元素含有量が本実施形態の範囲内であっても、粒界でのCr炭化物の生成を促進する。そのため、鋼材の耐鋭敏化特性が低下する。B含有量が0.0100%を超えればさらに、粒界の融点が低下して、溶接時において、HAZの粒界で液化割れが生じる。したがって、B含有量は0~0.0100%である。B含有量の好ましい下限は0%超であり、さらに好ましくは0.0001%であり、さらに好ましくは0.0005%であり、さらに好ましくは0.0010%である。B含有量の好ましい上限は0.0050%であり、さらに好ましくは0.0040%であり、さらに好ましくは0.0030%であり、さらに好ましくは0.0020%である。
 [第5群任意元素]
 本実施形態によるオーステナイト系ステンレス鋼材の化学組成はさらに、Feの一部に代えて、Ca、Mg及び希土類元素(REM)からなる群から選択される1元素又は2元素以上を含有してもよい。これらの元素はいずれも、鋼材の熱間加工性を高める。
 Ca:0~0.0200%
 カルシウム(Ca)は任意元素であり、含有されなくてもよい。つまり、Ca含有量は0%であってもよい。含有される場合、Caは、O(酸素)及びS(硫黄)を介在物として固定し、鋼材の熱間加工性を高める。Caはさらに、Sを固定して、Sの粒界偏析を抑制する。これにより、溶接時のHAZの脆化割れが低減する。Caが少しでも含有されれば、上記効果がある程度得られる。しかしながら、Ca含有量が0.0200%を超えれば、鋼材の清浄性が低下し、鋼材の熱間加工性がかえって低下する。したがって、Ca含有量は0~0.0200%である。Ca含有量の好ましい下限は0%超であり、さらに好ましくは0.0001%であり、さらに好ましくは0.0002%であり、さらに好ましくは0.0005%である。Ca含有量の好ましい上限は0.0150%であり、さらに好ましくは0.0100%であり、さらに好ましくは0.0080%であり、さらに好ましくは0.0050%であり、さらに好ましくは0.0040%である。
 Mg:0~0.0200%
 マグネシウム(Mg)は任意元素であり、含有されなくてもよい。つまり、Mg含有量は0%であってもよい。含有される場合、Mgは、O(酸素)及びS(硫黄)を介在物として固定し、鋼材の熱間加工性を高める。Mgはさらに、Sを固定して、Sの粒界偏析を抑制する。これにより、溶接時のHAZの脆化割れを低減する。Mgが少しでも含有されれば、上記効果がある程度得られる。しかしながら、Mg含有量が0.0200%を超えれば、鋼材の清浄性が低下し、鋼材の熱間加工性がかえって低下する。したがって、Mg含有量は0~0.0200%である。Mg含有量の好ましい下限は0%超であり、さらに好ましくは0.0001%であり、さらに好ましくは0.0002%であり、さらに好ましくは0.0005%である。Mg含有量の好ましい上限は0.0150%であり、さらに好ましくは0.0100%であり、さらに好ましくは0.0080%であり、さらに好ましくは0.0050%であり、さらに好ましくは0.0040%である。
 希土類元素:0~0.100%
 希土類元素(REM)は任意元素であり、含有されなくてもよい。つまり、REM含有量は0%であってもよい。含有される場合、REMは、O(酸素)及びS(硫黄)を介在物として固定し、母材の熱間加工性及びクリープ延性を高める。しかしながら、REM含有量が高すぎれば、母材の熱間加工性及びクリープ延性が低下する。したがって、REM含有量は0~0.100%である。REM含有量の好ましい下限は0%超であり、さらに好ましくは0.001%であり、さらに好ましくは0.002%である。REM含有量の好ましい上限は0.080%であり、さらに好ましくは0.060%である。
 本明細書におけるREMは、Sc、Y、及び、ランタノイド(原子番号57番のLa~71番のLu)の少なくとも1元素又は2元素以上を含有し、REM含有量は、これらの元素の合計含有量を意味する。
 [式(1)について]
 本実施形態のオーステナイト系ステンレス鋼材の化学組成はさらに、式(1)を満たす。
 21.9Mo+5.9W-5.0≧0 (1)
 ここで、式(1)中の各元素記号には、化学組成中の対応する元素の含有量(質量%)が代入される。
 F1=21.9Mo+5.9W-5.0と定義する。F1は、鋼材中のM23型のCr炭化物の生成量の指標である。Mo及びWはいずれも、Cr炭化物のMサイトのCrと置換して、Cr炭化物の自由エネルギーを下げる。したがって、Mo及びWは、Cr炭化物の生成を抑制する。さらに、Mo及びWの拡散速度は、Crの拡散速度よりも遅い。そのため、MサイトのCrがMo又はWに置換されたCr炭化物の成長速度は遅くなる。
 F1が0以上であれば、Cr炭化物の生成を抑えることが可能な量のMo及びWが十分含有されている。そのため、溶接時及び400~700℃の平均操業温度での鋼材使用時におけるCr炭化物の生成及び成長を十分に抑制することができる。その結果、鋼材に対して大入熱溶接を実施した後、鋼材を上述の平均操業温度で長時間操業した場合であっても、優れた耐鋭敏化特性が得られる。F1の好ましい下限は0.1であり、さらに好ましくは0.2であり、さらに好ましくは0.5であり、さらに好ましくは1.0であり、さらに好ましくは1.5であり、さらに好ましくは2.0である。F1の上限は特に限定されないが、化学組成中のMoの最大含有量及びWの最大含有量を考慮すれば、99.45である。F1は、得られた数値の小数第二位を四捨五入して得られた値(つまり、F1は小数第一位)とする。
 [オーステナイト系ステンレス鋼材の化学組成分析方法]
 本実施形態のオーステナイト系ステンレス鋼材の化学組成は、周知の成分分析法により求めることができる。具体的には、オーステナイト系ステンレス鋼材が鋼管である場合、ドリルを用いて、肉厚中央位置にて穿孔加工して切粉を生成し、その切粉を採取する。オーステナイト系ステンレス鋼材が鋼板である場合、ドリルを用いて、板幅中央位置かつ板厚中央位置にて穿孔加工して切粉を生成し、その切粉を採取する。オーステナイト系ステンレス鋼材が棒鋼である場合、ドリルを用いてR/2位置にて穿孔加工して切粉を生成し、その切粉を採取する。ここで、R/2位置とは、棒鋼の長手方向に垂直な断面における、半径Rの中央位置を意味する。
 採取された切粉を酸に溶解させて溶液を得る。溶液に対して、ICP-OES(Inductively Coupled Plasma Optical Emission Spectrometry)を実施して、化学組成の元素分析を実施する。C含有量及びS含有量については、周知の高周波燃焼法により求める。具体的には、上記溶液を酸素気流中で高周波加熱により燃焼して、発生した二酸化炭素、二酸化硫黄を検出して、C含有量及びS含有量を求める。以上の分析法により、オーステナイト系ステンレス鋼材の化学組成を求めることができる。
 [オーステナイト系ステンレス鋼材中の析出物(残渣)について]
 本実施形態のオーステナイト系ステンレス鋼材では、さらに、抽出残渣法により得られた残渣中のNb含有量が質量%で0.050~0.267%であり、かつ、残渣中のCr含有量が質量%で0.125%以下である。
 ここで、「残渣中のNb含有量」とは、オーステナイト系ステンレス鋼材の質量(抽出残渣法で本電解されたオーステナイト系ステンレス鋼材の質量)に対する、残渣中のNb含有量の質量の割合(質量%)を意味する。「残渣中のCr含有量」とは、オーステナイト系ステンレス鋼材の質量(抽出残渣法で本電解されたオーステナイト系ステンレス鋼材の質量)に対する、残渣中のCr含有量の質量の割合(質量%)を意味する。
 抽出残渣法により抽出された残渣中のNb含有量が質量%で0.050~0.267%であり、かつ、残渣中のCr含有量が質量%で0.125%以下である場合、オーステナイト系ステンレス鋼材中の析出物のうちのCrNb窒化物が占める割合が多くなる。つまり、抽出残渣法により抽出された残渣中のNb含有量が質量%で0.050~0.267%であり、かつ、前記残渣中のCr含有量が質量%で0.125%以下である場合、CrNb窒化物以外の析出物(Cr炭化物、CrN、その他の炭化物、窒化物、及び、炭窒化物等)の量は、CrNb窒化物の量に対して十分に少ないことを意味する。
 残渣中のNb含有量が0.050%未満である場合、鋼材中にCrNb窒化物が十分に析出していないことを意味する。この場合、大入熱溶接後の鋼材を400~700℃の平均操業温度で長時間保持した場合、十分な耐鋭敏化特性が得られない。
 一方、残渣中のNb含有量が0.267%を超える場合、及び/又は、残渣中のCr含有量が0.125%を超える場合、400~700℃の平均操業温度で使用する前の鋼材中に、既に、粒界に、多数の又は粗大なCrNb窒化物又は他の析出物が生成していることを意味する。そのため、大入熱溶接後の鋼材を400~700℃の平均操業温度で長時間保持した場合、Cr欠乏領域が過剰に発生してしまい、その結果、十分な耐鋭敏化特性が得られない。
 抽出残渣法により抽出される残渣において、Nb含有量の好ましい下限は0.052%であり、さらに好ましくは0.054%であり、さらに好ましくは0.055%である。残渣におけるNb含有量の好ましい上限は0.265%であり、さらに好ましくは0.263%であり、さらに好ましくは0.260%であり、さらに好ましくは0.250%であり、さらに好ましくは0.240%である。
 抽出残渣法により得られた残渣中のCr含有量の好ましい上限は0.120%であり、さらに好ましくは0.110%であり、さらに好ましくは0.100%であり、さらに好ましくは0.090%であり、さらに好ましくは0.080%である。Cr含有量の下限は特に限定されない。Cr含有量の好ましい下限は、0.001%であり、さらに好ましくは0.003%であり、さらに好ましくは0.005%である。
 [残渣中の化学組成の測定方法]
 残渣中のNb含有量及びCr含有量は次の方法で測定できる。オーステナイト系ステンレス鋼材から、試験片を採取する。試験片の長手方向に垂直な断面は、円形であっても矩形であってもよい。オーステナイト系ステンレス鋼材が鋼管である場合、試験片の長手方向に垂直な断面の中心が鋼管の肉厚中央位置となり、試験片の長手方向が鋼管の長手方向となるように、試験片を採取する。オーステナイト系ステンレス鋼材が鋼板である場合、試験片の長手方向に垂直な断面の中心が鋼板の板幅中央位置かつ板厚中央位置となり、試験片の長手方向が鋼板の長手方向となるように、試験片を採取する。オーステナイト系ステンレス鋼材が棒鋼である場合、試験片の長手方向に垂直な断面の中心が棒鋼のR/2位置となり、試験片の長手方向が棒鋼の長手方向となるように、試験片を採取する。
 採取した試験片の表面を、予備の電解研磨にて50μm程度研磨して新生面を得る。電解研磨した試験片を、電解液(10%アセチルアセトン+1%テトラアンモニウム+メタノール)で電解(本電解)する。本電解後の電解液を0.2μmのフィルターを通して残渣を捕捉する。得られた残渣を酸分解し、ICP(誘導結合プラズマ)発光分析にて、残渣中のNb質量、及び、残渣中のCr質量を求める。さらに、本電解された母材(オーステナイト系ステンレス鋼材)の質量を求める。具体的には、本電解前の試験片の質量と、本電解後の試験片の質量とを測定する。そして、本電解前の試験片の質量から本電解後の試験片の質量を差し引いた値を、本電解された母材質量と定義する。
 残渣中のNb質量を本電解された母材質量で除して、残渣中のNb含有量(質量%)を求める。つまり、次の式(i)に基づいて、残渣中のNb含有量(質量%)を求める。さらに、残渣中のCr質量を本電解された母材質量で除して、残渣中のCr含有量(質量%)を求める。つまり、次の式(ii)に基づいて、残渣中のCr含有量(質量%)を求める。
 残渣中のNb含有量=残渣中のNb質量/母材質量×100 (i)
 残渣中のCr含有量=残渣中のCr質量/母材質量×100 (ii)
 以上のとおり、本実施形態のオーステナイト系ステンレス鋼材は、化学組成中の各元素含有量が上述の範囲内であって、かつ、式(1)を満たす。さらに、抽出残渣法により得られた残渣中のNb含有量が質量%で0.050~0.267%であり、かつ、残渣中のCr含有量が質量%で0.125%以下である。そのため、本実施形態のオーステナイト系ステンレス鋼材は、大入熱溶接後に400~700℃の平均操業時間で長時間使用した後であっても、優れた耐鋭敏化特性を有する。
 ここで、大入熱溶接後に400~700℃の平均操業時間で長時間使用した後であっても、優れた耐鋭敏化特性を有するとは、次の事項を意味する。
 オーステナイト系ステンレス鋼材から角状試験片を採取する。オーステナイト系ステンレス鋼材が鋼管である場合、試験片の長手方向に垂直な断面の中心が鋼管の肉厚中央位置となり、試験片の長手方向が鋼管の長手方向となるように、角状試験片を採取する。オーステナイト系ステンレス鋼材が鋼板である場合、試験片の長手方向に垂直な断面の中心が鋼板の板幅中央位置かつ板厚中央位置となり、試験片の長手方向が鋼板の長手方向となるように、角状試験片を採取する。オーステナイト系ステンレス鋼材が棒鋼である場合、試験片の長手方向に垂直な断面の中心が棒鋼のR/2位置となり、試験片の長手方向が棒鋼の長手方向となるように、角状試験片を採取する。
 角状試験片の長さは特に限定されないが、例えば、100mmである。角状試験片の長手方向に垂直な断面(横断面)は、特に限定されないが、例えば、10mm×10mmの矩形である。
 高周波熱サイクル装置を用いて、角状試験片に対して次の熱履歴を付与する。具体的には、角状試験片の長手方向の中央位置の所定幅(たとえば、10mm)を有する中央部分を、大気中で常温から70~100℃/秒で1350~1400℃まで昇温する。さらに昇温した温度で1~60秒保持する。その後、角状試験片を20℃/秒の冷却速度で常温まで冷却する。以上の熱履歴を角状試験片に付与することにより、大入熱溶接継手模擬試験片を作製する。
 大入熱溶接継手模擬試験片を用いて、次に示す長時間鋭敏化処理を実施する。大入熱溶接継手模擬試験片を熱処理炉に装入する。熱処理炉において、大入熱溶接継手模擬試験片を大気中、大気圧にて、550℃で10000時間保持する(鋭敏化処理)。10000時間経過後の大入熱溶接継手模擬試験片を熱処理炉から抽出して、放冷する。
 長時間鋭敏化処理を実施した大入熱溶接継手模擬試験片に対して、次のストラウス試験、及び、再活性化率測定試験を実施する。
 [ストラウス試験(硫酸・硫酸銅腐食試験)]
 ASTM A262-15 PRACTICE Eに準拠したストラウス試験を次のとおり実施する。長時間鋭敏化処理を実施した大入熱溶接継手模擬試験片から、中央部分が板状試験片の長手方向の中央位置にくるように、板状試験片を採取する。板状試験片のサイズは特に限定されない。板状試験片のサイズは例えば、厚さ2mm、幅10mm、長さ80mmである。板状試験片を、16%硫酸を含有する硫酸銅試験液中に浸漬して、15時間沸騰する。その後、板状試験片を硫酸銅試験液から取り出す。取り出した板状試験片に対して、曲げ試験を実施する。曲げ試験では、大気中において、大入熱溶接継手模擬試験片の長手方向中央位置を中心として、板状試験片を180°曲げる。曲げた試験片の曲げ部を切断する。切断面を20倍の光学顕微鏡で観察する。割れが観察された場合、割れの長さを求める。割れが観察されなかった場合、又は、割れが観察されても、割れの長さが100μm以下である場合、耐鋭敏化特性に優れると判断する。
 [再活性化率測定試験]
 長時間鋭敏化処理を実施した大入熱溶接継手模擬試験片を用いて、ASTM G108-94に準拠した電気化学的再活性化率測定試験(Electrochemical Reactivation test)を実施する。具体的には、長時間鋭敏化処理を実施した大入熱溶接継手模擬試験片の中央部分(大入熱が加えられた部分)から板状試験片を採取する。採取した板状試験片内において、評価面積100mmの表面部分以外の領域をマスキングする。マスキングされた板状試験片を電極として、温度30℃、容量200cmの0.5mol硫酸+0.01molチオシアン酸カリウム溶液に浸漬する。次に、板状試験片に対して、分極速度100mV/分の直線分極で、自然電位から300mVまで貴方向に走査する。飽和甘こう電極基準で300mVに到達後、直ちに元の自然電位まで卑方向に走査する。貴方向(往路)への電圧印加時に流れた電流を測定する。そして、卑方向(復路)への電圧印加時に流れた電流を測定する。得られた電流値に基づいて、再活性化率(%)を次のとおり定義する。
 再活性化率=(復路の最大アノード電流/往路の最大アノード電流)×100
 再活性化率が低いほど、鋭敏化度(Degree Of Sensitization:DOS)が低く、耐鋭敏化特性が高い。再活性化率が10%以下である場合、耐鋭敏化特性に優れると判断する。
 長時間鋭敏化処理された大入熱溶接継手模擬試験片において、ASTM A262-15 PRACTICE Eに準拠したストラウス試験において割れが観察されない、又は、割れが観察されても割れの長さが100μm以下であり、かつ、ASTM G108-94に準拠した電気化学的再活性化率測定試験で得られた再活性化率が10%以下である場合、大入熱溶接後に400~700℃の平均操業時間で長時間使用した後であっても、優れた耐鋭敏化特性を有すると判断する。
 [耐ポリチオン酸SCC性及び耐ナフテン酸腐食性を高めた鋼材について]
 最近のガソリン価格の低下に伴い、化学プラント設備では、ナフテン酸を含有する低価格の低品位原油の使用比率が高まっている。したがって、化学プラント設備に利用される鋼材では、優れた耐ナフテン酸腐食性が求められる場合がある。また、常圧蒸留装置や減圧蒸留装置の加熱炉管等に利用される鋼材では、蒸留工程で発生する多量のコークの付着を抑制するために、原油中に硫黄が含有される。原油に含有される硫黄により、コークの付着は抑制される。しかしながら、原油に含有される硫黄により、鋼材にポリチオン酸応力腐食割れ(以下、ポリチオン酸SCCともいう)が発生しやすくなる。したがって、化学プラント設備に使用される鋼材では、優れた耐ポリチオン酸SCC性も要求される場合がある。
 十分な耐ポリチオン酸SCC性及び十分な耐ナフテン酸腐食性を得る場合、好ましくは、本実施形態のオーステナイト系ステンレス鋼材はさらに、次の要件を満たす。
(I)Mo含有量が2.50~4.50%であり、かつ、Co含有量が0.01~1.00%である。
(II)鋼材の化学組成が、式(2)及び式(3)を満たす。
 2≦73W+5Co≦60 (2)
 0.20≦Nb+0.1W≦0.58 (3)
(III)抽出残渣法により得られた残渣中のNb含有量が質量%で0.065~0.245%であり、残渣中のCr含有量が質量%で0.104%以下である。
 以下、(I)~(III)について説明する。
 [(I)について]
 本実施形態のオーステナイト系ステンレス鋼材の化学組成において、Mo含有量が2.50%以上である場合、上述のとおり、他の元素含有量が本実施形態の範囲内であり、かつ、式(1)を満たすことを前提として、優れた耐ナフテン酸腐食性が得られる。さらに、W及びCoは、耐ポリチオン酸SCC性を高める。したがって、十分な耐ポリチオン酸SCC性及び十分な耐ナフテン酸腐食性を得ることを目的とした場合、オーステナイト系ステンレス鋼材において、Mo含有量は2.50~4.50%であり、かつ、Co含有量は0.01~1.00%である。
 [(II)について]
 鋼材の化学組成はさらに、式(2)及び式(3)を満たす。
 2≦73W+5Co≦60 (2)
 0.20≦Nb+0.1W≦0.58 (3)
 ここで、式(2)及び式(3)中の各元素記号には、化学組成中の対応する元素の含有量(質量%)が代入される。
 以下、式(2)及び式(3)について説明する。
 [式(2)について]
 F2=73W+5Coと定義する。F2は耐ポリチオン酸SCC性と、大入熱溶接時の耐液化割れ性に関する指標である。F2が2未満であれば、オーステナイト系ステンレス鋼材の化学組成中のW及びCoの総含有量が十分ではない。この場合、鋼材の耐ポリチオン酸SCC性が低下する。一方、F2が60を超えれば、Mo含有量が2.50%以上である場合に、W及びCoがLAVES相等の金属間化合物の生成を促進する。この場合、金属間化合物が過剰に生成する。そのため、結晶粒内の強度が過剰に高くなり、結晶粒内と結晶粒界との強度差が大きくなる。そのため、粒界面で応力集中が発生する。その結果、大入熱溶接時において、耐液化割れ性が低下する。
 本実施形態のオーステナイト系ステンレス鋼材の化学組成において、Mo含有量が2.50~4.50%であり、かつ、Co含有量が0.01~1.00%であり、さらに、F2が2~60であれば、他の元素含有量が本実施形態の範囲内であることを前提として、十分な耐ポリチオン酸SCC性が得られ、かつ、大入熱溶接時に液化割れの発生を抑制できる。F2の好ましい下限は3であり、さらに好ましくは4であり、さらに好ましくは5である。F2の好ましい上限は58であり、さらに好ましくは55であり、さらに好ましくは53であり、さらに好ましくは50である。F2は、得られた数値の小数第一位を四捨五入して得られた値とする。
 [式(3)について]
 F3=Nb+0.1Wと定義する。F3は有効Nb量を意味する。Nb及びWはいずれも、Cと結合して炭化物を生成し、鋼材中の固溶C量を低減する。これにより、鋼材中にCr炭化物が生成するのを抑制し、鋼材の耐ポリチオン酸SCC性を高める。しかしながら、鋼材中のN含有量が0.05~0.15%である場合、Nb及びWの総含有量が高すぎれば、Laves相に代表されるNb析出物が過剰に生成してしまう。この場合、大入熱溶接時において、HAZでの液化割れが発生し、耐液化割れ性が低下する場合がある。
 F3が0.20未満であれば、Cr炭化物の生成を十分に抑制できず、鋼材の耐ポリチオン酸SCC性が低下する。一方、F3が0.58を超えれば、Laves相に代表されるNb析出物が過剰に生成して、大入熱溶接時において、HAZでの液化割れが発生し得る。本実施形態のオーステナイト系ステンレス鋼材においてさらに、上記(I)及び(II)を満たす場合、つまり、F3が0.20~0.58%であれば、優れた耐ポリチオン酸SCC性が得られ、かつ、大入熱溶接時において、HAZでの液化割れを抑制することができる。
 F3の好ましい下限は0.22であり、さらに好ましくは0.24であり、さらに好ましくは0.26である。F3の好ましい上限は0.56であり、さらに好ましくは0.54であり、さらに好ましくは0.50であり、さらに好ましくは0.48であり、さらに好ましくは0.45である。F3は、得られた数値の小数第三位を四捨五入して得られた値とする。
 [(III)について]
 本実施形態のオーステナイト系ステンレス鋼材が(I)及び(II)を満たす場合、さらに、抽出残渣法により得られた残渣中のNb含有量が質量%で0.065~0.245%であり、残渣中のCr含有量が質量%で0.104%以下であれば、優れた耐ポリチオン酸SCC性が得られる。
 抽出残渣法により抽出された残渣中のNb含有量が質量%で0.065~0.245%であり、かつ、残渣中のCr含有量が質量%で0.104%以下であれば、オーステナイト系ステンレス鋼材中の析出物のうちのCrNb窒化物が占める割合が十分に多く、粒界面積が十分に増大するため、優れた耐ポリチオン酸SCC性が得られる。
 残渣中のNb含有量が0.065%未満である場合、十分な耐ポリチオン酸SCC性が得られる程度に鋼材中にCrNb窒化物が十分に析出していないことを意味する。この場合、大入熱溶接後の鋼材を400~700℃の平均操業温度で長時間保持した場合、十分な耐ポリチオン酸SCC性が得られない。
 一方、残渣中のNb含有量が0.245%を超える場合、及び/又は、残渣中のCr含有量が0.104%を超える場合、400~700℃の平均操業温度で使用する前の鋼材中に、既に、粒界に、耐ポリチオン酸SCC性を低下させてしまう程度に多数の又は粗大なCrNb窒化物が生成していることを意味する。そのため、大入熱溶接後の鋼材を400~700℃の平均操業温度で長時間保持した場合、十分な耐ポリチオン酸SCC性が得られない。
 本実施形態のオーステナイト系ステンレス鋼材において、(I)及び(II)を満たし、かつ、抽出残渣法により得られた残渣中のNb含有量が質量%で0.065~0.245%であり、残渣中のCr含有量が質量%で0.104%以下であれば、優れた耐ポリチオン酸SCC性及び耐ナフテン酸腐食性が得られる。
 抽出残渣法により抽出される残渣中のNb含有量の好ましい下限は0.070%であり、さらに好ましくは0.075%であり、さらに好ましくは0.085%であり、さらに好ましくは0.090%である。残渣におけるNb含有量の好ましい上限は0.240%であり、さらに好ましくは0.235%であり、さらに好ましくは0.230%である。
 抽出残渣法により抽出される残渣中のCr含有量の好ましい上限は0.100%であり、さらに好ましくは0.095%であり、さらに好ましくは0.090%であり、Cr含有量の下限は特に限定されない。Cr含有量の好ましい下限は、0.001%であり、さらに好ましくは0.003%であり、さらに好ましくは0.005%である。
 以上のとおり、本実施形態のオーステナイト系ステンレス鋼材の化学組成中の各元素含有量が本実施形態の範囲内であり、かつ、式(1)を満たし、かつ、上述の(I)~(III)を満たせば、優れた耐ナフテン酸腐食性、優れた耐ポリチオン酸SCC性、及び優れた耐液化割れ性が得られる。ここで、優れた耐ナフテン酸腐食性、優れた耐ポリチオン酸SCC性、及び優れた耐液化割れ性とは、次の事項を意味する。
 [耐ナフテン酸腐食性]
 オーステナイト系ステンレス鋼材から試験片を採取する。オーステナイト系ステンレス鋼材が鋼管である場合、試験片の長手方向に垂直な断面の中心が鋼管の肉厚中央位置となり、試験片の長手方向が鋼管の長手方向となるように、試験片を採取する。オーステナイト系ステンレス鋼材が鋼板である場合、試験片の長手方向に垂直な断面の中心が鋼板の板幅中央位置かつ板厚中央位置となり、試験片の長手方向が鋼板の長手方向となるように、試験片を採取する。オーステナイト系ステンレス鋼材が棒鋼である場合、試験片の長手方向に垂直な断面の中心が棒鋼のR/2位置となり、試験片の長手方向が棒鋼の長手方向となるように、試験片を採取する。試験片のサイズは特に限定されない。試験片のサイズは例えば、厚さ2mm、幅10mm、長さ30mmである。採取した試験片を、常圧下において、200℃の100%シクロヘキサンカルボン酸溶液に720時間浸漬する。720時間浸漬後、アセトンを用いて試験片を3分間超音波洗浄する。
 試験前の試験片の質量と、超音波洗浄後の試験片の質量との差を腐食減量として算出する。さらに、試験片の表面積、比重、及び、試験時間から腐食速度(mm/年)を求める。腐食速度が0.01mm/年以下である場合、耐ナフテン酸腐食性に優れると判断する。
 [耐ポリチオン酸SCC性]
 上述の耐鋭敏化特性の評価試験と同様の大入熱溶接継手模擬試験片を作製する。大入熱溶接継手模擬試験片に対して、上述の長時間鋭敏化処理を実施する。長時間鋭敏化処理後の大入熱溶接継手模擬試験片から、中央部分が板状試験片の長手方向の中央位置にくるように、板状試験片を採取する。板状試験片のサイズは特に限定されない。板状試験片のサイズは例えば、厚さ2mm、幅10mm、長さ75mmである。採取した板状試験片を用いて、耐ポリチオン酸SCC性評価試験を次の方法で実施する。板状試験片を、内側半径5mmのポンチ周りに曲げてUベンド形とする。Uベンド形の試験片を、硫酸を用いてPH=2に調整した1%K溶液中に常温で100時間浸漬する。浸漬後の試験片において、曲げた試験片の曲げ部を、長手方向に垂直な方向に切断し、切断面を20倍の光学顕微鏡で観察する。割れが観察された場合、切断面における割れの深さを求める。割れが観察されなかった場合、又は、割れが観察されるが、割れの深さが20μm未満である場合、耐ポリチオン酸SCC性に優れると判断する。
 [耐液化割れ性評価試験]
 大入熱溶接継手模擬試験片の長手方向の中央位置で、長手方向に垂直な方向に切断する。切断面を観察面とする。観察面を混酸でエッチングする。エッチングされた観察面の任意の3視野(各視野は250μm×250μm)を、400倍の光学顕微鏡で観察する。観察された3視野において、粒界での部分溶融痕の有無を判断する。
 3視野の切断面において、粒界に発生している部分溶融痕のうち、長さが25μm以上の部分溶融痕が観察されなかった場合、又は、長さが25μm以上の部分溶融痕は観察されるものの、長さが50μm以上の部分溶融痕が観察されない場合、耐液化割れ性が高いと判断する。
 [本実施形態のオーステナイト系ステンレス鋼材の形状]
 本実施形態のオーステナイト系ステンレス鋼材の形状は特に限定されない。本実施形態のオーステナイト系ステンレス鋼材は、鋼管であってもよいし、鋼板であってもよいし、棒鋼であってもよい。本実施形態のオーステナイト系ステンレス鋼材は、鍛造品であってもよいし、鋳造品であってもよい。
 [本実施形態のオーステナイト系ステンレス鋼材の用途について]
 本実施形態のオーステナイト系ステンレス鋼材は、400~700℃の平均操業温度で使用される装置用途に適する。本実施形態のオーステナイト系ステンレス鋼材は特に、大入熱溶接が実施された後、400~700℃の平均操業温度で長期間使用される装置用途に適する。400~700℃は平均の操業温度であり、一時的に操業温度が700℃を超える場合があっても、平均の操業温度が400~700℃であれば、本実施形態のオーステナイト系ステンレス鋼材の使用に適する。これらの装置の最高到達温度は750℃であってもよい。このような装置はたとえば、石油精製や石油化学に代表される化学プラント設備の装置である。これらの装置はたとえば、加熱炉管、槽、配管等を備える。また、本実施形態のオーステナイト系ステンレス鋼材を、平均操業温度が400℃未満の化学プラント設備に利用してもよい。
 本実施形態の鋼材が上記(I)~(III)を満たす場合、つまり、化学組成において、Mo:2.50~4.50%、及び、Co:0.01~1.00%、を含有し、さらに、式(2)及び式(3)を満たし、さらに、抽出残渣法により得られた残渣中のNb含有量が質量%で0.065~0.245%であり、かつ、残渣中のCr含有量が質量%で0.104%以下である場合、耐ポリチオン酸SCC性及び耐ナフテン酸腐食性が求められる化学プラント設備用途に適する。
 なお、本実施形態のオーステナイト系ステンレス鋼材は、化学プラント設備以外の他の設備にも当然に使用可能である。化学プラント設備以外の他の設備はたとえば、化学プラント設備と同様に400~700℃程度の平均操業温度での使用が想定される、火力発電ボイラ設備(たとえばボイラチューブ等)等である。
 [本実施形態の溶接継手について]
 図1は、本実施形態の溶接継手の一例を示す平面図である。図1を参照して、本実施形態による溶接継手1は、一対のオーステナイト系ステンレス鋼材100と、溶接金属200とを備える。溶接金属200は、一対のオーステナイト系ステンレス鋼材100の間に配置されている。溶接金属200は、一対のオーステナイト系ステンレス鋼材100の間に形成されており、一対のオーステナイト系ステンレス鋼材100とつながっている。以降の説明では、オーステナイト系ステンレス鋼材100を「母材」100ともいう。
 一対の母材100の端部はたとえば、開先加工されている。溶接金属200は、端部が開先加工された一対の母材100の端部同士を付き合わせた後、一層盛り溶接又は多層盛り溶接を実施して形成される。溶接方法はたとえば、ティグ溶接(Gas Tungsten Arc Welding:GTAW)、被覆アーク溶接(Shielded Metal Arc Welding:SMAW)、フラックス入りワイヤアーク溶接(Flux Cored Arc Welding:FCAW)、ガスメタルアーク溶接(Gas Metal Arc Welding:GMAW)、サブマージアーク溶接(Submerged Arc Welding:SAW)である。
 図1において、溶接金属200が延在する方向を溶接金属延在方向Lと定義する。溶接金属延在方向Lと垂直な方向を溶接金属幅方向Wと定義する。溶接金属延在方向L及び溶接金属幅方向Wと垂直な方向を溶接金属厚さ方向Tと定義する。図2は、図1の溶接継手1を溶接金属幅方向Wで切断した断面図である。図1及び図2に示すとおり、溶接金属200は、一対の母材100の間に形成(配置)されている。
 図3は、図1の溶接継手1を溶接金属延在方向Lで切断した断面図であり、図4は、図3と異なる、溶接継手1を溶接金属延在方向Lで切断した断面図である。図3に示すとおり、母材100は鋼板であってもよい。また、図4に示すとおり、母材100の長手方向に垂直な断面は円状の管(つまり鋼管)であってもよい。図示しないが、母材100は棒鋼であってもよい。
 [母材100について]
 一対の母材100の各々は、上述の優れた耐ポリチオン酸SCC性及び優れた耐ナフテン酸腐食性を有する本実施形態のオーステナイト系ステンレス鋼材である。つまり、母材100は、化学組成が、質量%で、C:0.020%以下、Si:1.50%以下、Mn:2.00%以下、P:0.045%以下、S:0.0300%以下、Cr:15.00~25.00%、Ni:9.00~20.00%、N:0.05~0.15%、Nb:0.1~0.8%、Mo:2.50~4.50%、W:0.01~1.00%、Ti:0~0.50%、Ta:0~0.50%、V:0~1.00%、Zr:0~0.10%、Hf:0~0.10%、Cu:0~2.00%、Co:0.01~1.00%、sol.Al:0~0.030%、B:0~0.0100%、Ca:0~0.0200%、Mg:0~0.0200%、希土類元素:0~0.100%、Sn:0~0.010%、As:0~0.010%、Zn:0~0.010%、Pb:0~0.010%、Sb:0~0.010%、及び、残部がFe及び不純物からなり、式(1)~式(3)を満たし、抽出残渣法により得られた残渣中のNb含有量が質量%で0.065~0.245%であり、Cr含有量が質量%で0.104%以下である。
 [溶接金属200について]
 溶接金属200の化学組成は、特に限定されない。溶接金属200は、周知の溶接材料を使用して形成すればよい。周知の溶接材料はたとえば、AWS A5.9に準拠した、規格名:ER NiCrCoMo-1、ER NiCrMo-3、NiCrCoMo-1、22Cr-12Co-1Al-9Mo-Ni、NiCrMo-3、22Cr-8Mo-3.5Nb-Ni等である。
 [溶接熱影響部(HAZ)での平均結晶粒径R1及びHAZ以外の部分の平均結晶粒径R2の好ましい範囲について]
 図5は、本実施形態の溶接継手1において、溶接金属延在方向Lに垂直な方向の断面を示す図である。図5を参照して、溶接継手1の溶接金属延在方向Lに垂直な方向の断面では、母材(オーステナイト系ステンレス鋼材)100は、溶接熱影響部(HAZ)101と、HAZ101以外の部分102とを含む。HAZ101は、母材100のうち、溶接金属200の溶融線200Eと隣接した領域であって、溶接時の熱影響を受けている部分である。一方、母材100のうち、HAZ101以外の部分を、通常部102と称する。母材100のうち、通常部102は、溶接時の熱影響を実質的に受けていない部分である。
 図5を参照して、溶接金属延在方向Lに垂直な方向の母材100の断面のうち、HAZ101内であって溶融線200Eから溶接金属幅方向Wに200μmの範囲(図5中で破線でハッチングされた領域)を、範囲Drefと定義する。範囲DrefはHAZ101の一部である。範囲Drefにおける平均結晶粒径を、平均結晶粒径R1(μm)と定義する。さらに、母材100の断面のうち、HAZ101以外の部分(つまり、通常部102)の平均結晶粒径を、平均結晶粒径R2(μm)と定義する。このとき、好ましくは、平均結晶粒径R1と平均結晶粒径R2とは、式(4)を満たす。
 R1/R2≦4.8 (4)
 ここで、平均結晶粒径R1は次の方法で測定する。溶接継手1から、溶接金属延在方向Lに垂直な方向の断面を含む試験片を採取する。溶接金属延在方向Lに垂直な方向の断面を観察面とする。観察面を鏡面研磨する。鏡面研磨後、10%蓚酸溶液にてエッチングを実施する。エッチングされた観察面のうち、範囲Dref内の任意の3視野を200倍の光学顕微鏡で観察して、写真画像を生成する。各視野は100μm×100μmとする。各視野において、JIS G 0551(2013)に準拠して、切断法により結晶粒度番号を求める。求めた3つの結晶粒度番号の算術平均値を求め、平均結晶粒度番号と定義する。得られた平均結晶粒度番号から平均結晶粒径R1(μm)を求める。
 同様に、平均結晶粒径R2は次の方法で測定する。図5を参照して、溶接継手1の母材100の通常部102から、溶接金属延在方向Lに垂直な方向の断面を含む試験片を採取する。溶接金属延在方向Lに垂直な方向の断面を観察面とする。観察面を鏡面研磨する。鏡面研磨後、10%蓚酸溶液にてエッチングを実施する。エッチングされた観察面のうち、任意の3視野を200倍の光学顕微鏡にて観察して、写真画像を生成する。各視野は100μm×100μmとする。各視野において、JIS G 0551(2013)に準拠して、切断法により結晶粒度番号を求める。求めた3つの結晶粒度番号の算術平均値を求め、平均結晶粒度番号と定義する。得られた平均結晶粒度番号から平均結晶粒径R2(μm)を求める。
 本実施形態の溶接継手1において、母材100が上述の本実施形態のオーステナイト系ステンレス鋼材であって、かつ、溶融線200E近傍のHAZ101での平均結晶粒径R1と通常部102での平均結晶粒径R2とが式(4)を満たせば、本実施形態の溶接継手1は、大入熱溶接後であっても、さらに優れた耐ポリチオン酸SCC性及びさらに優れた耐液化割れ性を有する。
 [本実施形態のオーステナイト系ステンレス鋼材の製造方法]
 以下、本実施形態のオーステナイト系ステンレス鋼材の製造方法を説明する。以降に説明するオーステナイト系ステンレス鋼材の製造方法は、本実施形態のオーステナイト系ステンレス鋼材の製造方法のあくまでも一例である。したがって、上述の構成を有するオーステナイト系ステンレス鋼材は、以降に説明する製造方法以外の他の製造方法により製造されてもよい。しかしながら、以降に説明する製造方法は、本実施形態のオーステナイト系ステンレス鋼材の製造方法の好ましい一例である。
 本実施形態のオーステナイト系ステンレス鋼材の製造方法は、次の工程を含む。
 1.素材を準備する工程(準備工程)
 2.素材に対して熱間加工を実施して中間鋼材を製造する工程(熱間加工工程)
 3.必要に応じて、熱間加工工程後の中間鋼材に対して酸洗処理を実施した後冷間加工を実施する工程(冷間加工工程)
 4.熱間加工工程後又は冷間加工工程後の中間鋼材に対して、CrNb窒化物を析出させる工程(CrNb窒化物生成処理工程)
 以下、各工程について説明する。
 [1.準備工程]
 準備工程では、上述の化学組成を有する素材を準備する。素材は第三者から供給されてもよいし、製造してもよい。素材はインゴットであってもよいし、スラブ、ブルーム、ビレットであってもよい。素材を製造する場合、次の方法により、素材を製造する。上述の化学組成を有する溶鋼を製造する。製造された溶鋼を用いて、造塊法によりインゴットを製造する。製造された溶鋼を用いて、連続鋳造法によりスラブ、ブルーム、ビレットを製造してもよい。製造されたインゴット、スラブ、ブルームに対して熱間加工を実施して、ビレットを製造してもよい。たとえば、インゴットに対して熱間鍛造を実施して、円柱状のビレットを製造し、このビレットを素材としてもよい。この場合、熱間鍛造開始直前の素材の温度は特に限定されないが、たとえば、1000~1300℃である。熱間鍛造後の素材の冷却方法は特に限定されない。
 [2.熱間加工工程]
 熱間加工工程では、準備工程において準備された素材に対して熱間加工を実施して、中間鋼材を製造する。中間鋼材はたとえば鋼管であってもよいし、鋼板であってもよいし、棒鋼であってもよい。
 中間鋼材が鋼管である場合、熱間加工工程では、次の加工を実施する。初めに、円柱素材を準備する。機械加工により、円柱素材の中心軸に沿った貫通孔を形成する。貫通孔が形成された円柱素材に対して、ユジーンセジュルネ法に代表される熱間押出を実施して、中間鋼材(鋼管)を製造する。熱間押出直前の素材の温度は特に限定されない。熱間押出直前の素材の温度はたとえば、1000~1300℃である。熱間押出法に代えて、熱間押抜き製管法を実施してもよい。
 熱間押出に代えて、マンネスマン法による穿孔圧延を実施して、鋼管を製造してもよい。この場合、穿孔機により丸ビレットを穿孔圧延する。穿孔圧延する場合、穿孔比は特に限定されないが、たとえば、1.0~4.0である。穿孔圧延された丸ビレットをさらに、マンドレルミル、レデューサ、サイジングミル等により熱間圧延して素管にする。熱間加工工程での累積の減面率は特に限定されないが、たとえば、20~80%である。熱間加工により鋼管を製造した場合、熱間加工が完了した直後の鋼管温度(仕上げ温度)は特に限定されないが、好ましくは、900℃以上である。
 中間鋼材が鋼板である場合、熱間加工工程はたとえば、一対のワークロールを備える1又は複数の圧延機を用いる。スラブ等の素材に対して圧延機を用いて熱間圧延を実施して、鋼板を製造する。熱間圧延前に素材を加熱し、加熱後の素材に対して熱間圧延を実施する。熱間圧延直前の素材の温度はたとえば、1000~1300℃である。熱間加工により鋼板を製造した場合、熱間加工が完了した直後の鋼板温度(仕上げ温度)は特に限定されないが、好ましくは、900℃以上である。
 中間鋼材が棒鋼である場合、熱間加工工程はたとえば、粗圧延工程と、仕上げ圧延工程とを含む。粗圧延工程では、素材を熱間加工してビレットを製造する。粗圧延工程はたとえば、分塊圧延機を用いる。分塊圧延機により素材に対して分塊圧延を実施して、ビレットを製造する。分塊圧延機の下流に連続圧延機が設置されている場合、分塊圧延後のビレットに対してさらに、連続圧延機を用いて熱間圧延を実施して、さらにサイズの小さいビレットを製造してもよい。連続圧延機では、たとえば、一対の水平ロールを有する水平スタンドと、一対の垂直ロールを有する垂直スタンドとが交互に一列に配列される。粗圧延工程直前の素材温度は特に限定されないが、たとえば、1000~1300℃である。仕上げ圧延工程では、初めにビレットを加熱する。加熱後のビレットに対して、連続圧延機を用いて熱間圧延を実施して、棒鋼を製造する。仕上げ圧延工程での加熱炉での加熱温度は特に限定されないが、たとえば、1000~1300℃である。熱間加工により棒鋼を製造した場合、熱間加工が完了した直後の棒鋼温度(仕上げ温度)は特に限定されないが、好ましくは、900℃以上である。
 [3.冷間加工工程]
 冷間加工工程は必要に応じて実施する。つまり、冷間加工工程は実施しなくてもよい。実施する場合、熱間加工後の中間鋼材に対して、酸洗処理を実施した後、冷間加工を実施する。中間鋼材が鋼管又は棒鋼である場合、冷間加工はたとえば、冷間抽伸又は冷間圧延である。中間鋼材が鋼板である場合、冷間加工はたとえば、冷間圧延である。冷間加工工程を実施することにより、CrNb窒化物生成処理工程前に、中間鋼材に歪を付与する。これにより、CrNb窒化物生成処理工程時において再結晶の発現及び整粒化を行うことができる。冷間加工工程における減面率は特に限定されないが、たとえば、10~90%である。
 [4.CrNb窒化物生成処理工程]
 CrNb窒化物生成処理工程では、熱間加工工程後又は冷間加工工程後の中間鋼材に対して、CrNb窒化物生成処理を実施する。これにより、他の析出物(Cr炭化物、CrN、その他の炭化物、窒化物、及び、炭窒化物等)の生成を抑えつつ、CrNb窒化物を適量析出させる。その結果、製造されたオーステナイト系ステンレス鋼材から抽出残渣法により得られた残渣中のNb含有量を質量%で0.050~0.267%とすることができ、かつ、残渣中のCr含有量を質量%で0.125%以下とすることができる。
 CrNb窒化物生成処理は、次の方法で実施する。炉内雰囲気が大気雰囲気である熱処理炉内に、中間鋼材を装入する。ここでいう大気雰囲気は、大気を構成する気体である窒素を体積で78%以上、酸素を体積で20%以上含有する雰囲気を意味する。
 [CrNb窒化物生成処理の条件]
 CrNb窒化物生成処理では、次の3つの条件(第1の条件、第2の条件、第3の条件)を満たす。
 [第1の条件:CrNb窒化物生成処理での熱処理温度T]
 CrNb窒化物生成処理では、大気雰囲気の炉内において、熱処理温度T(℃)を次の温度範囲に保持する。
 1000≦T≦Tmax
 ここで、Tmax(℃)は、Mo含有量に応じて、次のとおりである。
<1>Mo含有量が0.10~1.00%である場合
 Tmax=T-100(Mo+W)+200C-80Nb
<2>Mo含有量が1.00%超~2.50%未満である場合
 Tmax=T-50(Mo+W)+200C-80Nb
<3>Mo含有量が2.50~4.50%である場合
 Tmax=T-20(Mo+W)+200C-80Nb
 ここで、T=1300である。
 熱処理温度Tが1000℃未満であれば、熱間加工工程において鋼材中に析出したCr炭化物等の析出物が十分に固溶しない。この場合、化学組成中の元素含有量が本実施形態の範囲内であり、かつ、式(1)を満たすオーステナイト系ステンレス鋼材中において、析出物中におけるNb炭化物及びCr炭化物の割合が顕著に高くなり、CrNb窒化物の割合が顕著に低くなる。そのため、残渣中のNb含有量が質量%で0.267%を超え、及び/又は、残渣中のCr含有量が質量%で0.125%を超える。
 また、鋼材の化学組成中の元素含有量が本実施形態の範囲内であり、かつ、Mo含有量が2.50~4.50%であり、かつ、Co:0.01~1.00%であり、式(1)~式(3)を満たす場合、熱処理温度Tが1000℃未満であれば、残渣中のNb含有量が質量%で0.245%を超え、及び/又は、残渣中のCr含有量が質量%で0.104%を超える。
 一方、熱処理温度TがTmaxを超えれば、熱間加工工程で鋼材中に生成したNb炭化物及びCr炭化物が固溶するだけでなく、CrNb窒化物生成処理工程でのCrNb窒化物の析出が不足する。そのため、化学組成中の元素含有量が本実施形態の範囲内であり、かつ、式(1)を満たすオーステナイト系ステンレス鋼材中に存在するCrNb窒化物の割合が顕著に少なくなる。その結果、残渣中のNb含有量が質量%で0.050%未満となる。
 また、鋼材の化学組成中の元素含有量が本実施形態の範囲内であり、かつ、Mo含有量が2.50~4.50%であり、かつ、Co:0.01~1.00%であり、式(1)~式(3)を満たす場合、熱処理温度TがTmaxを超えれば、残渣中のNb含有量が質量%で0.065%未満となる。
 熱処理温度Tが1000℃以上であり、かつ、Tmax以下であれば、熱間加工工程にて生成したCr炭化物を十分に固溶でき、Nb炭化物の過度の生成を抑え、かつ、適切な量のCrNb窒化物を生成できる。その結果、化学組成中の元素含有量が本実施形態の範囲内であり、かつ、式(1)を満たすオーステナイト系ステンレス鋼材において、残渣中のNb含有量が質量%で0.050~0.267%となり、かつ、Cr含有量が0.125%以下となる。そのため、オーステナイト系ステンレス鋼材の耐鋭敏化特性が高まる。
 また、鋼材の化学組成中の元素含有量が本実施形態の範囲内であり、かつ、Mo含有量が2.50~4.50%であり、かつ、Co:0.01~1.00%であり、式(1)~式(3)を満たす場合、残渣中のNb含有量が質量%で0.065~0.245%となり、かつ、Cr含有量が0.104%以下となる。そのため、オーステナイト系ステンレス鋼材の耐ポリチオン酸SCC性が高まる。
 Tmaxにおいて、好ましいTは1290であり、さらに好ましくは1280である。
 [第2の条件]
 CrNb窒化物生成処理はさらに、熱処理温度T(℃)、及び、熱処理温度Tでの保持時間t(分)とが、次の条件を満たす。
 (A)化学組成中のMo含有量が0.10~1.00%である場合
 f1≦f2、かつ、f2≦f3
 ここで、f1~f3は次のとおり定義される。
 f1=760
 f2=T×Log10(20Nb+0.1Cr+10Mo+t/60)
 f3=1680
 (B)化学組成中のMo含有量が1.00%超~2.50%未満である場合
 f1≦f2、かつ、f2≦f3
 ここで、f1~f3は次のとおり定義される。
 f1=1200
 f2=T×Log10(20Nb+0.1Cr+10Mo+t/60)
 f3=1900
 (C)化学組成中のMo含有量が2.50~4.50%である場合
 f1≦f2、かつ、f2≦f3
 ここで、f1~f3は次のとおり定義される。
 f1=1520
 f2=T×Log10(20Nb+0.1Cr+10Mo+t/60)
 f3=2050
 f2中のTには、熱処理温度T(℃)が代入され、tには保持時間t(分)が代入される。f2中の各元素記号には、対応する元素の含有量(質量%)が代入される。
 f2は、化学組成中の各元素含有量が本実施形態の範囲内である鋼材中において、適切な量のCrNb窒化物を生成するのに必要な熱処理温度T及び保持時間tのパラメータである。以下、f2を「CrNb窒化物生成パラメータ」という。化学組成中のCr及びNbはCrNb窒化物を構成する元素である。さらに、Moは、CrNb窒化物の生成に影響を与えるとともに、LAVES相の生成を誘発する元素である。
 f1は、鋼材の化学組成中のMo含有量に基づいて異なる値が適用される。具体的には、鋼材の化学組成中のMo含有量が0.10~1.00%の場合、f1=760である。鋼材の化学組成中のMo含有量が1.00%超~2.50%未満である場合、f1=1200である。鋼材の化学組成中のMo含有量が2.50~4.50%である場合、f1=1520である。
 f1と同様に、f3は、鋼材の化学組成中のMo含有量に基づいて異なる値が適用される。具体的には、鋼材の化学組成中のMo含有量が0.10~1.00%の場合、f3=1680である。鋼材の化学組成中のMo含有量が1.00%超~2.50%未満である場合、f3=1900である。鋼材の化学組成中のMo含有量が2.50~4.50%である場合、f3=2050である。
 f2がf1未満であれば、CrNb窒化物生成パラメータが低すぎる。この場合、化学組成中の元素含有量が本実施形態の範囲内であり、かつ、式(1)を満たすオーステナイト系ステンレス鋼材中において、析出物中におけるNb炭化物及びCr炭化物の割合が高くなり、CrNb窒化物の割合が顕著に低くなる。そのため、残渣中のNb含有量が質量%で0.267%を超え、及び/又は、残渣中のCr含有量が質量%で0.125%を超える。
 また、鋼材の化学組成中の元素含有量が本実施形態の範囲内であり、かつ、Mo含有量が2.50~4.50%であり、かつ、Co:0.01~1.00%であり、式(1)~式(3)を満たす場合、f2がf1未満であれば、残渣中のNb含有量が質量%で0.245%を超え、及び/又は、残渣中のCr含有量が0.104%を超える。
 f2がf3を超えれば、CrNb窒化物生成パラメータが高すぎる。この場合、CrNb窒化物の析出が不足する。そのため、オーステナイト系ステンレス鋼材中に存在するCrNb窒化物の割合が顕著に少なくなる。その結果、化学組成中の元素含有量が本実施形態の範囲内であり、かつ、式(1)を満たすオーステナイト系ステンレス鋼材中において、残渣中のNb含有量が0.050質量%未満となる。
 また、鋼材の化学組成中の元素含有量が本実施形態の範囲内であり、かつ、Mo含有量が2.50~4.50%であり、かつ、Co:0.01~1.00%であり、式(1)~式(3)を満たす場合、f2がf3を超えれば、残渣中のNb含有量が質量%で0.065%未満となる。
 f2がf1以上であり、かつ、f2がf3以下であれば、CrNb窒化物生成パラメータが適切な範囲内となる。この場合、CrNb窒化物が適量析出する。そのため、化学組成中の元素含有量が本実施形態の範囲内であり、かつ、式(1)を満たすオーステナイト系ステンレス鋼材中において、残渣中のNb含有量が質量%で0.050~0.267%となり、かつ、残渣中のCr含有量が質量%で0.125%以下となる。その結果、オーステナイト系ステンレス鋼材は優れた耐鋭敏化特性を有する。
 また、鋼材の化学組成中の元素含有量が本実施形態の範囲内であり、かつ、Mo含有量が2.50~4.50%であり、かつ、Co:0.01~1.00%であり、式(1)~式(3)を満たす場合、f2がf1以上であり、かつ、f2がf3以下であれば、オーステナイト系ステンレス鋼材の残渣中のNb含有量が質量%で0.065~0.245%となり、かつ、残渣中のCr含有量が質量%で0.104%以下となる。その結果、オーステナイト系ステンレス鋼材は優れた耐ポリチオン酸SCC性を有する。
 [第3の条件]
 CrNb窒化物生成処理はさらに、熱処理温度T℃で保持時間t分保持した後、冷却する。このとき、少なくとも鋼材温度が800~500℃の温度域での平均冷却速度CRを15℃/秒以上で冷却する。平均冷却速度CRが15℃/秒未満である場合、800~500℃の温度範囲を冷却している間に、鋼材中にCrNb窒化物が粒界にも析出し、さらに、M23型のCr炭化物も粒界に生成してしまう。そのため、化学組成中の元素含有量が本実施形態の範囲内であり、かつ、式(1)を満たすオーステナイト系ステンレス鋼材中において、残渣中のNb含有量が0.267質量%を超える。及び/又は、Cr含有量が0.125%を超える。この場合、オーステナイト系ステンレス鋼材の耐鋭敏化特性が低下する。
 また、鋼材の化学組成中の元素含有量が本実施形態の範囲内であり、かつ、Mo含有量が2.50~4.50%であり、かつ、Co:0.01~1.00%であり、式(1)~式(3)を満たす場合、平均冷却速度CRが15℃/秒未満であれば、残渣中のNb含有量が0.245質量%を超える。及び/又は、Cr含有量が0.104%を超える。この場合、オーステナイト系ステンレス鋼材の耐ポリチオン酸SCC性が低下する。
 平均冷却速度CRが15℃/秒以上であれば、800~500℃の温度範囲を冷却している間に、鋼材中にCr炭化物が過剰に生成するのを抑制できる。そのため、第1の条件及び第2の条件を満たすことを前提として、化学組成中の元素含有量が本実施形態の範囲内であり、かつ、式(1)を満たすオーステナイト系ステンレス鋼材中において、残渣中のNb含有量が質量%で0.050~0.267%となり、残渣中のCr含有量が質量%で0.125%以下となる。そのため、オーステナイト系ステンレス鋼材の耐鋭敏化特性を高めることができる。
 また、鋼材の化学組成中の元素含有量が本実施形態の範囲内であり、かつ、Mo含有量が2.50~4.50%であり、かつ、Co:0.01~1.00%であり、式(1)~式(3)を満たす場合、平均冷却速度CRが15℃/秒以上であれば、第1の条件及び第2の条件を満たすことを前提として、オーステナイト系ステンレス鋼材の残渣中のNb含有量が質量%で0.065~0.245%となり、かつ、残渣中のCr含有量が0.104%以下となる。そのため、オーステナイト系ステンレス鋼材の耐ポリチオン酸SCC性が高まる。
 以上の工程により、本実施形態のオーステナイト系ステンレス鋼材を製造できる。上述の製造方法は、本実施形態のオーステナイト系ステンレス鋼材の製造方法の一例である。したがって、本実施形態のオーステナイト系ステンレス鋼材の製造方法は、上述の製造方法に限定されない。鋼材の化学組成中の各元素含有量が本実施形態の範囲内であり、式(1)を満たし、残渣中のNb含有量が質量%で0.050~0.267%であり、かつ、残渣中のCr含有量が質量%で0.125%以下であれば、本実施形態のオーステナイト系ステンレス鋼材は、上述の製造方法に限定されない。
 以上のとおり、本実施形態のオーステナイト系ステンレス鋼材は、化学組成中の各元素が本実施形態の範囲内であって、式(1)を満たす。さらに、残渣中のNb含有量が質量%で0.050~0.267%であり、かつ、残渣中のCr含有量が質量%で0.125%以下である。そのため、本実施形態のオーステナイト系ステンレス鋼材は、優れた耐鋭敏化特性を有する。
 さらに、本実施形態のオーステナイト系ステンレス鋼材がさらに上記(I)~(III)を満たす場合、つまり、化学組成において、Mo:2.50~4.50%、及び、Co:0.01~1.00%、を含有し、さらに、式(2)及び式(3)を満たし、抽出残渣法により得られた残渣中のNb含有量が質量%で0.065~0.245%であり、かつ、残渣中のCr含有量が質量%で0.104%以下である場合、本実施形態のオーステナイト系ステンレス鋼材は、十分な耐ポリチオン酸SCC性及び耐ナフテン酸腐食性を有する。
 以下、実施例により本実施形態のオーステナイト系ステンレス鋼材の効果を具体的に説明する。以下の実施例での条件は、本実施形態のオーステナイト系ステンレス鋼材の実施可能性及び効果を確認するために採用した一条件例である。したがって、本実施形態のオーステナイト系ステンレス鋼材はこの一条件例に限定されない。
 [オーステナイト系ステンレス鋼材の製造]
 表1の化学組成を有する素材(インゴット)を製造した。
Figure JPOXMLDOC01-appb-T000001
 表1中の「0」及び空白は、対応する元素含有量が検出限界未満であったことを示す。検出限界未満である場合、その元素は含有されていなかったとみなした。たとえば、試験番号B1のMo含有量は、小数第三位を四捨五入したときに「0」であったことを意味する。また、試験番号B1のW含有量は、小数第三位を四捨五入したときに「0」であったことを意味する。なお、表1中の「任意元素等」欄には、含有されている任意元素又は不純物元素とその含有量(質量%)が記載されている。例えば、試験番号A3では、Tiが0.02%含有され、Vが0.04%含有され、Bが0.0014%含有されていたことを示す。なお、不純物元素であるSn、As、Zn、Pb、Sbに関しては、いずれの試験番号においても、Sn含有量は0~0.010%であり、As含有量は0~0.010%であり、Zn含有量は0~0.010%であり、Pb含有量は0~0.010%であり、Sb含有量は0~0.010%であった。
 溶鋼を用いて、表1の化学組成を有し、外径120mm、30kgのインゴットを製造した。インゴットに対して熱間鍛造を実施して、厚さ30mmの素材とした。熱間鍛造前のインゴットの温度は1250℃であった。さらに、素材に対して熱間圧延を実施して、厚さ15mmの中間鋼材(鋼板)を製造した。熱間加工(熱間圧延)直前の素材温度は、1250℃であった。熱間圧延後の中間鋼材の仕上げ温度はいずれも、900℃以上であった。
 熱間圧延後の中間鋼材に対して、CrNb窒化物生成処理を実施した。CrNb窒化物生成処理において、各試験番号のTmaxは表2に示すとおりであった。試験番号A1~A18、及びB1~B6、B9、B10、B13~B17の熱処理温度Tはいずれも、1000℃以上であり、かつ、Tmax以下であった。一方、試験番号B8の熱処理温度Tは1000℃未満であった。また、試験番号B7、B11及びB12の熱処理温度TはTmaxを超えた。
 さらに、各試験番号のCrNb窒化物生成パラメータf2と、f1及びf3とは、表2に示すとおりであった。表2中の「f1≦f2」欄で「T」は、f1≦f2であったことを示す。「F」は、f1>f2であったことを示す。表2中の「f2≦f3」欄で「T」は、f2≦f3であったことを示す。「F」は、f2>f3であったことを示す。
 さらに、試験番号A1~A18、B1~B5、B7~B14、B16及びB17のCrNb窒化物生成処理における800~500℃までの平均冷却速度CRは15℃/秒以上であった。一方、試験番号B6及びB15の800~500℃までの平均冷却速度CRは5℃/秒であった。以上の工程により、オーステナイト系ステンレス鋼材を製造した。
 [評価試験]
 以上の製造工程により製造されたオーステナイト系ステンレス鋼材に対して、次の評価試験を実施した。
 [大入熱溶接継手模擬試験片の作製]
 製造されたオーステナイト系ステンレス鋼材を用いて、次の方法により、大入熱溶接を模擬した大入熱溶接継手模擬試験片を作製した。
 各試験番号のオーステナイト系ステンレス鋼材の板幅中央位置かつ板厚中央位置を含む、角状試験片を採取した。角状試験片の長手方向は、オーステナイト系ステンレス鋼材の長手方向に平行であった。角状試験片の長さは100mmであった。角状試験片の長手方向に垂直な断面(横断面)は、10mm×10mmの矩形であった。角状試験片の横断面の中央位置は、オーステナイト系ステンレス鋼材の板幅中央位置かつ板厚中央位置にほぼ一致した。
 高周波熱サイクル装置を用いて、角状試験片に対して次の熱履歴を付与した。具体的には、図6を参照して、角状試験片の長手方向の中央位置の10mm幅(つまり、長手方向中央位置から左右に5mmずつの幅)を有する中央部分60を、大気中で常温から70℃/秒で1400℃まで昇温した。さらに1400℃で10秒保持した。その後、角状試験片を20℃/秒の冷却速度で常温まで冷却した。以上の熱履歴を角状試験片に付与することにより、大入熱溶接継手模擬試験片を作製した。
 [長時間鋭敏化処理]
 大入熱溶接継手模擬試験片を用いて、次に示す長時間鋭敏化処理を実施した。大入熱溶接継手模擬試験片を熱処理炉に装入した。熱処理炉において、大入熱溶接継手模擬試験片を大気中、大気圧にて、550℃で10000時間保持した(鋭敏化処理)。10000時間経過後の大入熱溶接継手模擬試験片を熱処理炉から抽出して、放冷した。
 長時間鋭敏化処理を実施した大入熱溶接継手模擬試験片に対して、次のストラウス試験、及び、再活性化率測定試験を実施した。
 [ストラウス試験(硫酸・硫酸銅腐食試験)]
 ASTM A262-15 PRACTICE Eに準拠したストラウス試験を次のとおり実施した。長時間鋭敏化処理を実施した大入熱溶接継手模擬試験片から、中央部分60が長手方向の中央位置にくるように厚さ2mm、幅10mm、長さ80mmの板状試験片を採取した。板状試験片を、16%硫酸を含有する硫酸銅試験液中に浸漬して、15時間沸騰した。その後、板状試験片を硫酸銅試験液から取り出した。取り出した板状試験片に対して、曲げ試験を実施した。曲げ試験では、大気中において、大入熱溶接継手模擬試験片の長手方向中央位置を中心として、板状試験片を180°曲げた。曲げた試験片の曲げ部を切断した。切断面を20倍の光学顕微鏡で観察した。割れが観察された場合、割れの長さを求めた。割れが観察されなかった場合、又は、割れが観察されても、割れの長さが100μm以下である場合、ストラウス試験を合格と判断した(表2中で「E」(Excellent))。一方、100μmを超える割れが観察された場合、ストラウス試験を不合格と判断した(表2中で「B」(Bad))。
 [再活性化率測定試験]
 長時間鋭敏化処理を実施した大入熱溶接継手模擬試験片を用いて、ASTM G108-94に準拠した電気化学的再活性化率測定試験(Electrochemical Reactivation test)を実施した。具体的には、長時間鋭敏化処理を実施した大入熱溶接継手模擬試験片の中央部分60(大入熱が加えられた部分)から板状試験片を採取した。採取した板状試験片内において、評価面積100mmの表面部分以外の領域をマスキングした。マスキングされた板状試験片を電極として、温度30℃、容量200cmの0.5mol硫酸+0.01molチオシアン酸カリウム溶液に浸漬した。次に、板状試験片に対して、分極速度100mV/分の直線分極で、自然電位から300mVまで貴方向に走査した。飽和甘こう電極基準で300mVに到達後、直ちに元の自然電位まで卑方向に走査した。貴方向(往路)への電圧印加時に流れた電流を測定した。そして、卑方向(復路)への電圧印加時に流れた電流を測定した。得られた電流値に基づいて、再活性化率(%)を次のとおり定義した。
 再活性化率=(復路の最大アノード電流/往路の最大アノード電流)×100
 再活性化率が低いほど、鋭敏化度(Degree Of Sensitization:DOS)が低く、耐鋭敏化特性が高い。本実施例では、再活性化率が10%以下である場合、合格と判断した。(表2中で「E」(Excellent))。一方、再活性化率が10%を超える場合、不合格と判断した(表2中で「B」(Bad))。
 上述の長時間鋭敏化処理を実施した大入熱溶接継手模擬試験片において、ストラウス試験が合格であり、かつ、再活性化率が10%以下であれば、そのオーステナイト系ステンレス鋼材は優れた耐鋭敏化特性を有すると判断した。
 [試験結果]
 表2に試験結果を示す。
Figure JPOXMLDOC01-appb-T000002
 表1及び表2を参照して、試験番号A1~A18では、化学組成中の各元素含有量が適切であり、かつ、F1が式(1)を満たした。さらに、残渣中のNb含有量が質量%で0.050~0.267%であり、かつ、残渣中のCr含有量が0.125%以下であった。さらに、ストラウス試験において、100μmを超える割れが確認されなかった。さらに、再活性化率測定試験において、再活性化率が10%以下であった。したがって、試験番号A1~A18のオーステナイト系ステンレス鋼材では、大入熱溶接後に550℃で10000時間鋭敏化処理を実施した場合であっても、優れた耐鋭敏化特性を示した。
 一方、試験番号B1~B3では、Mo含有量及び/又はW含有量が低かった。そのため、ストラウス試験において、100μmを超える割れが確認された。さらに、再活性化率測定試験において、再活性化率が10%を超えた。つまり、大入熱溶接後に550℃で10000時間鋭敏化処理を実施した場合、耐鋭敏化特性が低かった。
 試験番号B4では、F1が式(1)を満たさなかった。そのため、ストラウス試験において、100μmを超える割れが確認された。さらに、再活性化率測定試験において、再活性化率が10%を超えた。つまり、大入熱溶接後に550℃で10000時間鋭敏化処理を実施した場合、耐鋭敏化特性が低かった。
 試験番号B5では、C含有量が高かった。そのため、ストラウス試験において、100μmを超える割れが確認された。さらに、再活性化率測定試験において、再活性化率が10%を超えた。つまり、大入熱溶接後に550℃で10000時間鋭敏化処理を実施した場合、耐鋭敏化特性が低かった。
 試験番号B6では、F1が式(1)を満たさなかった。さらに、CrNb窒化物処理工程での800~500℃での平均冷却速度CRが15℃/秒未満であった。そのため、残渣中のCr含有量が高すぎた。そのため、ストラウス試験において、100μmを超える割れが確認された。さらに、再活性化率測定試験において、再活性化率が10%を超えた。つまり、大入熱溶接後に550℃で10000時間鋭敏化処理を実施した場合、耐鋭敏化特性が低かった。
 試験番号B7では、CrNb窒化物生成処理において、熱処理温度TがTmaxよりも高かった。そのため、残渣中のNb含有量が低すぎた。そのため、ストラウス試験において、100μmを超える割れが確認された。さらに、再活性化率測定試験において、再活性化率が10%を超えた。つまり、大入熱溶接後に550℃で10000時間鋭敏化処理を実施した場合、耐鋭敏化特性が低かった。
 試験番号B8では、CrNb窒化物生成処理において、熱処理温度Tが1000℃未満であった。そのため、残渣中のNb含有量及び残渣中のCr含有量が高すぎた。そのため、ストラウス試験において、100μmを超える割れが確認され、さらに、再活性化率測定試験において、再活性化率が10%を超えた。つまり、大入熱溶接後に550℃で10000時間鋭敏化処理を実施した場合、耐鋭敏化特性が低かった。
 試験番号B9では、化学組成が適切であり、式(1)を満たしたものの、CrNb窒化処理工程において、CrNb窒化物生成パラメータf2が、f1未満であった。そのため、残渣中のCr含有量が高すぎた。その結果、ストラウス試験において、100μmを超える割れが確認された。さらに、再活性化率測定試験において、再活性化率が10%を超えた。つまり、大入熱溶接後に550℃で10000時間鋭敏化処理を実施した場合、耐鋭敏化特性が低かった。
 試験番号B10では、化学組成が適切であり、式(1)を満たしたものの、CrNb窒化処理工程において、CrNb窒化物生成パラメータf2が、f3を超えた。そのため、残渣中のNb含有量が低すぎた。その結果、ストラウス試験において、100μmを超える割れが確認された。さらに、再活性化率測定試験において、再活性化率が10%を超えた。つまり、大入熱溶接後に550℃で10000時間鋭敏化処理を実施した場合、耐鋭敏化特性が低かった。
 試験番号B11では、CrNb窒化物生成処理において、熱処理温度TがTmaxよりも高かった。そのため、残渣中のNb含有量が低すぎた。そのため、ストラウス試験において、100μmを超える割れが確認された。さらに、再活性化率測定試験において、再活性化率が10%を超えた。つまり、大入熱溶接後に550℃で10000時間鋭敏化処理を実施した場合、耐鋭敏化特性が低かった。
 試験番号B12では、CrNb窒化物生成処理において、熱処理温度TがTmaxよりも高かった。そのため、残渣中のNb含有量が低すぎた。そのため、ストラウス試験において、100μmを超える割れが確認された。さらに、再活性化率測定試験において、再活性化率が10%を超えた。つまり、大入熱溶接後に550℃で10000時間鋭敏化処理を実施した場合、耐鋭敏化特性が低かった。
 試験番号B13では、化学組成が適切であり、式(1)を満たしたものの、CrNb窒化処理工程において、CrNb窒化物生成パラメータf2が、f1未満であった。そのため、残渣中のCr含有量が高すぎた。その結果、ストラウス試験において、100μmを超える割れが確認された。さらに、再活性化率測定試験において、再活性化率が10%を超えた。つまり、大入熱溶接後に550℃で10000時間鋭敏化処理を実施した場合、耐鋭敏化特性が低かった。
 試験番号B14では、化学組成が適切であり、式(1)を満たしたものの、CrNb窒化処理工程において、CrNb窒化物生成パラメータf2が、f3を超えた。そのため、残渣中のNb含有量が低すぎた。その結果、ストラウス試験において、100μmを超える割れが確認された。さらに、再活性化率測定試験において、再活性化率が10%を超えた。つまり、大入熱溶接後に550℃で10000時間鋭敏化処理を実施した場合、耐鋭敏化特性が低かった。
 試験番号B15では、化学組成が適切であり、式(1)を満たしたものの、CrNb窒化処理工程において、800~500℃での平均冷却速度CRが15℃/秒未満であった。そのため、残渣中のCr含有量が高すぎた。その結果、ストラウス試験において、100μmを超える割れが確認された。さらに、再活性化率測定試験において、再活性化率が10%を超えた。つまり、大入熱溶接後に550℃で10000時間鋭敏化処理を実施した場合、耐鋭敏化特性が低かった。
 試験番号B16では、化学組成が適切であり、式(1)を満たしたものの、CrNb窒化処理工程において、CrNb窒化物生成パラメータf2が、f1未満であった。そのため、残渣中のCr含有量が高すぎた。その結果、ストラウス試験において、100μmを超える割れが確認された。さらに、再活性化率測定試験において、再活性化率が10%を超えた。つまり、大入熱溶接後に550℃で10000時間鋭敏化処理を実施した場合、耐鋭敏化特性が低かった。
 試験番号B17では、化学組成が適切であり、式(1)を満たしたものの、CrNb窒化処理工程において、CrNb窒化物生成パラメータf2が、f3を超えた。そのため、残渣中のNb含有量が低すぎた。その結果、ストラウス試験において、100μmを超える割れが確認された。さらに、再活性化率測定試験において、再活性化率が10%を超えた。つまり、大入熱溶接後に550℃で10000時間鋭敏化処理を実施した場合、耐鋭敏化特性が低かった。
 [オーステナイト系ステンレス鋼材の製造]
 表3の化学組成を有する素材(インゴット)を製造した。
Figure JPOXMLDOC01-appb-T000003
 表3中の空白は、対応する元素含有量が検出限界未満であったことを示す。検出限界未満である場合、その元素は含有されていなかったとみなした。なお、表3中の「任意元素等」欄には、含有されている任意元素又は不純物元素とその含有量(質量%)が記載されている。例えば、試験番号A3では、Tiが0.08%含有され、Vが0.16%含有され、不純物であるSnが0.005%含有されていたことを示す。不純物元素であるSn、As、Zn、Pb、Sbに関しては、いずれの試験番号においても、Sn含有量は0~0.010%であり、As含有量は0~0.010%であり、Zn含有量は0~0.010%であり、Pb含有量は0~0.010%であり、Sb含有量は0~0.010%であった。
 溶鋼を用いて、表3の化学組成を有し、外径120mm、30kgのインゴットを製造した。インゴットに対して熱間鍛造を実施して、厚さ30mmの素材とした。熱間鍛造前のインゴットの温度は1150℃であった。さらに、素材に対して熱間圧延を実施して、厚さ15mmの鋼材(鋼板)を製造した。熱間加工(熱間圧延)前の素材温度は、1150℃であった。熱間圧延後の鋼材の仕上げ温度は900℃以上であった。
 熱間圧延後の鋼材に対して、CrNb窒化物生成処理を実施した。CrNb窒化物生成処理での各試験番号のTmaxは表4に示すとおりであった。試験番号A1~A13及びB1~B8及びB11~14では、熱処理温度Tが1000℃以上であり、かつ、Tmax以下であった。一方、試験番号B9では、熱処理温度TがTmaxを超えた。また、試験番号B10では、熱処理温度Tが1000℃未満であった。
 さらに、各試験番号のCrNb窒化物生成パラメータf2と、f1及びf3とは、表4に示すとおりであった。表4中の「f1≦f2」欄で「T」は、f1≦f2であったことを示す。「F」は、f1>f2であったことを示す。表4中の「f2≦f3」欄で「T」は、f2≦f3であったことを示す。「F」は、f2>f3であったことを示す。
 さらに、試験番号A1~A13、B1~B10、B12~B14のCrNb窒化物生成処理における800~500℃までの平均冷却速度CRは15℃/秒以上であった。一方、試験番号B11の800~500℃までの平均冷却速度CRは15℃/秒未満であった。以上の工程により、オーステナイト系ステンレス鋼材を製造した。
 [耐ナフテン酸腐食性評価試験]
 各試験番号のオーステナイト系ステンレス鋼材の幅中央位置かつ板厚中央位置から、厚さ2mm、幅10mm、長さ30mmの試験片を採取した。試験片の長手方向は、鋼材の長手方向(圧延方向)に平行であった。採取した試験片を、常圧下において、200℃の100%シクロヘキサンカルボン酸溶液に720時間浸漬した。720時間浸漬後、アセトンを用いて試験片を3分間超音波洗浄した。
 試験前の試験片の質量と、超音波洗浄後の試験片の質量との差を腐食減量として算出した。さらに、試験片の表面積、比重、及び、試験時間から腐食速度(mm/年)を求めた。腐食速度が0.01mm/年以下である場合、耐ナフテン酸腐食性に優れると判断した(表4中の「耐ナフテン酸腐食性」欄において「E」と表記)。一方、腐食速度が0.01mm/年を超えた場合、耐ナフテン酸腐食性が低いと判断した(表4中の「耐ナフテン酸腐食性」欄で「B」と表記)。
 [大入熱溶接継手模擬試験片の作製]
 製造されたオーステナイト系ステンレス鋼材を用いて、次の方法により、大入熱溶接で製造された溶接継手を模擬した大入熱溶接継手模擬試験片を作製した。
 各試験番号のオーステナイト系ステンレス鋼材の板幅中央位置かつ板厚中央位置を含む、角状試験片を採取した。角状試験片の長手方向は、オーステナイト系ステンレス鋼材の長手方向に平行であった。角状試験片の長さは100mmであった。角状試験片の長手方向に垂直な断面(横断面)は、10mm×10mmの矩形であった。角状試験片の横断面の中央位置は、オーステナイト系ステンレス鋼材の板幅中央位置かつ板厚中央位置にほぼ一致した。
 高周波熱サイクル装置を用いて、角状試験片に対して次の熱履歴を付与した。具体的には、図6を参照して、角状試験片の長手方向の中央位置の10mm幅部分60を、大気中で常温から100℃/秒で1350℃まで昇温した。さらに1350℃で1~60秒保持した。その後、角状試験片を20℃/秒の冷却速度で常温まで冷却した。以上の熱履歴を角状試験片に付与することにより、大入熱溶接継手模擬試験片50を作製した。
 [平均結晶粒径R1及びR2測定試験]
 大入熱溶接継手模擬試験片50を用いて、平均結晶粒径R1及びR2を次の方法で測定した。大入熱溶接継手模擬試験片50の長さ方向の中央位置の10mm幅部分の領域60は、溶接継手のHAZの範囲Dref(再現HAZ組織)に相当する。そこで、領域60をHAZの範囲Dref(再現HAZ組織)60と認定した。範囲Dref60の表面を観察面とするサンプルを採取した。観察面を鏡面研磨した。その後、JIS G 0551(2013)に準拠して、任意の3視野における結晶粒度番号を切断法により求めた。各視野は100μm×100μmであった。求めた3つの結晶粒度番号の算術平均値を求め、平均結晶粒度番号と定義した。得られた平均結晶粒度番号から平均結晶粒径R1(μm)を求めた。
 同様に、大入熱溶接継手模擬試験片50の長手方向における端部から25mm位置を通常部70と認定した。通常部70において、平均結晶粒径R2を次の方法で測定した。大入熱溶接継手模擬試験片50の通常部70の表面を観察面とするサンプルを採取した。観察面を鏡面研磨した。その後、JIS G 0551(2013)に準拠して、任意の3視野における結晶粒度番号を切断法により求めた。各視野は100μm×100μmであった。求めた3つの結晶粒度番号の算術平均値を求め、平均結晶粒度番号と定義した。得られた平均結晶粒度番号から平均結晶粒径R2(μm)を求めた。
 求めた範囲Dref60での平均結晶粒径R1と、通常部70での平均結晶粒径R2とを用いて、R1/R2を求めた。求めたR1/R2を表4の「R1/R2」欄に示す。また、表4の「式(4)」欄で「T」は、R1/R2が4.8以下であり、式(4)を満たすことを意味する。一方、「式(4)」欄で「F」は、R1/R2が4.8を超え、式(4)を満たさなかったことを意味する。
 [耐ポリチオン酸SCC性評価試験]
 大入熱溶接継手模擬試験片を用いて、次に示す長時間鋭敏化処理試験を実施した。大入熱溶接継手模擬試験片を熱処理炉に装入した。熱処理炉において、大入熱溶接継手模擬試験片を大気中、大気圧にて、550℃で10000時間保持(鋭敏化処理)した。10000時間経過後の大入熱溶接継手模擬試験片を熱処理炉から抽出して、放冷した。
 長時間鋭敏化処理後の大入熱溶接継手模擬試験片から、範囲Dref60が長手方向の中央位置にくるように厚さ2mm、幅10mm、長さ75mmの板状試験片を採取した。採取した板状試験片を用いて、耐ポリチオン酸SCC性評価試験を次の方法で実施した。板状試験片を、内側半径5mmのポンチ周りに曲げてUベンド形とした。Uベンド形の試験片を、硫酸を用いてPH=2に調整した1%K溶液中に常温で100時間浸漬した。浸漬後の試験片において、曲げた試験片の曲げ部を、長手方向に垂直な方向に切断し、切断面を20倍の光学顕微鏡で観察した。割れが観察された場合、切断面における割れの深さを求めた。割れが観察されなかった場合、耐ポリチオン酸SCC性に極めて優れると判断した(表4中の「耐PTASCC性」欄において「E」(Excellent)と表記)。切断面において割れが観察されたものの、割れの深さが20μm未満の場合、耐ポリチオン酸SCC性に優れると判断した(表4中の「耐PTASCC性」欄において「G」(Good)と表記)。切断面で割れが観察され、割れの深さが20μm以上である場合、耐ポリチオン酸SCC性が低いと判断した(表4中の「耐PTASCC性」欄において「B」(bad)と表記)。
 [耐液化割れ性評価試験]
 大入熱溶接継手模擬試験片50の長手方向の中央位置(つまり、範囲Dref60の範囲内)で、長手方向に垂直な方向に切断した。切断面を観察面とした。観察面を混酸でエッチングした。エッチングされた観察面の任意の3視野(各視野は250μm×250μm)を、400倍の光学顕微鏡で観察した。観察された3視野において、粒界での部分溶融痕の有無を判断した。
 3視野の切断面において、粒界に発生している部分溶融痕のうち、長さが25μm以上の部分溶融痕が観察されなかった場合、耐液化割れ性が非常に高いと判断した(表4中の「耐液化割れ性」欄で「E」(Excellent)で表記)。粒界に発生している部分溶融痕のうち、長さが25μm以上の部分溶融痕は観察されるものの、長さが50μm以上の部分溶融痕が観察されない場合、耐液化割れ性が高いと判断した(表4中の「耐液化割れ性」欄で「G」(Good)で表記)。長さが50μm以上の部分溶融痕が1つでも観察された場合、耐液化割れ性が低いと判断した(表4中の「耐液化割れ性」欄で「B」(Bad)で表記)。
 [試験結果]
 表4に試験結果を示す。
Figure JPOXMLDOC01-appb-T000004
 表3及び表4を参照して、試験番号A1~A13では、化学組成中の各元素含有量が適切であり、かつ、式(1)~式(3)を満たした。さらに、残渣中のNb含有量が質量%で0.065~0.245%であり、Cr含有量が質量%で0.104%以下であった。そのため、耐ポリチオン酸SCC性、及び、耐ナフテン酸腐食性に優れた。さらに、耐液化割れ性にも優れた。
 また、試験番号A1~A12では、大入熱溶接継手模擬試験片における範囲Drefの平均結晶粒径R1と、通常部の平均結晶粒径R2とが式(4)を満たした。そのため、耐ポリチオン酸SCC性が極めて高く、耐液化割れ腐食性が極めて高かった。
 一方、試験番号B1では、化学組成中の各元素含有量は適切であったものの、F2が式(2)の上限を超え、F3が式(3)の上限を超えた。その結果、耐液化割れ性が低かった。
 試験番号B2では、Mo含有量が低かった。さらに、F3が式(3)の下限未満であった。そのため、耐ポリチオン酸SCC性及び耐ナフテン酸腐食性が低かった。
 試験番号B3では、Mo含有量が低かった。そのため、耐ナフテン酸腐食性が低かった。
 試験番号B4では、F3が式(3)の下限未満であった。そのため、耐ポリチオン酸SCC性が低かった。
 試験番号B5では、F2が式(2)の下限未満であった。そのため、耐ポリチオン酸SCC性が低かった。
 試験番号B6では、F2が式(2)の上限を超えた。その結果、耐液化割れ性が低かった。
 試験番号B7では、F3が式(3)の下限未満であった。その結果、耐ポリチオン酸SCC性が低かった。
 試験番号B8では、F3が式(3)の上限を超えた。その結果、耐液化割れ性が低かった。
 試験番号B9では、CrNb窒化物生成処理の熱処理温度TがTmaxを超えた。そのため、残渣中のNb含有量が低すぎた。その結果、耐ポリチオン酸SCC性が低かった。
 試験番号B10では、CrNb窒化物生成処理の熱処理温度Tが低すぎた。そのため、残渣中のCr含有量が高かった。その結果、耐液化割れ性が低かった。
 試験番号B11では、CrNb窒化物生成処理において、平均冷却速度CRが遅すぎた。そのため、残渣中のNb含有量が高く、残渣中のCr含有量が高かった。その結果、耐ポリチオン酸SCC性が低かった。
 試験番号B12では、化学組成が適切であり、式(1)~式(3)を満たしたものの、CrNb窒化処理工程において、CrNb窒化物生成パラメータf2が、f1未満であった。そのため、残渣中のCr含有量が高すぎた。その結果、耐ポリチオン酸SCC性が低かった。
 試験番号B13では、化学組成が適切であり、式(1)~式(3)を満たしたものの、CrNb窒化処理工程において、CrNb窒化物生成パラメータf2が、f3を超えた。そのため、残渣中のNb含有量が低すぎた。その結果、耐ポリチオン酸SCC性が低かった。
 試験番号B14では、Mo含有量が低かった。そのため、耐ナフテン酸腐食性が低かった。
 以上、本発明の実施の形態を説明した。しかしながら、上述した実施の形態は本発明を実施するための例示に過ぎない。したがって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変更して実施することができる。
 1 溶接継手
 100  オーステナイト系ステンレス鋼材(母材)
 101  溶接熱影響部(HAZ)
 102  通常部
 200  溶接金属
 200E 溶融線

Claims (4)

  1.  オーステナイト系ステンレス鋼材であって、
     化学組成が、質量%で
     C:0.020%以下、
     Si:1.50%以下、
     Mn:2.00%以下、
     P:0.045%以下、
     S:0.0300%以下、
     Cr:15.00~25.00%、
     Ni:9.00~20.00%、
     N:0.05~0.15%、
     Nb:0.1~0.8%、
     Mo:0.10~4.50%、
     W:0.01~1.00%、
     Ti:0~0.50%、
     Ta:0~0.50%、
     V:0~1.00%、
     Zr:0~0.10%、
     Hf:0~0.10%、
     Cu:0~2.00%、
     Co:0~1.00%、
     sol.Al:0~0.030%、
     B:0~0.0100%、
     Ca:0~0.0200%、
     Mg:0~0.0200%、
     希土類元素:0~0.100%、
     Sn:0~0.010%、
     As:0~0.010%、
     Zn:0~0.010%、
     Pb:0~0.010%、
     Sb:0~0.010%、及び、
     残部がFe及び不純物からなり、
     式(1)を満たし、
     抽出残渣法により得られた残渣中のNb含有量が質量%で0.050~0.267%であり、かつ、前記残渣中のCr含有量が質量%で0.125%以下である、
     オーステナイト系ステンレス鋼材。
     21.9Mo+5.9W-5.0≧0 (1)
     ここで、式(1)中の各元素記号には、前記化学組成中の対応する元素の含有量(質量%)が代入される。
  2.  請求項1に記載のオーステナイト系ステンレス鋼材であって、
     前記化学組成は、
     Mo:2.50~4.50%、及び、
     Co:0.01~1.00%、
     を含有し、さらに、式(2)及び式(3)を満たし、
     前記抽出残渣法により得られた前記残渣中のNb含有量は質量%で0.065~0.245%であり、かつ、前記残渣中のCr含有量が質量%で、0.104%以下である、
     オーステナイト系ステンレス鋼材。
     2≦73W+5Co≦60 (2)
     0.20≦Nb+0.1W≦0.58 (3)
  3.  請求項1又は請求項2に記載のオーステナイト系ステンレス鋼材であって、
     前記化学組成は、第1群~第5群のいずれかの群に属する少なくとも1元素又は2元素以上を含有する、
     オーステナイト系ステンレス鋼材。
     第1群:
     Ti:0.01~0.50%、
     Ta:0.01~0.50%、
     V:0.01~1.00%、
     Zr:0.01~0.10%、及び、
     Hf:0.01~0.10%、
     第2群:
     Cu:0.01~2.00%、及び、
     Co:0.01~1.00%、
     第3群:
     sol.Al:0.001~0.030%、
     第4群:
     B:0.0001~0.0100%、
     第5群:
     Ca:0.0001~0.0200%、
     Mg:0.0001~0.0200%、及び、
     希土類元素:0.001~0.100%。
  4.  溶接継手であって、
     請求項2又は請求項3に記載の一対のオーステナイト系ステンレス鋼材と、
     前記一対のオーステナイト系ステンレス鋼材の間に配置された溶接金属とを備え、
     前記溶接金属の延在方向と垂直な前記オーステナイト系ステンレス鋼材の断面のうち、溶接熱影響部内であって溶融線から前記溶接金属の幅方向に200μmの範囲における平均結晶粒径を平均結晶粒径R1と定義し、前記溶接熱影響部以外の部分の平均結晶粒径を平均結晶粒径R2と定義したとき、
     前記平均結晶粒径R1と前記平均結晶粒径R2とは式(4)を満たす、
     溶接継手。
     R1/R2≦4.8 (4)
PCT/JP2020/028586 2019-07-25 2020-07-22 オーステナイト系ステンレス鋼材及び溶接継手 WO2021015283A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202080053114.6A CN114144537A (zh) 2019-07-25 2020-07-22 奥氏体系不锈钢钢材和焊接接头
KR1020227005913A KR20220036969A (ko) 2019-07-25 2020-07-22 오스테나이트계 스테인리스 강재 및 용접 이음
JP2021534088A JP7173348B2 (ja) 2019-07-25 2020-07-22 オーステナイト系ステンレス鋼材及び溶接継手
CN202210952209.2A CN115341144B (zh) 2019-07-25 2020-07-22 奥氏体系不锈钢钢材和焊接接头
EP20843320.1A EP4006179A4 (en) 2019-07-25 2020-07-22 AUSTENITIC STAINLESS STEEL MATERIAL AND WELDING JOINT
US17/597,682 US20220259688A1 (en) 2019-07-25 2020-07-22 Austenitic stainless steel material and welded joint

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-136668 2019-07-25
JP2019-136669 2019-07-25
JP2019136668 2019-07-25
JP2019136669 2019-07-25

Publications (1)

Publication Number Publication Date
WO2021015283A1 true WO2021015283A1 (ja) 2021-01-28

Family

ID=74193604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/028586 WO2021015283A1 (ja) 2019-07-25 2020-07-22 オーステナイト系ステンレス鋼材及び溶接継手

Country Status (6)

Country Link
US (1) US20220259688A1 (ja)
EP (1) EP4006179A4 (ja)
JP (1) JP7173348B2 (ja)
KR (1) KR20220036969A (ja)
CN (2) CN114144537A (ja)
WO (1) WO2021015283A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021141107A1 (ja) * 2020-01-10 2021-07-15 日本製鉄株式会社 オーステナイト系ステンレス鋼材
WO2022220242A1 (ja) * 2021-04-14 2022-10-20 日鉄ステンレス株式会社 耐溶接高温割れ性に優れた高Ni合金
JP2022163586A (ja) * 2021-04-14 2022-10-26 日鉄ステンレス株式会社 耐溶接高温割れ性に優れた高Ni合金
JP2022163585A (ja) * 2021-04-14 2022-10-26 日鉄ステンレス株式会社 耐溶接高温割れ性に優れた高Ni合金
JP2022163425A (ja) * 2021-04-14 2022-10-26 日鉄ステンレス株式会社 耐溶接高温割れ性に優れた高Ni合金
CN116377321A (zh) * 2023-03-24 2023-07-04 鞍钢股份有限公司 一种无铁素体的超纯净尿素级奥氏体不锈钢板及制备方法
WO2023228979A1 (ja) * 2022-05-24 2023-11-30 日本製鉄株式会社 オーステナイト系ステンレス合金溶接継手、及び、オーステナイト系ステンレス合金溶接材料

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114592158A (zh) * 2022-03-09 2022-06-07 上海理工大学 一种强抗质子辐照新型304l不锈钢材料的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009044802A1 (ja) 2007-10-04 2009-04-09 Sumitomo Metal Industries, Ltd. オーステナイト系ステンレス鋼
WO2018043565A1 (ja) * 2016-08-30 2018-03-08 新日鐵住金株式会社 オーステナイト系ステンレス鋼

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4132729B2 (ja) * 2000-08-09 2008-08-13 新日鐵住金ステンレス株式会社 成形性に優れた燃料タンク用可溶型潤滑表面処理ステンレス鋼板および燃料タンクの製造方法
JP4151228B2 (ja) * 2001-03-30 2008-09-17 Jfeスチール株式会社 高耐食性燃料タンク用鋼板
JP2007191775A (ja) * 2006-01-23 2007-08-02 Nippon Steel & Sumikin Stainless Steel Corp 塩害環境での耐食性に優れた自動車用燃料タンク用表面処理ステンレス鋼板
JP4946242B2 (ja) * 2006-07-27 2012-06-06 住友金属工業株式会社 オーステナイト系ステンレス鋼溶接継手及びオーステナイト系ステンレス鋼溶接材料
CA2674091C (en) * 2007-01-15 2012-02-21 Sumitomo Metal Industries, Ltd. Austenitic stainless steel welded joint and austenitic stainless steel welding material
WO2009044796A1 (ja) * 2007-10-03 2009-04-09 Sumitomo Metal Industries, Ltd. オーステナイト系ステンレス鋼
JP5296186B2 (ja) * 2011-12-27 2013-09-25 株式会社神戸製鋼所 耐スケール剥離性に優れた耐熱オーステナイト系ステンレス鋼およびステンレス鋼管
JP5794945B2 (ja) * 2012-03-30 2015-10-14 新日鐵住金ステンレス株式会社 耐熱オーステナイト系ステンレス鋼板
US20140170015A1 (en) * 2012-12-17 2014-06-19 Grzegorz Jan Kusinski Corrosion resistant steel composition
JP6225598B2 (ja) * 2013-09-24 2017-11-08 新日鐵住金株式会社 オーステナイト系ステンレス鋼溶接材料
ES2788648T3 (es) * 2015-06-15 2020-10-22 Nippon Steel Corp Acero inoxidable austenítico basado en un alto contenido de Cr
US11041232B2 (en) * 2016-04-06 2021-06-22 Nippon Steel Corporation Austenitic stainless steel and production method therefor
CN106521340A (zh) * 2016-12-14 2017-03-22 苏州科胜仓储物流设备有限公司 一种用于大型货架的高强度钢板及其锻造工艺

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009044802A1 (ja) 2007-10-04 2009-04-09 Sumitomo Metal Industries, Ltd. オーステナイト系ステンレス鋼
WO2018043565A1 (ja) * 2016-08-30 2018-03-08 新日鐵住金株式会社 オーステナイト系ステンレス鋼

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021141107A1 (ja) * 2020-01-10 2021-07-15 日本製鉄株式会社 オーステナイト系ステンレス鋼材
JPWO2021141107A1 (ja) * 2020-01-10 2021-07-15
JP7307372B2 (ja) 2020-01-10 2023-07-12 日本製鉄株式会社 オーステナイト系ステンレス鋼材
JP7187604B2 (ja) 2021-04-14 2022-12-12 日鉄ステンレス株式会社 耐溶接高温割れ性に優れた高Ni合金
JP2022163585A (ja) * 2021-04-14 2022-10-26 日鉄ステンレス株式会社 耐溶接高温割れ性に優れた高Ni合金
JP2022163425A (ja) * 2021-04-14 2022-10-26 日鉄ステンレス株式会社 耐溶接高温割れ性に優れた高Ni合金
JP2022163586A (ja) * 2021-04-14 2022-10-26 日鉄ステンレス株式会社 耐溶接高温割れ性に優れた高Ni合金
JP7187606B2 (ja) 2021-04-14 2022-12-12 日鉄ステンレス株式会社 耐溶接高温割れ性に優れた高Ni合金
JP7187605B2 (ja) 2021-04-14 2022-12-12 日鉄ステンレス株式会社 耐溶接高温割れ性に優れた高Ni合金
WO2022220242A1 (ja) * 2021-04-14 2022-10-20 日鉄ステンレス株式会社 耐溶接高温割れ性に優れた高Ni合金
US11873542B2 (en) 2021-04-14 2024-01-16 Nippon Steel Stainless Steel Corporation High nickel alloy excellent in high welding temperature cracking resistance
WO2023228979A1 (ja) * 2022-05-24 2023-11-30 日本製鉄株式会社 オーステナイト系ステンレス合金溶接継手、及び、オーステナイト系ステンレス合金溶接材料
CN116377321A (zh) * 2023-03-24 2023-07-04 鞍钢股份有限公司 一种无铁素体的超纯净尿素级奥氏体不锈钢板及制备方法

Also Published As

Publication number Publication date
EP4006179A1 (en) 2022-06-01
CN114144537A (zh) 2022-03-04
US20220259688A1 (en) 2022-08-18
CN115341144A (zh) 2022-11-15
JPWO2021015283A1 (ja) 2021-01-28
CN115341144B (zh) 2023-11-03
JP7173348B2 (ja) 2022-11-16
EP4006179A4 (en) 2022-09-14
KR20220036969A (ko) 2022-03-23

Similar Documents

Publication Publication Date Title
WO2021015283A1 (ja) オーステナイト系ステンレス鋼材及び溶接継手
KR102466688B1 (ko) 오스테나이트계 스테인리스강 용접 이음
JP5206904B2 (ja) 二相ステンレス鋼
JP5013030B1 (ja) 二相ステンレス溶接継手
JP7277752B2 (ja) オーステナイト系ステンレス鋼材
JP5880310B2 (ja) オーステナイト系ステンレス鋼
JP5170351B1 (ja) 二相ステンレス鋼
JP7260767B2 (ja) 溶接継手、及び、その溶接継手の製造に用いられる溶接材料
JP2021127517A (ja) オーステナイト系ステンレス鋼材
JP2019063868A (ja) オーステナイト系ステンレス鋼用溶接材料
CN108884540B (zh) 奥氏体系不锈钢和其制造方法
JP7307372B2 (ja) オーステナイト系ステンレス鋼材
JP3543740B2 (ja) マルテンサイト系ステンレス鋼溶接鋼管
JP6402581B2 (ja) 溶接継手及び溶接継手の製造方法
WO2023228979A1 (ja) オーステナイト系ステンレス合金溶接継手、及び、オーステナイト系ステンレス合金溶接材料
WO2023199902A1 (ja) 合金材
WO2023190526A1 (ja) NiCrFe合金材
WO2023145895A1 (ja) Ni-Fe-Cr合金溶接継手
JP2021155774A (ja) 二相ステンレス鋼材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20843320

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021534088

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227005913

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2020843320

Country of ref document: EP