WO2021015164A1 - ビークル - Google Patents

ビークル Download PDF

Info

Publication number
WO2021015164A1
WO2021015164A1 PCT/JP2020/028056 JP2020028056W WO2021015164A1 WO 2021015164 A1 WO2021015164 A1 WO 2021015164A1 JP 2020028056 W JP2020028056 W JP 2020028056W WO 2021015164 A1 WO2021015164 A1 WO 2021015164A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
power
energy storage
storage device
propulsion
Prior art date
Application number
PCT/JP2020/028056
Other languages
English (en)
French (fr)
Inventor
木村 康人
真史 増田
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to EP20844456.2A priority Critical patent/EP4001036B1/en
Priority to JP2021534025A priority patent/JPWO2021015164A1/ja
Publication of WO2021015164A1 publication Critical patent/WO2021015164A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/46Series type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2045Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for optimising the use of energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • B60W20/19Control strategies specially adapted for achieving a particular effect for achieving enhanced acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/12Bikes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/427Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/429Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2300/00Indexing codes relating to the type of vehicle
    • B60W2300/36Cycles; Motorcycles; Scooters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0644Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0644Engine speed
    • B60W2710/0661Speed change rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/086Power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a vehicle.
  • Patent Document 1 shows a motorcycle as a vehicle.
  • Patent Document 2 discloses an automatic guided vehicle as a vehicle.
  • the vehicle disclosed in Patent Document 1 and Patent Document 2 includes a battery as an energy storage device, a generator, and a propulsion electric motor.
  • the energy storage device supplies the electric power stored as energy to the propulsion motor.
  • the generator is composed of a power generation engine and a power generation electric motor.
  • the power generation engine drives the power generation electric motor, and the generated electric power is supplied to the propulsion electric motor.
  • the vehicles disclosed in Patent Document 1 and Patent Document 2 are driven by a propulsion electric motor supplied with electric power from an energy storage device and / or a generator.
  • An object of the present invention is to provide a vehicle having reproducibility in response to an output instruction to an acceleration instruction regardless of the energy storage state of the energy storage device while suppressing an increase in fuel consumption.
  • the propulsion electric motor is driven by supplying electric power from the energy storage device and / or the generator, and the vehicle propels the vehicle.
  • the electric power stored as energy is supplied to the propulsion electric motor from the energy storage device, and the electric power is further supplied from the generator, so that the acceleration response of the vehicle to the acceleration instruction is obtained. improves. Therefore, the acceleration capability of the vehicle is easily affected by the state of charge of the battery mounted on the vehicle.
  • the control device propels the energy storage device and the power generation motor toward the target power. Increase the power supplied to the motor. As the power supplied from the energy storage device and the power generation motor to the propulsion motor increases, the power output from the propulsion motor increases.
  • the electric power stored in the energy storage device is less than the standard value, the electric power that can be supplied from the energy storage device to the propulsion motor is small. Therefore, it may take time to reach the target power of the power output by the propulsion motor only by the electric power supplied from the energy storage device and the electric motor for power generation. This is because the output of the power from the power generation engine for generating the power corresponding to the acceleration instruction may be delayed depending on the rotation speed of the power generation engine.
  • the vehicle control device of Patent Document 2 increases the rotational speed of the engine according to the electric energy of the energy storage device. After that, the vehicle of Patent Document 2 increases the electric power supplied to the propulsion electric motor by supplying the electric power stored in the energy storage device to the propulsion electric motor by increasing the output (acceleration instruction). The vehicle of Patent Document 2 stores the electric power to be supplied to the propulsion motor when the output is increased in the energy storage device before the output is increased. However, the vehicle of Patent Document 2 increases the power output from the engine and stores the electric power in the battery before the output increase. Therefore, the vehicle of Patent Document 2 increases the fuel consumption of the engine.
  • the present inventors have studied to output power from the engine without delay triggered by the acceleration instruction without increasing the fuel consumption of the engine before the acceleration instruction.
  • the present inventors have found that the rotational speed of the engine can be increased by reducing the load torque of the power generation motor at least according to the energy storage amount of the energy storage device.
  • the torque output from the engine when the fuel and air supplied to the engine increase at that rotation speed is compared with, for example, the torque when the rotation speed of the engine does not increase in advance. Will increase. That is, when the rotation speed of the engine increases in advance, the power output from the engine when the fuel and air supplied to the engine increase at that rotation speed is, for example, the power when the rotation speed of the engine does not increase in advance.
  • the rotational speed of the engine is increased by reducing the load torque of the electric motor for power generation with respect to the engine before the acceleration instruction. That is, the rotation speed is increased while suppressing the increase in the power of the engine. Therefore, the fuel consumption of the engine can be suppressed.
  • the vehicle has the following configuration.
  • An electric motor for power generation which is provided so as to be interlocked with the crankshaft and is driven by the engine to generate electricity.
  • An energy storage device that stores the electric power generated by the electric motor for power generation as energy,
  • a propulsion motor that is different from the power generation motor and that receives power from the energy storage device and / or the power generation motor and outputs power.
  • a propeller driven by the power output from the propulsion motor and A control device that controls the engine, the propulsion motor, and the power generation motor, and the engine and the power generation motor are used so as to increase the power supplied to the propulsion motor in response to an acceleration instruction.
  • the energy storage device and / or the energy storage device and / or the energy storage device and / or the energy storage device and / or the energy storage device and / or the energy storage device and / or the energy storage device are triggered by the acceleration instruction regardless of the energy storage amount of the energy storage device.
  • the acceleration instruction Prior to the acceleration instruction, at least the energy storage amount of the energy storage device is set so that the propulsion motor driven by the electric motor supplied from the power generation motor outputs the target power according to the acceleration instruction.
  • a control device for increasing the rotational speed of the engine by reducing the load torque of the power generation electric motor accordingly is provided.
  • the vehicle (1) includes an engine, a power generation electric motor, an energy storage device, a propulsion electric motor, a propulsion device, and a control device.
  • the engine has a rotating crankshaft and outputs the power generated by combustion as the torque and rotational speed of the crankshaft.
  • the electric motor for power generation is provided so as to be interlocked with the crankshaft and is driven by the engine to generate power.
  • the energy storage device stores the electric power generated by the electric motor for power generation as energy.
  • the propulsion motor receives power from the energy storage device and / or the power generation motor and outputs power.
  • the propulsion unit is driven by the power output from the propulsion electric motor.
  • the control device controls the engine, the propulsion electric motor, and the power generation electric motor.
  • the engine and the power generation motor are controlled so as to increase the electric power supplied to the propulsion motor in response to the acceleration instruction.
  • the controller reduces the load torque of the generator motor at least according to the energy storage of the energy storage device prior to the acceleration instruction. To do.
  • the control device increases the rotational speed of the engine before the acceleration instruction.
  • the vehicle responds to the acceleration instruction by the electric power stored in the energy storage device and / or the electric power supplied from the power generation motor, regardless of the energy storage amount of the energy storage device. Output power.
  • the torque output from the engine when the fuel and air supplied to the engine at that rotation speed increases, for example, increases the rotation speed of the engine in advance. Increases compared to the torque without. That is, if the rotation speed of the engine is increased in advance, the power output from the engine when the fuel and air supplied to the engine at that rotation speed is increased, for example, when the rotation speed of the engine is not increased in advance. Increases compared to the power of. For example, as the engine speed increases, the marginal driving force of the engine increases.
  • the margin driving force is the difference between the power output from the engine before the acceleration instruction and the maximum power that can be output from the engine at the rotational speed before the acceleration instruction.
  • the control device increases the rotation speed of the engine by reducing the load torque of the power generation motor with respect to the power generation engine before the acceleration instruction. That is, the rotation speed increases while suppressing the increase in engine power. Therefore, the fuel consumption of the engine can be suppressed.
  • the propulsion motor (1) can output the target power according to the acceleration instruction while suppressing the fuel consumption regardless of the energy storage amount.
  • the vehicle of (1) can have reproducibility in the response of the output to the acceleration instruction regardless of the energy storage state of the energy storage device while suppressing the increase in fuel consumption.
  • the vehicle it is possible to increase the marginal driving force of the engine before the acceleration instruction while suppressing the increase in size of the energy storage device.
  • the vehicle can adopt the following configurations.
  • the engine and the electric motor for power generation are controlled so as to be small to some extent.
  • the vehicle of (2) can maintain the responsiveness of the acceleration instruction to the acceleration instruction with respect to the target.
  • the vehicle can adopt the following configurations.
  • (3) The vehicle of (2) The control device is A power sum of the power output from the power generation motor driven by the maximum power that can be output from the engine at the rotation speed before the acceleration instruction and the power supplied from the energy storage device is supplied.
  • the vehicle (3) can suppress the deterioration of the reproducibility of the output response due to the fluctuation of the electric power stored as energy in the energy storage device.
  • the terminology used herein is for the purpose of defining only specific embodiments and is not intended to limit the invention.
  • the term “and / or” includes any or all combinations of one or more related listed components.
  • the use of the terms “including, including,””comprising,” or “having,” and variations thereof, is a feature, process, operation, described. It identifies the presence of elements, components and / or their equivalents, but can include one or more of steps, actions, elements, components, and / or groups thereof.
  • the terms “attached”, “connected”, “combined” and / or their equivalents are widely used, direct and indirect attachment, connection and Includes both bonds.
  • connection and “coupled” are not limited to physical or mechanical connections or connections, but can include direct or indirect electrical connections or connections.
  • all terms used herein, including technical and scientific terms, have the same meaning as commonly understood by those skilled in the art to which the present invention belongs. Terms such as those defined in commonly used dictionaries should be construed to have meaning consistent with the relevant technology and in the context of the present disclosure and are expressly defined herein. Unless otherwise stated, it will not be interpreted in an ideal or overly formal sense. It is understood that a number of techniques and processes are disclosed in the description of the present invention. Each of these has its own interests, and each may be used in conjunction with one or more of the other disclosed techniques, or in some cases all.
  • Vehicles are a means of transportation.
  • a vehicle is, for example, a vehicle having wheels. Vehicles include, for example, automobiles, trains, ships, aircraft and the like.
  • the automobile is not particularly limited, and examples thereof include a four-wheeled automobile and a saddle-mounted vehicle.
  • a four-wheeled vehicle has, for example, a passenger compartment.
  • the aircraft is not particularly limited, and examples thereof include a rotary wing aircraft and a fixed wing aircraft. Rotorcraft include helicopters, multicopters, and drones.
  • An airplane is an example of a fixed-wing aircraft.
  • the vehicle may be driven directly by the driver on board, or may be driven by radio or the like without the driver on board.
  • the vehicle may be a golf car.
  • the vehicle may be a caterpillar type snow vehicle.
  • the vehicle may be a snowplow.
  • a saddle-type vehicle is a vehicle in which the driver sits across the saddle.
  • the saddle-mounted vehicle include a scooter type, a moped type, an off-road type, and an on-road type motorcycle.
  • the saddle-mounted vehicle is not limited to a motorcycle, and may be, for example, a motorcycle, an ATV (All-Terrain Vehicle), or the like.
  • a tricycle may have two front wheels and one rear wheel, or may have one front wheel and two rear wheels.
  • the propeller of the saddle-type vehicle may be a rear wheel or a front wheel.
  • the propulsion device of the saddle-type vehicle may be both the rear wheels and the front wheels.
  • the vehicle is configured to be able to turn in a lean posture, for example.
  • a vehicle that is configured to turn in a lean position is configured to turn in a position that is tilted inward of the curve.
  • the vehicle configured to be able to turn in a lean posture opposes the centrifugal force applied to the vehicle during turning.
  • Examples of the vehicle configured to be able to turn in the lean posture include a saddle-type vehicle (for example, a motorcycle and a three-wheeled vehicle) configured to be able to turn in the lean posture. Since a vehicle configured to be able to turn in a lean posture requires agility, the responsiveness of progress to the starting operation is important.
  • a torque converter utilizing the mechanical action of a fluid is not provided in a power transmission path from a power source to a propulsion unit.
  • the engine includes, for example, a single cylinder engine and an engine having two or more cylinders.
  • the operation of the engine is that the engine outputs the power generated by combustion as the torque and rotation speed of the crankshaft.
  • the engine is preferably a 4-stroke engine having a high load region and a low load region between four strokes, for example.
  • the 4-stroke engine having a high load region and a low load region during the 4-stroke is, for example, a single-cylinder engine, a 2-cylinder engine, an unequal-interval combustion type 3-cylinder engine, or an unequal-interval combustion type 4-cylinder engine. is there.
  • the high load region refers to a region in which the load torque is higher than the average value of the load torque in one combustion cycle in one combustion cycle of the engine.
  • the power generation engine may be an evenly spaced combustion type engine having three or more cylinders.
  • the electric motor for power generation is a rotary electric machine capable of generating electricity.
  • the propulsion electric motor may be, for example, a rotary electric machine capable of both power generation and motor operation.
  • the electric motor for power generation may be an electric motor different from the starting motor.
  • the electric motor for power generation may be an outer rotor type or an inner rotor type. Further, the electric motor for power generation may be an axial gap type instead of the radial gap type.
  • the rotor in the electric motor for power generation, includes a permanent magnet.
  • the rotor comprises a permanent magnet.
  • the energy storage device is a device that stores energy.
  • the energy storage device is, for example, an electric power storage device that stores electrical energy. Examples of the power storage device include a battery or a capacitor.
  • the form of energy stored in the energy storage device is not particularly limited.
  • the energy storage device may be, for example, a flywheel type device having a flywheel and a motor.
  • the flywheel type device stores the rotational energy of the flywheel by driving the flywheel with the supplied electric power.
  • the flywheel type device converts the rotational energy of the flywheel into electric power and outputs the electric power. That is, electric power is supplied to the energy storage device.
  • the energy storage device outputs electric power. Therefore, the energy storage device can be said to be a device for storing electric power when viewed from the outside.
  • the expression of storing electric power includes converting electric power into energy such as rotation and storing it.
  • the energy storage device receives the power generated by the electric motor for power generation.
  • the electric power supplied to the energy storage device is not particularly limited, and may be, for example, the electric power generated by the propulsion electric motor. That is, the energy storage device may store the electric power regenerated by the propulsion motor.
  • the propulsion electric machine is a rotary electric machine capable of operating a motor.
  • the propulsion motor outputs power.
  • the propulsion electric motor may be, for example, a rotary electric machine capable of both power generation and motor operation.
  • the propulsion motor may be an outer rotor type or an inner rotor type. Further, the propulsion motor may be an axial gap type instead of the radial gap type.
  • the power in the present specification is a mechanical power.
  • the propeller examples include wheels (driving wheels), caterpillars, propellers, and the like. If the vehicle is an automobile, the propeller is, for example, a wheel (driving wheel).
  • the drive wheels may be rear wheels or front wheels. Further, the drive wheels may be both rear wheels and front wheels. If the vehicle is an aircraft, the propeller is, for example, a propeller.
  • the control device may have a processor that executes a program, or may be an electronic circuit.
  • the acceleration instruction is an instruction for increasing the output of the vehicle.
  • the acceleration instruction is output by, for example, an acceleration instruction unit provided in the vehicle.
  • the propulsion instruction unit that outputs the acceleration instruction is, for example, an accelerator operator.
  • the accelerator operator is, for example, an accelerator grip.
  • the accelerator operator may be, for example, a pedal.
  • the operation amount of the accelerator operator is, for example, the operation amount of the accelerator operator based on the state in which the operation force is not applied.
  • the operation amount is, for example, the displacement amount due to the operation with respect to the position of the accelerator grip in a state where the operation force is not applied.
  • the operation amount is not limited to this, and may be the amount of force applied by the operation with respect to the state in which the operation force is not applied.
  • the propulsion instruction unit may be, for example, a reception unit that receives a radio signal indicating acceleration or deceleration from a remote control device operated by the driver of the series hybrid vehicle.
  • the remote control device is, for example, a remote controller.
  • the remote control device transmits a radio signal indicating acceleration or deceleration of the series hybrid vehicle by the driver operating the lever.
  • the operation amount of the remote control device is, for example, the operation amount of the lever based on the state in which the operation force is not applied.
  • the operation amount is, for example, the displacement amount due to the operation with respect to the position of the lever in the state where the operation force is not applied.
  • the operating amount is not limited to this, and may be the amount of force applied to the lever in a state where no operating force is applied.
  • the propulsion instruction unit that outputs the acceleration instruction may be, for example, an automatic propulsion control device.
  • the automatic propulsion control device outputs an acceleration instruction or a deceleration instruction based on the travel path or flight path of the series hybrid vehicle and the speed set along the path.
  • an acceleration instruction or a deceleration instruction may be output in order to autonomously recover the speed when the speed changes due to the wind direction, the inclination of the road surface, and the disturbance caused.
  • the automatic propulsion control device may receive a speed and direction target indicated by the remote control device and output an acceleration instruction or a deceleration instruction for maintaining the target.
  • the reproducibility of the responsiveness of the vehicle output to the acceleration instruction is that the change in the response of the increase in the vehicle output to the acceleration instruction is suppressed.
  • the reproducibility of the response of the vehicle output is measured as the time it takes for the vehicle acceleration to increase to a specified level or the amount of increase in acceleration with respect to the acceleration instruction.
  • the reproducibility of the vehicle output responsiveness can also be measured, for example, as the time it takes for the acceleration of the rotating shaft of the propulsion motor to increase to a specified level or as the amount of increase in acceleration.
  • the power output by the propulsion motor triggered by the acceleration instruction means the power output by the propulsion motor after the acceleration instruction and before the rotation speed of the crankshaft increases.
  • the power output from the engine increases due to the increase in the output torque of the crankshaft.
  • the power output from the electric motor for power generation increases.
  • the power output by the propulsion motor increases.
  • FIG. 5 is a flowchart illustrating the operation of the control device when an acceleration instruction is given in the vehicle shown in FIG. FIG.
  • FIG. 6 is a diagram showing the relationship between the engine output, the electric power supplied from the electric motor for power generation, the stored electric power of the energy storage device, and the target driving electric power when an acceleration instruction is given in the state shown in FIG.
  • FIG. 6 is a diagram showing the relationship between the engine output, the electric power supplied from the electric motor for power generation, the stored electric power of the energy storage device, and the target driving electric power when an acceleration instruction is given in the state shown in FIG.
  • FIG. 6 is a diagram showing the relationship between the engine output, the electric power supplied from the electric motor for power generation, the stored electric power of the energy storage device, and the target driving electric power when an acceleration instruction is given in the state shown in FIG.
  • FIG. 1 is a diagram illustrating a vehicle according to an embodiment of the present invention.
  • FIG. 1A is a block diagram showing a configuration of a vehicle 1 according to an embodiment of the present invention.
  • FIG. 1B is a diagram showing a state of control of the engine 10 by the control device 60 of the vehicle 1.
  • FIG. 1C is a diagram showing a state of engine control in the vehicle of the comparative example.
  • FIG. 1 (c) the state of the engine in the vehicle described in Patent Document 2 is assumed.
  • FIGS. 1B and 1C show the relationship between the engine rotation speed (rotational speed of the power generation motor) and the engine torque (load torque of the power generation motor).
  • the outline of the vehicle of this embodiment will be described with reference to FIG.
  • the vehicle of the present embodiment is a series hybrid type vehicle in which a generator is driven by an engine and wheels are driven by the electric power of the generator.
  • the vehicle 1 shown in FIG. 1 includes an engine 10, a power generation electric motor 20, an energy storage device 4, a propulsion electric motor 30, a propulsion device 3b, and a control device 60.
  • the engine 10 has a rotatable crankshaft 15.
  • the engine 10 outputs the power generated by the combustion of a mixed gas of air and fuel as the torque and rotation speed of the crankshaft 15.
  • the electric motor 20 for power generation is provided so as to interlock with the crankshaft 15.
  • the electric motor 20 for power generation is driven by the engine 10 to generate electric power.
  • the propulsion motor 30 drives the propulsion device 3b by receiving the power generated by the power generation motor 20 and the power stored as energy in the energy storage device 4 (hereinafter referred to as stored power).
  • the energy storage device 4 is, for example, a battery.
  • the energy storage device 4 stores the electric power generated by the power generation electric motor 20 driven by the engine 10 as energy.
  • the energy storage device 4 supplies the stored electric power to the propulsion electric motor 30.
  • the vehicle 1 is driven by a propulsion electric motor 30 that receives electric power from the power generation electric motor 20 and the energy storage device 4. Specifically, in the vehicle 1, the propulsion electric motor 30 receives electric power from the power generation electric motor 20 and the energy storage device 4 to output rotational power, and the propulsion unit 3b receives the output rotational power. Driven.
  • the control device 60 controls the engine 10, the electric motor 20 for power generation, and the electric motor 30 for propulsion.
  • the control device 60 is configured to perform the following operations (1) and (2), respectively.
  • the operation (1) is to increase the rotation speed of the engine 10 by reducing the load torque of the power generation electric motor 20 according to the energy storage amount of the energy storage device 4.
  • the control device 60 reduces the load torque of the power generation electric motor 20 before the acceleration instruction.
  • FIG. 1 for example, as shown in FIG.
  • the rotational speed of the engine 10 is increased from R1 to R2 by reducing the load torque of the power generation motor 20 from T3 to T1 (arrow H4).
  • the operation (2) is to increase the electric power supplied to the propulsion electric motor 30 triggered by the acceleration instruction when the acceleration instruction is output.
  • the power output from the engine 10 is increased from P1 to P4 in order to increase the electric power supplied to the propulsion motor 30 (arrow H5).
  • the engine torque output from the engine 10 can be increased while the engine rotation speed remains R2.
  • the power output from the engine 10 increases.
  • the arrow H5 after the engine torque increases, the engine speed also increases.
  • the rotation speed of the engine becomes higher than that of R2. That is, the operating point (R2, T8) in FIG. 1B shifts further to the right. As a result, the power output from the engine 10 is further increased.
  • the member connected to the engine 10 and rotating and the engine 10 itself have inertia. Therefore, it takes time to increase the rotation speed of the engine.
  • the increase in power accompanying the increase in engine torque as shown by arrow H5 is performed in a short time. Therefore, the power increases without delay.
  • the vehicle control device of the comparative example increases the rotational speed of the engine without changing the load torque of the electric motor for power generation.
  • the rotation speed of the engine is increased by increasing the fuel and air supplied to the engine.
  • the engine speed increases from R1 to R2 while the load torque of the power generation motor remains T6 (arrow H6), or the load torque is T6.
  • the engine speed increases while increasing from.
  • the vehicle of the comparative example increases the power output from the engine in order to increase the rotational speed of the engine 10 without changing the load torque of the electric motor for power generation before the acceleration instruction. Therefore, the fuel consumption of the engine increases.
  • the vehicle 1 of the present embodiment increases the rotation speed of the engine 10 by reducing the load torque of the electric motor 20 for power generation before the acceleration instruction. Strictly speaking, the fuel efficiency with respect to the output power of the engine 10 decreases due to the decrease in the load torque and the increase in the rotation speed. In addition, fuel consumption increases as fuel efficiency decreases. However, when the rotation speed is increased by increasing the rotation speed, the increase in fuel consumption is suppressed as compared with the case where the rotation speed of the engine is increased by increasing the fuel and air as in the comparative example. To. That is, since the vehicle 1 of the present embodiment does not increase the power output from the engine 10, it is possible to suppress an increase in fuel consumption of the engine 10.
  • the vehicle 1 of the present embodiment increases the rotation speed of the engine 10 by reducing the load torque of the power generation electric motor 20 before the acceleration instruction. In this case, even if the rotation speed is increased, the electric power output from the power generation motor 20 does not substantially increase. Therefore, even if the rotation speed is increased, the charge / discharge amount for the energy storage device 4 does not substantially change. Therefore, when the rotation speed is increased before the acceleration instruction, for example, the possibility that the energy storage device 4 is fully charged and the energy storage device 4 is deteriorated is reduced. Therefore, it is possible to suppress an increase in the capacity of the energy storage device 4 provided in the vehicle 1. That is, according to the vehicle 1 of the present embodiment, it is possible to increase the marginal driving force of the engine 10 before the acceleration instruction while suppressing the increase in size of the energy storage device 4.
  • the control device 60 loads the power generation motor 20 at least according to the energy storage amount of the energy storage device 4 before the acceleration instruction (step S21 in FIG. 7).
  • the torque can be reduced.
  • the rotation speed of the engine 10 is increased.
  • the margin torque and the margin driving force of the engine 10 increase.
  • the margin torque of the engine is the torque output from the engine 10 at a certain time point (for example, T1 at the rotation speed R2) and the maximum torque that can be output from the engine 10 at the rotation speed (for example, R2) at that time point (for example, T8). Is the difference.
  • the margin driving force of the engine 10 can be output from the engine 10 at a certain time point of the vehicle 1 with the power output from the engine 10 (for example, P1 at the rotation speed R2) and the rotation speed at that time (for example, R2). This is the difference from the maximum power (for example, P4 corresponding to T8).
  • the control device 60 uses the increase in the output of the power generation motor 20 as a trigger for the acceleration instruction to promote the electric power corresponding to the target power. It can be supplied to the electric motor 30. As a result, the propulsion electric motor 30 outputs the target power according to the acceleration instruction in a short time. That is, the propulsion electric motor 30 can output the target power according to the acceleration instruction regardless of the energy storage amount of the energy storage device 4. Even when the energy storage amount of the energy storage device 4 is decreasing, the power output from the propulsion motor 30 triggered by the acceleration instruction reaches the target power in a short time.
  • the power output from the propulsion motor 30 reaches the target power in a shorter time than, for example, when the engine rotation speed of the engine 10 is not increased before the acceleration instruction (for example, the transition shown by the arrow H1). Can be reached. Therefore, the reproducibility of the acceleration instruction of the vehicle to the acceleration instruction is high regardless of the energy storage amount of the energy storage device 4.
  • FIG. 2 is a schematic diagram showing the relationship between the main components of the vehicle 1 of FIG.
  • the vehicle 1 shown in FIG. 2 includes a vehicle body 2 and a propeller 3b rotatably attached to the vehicle body 2.
  • the vehicle 1 includes a power generation unit GU, a drive unit DU, a control device 60, and an energy storage device 4.
  • the vehicle 1 is, for example, a saddle-mounted vehicle.
  • the propulsion device 3b is a drive wheel driven by a propulsion electric motor 30.
  • the power generation unit GU is mounted on the vehicle body 2 and includes an engine 10, a power generation electric motor 20, and a converter 70.
  • the drive unit DU is mounted on the vehicle body 2 and includes a propulsion electric motor 30 and an inverter 80.
  • the vehicle 1 includes a headlight 7 and a propulsion instruction unit 8.
  • the propulsion instruction unit 8 is an accelerator grip for the driver to operate the acceleration or deceleration of the vehicle 1.
  • the propulsion instruction unit 8 is provided with an accelerator sensor 8a.
  • the control device 60 electronically controls the throttle valve SV provided in the engine 10, the fuel injection device 18, the power generation electric motor 20, and the propulsion electric motor 30 based on the instruction of the propulsion instruction unit 8.
  • the control device 60 adjusts the electric power supplied from the power generation electric motor 20 and the energy storage device 4 to the propulsion electric motor 30 in response to the acceleration instruction output from the propulsion instruction unit 8 as the acceleration instruction unit.
  • the control device 60 adjusts the fuel injection device 18 and the throttle valve SV so as to adjust the amounts of fuel and air supplied to the engine 10.
  • the engine 10 of the power generation unit GU includes a crankcase 11, a cylinder 12, a piston 13, a connecting rod 14, and a crankshaft 15.
  • the piston 13 is provided in the cylinder 12 so as to be reciprocating.
  • the crankshaft 15 is rotatably provided in the crankcase 11.
  • the connecting rod 14 connects the piston 13 and the crankshaft 15.
  • a cylinder head 16 is attached to the upper part of the cylinder 12.
  • a combustion chamber is formed by the cylinder 12, the cylinder head 16, and the piston 13.
  • the crankshaft 15 is rotatably supported by the crankcase 11 via a pair of bearings 17.
  • a power generation electric motor 20 is attached to the crankshaft 15.
  • the engine 10 is provided with a throttle valve SV, a fuel injection device 18, and a spark plug 19.
  • the throttle valve SV regulates the amount of air supplied to the combustion chamber.
  • the fuel injection device 18 supplies fuel to the air supplied to the combustion chamber by the throttle valve SV.
  • a mixed gas of air and fuel is supplied to the combustion chamber.
  • the fuel supply by the fuel injection device 18 and the opening degree of the throttle valve SV are controlled by the control device 60.
  • the spark plug 19 burns a mixture of air and fuel supplied to the combustion chamber.
  • the engine 10 outputs power via the crankshaft 15.
  • the power output via the crankshaft 15 is converted into electric power by the electric motor 20 for power generation.
  • the electric power converted by the power generation electric motor 20 is supplied to the propulsion electric motor 30 and output again as rotational power.
  • the power output by the propulsion motor is transmitted to the propulsion device 3b.
  • the engine 10 and the propulsion device 3b are not mechanically connected. Therefore, the engine 10 does not directly drive the propulsion device 3b. That is, the power of the engine 10 is not directly transmitted to the propulsion device 3b.
  • the power generation electric motor 20 of the power generation unit GU is, for example, a permanent magnet type three-phase brushless type generator.
  • the electric motor 20 for power generation has a rotor 21 and a stator 22.
  • the electric motor 20 for power generation of the present embodiment is a radial gap type.
  • the electric motor 20 for power generation is an outer rotor type. That is, the rotor 21 is an outer rotor.
  • the stator 22 is an inner stator.
  • the rotor position detecting device 24 is a device that detects the position of the rotor 21.
  • the electric motor 20 for power generation is connected to the crankshaft 15 so as to interlock with the crankshaft 15 of the engine 10.
  • the rotor 21 is connected to the crankshaft 15 so that it rotates at a fixed speed ratio with respect to the crankshaft 15.
  • the electric motor 20 for power generation is driven by the engine 10 to generate electricity when the engine 10 is in combustion operation.
  • the piston 13 of the engine 10 moves up and down by the combustion operation to rotate the crankshaft 15.
  • the electric motor 20 for power generation generates electricity by rotating the rotor 21 around the stator 22 in conjunction with the crankshaft 15.
  • the rotor 21 is attached to the crankshaft 15 without a power transmission mechanism (for example, a belt, a chain, a gear, a speed reducer, a speed reducer, etc.).
  • the rotor 21 rotates at a speed ratio of 1: 1 with respect to the crankshaft 15.
  • the electric motor 20 for power generation is configured to rotate the crankshaft 15 in the forward direction by the forward rotation of the engine 10.
  • the power generation motor 20 is connected to the crankshaft 15 without going through either a speed ratio variable transmission or a clutch. That is, the power generation electric motor 20 is connected to the crankshaft 15 without going through a device having a variable input / output speed ratio.
  • the electric motor 20 for power generation may be attached to the crankshaft 15 via a power transmission mechanism.
  • the propulsion electric motor 30 of the drive unit DU is a permanent magnet type three-phase brushless electric motor.
  • the propulsion electric motor 30 has a rotor 31 and a stator 32.
  • the propulsion motor 30 of the present embodiment is a radial gap type.
  • the propulsion motor 30 is an outer rotor type. That is, the rotor 31 is an outer rotor.
  • the stator 32 is an inner stator.
  • the rotation axis of the propulsion electric motor 30 is arranged in a direction orthogonal to the vehicle traveling direction.
  • the tip of the rotating shaft of the propulsion electric motor 30 is connected to a drive shaft 90 arranged parallel to the rotating shaft of the propulsion electric motor 30.
  • the propulsion electric motor 30 operates by the electric power supplied from the power generation electric motor 20 and / or the energy storage device 4.
  • the current supplied from the converter 70 to the inverter 80 increases, and the current supplied to the propulsion motor 30 increases.
  • the electric power output by the power generation electric motor 20 is supplied to the propulsion electric motor 30 via the converter 70 and the inverter 80.
  • the propulsion device 3b of the drive unit DU includes a drive shaft 90.
  • the drive shaft 90 is the axle of the thruster 3b.
  • the drive shaft 90 is directly or indirectly connected to the propulsion motor 30 so that rotational power is transmitted to the propulsion device 3b via the propulsion motor 30.
  • the rotor 31 of the propulsion motor 30 is connected to the drive shaft 90 directly or via a speed reducer or the like.
  • the propulsion device 3b is rotationally driven by the propulsion electric motor 30.
  • the propulsion electric motor 30 drives the vehicle 1.
  • the propulsion motor 30 is not mechanically connected to the engine 10 and the power generation motor 20.
  • a vehicle speed sensor 3d is provided on the drive shaft 90 of the propulsion device 3b.
  • the vehicle speed sensor 3d outputs a signal having a frequency corresponding to the rotation speed of the drive shaft 90.
  • the control device 60 calculates the vehicle speed based on the output signal of the vehicle speed sensor 3d.
  • the power generation unit GU includes a converter 70.
  • a power generation electric motor 20 and an energy storage device 4 are connected to the converter 70.
  • the energy storage device 4 transfers and receives an electric current to the electric motor 20 for power generation.
  • the converter 70 includes a plurality of switching units (not shown). Each of the switching units has a switching element.
  • the switching element is, for example, a transistor, and more specifically, a FET (Field Effect Transistor).
  • the switching unit constitutes a three-phase bridge inverter.
  • the plurality of switching units switch the passage / interruption of current between the multi-phase stator winding 22b and the energy storage device 4 and / or the propulsion motor 30. Specifically, the on / off operation of the switching unit of the power generation motor 20 switches the passage / cutoff of the current between each of the stator windings 22b and the energy storage device 4 and / or the propulsion motor 30. By sequentially switching the switching unit on and off, the rectification of the three-phase alternating current output from the power generation motor 20 and the voltage control are performed.
  • a current sensor (not shown) is provided on the line connecting the converter 70 and the stator winding 22b to detect the two-phase current in the power generation motor 20.
  • the drive unit DU includes an inverter 80.
  • a propulsion electric motor 30, a converter 70, and an energy storage device 4 are connected to the inverter 80.
  • the energy storage device 4 supplies stored electric power to the propulsion electric motor 30.
  • the inverter 80 includes a plurality of switching units (not shown).
  • the control device 60 controls each part of the vehicle 1 including the inverter 80.
  • the headlight 7 is connected to the energy storage device 4.
  • the headlight 7 is an auxiliary machine mounted on the vehicle 1 that operates while consuming electric power.
  • a current / voltage sensor 65 is provided in a line connecting the battery, which is the energy storage device 4, and the converter 70 and the inverter 80.
  • the current / voltage sensor 65 detects the current and voltage flowing through the battery, which is the energy storage device 4.
  • the current / voltage sensor 65 is provided between the branch point to the headlight 7 and the energy storage device 4 in the line connecting the energy storage device 4, the converter 70, and the inverter 80.
  • the control device 60 is composed of a computer having a central processing unit (not shown) and a storage device (not shown).
  • the central processing unit performs arithmetic processing based on the control program.
  • the storage device stores data related to programs and operations.
  • the control device 60 includes an engine control unit 61, a power generation control unit 62, a propulsion control unit 63, and a vehicle integrated control unit 64.
  • the engine control unit 61 is connected to the throttle valve SV, the fuel injection device 18, and the spark plug 19.
  • the engine control unit 61 controls the combustion operation of the engine 10 by controlling the throttle valve SV, the spark plug 19, and the fuel injection device 18.
  • the engine control unit 61 controls the rotational power of the engine 10 by controlling the combustion operation of the engine 10.
  • the power generation control unit 62 controls the operation of the power generation motor 20 by controlling the converter 70.
  • the propulsion control unit 63 controls the operation of the propulsion electric motor 30 by controlling the inverter 80.
  • the vehicle integrated control unit 64 controls the engine control unit 61, the power generation control unit 62, and the propulsion control unit 63 based on the acceleration instruction output from the propulsion instruction unit 8 and the vehicle speed acquired from the vehicle speed sensor 3d. Specifically, the vehicle integrated control unit 64 receives the spark plug 19 of the engine 10, the fuel injection device 18, and the throttle in response to the acceleration instruction of the propulsion instruction unit 8 as the acceleration instruction unit via the engine control unit 61. Controls the valve SV. Further, the vehicle integrated control unit 64 adjusts the stored electric power supplied from the energy storage device 4 to the propulsion electric motor 30 via the propulsion control unit 63. Further, the vehicle integrated control unit 64 controls the power generation control unit 62 and the propulsion control unit 63 based on the voltage value and the current value of the battery which is the energy storage device 4 acquired from the current / voltage sensor 65.
  • the vehicle integrated control unit 64 includes a maximum target drive power acquisition unit 641, a supplyable storage power determination unit 642, an engine supplyable power determination unit 643, a target engine rotation speed / torque acquisition unit 644, and a target drive power acquisition unit. 645 and including.
  • the maximum target drive power acquisition unit 641 acquires the maximum target drive power of the propulsion motor 30. Specifically, the maximum time target drive power acquisition unit 641 acquires the maximum time target drive power of the propulsion electric motor 30 based on the signals from the accelerator sensor 8a and the vehicle speed sensor 3d.
  • the supplyable storage power determination unit 642 acquires the storage power that can be supplied to the propulsion motor 30 from the energy storage device 4. Specifically, the supplyable storage power determination unit 642 acquires the voltage value and the current value of the battery of the energy storage device 4 based on the detection result output from the current / voltage sensor 65. For example, the supplyable storage power determination unit 642 acquires the charge amount (State Of Chage: SOC) of the battery, which is the energy storage amount of the energy storage device 4, by integrating the current values. The supplyable storage power determination unit 642 acquires the supplyable storage power of the energy storage device 4 from the acquired energy storage amount (battery charge amount: SOC) of the energy storage device 4. The method of acquiring the supplyable storage power by the supplyable storage power determination unit 642 is not limited to this, and even if the supplyable storage power of the energy storage device 4 is estimated according to the voltage and rotation speed applied to the propulsion motor 30. Good.
  • the engine supplyable power determination unit 643 acquires the power value when the engine output possible power at the engine rotation speed of the current engine 10 is converted into electric power by the power generation electric motor 20. Specifically, the engine supplyable power determination unit 643 calculates the engine output possible power at the engine rotation speed of the current engine 10 obtained based on the electric signal from the crankshaft rotation speed sensor 15c.
  • the engine outputable power is the engine power that can be output by the engine 10 itself when the fuel supply amount by the fuel injection device 18 of the engine 10 is maximized and the throttle valve SV is fully opened at the current engine rotation speed of the engine 10. is there.
  • the engine supplyable power indicates the maximum fuel supply amount by the fuel injection device 18 of the engine 10 and the output capacity of the engine 10 assuming that the throttle valve SV is fully opened.
  • the engine supplyable power determination unit 643 calculates a power value obtained by converting the calculated engine output power of the engine 10 into electric power by the power generation electric motor 20.
  • the target engine rotation speed / torque acquisition unit 644 acquires the engine rotation speed and engine torque of the engine 10 to enable the propulsion electric motor 30 to be supplied with the maximum target drive power. Specifically, the target engine rotation speed / torque acquisition unit 644 determines the target engine rotation speed and the target engine torque based on the maximum target drive power, the supplyable storage power, and the engine supplyable power.
  • the target drive power acquisition unit 645 acquires the power required by the propulsion electric motor 30 in order to increase the output corresponding to the acceleration instruction. Specifically, the target drive power acquisition unit 645 determines the power required by the propulsion electric motor 30 based on the acceleration instruction of the propulsion instruction unit 8.
  • the electric power required by the propulsion electric motor 30 is the electric power required to increase the output corresponding to the acceleration instruction of the propulsion instruction unit 8.
  • the control device 60 is composed of a computer having a central processing unit (not shown) and a storage device (not shown).
  • the central processing unit performs arithmetic processing based on the control program.
  • the storage device stores data related to programs and operations.
  • the engine control unit 61, the power generation control unit 62, the propulsion control unit 63, and the vehicle integrated control unit 64 are realized by a computer and a control program executed by the computer (not shown). Therefore, the operations of the engine control unit 61, the power generation control unit 62, the propulsion control unit 63, and the vehicle integrated control unit 64, which will be described later, can be said to be the operations of the control device 60.
  • the engine control unit 61, the power generation control unit 62, the propulsion control unit 63, and the vehicle integrated control unit 64 are electrically connected, and even if they are configured as different devices from each other, for example. It may be configured integrally.
  • the propulsion motor 30 receives electric power from the energy storage device 4 and / or the power generation motor 20.
  • the control device 60 supplies the power supplied from the energy storage device 4 and the power generation motor 20 to the propulsion motor 30 toward the target power. Increase.
  • the control device 60 increases the power output from the propulsion electric motor 30.
  • the control device 60 increases the power output from the engine 10.
  • the power output from the engine 10 is increased, the amount of power generated by the power generation motor 20 increases, so that the power supplied from the power generation motor 20 to the propulsion motor 30 increases.
  • the propulsion electric motor 30 can output the target power when the acceleration instruction is given.
  • the power for supplying the electric power corresponding to the acceleration instruction to the propulsion motor cannot be output, or the output of the power for supplying the electric power to the propulsion motor is delayed. There is a possibility that it will end up.
  • the propulsion motor 30 cannot output the power corresponding to the acceleration instruction or the output of the power corresponding to the acceleration instruction is delayed in response to the acceleration instruction.
  • the control device 60 controls to hold the stored electric power of the energy storage device 4 as the electric power for outputting the target power from the propulsion electric motor 30 when the acceleration instruction is given. If the energy storage device has a sufficient amount of energy storage, the stored power that can be supplied from the energy storage device 4 to the propulsion motor 30 increases when an acceleration instruction is given, so that the vehicle 1 outputs without deteriorating fuel efficiency. The response of is reproducible. Such energy storage is sufficiently possible, for example, with a battery having a large capacity. However, it is desired that the battery, which is an energy storage device mounted on the vehicle 1, is not as large as possible. It is difficult for a small energy storage device to always retain the stored power of the energy storage device in case of an acceleration instruction.
  • the control device 60 increases the engine rotation speed of the engine 10 by reducing the power generation torque of the power generation electric motor 20 according to the amount of decrease from the full charge capacity of the electric power.
  • the torque output from the engine 10 is reduced, the power output from the engine 10 is suppressed as compared with, for example, an increase in the rotational speed due to an increase in fuel.
  • the margin driving force is the difference between the power output from the engine before the output increase before the acceleration instruction and the maximum power that can be output from the engine at the rotation speed before the output increase.
  • the margin driving force means a torque margin that can be increased instantaneously.
  • the latter Comparing the margin driving force under the two conditions of low rotation and high load (throttle high opening) and high rotation and low load (throttle low opening) under the same engine power condition, the latter has a larger margin than the former. It has a driving force. Therefore, the latter has a larger engine power that can be output instantly than the former.
  • the margin driving force is large. Therefore, even when the stored power of the energy storage device 4 is reduced, the target power can be output without waiting for the increase in the engine rotation speed of the engine 10 when the acceleration instruction is given.
  • the vehicle 1 of the present embodiment improves the responsiveness of acceleration of the vehicle to the acceleration instruction. Therefore, the engine 10 has reproducibility of the responsiveness of the vehicle's acceleration instruction to the acceleration instruction.
  • FIG. 3 is a diagram showing the relationship between the engine rotation speed of the engine 10 of the power generation unit GU and the engine torque in the present embodiment. Power is proportional to the product of rotational speed and torque.
  • the margin driving force is the difference between the engine power obtained from a certain engine rotation speed and a certain engine torque and the maximum rotation power output from the engine at the same rotation speed as the above engine rotation speed.
  • the margin driving force means a power that can be increased instantaneously.
  • the engine rotation speed is R2 [rpm] and the engine torque is T1 [Nm] (operating point). X1).
  • the opening degree of the throttle valve SV is maximized while the engine speed remains R2 [rpm]
  • the value of P4-P1 is (T8-T1) ⁇ R2 ⁇ ⁇ [W] ( ⁇ is a constant that is a correction value from [rpm] ⁇ [Nm] to [W]).
  • the marginal driving force of the engine 10 differs depending on the engine rotation speed. At least in the region of the engine rotation speed of the engine rotation speed Rmax or less at which the engine produces the maximum output, the margin driving force tends to decrease as the engine rotation speed decreases.
  • the WOT curve is a curve representing the relationship between the engine speed and the engine torque that can be output by the engine itself when the throttle valve is fully opened to maximize the fuel supply. Even if the throttle valve is fully opened to maximize the fuel supply in a certain running state (a certain engine speed), the engine torque does not exceed the WOT curve W1.
  • the WOT curve is a unique characteristic of each individual engine. In the following description, the case where the engine rotation speed is in the range of the engine maximum output rotation speed Rmax or less will be described.
  • the operating point when the engine speed is R1 [rpm] and the engine torque is T3 [Nm] is defined as the operating point Y1.
  • the operating point when the engine rotation speed is R2 [rpm] and the engine torque is T1 [Nm] is defined as the operating point X1.
  • the engine power at the operating point Y1 and the engine power at the operating point X1 are both P1 [W] (represented by the broken line P1 in FIG. 3).
  • the broken line indicated by P1 represents the combination of speed and torque at which the power P1 is obtained.
  • the broken line indicated by P1 is an isooutput line.
  • the broken line indicated by P2 and P4 is an equal output line that can obtain a power different from that of the power P1.
  • the latter under the two conditions of low rotation and high load (throttle high opening) and high rotation and low load (throttle low opening), when equal power is output, the latter is better than the former. It can be said that the margin driving force is large. Therefore, the latter has a larger engine power that can be output instantly according to the opening of the throttle valve than the former. That is, the responsiveness of the acceleration instruction when the engine speed is low is not as high as the responsiveness of the acceleration instruction when the engine speed is high.
  • the engine power that can be output instantaneously is the engine power that can be output according to the opening of the throttle valve without waiting for the increase in the engine speed.
  • the vehicle 1 of the present embodiment converts the power output from the engine 10 into electric power by the electric motor 20 for power generation.
  • the vehicle 1 supplies the electric power converted by the power generation electric motor 20 to the propulsion electric motor 30 together with the stored electric power stored in the energy storage device 4.
  • the propulsion instruction unit 8 when the propulsion instruction unit 8 is operated to the maximum position when the engine rotation speed is low, electric power is supplied from the energy storage device 4 to the propulsion electric motor 30.
  • the margin driving force is small, so the electric power converted by the electric motor for power generation is also small.
  • the power output from the propulsion electric motor 30 is increased by supplying the shortage of the electric power supplied from the power generation electric motor 20 to the propulsion electric motor 30 from the energy storage device 4. As a result, the responsiveness of the acceleration of the vehicle 1 to the acceleration instruction is improved.
  • the maximum target drive power (A) is the power obtained by converting the power that can be output from the engine by the power generation motor when the throttle valve is fully opened without waiting for the increase in the engine rotation speed, and the energy storage device can output the power. This is the total target value with the stored power.
  • the drive upper limit power is the total power of the power converted from the power that can be output from the engine at present without waiting for the increase in the engine speed and the stored power that can be output by the energy storage device. The drive upper limit power indicates the current capacity of the engine 10.
  • the maximum drive power (A) is equal to or less than the drive upper limit power, when the throttle valve is fully opened, at least the power corresponding to the maximum target drive power (A) is output from the propulsion motor 30. ..
  • the maximum target drive power is set according to the current vehicle speed of the vehicle and the current throttle valve opening.
  • the propulsion motor of the drive unit receives power from the power generation motor and / or energy storage device and outputs power. Therefore, the power output by the propulsion motor is easily affected by the energy storage state of the energy storage device. That is, the upper limit of the output power of the propulsion motor is easily affected by the state of charge. For example, if the energy storage amount of the energy storage device is small when the accelerator grip is operated to the maximum position, the electric power supplied from the power generation motor and / or the energy storage device to the propulsion motor is insufficient. Therefore, the propulsion motor cannot obtain a sufficient driving force.
  • the vehicle 1 of the present embodiment solves the above-mentioned problems by increasing the rotation speed of the engine according to the energy storage amount of the energy storage device 4 before the acceleration instruction (during steady running). ing. Specifically, the above-mentioned problem is solved by the control device 60 performing the operation shown in the flowchart shown in FIG.
  • FIG. 3 is a flowchart illustrating the operation of the control device 60 of the vehicle 1.
  • the operation shown in the flowchart of FIG. 3 is executed while the vehicle is running.
  • the maximum time target drive power acquisition unit 641 of the control device 60 acquires the maximum time target drive power (A) of the propulsion electric motor 30.
  • the maximum time target drive power acquisition unit 641 of the control device 60 calculates the maximum time target drive power (A) based on the vehicle speed acquired from the vehicle speed sensor 3d and the position of the propulsion instruction unit 8.
  • the supplyable storage power determination unit 642 of the control device 60 acquires the supplyable storage power (B) of the energy storage device 4.
  • the supplyable storage power (B) of the energy storage device 4 is calculated from the energy storage amount of the energy storage device 4. Specifically, for example, the supplyable storage power determination unit 642 of the control device 60 acquires the voltage value and the current value of the energy storage device 4 based on the detection result output from the current / voltage sensor 65.
  • the supplyable storage power determination unit 642 acquires the energy storage amount (battery charge amount: SOC) of the energy storage device 4 by integrating the acquired current values.
  • the supplyable storage power determination unit 642 calculates the supplyable storage power (B) from the SOC of the acquired energy storage device 4.
  • the supplyable storage power (B) is calculated by the energy storage amount (battery charge amount: SOC) of the energy storage device 4 stored in the storage device of the control device 60 and the storage power that can be supplied from the energy storage device 4. Use a reference table that has a relationship with.
  • FIG. 5 is a diagram showing the relationship between the fully charged capacity of the battery and the available storage power (B).
  • the supplyable storage power (B) is a value of the upper limit power that the battery can supply to the propulsion motor, which is determined according to the acquired battery charge amount (SOC).
  • SOC battery charge amount
  • the supplyable storage power (B) also becomes small.
  • the available storage power (B) may be affected by the voltage, battery temperature, etc. Therefore, in the present embodiment, the acquisition of the supplyable storage power (B) of the energy storage device 4 only obtains the voltage value and the current value of the energy storage device 4 (battery) and calculates the battery charge amount (SOC). Not limited to.
  • the acquisition of the supplyable stored power (B) can include, for example, correction by a measured value of the temperature of the energy storage device 4, in addition to calculating the battery charge amount (SOC). In this case, the values in the graph of FIG. 5 are modified and used.
  • the engine supplyable power determination unit 643 of the control device 60 acquires the engine supplyable power (C) at the current rotation speed of the engine 10.
  • the power (C) that can be supplied to the engine at the current rotation speed of the engine 10 is the electric power for power generation 20 to which the maximum power that the engine 10 can instantaneously output at the current rotation speed (without waiting for the increase in the rotation speed) is supplied. Is the value of the power output by. That is, the engine supplyable power (C) represents the capacity of the engine 10 at the current rotation speed.
  • the engine supplyable power (C) can be obtained from the engine torque corresponding to the current engine speed on the WOT curve W1.
  • the storage device of the control device 60 stores a reference table having a relationship between the engine speed and the engine torque on the WOT curve W1.
  • the engine supplyable power determination unit 643 acquires the engine supplyable power (C) at the current rotation speed of the engine 10 by using the reference table stored in the storage device.
  • step S14 the vehicle integrated control unit 64 of the control device 60 supplies the maximum target drive power (A) to the available storage power (B) of the energy storage device 4 and the engine at the current engine rotation speed. Compare with the total value with possible power (C). In other words, the vehicle integrated control unit 64 determines whether or not the maximum target drive power (A) of the drive unit DU can be obtained, for example, when the throttle valve is fully opened.
  • step S14 when it is determined that the power (A) is equal to or less than the total value of the power (B) and the power (C) (Yes in S14), the operation returns to step S11.
  • the drive unit DU is instantaneous even when the throttle valve is fully opened.
  • the maximum target drive power cannot be supplied to the propulsion motor 30.
  • This is a phenomenon that occurs when the available storage power (B) of the energy storage device 4 decreases, that is, when the SOC of the battery, which is the energy storage device, is low.
  • the available storage power (B) of the energy storage device 4 is small. Therefore, even if the power generation electric motor 20 converts the maximum power output from the engine 10 into electric power when the operation amount of the propulsion instruction unit 8 is maximized, the propulsion electric motor 30 supplies electric power corresponding to the operation amount. I can't receive it.
  • step S14 it is determined that the above electric power (A) is larger than the total value of the electric power (B) and the electric power (C) (No in S14).
  • step S15 the target engine rotation speed / torque acquisition unit 644 of the vehicle integrated control unit 64 acquires the target engine rotation speed and the target engine torque of the engine 10.
  • the target engine rotation speed / torque acquisition unit 644 obtains the difference between the electric power (A) acquired in step S11 and the electric power (B) acquired in step S12. Let the obtained value be the modified power (D).
  • the target engine rotation speed / torque acquisition unit 644 calculates the power (correction power) that the engine 10 should output in order for the power generation electric motor 20 to output the correction power (D).
  • the target engine rotation speed / torque acquisition unit 644 obtains the engine rotation speed corresponding to the intersection of the equal output line of the correction power and the WOT curve W1 in the graph of FIG. The obtained engine rotation speed becomes the target engine rotation speed.
  • step S15 Acquisition of the target engine torque in step S15 is performed as follows.
  • the obtained engine torque becomes the target engine torque.
  • step S16 the control device 60 changes the engine rotation speed and engine torque of the engine 10 according to the calculated target engine rotation speed and target engine torque.
  • the power generation control unit 62 changes the engine rotation speed of the engine 10 by changing the load torque output from the power generation electric motor 20 so as to match the calculated target engine torque.
  • the engine rotation speed of the engine 10 is increased so as to be larger than the engine rotation speed calculated when the SOC is in the fully charged state.
  • the torque of the engine 10 is reduced so as to be smaller than the engine torque calculated when the SOC is in a fully charged state. That is, the power generation control unit 62 increases the engine rotation speed of the engine 10 by reducing the load torque of the power generation electric motor 20. As the engine speed increases, the margin driving force increases.
  • step S16 After the power generation control unit 62 changes the engine speed and engine torque of the engine 10 in step S16, the operation returns to step S11.
  • the control device 60 changes the engine rotation speed of the engine 10 according to the energy storage amount of the energy storage device 4 before the acceleration instruction.
  • the sum of the supplyable stored power (B) before the acceleration instruction and the engine supplyable power (C) before the acceleration instruction is the maximum regardless of the energy storage amount of the energy storage device 4. It becomes the target drive power (A). Therefore, when an acceleration instruction is given, the power output by the propulsion motor 30 can be increased to the target power according to the acceleration instruction regardless of the energy storage amount of the energy storage device 4.
  • FIG. 6 is a diagram showing an example of the relationship between the engine rotation speed of the engine 10 (rotational speed of the power generation motor 20) and engine torque (load torque of the power generation motor 20) and the power output by the power generation motor 20. is there.
  • the operation described with reference to the flowchart of FIG. 3 will be described together with an example of the engine rotation speed and the engine torque shown in FIG.
  • the broken line curves E1 to E4 in FIG. 6 are a group of points (isopower lines) in which the power output from the engine 10 is converted into power by the power generation motor 20 and the power becomes E1 to E4. ..
  • the equal power lines E1 to E4 in FIG. 6 correspond to the equal output lines P1 to P4 in FIG. 3, respectively.
  • the maximum drive power (A) acquired in step S11 is E4 [W] when the state of the crankshaft 15 of the vehicle 1 shown in FIG. 6 is Y1.
  • is a constant that is a correction value from [rpm] ⁇ [Nm] to [W].
  • is the conversion efficiency from the rotational power to the electric power by the electric motor 20 for power generation. That is, ⁇ is obtained by dividing the value of the power output from the power generation motor 20 by the value of the rotational power output from the engine 10 when the rotational power output from the engine 10 is converted into the power generation motor 20. The value.
  • Case 1 is a case where the supplyable storage power (B) of the energy storage device 4 is E4-E2 [W] because the SOC of the energy storage device 4 is high.
  • Case 2 is a case where the supplyable storage power (B) of the energy storage device 4 is E4-E3 [W] because the SOC of the energy storage device 4 is slightly reduced.
  • Case 3 is a case where the available storage power (B) of the energy storage device 4 is 0 [W] because the SOC of the energy storage device 4 is very low.
  • step S14 the vehicle integrated control unit 64 obtains the sum of the available storage power (B) of the energy storage device 4 and the engine supplyable power (C) of the engine 10.
  • the determination in step S14 is Yes. Therefore, the operation does not proceed to step S15, and the engine rotation speed of the engine 10 is not changed.
  • step S14 the vehicle integrated control unit 64 obtains the sum of the available storage power (B) of the energy storage device 4 and the engine supplyable power (C) of the engine 10.
  • the determination in step S14 is No.
  • the control proceeds to step S15 before the acceleration instruction, and the control device 60 acquires the target engine rotation speed and the target engine torque.
  • the engine rotation speed at the intersection of the equal power line of E3 represented by the broken line and the WOT curve W1 is R2 [rpm]. Therefore, the target engine speed is R2 [rpm].
  • the engine torque at the intersection of the constant rotation speed line of R2, which is the target engine rotation speed represented by the broken line, and the equal power line of E1 represented by the broken line is T2 [rpm]. Therefore, the target engine torque is T2 [rpm].
  • step S16 the control device 60 controls the engine 10 and the electric motor 20 for power generation so that the engine rotation speed of the engine 10 becomes the calculated target engine rotation speed.
  • the power generation control unit 62 controls the power generation motor 20 so that the load torque T3 of the power generation motor 20 becomes the target engine torque T2, thereby changing the engine rotation speed of the engine 10 from R1 [rpm] to R2 [rpm].
  • the state of the engine 10 shifts from the operating point Y1 to the operating point Z1 (see arrow H2).
  • the control device 60 adjusts the engine rotation speed and the engine torque to increase the output upper limit power of the engine 10. That is, the margin driving force increases from H1 to H3.
  • step S14 the vehicle integrated control unit 64 obtains the sum of the supplyable storage power (B) and the engine supplyable power (C).
  • the determination in step S14 is Yes. Therefore, the operation does not proceed to step S15, and the engine rotation speed of the engine 10 is not changed.
  • step S14 the vehicle integrated control unit 64 obtains the sum of the available storage power (B) of the energy storage device 4 and the engine supplyable power (C) of the engine 10.
  • the determination in step S14 is No.
  • the control proceeds to step S15 before the acceleration instruction, and the control device 60 acquires the target engine rotation speed and the target engine torque.
  • the engine rotation speed at the intersection of the equal power line of E4 represented by the broken line and the WOT curve W1 is R3 [rpm].
  • the engine torque at the intersection of the constant rotation speed line of R3, which is the target engine rotation speed represented by the broken line, and the equal power line of E1 represented by the broken line is T1 [Nm]. Therefore, the target engine torque is T1 [Nm].
  • step S16 the control device 60 controls the engine 10 and the electric motor 20 for power generation so that the engine rotation speed of the engine 10 becomes the calculated target engine rotation speed.
  • the power generation control unit 62 changes the engine rotation speed of the engine 10 from R1 [rpm] to R3 [rpm] by controlling the power generation motor 20 so that the load torque of the power generation motor 20 becomes the target engine torque T1. .. That is, the state of the engine 10 shifts from the operating point Y1 to the operating point X1 (see arrow H4). In this way, the control device 60 adjusts the engine rotation speed to increase the output upper limit power of the engine 10. That is, the margin driving force increases from H1 to H5.
  • step S17 the power generation control unit 62 of the control device 60 finely adjusts (decreases) the load torque of the power generation motor 20.
  • the value of the electric power converted by the power generation electric motor 20 returns to the value E1 [W] of the electric power before the engine rotation speed is changed. That is, the state of the engine 10 shifts from the operating point Y1 to the operating point Z2 (see arrow H4).
  • step S11 the electric power (A) is acquired, the electric power (B) is acquired in step S12, and then the engine supplyable electric power (C) at the current engine rotation speed is obtained in step S13.
  • C E4 [W] Will be.
  • step S14 the vehicle integrated control unit 64 obtains the sum of the supplyable storage power (B) and the engine supplyable power (C).
  • the determination in step S14 is Yes. Therefore, the process does not proceed to step S15, and the engine rotation speed of the engine 10 is not changed.
  • FIG. 7 is a flowchart illustrating the operation of the control device 60 when an acceleration instruction is given in the vehicle 1.
  • step S21 the target drive power acquisition unit 645 of the vehicle integrated control unit 64 of the control device 60 determines whether or not there is an acceleration instruction from the propulsion instruction unit 8. Specifically, the position information of the propulsion instruction unit 8 is acquired.
  • the target drive power acquisition unit 645 calculates the target drive power (F).
  • the target drive power (F) is the drive power required by the propulsion electric motor 30 in order to output according to the acceleration instruction.
  • the target drive power (F) is determined, for example, by the required power included in the acceleration instruction.
  • the power generation control unit 62 calculates the engine supply power (H).
  • the engine supply electric power (H) is the electric power supplied from the power generation electric motor 20 to the propulsion electric motor 30 so that the propulsion electric motor 30 outputs the target drive electric power (F).
  • the engine supply power (H) is determined by the target drive power (F), the supply storage power (G), and the engine supplyable power (C).
  • the supplied storage electric power (G) is the electric power supplied from the energy storage device 4 to the propulsion electric motor 30 so that the propulsion electric motor 30 outputs the target drive electric power (F).
  • the power generation control unit 62 calculates the engine supply power (H) such that the sum of the engine supply power (H) and the supply storage power (G) becomes the target drive power (F).
  • the engine supply power (H) cannot exceed the engine supplyable power (C)
  • the supply storage power (G) cannot exceed the supplyable storage power (B).
  • the ratio of the supplied storage power (G) to the engine supplied power (H) can be set according to the state of the vehicle 1 or the driver's selection. For example, when the stored power of the energy storage device 4 is low, or when the driver wants to reduce the energy consumption of the energy storage device 4, the supply stored power (G) is increased to reach the target drive power (F). To do. On the other hand, when the fuel of the engine 10 is low, or when the driver wants to suppress the fuel consumption of the engine 10, the engine supply power (H) is suppressed and the supply storage power (G) is increased to the propulsion motor 30. Can be supplied.
  • step S24 the engine control unit 61 adjusts the engine output. Specifically, the engine control unit 61 adjusts at least one of the amount of fuel supplied by the fuel injection device 18 and the opening degree of the throttle valve SV so that the engine 10 outputs the engine supply power (H). As a result, the power output from the engine 10 is changed, and the power generation electric motor 20 can supply the engine supply electric power (H) to the propulsion electric motor 30.
  • step S25 the propulsion control unit 63 increases the electric power supplied to the propulsion electric motor 30. Specifically, the propulsion control unit 63 controls the on / off operation of each of the switching units of the inverter 80 to increase the electric power supplied to the propulsion electric motor 30. The propulsion control unit 63 causes the propulsion electric motor 30 to be supplied with the target drive power (F).
  • FIGS. 8a to 8c show the engine output, the electric power supplied from the power generation motor 20, and the energy storage device in the three cases where the amount of the acceleration instruction is different when the acceleration instruction is given at the operating point Y1 shown in FIG. It is a figure which shows the relationship with the storage power and the target drive power of.
  • the current output of the engine 10 is P1 [W].
  • the margin driving force of the engine 10 is P2 [W]
  • the power that can be supplied by the engine 10 is E2 [W].
  • the receivable storage power (B) of the energy storage device 4 is E4-E2 [W].
  • the maximum target drive power (A) is E4 [W].
  • Case 1 is a case where the position of the propulsion instruction unit 8 by the operation is 40% of the maximum position (FIG. 8a).
  • Case 2 is a case where the position of the propulsion instruction unit 8 by the operation is 80% of the maximum position (FIG. 8b).
  • Case 3 is a case where the position of the propulsion instruction unit 8 by the operation is 100% of the maximum position (FIG. 8c).
  • step S21 the acceleration instruction received from the propulsion instruction unit 8 is 40% of the maximum position of the propulsion instruction unit 8.
  • step S22 the vehicle integrated control unit 64 of the control device 60 sets the target drive power (F), which is the drive power required by the propulsion motor 30 to output in response to the acceleration instruction.
  • step S23 the power generation control unit 62 of the control device 60 calculates the engine supply power (H).
  • the engine supply power (H) is set according to the energy storage state of the energy storage device 4, the remaining fuel amount of the engine 10, the required power of the acceleration instruction, and the like.
  • the engine rotation speed of the current engine 10 is R1 [rpm]
  • the power that can be supplied by the engine 10 is E2 [W]. Therefore, the engine supply power (H) can be set between E1 and E2 [W].
  • the supply and storage power is set to G ( ⁇ E4-E2) [W]
  • the engine supply power (H) is set to E2-G [W].
  • step S24 the engine control unit 61 of the control device 60 at least increases the amount of fuel supplied by the fuel injection device 18 and the throttle valve SV.
  • the power generation motor 20 receives the power of the engine 10 and supplies the power to the propulsion motor 30.
  • the power generated increases from E1 [W] to E2-G [W].
  • step S25 the propulsion control unit 63 of the control device 60 increases the electric power supplied to the propulsion electric motor 30 by controlling the on / off operation of each of the switching units of the inverter 80.
  • the propulsion control unit 63 of the control device 60 increases the electric power supplied to the propulsion electric motor 30 so that the target drive electric power (F) is supplied to the propulsion electric motor 30.
  • the engine supply power (H) is E2-G [W]
  • the operation returns to step S21.
  • the engine supply power (H) is E1 [.
  • the target drive power (F) may be supplied only from the energy storage device 4.
  • the engine supply power (H) is set to E1 [W]
  • the engine control unit 61 does not increase the amount of fuel supplied by the fuel injection device 18, and also expands the throttle valve SV. Absent.
  • step S21 the acceleration instruction received from the propulsion instruction unit 8 is 80% of the maximum position of the propulsion instruction unit 8.
  • step S23 the power generation control unit 62 of the control device 60 calculates the engine supply power (H).
  • the engine rotation speed of the current engine 10 is R1 [rpm]
  • the power that can be supplied by the engine 10 is E2 [W]. Therefore, the engine supply power (H) can be set between E1 and E2 [W].
  • the supply and storage power is set to G ( ⁇ B), and the engine supply power (H) is set to E3-G (> E2) [W].
  • step S24 the engine control unit 61 of the control device 60 at least increases the amount of fuel supplied by the fuel injection device 18 and the throttle valve SV.
  • the power generation motor 20 receives the power of the engine 10 and supplies the power to the propulsion motor 30.
  • the power generated increases from E1 [W] to E3-G [W].
  • step S25 the propulsion control unit 63 of the control device 60 increases the electric power supplied to the propulsion electric motor 30 by controlling the on / off operation of each of the switching units of the inverter 80.
  • the propulsion control unit 63 of the control device 60 increases the electric power supplied to the propulsion electric motor 30 so that the target drive electric power (F) is supplied to the propulsion electric motor 30.
  • the engine supply power (H) is E3-G [W]
  • the operation returns to step S21.
  • the engine supply power (H) is E2 [W]. ] Can be set. Since the engine supplyable power (C) is E2 [W], if only the shortage of the power with respect to the target drive power (F) of the engine supplyable power (C) can be obtained from the energy storage device 4, the target drive power (F) This is because the power can be supplied to the propulsion electric motor 30. This is because it is possible to prevent the remaining storage amount of the energy storage device 4 from being reduced by increasing the engine supply power (H).
  • the engine supply power (H) is E1 [W. ] Can be set. This is because if the energy storage amount of the energy storage device 4 is large, the target drive power (F) may be supplied from the energy storage device 4.
  • step S21 the acceleration instruction received from the propulsion instruction unit 8 is 100% of the maximum position of the propulsion instruction unit 8.
  • step S23 the power generation control unit 62 of the control device 60 calculates the engine supply power (H).
  • the engine rotation speed of the current engine 10 is R1 [rpm]
  • the engine supplyable power (C) is E2 [W].
  • the target drive power (F) is E4 [W] and the supplyable storage power is E4-E2 [W]
  • step S24 the engine control unit 61 of the control device 60 at least increases the amount of fuel supplied by the fuel injection device 18 and the throttle valve SV.
  • the power generation electric motor 20 receives the power of the engine 10 and the propulsion electric motor 30 is used.
  • the power supplied to is increased from E1 to E2.
  • step S25 the propulsion control unit 63 of the control device 60 increases the power supplied to the propulsion electric motor 30 by controlling the on / off operation of each of the switching units of the inverter 80.
  • the propulsion control unit 63 of the control device 60 increases the electric power supplied to the propulsion electric motor 30 so that the target drive electric power (F) is supplied to the propulsion electric motor 30.
  • the engine supply power (H) is E2 [W]
  • the power of E4-E2 [W] is supplied to the propulsion motor 30 from the energy storage device 4.
  • the operation returns to step S21.
  • the propulsion instruction unit 8 when the propulsion instruction unit 8 outputs an acceleration instruction as in step S21 of FIG. 7 during the operation of FIG. 4, the propulsion electric motor 30 is supplied regardless of the energy storage amount of the energy storage device 4. , Power is supplied according to the acceleration instruction (S25 in FIG. 7).
  • control device 60 changes the engine rotation speed of the engine 10 at least according to the energy storage amount of the energy storage device 4 before the acceleration instruction (S15 to S16 in FIG. 4). Then, triggered by the acceleration instruction, the stored electric power supplied to the propulsion electric motor 30 by the power generation electric motor 20 and / or the energy storage device 4 is a target drive according to the acceleration instruction regardless of the energy storage amount of the energy storage device 4. It can be increased to electric power.
  • control device 60 is an engine of the engine 10 so that the electric power supplied to the propulsion electric motor 30 by the energy storage device 4 and / or the electric power generation electric motor 20 can be increased to the maximum target driving power according to the maximum acceleration instruction.
  • the control device 60 increases the marginal driving force by changing the engine rotation speed of the engine 10.
  • the vehicle 1 has reproducibility in the response of the output of the vehicle to the acceleration instruction regardless of the energy storage state of the energy storage device 4.
  • the control device 60 the sum of the electric power obtained by converting the marginal driving force of the engine 10 by the electric motor 20 for power generation and the stored electric power that can be supplied from the energy storage device 4 at the time before the acceleration instruction is set as the target value.
  • the engine rotation speed of the engine 10 is controlled.
  • the target value is determined according to the operation amount of the propulsion instruction unit 8 and the speed of the vehicle 1 regardless of the energy storage amount of the energy storage device 4.
  • the control device 60 increases the rotational speed of the engine by reducing the load torque of the power generation electric motor 20 at least according to the energy storage amount of the energy storage device 4 before the acceleration instruction of the propulsion instruction unit 8. Therefore, the amount of change in the engine rotation speed from the time when the acceleration instruction of the propulsion instruction unit 8 is instructed to the time when the rotation speed of the engine 10 increases and reaches a specific reference speed depends on the energy storage amount of the energy storage device 4. It becomes smaller. That is, in the control device 60, the amount of change in the engine rotation speed from the time when the acceleration instruction is given to the time when the rotation speed of the engine 10 increases and reaches a specific reference speed corresponds to the amount of energy stored in the energy storage device.
  • the engine and the electric motor for power generation are controlled so as to be small.
  • the rotation speed of the engine 10 is increased before the acceleration instruction, and the change in the rotation speed of the engine 10 from the time of the acceleration instruction to the time when the rotation speed of the engine 10 reaches a specific reference speed.
  • the amount is small. Therefore, the power consumption by the inertia torque due to the increase in the output of the rotational speed of the crankshaft 15 of the engine 10 is reduced to a degree corresponding to the energy storage amount of the energy storage device 4. Therefore, the vehicle 1 can maintain the responsiveness of the output increase to the acceleration instruction with respect to the target even when the energy storage amount is small.
  • the following there may be a scene where the method of is performed.
  • the rotation speed of the engine 10 is increased by outputting the maximum torque according to the energy storage amount of the energy storage device 4.
  • the engine 10 is operated according to the energy storage amount of the energy storage device 4.
  • Series hybrid type vehicle has been described above in the embodiment, the present embodiment can also be applied to the series / parallel hybrid type vehicle.
  • Series-parallel hybrid vehicles can transfer power from the engine directly to the propeller.
  • the propulsion unit is driven only by the propulsion motor powered by the energy storage device and / or the power generation motor.
  • the above-described embodiment can be applied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

燃料消費の増大を抑制しつつ、エネルギー貯蔵装置のエネルギー貯蔵状態に関わらず加速指示に対する出力の応答に再現性を有するビークルを提供する。本発明のビークルは、加速指示に応じて推進用電動機に供給される電力を増大するようエンジン及び発電用電動機を制御し、推進器が推進用電動機から出力されたパワーのみによって駆動される場合、バッテリの充電残量に関わらずに、加速指示を契機としてバッテリ及び/又は発電用電動機から供給される電力で駆動される推進用電動機により加速指示に応じた目標パワーを出力するように、加速指示よりも前に、少なくともバッテリの充電残量に応じて発電用電動機の負荷トルクを減少することによりエンジンの回転速度を増速する。

Description

ビークル
 本発明は、ビークルに関する。
 例えば、特許文献1には、ビークルとしての自動二輪車が示されている。また、例えば、特許文献2には、ビークルとしての無人搬送車が示されている。特許文献1及び特許文献2に開示されるビークルは、エネルギー貯蔵装置としてのバッテリ、発電機及び推進用電動機を備えている。エネルギー貯蔵装置は、エネルギーとして貯蔵した電力を推進用電動機に供給する。発電機は、発電用エンジンと発電用電動機とから構成され、発電用エンジンにより発電用電動機を駆動して、発生した電力を推進用電動機に供給する。特許文献1及び特許文献2に開示されるビークルは、エネルギー貯蔵装置及び/又は発電機から電力を供給された推進用電動機により走行する。
特開2007-131179号公報 特開2016-199225号公報
 推進用電動機により走行するビークルでは、燃料消費の増大を抑制しつつ、エネルギー貯蔵装置のエネルギー貯蔵状態に関わらず加速指示に対する出力の応答に再現性のあることが望まれている。
 本発明の目的は、燃料消費の増大を抑制しつつ、エネルギー貯蔵装置のエネルギー貯蔵状態に関わらず加速指示に対する出力の応答に再現性を有するビークルを提供することである。
 特許文献1に開示されるビークルでは、エネルギー貯蔵装置及び/又は発電機から電力が供給されることにより推進用電動機が駆動され、ビークルが推進する。特許文献1に開示されるビークルでは、推進用電動機に、エネルギー貯蔵装置からエネルギーとして貯蔵した電力が供給され、さらに発電機から電力が供給されることによって、加速指示に対するビークルの加速の応答性が向上する。このため、ビークルの加速能力は、ビークルに搭載されるバッテリの充電状態の影響を受けやすい。
 例えば、ビークルの運転者により加速指示が行われ目標パワー(推進用電動機から出力するパワーの目標)の増加が求められた場合、制御装置は目標パワーに向けてエネルギー貯蔵装置及び発電用電動機から推進用電動機に供給する電力を増大する。エネルギー貯蔵装置及び発電用電動機から推進用電動機に供給する電力が増大すると、推進用電動機から出力されるパワーは増加する。しかし、エネルギー貯蔵装置に貯蔵された電力が基準値未満である場合、エネルギー貯蔵装置から推進用電動機に供給できる電力は少ない。従って、エネルギー貯蔵装置及び発電用電動機から供給される電力だけでは、推進用電動機が出力するパワーの目標パワーへの到達に時間がかかる場合がある。発電用エンジンの回転速度によっては、加速指示に対応した電力を発電するための発電用エンジンからのパワーの出力するのが遅れてしまう場合があるからである。
 特許文献2のビークルの制御装置は、エネルギー貯蔵装置の電力量に応じて、エンジンの回転速度を増速する。その後、特許文献2のビークルは、エネルギー貯蔵装置に貯蔵した電力を出力増加(加速指示)で推進用電動機に供給することにより推進用電動機に供給される電力を増大する。特許文献2のビークルは、出力増加時に推進用電動機に供給するための電力を、出力増加よりも前にエネルギー貯蔵装置に貯蔵する。
 しかし、特許文献2のビークルは、出力増加よりも前に、エンジンから出力されるパワーを増加させて電力をバッテリに貯蔵する。従って、特許文献2のビークルは、エンジンの燃料消費量が増大する。
 そこで、本発明者らは、加速指示よりも前にエンジンの燃料消費量を増大することなく、加速指示を契機としてエンジンからパワーを遅れなく出力することを検討した。この検討の中で、本発明者らは、少なくともエネルギー貯蔵装置のエネルギー貯蔵量に応じて発電用電動機の負荷トルクを減少することにより、エンジンの回転速度を増速できることが分かった。
 予めエンジンの回転速度が増大すると、その回転速度においてエンジンに供給される燃料及び空気が増大する場合にエンジンから出力されるトルクは、例えば、予めエンジンの回転速度の増大がない場合のトルクと比べて増大する。つまり、予めエンジンの回転速度が増大すると、その回転速度においてエンジンに供給される燃料及び空気が増大する場合にエンジンから出力されるパワーは、例えば、予めエンジンの回転速度の増大がない場合のパワーと比べて増大する。即ち、燃料及び空気が増大する場合に、回転速度の更なる増大を待たずに出力されるパワーが増大する。
 このため、エネルギー貯蔵装置のエネルギー貯蔵量が小さい場合でも、エネルギー貯蔵量が大きい場合のように応答の遅れを抑えつつ、エネルギー貯蔵装置および発電用電動機から目標パワーに対応する電力を出力することができる。これにより、エネルギー貯蔵装置のエネルギー貯蔵量に関わらずに、加速指示に対する出力の応答に再現性を維持することができる。
 また、加速指示よりも前にエンジンに対する発電用電動機の負荷トルクを減少することによってエンジンの回転速度を増速する。即ち、エンジンのパワーの増大を抑えつつ、回転速度を増速する。従って、エンジンの燃料の消費を抑制することができる。
 これにより、燃料消費の増大を抑制しつつ、エネルギー貯蔵装置のエネルギー貯蔵状態に関わらず加速指示に対する出力の応答に再現性を有するビークルを実現することができる。
 以上の目的を達成するために、本発明の一つの観点によれば、ビークルは、次の構成を備える。
 (1) ビークルであって、
 前記ビークルは、
 回転するクランク軸を有し、燃焼によって生じるパワーを前記クランク軸のトルク及び回転速度として出力するエンジンと、
 前記クランク軸と連動するよう設けられ前記エンジンに駆動され発電する発電用電動機と、
 前記発電用電動機で発電された電力をエネルギーとして貯蔵するエネルギー貯蔵装置と、
 前記発電用電動機とは異なる、前記エネルギー貯蔵装置及び/又は前記発電用電動機からの電力の供給を受けてパワーを出力する、推進用電動機と、
 前記推進用電動機から出力されたパワーによって駆動される推進器と、
 前記エンジンと、前記推進用電動機と、前記発電用電動機とを制御する制御装置であって、加速指示に応じて前記推進用電動機に供給される電力を増大するよう前記エンジン及び前記発電用電動機を制御し、前記推進器が前記推進用電動機から出力されたパワーのみによって駆動される場合、前記エネルギー貯蔵装置のエネルギー貯蔵量に関わらずに、前記加速指示を契機として、前記エネルギー貯蔵装置及び/又は前記発電用電動機から供給される電力で駆動される前記推進用電動機により前記加速指示に応じた目標パワーを出力するように、前記加速指示よりも前に、少なくとも前記エネルギー貯蔵装置のエネルギー貯蔵量に応じて前記発電用電動機の負荷トルクを減少することによりエンジンの回転速度を増速する制御装置と、を備える。
 (1)のビークルは、エンジンと、発電用電動機と、エネルギー貯蔵装置と、推進用電動機と、推進器と、制御装置とを備える。
 エンジンは、回転するクランク軸を有し、燃焼によって生じるパワーをクランク軸のトルク及び回転速度として出力する。
 発電用電動機は、クランク軸と連動するよう設けられエンジンに駆動され発電する。
 エネルギー貯蔵装置は、発電用電動機で発電された電力をエネルギーとして貯蔵する。
 推進用電動機は、エネルギー貯蔵装置及び/又は発電用電動機からの電力の供給を受けてパワーを出力する。
 推進器は、推進用電動機から出力されたパワーによって駆動される。
 制御装置は、エンジンと、推進用電動機と、発電用電動機とを制御する。加速指示に応じて推進用電動機に供給される電力を増大するようエンジン及び発電用電動機を制御する。ビークルの推進器が推進用電動機から出力されたパワーのみによって駆動される場合、制御装置は、加速指示よりも前に、少なくともエネルギー貯蔵装置のエネルギー貯蔵量に応じて発電用電動機の負荷トルクを減少する。これにより制御装置は、加速指示よりも前にエンジンの回転速度を増速する。これにより、ビークルは、エネルギー貯蔵装置のエネルギー貯蔵量に関わらずに、加速指示を契機として、エネルギー貯蔵装置に貯蔵された電力及び/又は発電用電動機から供給される電力により加速指示に応じた目標パワーを出力する。
 加速指示よりも前にエンジンの回転速度が増速すると、その回転速度においてエンジンに供給される燃料及び空気が増大する場合にエンジンから出力されるトルクは、例えば、予めエンジンの回転速度の増速がない場合のトルクと比べて増大する。つまり、予めエンジンの回転速度が増速すると、その回転速度においてエンジンに供給される燃料及び空気が増大する場合にエンジンから出力されるパワーは、例えば、予めエンジンの回転速度の増速がない場合のパワーと比べて増大する。
 例えば、エンジン回転速度が増速することによってエンジンの余裕駆動力が増加する。余裕駆動力とは、加速指示の前のエンジンから出力されるパワーと、加速指示前における回転速度でエンジンから出力可能な最大パワーとの差である。
 このため、エネルギー貯蔵装置のエネルギー貯蔵量が小さい場合でも、エネルギー貯蔵量が大きい場合のように応答の遅れを抑えつつ、エネルギー貯蔵装置および発電用電動機から目標パワーに対応する電力を出力することができる。これにより、エネルギー貯蔵装置のエネルギー貯蔵量に関わらずに、加速指示に対する出力の応答に再現性を維持することができる。
 (1)のビークルにおいて、制御装置は、加速指示よりも前に、発電用エンジンに対する、発電用電動機の負荷トルクを減少することにより、エンジンの回転速度を増速する。即ち、エンジンのパワーの増大を抑えつつ、回転速度が増大する。従って、エンジンの燃料の消費を抑制することができる。このように(1)の推進用電動機は、エネルギー貯蔵量に関わらずに、燃料消費を抑制しつつ、加速指示に応じた目標パワーを出力できる。(1)のビークルは、燃料消費の増大を抑制しつつ、エネルギー貯蔵装置のエネルギー貯蔵状態に関わらず加速指示に対する出力の応答に再現性を有することができる。
 また、発電用電動機の負荷トルクを減少することによりエンジンの回転速度を増速する場合、回転速度が増速しても、発電用電動機から出力される電力は増加しない。このため、エネルギー貯蔵装置が満充電の状態となりエネルギー貯蔵装置が劣化する可能性を減少することができる。従って、(1)ビークルによれば、エネルギー貯蔵装置の大型化を抑制しつつ、加速指示よりも前にエンジンの余裕駆動力を増大することができる。
 本発明の一つの観点によれば、ビークルは、以下の構成を採用できる。
 (2) (1)のビークルであって、
 前記制御装置は、前記加速指示の時点から前記エンジンの回転速度が増大して特定の基準速度に達する時点までの前記エンジンの回転速度の変化量が、前記エネルギー貯蔵装置のエネルギー貯蔵量に応じた程度小さくなるよう前記エンジン及び前記発電用電動機を制御する。
 (2)の構成によれば、加速指示の時点からエンジンの回転速度が特定の基準速度に達する時点までのエンジンの回転速度の変化量が小さい。このため、エンジンのクランク軸の回転速度の出力増加に伴うイナーシャトルクによるパワーの消費は、エネルギー貯蔵装置のエネルギー貯蔵量に応じた程度小さくなる。従って(2)のビークルは、加速指示に対する加速指示の応答性を、目標に対して維持することができる。
 本発明の一つの観点によれば、ビークルは、以下の構成を採用できる。
 (3) (2)のビークルであって、
 前記制御装置は、
 前記加速指示前時点における回転速度において前記エンジンから出力可能な最大パワーにより駆動される前記発電用電動機から出力される電力と、前記エネルギー貯蔵装置から供給される電力と、の和の電力を供給された前記推進用電動機が出力するパワーが、前記加速指示及び速度に応じて定まる目標値となるよう、前記加速指示よりも前に前記エネルギー貯蔵装置のエネルギー貯蔵量に応じて前記エンジン及び前記発電用電動機を制御する。
 (3)の構成によれば、例えば、エネルギー貯蔵装置のエネルギー貯蔵量が変動する場合でも、エンジンの余裕駆動力と発電用電動機から出力可能なパワーの和が目標値に維持される。従って、(3)のビークルは、エネルギー貯蔵装置にエネルギーとして貯蔵された電力の変動による、出力の応答の再現性の劣化を抑えることができる。
 本明細書にて使用される専門用語は特定の実施例のみを定義する目的であって発明を制限する意図を有しない。本明細書にて使用される用語「及び/又は」はひとつの、又は複数の関連した列挙された構成物のあらゆる又は全ての組み合わせを含む。本明細書中で使用される場合、用語「含む、備える(including)」「含む、備える(comprising)」又は「有する(having)」及びその変形の使用は、記載された特徴、工程、操作、要素、成分及び/又はそれらの等価物の存在を特定するが、ステップ、動作、要素、コンポーネント、及び/又はそれらのグループのうちの1つ又は複数を含むことができる。本明細書中で使用される場合、用語「取り付けられた」、「接続された」、「結合された」及び/又はそれらの等価物は広く使用され、直接的及び間接的な取り付け、接続及び結合の両方を包含する。さらに、「接続された」及び「結合された」は、物理的又は機械的な接続又は結合に限定されず、直接的又は間接的な電気的接続又は結合を含むことができる。他に定義されない限り、本明細書で使用される全ての用語(技術用語及び科学用語を含む)は、本発明が属する当業者によって一般的に理解されるのと同じ意味を有する。一般的に使用される辞書に定義された用語のような用語は、関連する技術及び本開示の文脈における意味と一致する意味を有すると解釈されるべきであり、本明細書で明示的に定義されていない限り、理想的又は過度に形式的な意味で解釈されることはない。本発明の説明においては、多数の技術及び工程が開示されていると理解される。これらの各々は個別の利益を有し、それぞれは、他の開示された技術の1つ以上、又は、場合によっては全てと共に使用することもできる。従って、明確にするために、この説明は、不要に個々のステップの可能な組み合わせを全て繰り返すことを控える。それにもかかわらず、明細書及び特許請求の範囲は、そのような組み合わせが全て本発明及び請求項の範囲内にあることを理解して読まれるべきである。
 本明細書では、新しいビークルについて説明する。以下の説明では、説明の目的で、本発明の完全な理解を提供するために多数の具体的な詳細を述べる。しかしながら、当業者には、これらの特定の詳細なしに本発明を実施できることが明らかである。本開示は、本発明の例示として考慮されるべきであり、本発明を以下の図面又は説明によって示される特定の実施形態に限定することを意図するものではない。
 ビークルは、輸送機関である。ビークルは、例えば車輪を有する車両である。ビークルとしては、例えば、自動車、列車、船舶、航空機などが挙げられる。自動車としては、特に限定されず、例えば、四輪自動車、鞍乗型車両などが挙げられる。四輪自動車は、例えば、車室を有する。航空機としては、特に限定されず、例えば、回転翼機、固定翼機などが挙げられる。回転翼機としては、ヘリコプター、マルチコプター、ドローンが挙げられる。固定翼機としては、飛行機が挙げられる。ビークルは、運転者が搭乗することにより直接運転してもよく、また、運転者が搭乗せずに無線等により運転してもよい。ビークルは、ゴルフカーであってもよい。ビークルは、キャタピラタイプの雪上車であってもよい。ビークルは、除雪機であってもよい。
 鞍乗型車両(straddled vehicle)とは、運転者がサドルに跨って着座する形式のビークルをいう。鞍乗型車両としては、例えば、スクータ型、モペット型、オフロード型、オンロード型の自動二輪車が挙げられる。また、鞍乗型車両としては、自動二輪車に限定されず、例えば、自動三輪車、ATV(All-Terrain Vehicle)等であってもよい。自動三輪車は、2つの前輪と1つの後輪とを備えていてもよく、1つの前輪と2つの後輪とを備えていてもよい。鞍乗型車両の推進器は、後輪であってもよく、前輪であってもよい。また、鞍乗型車両の推進器は、後輪及び前輪の双方であってもよい。
 また、ビークルは、例えば、リーン姿勢で旋回可能に構成されている。リーン姿勢で旋回可能に構成されたビークルは、カーブの内側に傾いた姿勢で旋回するように構成される。これにより、リーン姿勢で旋回可能に構成されたビークルは、旋回時にビークルに加わる遠心力に対抗する。リーン姿勢で旋回可能に構成されたビークルとしては、例えば、リーン姿勢で旋回可能に構成された鞍乗型車両(例えば、自動二輪車、自動三輪車)が挙げられる。リーン姿勢で旋回可能に構成されたビークルでは、軽快性が求められるため、発進の操作に対する進行の応答性が重要視される。リーン姿勢で旋回可能に構成されたビークルでは、例えば、動力源から推進器までの動力伝達経路に、流体の力学的作用を利用したトルクコンバータが設けられていない。
 エンジンは、例えば、単気筒エンジン及び2以上の気筒を有するエンジンを含む。エンジンの動作とは、エンジンが、燃焼によって生じるパワーをクランク軸のトルク及び回転速度として出力することである。エンジンは、例えば、4ストロークの間に高負荷領域と低負荷領域とを有する4ストロークエンジンであることが好ましい。4ストロークの間に高負荷領域と低負荷領域とを有する4ストロークエンジンは、例えば、単気筒エンジン、2気筒エンジン、不等間隔燃焼型3気筒エンジン、又は、不等間隔燃焼型4気筒エンジンである。高負荷領域とは、エンジンの1燃焼サイクルのうち、負荷トルクが1燃焼サイクルにおける負荷トルクの平均値よりも高い領域をいう。ただし、発電用エンジンは、3以上の気筒を有する等間隔燃焼型エンジンでもよい。
 発電用電動機は、発電が可能な回転電機である。推進用電動機は、例えば発電とモータ動作の双方が可能な回転電機であってもよい。発電用電動機は、始動モータと異なる電動機であってもよい。発電用電動機は、アウターロータ型でもよく、また、インナーロータ型でもよい。また、発電用電動機は、ラジアルギャップ型でなく、アキシャルギャップ型でもよい。一つの実施形態によれば、発電用電動機では、ロータが、永久磁石を備えている。一つの実施形態によれば、推進用電動機及び発電用電動機の両方では、ロータが、永久磁石を備えている。
 エネルギー貯蔵装置は、エネルギーを貯蔵する装置である。エネルギー貯蔵装置は、例えば、電気エネルギーを貯蔵する電力貯蔵装置である。電力貯蔵装置として、例えばバッテリ、又はキャパシタが挙げられる。エネルギー貯蔵装置が貯蔵するエネルギーの形式は、特に限られない。エネルギー貯蔵装置は、例えばフライホイールとモータを有するフライホイール型の装置でもよい。フライホイール型の装置は、供給された電力によってフライホイールを駆動することにより、フライホイールの回転エネルギーを貯蔵する。フライホイール型の装置は、フライホイールの回転エネルギーを電力に変換し、電力を出力する。つまり、電力はエネルギー貯蔵装置に供給される。エネルギー貯蔵装置は電力を出力する。従って、エネルギー貯蔵装置は、外部から見た場合、電力を貯蔵する装置ということができる。以降、電力を貯蔵するという表現は、電力を回転といったエネルギーに変換して貯蔵することを含む。
 エネルギー貯蔵装置は、発電用電動機で発電された電力の供給を受ける。但し、エネルギー貯蔵装置が供給を受ける電力は特に限られず、例えば、推進用電動機が発電する電力でもよい。つまり、エネルギー貯蔵装置は、推進用電動機が回生発電する電力を貯蔵してもよい。
 推進用電動機は、モータ動作が可能な回転電機である。推進用電動機は、パワーを出力する。推進用電動機は、例えば発電とモータ動作の双方が可能な回転電機であってもよい。推進用電動機は、アウターロータ型でもよく、また、インナーロータ型でもよい。また、推進用電動機は、ラジアルギャップ型でなく、アキシャルギャップ型でもよい。
 本明細書におけるパワーは、機械的なパワーである。
 推進器は、例えば、車輪(駆動輪)、キャタピラー、プロペラなどが挙げられる。ビークルが自動車である場合は、推進器は、例えば車輪(駆動輪)である。駆動輪は、後輪であってもよく、前輪であってもよい。また、駆動輪は、後輪及び前輪の双方であってもよい。ビークルが航空機である場合は、推進器は、例えばプロペラである。
 制御装置は、プログラムを実行するプロセッサを有していてもよく、また、電子回路でもよい。
 加速指示は、ビークルの出力を増加させるための指示である。
 加速指示は、例えば、ビークルに備えられた加速指示部によって出力される。
 加速指示を出力する推進指示部は、例えばアクセル操作子である。アクセル操作子は、例えばアクセルグリップである。アクセル操作子は、例えばペダルでもよい。アクセル操作子の操作量は、例えば、操作力が付与されていない状態を基準とした、アクセル操作子の操作量である。例えば、操作量は、例えば、操作力が付与されていない状態でのアクセルグリップの位置に対する、操作による変位量である。但し、操作量は、これに限られず、操作力が付与されていない状態に対する、操作で印加される力の量でもよい。
 また、推進指示部は、例えば、シリーズハイブリッド式ビークルの運転者が操作する遠隔操作機器からの加速又は減速を示す無線信号を受信する受信部であってもよい。遠隔操作機器は、例えば、リモートコントローラである。遠隔操作機器は、運転者がレバーの操作をすることにより、シリーズハイブリッド式ビークルの加速又は減速を示す無線信号の送信を行う。遠隔操作機器の操作量は、例えば、操作力が付与されていない状態を基準とした、レバーの操作量である。例えば、操作量は、例えば、操作力が付与されていない状態でのレバーの位置に対する、操作による変位量である。但し、操作量は、これに限られず、操作力が付与されていない状態に対する、レバーに印加される力の量でもよい。
 また、加速指示を出力する推進指示部は、例えば、自動推進制御装置であってもよい。自動推進制御装置は、シリーズハイブリッド式ビークルの走行経路又は飛行経路、並びにそれらの経路に沿って設定された速度に基づいて、加速指示又は減速指示を出力する。例えば、風向きや路面の傾きと行った外乱によって速度が変わった場合に速度を自律的に回復するため、加速指示又は減速指示を出力してもよい。例えば、自動推進制御装置は、遠隔操作機器から指示される速度及び方向の目標を受信し、この目標を維持するような加速指示又は減速指示を出力してもよい。
 加速指示に対するビークルの出力の応答性の再現性とは、加速指示に対しビークルの出力の増加の応答の変化が抑えられることである。ビークルの出力の応答の再現性は、加速指示に対しビークル加速度が規定のレベルに増大するまでの時間又は加速度の増大量として測定される。ビークルの出力の応答性の再現性は、例えば、推進用電動機の回転軸の加速度が規定のレベルに増大するまでの時間又は加速度の増大量として測定されることも可能である。
 加速指示を契機として前記推進用電動機により出力されるパワーは、加速指示の後、クランク軸の回転速度が増大する前に、推進用電動機により出力されるパワーを意味する。例えば、クランク軸の回転速度が増大する前に、クランク軸の出力トルクが増大することによってエンジンから出力されるパワーが増大する。これにより、発電用電動機から出力されるパワーが増大する。また、推進用電動機により出力されるパワーが増大する。
 本発明によれば、燃料の消費の増大を抑制しつつ、エネルギー貯蔵装置のエネルギー貯蔵状態に関わらず加速指示に対する出力の応答に再現性のあるビークルを提供することができる。
本発明の一実施形態に係るビークルを説明する図である。 図1に示すビークルの主な構成要素のそれぞれの関係を示す模式図である。 図1に示すビークルのエンジン回転速度とエンジントルクとの関係を示す図である。 図1に示すビークルの制御装置の動作を説明するフローチャートである。 バッテリの充電率と、バッテリから供給可能な電力との関係を示す図である。 図1に示すビークルのクランク軸回転速度とクランク軸トルクとの関係を示す図である。 図1に示すビークルにおいて、加速指示があった時の制御装置の動作を説明するフローチャートである。 図6に示す状態において、加速指示があった時に、エンジン出力、発電用電動機から供給される電力、エネルギー貯蔵装置の貯蔵電力及び目標駆動電力との関係を示す図である。 図6に示す状態において、加速指示があった時に、エンジン出力、発電用電動機から供給される電力、エネルギー貯蔵装置の貯蔵電力及び目標駆動電力との関係を示す図である。 図6に示す状態において、加速指示があった時に、エンジン出力、発電用電動機から供給される電力、エネルギー貯蔵装置の貯蔵電力及び目標駆動電力との関係を示す図である。
 以下、本発明を、好ましい実施形態に基づいて図面を参照しつつ説明する。
 図1は、本発明の一実施形態に係るビークルを説明する図である。図1(a)は、本発明の一実施形態に係るビークル1の構成を示すブロック図である。図1(b)は、ビークル1の制御装置60によるエンジン10の制御の状態を示す図である。図1(c)は、比較例のビークルにおけるエンジンの制御の状態を示す図である。図1(c)に示す比較例として、特許文献2に記載のビークルにおけるエンジンの状態が想定されている。
 図1(b)及び(c)は、共にエンジンの回転速度(発電用電動機の回転速度)とエンジントルク(発電用電動機の負荷トルク)との関係を示している。図1を参照して、本実施形態のビークルの概要を説明する。本実施形態のビークルは、エンジンにより発電機を駆動し、発電機の電力により、車輪を駆動するシリーズハイブリッド式のビークルである。
 図1に示すビークル1は、エンジン10と、発電用電動機20と、エネルギー貯蔵装置4と、推進用電動機30と、推進器3bと、制御装置60とを備える。
 エンジン10は、回転可能なクランク軸15を有する。エンジン10は、空気及び燃料の混合ガスの燃焼によって生じるパワーをクランク軸15のトルク及び回転速度として出力する。発電用電動機20は、クランク軸15と連動するよう設けられている。発電用電動機20は、エンジン10に駆動され発電を行う。推進用電動機30は、発電用電動機20で発電された電力、及びエネルギー貯蔵装置4でエネルギーとして貯蔵された電力(以下、貯蔵電力とする。)の供給を受けて推進器3bを駆動する。
 エネルギー貯蔵装置4は、例えばバッテリである。エネルギー貯蔵装置4は、エンジン10によって駆動される発電用電動機20により発電された電力をエネルギーとして貯蔵する。エネルギー貯蔵装置4は、貯蔵電力を推進用電動機30に供給する。
 ビークル1は、発電用電動機20及びエネルギー貯蔵装置4から電力の供給を受けた推進用電動機30によって駆動される。具体的には、ビークル1は、推進用電動機30が、発電用電動機20及びエネルギー貯蔵装置4から電力の供給を受けて回転パワーを出力し、出力された回転パワーを推進器3bが受けることによって駆動される。
 次に、本実施形態のビークル1の制御装置60によるエンジン10の動作について、図1(c)に示す従来例と比較して説明する。制御装置60は、エンジン10と、発電用電動機20と、推進用電動機30とを制御する。具体的には、制御装置60は、以下の(1)及び(2)の動作をそれぞれ行うように構成されている。
 (1)の動作は、エネルギー貯蔵装置4のエネルギー貯蔵量に応じて発電用電動機20の負荷トルクを減少することによりエンジン10の回転速度を増速することである。制御装置60は、加速指示よりも前に、発電用電動機20の負荷トルクを減少する。本実施形態では、例えば図1(b)に示すように、発電用電動機20の負荷トルクをT3からT1に減少することにより、エンジン10の回転速度をR1からR2に増大する(矢印H4)。
 (2)の動作は、加速指示が出力された場合に、加速指示を契機として推進用電動機30に供給される電力を増大することである。本実施形態では、例えば図1(b)に示すように、推進用電動機30に供給する電力を増大するために、エンジン10から出力されるパワーをP1からP4に増大する(矢印H5)。具体的には、エンジン10に供給される空気及び燃料を増大することによって、エンジンの回転速度がR2のままで、エンジン10から出力されるエンジントルクが増大できる。これによって、エンジン10から出力されるパワーが増大する。
 なお、矢印H5に示すようにエンジントルクが増大した後、エンジンの回転速度も増大する。この結果、エンジンの回転速度はR2よりも大きくなる。即ち、図1(b)における動作点(R2,T8)が更に右に遷移する。これによって、エンジン10から出力されるパワーが更に増大する。ただし、エンジン10に接続され回転する部材及びエンジン10自体は、イナーシャを有する。このため、エンジンの回転速度の増大には時間がかかる。
 これに対し、矢印H5に示すようなエンジントルクの増大に伴うパワーの増大は短時間で行なわれる。従って、遅れなくパワーが増大する。
 これに対し、比較例のビークルの制御装置は、発電用電動機の負荷トルクを変更することなくエンジンの回転速度を増速する。比較例のビークルでは、エンジンに供給される燃料及び空気を増大することによってエンジンの回転速度を増速する。図1(c)に示すように、比較例のビークルでは、発電用電動機の負荷トルクがT6のままエンジンの回転数がR1からR2に増速するか(矢印H6)、又は、負荷トルクがT6から増大しつつ、エンジンの回転数が増大する。
 比較例のビークルは、加速指示よりも前に、発電用電動機の負荷トルクを変更することなくエンジン10の回転速度を増速するために、エンジンから出力されるパワーを増加させている。このため、エンジンの燃料消費量が増大する。
 本実施形態のビークル1は、加速指示よりも前に、発電用電動機20の負荷トルクを減少することによりエンジン10の回転速度を増速している。負荷トルクの減少と回転速度の増速とによって、厳密には、エンジン10の出力パワーに対する燃料効率が低下する。また、燃料効率の低下に伴い、燃料消費量が増大する。
 しかし、回転速度の増速によって回転速度を増速する場合、比較例のように燃料及び空気を増大することによってエンジンの回転速度を増速する場合と比べて、燃料消費量の増大が抑制される。
 つまり、本実施形態のビークル1はエンジン10から出力されるパワーを増加させないため、エンジン10の燃料の消費の増大を抑えることができる。
 本実施形態のビークル1は、加速指示よりも前に発電用電動機20の負荷トルクを減少することによりエンジン10の回転速度を増速している。この場合、回転速度が増速しても、発電用電動機20から出力される電力は実質的に増加しない。このため、回転速度が増速しても、エネルギー貯蔵装置4に対する充放電量は実質的に変化しない。従って、加速指示よりも前に回転速度が増速する場合に、例えば、エネルギー貯蔵装置4が満充電の状態となりエネルギー貯蔵装置4が劣化する可能性が減少する。このため、ビークル1に設けられるエネルギー貯蔵装置4の容量の増大を抑制することができる。つまり、本実施形態のビークル1によれば、エネルギー貯蔵装置4の大型化を抑制しつつ、加速指示よりも前に、エンジン10の余裕駆動力を増大することができる。
 制御装置60は、上記の(1)及び(2)の動作によって、加速指示(図7のステップS21)よりも前に、少なくともエネルギー貯蔵装置4のエネルギー貯蔵量に応じて発電用電動機20の負荷トルクを減少することができる。これにより、エンジン10の回転速度が増速する。これにより、エンジン10の余裕トルク及び余裕駆動力が増加する。エンジンの余裕トルクは、ある時点でエンジン10から出力されているトルク(例えば回転速度R2におけるT1)と、その時点の回転速度(例えばR2)でエンジン10から出力可能な最大トルク(例えばT8)との差である。また、エンジン10の余裕駆動力は、ビークル1のある時点でエンジン10から出力されているパワー(例えば回転速度R2におけるP1)と、その時点の回転速度(例えばR2)でエンジン10から出力可能な最大パワー(例えばT8に対応するP4)との差である。
 エンジン10の余裕駆動力が増加することによって、その後、加速指示を契機としてエンジン10に供給される燃料及び空気量が増大する場合、回転速度の更なる増大を待つことなく、エンジントルクの増大に伴い、エンジン出力が急速に増大する。
 これにより、制御装置60は、エネルギー貯蔵装置4のエネルギー貯蔵量が比較的小さい場合でも、加速指示を契機として発電用電動機20の出力の増大を利用して、目標パワーに対応する電力を推進用電動機30に供給することができる。この結果、推進用電動機30は、加速指示に応じた目標パワーを短時間で出力する。つまり、推進用電動機30が、エネルギー貯蔵装置4のエネルギー貯蔵量に関わらずに加速指示に応じた目標パワーを出力することができる。
 エネルギー貯蔵装置4のエネルギー貯蔵量が減少している場合でも、加速指示を契機として推進用電動機30から出力されるパワーが、短時間で目標パワーに到達する。詳細には、推進用電動機30から出力されるパワーが、例えば加速指示よりも前にエンジン10のエンジン回転速度を増速しない場合(例えば矢印H1に示す遷移)と比べ、短時間で目標パワーに到達することができる。従って、エネルギー貯蔵装置4のエネルギー貯蔵量に関わらず加速指示に対するビークルの加速指示の応答性の再現性が高い。
 図2は、図1のビークル1の主な構成要素のそれぞれの関係を示す模式図である。図2に示すビークル1は、車体2と、車体2に回転可能に取り付けられた推進器3bとを備える。ビークル1は、発電ユニットGUと、駆動ユニットDUと、制御装置60と、エネルギー貯蔵装置4とを備える。ビークル1は、例えば、鞍乗型車両である。推進器3bは推進用電動機30により駆動される駆動輪である。
 発電ユニットGUは、車体2に搭載され、エンジン10と、発電用電動機20と、コンバータ70とを備える。駆動ユニットDUは、車体2に搭載され、推進用電動機30と、インバータ80とを備える。ビークル1は、前照灯7と、推進指示部8とを備えている。推進指示部8は、運転者がビークル1の加速又は減速を操作するためのアクセルグリップである。推進指示部8には、アクセルセンサ8aが設けられている。制御装置60は、推進指示部8の指示に基づいてエンジン10に備えられたスロットル弁SVと、燃料噴射装置18と、発電用電動機20と、推進用電動機30とを電子制御により制御する。制御装置60は、加速指示部としての推進指示部8から出力される加速指示に応じて、発電用電動機20及びエネルギー貯蔵装置4から推進用電動機30に供給される電力を調整する。制御装置60は、エンジン10に供給される燃料及び空気の量を調整するように燃料噴射装置18及びスロットル弁SVを調整する。
 発電ユニットGUのエンジン10は、クランクケース11と、シリンダ12と、ピストン13と、コネクティングロッド14と、クランク軸15とを備える。ピストン13は、シリンダ12内に往復移動自在に設けられる。クランク軸15は、クランクケース11内に回転可能に設けられている。コネクティングロッド14は、ピストン13とクランク軸15を接続している。シリンダ12の上部には、シリンダヘッド16が取り付けられている。シリンダ12とシリンダヘッド16とピストン13とによって、燃焼室が形成される。クランク軸15は、クランクケース11に、一対のベアリング17を介して、回転自在な態様で支持されている。クランク軸15には、発電用電動機20が取り付けられている。
 エンジン10には、スロットル弁SVと、燃料噴射装置18と、点火プラグ19とが設けられている。スロットル弁SVは、燃焼室に供給される空気の量を調整する。燃料噴射装置18は、燃料を噴射することによって、スロットル弁SVにより燃焼室に供給される空気に燃料を供給する。空気及び燃料の混合ガスが、燃焼室に供給される。燃料噴射装置18による燃料の供給、及びスロットル弁SVの開度は、制御装置60に制御される。点火プラグ19は、燃焼室に供給される空気及び燃料の混合気を燃焼させる。
 エンジン10は、クランク軸15を介してパワーを出力する。クランク軸15介して出力されたパワーは、発電用電動機20により電力に変換される。発電用電動機20により変換された電力は、推進用電動機30に供給されて再び回転のパワーとして出力される。推進用電動機により出力されたパワーは、推進器3bに伝達される。ビークル1では、エンジン10と推進器3bとが、機械的に接続されていない。このため、エンジン10は直接的に推進器3bを駆動しない。即ち、エンジン10の動力は、推進器3bに直接伝達されない。
 発電ユニットGUの発電用電動機20は、例えば永久磁石式三相ブラシレス型発電機である。発電用電動機20は、ロータ21と、ステータ22とを有する。本実施形態の発電用電動機20は、ラジアルギャップ型である。発電用電動機20は、アウターロータ型である。即ち、ロータ21はアウターロータである。ステータ22はインナーステータである。
 ロータ位置検出装置24は、ロータ21の位置を検出する装置である。
 発電用電動機20は、エンジン10のクランク軸15と連動するように、クランク軸15と接続されている。詳細には、ロータ21が、クランク軸15に対し固定された速度比で回転するようクランク軸15と接続されている。発電用電動機20は、エンジン10が燃焼動作する場合に、エンジン10に駆動されて発電する。詳細には、エンジン10のピストン13が、燃焼動作により上下動してクランク軸15を回転させる。発電用電動機20は、ロータ21がクランク軸15と連動してステータ22の周囲を回転することにより、発電する。
 本実施形態では、ロータ21が、クランク軸15に、動力伝達機構(例えば、ベルト、チェーン、ギア、減速機、増速機等)を介さずに取り付けられている。ロータ21は、クランク軸15に対し1:1の速度比で回転する。発電用電動機20が、エンジン10の正回転によりクランク軸15を正回転させるように構成されている。
 本実施形態において、発電用電動機20は、速度比可変の変速装置又はクラッチの何れも介することなく、クランク軸15に接続される。即ち、発電用電動機20は、入出力の速度比が可変の装置を介することなく、クランク軸15に接続される。なお、発電用電動機20は、クランク軸15に、動力伝達機構を介して取り付けられていてもよい。
 駆動ユニットDUの推進用電動機30は、永久磁石式三相ブラシレス型電動機である。推進用電動機30は、ロータ31と、ステータ32とを有する。本実施形態の推進用電動機30は、ラジアルギャップ型である。推進用電動機30は、アウターロータ型である。即ち、ロータ31はアウターロータである。ステータ32はインナーステータである。推進用電動機30の回転軸線は、ビークル進行方向と直交する方向に配置される。推進用電動機30の回転軸の先端部は、推進用電動機30の回転軸に平行に配置される駆動軸90に連結される。
 推進用電動機30は、発電用電動機20及び/又はエネルギー貯蔵装置4から供給される電力によって動作する。発電用電動機20が出力する電流が増大すると、コンバータ70からインバータ80に供給される電流が増大し、推進用電動機30に供給される電流が増大する。発電用電動機20が出力する電力は、コンバータ70及びインバータ80を介して、推進用電動機30に供給される。
 駆動ユニットDUの推進器3bは、駆動軸90を備える。駆動軸90は、推進器3bの車軸である。駆動軸90は、推進用電動機30を介して推進器3bに回転パワーが伝達されるように、推進用電動機30に直接的又は間接的に接続されている。詳細には、推進用電動機30のロータ31が、直接的に、又は減速機等を介して駆動軸90と接続されている。推進器3bは、推進用電動機30により回転駆動される。これによって、推進用電動機30は、ビークル1を走行させる。動力伝達に関し、推進用電動機30は、エンジン10及び発電用電動機20と機械的に接続されていない。
 推進器3bの駆動軸90には、車速センサ3dが設けられている。車速センサ3dは、駆動軸90の回転速度に応じた周波数の信号を出力する。制御装置60は、車速センサ3dの出力信号に基づいて車速を算出する。
 発電ユニットGUは、コンバータ70を備える。コンバータ70には、発電用電動機20と、エネルギー貯蔵装置4とが接続されている。エネルギー貯蔵装置4は、発電用電動機20に対し電流の授受を行う。コンバータ70は、複数の図示しないスイッチング部を備えている。スイッチング部のそれぞれは、スイッチング素子を有する。スイッチング素子は、例えばトランジスタであり、より詳細にはFET(Field Effect Transistor)である。スイッチング部は、三相ブリッジインバータを構成している。
 複数のスイッチング部は、複数相のステータ巻線22bとエネルギー貯蔵装置4及び/又は推進用電動機30との間の電流の通過/遮断を切替える。詳細には、発電用電動機20のスイッチング部のオン・オフ動作によって、ステータ巻線22bのそれぞれとエネルギー貯蔵装置4及び/又は推進用電動機30との間の電流の通過/遮断が切替えられる。スイッチング部のオン・オフが順次切替えられることによって、発電用電動機20から出力される三相交流の整流及び電圧の制御が行われる。
 コンバータ70とステータ巻線22bとを接続するラインには、電流センサ(不図示)が設けられ、発電用電動機20における2相の電流を検出する。
 駆動ユニットDUは、インバータ80を備える。インバータ80には、推進用電動機30と、コンバータ70と、エネルギー貯蔵装置4とが接続されている。エネルギー貯蔵装置4は、推進用電動機30に対し貯蔵電力の供給を行う。インバータ80は、図示しない複数のスイッチング部を備えている。
 制御装置60は、インバータ80を含むビークル1の各部を制御する。
 エネルギー貯蔵装置4は、前照灯7が接続されている。前照灯7は、電力を消費しながら動作する、ビークル1に搭載された補機である。エネルギー貯蔵装置4であるバッテリと、コンバータ70及びインバータ80とを接続するラインには、電流・電圧センサ65が設けられている。電流・電圧センサ65は、エネルギー貯蔵装置4であるバッテリに流れる電流及び電圧を検出する。電流・電圧センサ65は、エネルギー貯蔵装置4とコンバータ70及びインバータ80とを接続するラインのうち、前照灯7への分岐点とエネルギー貯蔵装置4との間に設けられている。
 制御装置60は、図示しない中央処理装置と、図示しない記憶装置とを有するコンピュータで構成されている。中央処理装置は、制御プログラムに基づいて演算処理を行う。記憶装置は、プログラム及び演算に関するデータを記憶する。制御装置60は、エンジン制御部61と、発電制御部62と、推進制御部63と、ビークル統合制御部64とを備えている。
 エンジン制御部61は、スロットル弁SVと、燃料噴射装置18と、点火プラグ19とが接続されている。エンジン制御部61は、スロットル弁SVと、点火プラグ19と、燃料噴射装置18とを制御することによって、エンジン10の燃焼動作を制御する。エンジン制御部61は、エンジン10の燃焼動作を制御することによって、エンジン10の回転パワーを制御する。
 発電制御部62は、コンバータ70を制御することによって、発電用電動機20の動作を制御する。推進制御部63は、インバータ80を制御することによって、推進用電動機30の動作を制御する。
 ビークル統合制御部64は、推進指示部8から出力される加速指示及び車速センサ3dから取得した車速に基づいて、エンジン制御部61と、発電制御部62と、推進制御部63とを制御する。詳細には、ビークル統合制御部64は、エンジン制御部61を介して、加速指示部としての推進指示部8の加速指示に応じて、エンジン10の点火プラグ19と、燃料噴射装置18と、スロットル弁SVとを制御する。また、ビークル統合制御部64は、推進制御部63を介して、エネルギー貯蔵装置4から推進用電動機30に供給される貯蔵電力を調整する。さらに、ビークル統合制御部64は、電流・電圧センサ65から取得した、エネルギー貯蔵装置4であるバッテリの電圧値及び電流値に基づいて、発電制御部62と、推進制御部63とを制御する。
 ビークル統合制御部64は、最大時目標駆動電力取得部641、供給可能貯蔵電力判定部642と、エンジン供給可能電力判定部643と、目標エンジン回転速度/トルク取得部644と、目標駆動電力取得部645とを含む。
 最大時目標駆動電力取得部641は、推進用電動機30の最大時目標駆動電力を取得する。具体的には、最大時目標駆動電力取得部641は、アクセルセンサ8aと車速センサ3dとからの信号をもとに、推進用電動機30の最大時目標駆動電力を取得する。
 供給可能貯蔵電力判定部642は、エネルギー貯蔵装置4から推進用電動機30に供給可能な貯蔵電力を取得する。具体的には、供給可能貯蔵電力判定部642は、電流・電圧センサ65から出力される検出結果に基づいてエネルギー貯蔵装置4であるバッテリの電圧値及び電流値を取得する。例えば、供給可能貯蔵電力判定部642は、電流値を積算することで、エネルギー貯蔵装置4のエネルギー貯蔵量であるバッテリの充電量(State Of Chage:SOC)を取得する。供給可能貯蔵電力判定部642は、取得したエネルギー貯蔵装置4のエネルギー貯蔵量(バッテリ充電量:SOC)から、エネルギー貯蔵装置4の供給可能貯蔵電力を取得する。供給可能貯蔵電力判定部642での供給可能貯蔵電力の取得方法はこれに限らず、推進用電動機30に掛る電圧や回転速度にも応じてエネルギー貯蔵装置4の供給可能貯蔵電力を推定してもよい。
 エンジン供給可能電力判定部643は、現在のエンジン10のエンジン回転速度でのエンジン出力可能パワーを、発電用電動機20により電力に変換した場合の電力値を取得する。具体的には、エンジン供給可能電力判定部643は、クランク軸回転速度センサ15cからの電気信号をもとに得た現在のエンジン10のエンジン回転速度でのエンジン出力可能パワーを算出する。エンジン出力可能パワーは、現在のエンジン10のエンジン回転速度において、エンジン10の燃料噴射装置18による燃料供給量を最大にし、スロットル弁SVを全開にした場合に、エンジン10自体が出力できるエンジンパワーである。エンジン供給可能パワーは、エンジン10の燃料噴射装置18による最大燃料供給量及びスロットル弁SVの全開を想定したエンジン10の出力能力を示している。エンジン供給可能電力判定部643は、算出したエンジン10のエンジン出力可能パワーを、発電用電動機20により電力に変換した電力値を算出する。
 目標エンジン回転速度/トルク取得部644は、推進用電動機30に最大時目標駆動電力を供給することを可能にするためのエンジン10のエンジン回転速度及びエンジントルクを取得する。具体的には、目標エンジン回転速度/トルク取得部644が、最大時目標駆動電力、供給可能貯蔵電力、及びエンジン供給可能電力に基づき、目標エンジン回転速度と目標エンジントルクとを決定する。
 目標駆動電力取得部645は、加速指示に対応した出力の増加をするために、推進用電動機30が必要とする電力を取得する。具体的には、目標駆動電力取得部645は、推進指示部8の加速指示に基づいて、推進用電動機30が必要とする電力を決定する。推進用電動機30が必要とする電力は、推進指示部8の加速指示に対応した出力増加をするために必要とする電力である。
 制御装置60は、図示しない中央処理装置と、図示しない記憶装置とを有するコンピュータで構成されている。中央処理装置は、制御プログラムに基づいて演算処理を行う。記憶装置は、プログラム及び演算に関するデータを記憶する。
 エンジン制御部61と、発電制御部62と、推進制御部63と、ビークル統合制御部64とは、図示しないコンピュータとコンピュータで実行される制御プログラムとによって実現される。従って、以降説明する、エンジン制御部61と、発電制御部62と、推進制御部63と、ビークル統合制御部64とのそれぞれによる動作は、制御装置60の動作ということができる。なお、エンジン制御部61と、発電制御部62と、推進制御部63と、ビークル統合制御部64とは、電気的に接続されており、例えば互いに異なる装置として互いに離れた位置に構成されてもよく、また、一体に構成されるものであってもよい。
 次に、本実施形態に係るビークル1の制御装置60による動作について詳細に説明する。推進用電動機30は、エネルギー貯蔵装置4及び/又は発電用電動機20から電力の供給を受ける。例えば、加速指示によって推進用電動機30から出力する目標パワーの増加が求められた場合、制御装置60は目標パワーに向けてエネルギー貯蔵装置4及び発電用電動機20から推進用電動機30に供給する電力を増大する。これにより、制御装置60は、推進用電動機30から出力されるパワーを増加させる。
 特に、急な加速指示がある場合、制御装置60は、エンジン10から出力されるパワーを増加させる。エンジン10から出力されるパワーを増加させると、発電用電動機20による発電量が増加するため、発電用電動機20から推進用電動機30に供給する電力が増加する。これにより、推進用電動機30は、加速指示があった時に目標パワーを出力することができる。しかし、発電ユニットGUのエンジン10の回転速度によっては、加速指示に対応した電力を推進用電動機に供給するためのパワーを出力できない、又は電力を推進用電動機に供給するためのパワーの出力が遅れてしまう可能性がある。特に、エンジン10のエンジン回転速度が低い場合、エンジン10は瞬時に目標パワーを出力できない、又はエンジン10からパワーの出力が出遅れてしまう。従って、このような場合、推進用電動機30は、加速指示に対して、加速指示に対応するパワーを出力できない、又は加速指示に対応するパワーの出力が遅れてしまうことになる。
 この時、制御装置60は、エネルギー貯蔵装置4の貯蔵電力を、加速指示があった時に推進用電動機30から目標パワーを出力するための電力として保持するように制御することが考えられる。エネルギー貯蔵装置に十分なエネルギー貯蔵量があれば、加速指示があった時にエネルギー貯蔵装置4から推進用電動機30に供給可能な貯蔵電力が増加するため、ビークル1は、燃費を悪化させずに出力の応答に再現性を持たせることができる。このようなエネルギー貯蔵は、例えば大きな容量を有するバッテリであれば十分可能である。しかし、ビークル1に搭載するエネルギー貯蔵装置であるバッテリは、できるだけ大型化しないことが望まれている。小型のエネルギー貯蔵装置は、エネルギー貯蔵装置の貯蔵電力を、常時、加速指示があった時のために保持しておくことは難しい。
 そこで、本実施形態においては、制御装置60が、電力の満充電容量からの減少量に応じて発電用電動機20の発電トルクを減少させることによりエンジン10のエンジン回転速度を増速する。この場合、エンジン10から出力されるトルクは減少するので、エンジン10から出力されるパワーは、例えば燃料の増大による回転速度の増速と比べて抑制される。
 ここで、エンジンにおいて、とある燃料供給量及びスロットル開度でのエンジンのパワーと、最大燃料供給量及びアクセル全開でのエンジンのパワーとの差を余裕駆動力と呼ぶ。即ち、余裕駆動力とは、加速指示の前の出力増加前時点のエンジンから出力されるパワーと、出力増加前時点における回転速度においてエンジンから出力可能な最大パワーとの差である。余裕駆動力は、瞬時に増加させることができるトルク余裕代を意味する。
 同一エンジンパワー条件下にある低回転かつ高負荷(スロットル高開度)と高回転かつ低負荷(スロットル低開度)の二つの条件で余裕駆動力を比較すると、前者より後者の方が大きい余裕駆動力を有する。このため、前者より後者の方が瞬時に出力可能なエンジンパワーが大きい。本実施形態のビークル1では、エネルギー貯蔵装置4の貯蔵電力が減少している場合は、加速指示より前にエンジン10のエンジン回転速度を増速する。従って、余裕駆動力が大きい。従って、エネルギー貯蔵装置4の貯蔵電力が減少している場合でも、加速指示があった時にエンジン10のエンジン回転速度の上昇を待たずに目標パワーを出力することができる。加速指示があった時は、エンジン10の回転速度は、予め増大しているため、余裕駆動力、即ち瞬時に増加させることのできるトルク余裕代が大きいからである。そのため、本実施形態のビークル1は、加速指示に対するビークルの加速の応答性が向上する。従って、エンジン10は加速指示に対するビークルの加速指示の応答性の再現性を有する。
 ここで、余裕駆動力について、図3を参照して説明する。図3は、本実施形態における、発電ユニットGUのエンジン10のエンジン回転速度と、エンジントルクとの関係を示す図である。パワーは、回転速度とトルクの積に比例する。
 余裕駆動力とは、あるエンジン回転速度及びあるエンジントルクから求まるエンジンパワーと、上記エンジン回転速度と同一の回転速度でエンジンから出力される最大の回転パワーとの差をいう。余裕駆動力とは、瞬時に増大可能なパワーを意味する。
 例えば、図3に示すようにエンジン10のスロットル弁SVのある開度におけるエンジン10の動作点X1では、エンジン回転速度がR2[rpm]であり、エンジントルクがT1[Nm]である(動作点X1)。この時、エンジン回転速度がR2[rpm]のまま、スロットル弁SVの開度を最大にすると、エンジントルクがT8[Nm]まで上がる(動作点X4)。従って、この時の余裕駆動力は、P4(=T8×R2×α)[W]からP1(=T1×R2×α)[W]を引いたP4-P1である。P4-P1の値は、(T8-T1)×R2×α[W]である(αは、[rpm]×[Nm]から[W]への補正値となる定数である)。
 ここで、エンジン10の余裕駆動力は、エンジン回転速度によって異なる。少なくともエンジンが最大出力を生じる回転速度Rmax以下のエンジン回転速度の領域において、余裕駆動力は、エンジン回転速度が低いほど小さくなる傾向を有する。これは、スロットル弁の最大開度におけるエンジンパワーが、図3のWide-Open-Throttle(以下、WOTとする。)曲線W1により制限を受けているからである。WOT曲線とは、スロットル弁を全開にして燃料の供給を最大にした場合に、エンジン自体が出力できるエンジン回転速度とエンジントルクとの関係を表す曲線である。ある走行状態(あるエンジン回転速度)において、スロットル弁を全開にして燃料の供給を最大にしたとしても、エンジントルクがWOT曲線W1を超えることはない。WOT曲線は、個々のエンジンそれぞれが有する固有の特性である。以降の説明でも、エンジン回転速度がエンジン最大出力回転速度Rmax以下の範囲にある場合について説明する。
 例えば、あるエンジン条件下において、エンジン回転速度がR1[rpm]でエンジントルクがT3[Nm]の時の動作点を、動作点Y1とする。また、エンジン回転速度がR2[rpm]でエンジントルクがT1[Nm]の時の動作点を、動作点X1とする。この時、動作点Y1におけるエンジンパワーと、動作点X1におけるエンジンパワーは、ともにP1[W]である(図3において破線P1により表している)。P1で指示される破線は、パワーP1が得られる速度とトルクの組合せを表している。P1で指示される破線は、等出力線である。P2,P4で指示される破線は、パワーP1とは異なるパワーが得られる等出力線である。
 動作点X1の時にスロットル弁を全開にすると、エンジンパワーがP1からP4まで上昇する(動作点X4)。これに対し、動作点Y1の時にスロットル弁SVを全開にすると、エンジン10が出力するパワーは、WOT曲線W1と重なるP2で頭打ちとなる(動作点Y2)。この時、エンジントルクは、T6で頭打ちとなる。従って、動作点Y1においては、エンジン10のエンジンパワーは動作点X1の時ほど上がらない。従って、推進指示部8の加速指示に対するエンジンパワーの増大の応答性が低下してしまう。
 このことから、低回転かつ高負荷(スロットル高開度)と高回転かつ低負荷(スロットル低開度)の2つの条件下では、互いに等しいパワーが出力されている場合、前者より後者の方が、余裕駆動力が大きいといえる。このため、前者より後者の方が、スロットル弁の開きに応じて瞬時に出力可能なエンジンパワーが大きい。つまり、エンジン回転速度が低い場合における加速指示の応答性は、エンジン回転速度が高い場合の加速指示の応答性ほど高くない。なお、瞬時に出力可能なエンジンパワーとは、スロットル弁の開きに応じて、エンジン回転速度の増大を待つことなしに出力可能なエンジンパワーである。
 本実施形態のビークル1は、エンジン10から出力されるパワーを発電用電動機20により電力に変換する。ビークル1は、発電用電動機20で変換した電力を、エネルギー貯蔵装置4に貯蔵された貯蔵電力とともに推進用電動機30に供給する。ビークル1では、エンジン回転速度が低い場合において推進指示部8を最大位置まで操作した時に、エネルギー貯蔵装置4から推進用電動機30に電力が供給される。エンジン回転数が低いと、余裕駆動力が小さいため、発電用電動機により変換される電力も小さい。発電用電動機20から推進用電動機30に供給される電力の不足分がエネルギー貯蔵装置4から供給されることによって、推進用電動機30の出力するパワーを増加させる。これにより、加速指示に対するビークル1の加速の応答性が向上する。
 加速指示に対する出力の応答に再現性を持たせる場合、最大時目標駆動電力(A)を設定することによって、加速指示による出力の最大要求時にどのくらいエネルギー貯蔵装置による貯蔵電力の供給が必要になるかが明確になる。最大時目標駆動電力(A)は、スロットル弁を全開された時に、エンジン回転速度の増大を待つことなくエンジンから出力可能なパワーを発電用電動機により変換した電力と、エネルギー貯蔵装置が出力可能な貯蔵電力との合計の目標値である。
 これに対し、駆動上限電力は、エンジン回転速度の増大を待つことなく現在エンジンから出力可能なパワーを変換した電力と、エネルギー貯蔵装置が出力可能な貯蔵電力との合計の電力である。駆動上限電力は、現在のエンジン10の能力を示している。もしも、最大時目標駆動電力(A)が駆動上限電力と同じ又は下回る場合、スロットル弁が全開になる時、少なくとも最大時目標駆動電力(A)に応じたパワーが推進用電動機30から出力される。
 最大時目標駆動電力は、現在のビークルの車速、及び現在のスロットル弁を開度に応じて設定される。
 駆動ユニットの推進用電動機は、発電用電動機及び/又はエネルギー貯蔵装置から電力の供給を受けてパワーを出力する。このため、推進用電動機の出力するパワーはエネルギー貯蔵装置のエネルギー貯蔵状態に影響を受けやすい。つまり、推進用電動機の出力可能な上限のパワーは、充電状態に影響を受けやすい。例えば、アクセルグリップを最大位置まで操作した時にエネルギー貯蔵装置のエネルギー貯蔵量が少ないと、発電用電動機及び/又はエネルギー貯蔵装置から推進用電動機に供給される電力が不足する。従って、推進用電動機は十分な駆動力を得られない。
 本実施形態のビークル1では、加速指示の前(定常走行をしている時)にエネルギー貯蔵装置4のエネルギー貯蔵量に応じてエンジンの回転速度を増速することにより、上述した課題を解決している。具体的には、制御装置60が図3に記載したフローチャートに示す動作を行うことにより、上述した課題を解決している。
 次に、本実施形態のビークル1に搭載された制御装置60の動作について説明する。図3は、ビークル1の制御装置60の動作を説明するフローチャートである。図3のフローチャートに示す動作は、ビークルの走行中に実行される。まず、ステップS11において、制御装置60の最大時目標駆動電力取得部641が、推進用電動機30の最大時目標駆動電力(A)を取得する。制御装置60の最大時目標駆動電力取得部641は、車速センサ3dから取得した車速、及び推進指示部8の位置に基づいて最大時目標駆動電力(A)を演算する。
 次に、ステップS12において、制御装置60の供給可能貯蔵電力判定部642が、エネルギー貯蔵装置4の供給可能貯蔵電力(B)を取得する。エネルギー貯蔵装置4の供給可能貯蔵電力(B)は、エネルギー貯蔵装置4のエネルギー貯蔵量から算出する。詳細には、例えば制御装置60の供給可能貯蔵電力判定部642が、電流・電圧センサ65から出力される検出結果に基づいてエネルギー貯蔵装置4の電圧値及び電流値を取得する。供給可能貯蔵電力判定部642は、取得した電流値を積算することで、エネルギー貯蔵装置4のエネルギー貯蔵量(バッテリ充電量:SOC)を取得する。供給可能貯蔵電力判定部642は、取得したエネルギー貯蔵装置4のSOCから供給可能貯蔵電力(B)を算出する。供給可能貯蔵電力(B)の算出には、制御装置60の記憶装置に記憶された、エネルギー貯蔵装置4のエネルギー貯蔵量(バッテリ充電量:SOC)と、エネルギー貯蔵装置4から供給可能な貯蔵電力との関係を有する参照テーブルを使用する。
 図5は、バッテリの満充電容量と、供給可能貯蔵電力(B)との関係を示す図である。供給可能貯蔵電力(B)は、取得したバッテリ充電量(SOC)に応じて決まる、バッテリが推進用電動機に供給できる上限の電力の値である。バッテリ充電量(SOC)が低い状態、つまり、バッテリの満充電容量からの減少量が大きい場合、供給可能貯蔵電力(B)も小さくなる。
 但し、供給可能貯蔵電力(B)は、電圧やバッテリ温度などの影響を受ける場合がある。そのため、本実施形態において、エネルギー貯蔵装置4の供給可能貯蔵電力(B)の取得は、エネルギー貯蔵装置4(バッテリ)の電圧値及び電流値を取得してバッテリ充電量(SOC)を算出するだけに限られない。供給可能貯蔵電力(B)の取得は、バッテリ充電量(SOC)を算出することに加え、例えばエネルギー貯蔵装置4の温度等を計測した値による補正も含むことが可能である。この場合、図5のグラフの値が修正されて使用される。
 図3のステップS13において、制御装置60のエンジン供給可能電力判定部643が、エンジン10の現回転速度でのエンジン供給可能電力(C)を取得する。エンジン10の現回転速度でのエンジン供給可能電力(C)は、エンジン10が現回転速度において瞬時に(回転速度の増大を待つことなしに)出力できる最大のパワーを供給された発電用電動機20が出力する電力の値である。つまり、エンジン供給可能電力(C)は、エンジン10の現回転速度における能力を表している。エンジン供給可能電力(C)は、WOT曲線W1で現在のエンジン回転速度に対応するエンジントルクから求めることができる。制御装置60の記憶装置には、WOT曲線W1におけるエンジン回転速度とエンジントルクとの関係を有する参照テーブルが記憶されている。エンジン供給可能電力判定部643は、記憶装置に記憶された参照テーブルを使用して、エンジン10の現回転速度でのエンジン供給可能電力(C)を取得する。
 ここで、ステップS14において、制御装置60のビークル統合制御部64が、最大時目標駆動電力(A)を、エネルギー貯蔵装置4の供給可能貯蔵電力(B)と現在のエンジン回転速度でのエンジン供給可能電力(C)との合計値に対し比較する。言い換えると、ビークル統合制御部64は、例えばスロットル弁が全開になった時に、駆動ユニットDUの最大時目標駆動電力(A)を得ることができるかどうかを判断する。
 上記電力(A)が電力(B)と電力(C)との合計値に対し等しいか、又は小さい場合(S14でYes)、駆動ユニットDUは、推進指示部8における最大の操作量の操作に応じて瞬時に最大時目標駆動電力を推進用電動機30に供給することが可能である。ステップS14において、上記の電力(A)が、電力(B)と電力(C)との合計値と比べ等しいか又は小さいと判定された場合(S14でYes)、動作はステップS11に戻る。
 これに対し、上記の電力(A)が、電力(B)と電力(C)との合計値よりも大きい場合(S14でNo)、駆動ユニットDUは、スロットル弁が全開であっても、瞬時に最大時目標駆動電力を推進用電動機30に供給することができない。これは、エネルギー貯蔵装置4の供給可能貯蔵電力(B)が減少した時、すなわちエネルギー貯蔵装置であるバッテリのSOCが低い場合に生じる現象である。SOCが減少している場合、エネルギー貯蔵装置4の供給可能貯蔵電力(B)が小さい。従って、推進指示部8の操作量を最大にした時に、エンジン10から出力される最大パワーを発電用電動機20が電力に変換したとしても、推進用電動機30は、操作量に対応する電力の供給を受けることができない。
 ステップS14において、上記の電力(A)が、電力(B)と電力(C)との合計値よりも大きいと判定されるとする(S14でNo)。この場合、ステップS15において、ビークル統合制御部64の目標エンジン回転速度/トルク取得部644がエンジン10の目標エンジン回転速度及び目標エンジントルクを取得する。
 ステップS15での目標エンジン回転速度の取得は、以下のように行われる。まず目標エンジン回転速度/トルク取得部644は、ステップS11において取得した電力(A)とステップS12において取得した電力(B)との差を求める。求めた値を修正電力(D)とする。次に、目標エンジン回転速度/トルク取得部644は、発電用電動機20が修正電力(D)を出力するためにエンジン10が出力すべきパワー(修正パワー)を算出する。目標エンジン回転速度/トルク取得部644は、図3のグラフにおいて、修正パワーの等出力線とWOT曲線W1との交点に対応するエンジン回転速度を求める。求めたエンジン回転速度が、目標エンジン回転速度となる。
 ステップS15での目標エンジントルクの取得は、以下のように行われる。目標エンジン回転速度/トルク取得部644が、図3のフローチャートにおいて、算出した目標エンジン回転速度の等回転速度線と、現在のエンジン10の出力するパワーの等出力線との交点に対応するエンジントルクを求める。求めたエンジントルクが、目標エンジントルクとなる。
 ステップS16において、制御装置60は、エンジン10のエンジン回転速度及びエンジントルクを、算出した目標エンジン回転速度及び目標エンジントルクに応じて変更する。具体的には、発電制御部62が、発電用電動機20から出力される負荷トルクを、算出した目標エンジントルクに合わせるよう変更することにより、エンジン10のエンジン回転速度を変更する。ステップS16の処理によって、エンジン10のエンジン回転速度は、SOCが満充電状態の場合に算出されるエンジン回転数と比べて大きくなるように増大する。これに対し、エンジン10のトルクは、SOCが満充電状態の場合に算出されるエンジントルクと比べて小さくなるように減少する。つまり、発電制御部62は、発電用電動機20の負荷トルクを減少することによりエンジン10のエンジン回転速度を増速する。エンジン回転速度が増速することによって、余裕駆動力が増大する。
 ステップS16において発電制御部62がエンジン10のエンジン回転速度及びエンジントルクを変更したのち、動作はステップS11に戻る。
 図3のフローチャートに示す動作によって、制御装置60が、加速指示よりも前に、エネルギー貯蔵装置4のエネルギー貯蔵量に応じてエンジン10のエンジン回転速度を変更する。この結果、加速指示の前時点の供給可能貯蔵電力(B)と、加速指示の前時点のエンジン供給可能電力(C)との和が、エネルギー貯蔵装置4のエネルギー貯蔵量に関わらず、最大時目標駆動電力(A)となる。従って、加速指示があった時、エネルギー貯蔵装置4のエネルギー貯蔵量に関わらず、推進用電動機30により出力されるパワーを、加速指示に応じた目標パワーまで増大できる。
 図6は、エンジン10のエンジン回転速度(発電用電動機20の回転速度)及びエンジントルク(発電用電動機20の負荷トルク)と、発電用電動機20の出力する電力との関係の一例を示す図である。図3のフローチャートを参照して説明した動作を、図6に示すエンジン回転速度とエンジントルクの例とともに説明する。ここで、図6の破線の曲線E1~E4は、それぞれエンジン10の出力するパワーを、発電用電動機20により電力に変換した場合の電力がE1~E4になる点の集まり(等電力線)である。なお、図6の等電力線E1~E4は、それぞれ図3の等出力線P1~P4に対応している。
 例えば、図6に示すビークル1のクランク軸15の状態がY1の時、ステップS11(図4)において取得された最大時目標駆動電力(A)はE4[W]である例を考える。ステップS14において取得された、現在のエンジン回転速度R1でのエンジン供給可能電力(C)はT6[Nm]×R1[rpm]×α×β=E2である(動作点Y2)。ここで、αは、[rpm]×[Nm]から[W]への補正値となる定数である。また、βは、発電用電動機20による回転パワーから電力への変換効率である。つまり、βは、エンジン10から出力される回転パワーを発電用電動機20に変換した場合に、発電用電動機20から出力される電力の値を、エンジン10から出力される回転パワーの値で除した値である。
 ここで、エネルギー貯蔵装置4であるバッテリのSOCが異なる3つの場合について説明する。場合1は、エネルギー貯蔵装置4のSOCが高いためにエネルギー貯蔵装置4の供給可能貯蔵電力(B)がE4-E2[W]である場合である。場合2は、エネルギー貯蔵装置4のSOCが多少減少したためにエネルギー貯蔵装置4の供給可能貯蔵電力(B)がE4-E3[W]である場合である。場合3は、エネルギー貯蔵装置4のSOCが非常に低いためにエネルギー貯蔵装置4の供給可能貯蔵電力(B)が0[W]の場合である。
 1.場合1
 ステップS14において、ビークル統合制御部64がエネルギー貯蔵装置4の供給可能貯蔵電力(B)とエンジン10のエンジン供給可能電力(C)との和を求める。
B+C=(E4-E2)[W]+E2[W]=E4[W]=A
この結果、ステップS14の判断はYesとなる。従って動作はステップS15に進むことはなく、エンジン10のエンジン回転速度を変更することもない。
 この時、スロットル弁が全開になれば、エネルギー貯蔵装置4からの電力E4-E2[W]と、発電用電動機20からの電力E2[W]とが(矢印H1参照)、ともに瞬時に推進用電動機30に供給される。従って、推進用電動機30に瞬時に供給される電力は、E4[W](=A)となる。
 2.場合2
 ステップS14において、ビークル統合制御部64がエネルギー貯蔵装置4の供給可能貯蔵電力(B)とエンジン10のエンジン供給可能電力(C)との和を求める。
B+C=(E4-E3)[W]+E2[W]=E4-E3+E2<A
この結果、ステップS14の判断はNoとなる。この時、スロットル弁が全開になっても、エネルギー貯蔵装置4及び発電用電動機20は推進用電動機30に瞬時にE4[W](=A)の電力を供給することができない。この場合、加速指示の前に制御がステップS15に進み、制御装置60が目標エンジン回転速度及び目標エンジントルクを取得する。
 具体的には、A=E4[W]であり、B=E4-E3[W]であるため、修正電力(D)は、A-B=E3[W]となる。この時、破線で表されるE3の等電力線とWOT曲線W1との交点におけるエンジン回転速度はR2[rpm]である。従って、目標エンジン回転速度は、R2[rpm]である。また、破線で表される、目標エンジン回転速度であるR2の等回転速度線と、破線で表されるE1の等電力線との交点におけるエンジントルクはT2[rpm]である。従って、目標エンジントルクは、T2[rpm]となる。
 ステップS16において、制御装置60は、エンジン10のエンジン回転速度を、算出した目標エンジン回転速度になるようにエンジン10及び発電用電動機20を制御する。発電制御部62は、発電用電動機20の負荷トルクT3を目標エンジントルクT2になるように発電用電動機20を制御することにより、エンジン10のエンジン回転速度をR1[rpm]からR2[rpm]にする。すなわち、エンジン10の状態が動作点Y1から動作点Z1に移行する(矢印H2参照)。このように、制御装置60は、エンジン回転速度及びエンジントルクを調整することによって、エンジン10の出力可能なエンジン上限パワーが増大する。つまり、余裕駆動力がH1からH3に増大する。
 再びステップS11において電力(A)を取得し、ステップS12において電力(B)を取得したのち、ステップS13において、現在のエンジン回転速度でのエンジン供給可能電力(C)を求める。この時、
C=E3[W]
となる。その後、ステップS14において、ビークル統合制御部64が、供給可能貯蔵電力(B)とエンジン供給可能電力(C)の和を求める。
B+C=E4-E3[W]+E3[W]=E4[W]
B+C=E4[W]=A
この結果、ステップS14の判断はYesとなる。従って動作はステップS15に進むことはなく、エンジン10のエンジン回転速度を変更することもない。
 この時、スロットル弁が全開になれば、エネルギー貯蔵装置4からの電力E4-E3[W]と、発電用電動機20からの電力E3[W]とが(矢印H3参照)、ともに瞬時に推進用電動機30に供給される。従って、推進用電動機30に瞬時に供給される電力は、E4[W](=A)となる。つまり、場合1と同様の応答性が再現されている。
 3.場合3
 ステップS14において、ビークル統合制御部64がエネルギー貯蔵装置4の供給可能貯蔵電力(B)とエンジン10のエンジン供給可能電力(C)の和を求める。
B+C=0[W]+E2[W]=E2[W]<A
この結果、ステップS14の判断はNoとなる。この時、加速指示によってスロットル弁が全開になっても、エネルギー貯蔵装置4及び発電用電動機20は推進用電動機30に瞬時にE4[W](=A)の電力を供給することができない。この場合、加速指示の前に制御がステップS15に進み、制御装置60が目標エンジン回転速度及び目標エンジントルクを取得する。
 具体的には、A=E4[W]であり、B=0であるため、修正電力(D)=最大時目標駆動電力(A)=E4[W]となる。この時、破線で表されるE4の等電力線とWOT曲線W1との交点におけるエンジン回転速度はR3[rpm]である。また、破線で表される、目標エンジン回転速度であるR3の等回転速度線と、破線で表されるE1の等電力線との交点におけるエンジントルクはT1[Nm]である。従って、目標エンジントルクは、T1[Nm]となる。
 ステップS16において、制御装置60は、エンジン10のエンジン回転速度を、算出した目標エンジン回転速度になるようにエンジン10及び発電用電動機20を制御する。発電制御部62は、発電用電動機20の負荷トルクを目標エンジントルクT1になるように発電用電動機20を制御することにより、エンジン10のエンジン回転速度をR1[rpm]からR3[rpm]にする。すなわち、エンジン10の状態が動作点Y1から動作点X1に移行する(矢印H4参照)。このように、制御装置60は、エンジン回転速度を調整することによって、エンジン10の出力可能なエンジン上限パワーが増大する。つまり、余裕駆動力がH1からH5に増大する。
 次に、ステップS17において、制御装置60の発電制御部62が、発電用電動機20の負荷トルクを微調整(減少)する。発電用電動機20の負荷トルクを微調整することにより、発電用電動機20の変換する電力の値がエンジン回転速度を変更する前の電力の値E1[W]に戻るようにする。すなわち、エンジン10の状態が動作点Y1から動作点Z2に移行する(矢印H4参照)。
 再びステップS11に戻り、電力(A)を取得し、ステップS12において、電力(B)を取得したのち、ステップS13において、現在のエンジン回転速度でのエンジン供給可能電力(C)を求める。この時、
C=E4[W]
となる。その後、ステップS14において、ビークル統合制御部64が供給可能貯蔵電力(B)とエンジン供給可能電力(C)の和を求める。
B+C=0[W]+E4[W]
0[W]+E4[W]=A
この結果、ステップS14の判断はYesとなる。従ってステップS15に進むことはなく、エンジン10のエンジン回転速度を変更することもない。
 この時、スロットル弁が全開になれば、発電用電動機20からE4[W]の電力が(矢印H1参照)瞬時に供給される。従って、推進用電動機30に瞬時に供給される電力は、E4[W](=A)となる(矢印H5参照)。つまり、場合1と同様の応答性が再現されている。
 次に、上述した加速指示があった時の制御装置60の動作について説明する。図7は、ビークル1において、加速指示があった時の制御装置60の動作を説明するフローチャートである。
 図7に示す動作はビークルの走行中に実行される。図7に示す動作はアクセルグリップが操作される場合及び操作されない場合の双方で実行される。まず、ステップS21において、制御装置60のビークル統合制御部64の目標駆動電力取得部645が、推進指示部8からの加速指示の有無を判断する。具体的には、推進指示部8の位置情報が取得される。
 ステップS22において、目標駆動電力取得部645は、目標駆動電力(F)を算出する。目標駆動電力(F)とは、加速指示に応じた出力をするために、推進用電動機30が必要とする駆動電力である。目標駆動電力(F)は、例えば、加速指示に含まれる要求パワーによって決められる。
 ステップS23において、発電制御部62は、エンジン供給電力(H)を算出する。エンジン供給電力(H)とは、推進用電動機30が目標駆動電力(F)を出力するように、発電用電動機20から推進用電動機30に供給される電力である。エンジン供給電力(H)は、目標駆動電力(F)と、供給貯蔵電力(G)と、エンジン供給可能電力(C)によって決定される。ここで、供給貯蔵電力(G)とは、推進用電動機30が目標駆動電力(F)を出力するように、エネルギー貯蔵装置4から推進用電動機30に供給される電力である。発電制御部62は、エンジン供給電力(H)と供給貯蔵電力(G)との合計が、目標駆動電力(F)になるようなエンジン供給電力(H)を算出する。但し、エンジン供給電力(H)は、エンジン供給可能電力(C)を超えることはできず、また、供給貯蔵電力(G)は、供給可能貯蔵電力(B)を超えることはできない。
 ここで、供給貯蔵電力(G)と、エンジン供給電力(H)との比は、ビークル1の状態又は運転者の選択に応じて設定できる。例えば、エネルギー貯蔵装置4の貯蔵電力が少ない時、又は運転者がエネルギー貯蔵装置4のエネルギーの消費を抑えたい時は、供給貯蔵電力(G)を増加させて、目標駆動電力(F)に到達するようにする。これに対し、エンジン10の燃料が少ない時、又は運転者がエンジン10の燃料消費を抑えたい時は、エンジン供給電力(H)を抑え、供給貯蔵電力(G)が多めに推進用電動機30に供給されるようにできる。
 ステップS24において、エンジン制御部61は、エンジン出力を調整する。詳細には、エンジン制御部61は、エンジン10が、エンジン供給電力(H)を出力するように、燃料噴射装置18による燃料の供給量及びスロットル弁SVの開度の少なくとも何れかを調整する。これにより、エンジン10から出力されるパワーが変更され、発電用電動機20が、エンジン供給電力(H)を推進用電動機30に供給できる。
 ステップS25において、推進制御部63は、推進用電動機30に供給する電力を増加する。詳細には、推進制御部63が、インバータ80のスイッチング部のそれぞれのオン・オフ動作を制御することによって、推進用電動機30に供給する電力を増加させる。推進制御部63は、推進用電動機30に目標駆動電力(F)が供給されるようにする。
 ここで、図8a~図8cを参照して、図7のフローチャートによる動作を、実例とともに説明する。図8a~図8cは、図6に示す動作点Y1において、加速指示があった時に、加速指示の量が異なる3つの場合について、エンジン出力、発電用電動機20から供給される電力、エネルギー貯蔵装置の貯蔵電力及び目標駆動電力との関係を示す図である。図8a~図8cにおいて、例えば、現在のエンジン10の出力はP1[W]である。この時、発電用電動機20がエンジン10のパワーを受けて推進用電動機30に供給する電力は、E1(=P1×β)である。また、現在のエンジン10のエンジン回転速度がR1[rpm]であるため、エンジン10の余裕駆動力はP2[W]であり、エンジン10の供給可能電力はE2[W]である。また、エネルギー貯蔵装置4の供給可能貯蔵電力(B)は、E4-E2[W]である。さらに、最大時目標駆動電力(A)は、E4[W]である。
 ここで、ステップS21における加速指示を、加速指示の量が異なる3つの場合で説明する。場合1は、操作による推進指示部8の位置が最大位置の40%であった場合である(図8a)。場合2は、操作による推進指示部8の位置が最大位置の80%であった場合である(図8b)。場合3は、操作による推進指示部8の位置が最大位置の100%であった場合である(図8c)。
 1.場合1(図8a)
 ステップS21において、推進指示部8から受信した加速指示は、推進指示部8の最大位置の40%である。制御装置60のビークル統合制御部64は、ステップS22において、加速指示に応じた出力をするために推進用電動機30が必要な駆動電力である目標駆動電力(F)を設定する。ここで、場合1においては、ビークル統合制御部64は、目標駆動電力(F)が、例えばE2(=P2×β)[W]必要であると判断する。
 ステップS23において、制御装置60の発電制御部62は、エンジン供給電力(H)を算出する。エンジン供給電力(H)は、エネルギー貯蔵装置4のエネルギー貯蔵状態、エンジン10の燃料残量、加速指示の要求パワーなどに応じて設定される。ここで、現在、エンジン10が発電用電動機20を介して供給している電力はE1(=P1×β)[W]である。また、現在のエンジン10のエンジン回転速度がR1[rpm]であるため、エンジン10の供給可能電力はE2[W]である。従って、エンジン供給電力(H)は、E1~E2[W]の間で設定可能である。例えば、供給貯蔵電力をG(<E4-E2)[W]として、エンジン供給電力(H)はE2-G[W]と設定する。
 ステップS24において、制御装置60のエンジン制御部61は、燃料噴射装置18による燃料の供給量の増加及びスロットル弁SVの増開の少なくとも何れかを行う。エンジン制御部61は、燃料噴射装置18による燃料の供給量の増加及びスロットル弁SVの増開の少なくとも何れかを行うと、発電用電動機20がエンジン10のパワーを受けて推進用電動機30に供給する電力は、E1[W]からE2-G[W]まで上がる。
 ステップS25において、制御装置60の推進制御部63は、インバータ80のスイッチング部のそれぞれのオン・オフ動作を制御することによって、推進用電動機30に供給する電力を増加させる。制御装置60の推進制御部63は、推進用電動機30に供給する電力を増加させることにより、推進用電動機30に目標駆動電力(F)が供給されるようにする。この時、エンジン供給電力(H)はE2-G[W]であるため、エネルギー貯蔵装置4からは、F-(E2-G)=G[W]の電力が推進用電動機30に供給される。推進用電動機30に目標駆動電力(F)が供給されたのち、動作はステップS21に戻る。
 なお、場合1において、例えば、エネルギー貯蔵装置4のエネルギー貯蔵量が少なく、エンジン10の燃料残量が多い場合、また、運転者がエネルギー貯蔵装置のエネルギー消費を抑えたい場合、エンジン供給電力(H)は、E2(=F)[W]に設定できる。エンジン供給可能電力(C)がE3(>F)[W]であるため、エンジン10のみから目標駆動電力(F)を供給できるからである。エンジン供給電力(H)を増加させることにより、エネルギー貯蔵装置4の貯蔵残量を減少させないようにすることができる。これに対し、エネルギー貯蔵装置4のエネルギー貯蔵量が多く、エンジン10の燃料残量が少ない場合、また、運転者が、エンジン10の燃費を抑えたい場合、エンジン供給電力(H)は、E1[W]に設定できる。エネルギー貯蔵装置4のエネルギー貯蔵量が多ければ、エネルギー貯蔵装置4のみから目標駆動電力(F)を供給できる場合があるからである。エンジン供給電力(H)が、E1[W]と設定された場合、ステップS24において、エンジン制御部61は、燃料噴射装置18による燃料の供給量は増加させず、スロットル弁SVの増開も行わない。
 2.場合2(図8b)
 ステップS21において、推進指示部8から受信した加速指示は、推進指示部8の最大位置の80%である。制御装置60のビークル統合制御部64は、ステップS22において、加速指示に応じた駆動電力(目標駆動電力(F))が、例えばE3(=P3×β)[W]必要であると判断する。
 ステップS23において、制御装置60の発電制御部62は、エンジン供給電力(H)を算出する。ここで、現在、エンジン10が発電用電動機20を介して供給している電力はE1(=P1×β)[W]である。また、現在のエンジン10のエンジン回転速度がR1[rpm]であるため、エンジン10の供給可能電力はE2[W]である。従って、エンジン供給電力(H)は、E1~E2[W]の間で設定可能である。例えば、供給貯蔵電力をG(<B)として、エンジン供給電力(H)はE3-G(>E2)[W]と設定する。
 ステップS24において、制御装置60のエンジン制御部61は、燃料噴射装置18による燃料の供給量の増加及びスロットル弁SVの増開の少なくとも何れかを行う。エンジン制御部61は、燃料噴射装置18による燃料の供給量の増加及びスロットル弁SVの増開の少なくとも何れかを行うと、発電用電動機20がエンジン10のパワーを受けて推進用電動機30に供給する電力は、E1[W]からE3-G[W]まで上がる。
 ステップS25において、制御装置60の推進制御部63は、インバータ80のスイッチング部のそれぞれのオン・オフ動作を制御することによって、推進用電動機30に供給する電力を増加させる。制御装置60の推進制御部63は、推進用電動機30に供給する電力を増加させることにより、推進用電動機30に目標駆動電力(F)が供給されるようにする。この時、エンジン供給電力(H)はE3-G[W]であるため、エネルギー貯蔵装置4からは、F-(E3-G)=G[W]の電力が推進用電動機30に供給される。推進用電動機30に目標駆動電力(F)が供給されたのち、動作はステップS21に戻る。
 なお、エネルギー貯蔵装置4のエネルギー貯蔵量が少なく、エンジン10の燃料残量が多い場合、また、運転者がエネルギー貯蔵装置のエネルギー消費を抑えたい場合、エンジン供給電力(H)は、E2[W]に設定できる。エンジン供給可能電力(C)がE2[W]であるため、エンジン供給可能電力(C)の目標駆動電力(F)に対する電力の不足分のみエネルギー貯蔵装置4から取得できれば、目標駆動電力(F)を推進用電動機30に供給できるからである。エンジン供給電力(H)を増加させることにより、エネルギー貯蔵装置4の貯蔵残量を減少させないようにすることができるからである。これに対し、エネルギー貯蔵装置4のエネルギー貯蔵量が多く、エンジン10の燃料残量が少ない場合、また、運転者がエンジン10の燃費を抑えたい場合、エンジン供給電力(H)は、E1[W]に設定できる。エネルギー貯蔵装置4のエネルギー貯蔵量が多ければ、エネルギー貯蔵装置4から目標駆動電力(F)を供給できる場合があるからである。
 3.場合3(図8c)
 ステップS21において、推進指示部8から受信した加速指示は、推進指示部8の最大位置の100%である。制御装置60のビークル統合制御部64は、ステップS22において、加速指示に応じた駆動電力(目標駆動電力(F))が、例えばE4(=P4×β)[W]必要であると判断する。
 ステップS23において、制御装置60の発電制御部62は、エンジン供給電力(H)を算出する。ここで、現在、エンジン10が発電用電動機20を介して供給している電力はE1(=P1×β)[W]である。また、現在のエンジン10のエンジン回転速度がR1[rpm]であるため、エンジン供給可能電力(C)はE2[W]である。場合3においては、目標駆動電力(F)がE4[W]であり、供給可能貯蔵電力はE4-E2[W]であるため、エンジン供給電力(H)はE4-(E4-E2)=E2[W]と設定する。
 ステップS24において、制御装置60のエンジン制御部61は、燃料噴射装置18による燃料の供給量の増加及びスロットル弁SVの増開の少なくとも何れかを行う。エンジン制御部61は、燃料噴射装置18による燃料の供給量の増加及びスロットル弁SVの増開の少なくとも何れかを行った場合に、発電用電動機20がエンジン10のパワーを受けて推進用電動機30に供給する電力は、E1からE2まで上がる。
 ステップS25において、制御装置60の推進制御部63は、インバータ80のスイッチング部のそれぞれのオン・オフ動作を制御することによって、推進用電動機30に供給する電力を増加させる。制御装置60の推進制御部63は、推進用電動機30に供給する電力を増加させることにより、推進用電動機30に目標駆動電力(F)が供給されるようにする。この時、エンジン供給電力(H)はE2[W]であるため、エネルギー貯蔵装置4からは、E4-E2[W]の電力が推進用電動機30に供給される。推進用電動機30に目標駆動電力(F)が供給されたのち、動作はステップS21に戻る。
 なお、場合3は、目標駆動電力(F)が、最大時目標駆動電力(A)と同等であるため、発電用電動機から供給される出力及びエネルギー貯蔵装置から供給される電力が共に最大となる。従って、エンジンからはエンジン供給可能電力(C)が供給され、エネルギー貯蔵装置からは供給可能貯蔵電力(B)が推進用電動機30に供給される。この時、エンジン10は、現在の回転数での最大出力を出力するため、燃料供給量及びスロットル開度が最大になる。
 以上、本実施形態では、図6に示すエンジン10の動作点Y1を起点として,エンジンの状態を動作点Y1から変更する動作を説明したが、図7のフローチャートに示す動作は、例えば図6に示す動作点Z1又はX1から開始する動作にも適用される。
 本実施形態においては、図4の動作中に、図7のステップS21のように推進指示部8が加速指示を出力した場合、エネルギー貯蔵装置4のエネルギー貯蔵量に関わらず、推進用電動機30に、加速指示に応じた電力が供給される(図7のS25)。
 これは、制御装置60が、加速指示よりも前に、少なくともエネルギー貯蔵装置4のエネルギー貯蔵量に応じてエンジン10のエンジン回転速度を変更しているからである(図4のS15~S16)。そうすると、加速指示を契機として、発電用電動機20及び/又はエネルギー貯蔵装置4により推進用電動機30に供給される貯蔵電力が、エネルギー貯蔵装置4のエネルギー貯蔵量に関わらず加速指示に応じた目標駆動電力まで増大できる。
 例えば、制御装置60は、エネルギー貯蔵装置4及び/又は発電用電動機20により推進用電動機30に供給される電力が、最大加速指示に応じた最大時目標駆動電力まで増大できるようにエンジン10のエンジン回転速度を常に制御する。制御装置60は、エンジン10のエンジン回転速度を変更することによって余裕駆動力を増大する。
 このように、ビークル1は、エネルギー貯蔵装置4のエネルギー貯蔵状態に関わらず加速指示に対するビークルの出力の応答に再現性を有する。
 更に制御装置60は、加速指示の前時点における、エンジン10の余裕駆動力を発電用電動機20により変換した電力と、エネルギー貯蔵装置4から供給可能な貯蔵電力との和が、目標値となるようエンジン10のエンジン回転速度を制御する。目標値は、エネルギー貯蔵装置4のエネルギー貯蔵量に関わらず、推進指示部8の操作量及びビークル1の速度に応じて定まる。
 制御装置60は、推進指示部8の加速指示よりも前に、少なくともエネルギー貯蔵装置4のエネルギー貯蔵量に応じて発電用電動機20の負荷トルクを減少することによりエンジンの回転速度を増速する。
そのため、推進指示部8の加速指示の時点からエンジン10の回転速度が増速して特定の基準速度に達する時点までのエンジンの回転速度の変化量が、エネルギー貯蔵装置4のエネルギー貯蔵量に応じた程度小さくなる。即ち、制御装置60は、加速指示の時点からエンジン10の回転速度が増速して特定の基準速度に達する時点までのエンジンの回転速度の変化量が、エネルギー貯蔵装置のエネルギー貯蔵量に応じた程度小さくなるようエンジン及び発電用電動機を制御する。
 本実施形態では、加速指示よりも前にエンジン10の回転速度が増速しており、加速指示の時点からエンジン10の回転速度が特定の基準速度に達する時点までのエンジン10の回転速度の変化量が小さい。このため、エンジン10のクランク軸15の回転速度の出力増加に伴うイナーシャトルクによるパワーの消費は、エネルギー貯蔵装置4のエネルギー貯蔵量に応じた程度小さくなる。従って、ビークル1は、エネルギー貯蔵量が小さい場合でも、加速指示に対する出力増大の応答性を、目標に対して維持することができる。
 なお、本実施形態における出力上昇の準備については、エネルギー貯蔵装置4のエネルギー貯蔵量に応じて発電用電動機20の負荷トルクを減少することによりエンジン10の回転速度を増速する以外にも、下記の方法を行う場面があってもよい。例えば、
 エネルギー貯蔵装置4のエネルギー貯蔵量が少ない場合には、エネルギー貯蔵装置4のエネルギー貯蔵量に応じて、最大トルクを出力するようにしてエンジン10の回転速度を増速させる。また、エンジン10の最適燃費線上において、エネルギー貯蔵装置4のエネルギー貯蔵量に応じてエンジン10を動作させる。
 [変形例]
 以上、実施形態において、シリーズハイブリッド式のビークルについて説明したが、本実施形態は、シリーズ・パラレルハイブリッド式のビークルにも適用できる。シリーズ・パラレルハイブリッド式のビークルは、エンジンからの動力を、直接に推進器に伝達することができる。例えば、シリーズ・パラレルハイブリッド式のビークルにおいて、エンジンが、発電にのみ使用され、推進器が、エネルギー貯蔵装置及び/又は発電用電動機から電力の供給を受けた推進用電動機のみにより駆動される場合に、上述した実施形態を適用できる。
1  ビークル
2  車体
3b  推進器
4  エネルギー貯蔵装置
8  推進指示部
10  エンジン
11  クランクケース
12  シリンダ
13  ピストン
14  コネクティングロッド
15  クランク軸
16  シリンダヘッド
18  燃料噴射装置
19  点火プラグ
20  発電用電動機
21、31  ロータ
22、32  ステータ
24、34  ロータ位置検出装置
30  推進用電動機
60  制御装置
61  エンジン制御部
62  発電制御部
63  推進制御部
64  ビークル統合制御部
65  電流・電圧センサ
70  コンバータ
80  インバータ
90 駆動軸
GU  発電ユニット
DU  駆動ユニット
SV  スロットル弁

Claims (3)

  1. ビークルであって、
     回転するクランク軸を有し、燃焼によって生じるパワーを前記クランク軸のトルク及び回転速度として出力するエンジンと、
     前記クランク軸と連動するよう設けられ前記エンジンに駆動され発電する発電用電動機と、
     前記発電用電動機で発電された電力をエネルギーとして貯蔵するエネルギー貯蔵装置と、
     前記発電用電動機とは異なる、前記エネルギー貯蔵装置及び/又は前記発電用電動機からの電力の供給を受けてパワーを出力する、推進用電動機と、
     前記推進用電動機から出力されたパワーによって駆動される推進器と、
     前記エンジンと、前記推進用電動機と、前記発電用電動機とを制御する制御装置であって、加速指示に応じて前記推進用電動機に供給される電力を増大するよう前記エンジン及び前記発電用電動機を制御し、前記推進器が前記推進用電動機から出力されたパワーのみによって駆動される場合、前記エネルギー貯蔵装置のエネルギー貯蔵量に関わらずに、前記加速指示を契機として、前記エネルギー貯蔵装置及び/又は前記発電用電動機から供給される電力で駆動される前記推進用電動機により前記加速指示に応じた目標パワーを出力するように、前記加速指示よりも前に、少なくとも前記エネルギー貯蔵装置のエネルギー貯蔵量に応じて前記発電用電動機の負荷トルクを減少することによりエンジンの回転速度を増速する制御装置と、を備える。
  2.  請求項1に記載のビークルであって、
     前記制御装置は、前記加速指示の時点から前記エンジンの回転速度が増大して特定の基準速度に達する時点までの前記エンジンの回転速度の変化量が、前記エネルギー貯蔵装置のエネルギー貯蔵量に応じた程度小さくなるよう前記エンジン及び前記発電用電動機を制御する。
  3.  請求項2に記載のビークルであって、
     前記制御装置は、
     前記加速指示前時点における回転速度において前記エンジンから出力可能な最大パワーにより駆動される前記発電用電動機から出力される電力と、前記エネルギー貯蔵装置から供給される電力と、の和の電力を供給された前記推進用電動機が出力するパワーが、前記加速指示及び速度に応じて定まる目標値となるよう、前記加速指示よりも前に前記エネルギー貯蔵装置のエネルギー貯蔵量に応じて前記エンジン及び前記発電用電動機を制御する。
PCT/JP2020/028056 2019-07-19 2020-07-20 ビークル WO2021015164A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20844456.2A EP4001036B1 (en) 2019-07-19 2020-07-20 Vehicle
JP2021534025A JPWO2021015164A1 (ja) 2019-07-19 2020-07-20

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2019/028435 2019-07-19
PCT/JP2019/028435 WO2021014489A1 (ja) 2019-07-19 2019-07-19 ビークル

Publications (1)

Publication Number Publication Date
WO2021015164A1 true WO2021015164A1 (ja) 2021-01-28

Family

ID=74192966

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2019/028435 WO2021014489A1 (ja) 2019-07-19 2019-07-19 ビークル
PCT/JP2020/028056 WO2021015164A1 (ja) 2019-07-19 2020-07-20 ビークル

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028435 WO2021014489A1 (ja) 2019-07-19 2019-07-19 ビークル

Country Status (3)

Country Link
EP (1) EP4001036B1 (ja)
JP (1) JPWO2021015164A1 (ja)
WO (2) WO2021014489A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023060273A1 (en) * 2021-10-07 2023-04-13 Far Uv Technologies, Inc. Improved disinfection lighting systems and methods

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001211505A (ja) * 2000-01-20 2001-08-03 Nissan Motor Co Ltd 車両用駆動力制御装置
JP2007131179A (ja) 2005-11-10 2007-05-31 Yamaha Motor Co Ltd ハイブリッド車両の駆動制御装置及びこれを備えるハイブリッド車両
JP2016022847A (ja) * 2014-07-22 2016-02-08 トヨタ自動車株式会社 ハイブリッド車
JP2016199225A (ja) 2015-04-14 2016-12-01 株式会社豊田自動織機 無人搬送車の駆動システム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4133013C2 (de) * 1991-10-04 1995-11-30 Mannesmann Ag Nicht-spurgebundenes Fahrzeug mit elektrodynamischem Wandler
DE4205770C2 (de) * 1992-02-21 1994-05-05 Mannesmann Ag Fahrzeug mit Verbrennungsmotor, elektrischem Generator und Elektromotor
JPH0888905A (ja) * 1994-09-13 1996-04-02 Aqueous Res:Kk ハイブリッド車両
EP0830968A1 (de) * 1996-09-18 1998-03-25 SMH Management Services AG Verfahren zum Betrieb eines nichtspurgebundenen Hybridfahrzeuges
JP4541736B2 (ja) * 2004-03-23 2010-09-08 日産自動車株式会社 ハイブリッド車両の駆動制御装置
JP2006009736A (ja) * 2004-06-28 2006-01-12 Mazda Motor Corp アシストモーター付き車両の制御装置
JP2007186038A (ja) * 2006-01-12 2007-07-26 Nissan Motor Co Ltd モータ駆動車両の制御装置
JP2010173390A (ja) * 2009-01-28 2010-08-12 Nissan Motor Co Ltd 車両の制御装置
JP2011031832A (ja) * 2009-08-05 2011-02-17 Nissan Motor Co Ltd ハイブリッド車両用内燃機関の制御装置
JP2013107459A (ja) * 2011-11-18 2013-06-06 Toyota Motor Corp 動力出力装置の制御装置および制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001211505A (ja) * 2000-01-20 2001-08-03 Nissan Motor Co Ltd 車両用駆動力制御装置
JP2007131179A (ja) 2005-11-10 2007-05-31 Yamaha Motor Co Ltd ハイブリッド車両の駆動制御装置及びこれを備えるハイブリッド車両
JP2016022847A (ja) * 2014-07-22 2016-02-08 トヨタ自動車株式会社 ハイブリッド車
JP2016199225A (ja) 2015-04-14 2016-12-01 株式会社豊田自動織機 無人搬送車の駆動システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023060273A1 (en) * 2021-10-07 2023-04-13 Far Uv Technologies, Inc. Improved disinfection lighting systems and methods

Also Published As

Publication number Publication date
EP4001036B1 (en) 2023-11-01
EP4001036A1 (en) 2022-05-25
JPWO2021015164A1 (ja) 2021-01-28
EP4001036A4 (en) 2022-09-07
WO2021014489A1 (ja) 2021-01-28

Similar Documents

Publication Publication Date Title
US10336176B2 (en) Vehicle
US7527111B2 (en) Driving device for hybrid vehicle, and hybrid vehicle incorporating the same
JP4317535B2 (ja) ハイブリッド二輪車の駆動装置及びハイブリッド二輪車
CN100592999C (zh) 混合动力摩托车
JP4225314B2 (ja) ハイブリッド車両
JPH09267647A (ja) ハイブリッド車の動力伝達機構
JPH1051908A (ja) ハイブリッド車両の制御装置
US20170282900A1 (en) Driving control mechanism and driving control device
JP7437147B2 (ja) ハイブリッド車両の制御装置
WO2011152522A1 (ja) レジャービークル
JP6802378B2 (ja) ビークル
JP4573298B2 (ja) 内燃機関の回転変動制御装置
EP1118492B1 (en) Vehicle control device
WO2021015164A1 (ja) ビークル
JP3216590B2 (ja) 原動機の運転制御装置およびハイブリッド車輌の運転制御装置
EP3771604B1 (en) Drive control system for vehicle, and vehicle
US9969380B2 (en) Hybrid vehicle control apparatus
EP3998172B1 (en) Series hybrid vehicle
JP6969956B2 (ja) ハイブリッド車両のパワーユニット
JP2019135111A (ja) ハイブリッド車両の制御装置
CN115867450A (zh) 混合动力车辆
US20120085199A1 (en) Drive system for a motor vehicle, method for operating a drive system of this kind and motor vehicle having a drive system of this kind
JP3956931B2 (ja) パワートレーンの制御装置
JPH11139175A (ja) ハイブリッド車両
JP4311384B2 (ja) ハイブリット車両の発電制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20844456

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021534025

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020844456

Country of ref document: EP

Effective date: 20220217