WO2021003814A1 - 一种改性白炭黑及其制备方法和母炼胶 - Google Patents

一种改性白炭黑及其制备方法和母炼胶 Download PDF

Info

Publication number
WO2021003814A1
WO2021003814A1 PCT/CN2019/102749 CN2019102749W WO2021003814A1 WO 2021003814 A1 WO2021003814 A1 WO 2021003814A1 CN 2019102749 W CN2019102749 W CN 2019102749W WO 2021003814 A1 WO2021003814 A1 WO 2021003814A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon black
white carbon
rubber
coupling agent
silica
Prior art date
Application number
PCT/CN2019/102749
Other languages
English (en)
French (fr)
Inventor
吴晓辉
尹田雨
李晓林
王益庆
丁爱武
丁小芳
张立群
Original Assignee
北京化工大学
海南中橡科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京化工大学, 海南中橡科技有限公司 filed Critical 北京化工大学
Publication of WO2021003814A1 publication Critical patent/WO2021003814A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/309Combinations of treatments provided for in groups C09C1/3009 - C09C1/3081
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/06Pretreated ingredients and ingredients covered by the main groups C08K3/00 - C08K7/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/18Amines; Quaternary ammonium compounds with aromatically bound amino groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • C08L7/02Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3009Physical treatment, e.g. grinding; treatment with ultrasonic vibrations
    • C09C1/3027Drying, calcination
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3063Treatment with low-molecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3081Treatment with organo-silicon compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/04Physical treatment, e.g. grinding, treatment with ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/08Treatment with low-molecular-weight non-polymer organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/12Treatment with organosilicon compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/21Attrition-index or crushing strength of granulates

Definitions

  • the invention relates to the technical field of composite material preparation, in particular to a preparation method of modified silica, a masterbatch containing the modified silica and a preparation method thereof.
  • White carbon black has many internal voids and large specific surface area. It is an excellent rubber reinforcing filler.
  • the rubber composite prepared by blending white carbon black and rubber can help reduce tire rolling resistance and reduce automobile fuel consumption.
  • Silica is used Tires that are the main filler are called "green tires”.
  • Silica is a white powder in the macroscopic view. In the microscopic view, the surface contains a large number of hydrophilic hydroxyl groups. The mutual attraction between the hydroxyl groups also causes the white carbon black to easily self-aggregate. Therefore, the preparation of highly-filled silica/natural rubber nanocomposites requires surface modification of silica to reduce the self-aggregation between silica and improve its compatibility with rubber.
  • the modifier applied to silica can react chemically with a large amount of silanol on the surface of silica.
  • the commonly used white carbon black modifiers in the rubber industry are mostly sulfur-containing siloxane structure coupling agents, such as Si69, Si75, Si747 and so on.
  • the coupling agent of siloxane structure mainly plays the role of modifying the surface of white carbon black and building a chemical connection structure between white carbon black and rubber.
  • Dry mixing is currently the most important method for preparing high-filled silica rubber nanocomposites, that is, completely relying on strong shear and high temperature to complete the filling and dispersion of silica.
  • Michelin has developed an in-situ modified dispersion technology to use high temperature and high shear to solve the problem of poor dispersion of silica in rubber.
  • the in-situ modification-dry blending method is an important breakthrough in the preparation of silica/rubber nanocomposite materials. Through the selection of modifiers and temperature control, the silica and rubber mixing process can complete the silica The surface modification.
  • silica can not only be filled into the rubber matrix, but can also be chemically combined with the siloxane structure coupling agent, which reduces the hydrophilicity of silica and reduces the content of silica Self-aggregation promotes the uniform dispersion of silica into the rubber matrix.
  • this technology has strict requirements on equipment, complicated processing and preparation procedures, and high energy consumption in the mixing process. Therefore, most tire factories have not adopted this technology on a large scale for the production of white carbon black/rubber composite materials.
  • the emulsion blending method is mainly developed for rubber varieties with emulsion form. In the application of this method, it is still necessary to realize the surface modification of white carbon black through modification.
  • white carbon black modifies the white carbon black surface in the liquid phase, mixes the modified white carbon black water slurry and latex uniformly, and finally obtains rubber/white carbon through flocculation and other methods.
  • Carbon black masterbatch Using the emulsion blending method to prepare rubber/silica composites can reduce the number of mixing stages in the preparation process, which is beneficial to realize a continuous mixing process, and can shorten the mixing time, while reducing mixing energy consumption and reducing dust pollution .
  • silica modifier-silane coupling agent is difficult to hydrolyze, and can not modify silica well in the water phase.
  • AEO aliphatic polyoxyethylene ether
  • AEO aliphatic polyoxyethylene ether
  • the present invention provides a method for preparing modified silica, and a masterbatch containing the modified silica.
  • the invention uses a very small amount of AEO and silane coupling agent in combination with a very small amount of AEO and a silane coupling agent under specific frequency and speed conditions to complete the surface modification of silica under water phase conditions, and uses spray drying technology to prepare high-filled silica Black masterbatch.
  • One of the objectives of the present invention is to provide a method for preparing modified silica, which includes the following steps:
  • step (1) Grind the white carbon black slurry with a solid content of 1-25% by weight for 5-25 minutes, add the composite coupling agent obtained in step (1), and continue to grind for 5-40 minutes to obtain modified white carbon black, where:
  • the dosage of the composite coupling agent is 1-20wt% of the white carbon black, and the grinding conditions are: the frequency is 10-100Hz, the rotating speed is 6000-30000rpm, the linear speed is 47-94m/s, and the temperature of the control system is below 10°C.
  • the silane coupling agent is a silane coupling agent commonly used in the art, preferably from bis-[ ⁇ -(triethoxysilyl)propyl] tetrasulfide (Si69), bis-[ ⁇ -(triethoxy) At least one of silicon)propyl]-disulfide (Si75) and ⁇ -mercaptopropyl-ethoxybis(propylenehexapropoxy)silane (Si747).
  • the aliphatic polyoxyethylene ether is selected from aliphatic polyoxyethylene ethers commonly used in the field, preferably selected from aliphatic polyoxyethylene ether 3 (AEO3), aliphatic polyoxyethylene ether 5 (AEO5), aliphatic polyoxyethylene ether At least one of 7 (AEO7) and aliphatic polyoxyethylene ether 9 (AEO9).
  • step (1) the mass ratio of the aliphatic polyoxyethylene ether and the silane coupling agent is 3:1 to 1:19.
  • the stirring conditions are a temperature of 30-60°C, a rotating speed of 300-600 rpm, and a stirring time of 5-15 minutes.
  • step (2) the solid content of the white carbon black slurry is 1-15 wt%, and the amount of the composite coupling agent is 1-10 wt% of the white carbon black.
  • step (2) the grinding conditions are: the frequency is 60 to 70 Hz, the rotation speed is 12000 to 14000 rpm, the linear velocity is 64 to 72 m/s, and the grinding time is 10 to 30 minutes.
  • the mass ratio of the aliphatic polyoxyethylene ether and the silane coupling agent is 1:3 to 1:19, and the amount of the composite coupling agent is 5 to 10 wt% of the white carbon black.
  • the equipment used is the equipment available in the prior art that can provide appropriate rotation speed and frequency, such as a colloid mill.
  • the second object of the present invention is to provide modified silica obtained according to the preparation method.
  • the third object of the present invention is to provide a masterbatch prepared from raw materials including rubber and modified silica obtained by the preparation method through emulsion compounding and spray drying.
  • the amount of silica in the modified silica is 30-100 wt% of the rubber, preferably 60-100 wt%.
  • the rubber is selected from at least one of natural rubber, styrene butadiene rubber, and butadiene rubber.
  • the fourth object of the present invention is to provide a method for preparing the masterbatch, which includes the following steps:
  • the rubber latex is mixed with the water slurry of the modified silica, stirred at a rotation speed of 40-70 r/min for 5-30 minutes to obtain a suspension, and then closed-loop spray drying is performed to obtain the masterbatch.
  • the solid content of the rubber latex is preferably 5-30%.
  • the spray drying used is closed-loop spray drying, and a closed-loop spray drying method commonly used in the art is adopted.
  • a closed-loop spray drying method commonly used in the art is adopted.
  • the following steps can be adopted: nitrogen is introduced into the drying tower, the oxygen content in the tower is controlled to be less than 8%, the rotation speed of the atomizer is 6000-20000 rpm, the inlet air temperature is 200-400°C, and the outlet air temperature is 70-150°C.
  • the invention uses closed-circuit spray drying to solve the problem of easy ignition of ordinary spray drying, and the dried water can be condensed and recovered, and has the characteristics of safety and environmental protection.
  • the masterbatch can be used in conjunction with additives commonly used in the rubber field, processed on an internal mixer and an open mixer to obtain a rubber compound, and then vulcanized by a flat plate to obtain the desired rubber product.
  • the present invention adopts a very small amount of AEO and silane coupling agent to be used together, and the amount of AEO can be as low as 0.33% of the mass of white carbon black.
  • the water compatibility of silane coupling agent is improved, and it is in the water phase.
  • Modified white carbon black treatment accurately weigh the white carbon black powder and water to prepare a solid content of 1-25%, weigh the white carbon black water slurry with a solid content of 1-25% into the colloid mill, and adjust the frequency to 10 ⁇ 100Hz, rotation speed is 6000 ⁇ 30000rpm, linear speed is 47 ⁇ 94m/s, control system temperature within 10°C, after grinding for 5 ⁇ 25 minutes under high shear, add the new coupling agent obtained in step (1) , Which is 1-20% of the mass of the white carbon black, continue to grind for 5-40 minutes to obtain a uniform and stable modified white carbon black water slurry, which is discharged.
  • masterbatch dilute the natural rubber latex with water to a solid content of 5-30%, and mix it with the modified silica water slurry obtained in step (2) according to the required silica filling fraction, and The mixed suspension is stirred at a speed of 40-70r/min and lasted for 5-30min to make it evenly mixed to obtain a suspension, and then perform closed-circuit spray drying to collect the obtained masterbatch.
  • the masterbatch obtained in (3) is processed on an internal mixer and an open mixer according to the rubber formula to obtain a mixed rubber, and then plate vulcanized to obtain the desired rubber product.
  • the invention aims to prepare a highly filled white carbon black/natural rubber nanocomposite material by a wet method and apply it to the tire tread.
  • the silane coupling agent is treated in the water phase to complete the surface modification of the white carbon black to adapt to the emulsion compounding process;
  • the masterbatch can be prepared by using spray drying technology Highly filled silica masterbatch.
  • the invention effectively shortens the mixing time, reduces dust flying, and the obtained high-filled silica/rubber nanocomposite material can simultaneously significantly improve the strength and dynamic performance of the composite material, reduce heat generation and Akron wear, and improve the existing Composite material preparation technology is difficult to feed, high heat generation, and poor dispersion.
  • Figures 1 and 2 show the dynamic mechanical properties RPA of the silica/natural rubber composites of Example 1 and Comparative Example 1.
  • Figures 3 and 5 show the dynamic mechanical properties RPA of the silica/natural rubber composites of Example 2 and Comparative Example 2.
  • Fig. 4 is a partial enlarged view of Fig. 3.
  • Figures 6 and 7 show the dynamic mechanical properties RPA of the silica/natural rubber composites of Example 3 and Comparative Example 3.
  • 10-1 to 10-11 are the processing and mixing curves of the white carbon black/natural rubber composite material of Example 4 and Comparative Example 4.
  • the solid content of natural rubber latex is 60%, which is produced by Hainan Natural Rubber Co., Ltd.; styrene-butadiene latex is purchased from Duzishan Petrochemical; others The raw materials used are all commercially available.
  • Example 1 The vulcanized rubber prepared in Example 1 and the vulcanized rubber prepared in Comparative Example 1 were subjected to a tensile test according to the standard GB/T528-1998; the tear strength was tested according to the rubber tear test standard GB/T529-1999.
  • the specific dynamic mechanical properties, The heat generation and abrasion performance are shown in Table 1-1, and the dynamic mechanical properties RPA are shown in Figure 1 and Figure 2.
  • Table 1-1 100phr filled silica/natural rubber composite performance table
  • the masterbatch obtained in (3) is used in accordance with the rubber formula and the raw rubber obtained by flocculating natural rubber latex, and processed on the internal mixer and the open mill to obtain the mixed rubber, and then the required rubber products are obtained by flat vulcanization .
  • the basic formula used is shown in Table 2 below.
  • Example 2 The vulcanized rubber prepared in Example 2 and the vulcanized rubber prepared in Comparative Example 2 were subjected to a tensile test according to the standard GB/T528-1998; the tear strength was tested according to the rubber tear test standard GB/T529-1999.
  • the specific dynamic mechanical properties, The heat generation and abrasion performance are shown in Table 2-1, and the dynamic mechanical properties RPA are shown in Figures 3 to 5.
  • Example 3 The vulcanized rubber prepared in Example 3 and the vulcanized rubber prepared in Comparative Example 3 were subjected to tensile tests in accordance with the standard GB/T528-1998; the tear strength was performed in accordance with the rubber tear test standard GB/T529-1999.
  • the specific dynamic mechanical properties, The heat generation and abrasion performance are shown in Table 3-1, and the dynamic mechanical properties RPA are shown in Figure 6 and Figure 7.
  • Example 4 The vulcanized rubber prepared in Example 4 and the vulcanized rubber prepared in Comparative Example 4 were subjected to a tensile test according to the standard GB/T528-1998; the tear strength was tested according to the rubber tear test standard GB/T529-1999.
  • the specific dynamic mechanical properties, Heat generation and wear performance are shown in Table 4-1;
  • Example 5 The vulcanized rubber prepared in Example 5 and the vulcanized rubber prepared in Comparative Example 5 were subjected to a tensile test according to the standard GB/T528-1998; the tear strength was performed according to the rubber tear test standard GB/T529-1999.
  • the specific dynamic mechanical properties, Heat generation and abrasion performance are shown in Table 5-1.
  • the white carbon black suspension is further stirred at a speed of 3000 rpm for 5 hours using high-speed stirring to obtain uniformity.
  • Stable white carbon black-water suspension the dispersion state of white carbon black in water is good. Take 2500 g of the white carbon black-water suspension and heat it to 60°C in a water bath while stirring in a beaker, and ensure the temperature is stable. 6g of silane coupling agent (KH590) was added to the white carbon black-water suspension, followed by 24g of AEO9, kept in a water bath and stirred, combined with ultrasound, and allowed to react for 1.5 hours.
  • KH590 silane coupling agent
  • the modified white carbon black suspension is spray-dried and dehydrated to obtain dry organically modified white carbon black powder, which is processed on an internal mixer and an open mill according to the rubber formula to obtain a mixed rubber, and then obtained by flat vulcanization Required rubber products.
  • the basic formula used is shown in Table 6 below.
  • the white carbon black suspension is further stirred at a speed of 3000 rpm for 5 hours using high-speed stirring to obtain uniformity.
  • Stable white carbon black-water suspension the dispersion state of white carbon black in water is good. Take 2500 g of the white carbon black-water suspension and heat it to 60°C in a water bath while stirring in a beaker, and ensure that the temperature is stable. Add 28.1 g of silane coupling agent (Si69) to the white carbon black-water suspension, and then add 1.9 g of AEO9, keep the water bath and stirring, and cooperate with ultrasound to react for 1.5 hours.
  • silane coupling agent Si69
  • the modified white carbon black suspension is spray-dried and dehydrated to obtain dry organically modified white carbon black powder, which is processed on an internal mixer and an open mill according to the rubber formula to obtain a mixed rubber, and then obtained by flat vulcanization Required rubber products.
  • the basic formula used is shown in Table 6 below.
  • Example 6 The vulcanized rubber prepared in Example 6 and the vulcanized rubber prepared in Comparative Examples 6 and 7 were subjected to tensile tests according to the standard GB/T528-1998; the tear strength was carried out according to the rubber tear test standard GB/T529-1999, and the specific dynamic mechanics Performance, heat generation, and abrasion performance are shown in Table 7.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种改性白炭黑的制备方法,以及含有所述改性白炭黑的母炼胶及其制备方法。所述制备方法包括:(1)将脂肪族聚氧乙烯醚和硅烷偶联剂在搅拌条件下混合得到复合偶联剂;(2)将固含量为1~25wt%的白炭黑水浆研磨5~40分钟,加入所得复合偶联剂,继续研磨5~40分钟得到改性白炭黑。将改性白炭黑与橡胶通过乳液复合-喷雾干燥制备得到高填充的白炭黑/橡胶母炼胶,与原位改性-干法共混法相比本发明方法能有效缩短混炼时间,显著提升复合材料的强度及动态性能。

Description

一种改性白炭黑及其制备方法和母炼胶 技术领域
本发明涉及复合材料制备技术领域,具体地说,是涉及一种改性白炭黑的制备方法,以及含有所述改性白炭黑的母炼胶及其制备方法。
背景技术
白炭黑内部空隙多、比表面积大,是一种优异的橡胶补强填料,白炭黑与橡胶共混制备得到的橡胶复合材料有助于降低轮胎滚动阻力,减少汽车油耗,使用白炭黑为主要填料的轮胎被称为“绿色轮胎”。白炭黑在宏观上是一种白色粉末,微观上,其表面含有大量亲水性的羟基基团,羟基间的相互吸引也导致白炭黑容易自聚集。因此,制备高填充白炭黑/天然橡胶纳米复合材料需要对白炭黑进行表面改性,降低白炭黑之间的自聚集,改善其与橡胶的相容性。
一般来说,应用于白炭黑的改性剂能够与白炭黑表面大量的硅羟基发生化学反应。橡胶工业中常用的白炭黑改性剂多为含硫的硅氧烷结构偶联剂,如Si69、Si75、Si747等。硅氧烷结构的偶联剂主要起到改性白炭黑表面以及在白炭黑与橡胶之间构建化学连接结构两方面作用。
干法混炼是目前制备高填充白炭黑橡胶纳米复合材料最主要的方法,即完全依靠强剪切力与高温来完成白炭黑的填充与分散。然而,在有限的混炼时间内,往往难以完成白炭黑在橡胶基体中的混入及分散。Michelin公司开发了原位改性分散技术利用高温与高剪切解决白炭黑在橡胶中分散不佳的问题。原位改性-干法共混法是制备白炭黑/橡胶纳米复合材料技术中的一项重要突破,通过选择改性剂及控制温度在白炭黑与橡胶混炼过程中完成对白炭黑的表面改性。经过原位改性-干法共混,白炭黑不仅能够填充进入橡胶基体,还能够与硅氧烷结构偶联剂化学结合,降低了白炭黑的亲水性,减少了白炭黑的自聚集,促使白 炭黑均匀分散到橡胶基体中。但是,该技术对设备要求比较苛刻,并且加工制备流程复杂,混炼过程能耗高。因此,大多数的轮胎厂并未大规模采用该技术进行白炭黑/橡胶复合材料的生产。
乳液共混法主要是针对于具有乳液形态的橡胶品种而开发,该方法应用中,依然需要通过改性实现白炭黑的表面修饰。与传统方法所不同的是,乳液共混法白炭黑在液相中对白炭黑进行表面改性,将改性的白炭黑水浆和胶乳均匀混合,最后通过絮凝等方式得到橡胶/白炭黑母炼胶。使用乳液共混法制备橡胶/白炭黑复合材料能够减少制备过程的混炼段数,有利于实现连续化的混炼工艺,还能缩短混炼时间,同时可以降低混炼能耗、减少粉尘污染。然而,常用的白炭黑改性剂-硅烷偶联剂难以水解,在水相中不能很好的对白炭黑进行改性。而AEO(脂肪族聚氧乙烯醚)作为一种非离子型表面活性剂,能够良好的溶于水中,能够有效解决硅烷偶联剂难以水解及水解后易自聚的问题。
发明内容
为了解决以上现有技术存在问题,本发明提供一种改性白炭黑的制备方法,以及含有所述改性白炭黑的母炼胶。
本发明在特定下频率和转速条件下,用极少量的AEO与硅烷偶联剂并用,在水相条件下完成对白炭黑的表面改性,并采用喷雾干燥技术制备高填充份数的白炭黑母炼胶。
本发明的目的之一为提供一种改性白炭黑的制备方法,包括以下步骤:
(1)将脂肪族聚氧乙烯醚和硅烷偶联剂在搅拌条件下混合得到复合偶联剂,其中脂肪族聚氧乙烯醚和硅烷偶联剂的质量比为9:1~1:29;
(2)将固含量为1~25wt%的白炭黑水浆研磨5~25分钟,加入步骤(1)中所得复合偶联剂,继续研磨5~40分钟得到改性白炭黑,其中,复合偶联剂用量为白炭黑的1~20wt%,其中研磨条件为频率为10~100Hz、转速为6000~30000rpm、线速度为47~94m/s、控制体系温度在10℃以下。
所述硅烷偶联剂选择本领域常用的硅烷偶联剂,优选自双-[γ-(三乙氧基硅)丙基]四硫化物(Si69)、双-[γ-(三乙氧基硅)丙基]-二硫化物(Si75)、γ-巯丙基-乙氧基双(丙烷基六丙氧基)硅烷(Si747)中的至少一种。
所述脂肪族聚氧乙烯醚选择本领域常用的脂肪族聚氧乙烯醚,优选自脂肪族聚氧乙烯醚3(AEO3)、脂肪族聚氧乙烯醚5(AEO5)、脂肪族聚氧乙烯醚7(AEO7)、脂肪族聚氧乙烯醚9(AEO9)中的至少一种。
在本发明优选的一种技术方案中,
步骤(1)中,脂肪族聚氧乙烯醚和硅烷偶联剂的质量比为3:1~1:19。
步骤(1)中,搅拌条件为温度30~60℃,转速为300~600rpm,搅拌时间为5~15分钟。
步骤(2)中,白炭黑水浆的固含量为1~15wt%,复合偶联剂用量为白炭黑的1~10wt%。
步骤(2)中,研磨条件为频率为60~70Hz、转速为12000~14000rpm、线速度为64~72m/s,研磨时间为10~30分钟。
在本发明更优选的一种技术方案中,脂肪族聚氧乙烯醚和硅烷偶联剂的质量比为1:3~1:19,复合偶联剂用量为白炭黑的5~10wt%。
本发明的方法中,采用的设备为现有技术中已有的能够提供适当转速及频率的设备,比如胶体磨等。
本发明目的之二为提供根据所述的制备方法得到的改性白炭黑。
本发明的目的之三为提供一种母炼胶,所述由母炼胶由包括橡胶以及所述制备方法得到的改性白炭黑的原料通过乳液复合-喷雾干燥制备得到。
所述母炼胶中,所述改性白炭黑中白炭黑的用量为橡胶的30~100wt%,优选为60~100wt%。
所述橡胶选自天然橡胶、丁苯橡胶、丁吡橡胶中的至少一种。
本发明目的之四为提供所述母炼胶的制备方法,包括以下步骤:
将橡胶胶乳与所述改性白炭黑的水浆混合,在转速为40~70r/min下搅拌 5~30min得到悬浮液,随后进行闭路循环喷雾干燥,得到所述母炼胶。
所述橡胶胶乳的固含量优选为5~30%。
所用喷雾干燥为闭路循环喷雾干燥,采用本领域通常的闭路循环喷雾干燥方法。优选地可采用以下步骤:在干燥塔内通入氮气,控制塔内氧含量低于8%,雾化器转速6000~20000rpm,进风温度200~400℃,出风温度70~150℃。
本发明使用闭路循环喷雾干燥,解决了普通喷雾干燥易着火的问题,并且所干燥出的水分可以冷凝回收,具有安全、环保的特点。
所述母炼胶可以与橡胶领域中常用的助剂配合使用,在密炼机及开炼机上进行加工得到混炼胶,再经平板硫化得到所需橡胶制品。
本发明采用极少量AEO与硅烷偶联剂并用,AEO的用量可以低到白炭黑质量的0.33%,在胶体磨的作用下改善硅烷偶联剂的水相相容性,并在水相中湿法改性白炭黑,经喷雾干燥制备高填充的白炭黑/橡胶母炼胶,与原位改性-干法共混法相比有效缩短混炼时间,显著提升复合材料的强度及动态性能。
本发明可通过如下技术方案实现:
(1)配制新型偶联剂:采用搅拌器搅拌AEO和硅烷偶联剂混合液,搅拌条件为温度30~60℃,搅拌时间5~15分钟,转速300~600 rpm(以形成稳定旋涡为准)。按照不同比例AEO和硅烷偶联剂质量比进行配制。
(2)改性白炭黑处理:将白炭黑粉末与水准确称量配制固含量为1~25%,称取固含量1~25%的白炭黑水浆进入胶体磨,调节频率为10~100Hz、转速为6000~30000rpm、线速递为47~94m/s,控制体系温度在10℃以内,在高剪切下研磨5~25分钟后,加入步骤(1)中所得新型偶联剂,为白炭黑质量的1~20%,继续研磨5~40分钟,得到均一、稳定的改性白炭黑水浆,出料。
(3)制备母炼胶:将天然胶乳加水稀释至固含量为5~30%,并与步骤(2)中所得改性白炭黑水浆按照所需的白炭黑填充份数混合,将混合过后的悬浮液经搅拌处理速度为40~70r/min,持续5~30min,使其混合均匀得到悬浮液,随后进行闭路循环喷雾干燥,收集所得母炼胶。
(4)将(3)中所得母炼胶按照橡胶配方在密炼机及开炼机上进行加工得到混炼胶,再经平板硫化得到所需橡胶制品。
本发明旨在湿法制备高填充的白炭黑/天然橡胶纳米复合材料,并将其应用在轮胎胎面。利用胶体磨的强剪切及AEO的乳化作用,在水相条件下处理硅烷偶联剂,完成对白炭黑的表面改性,以适应乳液复合工艺;采用喷雾干燥技术制备母炼胶,可以制备高填充份数的白炭黑母炼胶。本发明有效缩短了混炼时间,减少了粉尘飞扬,得到的高填充白炭黑/橡胶纳米复合材料能同时显著提升复合材料的强度及动态性能,降低生热及阿克隆磨耗,改善了现有复合材料制备技术吃料难、生热高、分散差的问题。
附图说明
图1和图2为实施例1和对比例1的白炭黑/天然橡胶复合材料动态力学性能RPA。
图3和图5为实施例2和对比例2的白炭黑/天然橡胶复合材料动态力学性能RPA。
图4为图3的局部放大图。
图6和图7为实施例3和对比例3的白炭黑/天然橡胶复合材料动态力学性能RPA。
图8和图9为实施例4和对比例4的白炭黑/天然橡胶复合材料动态力学性能RPA。
图10-1至图10-11为实施例4和对比例4的白炭黑/天然橡胶复合材料加工混炼曲线。
具体实施方式
为了更好地理解本发明,下面结合具体实施例对本发明做进一步的说明,实施例中天然胶乳固含量60%,为海南天然橡胶股份有限公司生产;丁苯胶乳 为独子山石化购买所得;其他所用原料均为市售。
实施例一
(1)将AEO9与Si69按照不同质量比进行配制,放入60℃中水浴加热,并调节转速为500r/min,持续搅拌10min。
(2)准确称量300g白炭黑粉末(VN3),与2700g水混合均匀,得到固含量为10%的白炭黑水浆。将白炭黑水浆倒入胶体磨,调节胶体磨频率为70Hz、转速为14000rpm、线速度为72m/s,持续研磨10min。加入(1)中所得复合偶联剂30g,为白炭黑质量的10%,继续研磨10min,得到均一、稳定的改性白炭黑水浆,出料。
(3)将天然胶乳加水稀释至固含量为10%,并与(2)中所得改性白炭黑水浆按照白炭黑填充份数为100phr混合(即白炭黑和天然胶乳干胶质量比为100%),将混合过后的悬浮液经搅拌处理速度为60r/min,持续10min,使其混合均匀,随后进行闭路循环喷雾干燥,收集所得母炼胶。
(4)将(3)中所得母炼胶按照橡胶配方在密炼机及开炼机上进行加工得到混炼胶,再经平板硫化得到所需橡胶制品。所用基本配方见下表一。
对比例一
(1)将天然胶乳加酸,搅拌絮凝,烘干得到天然橡胶备用。
(2)准确称量300g白炭黑VN3粉末与2700g水混合均匀,得到固含量为10%的白炭黑水浆。将白炭黑水浆倒入胶体磨,调节胶体磨频率为70Hz、转速为14000rpm、线速度72m/s,持续研磨20min。后经喷雾干燥得到不改性白炭黑粉末。
(3)将(2)中所得的白炭黑粉末,与(1)中所得的天然橡胶按照橡胶配方在密炼机及开炼机上进行加工得到混炼胶,再经平板硫化得到所需橡胶制品。所用基本配方见下表一,其中所用偶联剂为Si69。
表一 100phr填充白炭黑/天然橡胶复合材料橡胶配方
Figure PCTCN2019102749-appb-000001
将实施例一中所制备硫化胶和对比例一制备的硫化胶按照标准GB/T528-1998进行拉伸实验;撕裂强度按照橡胶撕裂测试标准GB/T529-1999进行,具体动态力学性能、生热、磨耗性能如表1-1所示,动态力学性能RPA如图1和图2所示。
(混炼胶测试条件:扫描温度60℃,扫描频率1Hz,应变范围0~400%。硫化胶测试条件:硫化温度143℃,扫描温度60℃,扫描频率10Hz,应变范围0~42%。)
表1-1 100phr填充白炭黑/天然橡胶复合材料性能表
Figure PCTCN2019102749-appb-000002
Figure PCTCN2019102749-appb-000003
实施例二
(1)将AEO9与Si69按照质量比为1:3进行配制,放入60℃中水浴加热,并调节转速为500r/min,持续搅拌10min。
(2)准确称量300g白炭黑粉末(VN3),与2700g水混合均匀,得到固含量为10%的白炭黑水浆。将白炭黑水浆倒入胶体磨,调节胶体磨频率为70Hz、转速为14000rpm、线速度为72m/s,持续研磨10min。加入(1)中所得偶联剂30g,为白炭黑质量的10%,继续研磨10min,得到均一、稳定的改性白炭黑水浆,出料。
(3)将天然胶乳加水稀释至固含量为10%,并与(2)中所得改性白炭黑水浆按照白炭黑填充份数为100phr混合(即白炭黑和天然胶乳干胶质量比为100%),将混合过后的悬浮液经搅拌处理速度为60r/min,持续10min,使其混合均匀,随后进行闭路循环喷雾干燥,收集所得母炼胶。
(4)将(3)中所得母炼胶按照橡胶配方与将天然胶乳絮凝得到的生胶并用,在密炼机及开炼机上进行加工得到混炼胶,再经平板硫化得到所需橡胶制品。所用基本配方见下表二。
对比例二
(1)将天然胶乳加酸,搅拌絮凝,烘干得到天然橡胶备用。
(2)准确称量300g白炭黑VN3粉末与2700g水混合均匀,得到固含量为 10%的白炭黑水浆。将白炭黑水浆倒入胶体磨,调节胶体磨频率为70Hz、转速为14000rpm、线速度为72m/s,持续研磨20min。后经喷雾干燥得到不改性白炭黑粉末。
(3)将(2)中所得的白炭黑粉末,与(1)中所得的天然橡胶按照橡胶配方在密炼机及开炼机上进行加工得到混炼胶,再经平板硫化得到所需橡胶制品。所用基本配方见下表二。
表二稀释并用实验橡胶配方
Figure PCTCN2019102749-appb-000004
将实施例二中所制备硫化胶和对比例二制备的硫化胶按照标准GB/T528-1998进行拉伸实验;撕裂强度按照橡胶撕裂测试标准GB/T529-1999进行,具体动态力学性能、生热、磨耗性能如表2-1所示,动态力学性能RPA如图3至图5所示。
表2-1 填充白炭黑/天然橡胶复合材料稀释并用性能表
Figure PCTCN2019102749-appb-000005
(混炼胶测试条件:扫描温度60℃,扫描频率1Hz,应变范围0~400%。硫化胶测试条件:硫化温度143℃,扫描温度60℃,扫描频率10Hz,应变范围0~42%。)
实施例三
(1)将AEO9与Si69按照不同质量比进行配制,放入60℃中水浴加热,并调节转速为500r/min,持续搅拌10min。
(2)准确称量300g白炭黑粉末(VN3),与2700g水混合均匀,得到固含量为10%的白炭黑水浆。将白炭黑水浆倒入胶体磨,调节胶体磨频率为70Hz、转速为14000rpm、线速度为72m/s,持续研磨10min。加入(1)中所得偶联剂30g,为白炭黑质量的10%,继续研磨10min,得到均一、稳定的改性白炭黑水浆,出料。
(3)将天然胶乳加水稀释至固含量为10%,并与(2)中所得改性白炭黑水浆按照白炭黑填充份数为60phr混合(即白炭黑和天然胶乳干胶质量比为60%),将混合过后的悬浮液经搅拌处理速度为60r/min,持续10min,使其混合 均匀,随后进行闭路循环喷雾干燥,收集所得母炼胶。
(4)将(3)中所得母炼胶按照橡胶配方在密炼机及开炼机上进行加工得到混炼胶,再经平板硫化得到所需橡胶制品。所用基本配方见下表三。
对比例三
(1)将天然胶乳加酸,搅拌絮凝,烘干得到天然橡胶备用。
(2)准确称量300g白炭黑VN3粉末与2700g水混合均匀,得到固含量为10%的白炭黑水浆。将白炭黑水浆倒入胶体磨,调节胶体磨频率为70Hz、转速为14000rpm、线速度为72m/s,持续研磨20min。后经喷雾干燥得到不改性白炭黑粉末。
(3)将(2)中所得的白炭黑粉末,与(1)中所得的天然橡胶按照橡胶配方在密炼机及开炼机上进行加工得到混炼胶,再经平板硫化得到所需橡胶制品。所用基本配方见下表三,其中所用偶联剂为Si69。
表三 60phr填充白炭黑/天然橡胶复合材料实验配方
Figure PCTCN2019102749-appb-000006
将实施例三中所制备硫化胶和对比例三制备的硫化胶按照标准GB/T528-1998进行拉伸实验;撕裂强度按照橡胶撕裂测试标准GB/T529-1999 进行,具体动态力学性能、生热、磨耗性能如表3-1所示,动态力学性能RPA如图6和图7所示。
表3-1 60phr填充白炭黑/天然橡胶复合材料性能表
Figure PCTCN2019102749-appb-000007
(混炼胶测试条件:扫描温度60℃,扫描频率1Hz,应变范围0~400%。硫化胶测试条件:硫化温度143℃,扫描温度60℃,扫描频率10Hz,应变范围0~42%。)
实施例四
(1)将AEO9与Si69按照不同质量比进行配制,放入60℃中水浴加热,并调节转速为500r/min,持续搅拌10min。
(2)准确称量300g白炭黑粉末(1165),与2700g水混合均匀,得到固含量为10%的白炭黑水浆。将白炭黑水浆倒入胶体磨,调节胶体磨频率为70Hz,转速为14000rpm、线速度为72m/s,持续研磨10min。加入(1)中所得偶联剂30g,为白炭黑质量的10%,继续研磨10min,得到均一、稳定的改性白炭黑水 浆,出料。
(3)将天然胶乳加水稀释至固含量为10%,并与(2)中所得改性白炭黑水浆按照白炭黑填充份数为60phr混合(即白炭黑和天然胶乳干胶质量比为60%),将混合过后的悬浮液经搅拌处理速度为60r/min,持续10min,使其混合均匀,随后进行闭路循环喷雾干燥,收集所得母炼胶。
(4)将(3)中所得母炼胶按照橡胶配方在密炼机及开炼机上进行加工得到混炼胶,再经平板硫化得到所需橡胶制品。所用基本配方见下表四。
对比例四
(1)将天然胶乳加酸,搅拌絮凝,烘干得到天然橡胶备用。
(2)准确称量300g白炭黑1165粉末与2700g水混合均匀,得到固含量为10%的白炭黑水浆。将白炭黑水浆倒入胶体磨,调节胶体磨频率为70Hz,转速为14000rpm、线速度为72m/s,持续研磨20min。后经喷雾干燥得到不改性白炭黑粉末。
(3)将(2)中所得的白炭黑粉末,与(1)中所得的天然橡胶按照橡胶配方在密炼机及开炼机上进行加工得到混炼胶,再经平板硫化得到所需橡胶制品。所用基本配方见下表四,其中所用偶联剂为Si69。
表四 60phr填充白炭黑/天然橡胶复合材料实验配方
Figure PCTCN2019102749-appb-000008
将实施例四中所制备硫化胶和对比例四制备的硫化胶按照标准GB/T528-1998进行拉伸实验;撕裂强度按照橡胶撕裂测试标准GB/T529-1999进行,具体动态力学性能、生热、磨耗性能如表4-1所示;
表4-1 60phr填充白炭黑/天然橡胶复合材料性能表
Figure PCTCN2019102749-appb-000009
(混炼胶测试条件:扫描温度60℃,扫描频率1Hz,应变范围0~400%。硫化胶测试条件:硫化温度143℃,扫描温度60℃,扫描频率10Hz,应变范围0~42%。)动态力学性能RPA如图8和图9所示,混炼曲线为密炼机RM-200C转矩流变仪进行复合材料混炼所得曲线如图10-1至图10-11所示。
实施例五
(1)将AEO9与Si69按照不同质量比进行配制,放入60℃中水浴加热,并调节转速为500r/min,持续搅拌10min。
(2)准确称量300g白炭黑粉末(VN3),与2700g水混合均匀,得到固含 量为10%的白炭黑水浆。将白炭黑水浆倒入胶体磨,调节胶体磨频率为70Hz、转速为14000rpm、线速度为72m/s,持续研磨10min。加入(1)中所得偶联剂30g,为白炭黑质量的10%,继续研磨10min,得到均一、稳定的改性白炭黑水浆,出料。
(3)将丁苯胶乳加水稀释至固含量为10%,并与(2)中所得改性白炭黑水浆按照白炭黑填充份数为70phr混合(即白炭黑和丁苯胶乳干胶质量比为70%),将混合过后的悬浮液经搅拌处理速度为60r/min,持续10min,使其混合均匀,随后进行闭路循环喷雾干燥,收集所得母炼胶。
(4)将(3)中所得母炼胶按照橡胶配方在密炼机及开炼机上进行加工得到混炼胶,再经平板硫化得到所需橡胶制品。所用基本配方见下表五。
对比例五
(1)将丁苯胶乳加酸,搅拌絮凝,烘干得到丁苯橡胶备用。
(2)准确称量300g白炭黑VN3粉末与2700g水混合均匀,得到固含量为10%的白炭黑水浆。将白炭黑水浆倒入胶体磨,调节胶体磨频率为70Hz、转速为14000rpm、线速度为72m/s,持续研磨20min。后经喷雾干燥得到不改性白炭黑粉末。
(3)将(2)中所得的白炭黑粉末,与(1)中所得的丁苯橡胶按照橡胶配方在密炼机及开炼机上进行加工得到混炼胶,再经平板硫化得到所需橡胶制品。所用基本配方见下表五,其中所用偶联剂为Si69。
表五 70phr填充白炭黑/丁苯橡胶复合材料实验配方
Figure PCTCN2019102749-appb-000010
Figure PCTCN2019102749-appb-000011
将实施例五中所制备硫化胶和对比例五制备的硫化胶按照标准GB/T528-1998进行拉伸实验;撕裂强度按照橡胶撕裂测试标准GB/T529-1999进行,具体动态力学性能、生热、磨耗性能如表5-1所示。
表5-1 70phr填充白炭黑/丁苯橡胶复合材料性能表
Figure PCTCN2019102749-appb-000012
实施例六
(1)将AEO9与Si69按照1:15质量比进行配制,放入60℃中水浴加热,并调节转速为500r/min,持续搅拌10min。
(2)准确称量300g白炭黑粉末(1165),与2700g水混合均匀,得到固含量为10%的白炭黑水浆。将白炭黑水浆倒入胶体磨,调节胶体磨频率为70Hz,转速为14000rpm、线速度为72m/s,持续研磨10min。加入(1)中所得偶联剂30g,为白炭黑质量的10%,继续研磨10min,得到均一、稳定的改性白炭黑水浆,出料。
(3)将天然胶乳加水稀释至固含量为10%,并与(2)中所得改性白炭黑水浆按照白炭黑填充份数为60phr混合(即白炭黑和天然胶乳干胶质量比为60%),将混合过后的悬浮液经搅拌处理速度为60r/min,持续10min,使其混合均匀,随后进行闭路循环喷雾干燥,收集所得母炼胶。
(4)将(3)中所得母炼胶按照橡胶配方在密炼机及开炼机上进行加工得到混炼胶,再经平板硫化得到所需橡胶制品。所用基本配方见下表6。
对比例六
取白炭黑1165粉体与水按照白炭黑固体质量占悬浮液总质量的12%搅拌混合,将此白炭黑悬浮液进一步使用高速搅拌在3000rpm的速度下搅拌5小时,以此得到均一、稳定的白炭黑-水悬浮液,白炭黑在水中的分散状态良好。取该白炭黑-水悬浮液2500g,于烧杯中搅拌的同时水浴加热至60℃,并保证温度稳定。向该白炭黑-水悬浮液中加入硅烷偶联剂(KH590)6g,接着加入AEO9 24g,保持水浴及搅拌,配合超声,使其反应1.5小时。将改性后的白炭黑悬浮液经喷雾干燥脱水,得到干燥的有机改性白炭黑粉体,按照橡胶配方在密炼机及开炼机上进行加工得到混炼胶,再经平板硫化得到所需橡胶制品。所用基本配方见下表6。
对比例七
取白炭黑1165粉体与水按照白炭黑固体质量占悬浮液总质量的12%搅拌混合,将此白炭黑悬浮液进一步使用高速搅拌在3000rpm的速度下搅拌5小时,以此得到均一、稳定的白炭黑-水悬浮液,白炭黑在水中的分散状态良好。取该白炭黑-水悬浮液2500g,于烧杯中搅拌的同时水浴加热至60℃,并保证温度稳 定。向该白炭黑-水悬浮液中加入硅烷偶联剂(Si69)28.1g,接着加入AEO9 1.9g,保持水浴及搅拌,,配合超声,使其反应1.5小时。将改性后的白炭黑悬浮液经喷雾干燥脱水,得到干燥的有机改性白炭黑粉体,按照橡胶配方在密炼机及开炼机上进行加工得到混炼胶,再经平板硫化得到所需橡胶制品。所用基本配方见下表6。
表6 60phr填充白炭黑/天然橡胶复合材料实验配方
Figure PCTCN2019102749-appb-000013
将实施例六中所制备硫化胶和对比例六和七制备的硫化胶按照标准GB/T528-1998进行拉伸实验;撕裂强度按照橡胶撕裂测试标准GB/T529-1999进行,具体动态力学性能、生热、磨耗性能如表7所示。
表7 60phr填充白炭黑/天然橡胶复合材料性能表
Figure PCTCN2019102749-appb-000014

Claims (10)

  1. 一种改性白炭黑的制备方法,其特征在于所述制备方法包括以下步骤:
    (1)将脂肪族聚氧乙烯醚和硅烷偶联剂在搅拌条件下混合得到复合偶联剂,其中脂肪族聚氧乙烯醚和硅烷偶联剂的质量比为9:1~1:29;
    (2)将固含量为1~25wt%的白炭黑水浆研磨5~25分钟,加入步骤(1)中所得复合偶联剂,继续研磨5~40分钟得到改性白炭黑,其中,复合偶联剂用量为白炭黑的1~20wt%,研磨条件为频率为10~100Hz、转速为6000~30000rpm、线速度为47~94m/s、控制体系温度在10℃以下。
  2. 根据权利要求1所述的改性白炭黑的制备方法,其特征在于:
    所述硅烷偶联剂选自双-[γ-(三乙氧基硅)丙基]四硫化物、双-[γ-(三乙氧基硅)丙基]-二硫化物、γ-巯丙基-乙氧基双(丙烷基六丙氧基)硅烷中的至少一种;
    脂肪族聚氧乙烯醚选自脂肪族聚氧乙烯醚3、脂肪族聚氧乙烯醚5、脂肪族聚氧乙烯醚7、脂肪族聚氧乙烯醚9中的至少一种。
  3. 根据权利要求1所述的改性白炭黑的制备方法,其特征在于:
    步骤(1)中,脂肪族聚氧乙烯醚和硅烷偶联剂的质量比为3:1~1:19,优选为1:3~1:19。
  4. 根据权利要求1所述的改性白炭黑的制备方法,其特征在于:
    步骤(2)中,白炭黑水浆的固含量为1~15wt%;复合偶联剂用量为白炭黑的1~10wt%,优选为5~10wt%。
  5. 根据权利要求1所述的改性白炭黑的制备方法,其特征在于:
    步骤(2)中,研磨条件为频率为60~70Hz、转速为12000~14000rpm、线速度为64~72m/s,研磨时间为10~30分钟。
  6. 一种根据权利要求1~5之任一项所述的制备方法得到的改性白炭黑。
  7. 一种母炼胶,其特征在于所述母炼胶由包括橡胶以及如权利要求1~5之任一项所述的制备方法得到的改性白炭黑的原料通过乳液复合-喷雾干燥制备得 到。
  8. 根据权利要求8所述的母炼胶,其特征在于:
    所述母炼胶中,所述改性白炭黑中白炭黑的用量为橡胶的30~100wt%,优选为60~100wt%。
  9. 根据权利要求8所述的母炼胶,其特征在于:
    所述橡胶选自天然橡胶、丁苯橡胶、丁吡橡胶中的至少一种。
  10. 一种根据权利要求7~9之任一项所述的母炼胶的制备方法,其特征在于包括以下步骤:
    将橡胶胶乳与所述改性白炭黑的水浆混合,在转速为40~70r/min下搅拌5~30min得到悬浮液,随后进行闭路循环喷雾干燥,得到所述母炼胶。
PCT/CN2019/102749 2019-07-05 2019-08-27 一种改性白炭黑及其制备方法和母炼胶 WO2021003814A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910602994.7A CN112175418B (zh) 2019-07-05 2019-07-05 一种改性白炭黑及其制备方法和母炼胶
CN201910602994.7 2019-07-05

Publications (1)

Publication Number Publication Date
WO2021003814A1 true WO2021003814A1 (zh) 2021-01-14

Family

ID=73915192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/102749 WO2021003814A1 (zh) 2019-07-05 2019-08-27 一种改性白炭黑及其制备方法和母炼胶

Country Status (2)

Country Link
CN (1) CN112175418B (zh)
WO (1) WO2021003814A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113698913A (zh) * 2021-10-15 2021-11-26 东莞天绘新材料有限公司 一种丝印用哑光硅橡胶及其制备方法
CN113880987A (zh) * 2021-10-09 2022-01-04 安徽工程大学 一种橡胶用无机填料大分子改性剂及其制备方法、改性无机填料及应用
CN113980333A (zh) * 2021-11-02 2022-01-28 北京唯科致远科技有限公司 一种交联聚乙烯发泡板材及其制备方法
CN114605464A (zh) * 2022-03-22 2022-06-10 山东阳谷华泰化工股份有限公司 一种含烷氧链段的硅烷偶联剂及其制备方法和应用
CN114790342A (zh) * 2022-05-25 2022-07-26 德欣精细化工(深圳)有限公司 一种硅烷改性的炭黑复合填料及其制备方法
CN115322592A (zh) * 2022-08-10 2022-11-11 青岛黑猫新材料研究院有限公司 一种表面改性炭黑材料的制备方法及应用
CN116004037A (zh) * 2022-12-30 2023-04-25 中国科学院长春应用化学研究所 一种白炭黑悬浮液的制备方法
WO2023097543A1 (zh) * 2021-12-01 2023-06-08 无锡恒诚硅业有限公司 一种白炭黑的改性方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113789066A (zh) * 2021-08-18 2021-12-14 浦林成山(青岛)工业研究设计有限公司 一种橡胶用烯烃改性白炭黑及其制备方法
CN114350181A (zh) * 2021-12-07 2022-04-15 青岛科技大学 白炭黑水溶液制备与丁苯胶乳水相混炼方法及复合材料
CN116396626B (zh) * 2023-03-27 2024-03-01 江门市胜鹏化工实业有限公司 一种改性白炭黑及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002121327A (ja) * 2000-10-16 2002-04-23 Sumitomo Rubber Ind Ltd トレッドゴム組成物およびその製造方法
CN106283089A (zh) * 2016-08-25 2017-01-04 仇颖超 一种固液两相机械金属清洗剂的制备方法
CN106589485A (zh) * 2017-01-14 2017-04-26 北京化工大学 并用aeo和硅烷偶联剂改性白炭黑及其与橡胶复合的方法
CN106832417A (zh) * 2017-03-14 2017-06-13 北京化工大学 使用脂肪族聚氧乙烯醚改性白炭黑及其与橡胶复合的方法
EP3191559B1 (en) * 2014-09-11 2018-10-31 SuSoS AG Functional polymer
CN109705277A (zh) * 2018-12-25 2019-05-03 浙江东进新材料有限公司 纳米SiO2改性丙烯酸酯聚氨酯复合防水剂乳液

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106674593A (zh) * 2016-12-03 2017-05-17 北京化工大学 含乙烯基醚链段的硅烷偶联剂及其制备方法和应用
CN107416844B (zh) * 2017-08-09 2019-09-06 中国石油天然气股份有限公司 具有双亲特性和双粒子结构的纳米二氧化硅分散液及制法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002121327A (ja) * 2000-10-16 2002-04-23 Sumitomo Rubber Ind Ltd トレッドゴム組成物およびその製造方法
EP3191559B1 (en) * 2014-09-11 2018-10-31 SuSoS AG Functional polymer
CN106283089A (zh) * 2016-08-25 2017-01-04 仇颖超 一种固液两相机械金属清洗剂的制备方法
CN106589485A (zh) * 2017-01-14 2017-04-26 北京化工大学 并用aeo和硅烷偶联剂改性白炭黑及其与橡胶复合的方法
CN106832417A (zh) * 2017-03-14 2017-06-13 北京化工大学 使用脂肪族聚氧乙烯醚改性白炭黑及其与橡胶复合的方法
CN109705277A (zh) * 2018-12-25 2019-05-03 浙江东进新材料有限公司 纳米SiO2改性丙烯酸酯聚氨酯复合防水剂乳液

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113880987A (zh) * 2021-10-09 2022-01-04 安徽工程大学 一种橡胶用无机填料大分子改性剂及其制备方法、改性无机填料及应用
CN113698913A (zh) * 2021-10-15 2021-11-26 东莞天绘新材料有限公司 一种丝印用哑光硅橡胶及其制备方法
CN113698913B (zh) * 2021-10-15 2022-05-20 东莞天绘新材料有限公司 一种丝印用哑光硅橡胶及其制备方法
CN113980333A (zh) * 2021-11-02 2022-01-28 北京唯科致远科技有限公司 一种交联聚乙烯发泡板材及其制备方法
WO2023097543A1 (zh) * 2021-12-01 2023-06-08 无锡恒诚硅业有限公司 一种白炭黑的改性方法
CN114605464A (zh) * 2022-03-22 2022-06-10 山东阳谷华泰化工股份有限公司 一种含烷氧链段的硅烷偶联剂及其制备方法和应用
CN114605464B (zh) * 2022-03-22 2023-08-18 山东阳谷华泰化工股份有限公司 一种含烷氧链段的硅烷偶联剂及其制备方法和应用
CN114790342A (zh) * 2022-05-25 2022-07-26 德欣精细化工(深圳)有限公司 一种硅烷改性的炭黑复合填料及其制备方法
CN115322592A (zh) * 2022-08-10 2022-11-11 青岛黑猫新材料研究院有限公司 一种表面改性炭黑材料的制备方法及应用
CN115322592B (zh) * 2022-08-10 2023-10-13 青岛黑猫新材料研究院有限公司 一种表面改性炭黑材料的制备方法及应用
CN116004037A (zh) * 2022-12-30 2023-04-25 中国科学院长春应用化学研究所 一种白炭黑悬浮液的制备方法

Also Published As

Publication number Publication date
CN112175418A (zh) 2021-01-05
CN112175418B (zh) 2022-05-17

Similar Documents

Publication Publication Date Title
WO2021003814A1 (zh) 一种改性白炭黑及其制备方法和母炼胶
CN107337815B (zh) 一种硅炭黑/天然橡胶复合材料的制备方法
CN106589485B (zh) 并用aeo和硅烷偶联剂改性白炭黑及其与橡胶复合的方法
CN109810323A (zh) 一种白炭黑/氧化石墨烯纳米杂化填料的制备方法和纳米杂化填料及其应用
CN109467770B (zh) 一种使用腰果酚缩水甘油醚改性白炭黑的橡胶复合材料及其制备方法
CN106750389A (zh) 一种湿法制备白炭黑/溶聚丁苯橡胶母胶的方法
CN108410032B (zh) 一种轮胎胎面胶胶料及其制备方法
CN113652010B (zh) 端基官能化液体橡胶与巯基硅烷偶联剂协同改性白炭黑填充的橡胶复合材料及其制备方法
US2891923A (en) Silicone supplemented fillers and rubbers, and methods for their manufacture
CN113956376B (zh) 一种液体橡胶改性的偶联剂、制备方法、应用和改性白炭黑
JP2013043926A (ja) 複合体の製造方法、ゴム組成物及び空気入りタイヤ
CN108484998B (zh) 一种湿法混炼共沉胶及其制备方法
CN114407266A (zh) 一种炭黑/天然胶乳复合材料制备方法
CN106832417A (zh) 使用脂肪族聚氧乙烯醚改性白炭黑及其与橡胶复合的方法
CN114085552A (zh) 一种改性硅灰石及其制备方法和在氟橡胶中的应用
CN114395276A (zh) 一种Janus结构炭黑及其制备方法
CN111205518A (zh) 一种天然橡胶-白炭黑复合材料及其制备方法和应用
CN106496698A (zh) 一种超细粉煤灰增强的丁苯橡胶及其制备方法
CN106883454B (zh) 具有白炭黑化学隔离结构的橡胶/白炭黑母胶的制备方法
CN109666195A (zh) 一种橡胶复合材料的制备方法
Sun et al. Enhanced reinforcement efficiency in a hybrid microcrystalline cellulose–SiO 2 filler for the tire tread composites
CN109897245A (zh) 一种含碳纳米管的胎面用丁苯橡胶组合物的制备方法
CN110628240B (zh) 一种水溶性复合改性助磨剂、制备方法和应用
CN113861526A (zh) 一种高耐磨低生热炭黑母胶及其制备方法
CN113652004A (zh) 一种用于绿色轮胎的白炭黑及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19937145

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19937145

Country of ref document: EP

Kind code of ref document: A1