WO2021000911A1 - 一种多级造孔式磷酸铁锂的制备方法 - Google Patents

一种多级造孔式磷酸铁锂的制备方法 Download PDF

Info

Publication number
WO2021000911A1
WO2021000911A1 PCT/CN2020/099904 CN2020099904W WO2021000911A1 WO 2021000911 A1 WO2021000911 A1 WO 2021000911A1 CN 2020099904 W CN2020099904 W CN 2020099904W WO 2021000911 A1 WO2021000911 A1 WO 2021000911A1
Authority
WO
WIPO (PCT)
Prior art keywords
additive
iron phosphate
lithium iron
ferrous
add
Prior art date
Application number
PCT/CN2020/099904
Other languages
English (en)
French (fr)
Inventor
石茂虎
刘红
程冲
邱晓微
Original Assignee
重庆特瑞电池材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆特瑞电池材料股份有限公司 filed Critical 重庆特瑞电池材料股份有限公司
Priority to EP20834736.9A priority Critical patent/EP3909912A4/en
Publication of WO2021000911A1 publication Critical patent/WO2021000911A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties

Definitions

  • the invention relates to the field of new energy materials, in particular to a method for preparing multi-stage pore-forming lithium iron phosphate.
  • the cathode materials of lithium-ion batteries used in new energy products on the market are mainly lithium iron phosphate and ternary materials; lithium iron phosphate is accepted in grid energy storage, low-speed vehicles and electric tools due to its higher safety performance and cost advantages Degree is higher.
  • lithium iron phosphate Due to its single-channel lithium ion transport structure and undesirable electronic and ion conductivity, lithium iron phosphate has inhibited its gram-capacity performance and cannot perform well in long cycles.
  • Conventional solutions are mainly carbon layer coating and metal ion doping, but the thickness and coating of the carbon layer and the effect of metal ions are inhibited and hindered during the production process.
  • One of the factors is that the particle surface is too dense. The pores are insufficient, and the interpenetration of lithium ions and electrolyte is not smooth.
  • Patent CN108557794A is a method for preparing porous iron phosphate nano-powder.
  • the acetylene black coated iron phosphate is sintered at high temperature under nitrogen to remove the acetylene black.
  • the density of acetylene black is small and easy to float on the liquid surface, and it is not easy to uniformly coat the iron phosphate surface And acetylene black sintering in nitrogen will leave carbon and contaminate the final iron phosphate raw material.
  • Patent CN102201576A is a porous carbon in-situ composite lithium iron phosphate cathode material and its preparation method.
  • Patent CN107221672A is an olive-shaped porous lithium iron phosphate and its preparation method.
  • the porous lithium iron phosphate is synthesized by a hydrothermal-calcination method, but the carbon content in the hydrothermal method depends on the adsorption capacity and coating of the organic carbon source on the precursor Effectively, the carbon content cannot be precisely controlled.
  • the purpose of the present invention is to provide a method for preparing multi-stage pore-forming lithium iron phosphate, which has high battery capacity and excellent cycle performance.
  • a method for preparing multi-stage pore-forming lithium iron phosphate includes the following steps:
  • the temperature of the solution is raised to 60°C-90°C and kept at a constant temperature.
  • Ammonia water is used for titration to control the pH value of the solution at 6 7. Then react for 30min-90min, filter while hot, wash with hot water first, then wash with organic solvent, then put the solid in a vacuum drying oven, and dry at 80°C-90°C for 12h-24h to obtain the first-grade porous phosphorous acid Iron ammonium solid; wherein the additive A is an adsorption medium, and the additive B is a fat-soluble pigment or a lipid polymer;
  • the pressure of the inert gas connected to the aeration plate or the aeration tube in S1 is 0.01 MPa-0.1 MPa; the inert gas is nitrogen, argon, helium, etc.; the stirring rate is 100 to 300 revolutions per minute;
  • the ferrous salt is one or more of ferrous nitrate, ferrous sulfate, ferrous oxalate, ferrous hydroxide, ferrous cyanide, and ferrous lactate;
  • additive A is alumina, silicon carbide, titanium carbide, and carbide One or more of niobium;
  • additive B is one or more of chlorophyll, lutein, lycopene, capsicum, polyacrylate, phenolic resin, polyurethane; organic solvent is acetone, ethanol, n-hexane , One or more of chloroform.
  • the additive C in the S2 is one or more of ammonium chloride, ammonium carbonate, ammonium bicarbonate, urea, iodine, and naphthalene;
  • the lithium source is lithium carbonate, lithium oxalate and lithium hydroxide monohydrate.
  • the grinding medium of the nano sand mill is 0.6-0.7mm zirconia balls, and the rotation speed is 1500-3000 rpm; the inlet and outlet temperatures of spray drying are 160-250°C, 80-110°C, The rotating speed of the atomization disk is 16000-24000 rpm; the high-purity inert atmosphere is nitrogen or argon.
  • the additive D in the S3 is one or more of porous graphene, activated carbon, activated carbon fiber, mesoporous carbon, carbon nanotube, and carbon molecular sieve;
  • the grinding medium of the nano sand mill is 0.3-0.4 mm
  • the rotating speed of the zirconia ball is 1500 ⁇ 3000 rpm; the inlet and outlet temperature of spray drying are 160 ⁇ 250°C, 80 ⁇ 110°C, and the rotating speed of the atomizing disc is 16000 ⁇ 24000 rpm;
  • the high purity inert atmosphere is nitrogen Or argon; air pressure of 0.6MPa-0.8MPa is used for air flow crushing, and the particle size of D50 is controlled to 1-2 microns.
  • ferrous salt in S1 is ferrous nitrate
  • additive A is silicon carbide
  • the additive C in the S2 is ammonium carbonate
  • the lithium source is lithium carbonate
  • the additive D in the S3 is porous graphene.
  • the invention provides a method for preparing multi-stage pore-forming lithium iron phosphate.
  • the primary porous ammonium ferrous phosphate is mainly aimed at introducing adsorption media such as alumina during the crystal formation and growth process of the ammonium ferrous phosphate to form a flake shape.
  • the ammonium ferrous phosphate is coated with a fat-soluble substance, and the fat-soluble substance on the crystal is removed by washing with an organic solvent to form a first-level porous ammonium ferrous phosphate; a second-level porous lithium iron phosphate adopts low temperature and easy
  • the decomposed and sublimated substances are coated in the mixture material, and pores are generated after high-temperature sintering, and this process does not introduce carbon, and pores are formed on the original lithium iron phosphate crystal; the tertiary porous lithium iron phosphate is synthesized from porous carbon materials. Porous carbon coated lithium iron phosphate.
  • the multi-stage pore-forming lithium iron phosphate prepared by the invention has the technical effects of high battery capacity and excellent cycle performance, which is much better than the lithium iron phosphate prepared in the prior art.
  • Figure 1 is a comparison diagram of 1C normal temperature cycle of Example 1 and Example 8 of the present invention.
  • Figure 2 is a comparison diagram of 1C room temperature cycle of Example 2 and Example 9 of the present invention.
  • Fig. 3 is a comparison diagram of 1C room temperature cycle of Example 3 and Example 10 of the present invention.
  • Fig. 4 is a comparison diagram of 1C normal temperature cycle of Example 4 and Example 11 of the present invention.
  • Fig. 5 is a comparison diagram of 1C room temperature cycle of Example 5 and Example 12 of the present invention.
  • Fig. 6 is a comparison diagram of 1C normal temperature cycle of Example 6 and Example 13 of the present invention.
  • Fig. 7 is a comparison diagram of 1C normal temperature cycle of Example 7 and Example 14 of the present invention.
  • Fig. 8 is a comparison diagram of specific discharge capacity between Example 1 and Example 8 of the present invention.
  • Fig. 9 is a comparison diagram of specific discharge capacity between Example 2 and Example 9 of the present invention.
  • Fig. 10 is a comparison diagram of specific discharge capacity between Example 3 and Example 10 of the present invention.
  • Fig. 11 is a comparison diagram of specific discharge capacity of Example 4 and Example 11 of the present invention.
  • FIG. 12 is a comparison diagram of specific discharge capacity between Example 5 and Example 12 of the present invention.
  • Fig. 13 is a comparison diagram of specific discharge capacity between Example 6 and Example 13 of the present invention.
  • FIG. 14 is a comparison diagram of specific discharge capacity between Example 7 and Example 14 of the present invention.
  • the medium is 0.6 ⁇ 0.7mm zirconia balls, the rotation speed is 1500 rpm, and the centrifugal spray drying tower is used for granulation.
  • the spray drying inlet and outlet temperatures are 160 °C and 80 °C respectively, and the atomization disk rotation speed is 16000 rpm.
  • the sample is sintered in high-purity nitrogen, that is, the temperature is raised to 450°C at 2.5°C/min and kept at 450°C for 10 hours, and then the temperature is naturally cooled;
  • the grinding medium of the sand mill is 0.3-0.4mm oxidation Zirconium ball, rotating speed is 1500 rpm, granulated by centrifugal spray drying tower, spray drying inlet and outlet temperature are 190 °C and 85 °C respectively, atomizing disc rotating speed is 20000 rpm, sample is in high purity argon Sintering, that is, the temperature is raised to 600°C at 2.5°C/min for 12 hours, and then the temperature is naturally lowered.
  • the airflow crusher is used for pulverization.
  • the airflow crushing uses 0.6MPa air pressure to obtain uniform lithium iron phosphate with a D50 particle size of 1 to 2 microns.
  • the zirconia ball, the rotation speed is 3000 rpm, granulated by a centrifugal spray drying tower, the spray drying inlet and outlet temperatures are 175 °C and 90 °C respectively, the atomization disk rotation speed is 22000 rpm, the sample is in high purity argon Medium sintering, that is, the temperature is raised at 5°C/min to 800°C for 6 hours, then the temperature is naturally lowered, and the airflow crusher is used for pulverization.
  • Airflow crushing uses 0.8MPa air pressure to obtain uniform lithium iron phosphate with a D50 particle size of 1 to 2 microns.
  • Airflow crushing uses 0.65MPa air pressure to obtain uniform lithium iron phosphate with a D50 particle size of 1 to 2 microns.
  • the grinding medium of the sand mill is 0.3-0.4mm oxidation Zirconium ball, rotating speed is 2800 rpm, using centrifugal spray drying tower to granulate, spray drying inlet and outlet temperature are 240 °C and 108 °C respectively, atomizing disc rotating speed is 18000 rpm, sample is sintered in high purity nitrogen That is, the temperature is raised to 750°C at 4.5°C/min for 8 hours, and then the temperature is naturally lowered.
  • the airflow crusher is used for pulverization.
  • the airflow crushing uses an air pressure of 0.7MPa to obtain a uniform lithium iron phosphate with a D50 particle size of 1 to 2 microns.
  • the grinding medium of the sand mill is 0.3-0.4mm oxidation Zirconium ball, rotating speed is 2500 rpm, using centrifugal spray drying tower for granulation, spray drying inlet and outlet temperature are 200°C and 100°C respectively, atomizing disc rotating speed is 21000 rpm, sample is sintered in high purity nitrogen , That is, the temperature is raised to 700°C at 4°C/min for 9 hours, and then the temperature is naturally lowered.
  • the airflow crusher is used for pulverization.
  • the airflow crushing uses an air pressure of 0.7MPa to obtain a uniform lithium iron phosphate with a D50 particle size of 1 to 2 microns.
  • the zirconia ball is 2200 rpm
  • using centrifugal spray drying tower to granulate the spray drying inlet and outlet temperature are 180 °C and 80 °C respectively
  • the atomization disk rotation speed is 20,000 rpm
  • the sample is in high purity nitrogen Sintering, that is, the temperature is raised to 680°C at 3.5°C/min for 10 hours, and then the temperature is naturally lowered.
  • the airflow crusher is used for pulverization.
  • the airflow crushing uses 0.65MPa air pressure to obtain uniform lithium iron phosphate with a D50 particle size of 1 to 2 microns.
  • Example 8 is a comparative example of Example 1. Under the same conditions as Example 1, without adding additive A, additive B, and additive C, and additive D was changed to glucose, lithium iron phosphate was prepared.
  • Example 9 is a comparative example of Example 2. Under the same conditions as Example 2, without adding Additive A, Additive B, and Additive C, and Additive D is changed to glucose to prepare lithium iron phosphate.
  • Example 10 is a comparative example of Example 3. Under the same conditions as Example 3, without adding Additive A, Additive B, and Additive C, and Additive D is changed to glucose to prepare lithium iron phosphate.
  • Example 11 is a comparative example of Example 4. Under the same conditions as Example 4, without adding Additive A, Additive B, and Additive C, and Additive D was changed to glucose, lithium iron phosphate was prepared.
  • Example 12 is a comparative example of Example 5. Under the same conditions of Example 5, without adding Additive A, Additive B, and Additive C, and Additive D is changed to glucose to prepare lithium iron phosphate.
  • Example 13 is a comparative example of Example 6. Under the same conditions as Example 6, without adding additive A, additive B, and additive C, and additive D was changed to glucose, lithium iron phosphate was prepared.
  • Example 14 is a comparative example of Example 7. Under the same conditions as Example 7, without adding Additive A, Additive B, Additive C, and changing Additive D to glucose, it was prepared.
  • the lithium iron phosphate, SP and PVDF prepared in Examples 1-14 were mixed uniformly according to the mass ratio of 93:4:3, and then coated on 0.018mm aluminum foil with a coating thickness of 100-120 microns. After drying, the positive pole piece is obtained, which is rolled-winded-packed, sealed by laser welding, and filled with argon gas in the glove box. Finally, the charge and discharge performance test is performed on the LAND battery tester. The charge and discharge voltage is 3.65 ⁇ 2.0V.
  • Example 1 150 89.95
  • Example 2 152 90.5
  • Example 3 155
  • Example 4 151
  • Example 5 155
  • Example 6 154
  • Example 7 153
  • Example 8 135
  • Example 9 136
  • Example 10 135 83.2
  • Example 11 133 81.3
  • Example 12 133 81.94
  • Example 13 132 80.65
  • Example 14 131 82.65
  • the lithium iron phosphate synthesized by the method for preparing multi-stage pore-forming lithium iron phosphate of the present invention not only has a higher gram capacity, but also has better cycle performance.

Abstract

为解决现有多级磷酸铁锂电池容量不高,且循环性能较差的技术问题,提出一种多级造孔式磷酸铁锂的制备方法,包括以下步骤:一级多孔磷酸亚铁铵的制备、二级多孔磷酸铁锂的制备和三级多孔磷酸铁锂的制备,最终合成多级造孔式磷酸铁锂;所制备的多级造孔式磷酸铁锂具有电池容量高,且循环性能优异的技术效果,大大优于现有技术制备的磷酸铁锂。

Description

一种多级造孔式磷酸铁锂的制备方法 技术领域
本发明涉及新能源材料领域,具体涉及一种多级造孔式磷酸铁锂的制备方法。
背景技术
目前市场上新能源产品所用锂离子电池的正极材料主要是磷酸铁锂和三元材料;磷酸铁锂因其较高的安全性能和成本优势,在电网储能、低速用车和电动工具上接受度较高。
磷酸铁锂因其单通道锂离子的传输构造和较不理想的电子和离子导电性能,其克容量的发挥受到抑制,长循环得不到很好发挥。常规的解决方法主要为碳层包覆和金属离子掺杂,但在生产过程中碳层的厚度和包覆性以及金属离子作用均受到抑制和阻碍,其中的因素之一是颗粒表面过于致密,孔道不足,锂离子和电解液相互渗透不通畅。
专利CN108557794A一种多孔磷酸铁纳米微粉的制备方法,采用乙炔黑包覆磷酸铁在高温下氮气烧结脱掉乙炔黑,但是乙炔黑密度小容易在液面漂浮,不容易在磷酸铁表面均匀包覆,而且乙炔黑在氮气中烧结会残留碳,会污染最终的磷酸铁原材料。专利CN102201576A一种多孔碳原位复合磷酸铁锂正极材料及其制备方法,使用多孔碳、磷酸铁和锂源一并烧结合成多孔碳原位复合磷酸铁锂,此时的多孔碳有很大部分参与了三价铁的还原,而且固相反应也对多孔碳的结构和包覆效果产生很大影响。专利CN107221672A一种橄榄形多孔磷酸铁锂及其制备方法,采用水热-煅烧法合成多孔磷酸铁锂,但水热法中碳含量的多少取决于有机碳源对前驱体的吸附能力和包覆效果,无法精准调控碳含量。
综上可知,磷酸铁锂提高容量和循环性能技术的发展是必然趋势,也是当下亟待解决的问题。
发明内容
本发明的目的是提供一种多级造孔式磷酸铁锂的制备方法,其获得的电池容量高,且循环性能优异。
本发明的目的是通过这样的技术方案实现的,一种多级造孔式磷酸铁锂的制 备方法,包括以下步骤:
S1,一级多孔磷酸亚铁铵的制备:将浓度为85%的磷酸加入到去离子水中搅拌30min-60min,然后在曝气盘或曝气管通入惰性气体10min-60min后,加入亚铁盐,亚铁离子:磷酸根离子的摩尔比为(0.97-1):1,亚铁盐全部溶解后继续搅拌30min-60min,然后加入添加剂A和添加剂B,添加剂A的摩尔数为亚铁离子摩尔数的0.01-0.1,添加剂B的质量为磷酸质量的0.1-0.3,此时将溶液温度升至60℃-90℃并保持恒温,使用氨水进行滴定,使其溶液的pH值控制在6-7,然后反应30min-90min,趁热过滤,先用热水洗涤,然后用有机溶剂洗涤,再将固体放入真空干燥箱中,80℃-90℃干燥12h-24h,得到一级多孔磷酸亚铁铵固体;其中,所述添加剂A为吸附介质,所述添加剂B为脂溶性色素或脂类聚合物;
S2,二级多孔磷酸铁锂的制备:将S1所得的一级多孔磷酸亚铁铵固体加入到去离子水中,加入添加剂C,所述添加剂C为低温易分解和升华的包覆物,添加剂C的摩尔数为磷酸亚铁铵摩尔数的0.02-0.2,然后加入锂源,使锂离子:磷酸根离子的摩尔比为(1-1.1):1,混合4~8小时后将全部浆料转移至纳米砂磨机中研磨4~12小时,然后使用离心式喷雾干燥塔造粒;在高纯惰性气氛中烧结,即以2.5~5℃/min升温至400~600℃保温6~12小时,随后自然降温,得到二级多孔磷酸铁锂固体;
S3,三级多孔磷酸铁锂的制备:将S2所得二级多孔磷酸铁锂固体粉碎后,加入到去离子水中,加入添加剂D,所述添加剂D为多孔碳材料,添加剂D的质量为S2所得磷酸铁锂质量的0.15-0.6,之后混合4~8小时后将全部浆料转移至纳米砂磨机中研磨4~12小时,然后使用离心式喷雾干燥塔造粒;在高纯惰性气氛中烧结,即以2.5~5℃/min,升温至600~800℃保温6~12小时,随后自然降温;使用气流粉碎机粉碎,得到D50粒度为1~2微米均匀的磷酸铁锂。
进一步地,所述S1中曝气盘或曝气管中接入的惰性气体压力为0.01MPa-0.1MPa;惰性气体为氮气、氩气、氦气等;搅拌速率为100~300转每分钟;亚铁盐为硝酸亚铁、硫酸亚铁、草酸亚铁、氢氧化亚铁、氰化亚铁、乳酸亚铁中的一种或多种;添加剂A为氧化铝、碳化硅、碳化钛、碳化铌中的一种或多种;添加剂B为叶绿素、叶黄素、番茄红素、辣椒红色、聚丙烯酯、酚醛树脂、聚氨酯中的一种或多种;有机溶剂为丙酮、乙醇、正己烷、氯仿中的一种或多种。
进一步地,所述S2中添加剂C为氯化铵、碳酸铵、碳酸氢铵、尿素、碘、萘中的一种或多种;锂源为碳酸锂、草酸锂和一水氢氧化锂中的一种或多种;纳米砂磨机的研磨介质为0.6~0.7mm的氧化锆球,转速为1500~3000转/分钟;喷雾干燥进口和出口温度分别为160~250℃、80~110℃,雾化盘转速为16000~24000转/分钟;高纯惰性气氛为氮气或氩气。
进一步地,所述S3中添加剂D为多孔石墨烯、活性碳、活性碳纤维、介孔碳、碳纳米管、碳分子筛中的一种或多种;纳米砂磨机的研磨介质为0.3~0.4mm的氧化锆球,转速为1500~3000转/分钟;喷雾干燥进口和出口温度分别为160~250℃、80~110℃,雾化盘转速为16000~24000转/分钟;高纯惰性气氛为氮气或氩气;气流破碎采用0.6MPa-0.8MPa的空气压力,D50粒度控制到1-2微米。
进一步地,所述S1中亚铁盐为硝酸亚铁,添加剂A为碳化硅。
进一步地,所述S2中添加剂C为碳酸铵,锂源为碳酸锂。
进一步地,所述S3中添加剂D为多孔石墨烯。
本发明提供一种多级造孔式磷酸铁锂的制备方法,一级多孔磷酸亚铁铵主要针对磷酸亚铁铵在晶体形成和长大过程中,引入氧化铝等吸附介质,形成片状形貌的磷酸亚铁铵,而且包覆上脂溶性物质,通过有机溶剂的洗涤,将晶体上的脂溶性物质脱出,从而形成一级多孔磷酸亚铁铵;二级多孔磷酸铁锂是采用低温易分解和升华的物质进行包覆混合物料中,经高温烧结后产生孔洞,而且此过程不引入碳,在原始磷酸铁锂晶体上造孔;三级多孔磷酸铁锂是采用多孔的碳材料合成原位多孔碳包覆磷酸铁锂。经过这三级造孔,不仅仅是原始材料磷酸亚铁铵晶体,还是二级无碳磷酸铁锂晶体和三级包碳磷酸铁锂,均采用了不同机理的针对性造孔,最终合成多级孔式磷酸铁锂;片层状结构缩短了锂离子传输的距离,氧化铝或碳化硅等穿插在片层之间以及多孔碳提高了整体电导性能,多孔式的形貌优化了电解液和锂离子的浸润和传输。
本发明所制备的多级造孔式磷酸铁锂具有电池容量高,且循环性能优异的技术效果,大大优于现有技术制备的磷酸铁锂。
附图说明
附图1为本发明实施例1和实施例8的1C常温循环对比图。
附图2为本发明实施例2和实施例9的1C常温循环对比图。
附图3为本发明实施例3和实施例10的1C常温循环对比图。
附图4为本发明实施例4和实施例11的1C常温循环对比图。
附图5为本发明实施例5和实施例12的1C常温循环对比图。
附图6为本发明实施例6和实施例13的1C常温循环对比图。
附图7为本发明实施例7和实施例14的1C常温循环对比图。
附图8为本发明实施例1和实施例8的放电比容量对比图。
附图9为本发明实施例2和实施例9的放电比容量对比图。
附图10为本发明实施例3和实施例10的放电比容量对比图。
附图11为本发明实施例4和实施例11的放电比容量对比图。
附图12为本发明实施例5和实施例12的放电比容量对比图。
附图13为本发明实施例6和实施例13的放电比容量对比图。
附图14为本发明实施例7和实施例14的放电比容量对比图。
具体实施方式
下面结合实施例对本发明作进一步的说明。
实施例1
将300g质量分数85%的磷酸加入到3L去离子水中搅拌30min,然后使用曝气盘通入0.01MPa的氮气通入溶液10min后,缓慢加入720g七水硫酸亚铁,七水硫酸亚铁全部溶解后继续搅拌30min,然后加入10g纳米氧化铝和60g酚醛树脂,此时将溶液温度升至60℃并保持恒温,使用氨水进行滴定,使其溶液的pH值控制在6,然后反应30min,趁热过滤,先用热水洗涤,然后用丙酮洗涤,固体在真空干燥箱中80℃干燥12h;
取干燥后的固体300g加入到3L去离子水中,加入10g氯化铵,然后加入65.8g碳酸锂之后混合4小时,将全部浆料转移至纳米砂磨机中研磨4小时,砂磨机的研磨介质为0.6~0.7mm的氧化锆球,转速为1500转/分钟,使用离心式喷雾干燥塔造粒,喷雾干燥进口和出口温度分别为160℃和80℃,雾化盘转速为16000转/分钟,样品在高纯氮气中烧结,即以2.5℃/min升温至450℃保温10小时,随后自然降温;
取上述固体300g,加入到3L去离子水中,加入45g活性碳纤维,混合8小时后,将全部浆料转移至纳米砂磨机中研磨4小时,砂磨机的研磨介质为 0.3-0.4mm的氧化锆球,转速为1500转/分钟,使用离心式喷雾干燥塔造粒,喷雾干燥进口和出口温度分别为190℃和85℃,雾化盘转速为20000转/分钟,样品在高纯氩气中烧结,即以2.5℃/min升温至600℃保温12小时,随后自然降温,使用气流粉碎机粉碎,气流破碎采用0.6MPa的空气压力,得到D50粒度为1~2微米均匀的磷酸铁锂。
实施例2
将300g质量分数85%的磷酸加入到3L去离子水中搅拌40min,然后使用曝气盘通入0.02MPa的氮气通入溶液10min后,缓慢加入740g六水硝酸亚铁,亚铁盐全部溶解后继续搅拌40min,然后加入2.6g氧化铝和26g叶黄素,此时将溶液温度升至70℃并保持恒温,使用氨水进行滴定,使其溶液的pH值控制在6.5,然后反应40min,趁热过滤,先用热水洗涤,然后用乙醇洗涤,固体在真空干燥箱中85℃干燥18h;
取干燥后的固体300g加入到3L去离子水中,加入25g碳酸铵,然后加入100g草酸锂之后混合6小时,将全部浆料转移至纳米砂磨机中研磨7小时,砂磨机的研磨介质为0.6~0.7mm的氧化锆球,转速为1500转/分钟,使用离心式喷雾干燥塔造粒,喷雾干燥进口和出口温度分别为210℃和102℃,雾化盘转速为17000转/分钟,样品在高纯惰性气氛中烧结,即以3.5℃/min升温至550℃保温12小时,随后自然降温;
取上述固体300g,加入到3L去离子水中,加入50g碳纳米管,混合7小时后,将全部浆料转移至纳米砂磨机中研磨12小时,砂磨机的研磨介质为0.3-0.4mm的氧化锆球,转速为3000转/分钟,使用离心式喷雾干燥塔造粒,喷雾干燥进口和出口温度分别为175℃和90℃,雾化盘转速为22000转/分钟,样品在高纯氩气中烧结,即以5℃/min升温至800℃保温6小时,随后自然降温,使用气流粉碎机粉碎,气流破碎采用0.8MPa的空气压力,得到D50粒度为1~2微米均匀的磷酸铁锂。
实施例3
将300g质量分数85%的磷酸加入到3L去离子水中搅拌50min,然后使用曝气盘通入0.03MPa的氮气通入溶液20min后,缓慢加入749g六水硝酸亚铁,磷酸亚铁全部溶解后继续搅拌50min,然后加入5g纳米碳化钛和76.5g番茄红素, 此时将溶液温度升至90℃并保持恒温,使用氨水进行滴定,使其溶液的pH值控制在7,然后反应90min,趁热过滤,先用热水洗涤,然后用正己烷洗涤,固体在真空干燥箱中90℃干燥24h;
取干燥后的固体300g加入到3L去离子水中,加入2.8g碳酸氢铵,然后加入66g碳酸锂之后混合8小时,将全部浆料转移至纳米砂磨机中研磨4小时,砂磨机的研磨介质为0.6~0.7mm的氧化锆球,转速为1800转/分钟,使用离心式喷雾干燥塔造粒,喷雾干燥进口和出口温度分别为180℃和88℃,雾化盘转速为18000转/分钟,样品在高纯惰性气氛中烧结,即以2.5℃/min升温至550℃保温8小时,随后自然降温;
取上述固体300g,加入到3L去离子水中,加入50g多孔石墨烯,混合6小时后,将全部浆料转移至纳米砂磨机中研磨6小时,砂磨机的研磨介质为0.3-0.4mm的氧化锆球,转速为1800转/分钟,使用离心式喷雾干燥塔造粒,喷雾干燥进口和出口温度分别为250℃和110℃,雾化盘转速为24000转/分钟,样品在高纯氩气中烧结,即以3.5℃/min升温至680℃保温10小时,随后自然降温,使用气流粉碎机粉碎,气流破碎采用0.65MPa的空气压力,得到D50粒度为1~2微米均匀的磷酸铁锂。
实施例4
将300g质量分数85%的磷酸加入到3L去离子水中搅拌60min,然后使用曝气盘通入0.04MPa的氦气通入溶液30min后,缓慢加入454g二水草酸亚铁,草酸亚铁全部溶解后继续搅拌60min,然后加入26.7g碳化铌和51g辣椒红素,此时将溶液温度升至80℃并保持恒温,使用氨水进行滴定,使其溶液的pH值控制在6.5,然后反应80min,趁热过滤,先用热水洗涤,然后用氯仿洗涤,固体在真空干燥箱中90℃干燥20h;
取干燥后的固体300g加入到3L去离子水中,加入21.4g尿素,然后加入75g一水氢氧化锂之后混合7小时,将全部浆料转移至纳米砂磨机中研磨5小时,砂磨机的研磨介质为0.6~0.7mm的氧化锆球,转速为1500转/分钟,使用离心式喷雾干燥塔造粒,喷雾干燥进口和出口温度分别为170℃和90℃,雾化盘转速为20000转/分钟,样品在高纯氩气中烧结,即以3℃/min升温至400℃保温12小时,随后自然降温;
取上述固体300g,加入到3L去离子水中,加入50g活性碳,混合5小时后,将全部浆料转移至纳米砂磨机中研磨10小时,砂磨机的研磨介质为0.3-0.4mm的氧化锆球,转速为2800转/分钟,使用离心式喷雾干燥塔造粒,喷雾干燥进口和出口温度分别为240℃和108℃,雾化盘转速为18000转/分钟,样品在高纯氮气中烧结,即以4.5℃/min升温至750℃保温8小时,随后自然降温,使用气流粉碎机粉碎,气流破碎采用0.7MPa的空气压力,得到D50粒度为1~2微米均匀的磷酸铁锂。
实施例5
将300g质量分数85%的磷酸加入到3L去离子水中搅拌35min,然后使用曝气盘通入0.06MPa的氦气通入溶液40min后,缓慢加入230g氢氧化亚铁,氢氧化亚铁全部溶解后继续搅拌50min,然后加入2.5g纳米碳化硅和70g叶绿素,此时将溶液温度升至70℃并保持恒温,使用氨水进行滴定,使其溶液的pH值控制在6.5,然后反应40min,趁热过滤,先用热水洗涤,然后用乙醇洗涤,固体在真空干燥箱中85℃干燥18h;
取干燥后的固体300g加入到3L去离子水中,加入22.6g碘,然后加入132g草酸锂之后混合4小时,将全部浆料转移至纳米砂磨机中研磨8小时,砂磨机的研磨介质为0.6~0.7mm的氧化锆球,转速为3000转/分钟,使用离心式喷雾干燥塔造粒,喷雾干燥进口和出口温度分别为160℃和80℃,雾化盘转速为22000转/分钟,样品在高纯氮气中烧结,即以4℃/min升温至500℃保温8小时,随后自然降温;
取上述固体300g,加入到3L去离子水中,加入50g介孔碳,混合4小时后,将全部浆料转移至纳米砂磨机中研磨6小时,砂磨机的研磨介质为0.3-0.4mm的氧化锆球,转速为2000转/分钟,使用离心式喷雾干燥塔造粒,喷雾干燥进口和出口温度分别为220℃和105℃,雾化盘转速为16000转/分钟,样品在高纯氮气中烧结,即以4℃/min升温至650℃保温11小时,随后自然降温,使用气流粉碎机粉碎,气流破碎采用0.75MPa的空气压力,得到D50粒度为1~2微米均匀的磷酸铁锂。
实施例6
将300g质量分数85%的磷酸加入到3L去离子水中搅拌45min,然后使用曝 气盘通入0.8MPa的氩气通入溶液50min后,缓慢加入602g乳酸亚铁,乳酸亚铁全部溶解后继续搅拌50min,然后加入7.7g碳化钛和60g番茄红素,此时将溶液温度升至70℃并保持恒温,使用氨水进行滴定,使其溶液的pH值控制在6.5,然后反应40min,趁热过滤,先用热水洗涤,然后用丙酮洗涤,固体在真空干燥箱中85℃干燥15h;
取干燥后的固体300g加入到3L去离子水中,加入34.2g柰,然后加入82g一水氢氧化锂之后混合4小时,将全部浆料转移至纳米砂磨机中研磨8小时,砂磨机的研磨介质为0.6~0.7mm的氧化锆球,转速为3000转/分钟,使用离心式喷雾干燥塔造粒,喷雾干燥进口和出口温度分别为250℃和110℃,雾化盘转速为24000转/分钟,样品在高纯氩气中烧结,即以5℃/min升温至6000℃保温10小时,随后自然降温;
取上述固体300g,加入到3L去离子水中,加入50g碳分子筛,混合6小时后,将全部浆料转移至纳米砂磨机中研磨5小时,砂磨机的研磨介质为0.3-0.4mm的氧化锆球,转速为2500转/分钟,使用离心式喷雾干燥塔造粒,喷雾干燥进口和出口温度分别为200℃和100℃,雾化盘转速为21000转/分钟,样品在高纯氮气中烧结,即以4℃/min升温至700℃保温9小时,随后自然降温,使用气流粉碎机粉碎,气流破碎采用0.7MPa的空气压力,得到D50粒度为1~2微米均匀的磷酸铁锂。
实施例7
将300g质量分数85%的磷酸加入到3L去离子水中搅拌55min,然后使用曝气盘通入0.1MPa的氩气通入溶液60min后,缓慢加入726g六水硝酸亚铁,亚铁盐全部溶解后继续搅拌40min,然后加入16g碳化铌和50g叶绿素,此时将溶液温度升至70℃并保持恒温,使用氨水进行滴定,使其溶液的pH值控制在6.5,然后反应40min,趁热过滤,先用热水洗涤,然后用乙醇洗涤,固体在真空干燥箱中85℃干燥20h;
取干燥后的固体300g加入到3L去离子水中,加入28g碳酸铵,然后加入91g草酸锂之后混合6小时,将全部浆料转移至纳米砂磨机中研磨12小时,砂磨机的研磨介质为0.6~0.7mm的氧化锆球,转速为2000转/分钟,使用离心式喷雾干燥塔造粒,喷雾干燥进口和出口温度分别为180℃和88℃,雾化盘转速为 19000转/分钟,样品在高纯氮气中烧结,即以3.5℃/min升温至550℃保温12小时,随后自然降温;
取上述固体300g,加入到3L去离子水中,加入50g多孔石墨烯,混合7小时后,将全部浆料转移至纳米砂磨机中研磨8小时,砂磨机的研磨介质为0.3-0.4mm的氧化锆球,转速为2200转/分钟,使用离心式喷雾干燥塔造粒,喷雾干燥进口和出口温度分别为180℃和80℃,雾化盘转速为20000转/分钟,样品在高纯氮气中烧结,即以3.5℃/min升温至680℃保温10小时,随后自然降温,使用气流粉碎机粉碎,气流破碎采用0.65MPa的空气压力,得到D50粒度为1~2微米均匀的磷酸铁锂。
实施例8
实施例8为实施例1的对比例,在实施例1相同条件下,不加入添加剂A、添加剂B、添加剂C,添加剂D更改为葡萄糖,制备磷酸铁锂。
实施例9
实施例9为实施例2的对比例,在实施例2相同条件下,不加入添加剂A、添加剂B、添加剂C,添加剂D更改为葡萄糖,制备磷酸铁锂。
实施例10
实施例10为实施例3的对比例,在实施例3相同条件下,不加入添加剂A、添加剂B、添加剂C,添加剂D更改为葡萄糖,制备磷酸铁锂。
实施例11
实施例11为实施例4的对比例,在实施例4相同条件下,不加入添加剂A、添加剂B、添加剂C,添加剂D更改为葡萄糖,制备磷酸铁锂。
实施例12
实施例12为实施例5的对比例,在实施例5相同条件下,不加入添加剂A、添加剂B、添加剂C,添加剂D更改为葡萄糖,制备磷酸铁锂。
实施例13
实施例13为实施例6的对比例,在实施例6相同条件下,不加入添加剂A、添加剂B、添加剂C,添加剂D更改为葡萄糖,制备磷酸铁锂。
实施例14
实施例14为实施例7的对比例,在实施例7相同条件下,不加入添加剂A、 添加剂B、添加剂C,添加剂D更改为葡萄糖,制备。
分别将实施例1-14所制备的磷酸铁锂、SP、PVDF按质量比93:4:3混合均匀,然后将其涂在0.018mm的铝箔上,涂布厚度为100-120微米,经充分干燥后得到正极极片,经滚压-卷绕-装壳,激光焊接封口,充满氩气的手套箱内注液,最后在LAND电池测试仪上进行充放电性能测试,充放电电压为3.65~2.0V。
下表为实施例1-14所制备的正极极片的检测结果:
正极极片 放电比容量(mAh/g) 循环2000周保持率(%)
实施例1 150 89.95
实施例2 152 90.5
实施例3 155 92
实施例4 151 90
实施例5 155 90
实施例6 154 92
实施例7 153 91
实施例8 135 80
实施例9 136 80
实施例10 135 83.2
实施例11 133 81.3
实施例12 133 81.94
实施例13 132 80.65
实施例14 131 82.65
由上述检测结果可知,本发明多级造孔式磷酸铁锂的制备方法合成的磷酸铁锂,不仅具有较高克容量,且有较好的循环性能。
应理解实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作任何各种改动和修改,这些等价形式同样落于本申请所附权利要求书所限制。

Claims (7)

  1. 一种多级造孔式磷酸铁锂的制备方法,其特征在于,包括以下步骤:
    S1,一级多孔磷酸亚铁铵的制备:将浓度为85%的磷酸加入到去离子水中搅拌30min-60min,然后在曝气盘或曝气管通入惰性气体10min-60min后,加入亚铁盐,亚铁离子:磷酸根离子的摩尔比为(0.97-1):1,亚铁盐全部溶解后继续搅拌30min-60min,然后加入添加剂A和添加剂B,添加剂A的摩尔数为亚铁离子摩尔数的0.01-0.1,添加剂B的质量为磷酸质量的0.1-0.3,此时将溶液温度升至60℃-90℃并保持恒温,使用氨水进行滴定,使其溶液的pH值控制在6-7,然后反应30min-90min,趁热过滤,先用热水洗涤,然后用有机溶剂洗涤,再将固体放入真空干燥箱中,80℃-90℃干燥12h-24h,得到一级多孔磷酸亚铁铵固体;其中,所述添加剂A为吸附介质,所述添加剂B为脂溶性色素或脂类聚合物;
    S2,二级多孔磷酸铁锂的制备:将S1所得的一级多孔磷酸亚铁铵固体加入到去离子水中,加入添加剂C,所述添加剂C为低温易分解和升华的包覆物,添加剂C的摩尔数为磷酸亚铁铵摩尔数的0.02-0.2,然后加入锂源,使锂离子:磷酸根离子的摩尔比为(1-1.1):1,混合4~8小时后将全部浆料转移至纳米砂磨机中研磨4~12小时,然后使用离心式喷雾干燥塔造粒;在高纯惰性气氛中烧结,即以2.5~5℃/min升温至400~600℃保温6~12小时,随后自然降温,得到二级多孔磷酸铁锂固体;
    S3,三级多孔磷酸铁锂的制备:将S2所得二级多孔磷酸铁锂固体粉碎后,加入到去离子水中,加入添加剂D,所述添加剂D为多孔碳材料,添加剂D的质量为S2所得磷酸铁锂质量的0.15-0.6,之后混合4~8小时后将全部浆料转移至纳米砂磨机中研磨4~12小时,然后使用离心式喷雾干燥塔造粒;在高纯惰性气氛中烧结,即以2.5~5℃/min,升温至600~800℃保温6~12小时,随后自然降温;使用气流粉碎机粉碎,得到D50粒度为1~2微米均匀的磷酸铁锂。
  2. 根据权利要求1所述的多级造孔式磷酸铁锂的制备方法,其特征在于,所述S1中曝气盘或曝气管中接入的惰性气体压力为0.01MPa-0.1MPa;惰性气体为氮气、氩气、氦气等;搅拌速率为100~300转每分钟;亚铁盐为硝酸亚铁、硫酸亚铁、草酸亚铁、氢氧化亚铁、氰化亚铁、乳酸亚铁中的一种或多种;添加剂A为氧化铝、碳化硅、碳化钛、碳化铌中的一种或多种;添加剂B为叶绿素、叶黄素、番茄红素、辣椒红色、聚丙烯酯、酚醛树脂、聚氨酯中的一种或多种;有机溶剂为丙酮、乙醇、正己烷、氯仿中的一种或多种。
  3. 根据权利要求1所述的多级造孔式磷酸铁锂的制备方法,其特征在于,所述S2 中添加剂C为氯化铵、碳酸铵、碳酸氢铵、尿素、碘、萘中的一种或多种;锂源为碳酸锂、草酸锂和一水氢氧化锂中的一种或多种;纳米砂磨机的研磨介质为0.6~0.7mm的氧化锆球,转速为1500~3000转/分钟;喷雾干燥进口和出口温度分别为160~250℃、80~110℃,雾化盘转速为16000~24000转/分钟;高纯惰性气氛为氮气或氩气。
  4. 根据权利要求1所述的多级造孔式磷酸铁锂的制备方法,其特征在于,所述S3中添加剂D为多孔石墨烯、活性碳、活性碳纤维、介孔碳、碳纳米管、碳分子筛中的一种或多种;纳米砂磨机的研磨介质为0.3~0.4mm的氧化锆球,转速为1500~3000转/分钟;喷雾干燥进口和出口温度分别为160~250℃、80~110℃,雾化盘转速为16000~24000转/分钟;高纯惰性气氛为氮气或氩气;气流破碎采用0.6MPa-0.8MPa的空气压力,D50粒度控制到1-2微米。
  5. 根据权利要求1-4中任一项所述的多级造孔式磷酸铁锂的制备方法,其特征在于,所述S1中亚铁盐为硝酸亚铁,添加剂A为碳化硅。
  6. 根据权利要求1至4中任一项所述的多级造孔式磷酸铁锂的制备方法,其特征在于,所述S2中添加剂C为碳酸铵,锂源为碳酸锂。
  7. 根据权利要求1至4中任一项所述的多级造孔式磷酸铁锂的制备方法,其特征在于,所述S3中添加剂D为多孔石墨烯。
PCT/CN2020/099904 2019-07-03 2020-07-02 一种多级造孔式磷酸铁锂的制备方法 WO2021000911A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20834736.9A EP3909912A4 (en) 2019-07-03 2020-07-02 PROCESS FOR PRODUCTION OF MULTISTAGE POROUSING LITHIUM IRON PHOSPHATE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910595886.1 2019-07-03
CN201910595886.1A CN110255522B (zh) 2019-07-03 2019-07-03 一种多级造孔式磷酸铁锂的制备方法

Publications (1)

Publication Number Publication Date
WO2021000911A1 true WO2021000911A1 (zh) 2021-01-07

Family

ID=67924205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/099904 WO2021000911A1 (zh) 2019-07-03 2020-07-02 一种多级造孔式磷酸铁锂的制备方法

Country Status (3)

Country Link
EP (1) EP3909912A4 (zh)
CN (1) CN110255522B (zh)
WO (1) WO2021000911A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113666353A (zh) * 2021-08-20 2021-11-19 合肥国轩高科动力能源有限公司 一种基于氧基氯化铁制备改性磷酸铁锂材料的方法、制得的材料
CN113991117A (zh) * 2021-10-28 2022-01-28 骆驼集团资源循环襄阳有限公司 一种磷酸铁锂复合材料的制备方法
CN114229818A (zh) * 2021-12-23 2022-03-25 沈阳国科金能科技有限公司 一种原位掺杂石墨烯低温磷酸铁锂正极材料的制备方法
CN114361448A (zh) * 2021-12-31 2022-04-15 欣旺达电动汽车电池有限公司 磷酸铁锂、其制备方法及锂离子电池
CN114702020A (zh) * 2022-05-09 2022-07-05 兰州兰石中科纳米科技有限公司 一种钛白粉副废硫酸亚铁制备纳米磷酸铁锂生产线

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110255522B (zh) * 2019-07-03 2020-11-06 重庆特瑞电池材料股份有限公司 一种多级造孔式磷酸铁锂的制备方法
CN110600705A (zh) * 2019-09-20 2019-12-20 程立勋 一种电池正极材料的制备方法
CN111348638B (zh) * 2020-05-11 2021-07-06 蒋达金 一种碱式磷酸铁铵的制备方法
CN115084523A (zh) * 2022-06-28 2022-09-20 肇庆小鹏汽车有限公司 电极浆料及其制备方法和应用

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080106718A (ko) * 2007-06-04 2008-12-09 주식회사 엘지화학 다공성 코팅층이 형성된 세퍼레이터 및 이를 구비한전기화학소자
CN102054978A (zh) * 2010-11-25 2011-05-11 清华大学 一种纳米片微球状锂离子电池阴极电极材料的制备方法
CN102201576A (zh) 2011-04-25 2011-09-28 北京科技大学 一种多孔碳原位复合磷酸铁锂正极材料及其制备方法
CN102208627A (zh) * 2011-05-11 2011-10-05 华南理工大学 一种喷雾干燥制备LiFePO4/C复合正极材料的方法
CN102275893A (zh) * 2011-07-20 2011-12-14 湖南维邦新能源有限公司 制备磷酸铁锂的方法及其磷酸铁锂
WO2012023904A1 (en) * 2010-08-20 2012-02-23 National University Of Singapore Mesoporous metal phosphate materials for energy storage application
US20130146806A1 (en) * 2011-12-13 2013-06-13 Hirose Tech Co., Ltd. Porous lithium phosphate metal salt and method for preparing the same
US20130153821A1 (en) * 2006-05-26 2013-06-20 Eltron Research, Inc. Synthetic process for preparation of high surface area electroactive compounds for battery applications
KR20160080241A (ko) * 2014-12-29 2016-07-07 주식회사 엘지화학 다공성 리튬 인산철 입자 제조방법
CN107221672A (zh) 2017-05-08 2017-09-29 陕西科技大学 一种橄榄形多孔磷酸铁锂及其制备方法
CN108269966A (zh) * 2017-12-28 2018-07-10 国联汽车动力电池研究院有限责任公司 一种通过冷压-材料分级级配制备固体电极的方法
CN108557794A (zh) 2018-04-28 2018-09-21 贵州贵航新能源科技有限公司 一种多孔磷酸铁纳米微粉的制备方法
CN108837968A (zh) * 2018-06-22 2018-11-20 天津先众新能源科技股份有限公司 一种可控粒径的球形磷酸铁前驱体制造方法及所用的压力雾化喷头
CN110255522A (zh) * 2019-07-03 2019-09-20 重庆特瑞电池材料股份有限公司 一种多级造孔式磷酸铁锂的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8163193B2 (en) * 2010-08-27 2012-04-24 Tsinghua University Modifier of lithium ion battery and method for making the same
CN102173403B (zh) * 2011-01-25 2013-08-21 山东省科学院能源研究所 锂离子电池正极材料微纳米磷酸铁锂的制备方法
WO2012110404A1 (de) * 2011-02-14 2012-08-23 Basf Se Elektrodenmaterialien und verfahren zu ihrer herstellung
KR102026091B1 (ko) * 2017-11-08 2019-09-27 한국기초과학지원연구원 양극활물질용 복합소재를 제조하는 방법 및 상기 양극활물질용 복합소재를 포함하는 리튬이차전지

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130153821A1 (en) * 2006-05-26 2013-06-20 Eltron Research, Inc. Synthetic process for preparation of high surface area electroactive compounds for battery applications
KR20080106718A (ko) * 2007-06-04 2008-12-09 주식회사 엘지화학 다공성 코팅층이 형성된 세퍼레이터 및 이를 구비한전기화학소자
WO2012023904A1 (en) * 2010-08-20 2012-02-23 National University Of Singapore Mesoporous metal phosphate materials for energy storage application
CN102054978A (zh) * 2010-11-25 2011-05-11 清华大学 一种纳米片微球状锂离子电池阴极电极材料的制备方法
CN102201576A (zh) 2011-04-25 2011-09-28 北京科技大学 一种多孔碳原位复合磷酸铁锂正极材料及其制备方法
CN102208627A (zh) * 2011-05-11 2011-10-05 华南理工大学 一种喷雾干燥制备LiFePO4/C复合正极材料的方法
CN102275893A (zh) * 2011-07-20 2011-12-14 湖南维邦新能源有限公司 制备磷酸铁锂的方法及其磷酸铁锂
US20130146806A1 (en) * 2011-12-13 2013-06-13 Hirose Tech Co., Ltd. Porous lithium phosphate metal salt and method for preparing the same
KR20160080241A (ko) * 2014-12-29 2016-07-07 주식회사 엘지화학 다공성 리튬 인산철 입자 제조방법
CN107221672A (zh) 2017-05-08 2017-09-29 陕西科技大学 一种橄榄形多孔磷酸铁锂及其制备方法
CN108269966A (zh) * 2017-12-28 2018-07-10 国联汽车动力电池研究院有限责任公司 一种通过冷压-材料分级级配制备固体电极的方法
CN108557794A (zh) 2018-04-28 2018-09-21 贵州贵航新能源科技有限公司 一种多孔磷酸铁纳米微粉的制备方法
CN108837968A (zh) * 2018-06-22 2018-11-20 天津先众新能源科技股份有限公司 一种可控粒径的球形磷酸铁前驱体制造方法及所用的压力雾化喷头
CN110255522A (zh) * 2019-07-03 2019-09-20 重庆特瑞电池材料股份有限公司 一种多级造孔式磷酸铁锂的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3909912A4
ZHENG, ZHEN-MIAO ET AL.: "Solvothermal Synthesis and Electrochemical Performance of Flowerlike LiFePO4 Hierarchically Microstructures", CHINESE JOURNAL OF INORGANIC CHEMISTRY, vol. 31, no. 4, 10 April 2015 (2015-04-10), pages 731 - 738, XP055833136, ISSN: 1001-4861 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113666353A (zh) * 2021-08-20 2021-11-19 合肥国轩高科动力能源有限公司 一种基于氧基氯化铁制备改性磷酸铁锂材料的方法、制得的材料
CN113991117A (zh) * 2021-10-28 2022-01-28 骆驼集团资源循环襄阳有限公司 一种磷酸铁锂复合材料的制备方法
CN114229818A (zh) * 2021-12-23 2022-03-25 沈阳国科金能科技有限公司 一种原位掺杂石墨烯低温磷酸铁锂正极材料的制备方法
CN114361448A (zh) * 2021-12-31 2022-04-15 欣旺达电动汽车电池有限公司 磷酸铁锂、其制备方法及锂离子电池
CN114361448B (zh) * 2021-12-31 2023-07-14 欣旺达电动汽车电池有限公司 磷酸铁锂、其制备方法及锂离子电池
CN114702020A (zh) * 2022-05-09 2022-07-05 兰州兰石中科纳米科技有限公司 一种钛白粉副废硫酸亚铁制备纳米磷酸铁锂生产线
CN114702020B (zh) * 2022-05-09 2023-07-21 兰州兰石中科纳米科技有限公司 一种钛白粉副废硫酸亚铁制备纳米磷酸铁锂生产线

Also Published As

Publication number Publication date
CN110255522B (zh) 2020-11-06
CN110255522A (zh) 2019-09-20
EP3909912A4 (en) 2022-08-10
EP3909912A1 (en) 2021-11-17

Similar Documents

Publication Publication Date Title
WO2021000911A1 (zh) 一种多级造孔式磷酸铁锂的制备方法
CN108777290B (zh) 一种锂离子电池正极材料包覆改性的方法
CN110880594A (zh) 双包覆复合固态锰酸锂材料及其制备方法
WO2024026984A1 (zh) 一种正极材料的制备方法及其应用
CN111326715B (zh) 一种电池正极材料及其制备方法与应用
KR101465385B1 (ko) 이산화티타늄 나노입자가 포함된 마이크론 크기의 음극활물질 및 그의 제조방법
CN108232167B (zh) 一种碳@硅酸铁空心结构复合物及其制备方法
CN108258211A (zh) 一种超临界二氧化碳流体制备二氧化钛/石墨烯复合材料的方法及应用
CN107565132A (zh) 磷酸铁的制备方法及其制备的磷酸铁、磷酸铁锂的制备方法及其制备的磷酸铁锂以及锂电池
CN106654238A (zh) 一种具有孔隙结构的二氧化锡/碳/氮掺杂石墨烯复合材料及其制备方法和应用
CN107808958A (zh) 四氧化三铁/氮掺杂石墨烯复合材料的制备方法及其产品和应用
CN112786865A (zh) 一种MoS2准量子点/氮硫共掺杂生物质碳复合纳米材料的制备方法和应用
CN112490427A (zh) 一种正极材料及其制备方法与应用
CN109449424B (zh) 一种钼酸钴复合碳点锂离子电池阳极材料及其制备方法
CN110862109A (zh) 一种水热辅助共沉淀策略制备锂离子电池三元正极材料的方法
CN104393274B (zh) 一种中空球型LiTiO2材料及其制备方法
CN113149081B (zh) 一种非晶态膜包覆α-Fe2O3纳米球状材料的制备方法及其应用
CN114162807B (zh) 一种三维多孔石墨烯材料及其制备方法
CN112635728B (zh) 一种石墨烯复合富锂锰基正极材料及其重构制备方法、锂离子电池
CN105060266A (zh) 一种纳米磷酸铁锂的水热合成方法
CN111952569B (zh) 一种用于锂离子电池的氧化硅基负极材料及其制备方法
CN115498145A (zh) 一种碳纳米管复合磷酸铁锂正极材料的制备方法
CN115295748A (zh) 一种利用多金属mof前驱体制备锂离子电池单晶三元正极材料的方法及其产品
CN112349890B (zh) 一种石墨烯@蛋黄-蛋壳硅碳复合材料及其制备和应用
CN112331842A (zh) 二氧化钼纳米颗粒/碳组装锯齿状纳米空心球材料及其制备和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20834736

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020834736

Country of ref document: EP

Effective date: 20210810

NENP Non-entry into the national phase

Ref country code: DE