WO2021000704A1 - 壳体组件、天线装置及电子设备 - Google Patents

壳体组件、天线装置及电子设备 Download PDF

Info

Publication number
WO2021000704A1
WO2021000704A1 PCT/CN2020/095214 CN2020095214W WO2021000704A1 WO 2021000704 A1 WO2021000704 A1 WO 2021000704A1 CN 2020095214 W CN2020095214 W CN 2020095214W WO 2021000704 A1 WO2021000704 A1 WO 2021000704A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
matching layer
radio frequency
dielectric substrate
antenna
Prior art date
Application number
PCT/CN2020/095214
Other languages
English (en)
French (fr)
Inventor
贾玉虎
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to KR1020217043229A priority Critical patent/KR102565865B1/ko
Priority to EP20834218.8A priority patent/EP3979417A4/en
Priority to JP2021578043A priority patent/JP7228720B2/ja
Publication of WO2021000704A1 publication Critical patent/WO2021000704A1/zh
Priority to US17/539,069 priority patent/US20220085493A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism
    • H01Q15/08Refracting or diffracting devices, e.g. lens, prism formed of solid dielectric material
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/18Input circuits, e.g. for coupling to an antenna or a transmission line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • H01Q1/523Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas between antennas of an array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0013Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective
    • H01Q15/0026Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective said selective devices having a stacked geometry or having multiple layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/378Combination of fed elements with parasitic elements
    • H01Q5/392Combination of fed elements with parasitic elements the parasitic elements having dual-band or multi-band characteristics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means
    • H01Q9/0457Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means electromagnetically coupled to the feed line
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0458Arrangements for matching and coupling between power amplifier and antenna or between amplifying stages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/3827Portable transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/0086Casings, cabinets or drawers for electric apparatus portable, e.g. battery operated apparatus

Definitions

  • This application relates to the field of electronic technology, and in particular to a housing assembly, an antenna device and an electronic device.
  • Millimeter wave has the characteristics of high carrier frequency and large bandwidth, and it is the main means to realize 5G ultra-high data transmission rate. Since the millimeter wave antenna is sensitive to the environment, for the whole millimeter wave antenna array, the coverage structure above the antenna array needs to be optimized to achieve better system radiation performance.
  • An embodiment of the present application provides a housing assembly, including:
  • a dielectric substrate having a first transmittance for radio frequency signals of a preset frequency band
  • An impedance matching layer where the impedance matching layer is stacked on the dielectric substrate, and the impedance matching layer is used to perform spatial impedance matching on the radio frequency signal of the preset frequency band;
  • a coupling structure, the coupling structure and the dielectric substrate are stacked, the coupling structure includes one or more coupling element array layers, and the coupling element array layer has resonance characteristics in the preset frequency band;
  • the housing component has a second transmittance to the radio frequency signal of the preset frequency band in the region corresponding to the coupling structure, and the second transmittance is greater than the first transmittance.
  • An embodiment of the present application also provides an antenna device.
  • the antenna device includes an antenna module and the housing assembly provided in any of the above embodiments, the antenna module and the coupling structure are spaced apart, and the antenna module is located at The coupling structure is on a side facing away from the dielectric substrate, the coupling structure is at least partially located within a preset direction range for the antenna module to transmit and receive radio frequency signals, and the coupling structure is used to transmit and receive radio frequency signals to the antenna module.
  • the frequency of the signal is matched to improve the transmittance of the radio frequency signal, and the impedance matching layer is used to perform spatial impedance matching on the radio frequency signal received and received by the antenna module to increase the bandwidth of the radio frequency signal.
  • An embodiment of the present application also provides an electronic device that includes a main board, an antenna module, and the housing assembly provided in any of the above embodiments.
  • the main board is assembled on the housing assembly and is mounted on the housing assembly.
  • An accommodating space is formed on the side facing the coupling structure.
  • the antenna module is disposed in the accommodating space and is electrically connected to the main board.
  • the antenna module includes at least one antenna radiator. The antenna radiator is used to transmit and receive radio frequency signals through the housing component under the control of the main board.
  • Fig. 1 is a schematic structural diagram of a peripheral side view of a housing assembly provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a front view of a housing assembly provided by an embodiment of the present application.
  • Fig. 3 is a schematic structural diagram of a front view of another housing assembly provided by an embodiment of the present application.
  • Fig. 4 is a schematic structural diagram of a front view of another housing assembly provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a front view of another housing assembly provided by an embodiment of the present application.
  • Fig. 6 is a schematic structural diagram of a front view of yet another housing assembly provided by an embodiment of the present application.
  • Fig. 7 is a schematic structural diagram of a front view of another housing assembly provided by an embodiment of the present application.
  • Fig. 8 is a schematic structural diagram of a front view of another housing assembly provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of the structure of the first array layer of the housing assembly in FIG. 8.
  • FIG. 10 is a schematic diagram of the structure of the second array layer of the housing assembly in FIG. 8.
  • FIG. 11 is a schematic structural diagram of an antenna device provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of an antenna module provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a top view of an antenna module provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of another antenna module provided by an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of another antenna module provided by an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of a top view of another antenna module provided by an embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of another antenna module provided by an embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of another antenna module provided by an embodiment of the present application.
  • FIG. 19 is a schematic structural diagram of a top view of the feed formation in FIG. 18.
  • FIG. 20 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 21 is a schematic structural diagram of another electronic device provided by an embodiment of the present application.
  • FIG. 22 is a schematic structural diagram of still another electronic device provided by an embodiment of the present application.
  • FIG. 23 is a schematic structural diagram of yet another electronic device provided by an embodiment of the present application.
  • FIG. 24 is a schematic structural diagram of yet another electronic device provided by an embodiment of the present application.
  • Figure 25 is a schematic diagram of the reflection and transmission coefficient curves of the 2 ⁇ 2 antenna module under the glass battery cover.
  • Fig. 26 is a schematic diagram of the reflection coefficient curve of the 2 ⁇ 2 antenna module under the housing assembly.
  • Fig. 27 is a schematic diagram of the transmission coefficient curve of the 2 ⁇ 2 antenna module under the housing assembly.
  • the embodiment of the present application provides a housing assembly, including:
  • a dielectric substrate having a first transmittance for radio frequency signals of a preset frequency band
  • An impedance matching layer where the impedance matching layer is stacked on the dielectric substrate, and the impedance matching layer is used to perform spatial impedance matching on the radio frequency signal of the preset frequency band;
  • a coupling structure, the coupling structure and the dielectric substrate are stacked, the coupling structure includes one or more coupling element array layers, and the coupling element array layer has resonance characteristics in the preset frequency band;
  • the housing component has a second transmittance to the radio frequency signal of the preset frequency band in the region corresponding to the coupling structure, and the second transmittance is greater than the first transmittance.
  • the impedance matching layer is located on one side of the dielectric substrate, and the coupling structure is located on the side of the impedance matching layer away from the dielectric substrate; or, the coupling structure is located on one side of the dielectric substrate, The impedance matching layer is located on a side of the coupling structure away from the dielectric substrate.
  • the coupling element array layer also has a dual-polarization resonance characteristic under the preset frequency band.
  • the coupling structure includes a coupling element array layer, the coupling element array layer is attached to the surface of the dielectric substrate, and the impedance matching layer is located on the side of the coupling element array layer away from the dielectric substrate
  • the impedance matching layer is used to encapsulate and protect the coupling element array layer.
  • the coupling structure includes a coupling element array layer
  • the impedance matching layer includes a first matching layer and a second matching layer
  • the first matching layer is located on the surface of the dielectric substrate
  • the coupling element array layer Located on the side of the first matching layer away from the dielectric substrate, the first matching layer is used to connect the coupling element array layer to the dielectric substrate, and the second matching layer is located on the coupling element array
  • the layer is away from the side of the first matching layer, and the second matching layer is used to encapsulate and protect the coupling element array layer.
  • the coupling structure includes a first array layer and a second array layer arranged at intervals
  • the impedance matching layer includes a first matching layer and a second matching layer
  • the first array layer is located on the surface of the dielectric substrate
  • the first matching layer is located on a side of the first array layer away from the dielectric substrate, and the first matching layer is used to connect the first array layer to the dielectric substrate, and is used to
  • the first array layer forms encapsulation and protection
  • the second array layer is located on the side of the first matching layer away from the first array layer
  • the second matching layer is located on the second array layer away from the first array layer.
  • the second matching layer is used to encapsulate and protect the second array layer.
  • the coupling structure includes a first array layer and a second array layer arranged at intervals
  • the impedance matching layer includes a first matching layer, a second matching layer, and a third matching layer
  • the first matching layer is located in the The surface of the dielectric substrate
  • the first array layer is located on the surface of the first matching layer away from the dielectric substrate
  • the second matching layer is located on the side of the first array layer away from the first matching layer
  • the second array layer is located on a side of the second matching layer away from the first array layer
  • the third matching layer is located on a side of the second array layer away from the second matching layer.
  • the third matching layer is used to encapsulate and protect the second array layer.
  • first array layer and the second array layer are respectively located on opposite sides of the second matching layer, and the first array layer is disposed adjacent to the dielectric substrate relative to the second array layer.
  • the projection of the first array layer on the second matching layer and the projection of the second array layer on the second matching layer at least partially do not overlap.
  • the first array layer has a through hole, and the projection of the second array layer on the first array layer is located in the through hole.
  • the through hole is circular, oval, square, triangle, rectangle, hexagon, ring, cross or Jerusalem cross.
  • the first matching layer is a colloid
  • the second matching layer is a bearing film layer
  • the third matching layer is a colloid
  • the first array layer and the second array layer are both square patches, the side length of the first array layer is 1.6mm, the through holes are square holes, and the size of the through holes Is 1.3mm ⁇ 1.3mm, the side length of the second array layer is 1.05mm, the thickness dimension of the dielectric substrate is 0.55mm, the thickness dimension of the first matching layer is 0.02mm, and the second matching layer The thickness dimension of the third matching layer is 0.45 mm, and the thickness dimension of the third matching layer is 0.03 mm.
  • the coupling element array layer includes a plurality of coupling elements arranged in an array, the coupling elements are made of conductive materials, and the coupling elements have dual-frequency dual-polarization resonance characteristics in the preset frequency band.
  • the preset frequency band includes at least the 3GPP millimeter wave full frequency band.
  • An embodiment of the present application also provides an antenna device.
  • the antenna device includes an antenna module and the housing assembly provided in the above embodiment of the present application.
  • the antenna module and the coupling structure are spaced apart, and the antenna
  • the module is located on the side of the coupling structure away from the dielectric substrate, the coupling structure is at least partially located within the preset direction range of the antenna module for sending and receiving radio frequency signals, and the coupling structure is used to communicate with the antenna module
  • the frequency of the received and received radio frequency signal is matched to improve the transmittance of the radio frequency signal, and the impedance matching layer is used to perform spatial impedance matching on the radio frequency signal received and received by the antenna module to increase the bandwidth of the radio frequency signal .
  • the antenna module includes a variety of antenna radiators arranged in an array, the antenna radiator has a first feeding point and a second feeding point, and the first feeding point is used to radiate to the antenna
  • the body feeds a first current signal, the first current signal is used to excite the antenna radiator to resonate in the first frequency band to send and receive radio frequency signals in the first frequency band, and the second feed point is used to feed the antenna
  • the radiator is fed with a second current signal, and the second current signal is used to excite the antenna radiator to resonate in a second frequency band, wherein the first frequency band is different from the second frequency band.
  • the antenna device includes a support plate and a radio frequency chip, the antenna radiator is located on a surface of the support plate adjacent to the coupling structure, and the radio frequency chip is located on a surface of the support plate away from the coupling structure.
  • the antenna device further includes a radio frequency wire, which is used to electrically connect the radio frequency chip and the antenna radiator.
  • the support plate has a limiting hole, and the radio frequency line is located in the limiting hole.
  • the supporting plate has a plurality of metallized via holes, and the via holes are arranged around the antenna radiator to isolate two adjacent antenna radiators.
  • the antenna device includes a support plate, a radio frequency chip and a feed layer, the antenna radiator is located on a surface of the support plate adjacent to the coupling structure, and the radio frequency chip is located on a surface of the support plate away from the coupling structure
  • the feed ground layer is located between the support plate and the radio frequency chip, the feed ground layer constitutes the ground pole of the antenna radiator, the feed ground layer has a gap, and the radio frequency chip and the feed ground layer
  • a feeder trace is provided, the feeder trace is electrically connected to the radio frequency chip, the projection of the feeder trace on the feeder layer is at least partially located in the gap, and the feeder trace passes The slot couples and feeds the antenna radiator.
  • the resonance mode of the antenna radiator excited by the first current signal and the resonance mode of the antenna radiator excited by the second current signal have different polarization directions.
  • An embodiment of the present application also provides an electronic device.
  • the electronic device includes a main board, an antenna module, and the housing assembly provided in the above-mentioned embodiments of the present application.
  • the main board is assembled on the housing assembly and installed in the housing.
  • the side of the body assembly facing the coupling structure forms an accommodating space, the antenna module is disposed in the accommodating space and electrically connected to the main board, and the antenna module includes at least one antenna radiator, The antenna radiator is used to transmit and receive radio frequency signals through the housing component under the control of the main board.
  • the electronic device further includes a battery cover
  • the battery cover constitutes the dielectric substrate
  • the material of the battery cover is any one or more of plastic, glass, sapphire and ceramic.
  • the battery cover includes a back plate and a side plate surrounding the back plate, the side plate is located within a preset direction range of the antenna radiator for transmitting and receiving radio frequency signals, and the coupling structure is located facing the side plate.
  • the side plate constitutes the dielectric substrate.
  • the battery cover includes a back plate and a side plate surrounding the back plate, the back plate is located within a preset direction range of the antenna radiator for transmitting and receiving radio frequency signals, and the coupling structure is located facing the back plate.
  • the back plate constitutes the dielectric substrate.
  • the electronic device further includes a screen, and the screen constitutes the medium substrate.
  • the protective cover of the electronic device when the protective cover of the electronic device is located within the preset direction range of the antenna radiator for transmitting and receiving radio frequency signals, the protective cover of the electronic device constitutes the dielectric substrate.
  • the housing assembly 10 provided by the embodiment of the present application includes a dielectric substrate 100, an impedance matching layer 200, and a coupling structure 300.
  • the dielectric substrate 100 has a first transparency for radio frequency signals of a preset frequency band.
  • the impedance matching layer 200 is stacked on the dielectric substrate 100, the impedance matching layer 200 is used to perform spatial impedance matching on the radio frequency signal of the preset frequency band, and the coupling structure 300 and the dielectric substrate 100 stacked, the coupling structure 300 includes one or more coupling element array layers 310, the coupling element array layer 310 has resonance characteristics in the preset frequency band, and the housing assembly 10 is in the coupling
  • the area corresponding to the structure 300 has a second transmittance for the radio frequency signal of the preset frequency band, and the second transmittance is greater than the first transmittance.
  • the radio frequency signal can penetrate the dielectric substrate 100, the impedance matching layer 200 and the coupling structure 300, and the radio frequency signal can be a millimeter wave signal.
  • the impedance matching layer 200 is used for spatial impedance matching of radio frequency signals, and the dielectric substrate 100 has a first transmittance for radio frequency signals of a predetermined frequency band.
  • the coupling structure 300 is located on one side of the dielectric substrate 100.
  • the coupling structure 300 includes a coupling element array layer 310, which has resonance characteristics at a predetermined frequency band, and is used to make the radio frequency signal resonate, so that the radio frequency signal has a higher transmittance, that is, the housing In the corresponding area of the coupling structure 300, the component 10 has a second transmittance for radio frequency signals of a predetermined frequency band, and satisfies that the second transmittance is greater than the first transmittance.
  • the resonance characteristic generated by the coupling element array layer 310 makes the radio frequency signal have a higher transmittance in the corresponding area of the coupling structure 300.
  • the coupling element array layer 310 also has a dual-polarization resonance feature in the preset frequency band, and the dual-polarization resonance feature is used to cause the radio frequency signal to generate a second resonance, and make the radio frequency signal have a bipolar appearance. ⁇ characteristics.
  • the preset frequency band includes at least the 3GPP millimeter wave full frequency band.
  • 5G mainly uses two frequency bands: FR1 frequency band and FR2 frequency band.
  • the frequency range of FR1 band is 450MHz ⁇ 6GHz, also called sub-6GHz band; the frequency range of FR2 band is 24.25GHz ⁇ 52.6GHz, usually called millimeter wave (mm Wave).
  • the 3GPP version 15 specifies the current 5G millimeter wave frequency bands as follows: n257 (26.5-29.5GHz), n258 (24.25-27.5GHz), n261 (27.5-28.35GHz) and n260 (37-40GHz). Therefore, the preset frequency band covers at least the n257, n258, n261 and n260 frequency bands.
  • the coupling element array layer 310 includes a plurality of coupling elements 311 arranged in an array, the coupling elements 311 are made of conductive materials, and the coupling elements 311 have double Frequency dual polarization resonance characteristics.
  • the coupling element 311 may be made of metal material.
  • the multiple coupling elements 311 are arranged in an array so that the radio frequency signal of the preset frequency band has a dual-frequency dual-polarized resonance characteristic. Even if the radio frequency signal has multiple working frequency bands, and has multiple radiation directions.
  • an impedance matching layer 200 is provided on one side of the dielectric substrate 100, and the impedance matching layer 200 is used to perform spatial impedance matching on a radio frequency signal of a preset frequency band, thereby increasing the bandwidth of the radio frequency signal.
  • a coupling structure 300 is provided on one side of the dielectric substrate 100.
  • the coupling structure 300 includes a coupling element array layer 310.
  • the coupling element array layer 310 has resonance characteristics at a preset frequency band, so that the housing assembly 10 is in a region corresponding to the coupling structure 300.
  • the transmittance of the radio frequency signal is greater than the transmittance of the dielectric substrate 100 to the radio frequency signal, so that the transmittance of the radio frequency signal can be improved.
  • the impedance matching layer 200 is located on one side of the dielectric substrate 100, and the coupling structure 300 is located on the side of the impedance matching layer 200 away from the dielectric substrate 100; or, the coupling structure 300 is located on the dielectric substrate On one side of 100, the impedance matching layer 200 is located on the side of the coupling structure 300 away from the dielectric substrate 100.
  • the housing assembly 10 includes a coupling structure 300, an impedance matching layer 200, and a dielectric substrate 100 stacked in sequence.
  • the impedance matching layer 200 can be used as a supporting layer and an adhesion layer to support the coupling structure 300 and to bond the coupling structure 300 to the dielectric substrate 100.
  • the impedance matching layer 200 The radio frequency signal of the frequency band is matched with space wave impedance.
  • the coupling structure 300 is used to improve the transmittance of the radio frequency signal of the preset frequency band.
  • the housing assembly 10 includes an impedance matching layer 200, a coupling structure 300, and a dielectric substrate 100 stacked in sequence.
  • the impedance matching layer 200 is used to encapsulate and protect the coupling structure 300 to prevent the coupling structure 300 from being oxidized and corroded.
  • the impedance matching layer 200 is also used to perform spatial wave impedance matching on radio frequency signals of a preset frequency band.
  • the coupling structure 300 is used to improve the transmittance of the radio frequency signal of the preset frequency band.
  • the coupling structure 300 includes a coupling element array layer 310, the coupling element array layer 310 is attached to the surface of the dielectric substrate 100, and the impedance matching layer 200 is located on the coupling element array.
  • the layer 310 is away from the side of the dielectric substrate 100, and the impedance matching layer 200 is used to encapsulate and protect the coupling element array layer 310.
  • the coupling element array layer 310 is disposed on the carrier film layer to increase the transmittance of the radio frequency signal of the predetermined frequency band.
  • the coupling element array layer 310 has a single-layer structure, and the coupling element array layer 310 may be connected to the carrier film layer through a connector, and the connector may be a colloid.
  • the coupling element array layer 310 has a resonance characteristic for the radio frequency signal of the preset frequency band, which can cause the radio frequency signal of the preset frequency band to resonate, thereby making the radio frequency signal of the preset frequency band have a higher transmittance.
  • the orthographic projection of the coupling structure 300 on the dielectric substrate 100 completely covers the dielectric substrate 100. That is, the carrier film layer covers the entire dielectric substrate 100, and the coupling structure 300 is carried on the carrier film layer, and is provided corresponding to the entire area of the dielectric substrate 100. That is, all areas of the housing assembly 10 have high transmittance to radio frequency signals of a preset frequency band, and at the same time, since the orthographic projection of the coupling structure 300 on the dielectric substrate 100 completely covers the dielectric substrate 100, It helps to reduce the complexity of the manufacturing process of the housing assembly 10.
  • the orthographic projection of the coupling structure 300 on the dielectric substrate 100 covers a part of the area of the dielectric substrate 100.
  • the area covered by the coupling structure 300 is smaller than the area of the dielectric substrate 100, and the coupling structure 300 Corresponding to the local area setting of the dielectric substrate 100. Therefore, different regions of the housing assembly 10 can exhibit different transmittances for the radio frequency signals of the preset frequency band, and the transmittance of the housing assembly 10 for the radio frequency signals of the preset frequency band can be flexibly configured.
  • the coupling structure 300 includes a coupling element array layer 310
  • the impedance matching layer 200 includes a first matching layer 210 and a second matching layer 220
  • the first matching layer 210 is located on the medium.
  • the coupling element array layer 310 is located on the side of the first matching layer 210 away from the dielectric substrate 100, and the first matching layer 210 is used to connect the coupling element array layer 310 to the
  • the second matching layer 220 is located on the side of the coupling element array layer 310 away from the first matching layer 210, and the second matching layer 220 is used to form the coupling element array layer 310 Encapsulation and protection.
  • the housing assembly 10 includes a second matching layer 220, a coupling element array layer 310, a first matching layer 210, and a dielectric substrate 100 stacked in sequence.
  • the first matching layer 210 and The second matching layer 220 cooperates with each other to support, encapsulate, and protect the coupling element array layer 310, and the first matching layer 210 and the second matching layer 220 cooperate with each other to perform spatial impedance matching on the radio frequency signal of the preset frequency band to improve The bandwidth of the RF signal.
  • the coupling element array layer 310 is used to cause the radio frequency signal to generate secondary resonance, so as to improve the transmittance of the dielectric substrate 100 to the radio frequency signal.
  • the coupling structure 300 includes a first array layer 310 and a second array layer 320 arranged at intervals, and the impedance matching layer 200 includes a first matching layer 210 and a second matching layer 220.
  • the array layer 310 is located on the surface of the dielectric substrate 100, the first matching layer 210 is located on the side of the first array layer 310 away from the dielectric substrate 100, and the first matching layer 210 is used to
  • An array layer 310 is connected to the dielectric substrate 100 and is used to encapsulate and protect the first array layer 310;
  • the second array layer 320 is located on the first matching layer 210 away from the first array layer 310, the second matching layer 220 is located on the side of the second array layer 320 away from the first matching layer 210, and the second matching layer 220 is used to form the second array layer 320 Encapsulation and protection.
  • the housing assembly 10 includes a second matching layer 220, a second array layer 320, a first matching layer 210, a first array layer 310, and a dielectric substrate 100 stacked in sequence.
  • the first matching layer 210 and the second matching layer 220 cooperate with each other to support, encapsulate, and protect the second array layer 320 and the first array layer 310, and the first matching layer 210 and the second matching layer 220 cooperate with each other to prevent It is assumed that the RF signal in the frequency band is matched with spatial impedance to increase the bandwidth of the RF signal.
  • the second array layer 320 and the first array layer 310 are used to cause the radio frequency signal to generate secondary resonance, so as to improve the transmittance of the dielectric substrate 100 to the radio frequency signal.
  • the coupling structure 300 includes a first array layer 310 and a second array layer 320 arranged at intervals, and the impedance matching layer 200 includes a first matching layer 210, a second matching layer 220, and a third matching layer.
  • the first matching layer 210 is located on the surface of the dielectric substrate 100
  • the first array layer 310 is located on the surface of the first matching layer 210 away from the dielectric substrate 100
  • the second matching layer 220 is located
  • the first array layer 310 is on a side facing away from the first matching layer 210
  • the second array layer 320 is located on a side of the second matching layer 220 facing away from the first array layer 310
  • the third matching layer 230 is located on a side of the second array layer 320 away from the second matching layer 220
  • the third matching layer 230 is used to encapsulate and protect the second array layer 320.
  • the housing assembly 10 includes a third matching layer 230, a second array layer 320, a second matching layer 220, a first array layer 310, a first matching layer 210, and a dielectric substrate 100 stacked in sequence.
  • the first matching layer 210, the second matching layer 220 and the third matching layer 230 cooperate with each other to support, encapsulate and protect the second array layer 320 and the first array layer 310, and the first matching layer 210 and the second matching layer 220 and the third matching layer 230 cooperate with each other to perform spatial impedance matching on the radio frequency signal of the preset frequency band, so as to increase the bandwidth of the radio frequency signal.
  • the second array layer 320 and the first array layer 310 are used to cause the radio frequency signal to generate secondary resonance, so as to improve the transmittance of the dielectric substrate 100 to the radio frequency signal.
  • the first array layer 310 and the second array layer 320 are respectively located on two opposite sides of the second matching layer 220, and the first array layer 310 is opposite to the second matching layer 220.
  • the array layer 320 is disposed adjacent to the dielectric substrate 100.
  • the coupling structure 300 includes a first array layer 310 and a second array layer 320 arranged at intervals, the first array layer 310 and the second array layer 320 are both arranged on the second matching layer 220, and the first array layer The layer 310 and the second array layer 320 are respectively located on opposite sides of the second matching layer 220, and the first array layer 310 is disposed adjacent to the dielectric substrate 100 relative to the second array layer 320.
  • the first array layer 310 is located between the dielectric substrate 100 and the second matching layer 220, and the second array layer 320 is located on the second matching layer 220 away from the first array layer 310 Side. At least one of the first array layer 310 and the second array layer 320 has a resonance characteristic for a radio frequency signal of a preset frequency band. In one embodiment, the first array layer 310 has resonance characteristics for the radio frequency signal of the preset frequency band, which can cause the radio frequency signal of the preset frequency band to resonate, thereby increasing the transmittance of the radio frequency signal of the preset frequency band.
  • the second array layer 320 has resonance characteristics for the radio frequency signal of the preset frequency band, which can cause the radio frequency signal of the preset frequency band to resonate, thereby increasing the transmittance of the radio frequency signal of the preset frequency band.
  • the first array layer 310 and the second array layer 320 both have resonance characteristics for the radio frequency signal of the preset frequency band, which can cause the radio frequency signal of the preset frequency band to resonate, thereby improving the radio frequency signal of the preset frequency band. The transmittance.
  • the projection of the first array layer 310 on the second matching layer 220 and the projection of the second array layer 320 on the second matching layer 220 at least partially do not overlap. That is, the first array layer 310 and the second array layer 320 are completely misaligned in the thickness direction, or the first array layer 310 and the second array layer 320 are partially misaligned in the thickness direction, which can reduce the first array
  • the resonance characteristics of the layer 310 and the second array layer 320 cause mutual interference, which helps the radio frequency signal to pass through the housing assembly 10 more stably.
  • the first array layer 310 has through holes 310a, and the projection of the second array layer 320 on the first array layer 310 is located in the through holes Within 310a.
  • the through hole 310a is circular, oval, square, triangle, rectangle, hexagon, ring, cross or Jerusalem cross.
  • the first matching layer 210 is a colloid
  • the second matching layer 220 is a carrier film layer
  • the third matching layer 230 is a colloid.
  • the first array layer 310 and the second array layer 320 are both square patches
  • the side length P of the first array layer 310 is 1.6mm
  • the through hole 310a is a square hole
  • W 0.15mm
  • the size of the through hole 310a is 1.3mm ⁇ 1.3mm
  • the side length L of the second array layer 320 is 1.05mm
  • the thickness of the dielectric substrate 100 is 0.55mm
  • the first matching layer 210 The thickness dimension of the second matching layer 220 is 0.02 mm
  • the thickness dimension of the second matching layer 220 is 0.45 mm
  • the thickness dimension of the third matching layer 230 is 0.03 mm.
  • the first array layer 310 has through holes 310a, and the size of the through holes 310a is larger than the outline size of the second array layer 320, and the projection of the second array layer 320 on the first array layer 310 is completely Fall into the through hole 310a.
  • the radio frequency signal of the preset frequency band can be transmitted through the through hole 310a on the first array layer 310 after the resonance of the second array layer 320, thereby reducing the resonance of the first array layer 310 to the second array layer 320.
  • the interference of the radio frequency signal after the action helps to maintain the stable transmission of the radio frequency signal.
  • the first array layer 310 and the second array layer 320 cooperate with each other to perform spatial impedance matching on the radio frequency signal of the preset frequency band, and can realize the adjustment of the frequency of the radio frequency signal.
  • the antenna device 1 provided by the embodiment of the present application includes an antenna module 20 and the housing assembly 10 provided in any of the above embodiments, and the antenna module 20 and the coupling structure 300 are spaced apart.
  • the antenna module 20 is located on the side of the coupling structure 300 away from the dielectric substrate 100, and the coupling structure 300 is at least partially located within the preset direction range of the antenna module 20 for receiving and transmitting radio frequency signals.
  • the structure 300 is used for matching the frequency of the radio frequency signal sent and received by the antenna module 20 to improve the transmittance of the radio frequency signal
  • the impedance matching layer 200 is used for the radio frequency signal sent and received by the antenna module 20 Perform spatial impedance matching to increase the bandwidth of the radio frequency signal.
  • the antenna module 20 and the coupling structure 300 are spaced apart, and the antenna module 20 is located on the side of the coupling structure 300 away from the dielectric substrate 100.
  • the antenna module 20 may include one antenna radiator 20a, or may be an antenna array formed by multiple antenna radiators 20a.
  • the antenna module 20 may be a 2 ⁇ 2 antenna array, may be a 2 ⁇ 4 antenna array, or may be a 4 ⁇ 4 antenna array.
  • the multiple antenna radiators 20a may work in the same frequency band.
  • the multiple antenna radiators 20a can also work in different frequency bands, which helps to expand the frequency range of the antenna module 20.
  • the coupling structure 300 is at least partially located within a preset direction range of the antenna radiator 20a for sending and receiving radio frequency signals, so that the radio frequency signals sent and received by the antenna radiator 20a generate secondary resonance.
  • the resonance characteristics of the coupling structure 300 can cause the radio frequency signal to generate resonance characteristics, thereby increasing the transmittance of the radio frequency signals transmitted and received by the antenna radiator 20a That is, the existence of the coupling structure 300 improves the radiation efficiency of the corresponding frequency band of the antenna radiator 20a.
  • the antenna radiator 20a is located on the side of the coupling structure 300 away from the dielectric substrate 100, and the radio frequency signal matched by the coupling structure 300 penetrates the dielectric substrate 100 and radiates away from the antenna.
  • the direction of the body 20a radiates.
  • the impedance matching layer 200 is used to perform spatial impedance matching on the radio frequency signal received and received by the antenna module 20 to increase the bandwidth of the radio frequency signal.
  • the radio frequency signal generated by the antenna radiator 20a reaches the surface of the coupling structure 300, since the coupling structure 300 has resonance characteristics, the radio frequency signal can generate secondary resonance, thereby increasing the transmittance of the radio frequency signal.
  • the dielectric substrate 100 can be made to have stronger penetration of radio frequency signals, that is, the radiation gain of the antenna radiator 20a can be increased by adopting this arrangement, and the performance of the antenna radiator 20a can be enhanced.
  • the coupling structure 300 and the impedance matching layer 200 cooperate with each other, the impedance matching layer 200 is used to increase the bandwidth of the radio frequency signal, and the coupling structure 300 is used to enhance the penetration rate of the radio frequency signal, which can make the radio frequency signal exhibit dual-frequency dual-polarization characteristics .
  • the antenna module 20 includes a variety of arrays of antenna radiators 20a, the antenna radiator 20a has a first feeding point 20b and a second feeding point 20c, the first feeding The electrical point 20b is used to feed a first current signal to the antenna radiator 20a, and the first current signal is used to excite the antenna radiator 20a to resonate in the first frequency band to send and receive radio frequency signals in the first frequency band.
  • the second feeding point 20c is used to feed a second current signal to the antenna radiator 20a, and the second current signal is used to excite the antenna radiator 20a to resonate in a second frequency band, wherein the first The frequency band is different from the second frequency band.
  • the resonance mode of the antenna radiator 20a excited by the first current signal and the resonance mode of the antenna radiator 20a excited by the second current signal have different polarization directions.
  • the first frequency band may be a high frequency signal
  • the second frequency band may be a low frequency signal
  • the first frequency band may be a low frequency signal
  • the second frequency band may be a high frequency signal
  • 5G mainly uses two frequency bands: FR1 frequency band and FR2 frequency band.
  • the frequency range of FR1 band is 450MHz ⁇ 6GHz, also called sub-6GHz band; the frequency range of FR2 band is 24.25GHz ⁇ 52.6GHz, usually called millimeter wave (mm Wave).
  • the 3GPP version 15 specifies the current 5G millimeter wave frequency bands as follows: n257 (26.5-29.5GHz), n258 (24.25-27.5GHz), n261 (27.5-28.35GHz) and n260 (37-40GHz).
  • the first frequency band may be the frequency band covered by n257, and in this case, the second frequency band may be the frequency band covered by n258, n260, and n261.
  • the antenna radiator 20a may be a rectangular patch antenna with a long side 20d and a short side 20e.
  • the long side 20d of the antenna radiator 20a is provided with a first feeding point 20b for transmitting and receiving radio frequencies in the first frequency band.
  • the radio frequency signal in the first frequency band is a low frequency signal
  • a second feeding point 20c is provided on the short side 20e of the antenna radiator 20a for receiving and transmitting radio frequency signals in the second frequency band.
  • the radio frequency signals in the second frequency band are High frequency signal.
  • the long side 20d and the short side 20e of the antenna radiator 20a are used to change the electrical length of the antenna radiator 20a, thereby changing the frequency at which the antenna radiator 20a radiates radio frequency signals.
  • the antenna device 1 includes a support plate 30 and a radio frequency chip 40.
  • the antenna radiator 20a is located on the surface of the support plate 30 adjacent to the coupling structure 300.
  • the radio frequency chip 40 is located on the support plate.
  • the surface of the board 30 facing away from the coupling structure 300, the antenna device 1 further includes a radio frequency wire 40a, and the radio frequency wire 40a is used to electrically connect the radio frequency chip 40 and the antenna radiator 20a.
  • the support board 30 may be a multi-layer PCB board prepared by a high density interconnect (High Density Inverter, HDI) process.
  • the radio frequency chip 40 is located on a side of the support plate 30 away from the antenna radiator 20 a.
  • the antenna radiator 20a has at least one feed point, and the feed point is used to receive radio frequency signals from the radio frequency chip 40, so as to generate radio frequency signals of different frequency bands.
  • locating the antenna radiator 20a on the surface of the supporting plate 30 adjacent to the coupling structure 300 can facilitate the transmission of the radio frequency signal generated by the antenna radiator 20a toward the coupling structure 300, because the coupling structure 300 has The resonance characteristic, after the resonance of the coupling structure 300, the radio frequency signal has stronger penetrability, which can enhance the radiation gain of the antenna radiator 20a.
  • the radio frequency chip 40 is located on the surface of the support plate 30 away from the coupling structure 300, which can reduce unnecessary interference of the radio frequency chip 40 on the coupling structure 300, and help ensure that the resonance characteristics of the coupling structure 300 are relatively stable. This further ensures that the radiation characteristics of the antenna radiator 20a are relatively stable.
  • the support plate 30 has a limiting hole 30 a, and the radio frequency line 40 a is located in the limiting hole 30 a.
  • One end of the radio frequency line 40a is electrically connected to the antenna radiator 20a, and the other end is electrically connected to the radio frequency chip 40.
  • the radio frequency signal generated by the radio frequency chip 40 is transmitted to the antenna radiator through the radio frequency line 40a. 20a.
  • a limit hole 30a needs to be opened on the support plate 30, and a radio frequency wire 40a is arranged in the limit hole 30a to connect the antenna radiator 20a and the radio frequency chip 40 is electrically connected to transmit the radio frequency signal on the radio frequency chip 40 to the antenna radiator 20a, and then the antenna radiator 20a generates the radio frequency signal according to the radio frequency signal.
  • the support plate 30 has a plurality of metalized vias 31, and the vias 31 are arranged around the antenna radiator 20 a to isolate two adjacent antenna radiators 20 a.
  • the support plate 30 has a plurality of metalized vias 31 evenly arranged, and the metalized vias 31 surround the antenna radiator 20a.
  • the function of the metalized via 31 is to realize isolation and decoupling in the antenna module 20. That is, due to the existence of the metalized via 31, radiation interference between two adjacent antenna radiators 20a due to mutual coupling can be prevented, and the antenna radiator 20a is ensured to be in a stable working state.
  • the antenna device 1 further includes a feed stratum 45, the antenna radiator 20a is located on the surface of the support plate 30 adjacent to the coupling structure 300, and the radio frequency chip 40 is located away from the support plate 30
  • the feed ground layer 45 is located between the support plate 30 and the radio frequency chip 40, the feed ground layer 45 constitutes the ground pole of the antenna radiator 20a, and the feed ground layer 45 has In the gap 45a, a feeding wire 46 is provided between the radio frequency chip 40 and the feeding ground 45, and the feeding wire 46 is electrically connected to the radio frequency chip 40, and the feeding wire 46 is in the
  • the projection on the feeding ground 45 is at least partially located in the slot 45a, and the feeding wire 46 couples and feeds the antenna radiator 20a through the slot 45a.
  • the radio frequency chip 40 has an output terminal 41, which is used to generate radio frequency signals.
  • the radio frequency signals generated by the radio frequency chip 40 are transmitted to the feeder wiring 46. Since the feeder wiring 46 is arranged corresponding to the gap 45a on the feeder ground 45, Therefore, the feed line 46 can transmit the received radio frequency signal through the slot 45a to the feed point on the antenna radiator 20a in a coupling manner, and the antenna radiator 20a is coupled to the radio frequency signal from the feed line 46 to generate RF signal of preset frequency band.
  • the feed ground layer 45 constitutes the ground pole of the antenna radiator 20a, and the antenna radiator 20a and the feed ground layer 45 are not directly electrically connected, but the antenna radiator 20a is grounded by coupling.
  • the projection of the feeding wire 46 on the feeding ground 45 is at least partially located in the slot 45a, so that the feeding wire 46 can couple and feed the antenna radiator 20a through the slot 45a.
  • the radio frequency chip 40 has a first output terminal 42 and a second output terminal 43.
  • the first output terminal 42 is used to generate a first radio frequency signal
  • the second output terminal 43 For generating the second radio frequency signal, the first radio frequency signal generated by the radio frequency chip 40 is transmitted to the first sub-feeding wiring 47.
  • the first sub-feed line 47 can transmit the received first radio frequency signal to the first sub-feed point 20b on the antenna radiator 20a through the first slot 45b in a coupling manner, and the antenna radiator 20a is coupled to the The first radio frequency signal of the first sub-feeding wiring 47 can generate a radio frequency signal of the first frequency band.
  • the second sub-feeding trace 48 is arranged corresponding to the second slot 45c on the feeding ground 45, the second sub-feeding trace 48 can couple the received second radio frequency signal through the second slot 45c.
  • the antenna radiator 20a is transmitted to the second sub-feed point 20c on the antenna radiator 20a, and the antenna radiator 20a is coupled to the second radio frequency signal from the second sub-feed line 48 to generate a radio frequency signal in the second frequency band.
  • the radio frequency signal of the first frequency band is also different from the radio frequency signal of the second frequency band, so that the antenna module 20 can work in multiple frequency bands, which broadens the frequency band of the antenna module 20
  • the range of the antenna module 20 can be adjusted flexibly by using multiple frequency bands to work.
  • the feed ground layer 45 constitutes the ground pole of the antenna radiator 20a, and the antenna radiator 20a and the feed ground layer 45 are not directly electrically connected, but the antenna radiator 20a is grounded by coupling.
  • the projection of the first sub-feeding trace 47 on the feed stratum 45 is at least partially located in the first slot 45b, and the projection of the second sub-feeding trace 48 on the feed stratum 45 is at least partially located in the second slot 45c Inside, so that the first sub-feeding trace 47 can couple and feed the antenna radiator 20a through the first slot 45b and the second sub-feeding trace 48 can couple and feed the antenna radiator 20a through the second slot 45c.
  • the first slit 45b extends along a first direction
  • the second slit 45c extends along a second direction.
  • the two directions are perpendicular.
  • first slit 45b and the second slit 45c are both strip-shaped slits.
  • the first slit 45b may be a vertical polarization slit 45a or a horizontal polarization slit
  • the second slit 45c may be a vertical polarization slit or a horizontal polarization slit.
  • the first slit 45b is a vertical polarization slit
  • the second slit 45c is a horizontal polarization slit
  • the first slit 45b is a horizontal polarization slit
  • the second slit 45c is a vertical polarization slit.
  • the extension direction of the first slit 45b is the Y direction
  • the extension direction of the second slit 45c is the X direction as an example for description.
  • the feed layer 45 is a dual polarization slot 45a coupled to the feed layer 45.
  • the antenna module 20 constitutes a dual polarization antenna module 20 .
  • the radiation direction of the antenna module 20 can be adjusted, and since the radiation direction can be adjusted, the radiation can be targeted, and therefore, the radiation gain of the antenna module 20 can be improved.
  • the polarization of the antenna refers to the direction of the electric field strength formed when the antenna radiates.
  • extension direction of the first slot 45b is perpendicular to the extension direction of the first sub-feeding trace 47, and the extension direction of the second slot 45c is the same as the extension of the second sub-feeding trace 48.
  • the direction is vertical.
  • first slit 45b and the second slit 45c are both strip-shaped slits 45a.
  • the first sub-feeding trace 47 and the feeding ground 45 are spaced apart, the second sub-feeding trace 48 and the feeding ground 45 are spaced apart, and the projection of the first sub-feeding trace 47 on the feeding ground 45 is at least partially located in the first In the gap 45b, the projection of the second sub-feeding trace 48 on the feed ground 45 is at least partially located in the second gap 45c.
  • the extension direction of the first sub-feeding trace 47 is perpendicular to the extension direction of the first slot 45b, and the extension direction of the second sub-feeding trace 48 is perpendicular to the extension direction of the second slot 45c, it is helpful to improve the bipolar
  • the coupling and feeding effect of the antenna module 20 is improved, thereby improving the radiation efficiency of the antenna module 20 and increasing the radiation gain.
  • the electronic device 2 provided by the embodiment of the present application includes a motherboard 50, an antenna module 20, and a housing assembly 10 provided in any of the above embodiments.
  • the motherboard 50 is assembled on the housing assembly 10 and The side of the housing assembly 10 facing the coupling structure 300 forms a receiving space A.
  • the antenna module 20 is disposed in the receiving space A and is electrically connected to the motherboard 50.
  • the antenna The module 20 includes at least one antenna radiator 20 a, and the antenna radiator 20 a is used to transmit and receive radio frequency signals through the housing assembly 10 under the control of the main board 50.
  • the electronic device 2 may be any device with communication and storage functions.
  • tablet computers mobile phones, e-readers, remote controls, personal computers (Personal Computer, PC), notebook computers, in-vehicle devices, Internet TVs, wearable devices and other smart devices with network functions.
  • PC Personal Computer
  • the main board 50 may be a PCB board of the electronic device 2.
  • a receiving space A is formed between the main board 50 and the housing assembly 10
  • the antenna module 20 is located in the receiving space A, and the antenna module 20 is electrically connected to the main board 50.
  • the antenna module 20 may include one antenna radiator 20a or multiple antenna radiators 20a.
  • the antenna module 20 may be formed by an array of multiple antenna radiators 20a.
  • the antenna radiator 20 a can transmit and receive radio frequency signals through the housing assembly 10.
  • the coupling structure 300 has resonance characteristics, the radio frequency signal can have resonance characteristics to enhance the penetration of the radio frequency signal.
  • the radio frequency signal has a higher transmittance when passing through the housing assembly 10.
  • the electronic device 2 further includes a battery cover 60 which constitutes the dielectric substrate 100, and the material of the battery cover 60 is any one or more of plastic, glass, sapphire and ceramic.
  • the battery cover 60 in the structural arrangement of the electronic device 2, at least part of the structure of the battery cover 60 is located within the preset direction range of the antenna radiator 20a for transmitting and receiving radio frequency signals. Therefore, the battery cover 60 will also affect the radiation characteristics of the antenna radiator 20a. influences. For this reason, in this embodiment, using the battery cover 60 as the dielectric substrate 100 can make the antenna radiator 20a have stable radiation performance in the structural arrangement of the electronic device 2. Meanwhile, the battery cover 60 is made of a wave-transmitting material, and the material of the battery cover 60 can be plastic, glass, sapphire, ceramic, etc., or a combination of the above materials.
  • the battery cover 60 includes a back plate 61 and a side plate 62 surrounding the back plate 61.
  • the side plate 62 is located within the preset direction range of the antenna radiator 20a for receiving and transmitting radio frequency signals.
  • the coupling structure 300 is located on the side of the side plate 62 facing the antenna radiator 20 a, and the side plate 62 constitutes the dielectric substrate 100.
  • the side plate 62 may be used to perform spatial impedance matching on the radio frequency signals transmitted and received by the antenna radiator 20a.
  • the side plate 62 is used as a medium.
  • the substrate 100 A coupling structure 300 is provided on the side of the side plate 62 facing the antenna radiator 20a.
  • the coupling structure 300 has a resonance characteristic for a radio frequency signal of a preset frequency band, which can cause the radio frequency signal to have a resonance characteristic. In this way, the radio frequency signals sent and received by the antenna radiator 20 a can be transmitted through the side plate 62.
  • the side plate 62 is used as the dielectric substrate 100 to perform spatial impedance matching on the antenna radiator 20a, and the structural arrangement of the antenna radiator 20a in the overall environment of the electronic device 2 is fully considered, so as to ensure that the antenna radiator 20a is in the overall environment. Radiation effects in the environment.
  • the battery cover 60 includes a back plate 61 and a side plate 62 surrounding the back plate 61.
  • the back plate 61 is located within the preset direction range of the antenna radiator 20a for receiving and transmitting radio frequency signals.
  • the coupling structure 300 is located on the side of the back plate 61 facing the antenna radiator 20 a, and the back plate 61 constitutes the dielectric substrate 100.
  • the back plate 61 can be used to perform spatial impedance matching on the radio frequency signals transmitted and received by the antenna radiator 20a.
  • the back plate 61 is used as the medium.
  • the substrate 100 A coupling structure 300 is provided on the side of the back plate 61 facing the antenna radiator 20a.
  • the coupling structure 300 has a resonance characteristic for a radio frequency signal of a preset frequency band, and can make the radio frequency signal have a resonance characteristic. In this way, the radio frequency signals sent and received by the antenna radiator 20 a can be transmitted through the back plate 61.
  • the backplane 61 is used as the dielectric substrate 100 for spatial impedance matching of the antenna radiator 20a, and the structural arrangement of the antenna radiator 20a in the overall environment of the electronic device 2 is fully considered, so that the antenna radiator 20a can be ensured in the overall environment. Radiation effects in the environment.
  • the electronic device 2 further includes a screen 70, and the screen 70 constitutes the dielectric substrate 100.
  • the screen 70 may be used to perform spatial impedance matching on the radio frequency signals transmitted and received by the antenna radiator 20a.
  • the screen 70 is used as the dielectric substrate 100.
  • a coupling structure 300 is provided on the side of the screen 70 facing the antenna radiator 20a.
  • the coupling structure 300 has a resonance characteristic for a radio frequency signal of a preset frequency band, which can make the radio frequency signal have a resonance characteristic. In this way, the radio frequency signals sent and received by the antenna radiator 20 a can be transmitted through the screen 70.
  • the screen 70 is used as the dielectric substrate 100 to perform spatial impedance matching on the antenna radiator 20a, and the structural arrangement of the antenna radiator 20a in the overall environment of the electronic device 2 is fully considered, so that the antenna radiator 20a can be ensured in the overall environment Radiation effect in.
  • the protective cover 80 of the electronic device 2 when the protective cover 80 of the electronic device 2 is located within the preset direction range of the antenna radiator 20 a for transmitting and receiving radio frequency signals, the protective cover 80 of the electronic device 2 constitutes the dielectric substrate 100.
  • the protective cover 80 may be used to perform spatial impedance matching on the radio frequency signals transmitted and received by the antenna radiator 20a.
  • the protective cover 80 is used as the dielectric substrate 100.
  • the side of the protective cover 80 facing the antenna radiator 20a is provided with a coupling structure 300.
  • the coupling structure 300 has a resonance characteristic for a radio frequency signal of a preset frequency band, which can cause the radio frequency signal to have a resonance characteristic. In this way, the radio frequency signals sent and received by the antenna radiator 20 a can be transmitted through the protective cover 80.
  • the protective cover 80 is used as the dielectric substrate 100 for spatial impedance matching of the antenna radiator 20a, and the structural arrangement of the antenna radiator 20a in the use environment of the electronic device 2 is fully considered, so that the antenna radiator 20a can be used in the whole machine. Radiation effects in the environment.
  • FIG. 25 is a schematic diagram of the reflection and transmission coefficient curves of the 2 ⁇ 2 antenna module under the glass battery cover in free space.
  • Fig. 26 is a schematic diagram of the reflection coefficient curve of the 2 ⁇ 2 antenna module under the housing assembly.
  • Fig. 27 is a schematic diagram of the transmission coefficient curve of the 2 ⁇ 2 antenna module under the housing assembly.
  • Figure 4 The reflection/transmission coefficient of 0.7mm glass battery cover in 20 ⁇ 50GHz, it can be seen that there is a large reflection coefficient S11 and a small transmission coefficient S21 at the interface between the air and the glass battery cover. Half of the energy is transmitted through.
  • curve 1 is a curve diagram of the reflection coefficient of the antenna module under the glass battery cover.
  • Curve 2 is the transmission coefficient curve diagram of the antenna module under the glass battery cover.
  • the corresponding frequency is 28 GHz, and the corresponding reflection coefficient is -2.953; at the position of marking point 3, the corresponding frequency is 39 GHz, and the corresponding reflection coefficient is -3.5267.
  • the corresponding frequency is 28 GHz, and the corresponding reflection coefficient is -3.1619; at the position of marker point 4, the corresponding frequency is 39 GHz, and the corresponding reflection coefficient is -2.6301.
  • the curve is a curve diagram of the reflection coefficient of the antenna module under the housing assembly.
  • the corresponding frequency is 24.184 GHz, and the corresponding reflection coefficient is -9.9617;
  • the corresponding frequency is 48.089 GHz, and the corresponding reflection coefficient is -10.049.
  • the curve is a curve diagram of the transmission coefficient of the antenna module under the housing assembly.
  • the corresponding frequency is 23.28 GHz, and the corresponding transmission coefficient is -1.014;
  • the corresponding frequency is 49.215 GHz, and the corresponding transmission coefficient is -0.99682.
  • the reflection coefficient S11 ⁇ -10dB between 24.1 ⁇ 48GHz after the plane wave passes through the housing assembly can fully cover the full frequency range of 3GPP.
  • this ultra-wideband wave-transmitting battery cover has less impact on the millimeter wave antenna.
  • the plane electromagnetic wave only loses 1dB of energy within 23.2 ⁇ 49.2GHz through the "wave-transmitting battery cover".
  • the concept of "ultra-wideband dual-frequency dual-polarization frequency selection surface" is introduced into the millimeter wave mobile phone antenna, and the dual-frequency dual-polarization metal structure is integrated in the battery cover assembly, so that the battery cover is compatible with the 3GPP full frequency band (n257, n258, n261, n259, n260band) exhibits high wave transmission characteristics, forming a "millimeter wave ultra-wideband dual-frequency dual-polarized wave-transmitting battery cover" with a relative bandwidth of 66%, which solves the coverage loading effect of the battery cover on the millimeter wave antenna module.

Abstract

本申请提供一种壳体组件、天线装置及电子设备。所述壳体组件包括介质基板、阻抗匹配层和耦合结构,所述介质基板对预设频段的射频信号具有第一透过率;所述阻抗匹配层与所述介质基板层叠设置,所述阻抗匹配层用于对所述预设频段的射频信号进行空间阻抗匹配;所述耦合结构与所述介质基板层叠设置,所述耦合结构包括一层或多层耦合元件阵列层,所述耦合元件阵列层具有在所述预设频段下的谐振特征;所述壳体组件在所述耦合结构对应的区域内,对所述预设频段的射频信号具有第二透过率,所述第二透过率大于所述第一透过率。本申请实施例提供的壳体组件可以提高射频信号的透过率。

Description

壳体组件、天线装置及电子设备 技术领域
本申请涉及电子技术领域,尤其涉及一种壳体组件、天线装置及电子设备。
背景技术
毫米波具有高载频、大带宽的特性,是实现5G超高数据传输速率的主要手段。由于毫米波天线对于环境较敏感,因此对于整机毫米波天线阵列,需要对天线阵列上方的覆盖结构进行优化,以达到更佳的系统辐射性能。
发明内容
本申请实施例提供一种壳体组件,包括:
介质基板,所述介质基板对预设频段的射频信号具有第一透过率;
阻抗匹配层,所述阻抗匹配层与所述介质基板层叠设置,所述阻抗匹配层用于对所述预设频段的射频信号进行空间阻抗匹配;
耦合结构,所述耦合结构与所述介质基板层叠设置,所述耦合结构包括一层或多层耦合元件阵列层,所述耦合元件阵列层具有在所述预设频段下的谐振特征;
所述壳体组件在所述耦合结构对应的区域内,对所述预设频段的射频信号具有第二透过率,所述第二透过率大于所述第一透过率。
本申请实施例还提供一种天线装置,所述天线装置包括天线模组和如上任意实施例提供的壳体组件,所述天线模组与所述耦合结构间隔设置,且所述天线模组位于所述耦合结构背离所述介质基板的一侧,所述耦合结构至少部分位于所述天线模组收发射频信号的预设方向范围内,所述耦合结构用于对所述天线模组收发的射频信号的频率进行匹配,以提高所述射频信号的透过率,所述阻抗匹配层用于对所述天线模组收发的射频信号进行空间阻抗匹配,以提高所述射频信号的带宽。
本申请实施例还提供一种电子设备,所述电子设备包括主板、天线模组和如上任意实施例提供的壳体组件,所述主板装配于所述壳体组件,并在所述壳体组件面对所述耦合结构的一侧形成一收容空间,所述天线模组设置于所述收容空间内,并与所述主板电性连接,所述天线模组包括至少一个天线辐射体,所述天线辐射体用于在所述主板的控制下透过所述壳体组件收发射频信号。
附图说明
为了更清楚地说明本申请实施方式的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种壳体组件的周侧视图的结构示意图。
图2是本申请实施例提供的一种壳体组件的主视图的结构示意图。
图3是本申请实施例提供的另一种壳体组件的主视图的结构示意图。
图4是本申请实施例提供的又一种壳体组件的主视图的结构示意图。
图5是本申请实施例提供的又一种壳体组件的主视图的结构示意图。
图6是本申请实施例提供的又一种壳体组件的主视图的结构示意图。
图7是本申请实施例提供的又一种壳体组件的主视图的结构示意图。
图8是本申请实施例提供的又一种壳体组件的主视图的结构示意图。
图9是图8中壳体组件的第一阵列层的结构示意图。
图10是图8中壳体组件的第二阵列层的结构示意图。
图11是本申请实施例提供的天线装置的结构示意图。
图12是本申请实施例提供的一种天线模组的结构示意图。
图13是本申请实施例提供的天线模组的俯视图的结构示意图。
图14是本申请实施例提供的另一种天线模组的结构示意图。
图15是本申请实施例提供的另一种天线模组的结构示意图。
图16是本申请实施例提供的另一种天线模组的俯视图的结构示意图。
图17是本申请实施例提供的另一种天线模组的结构示意图。
图18是本申请实施例提供的另一种天线模组的结构示意图。
图19是图18中馈地层的俯视图的结构示意图。
图20是本申请实施例提供的一种电子设备的结构示意图。
图21是本申请实施例提供的另一种电子设备的结构示意图。
图22是本申请实施例提供的又一种电子设备的结构示意图。
图23是本申请实施例提供的又一种电子设备的结构示意图。
图24是本申请实施例提供的又一种电子设备的结构示意图。
图25是2×2天线模组在玻璃电池盖下的反射及透射系数曲线示意图。
图26是2×2天线模组在壳体组件下的反射系数曲线示意图。
图27是2×2天线模组在壳体组件下的透射系数曲线示意图。
具体实施方式
下面将结合本申请实施方式中的附图,对本申请实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式仅仅是本申请一部分实施方式,而不是全部的实施方式。基于本申请中的实施方式,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施方式,都属于本申请保护的范围。
本申请实施例提供了一种壳体组件,包括:
介质基板,所述介质基板对预设频段的射频信号具有第一透过率;
阻抗匹配层,所述阻抗匹配层与所述介质基板层叠设置,所述阻抗匹配层用于对所述预设频段的射频信号进行空间阻抗匹配;
耦合结构,所述耦合结构与所述介质基板层叠设置,所述耦合结构包括一层或多层耦合元件阵列层,所述耦合元件阵列层具有在所述预设频段下的谐振特征;
所述壳体组件在所述耦合结构对应的区域内,对所述预设频段的射频信号具有第二透过率,所述第二透过率大于所述第一透过率。
其中,所述阻抗匹配层位于所述介质基板的一侧,所述耦合结构位于所述阻抗匹配层背离所述介质基板的一侧;或,所述耦合结构位于所述介质基板的一侧,所述阻抗匹配层位于所述耦合结构背离所述介质基板的一侧。
其中,所述耦合元件阵列层还具有在所述预设频段下的双极化谐振特征。
其中,所述耦合结构包括一层耦合元件阵列层,所述耦合元件阵列层贴合于所述介质基板的表面,所述阻抗匹配层位于所述耦合元件阵列层背离所述介质基板的一侧,所述阻抗匹配层用于对所述耦合元件阵列层形成封装和保护。
其中,所述耦合结构包括一层耦合元件阵列层,所述阻抗匹配层包括第一匹配层和第二匹配层,所述第一匹配层位于所述介质基板的表面,所述耦合元件阵列层位于所述第一 匹配层背离所述介质基板的一侧,所述第一匹配层用于将所述耦合元件阵列层连接于所述介质基板,所述第二匹配层位于所述耦合元件阵列层背离所述第一匹配层的一侧,所述第二匹配层用于对所述耦合元件阵列层形成封装和保护。
其中,所述耦合结构包括间隔设置的第一阵列层和第二阵列层,所述阻抗匹配层包括第一匹配层和第二匹配层,所述第一阵列层位于所述介质基板的表面,所述第一匹配层位于所述第一阵列层背离所述介质基板的一侧,所述第一匹配层用于将所述第一阵列层连接于所述介质基板,且用于对所述第一阵列层形成封装和保护;所述第二阵列层位于所述第一匹配层背离所述第一阵列层的一侧,所述第二匹配层位于所述第二阵列层背离所述第一匹配层的一侧,所述第二匹配层用于对所述第二阵列层形成封装和保护。
其中,所述耦合结构包括间隔设置的第一阵列层和第二阵列层,所述阻抗匹配层包括第一匹配层、第二匹配层和第三匹配层,所述第一匹配层位于所述介质基板的表面,所述第一阵列层位于所述第一匹配层背离所述介质基板的表面,所述第二匹配层位于所述第一阵列层背离所述第一匹配层的一侧,所述第二阵列层位于所述第二匹配层背离所述第一阵列层的一侧,所述第三匹配层位于所述第二阵列层背离所述第二匹配层的一侧,所述第三匹配层用于对所述第二阵列层形成封装和保护。
其中,所述第一阵列层和所述第二阵列层分别位于所述第二匹配层相对的两侧,且所述第一阵列层相对于所述第二阵列层邻近所述介质基板设置。
其中,所述第一阵列层在所述第二匹配层上的投影和所述第二阵列层在所述第二匹配层上的投影至少部分不重叠。
其中,所述第一阵列层具有通孔,所述第二阵列层在所述第一阵列层上的投影位于所述通孔内。
其中,所述通孔为圆形、椭圆形、正方形、三角形、长方形、六边形、环形、十字形或者耶路撒冷十字形。
其中,所述第一匹配层为胶体,所述第二匹配层为承载膜层,所述第三匹配层为胶体。
其中,所述第一阵列层和所述第二阵列层均为正方形贴片,所述第一阵列层的边长为1.6mm,所述通孔为正方形的孔,且所述通孔的尺寸为1.3mm×1.3mm,所述第二阵列层的边长为1.05mm,所述介质基板的厚度尺寸为0.55mm,所述第一匹配层的厚度尺寸为0.02mm,所述第二匹配层的厚度尺寸为0.45mm,所述第三匹配层的厚度尺寸为0.03mm。
其中,所述耦合元件阵列层包括多个阵列设置的耦合元件,所述耦合元件由导电材料制成,所述耦合元件具有在所述预设频段内的双频双极化谐振特征。
其中,所述预设频段至少包括3GPP毫米波全频段。
本申请实施例还提供了一种天线装置,所述天线装置包括天线模组和本申请上述上实施例提供的壳体组件,所述天线模组与所述耦合结构间隔设置,且所述天线模组位于所述耦合结构背离所述介质基板的一侧,所述耦合结构至少部分位于所述天线模组收发射频信号的预设方向范围内,所述耦合结构用于对所述天线模组收发的射频信号的频率进行匹配,以提高所述射频信号的透过率,所述阻抗匹配层用于对所述天线模组收发的射频信号进行空间阻抗匹配,以提高所述射频信号的带宽。
其中,所述天线模组包括多种阵列排布的天线辐射体,所述天线辐射体具有第一馈电点和第二馈电点,所述第一馈电点用于向所述天线辐射体馈入第一电流信号,所述第一电流信号用于激发所述天线辐射体在第一频段谐振,以收发第一频段的射频信号,所述第二馈电点用于向所述天线辐射体馈入第二电流信号,所述第二电流信号用于激发所述天线辐射体在第二频段谐振,其中,所述第一频段与所述第二频段不同。
其中,所述天线装置包括支撑板和射频芯片,所述天线辐射体位于所述支撑板邻近所 述耦合结构的表面,所述射频芯片位于所述支撑板背离所述耦合结构的表面,所述天线装置还包括射频线,所述射频线用于将所述射频芯片和所述天线辐射体电连接。
其中,所述支撑板具有限位孔,所述射频线位于所述限位孔内。
其中,所述支撑板上具有多个金属化过孔,所述过孔环绕所述天线辐射体设置,以对相邻两个所述天线辐射体进行隔离。
其中,所述天线装置包括支撑板、射频芯片和馈地层,所述天线辐射体位于所述支撑板邻近所述耦合结构的表面,所述射频芯片位于所述支撑板背离所述耦合结构的表面,所述馈地层位于所述支撑板和所述射频芯片之间,所述馈地层构成所述天线辐射体的地极,所述馈地层具有缝隙,所述射频芯片和所述馈地层之间设置有馈电走线,所述馈电走线与所述射频芯片电连接,所述馈电走线在所述馈地层上的投影至少部分位于所述缝隙内,所述馈电走线通过所述缝隙对所述天线辐射体进行耦合馈电。
其中,所述天线辐射体由所述第一电流信号激发的谐振模式与所述天线辐射体由所述第二电流信号激发的谐振模式具有不同的极化方向。
本申请实施例还提供了一种电子设备,所述电子设备包括主板、天线模组和本申请上述实施例提供的壳体组件,所述主板装配于所述壳体组件,并在所述壳体组件面对所述耦合结构的一侧形成一收容空间,所述天线模组设置于所述收容空间内,并与所述主板电性连接,所述天线模组包括至少一个天线辐射体,所述天线辐射体用于在所述主板的控制下透过所述壳体组件收发射频信号。
其中,所述电子设备还包括电池盖,所述电池盖构成所述介质基板,所述电池盖的材质为塑料、玻璃、蓝宝石和陶瓷中的任意一种或者多种。
其中,所述电池盖包括背板和环绕所述背板的侧板,所述侧板位于所述天线辐射体收发射频信号的预设方向范围内,所述耦合结构位于所述侧板面对所述天线辐射体的一侧,所述侧板构成所述介质基板。
其中,所述电池盖包括背板和环绕所述背板的侧板,所述背板位于所述天线辐射体收发射频信号的预设方向范围内,所述耦合结构位于所述背板面对所述天线辐射体的一侧,所述背板构成所述介质基板。
其中,所述电子设备还包括屏幕,所述屏幕构成所述介质基板。
其中,当所述电子设备的保护套位于所述天线辐射体收发射频信号的预设方向范围内时,所述电子设备的保护套构成所述介质基板。
请一并参阅图1和图2,本申请实施例提供的壳体组件10包括介质基板100、阻抗匹配层200和耦合结构300,所述介质基板100对预设频段的射频信号具有第一透过率,所述阻抗匹配层200与所述介质基板100层叠设置,所述阻抗匹配层200用于对所述预设频段的射频信号进行空间阻抗匹配,所述耦合结构300与所述介质基板100层叠设置,所述耦合结构300包括一层或多层耦合元件阵列层310,所述耦合元件阵列层310具有在所述预设频段下的谐振特征,所述壳体组件10在所述耦合结构300对应的区域内,对所述预设频段的射频信号具有第二透过率,所述第二透过率大于所述第一透过率。
其中,射频信号可以穿透所述介质基板100、所述阻抗匹配层200和所述耦合结构300,射频信号可以为毫米波信号。所述阻抗匹配层200用于对射频信号进行空间阻抗匹配,且所述介质基板100对预设频段的射频信号具有第一透过率。所述耦合结构300位于介质基板100的一侧。所述耦合结构300包括耦合元件阵列层310,所述耦合元件阵列层310在预设频段下具有谐振特征,用于使得射频信号产生谐振,使得射频信号具有更高的透过率,即壳体组件10在耦合结构300的对应区域内,对预设频段的射频信号具有第二透过率,且满足第二透过率大于第一透过率。也就是说,经过耦合元件阵列层310产生的谐振特性使 得射频信号在耦合结构300的对应区域具有更高的透过率。当所述耦合结构300位于天线的辐射方向范围内时,可以提高天线的辐射增益。
其中,所述耦合元件阵列层310还具有在所述预设频段下的双极化谐振特征,所述双极化谐振特征用于使得射频信号产生二次谐振,且使得射频信号具有呈现双极化特性。所述预设频段至少包括3GPP毫米波全频段。根据3GPP TS 38.101协议的规定,5G主要使用两段频率:FR1频段和FR2频段。FR1频段的频率范围是450MHz~6GHz,又叫sub-6GHz频段;FR2频段的频率范围是24.25GHz~52.6GHz,通常叫它毫米波(mm Wave)。3GPP 15版本规范了目前5G毫米波频段如下:n257(26.5~29.5GHz),n258(24.25~27.5GHz),n261(27.5~28.35GHz)和n260(37~40GHz)。因此,预设频段至少覆盖n257、n258、n261和n260频段。
在一种实施方式中,所述耦合元件阵列层310包括多个阵列设置的耦合元件311,所述耦合元件311由导电材料制成,所述耦合元件311具有在所述预设频段内的双频双极化谐振特征。
其中,耦合元件311可以为金属材质。多个耦合元件311阵列排布,以使得预设频段的射频信号具有双频双极化的谐振特征。即使得射频信号具有多个工作频段,且具有多个辐射方向。
本申请实施例提供的壳体组件10,通过在介质基板100的一侧设置阻抗匹配层200,阻抗匹配层200用于对预设频段的射频信号进行空间阻抗匹配,从而提高射频信号的带宽。且在介质基板100的一侧设置耦合结构300,耦合结构300包括耦合元件阵列层310,耦合元件阵列层310具有在预设频段下的谐振特征,使得壳体组件10在耦合结构300对应的区域对射频信号的透过率大于介质基板100对射频信号的透过率,从而可以提高射频信号的透过率。
所述阻抗匹配层200位于所述介质基板100的一侧,所述耦合结构300位于所述阻抗匹配层200背离所述介质基板100的一侧;或,所述耦合结构300位于所述介质基板100的一侧,所述阻抗匹配层200位于所述耦合结构300背离所述介质基板100的一侧。
在一种实施方式中,所述壳体组件10包括依次层叠设置的耦合结构300、阻抗匹配层200和介质基板100。所述阻抗匹配层200可以作为支撑层和粘附层,用于对耦合结构300形成支撑,且用于将耦合结构300粘接于介质基板100上,所述阻抗匹配层200用于对预设频段的射频信号进行空间波阻抗匹配。所述耦合结构300用于提高预设频段的射频信号的透过率。
在另一种实施方式中,所述壳体组件10包括依次层叠设置的阻抗匹配层200、耦合结构300和介质基板100。所述阻抗匹配层200用于对耦合结构300形成封装和保护,避免耦合结构300被氧化腐蚀,所述阻抗匹配层200还用于对预设频段的射频信号进行空间波阻抗匹配。所述耦合结构300用于提高预设频段的射频信号的透过率。
请继续参阅图3,所述耦合结构300包括一层耦合元件阵列层310,所述耦合元件阵列层310贴合于所述介质基板100的表面,所述阻抗匹配层200位于所述耦合元件阵列层310背离所述介质基板100的一侧,所述阻抗匹配层200用于对所述耦合元件阵列层310形成封装和保护。
所述耦合元件阵列层310设置于承载膜层,以增大所述预设频段的射频信号的透过率。具体的,所述耦合元件阵列层310为单层结构,所述耦合元件阵列层310可以通过连接件连接于承载膜层,所述连接件可以为胶体。所述耦合元件阵列层310具有对预设频段的射频信号的谐振特征,可以使得预设频段的射频信号产生谐振,进而使得预设频段的射频信号具有更高的透过率。
进一步的,在一种实施方式中,所述耦合结构300在所述介质基板100上的正投影完全覆盖所述介质基板100。即承载膜层覆盖整个介质基板100,且耦合结构300承载于所述承载膜层,并对应介质基板100的全部区域设置。即壳体组件10的全部区域对预设频段的射频信号均具有较高的透过率,同时,由于所述耦合结构300在所述介质基板100上的正投影完全覆盖所述介质基板100,有助于降低壳体组件10制备工艺的复杂程度。
在另一种实施方式中,所述耦合结构300在所述介质基板100上的正投影覆盖介质基板100的部分区域,此时,耦合结构300覆盖的面积小于介质基板100的面积,耦合结构300对应介质基板100的局部区域设置。从而可以使得壳体组件10的不同区域针对预设频段的射频信号呈现出不同的透过率,可以对壳体组件10针对预设频段的射频信号的透过率进行灵活的配置。
请继续参阅图4,所述耦合结构300包括一层耦合元件阵列层310,所述阻抗匹配层200包括第一匹配层210和第二匹配层220,所述第一匹配层210位于所述介质基板100的表面,所述耦合元件阵列层310位于所述第一匹配层210背离所述介质基板100的一侧,所述第一匹配层210用于将所述耦合元件阵列层310连接于所述介质基板100,所述第二匹配层220位于所述耦合元件阵列层310背离所述第一匹配层210的一侧,所述第二匹配层220用于对所述耦合元件阵列层310形成封装和保护。
具体的,在本实施方式中,所述壳体组件10包括依次层叠设置的第二匹配层220、耦合元件阵列层310、第一匹配层210和介质基板100,所述第一匹配层210和第二匹配层220相互配合以对耦合元件阵列层310形成支撑、封装以及保护,且第一匹配层210和第二匹配层220相互配合以对预设频段的射频信号进行空间阻抗匹配,以提升射频信号的带宽。所述耦合元件阵列层310用于使得射频信号产生二次谐振,以提高介质基板100针对射频信号的透过率。
请继续参阅图5,所述耦合结构300包括间隔设置的第一阵列层310和第二阵列层320,所述阻抗匹配层200包括第一匹配层210和第二匹配层220,所述第一阵列层310位于所述介质基板100的表面,所述第一匹配层210位于所述第一阵列层310背离所述介质基板100的一侧,所述第一匹配层210用于将所述第一阵列层310连接于所述介质基板100,且用于对所述第一阵列层310形成封装和保护;所述第二阵列层320位于所述第一匹配层210背离所述第一阵列层310的一侧,所述第二匹配层220位于所述第二阵列层320背离所述第一匹配层210的一侧,所述第二匹配层220用于对所述第二阵列层320形成封装和保护。
具体的,在本实施方式中,所述壳体组件10包括依次层叠设置的第二匹配层220、第二阵列层320、第一匹配层210、第一阵列层310和介质基板100,所述第一匹配层210和第二匹配层220相互配合以对第二阵列层320和第一阵列层310形成支撑、封装以及保护,且第一匹配层210和第二匹配层220相互配合以对预设频段的射频信号进行空间阻抗匹配,以提升射频信号的带宽。所述第二阵列层320和第一阵列层310用于使得射频信号产生二次谐振,以提高介质基板100针对射频信号的透过率。
请继续参阅图6,所述耦合结构300包括间隔设置的第一阵列层310和第二阵列层320,所述阻抗匹配层200包括第一匹配层210、第二匹配层220和第三匹配层230,所述第一匹配层210位于所述介质基板100的表面,所述第一阵列层310位于所述第一匹配层210背离所述介质基板100的表面,所述第二匹配层220位于所述第一阵列层310背离所述第一匹配层210的一侧,所述第二阵列层320位于所述第二匹配层220背离所述第一阵列层310的一侧,所述第三匹配层230位于所述第二阵列层320背离所述第二匹配层220的一侧,所述第三匹配层230用于对所述第二阵列层320形成封装和保护。
具体的,所述壳体组件10包括依次层叠设置的第三匹配层230、第二阵列层320、第 二匹配层220、第一阵列层310、第一匹配层210和介质基板100,所述第一匹配层210、第二匹配层220和第三匹配层230相互配合以对第二阵列层320和第一阵列层310形成支撑、封装以及保护,且第一匹配层210、第二匹配层220和第三匹配层230相互配合以对预设频段的射频信号进行空间阻抗匹配,以提升射频信号的带宽。所述第二阵列层320和第一阵列层310用于使得射频信号产生二次谐振,以提高介质基板100针对射频信号的透过率。
在一种实施方式中,所述第一阵列层310和所述第二阵列层320分别位于所述第二匹配层220相对的两侧,且所述第一阵列层310相对于所述第二阵列层320邻近所述介质基板100设置。
所述耦合结构300包括间隔设置的第一阵列层310和第二阵列层320,所述第一阵列层310和所述第二阵列层320均设置于第二匹配层220,所述第一阵列层310和所述第二阵列层320分别位于所述第二匹配层220相对的两侧,且所述第一阵列层310相对于所述第二阵列层320邻近所述介质基板100设置。
具体的,所述第一阵列层310位于所述介质基板100和所述第二匹配层220之间,所述第二阵列层320位于所述第二匹配层220背离所述第一阵列层310的一侧。所述第一阵列层310和所述第二阵列层320中的至少一个具有对预设频段的射频信号的谐振特征。在一种实施方式中,第一阵列层310对预设频段的射频信号具有谐振特征,可以使得预设频段的射频信号产生谐振,进而提高预设频段的射频信号的透过率。在另一种实施方式中,第二阵列层320对预设频段的射频信号具有谐振特征,可以使得预设频段的射频信号产生谐振,进而提高预设频段的射频信号的透过率。在又一种实施方式中,第一阵列层310和第二阵列层320对预设频段的射频信号均具有谐振特征,可以使得预设频段的射频信号产生谐振,进而提高预设频段的射频信号的透过率。
进一步的,所述第一阵列层310在所述第二匹配层220上的投影和所述第二阵列层320在所述第二匹配层220上的投影至少部分不重叠。即第一阵列层310和第二阵列层320在厚度方向上完全错位排布,或者,第一阵列层310和第二阵列层320在厚度方向上部分结构错位排布,可以减小第一阵列层310和第二阵列层320的谐振特性产生相互的干扰,有助于射频信号更加稳定的透过壳体组件10。
请继续参阅图7、图8、图9和图10,所述第一阵列层310具有通孔310a,所述第二阵列层320在所述第一阵列层310上的投影位于所述通孔310a内。
其中,所述通孔310a为圆形、椭圆形、正方形、三角形、长方形、六边形、环形、十字形或者耶路撒冷十字形。
其中,所述第一匹配层210为胶体,所述第二匹配层220为承载膜层,所述第三匹配层230为胶体。所述第一阵列层310和所述第二阵列层320均为正方形贴片,所述第一阵列层310的边长P为1.6mm,所述通孔310a为正方形的孔,W=0.15mm,且所述通孔310a的尺寸为1.3mm×1.3mm,所述第二阵列层320的边长L为1.05mm,所述介质基板100的厚度尺寸为0.55mm,所述第一匹配层210的厚度尺寸为0.02mm,所述第二匹配层220的厚度尺寸为0.45mm,所述第三匹配层230的厚度尺寸为0.03mm。
在本实施方式中,所述第一阵列层310具有通孔310a,且通孔310a的尺寸大于第二阵列层320的轮廓尺寸,且第二阵列层320在第一阵列层310上的投影完全落入到所述通孔310a内。此时,预设频段的射频信号经过第二阵列层320的谐振作用后可以穿过第一阵列层310上的通孔310a传输,从而减少第一阵列层310对经过第二阵列层320的谐振作用后的射频信号的干扰,有助于维持射频信号的稳定传输。且第一阵列层310和第二阵列层320相互配合可以对预设频段的射频信号进行空间阻抗匹配,可以实现对射频信号的频率进行 调节。
请继续参阅图11和图12,本申请实施例提供的天线装置1包括天线模组20和如上任意实施例提供的壳体组件10,所述天线模组20与所述耦合结构300间隔设置,且所述天线模组20位于所述耦合结构300背离所述介质基板100的一侧,所述耦合结构300至少部分位于所述天线模组20收发射频信号的预设方向范围内,所述耦合结构300用于对所述天线模组20收发的射频信号的频率进行匹配,以提高所述射频信号的透过率,所述阻抗匹配层200用于对所述天线模组20收发的射频信号进行空间阻抗匹配,以提高所述射频信号的带宽。
在本实施方式中,所述天线模组20与耦合结构300间隔设置,且天线模组20位于耦合结构300背离介质基板100的一侧。所述天线模组20可以包括一个天线辐射体20a,也可以是多个天线辐射体20a形成的天线阵列。所述天线模组20可以为2×2的天线阵列,可以为2×4的天线阵列,也可以为4×4的天线阵列。当天线模组20包括多个天线辐射体20a时,多个天线辐射体20a可以工作于同一频段。多个天线辐射体20a也可以工作于不同的频段,有助于扩大天线模组20的频段范围。
进一步的,所述耦合结构300至少部分位于所述天线辐射体20a收发射频信号的预设方向范围内,以使得所述天线辐射体20a收发的射频信号产生二次谐振。当耦合结构300位于天线辐射体20a收发射频信号的预设方向范围内时,耦合结构300所具有的谐振特征可以使得射频信号产生谐振特性,进而提高天线辐射体20a收发的射频信号的透过率,即耦合结构300的存在使得天线辐射体20a的对应频段的辐射效率得以提高。
更进一步的,所述天线辐射体20a位于所述耦合结构300背离所述介质基板100的一侧,经由所述耦合结构300匹配后的射频信号穿透所述介质基板100朝向背离所述天线辐射体20a的方向辐射。所述阻抗匹配层200用于对所述天线模组20收发的射频信号进行空间阻抗匹配,以提高所述射频信号的带宽。
具体的,天线辐射体20a产生的射频信号到达耦合结构300的表面时,由于耦合结构300具有谐振特征,可以使得射频信号产生二次谐振,进而提高了射频信号的透过率。由此,便可以使得介质基板100对射频信号具有更强的穿透性,即采用这种排布方式可以提高天线辐射体20a的辐射增益,使得天线辐射体20a性能增强。当耦合结构300与阻抗匹配层200相互配合时,阻抗匹配层200用于提高射频信号的带宽,耦合结构300用于增强射频信号的穿透率,可以使得射频信号呈现出双频双极化特性。
请继续参阅图13,所述天线模组20包括多种阵列排布的天线辐射体20a,所述天线辐射体20a具有第一馈电点20b和第二馈电点20c,所述第一馈电点20b用于向所述天线辐射体20a馈入第一电流信号,所述第一电流信号用于激发所述天线辐射体20a在第一频段谐振,以收发第一频段的射频信号,所述第二馈电点20c用于向所述天线辐射体20a馈入第二电流信号,所述第二电流信号用于激发所述天线辐射体20a在第二频段谐振,其中,所述第一频段与所述第二频段不同。
其中,所述天线辐射体20a由所述第一电流信号激发的谐振模式与所述天线辐射体20a由所述第二电流信号激发的谐振模式具有不同的极化方向。
其中,第一频段可以为高频信号,第二频段可以为低频信号。同样,第一频段可以为低频信号,第二频段可以为高频信号。
根据3GPP TS 38.101协议的规定,5G主要使用两段频率:FR1频段和FR2频段。FR1频段的频率范围是450MHz~6GHz,又叫sub-6GHz频段;FR2频段的频率范围是24.25GHz~52.6GHz,通常叫它毫米波(mm Wave)。3GPP 15版本规范了目前5G毫米波频段如下:n257(26.5~29.5GHz),n258(24.25~27.5GHz),n261(27.5~28.35GHz)和n260(37~40GHz)。第一 频段可以为n257覆盖的频段,此时,第二频段可以为n258、n260和n261覆盖的频段。
所述天线辐射体20a可以为长方形的贴片天线,具有长边20d和短边20e,所述天线辐射体20a的长边20d上设置第一馈电点20b,用于收发第一频段的射频信号,且第一频段的射频信号为低频信号,所述天线辐射体20a的短边20e上设置第二馈电点20c,用于收发第二频段的射频信号,且第二频段的射频信号为高频信号。利用天线辐射体20a的长边20d和短边20e改变天线辐射体20a接入的电长度,从而改变天线辐射体20a辐射射频信号的频率。
请继续参阅图14,所述天线装置1包括支撑板30和射频芯片40,所述天线辐射体20a位于所述支撑板30邻近所述耦合结构300的表面,所述射频芯片40位于所述支撑板30背离所述耦合结构300的表面,所述天线装置1还包括射频线40a,所述射频线40a用于将所述射频芯片40和所述天线辐射体20a电连接。
其中,所述支撑板30可以为多层PCB板采用高密度互联(High Density Inverter,HDI)工艺制备而成。所述射频芯片40位于所述支撑板30背离所述天线辐射体20a的一侧。所述天线辐射体20a具有至少一个馈电点,所述馈电点用于接收来自射频芯片40的射频信号,从而可以产生不同频段的射频信号,
进一步的,将所述天线辐射体20a位于所述支撑板30邻近所述耦合结构300的表面,可以便于天线辐射体20a产生的射频信号朝向所述耦合结构300的方向传输,由于耦合结构300具有谐振特征,经过耦合结构300的谐振之后,射频信号具有更强的穿透性,可以增强天线辐射体20a的辐射增益。且所述射频芯片40位于所述支撑板30背离所述耦合结构300的表面,可以减小射频芯片40对耦合结构300产生不必要的干扰,有助于确保耦合结构300的谐振特征较为稳定,进而保证天线辐射体20a的辐射特征较为稳定。
请继续参阅图15,所述支撑板30具有限位孔30a,所述射频线40a位于所述限位孔30a内。所述射频线40a的一端电连接于所述天线辐射体20a,另一端电连接于所述射频芯片40,所述射频芯片40产生的射频信号通过所述射频线40a传输至所述天线辐射体20a。
具体的,为了将射频芯片40与天线辐射体20a进行电连接,需要在支撑板30上开设限位孔30a,通过在限位孔30a内设置射频线40a,以将天线辐射体20a和射频芯片40进行电连接,从而将射频芯片40上的射频信号传输至天线辐射体20a,然后再由天线辐射体20a根据射频信号产生射频信号。
请继续参阅图16,所述支撑板30上具有多个金属化过孔31,所述过孔31环绕所述天线辐射体20a设置,以对相邻两个所述天线辐射体20a进行隔离。
其中,支撑板30上具有若干个均匀排布的金属化的过孔31,金属化的过孔31环绕在天线辐射体20a的周围。其中,金属化的过孔31的作用是在天线模组20中实现隔离去耦。即由于金属化的过孔31的存在,可以阻止相邻两个天线辐射体20a之间因相互耦合而产生辐射干扰,确保天线辐射体20a处于稳定的工作状态。
请继续参阅图17,所述天线装置1还包括馈地层45,所述天线辐射体20a位于所述支撑板30邻近所述耦合结构300的表面,所述射频芯片40位于所述支撑板30背离所述耦合结构300的表面,所述馈地层45位于所述支撑板30和所述射频芯片40之间,所述馈地层45构成所述天线辐射体20a的地极,所述馈地层45具有缝隙45a,所述射频芯片40和所述馈地层45之间设置有馈电走线46,所述馈电走线46与所述射频芯片40电连接,所述馈电走线46在所述馈地层45上的投影至少部分位于所述缝隙45a内,所述馈电走线46通过所述缝隙45a对所述天线辐射体20a进行耦合馈电。
射频芯片40具有输出端41,所述输出端41用于产生射频信号,射频芯片40产生的射频信号传输至馈电走线46,由于馈电走线46对应馈地层45上的缝隙45a设置,因此, 馈电走线46可将接收到的射频信号通过缝隙45a以耦合的方式传输至天线辐射体20a上的馈电点,天线辐射体20a耦合到来自馈电走线46的射频信号可产生预设频段的射频信号。
进一步的,馈地层45构成天线辐射体20a的地极,天线辐射体20a与馈地层45不用直接电连接,而是通过耦合的方式将天线辐射体20a接地。馈电走线46在所述馈地层45上的投影至少部分位于缝隙45a内,以便于馈电走线46通过缝隙45a对天线辐射体20a进行耦合馈电。
请继续参阅图18,在其他实施方式中,射频芯片40具有第一输出端42和第二输出端43,所述第一输出端42用于产生第一射频信号,所述第二输出端43用于产生第二射频信号,射频芯片40产生的第一射频信号传输至第一子馈电走线47,由于第一子馈电走线47对应馈地层45上的第一缝隙45b设置,因此,第一子馈电走线47可将接收到的第一射频信号通过第一缝隙45b以耦合的方式传输至天线辐射体20a上的第一子馈电点20b,天线辐射体20a耦合到来自第一子馈电走线47的第一射频信号可产生第一频段的射频信号。且由于第二子馈电走线48对应馈地层45上的第二缝隙45c设置,因此,第二子馈电走线48可将接收到的第二射频信号通过第二缝隙45c以耦合的方式传输至天线辐射体20a上的第二子馈电点20c,天线辐射体20a耦合到来自第二子馈电走线48的第二射频信号可产生第二频段的射频信号。当第一射频信号不同于第二射频信号时,第一频段的射频信号也不同于第二频段的射频信号,从而使得天线模组20可以工作于多个频段,拓宽了天线模组20的频段范围,且采用多个频段工作,可以对天线模组20的使用范围进行灵活调整。
进一步的,馈地层45构成天线辐射体20a的地极,天线辐射体20a与馈地层45不用直接电连接,而是通过耦合的方式将天线辐射体20a接地。第一子馈电走线47在所述馈地层45上的投影至少部分位于第一缝隙45b内,第二子馈电走线48在所述馈地层45上的投影至少部分位于第二缝隙45c内,以便于第一子馈电走线47通过第一缝隙45b对天线辐射体20a且便于第二子馈电走线48通过第二缝隙45c对天线辐射体20a进行耦合馈电。
请继续参阅图19,更进一步的,在一种实施方式中,所述第一缝隙45b沿第一方向延伸,所述第二缝隙45c沿第二方向延伸,所述第一方向和所述第二方向垂直。
其中,第一缝隙45b和第二缝隙45c均为条状缝隙。第一缝隙45b可以为垂直极化缝隙45a,也可以为水平极化缝隙,第二缝隙45c可以为垂直极化缝隙,也可以为水平极化缝隙。当第一缝隙45b为垂直极化缝隙时,第二缝隙45c为水平极化缝隙。当第一缝隙45b为水平极化缝隙时,第二缝隙45c为垂直极化缝隙。本申请以第一缝隙45b的延伸方向为Y方向,第二缝隙45c的延伸方向为X方向为例进行说明。当第一缝隙45b的延伸方向与第二缝隙45c的延伸方向垂直时,所述馈地层45为双极化缝隙45a耦合馈地层45,此时,天线模组20构成双极化天线模组20,可以调节天线模组20的辐射方向,且由于可以调整辐射方向,可以有针对性的辐射,因此,可以提高天线模组20辐射的增益。天线的极化是指天线辐射时形成的电场强度方向。
进一步的,所述第一缝隙45b的延伸方向与所述第一子馈电走线47的延伸方向垂直,所述第二缝隙45c的延伸方向与所述第二子馈电走线48的延伸方向垂直。
其中,第一缝隙45b和第二缝隙45c均为条状缝隙45a。第一子馈电走线47和馈地层45间隔设置,第二子馈电走线48和馈地层45间隔设置,第一子馈电走线47在馈地层45上的投影至少部分位于第一缝隙45b内,第二子馈电走线48在馈地层45上的投影至少部分位于第二缝隙45c内。当第一子馈电走线47的延伸方向与第一缝隙45b的延伸方向垂直,且第二子馈电走线48的延伸方向与第二缝隙45c的延伸方向垂直,有助于提升双极化天线模组20的耦合馈电效果,从而提高天线模组20的辐射效率,提升辐射增益。
请继续参阅图20,本申请实施例提供的电子设备2包括主板50、天线模组20和如上 任意实施例提供的壳体组件10,所述主板50装配于所述壳体组件10,并在所述壳体组件10面对所述耦合结构300的一侧形成一收容空间A,所述天线模组20设置于所述收容空间A内,并与所述主板50电性连接,所述天线模组20包括至少一个天线辐射体20a,所述天线辐射体20a用于在所述主板50的控制下透过所述壳体组件10收发射频信号。
其中,所述电子设备2可以是任何具备通信和存储功能的设备。例如:平板电脑、手机、电子阅读器、遥控器、个人计算机(Personal Computer,PC)、笔记本电脑、车载设备、网络电视、可穿戴设备等具有网络功能的智能设备。
其中,所述主板50可以为电子设备2的PCB板。所述主板50和所述壳体组件10之间形成收容空间A,所述天线模组20位于所述收容空间A内,且所述天线模组20电连接于所述主板50。所述天线模组20可以包括一个天线辐射体20a,也可以包括多个天线辐射体20a,所述天线模组20可以为多个天线辐射体20a阵列形成。在所述主板50的控制下,所述天线辐射体20a可以透过所述壳体组件10收发射频信号。且由于耦合结构300具有谐振特征,可以使得射频信号产生谐振特性,以增强射频信号的穿透性,射频信号在穿过壳体组件10时具有更高的透过率。
其中,所述电子设备2还包括电池盖60,所述电池盖60构成所述介质基板100,所述电池盖60的材质为塑料、玻璃、蓝宝石和陶瓷中的任意一种或者多种。
具体的,在电子设备2的结构排布中,电池盖60至少部分结构位于天线辐射体20a收发射频信号的预设方向范围内,因此,电池盖60也会对天线辐射体20a的辐射特性产生影响。为此,本实施方式中,将电池盖60作为介质基板100,可以使得天线辐射体20a在电子设备2的结构排布中具有稳定的辐射性能。同时,电池盖60采用透波材质制成,电池盖60的材质可以为塑料、玻璃、蓝宝石和陶瓷等,还可以为上述材质的相互组合。
请继续参阅图21,所述电池盖60包括背板61和环绕所述背板61的侧板62,所述侧板62位于所述天线辐射体20a收发射频信号的预设方向范围内,所述耦合结构300位于所述侧板62面对所述天线辐射体20a的一侧,所述侧板62构成所述介质基板100。
具体的,当所述天线辐射体20a朝向所述电池盖60的侧板62时,可以采用侧板62对天线辐射体20a收发的射频信号进行空间阻抗匹配,此时,将侧板62作为介质基板100。侧板62面对天线辐射体20a的一侧设置有耦合结构300,耦合结构300具有对预设频段的射频信号的谐振特征,可以使得射频信号产生谐振特性。如此,天线辐射体20a收发的射频信号可以透过侧板62进行传输。将侧板62作为介质基板100对天线辐射体20a进行空间阻抗匹配,充分考虑了天线辐射体20a在电子设备2的整机环境中的结构排布,如此便可以保证天线辐射体20a在整机环境中的辐射效果。
请继续参阅图22,所述电池盖60包括背板61和环绕所述背板61的侧板62,所述背板61位于所述天线辐射体20a收发射频信号的预设方向范围内,所述耦合结构300位于所述背板61面对所述天线辐射体20a的一侧,所述背板61构成所述介质基板100。
具体的,当所述天线辐射体20a朝向所述电池盖60的背板61时,可以采用背板61对天线辐射体20a收发的射频信号进行空间阻抗匹配,此时,将背板61作为介质基板100。背板61面对天线辐射体20a的一侧设置有耦合结构300,耦合结构300具有对预设频段的射频信号的谐振特征,可以使得射频信号产生谐振特性。如此,天线辐射体20a收发的射频信号可以透过背板61进行传输。将背板61作为介质基板100对天线辐射体20a进行空间阻抗匹配,充分考虑了天线辐射体20a在电子设备2的整机环境中的结构排布,如此便可以保证天线辐射体20a在整机环境中的辐射效果。
请继续参阅图23,所述电子设备2还包括屏幕70,所述屏幕70构成所述介质基板100。
具体的,当所述天线辐射体20a朝向所述屏幕70时,可以采用屏幕70对天线辐射体 20a收发的射频信号进行空间阻抗匹配,此时,将屏幕70作为介质基板100。屏幕70面对天线辐射体20a的一侧设置有耦合结构300,耦合结构300具有对预设频段的射频信号的谐振特征,可以使得射频信号产生谐振特性。如此,天线辐射体20a收发的射频信号可以透过屏幕70进行传输。将屏幕70作为介质基板100对天线辐射体20a进行空间阻抗匹配,充分考虑了天线辐射体20a在电子设备2的整机环境中的结构排布,如此便可以保证天线辐射体20a在整机环境中的辐射效果。
请继续参阅图24,当所述电子设备2的保护套80位于所述天线辐射体20a收发射频信号的预设方向范围内时,所述电子设备2的保护套80构成所述介质基板100。
具体的,当所述天线辐射体20a朝向所述保护套80时,可以采用保护套80对天线辐射体20a收发的射频信号进行空间阻抗匹配,此时,将保护套80作为介质基板100。保护套80面对天线辐射体20a的一侧设置有耦合结构300,耦合结构300具有对预设频段的射频信号的谐振特征,可以使得射频信号产生谐振特性。如此,天线辐射体20a收发的射频信号可以透过保护套80进行传输。将保护套80作为介质基板100对天线辐射体20a进行空间阻抗匹配,充分考虑了天线辐射体20a在电子设备2的使用环境中的结构排布,如此便可以保证天线辐射体20a在整机使用环境中的辐射效果。
请继续参阅图25、图26和图27,图25是自由空间下2×2天线模组在玻璃电池盖下的反射及透射系数曲线示意图。图26是2×2天线模组在壳体组件下的反射系数曲线示意图。图27是2×2天线模组在壳体组件下的透射系数曲线示意图。
其中,玻璃电池盖的介电常数Dk=6.8,Df=0.02,厚度为0.7mm。根据图4:0.7mm玻璃电池盖在20~50GHz内的反射/透射系数,可以看到在空气与玻璃电池盖界面处产生较大的反射系数S11,以及较小的透射系数S21,只有不到一半的能量透射过去。
进一步的,参见图25,曲线①为天线模组在玻璃电池盖下的反射系数曲线图。曲线②为天线模组在玻璃电池盖下的透射系数曲线图。针对曲线①,在标记点1的位置,对应的频率为28GHz,对应的反射系数为-2.953;在标记点3的位置,对应的频率为39GHz,对应的反射系数为-3.5267。针对曲线②,在标记点2的位置,对应的频率为28GHz,对应的反射系数为-3.1619;在标记点4的位置,对应的频率为39GHz,对应的反射系数为-2.6301。
进一步的,参见图26,曲线为天线模组在壳体组件下的反射系数曲线图。针对曲线,在标记点1的位置,对应的频率为24.184GHz,对应的反射系数为-9.9617;在标记点2的位置,对应的频率为48.089GHz,对应的反射系数为-10.049。
进一步的,参见图27,曲线为天线模组在壳体组件下的透射系数曲线图。针对曲线,在标记点1的位置,对应的频率为23.28GHz,对应的透射系数为-1.014;在标记点2的位置,对应的频率为49.215GHz,对应的透射系数为-0.99682。
根据图26和图27可以看到平面波经过壳体组件后在24.1~48GHz之间反射系数S11≤-10dB,完全能覆盖3GPP全频段范围。相比于“常规电池盖”较大的反射系数,这种超宽带透波电池盖对毫米波天线影响减小。在透射方面,平面电磁波经过“透波电池盖”在23.2~49.2GHz内仅损失了1dB的能量。将“超宽带双频双极化频率选择表面”概念引入到毫米波手机天线中,在电池盖组件中集成双频双极化金属结构,使得电池盖对3GPP全频段(n257,n258,n261,n259,n260band)呈现高透波特性,形成“毫米波超宽带双频双极化透波电池盖”,相对带宽达66%,解决了电池盖对毫米波天线模组的覆盖加载效应。
以上对本申请实施例进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (28)

  1. 一种壳体组件,其特征在于,包括:
    介质基板,所述介质基板对预设频段的射频信号具有第一透过率;
    阻抗匹配层,所述阻抗匹配层与所述介质基板层叠设置,所述阻抗匹配层用于对所述预设频段的射频信号进行空间阻抗匹配;
    耦合结构,所述耦合结构与所述介质基板层叠设置,所述耦合结构包括一层或多层耦合元件阵列层,所述耦合元件阵列层具有在所述预设频段下的谐振特征;
    所述壳体组件在所述耦合结构对应的区域内,对所述预设频段的射频信号具有第二透过率,所述第二透过率大于所述第一透过率。
  2. 如权利要求1所述的壳体组件,其特征在于,所述阻抗匹配层位于所述介质基板的一侧,所述耦合结构位于所述阻抗匹配层背离所述介质基板的一侧;或,所述耦合结构位于所述介质基板的一侧,所述阻抗匹配层位于所述耦合结构背离所述介质基板的一侧。
  3. 如权利要求1所述的壳体组件,其特征在于,所述耦合元件阵列层还具有在所述预设频段下的双极化谐振特征。
  4. 如权利要求1所述的壳体组件,其特征在于,所述耦合结构包括一层耦合元件阵列层,所述耦合元件阵列层贴合于所述介质基板的表面,所述阻抗匹配层位于所述耦合元件阵列层背离所述介质基板的一侧,所述阻抗匹配层用于对所述耦合元件阵列层形成封装和保护。
  5. 如权利要求1所述的壳体组件,其特征在于,所述耦合结构包括一层耦合元件阵列层,所述阻抗匹配层包括第一匹配层和第二匹配层,所述第一匹配层位于所述介质基板的表面,所述耦合元件阵列层位于所述第一匹配层背离所述介质基板的一侧,所述第一匹配层用于将所述耦合元件阵列层连接于所述介质基板,所述第二匹配层位于所述耦合元件阵列层背离所述第一匹配层的一侧,所述第二匹配层用于对所述耦合元件阵列层形成封装和保护。
  6. 如权利要求1所述的壳体组件,其特征在于,所述耦合结构包括间隔设置的第一阵列层和第二阵列层,所述阻抗匹配层包括第一匹配层和第二匹配层,所述第一阵列层位于所述介质基板的表面,所述第一匹配层位于所述第一阵列层背离所述介质基板的一侧,所述第一匹配层用于将所述第一阵列层连接于所述介质基板,且用于对所述第一阵列层形成封装和保护;所述第二阵列层位于所述第一匹配层背离所述第一阵列层的一侧,所述第二匹配层位于所述第二阵列层背离所述第一匹配层的一侧,所述第二匹配层用于对所述第二阵列层形成封装和保护。
  7. 如权利要求1所述的壳体组件,其特征在于,所述耦合结构包括间隔设置的第一阵列层和第二阵列层,所述阻抗匹配层包括第一匹配层、第二匹配层和第三匹配层,所述第一匹配层位于所述介质基板的表面,所述第一阵列层位于所述第一匹配层背离所述介质基板的表面,所述第二匹配层位于所述第一阵列层背离所述第一匹配层的一侧,所述第二阵列层位于所述第二匹配层背离所述第一阵列层的一侧,所述第三匹配层位于所述第二阵列层背离所述第二匹配层的一侧,所述第三匹配层用于对所述第二阵列层形成封装和保护。
  8. 如权利要求7所述的壳体组件,其特征在于,所述第一阵列层和所述第二阵列层分别位于所述第二匹配层相对的两侧,且所述第一阵列层相对于所述第二阵列层邻近所述介质基板设置。
  9. 如权利要求8所述的壳体组件,其特征在于,所述第一阵列层在所述第二匹配层上的投影和所述第二阵列层在所述第二匹配层上的投影至少部分不重叠。
  10. 如权利要求9所述的壳体组件,其特征在于,所述第一阵列层具有通孔,所述第二 阵列层在所述第一阵列层上的投影位于所述通孔内。
  11. 如权利要求10所述的壳体组件,其特征在于,所述通孔为圆形、椭圆形、正方形、三角形、长方形、六边形、环形、十字形或者耶路撒冷十字形。
  12. 如权利要求7所述的壳体组件,其特征在于,所述第一匹配层为胶体,所述第二匹配层为承载膜层,所述第三匹配层为胶体。
  13. 如权利要求10所述的壳体组件,其特征在于,所述第一阵列层和所述第二阵列层均为正方形贴片,所述第一阵列层的边长为1.6mm,所述通孔为正方形的孔,且所述通孔的尺寸为1.3mm×1.3mm,所述第二阵列层的边长为1.05mm,所述介质基板的厚度尺寸为0.55mm,所述第一匹配层的厚度尺寸为0.02mm,所述第二匹配层的厚度尺寸为0.45mm,所述第三匹配层的厚度尺寸为0.03mm。
  14. 如权利要求1-13任意一项所述的壳体组件,其特征在于,所述耦合元件阵列层包括多个阵列设置的耦合元件,所述耦合元件由导电材料制成,所述耦合元件具有在所述预设频段内的双频双极化谐振特征。
  15. 如权利要求1-13任意一项所述的壳体组件,其特征在于,所述预设频段至少包括3GPP毫米波全频段。
  16. 一种天线装置,其特征在于,所述天线装置包括天线模组和如权利要求1-15任意一项所述的壳体组件,所述天线模组与所述耦合结构间隔设置,且所述天线模组位于所述耦合结构背离所述介质基板的一侧,所述耦合结构至少部分位于所述天线模组收发射频信号的预设方向范围内,所述耦合结构用于对所述天线模组收发的射频信号的频率进行匹配,以提高所述射频信号的透过率,所述阻抗匹配层用于对所述天线模组收发的射频信号进行空间阻抗匹配,以提高所述射频信号的带宽。
  17. 如权利要求16所述的天线装置,其特征在于,所述天线模组包括多种阵列排布的天线辐射体,所述天线辐射体具有第一馈电点和第二馈电点,所述第一馈电点用于向所述天线辐射体馈入第一电流信号,所述第一电流信号用于激发所述天线辐射体在第一频段谐振,以收发第一频段的射频信号,所述第二馈电点用于向所述天线辐射体馈入第二电流信号,所述第二电流信号用于激发所述天线辐射体在第二频段谐振,其中,所述第一频段与所述第二频段不同。
  18. 如权利要求17所述的天线装置,其特征在于,所述天线装置包括支撑板和射频芯片,所述天线辐射体位于所述支撑板邻近所述耦合结构的表面,所述射频芯片位于所述支撑板背离所述耦合结构的表面,所述天线装置还包括射频线,所述射频线用于将所述射频芯片和所述天线辐射体电连接。
  19. 如权利要求18所述的天线装置,其特征在于,所述支撑板具有限位孔,所述射频线位于所述限位孔内。
  20. 如权利要求18所述的天线装置,其特征在于,所述支撑板上具有多个金属化过孔,所述过孔环绕所述天线辐射体设置,以对相邻两个所述天线辐射体进行隔离。
  21. 如权利要求17所述的天线装置,其特征在于,所述天线装置包括支撑板、射频芯片和馈地层,所述天线辐射体位于所述支撑板邻近所述耦合结构的表面,所述射频芯片位于所述支撑板背离所述耦合结构的表面,所述馈地层位于所述支撑板和所述射频芯片之间,所述馈地层构成所述天线辐射体的地极,所述馈地层具有缝隙,所述射频芯片和所述馈地层之间设置有馈电走线,所述馈电走线与所述射频芯片电连接,所述馈电走线在所述馈地层上的投影至少部分位于所述缝隙内,所述馈电走线通过所述缝隙对所述天线辐射体进行耦合馈电。
  22. 如权利要求17-21任意一项所述的天线装置,其特征在于,所述天线辐射体由所述 第一电流信号激发的谐振模式与所述天线辐射体由所述第二电流信号激发的谐振模式具有不同的极化方向。
  23. 一种电子设备,其特征在于,所述电子设备包括主板、天线模组和如权利要求1-15任意一项所述的壳体组件,所述主板装配于所述壳体组件,并在所述壳体组件面对所述耦合结构的一侧形成一收容空间,所述天线模组设置于所述收容空间内,并与所述主板电性连接,所述天线模组包括至少一个天线辐射体,所述天线辐射体用于在所述主板的控制下透过所述壳体组件收发射频信号。
  24. 如权利要求23所述的电子设备,其特征在于,所述电子设备还包括电池盖,所述电池盖构成所述介质基板,所述电池盖的材质为塑料、玻璃、蓝宝石和陶瓷中的任意一种或者多种。
  25. 如权利要求24所述的电子设备,其特征在于,所述电池盖包括背板和环绕所述背板的侧板,所述侧板位于所述天线辐射体收发射频信号的预设方向范围内,所述耦合结构位于所述侧板面对所述天线辐射体的一侧,所述侧板构成所述介质基板。
  26. 如权利要求24所述的电子设备,其特征在于,所述电池盖包括背板和环绕所述背板的侧板,所述背板位于所述天线辐射体收发射频信号的预设方向范围内,所述耦合结构位于所述背板面对所述天线辐射体的一侧,所述背板构成所述介质基板。
  27. 如权利要求23所述的电子设备,其特征在于,所述电子设备还包括屏幕,所述屏幕构成所述介质基板。
  28. 如权利要求23所述的电子设备,其特征在于,当所述电子设备的保护套位于所述天线辐射体收发射频信号的预设方向范围内时,所述电子设备的保护套构成所述介质基板。
PCT/CN2020/095214 2019-06-30 2020-06-09 壳体组件、天线装置及电子设备 WO2021000704A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020217043229A KR102565865B1 (ko) 2019-06-30 2020-06-09 하우징 어셈블리, 안테나 장치 및 전자 기기
EP20834218.8A EP3979417A4 (en) 2019-06-30 2020-06-09 HOUSING ASSEMBLY, ANTENNA DEVICE AND ELECTRONIC DEVICE
JP2021578043A JP7228720B2 (ja) 2019-06-30 2020-06-09 ハウジングアセンブリ、アンテナデバイス及び電子機器
US17/539,069 US20220085493A1 (en) 2019-06-30 2021-11-30 Housing assembly, antenna device, and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910582091.7A CN112234361B (zh) 2019-06-30 2019-06-30 壳体组件、天线装置及电子设备
CN201910582091.7 2019-06-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/539,069 Continuation US20220085493A1 (en) 2019-06-30 2021-11-30 Housing assembly, antenna device, and electronic device

Publications (1)

Publication Number Publication Date
WO2021000704A1 true WO2021000704A1 (zh) 2021-01-07

Family

ID=74101096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/095214 WO2021000704A1 (zh) 2019-06-30 2020-06-09 壳体组件、天线装置及电子设备

Country Status (6)

Country Link
US (1) US20220085493A1 (zh)
EP (1) EP3979417A4 (zh)
JP (1) JP7228720B2 (zh)
KR (1) KR102565865B1 (zh)
CN (1) CN112234361B (zh)
WO (1) WO2021000704A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022068662A (ja) * 2020-10-22 2022-05-10 キヤノン株式会社 無線伝送システム、制御方法、およびプログラム
TWI793850B (zh) * 2021-11-10 2023-02-21 緯創資通股份有限公司 天線陣列

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103247851A (zh) * 2012-02-09 2013-08-14 深圳光启创新技术有限公司 天线罩
EP2747202A1 (de) * 2012-12-18 2014-06-25 EADS Deutschland GmbH Wandung eines Radoms
CN108933329A (zh) * 2017-05-23 2018-12-04 苹果公司 图案化导电层中的天线
KR101971490B1 (ko) * 2018-10-16 2019-04-23 동우 화인켐 주식회사 필름 안테나 및 이를 포함하는 디스플레이 장치

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5208603A (en) * 1990-06-15 1993-05-04 The Boeing Company Frequency selective surface (FSS)
ITRM960169A1 (zh) * 1996-03-14 1997-09-14
US6028565A (en) * 1996-11-19 2000-02-22 Norton Performance Plastics Corporation W-band and X-band radome wall
AU7374300A (en) * 1999-09-14 2001-04-17 Paratek Microwave, Inc. Serially-fed phased array antennas with dielectric phase shifters
JP2005005797A (ja) * 2003-06-09 2005-01-06 Mitsubishi Electric Corp レドーム
JP2012199627A (ja) * 2011-03-18 2012-10-18 Mitsubishi Electric Corp レドーム
JP2012235351A (ja) * 2011-05-02 2012-11-29 Denso Corp アンテナ装置
CN102299409B (zh) * 2011-05-16 2014-04-16 电子科技大学 一种用于IMT-Advanced系统的宽带双极化基站天线
CN102637066B (zh) * 2012-04-13 2016-08-24 深圳光启创新技术有限公司 一种笔记本电脑
CN102760965B (zh) * 2012-07-03 2015-03-11 深圳光启创新技术有限公司 大角度透波超材料及其天线罩和天线系统
CN102760964A (zh) * 2012-07-03 2012-10-31 深圳光启创新技术有限公司 透波超材料及其天线罩和天线系统
CN103682660B (zh) * 2012-08-31 2017-09-19 深圳光启岗达创新科技有限公司 低频透波材料及其天线罩和天线系统
CN203521603U (zh) * 2013-11-07 2014-04-02 深圳光启创新技术有限公司 一种多层嵌套微结构单元、超材料板
KR101556903B1 (ko) * 2014-02-28 2015-10-13 주식회사 이엠따블유 안테나 어셈블리 및 이를 구비한 탑재체
CN104218325B (zh) * 2014-09-15 2016-08-17 西安电子科技大学 一种等效介电常数和磁导率近零的人工电磁材料
CN104505588B (zh) * 2014-12-26 2017-04-19 中国电子科技集团公司第三十八研究所 一种双圆极化微带天线阵
CN106159436A (zh) * 2015-04-24 2016-11-23 桂林嘉威信息技术有限公司 一种适用于wlan的小型化双极化天线及其制作方法
US20170008251A1 (en) * 2015-07-08 2017-01-12 Raytheon Company High performance plastic radome
CN104993249B (zh) * 2015-07-23 2017-07-14 中国人民解放军国防科学技术大学 单通带双侧吸波复合超材料及其天线罩和天线系统
US9812786B2 (en) * 2015-08-25 2017-11-07 Huawei Technologies Co., Ltd. Metamaterial-based transmitarray for multi-beam antenna array assemblies
CN105449356B (zh) * 2016-01-06 2019-06-04 深圳三星通信技术研究有限公司 一种用于lte频段的双极化微带缝隙天线
CN205790397U (zh) * 2016-07-12 2016-12-07 深圳光启高等理工研究院 一种超材料透波结构、天线罩及天线系统
US10326205B2 (en) * 2016-09-01 2019-06-18 Wafer Llc Multi-layered software defined antenna and method of manufacture
US10700429B2 (en) * 2016-09-14 2020-06-30 Kymeta Corporation Impedance matching for an aperture antenna
CN106876982B (zh) * 2017-02-22 2021-08-06 西安电子科技大学 改善多天线系统性能的超表面及采用超表面的多天线系统
CN107093800A (zh) * 2017-04-14 2017-08-25 东南大学 一种传输型人工电磁表面及其设计方法
KR102265616B1 (ko) * 2017-04-26 2021-06-16 삼성전자 주식회사 안테나 장치 및 이를 포함하는 전자 장치
CN107196067B (zh) * 2017-06-14 2023-09-29 复旦大学 近场耦合极化器实现圆极化背腔波导缝隙阵列天线
JP2019068355A (ja) * 2017-10-04 2019-04-25 Nok株式会社 ミリ波レーダー用カバー
CN207719402U (zh) * 2017-10-19 2018-08-10 西南交通大学 高功率埋入式极化转换天线罩
CN108039591B (zh) * 2017-11-17 2020-05-12 复旦大学 具有谐波抑制能力的双线极化整流天线
KR102491506B1 (ko) * 2017-11-28 2023-01-25 삼성전자주식회사 안테나를 포함하는 전자 장치
CN108258394B (zh) * 2018-01-11 2019-11-01 淮阴师范学院 一种多频天线装置的制作方法
CN108494925A (zh) * 2018-01-25 2018-09-04 瑞声科技(南京)有限公司 天线组件及移动终端
CN108615974B (zh) * 2018-05-03 2021-06-22 航天特种材料及工艺技术研究所 耗散型宽频带频率选择表面雷达罩
CN108777353A (zh) * 2018-05-24 2018-11-09 湖南国科锐承电子科技有限公司 一种高隔离低交叉极化双极化微带阵列天线
CN108777359A (zh) * 2018-05-24 2018-11-09 西安电子科技大学 基于频率触发机制的超材料天线罩
CN108923119A (zh) * 2018-07-10 2018-11-30 Oppo广东移动通信有限公司 电子设备
CN109494464B (zh) * 2018-11-12 2019-07-26 电子科技大学 一种低交叉极化超宽带强耦合对跖偶极子相控阵天线
CN109638448A (zh) * 2018-12-12 2019-04-16 航天科工武汉磁电有限责任公司 一种超材料天线罩及天线系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103247851A (zh) * 2012-02-09 2013-08-14 深圳光启创新技术有限公司 天线罩
EP2747202A1 (de) * 2012-12-18 2014-06-25 EADS Deutschland GmbH Wandung eines Radoms
CN108933329A (zh) * 2017-05-23 2018-12-04 苹果公司 图案化导电层中的天线
KR101971490B1 (ko) * 2018-10-16 2019-04-23 동우 화인켐 주식회사 필름 안테나 및 이를 포함하는 디스플레이 장치

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
3GPP TS 38.101
LG ELECTRONICS: "NR UE power class for mmWave UE", 3GPP TSG-RAN WG4 #84 MEETING R4-1708810, 25 August 2017 (2017-08-25), XP051331076, DOI: 20200812092153A *

Also Published As

Publication number Publication date
JP2022539397A (ja) 2022-09-08
KR20220011190A (ko) 2022-01-27
CN112234361A (zh) 2021-01-15
KR102565865B1 (ko) 2023-08-10
US20220085493A1 (en) 2022-03-17
EP3979417A1 (en) 2022-04-06
CN112234361B (zh) 2023-09-26
EP3979417A4 (en) 2022-08-03
JP7228720B2 (ja) 2023-02-24

Similar Documents

Publication Publication Date Title
WO2021082968A1 (zh) 天线模组及电子设备
WO2021000705A1 (zh) 天线装置及电子设备
CN112290193B (zh) 毫米波模组、电子设备及毫米波模组的调节方法
WO2021169709A1 (zh) 吸波结构、天线组件及电子设备
CN109728413B (zh) 天线结构及终端
US11201394B2 (en) Antenna device and electronic device
WO2021249045A1 (zh) 毫米波天线模组和电子设备
TWI506853B (zh) 天線及包含其之通訊裝置
CN109301486B (zh) 用于5g移动通信的单层贴片式微波毫米波跨频段双频双极化辐射单元
WO2021083214A1 (zh) 天线单元及电子设备
WO2021109769A1 (zh) 壳体组件、天线装置及电子设备
WO2021000704A1 (zh) 壳体组件、天线装置及电子设备
CN111864362A (zh) 天线模组及电子设备
WO2020259281A1 (zh) 天线模组、电子设备及电子设备的天线频段调节方法
WO2021082853A1 (zh) 天线模组及电子设备
US20220094041A1 (en) Housing assembly, antenna device, and electronic device
WO2021083217A1 (zh) 天线单元及电子设备
WO2023016184A1 (zh) 天线装置、壳体及电子设备
US11973278B2 (en) Antenna structure and electronic device
WO2021083219A1 (zh) 天线单元及电子设备
WO2021082852A1 (zh) 天线模组及电子设备
WO2024046199A1 (zh) 一种电子设备
WO2024046200A1 (zh) 一种电子设备
WO2021000732A1 (zh) 壳体组件、天线组件及电子设备
CN114336016A (zh) 一种天线结构及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20834218

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021578043

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217043229

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020834218

Country of ref document: EP

Effective date: 20211230