WO2021000732A1 - 壳体组件、天线组件及电子设备 - Google Patents

壳体组件、天线组件及电子设备 Download PDF

Info

Publication number
WO2021000732A1
WO2021000732A1 PCT/CN2020/096619 CN2020096619W WO2021000732A1 WO 2021000732 A1 WO2021000732 A1 WO 2021000732A1 CN 2020096619 W CN2020096619 W CN 2020096619W WO 2021000732 A1 WO2021000732 A1 WO 2021000732A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
coupling
preset
frequency band
radio frequency
Prior art date
Application number
PCT/CN2020/096619
Other languages
English (en)
French (fr)
Inventor
贾玉虎
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2021000732A1 publication Critical patent/WO2021000732A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/50Feeding or matching arrangements for broad-band or multi-band operation

Definitions

  • This application relates to the field of electronic equipment, and in particular to a housing assembly, an antenna assembly and an electronic device.
  • the fifth-generation (5th-Generation, 5G) mobile communication is favored by users due to its high communication speed.
  • 5G mobile communications For example, when using 5G mobile communications to transmit data, the transmission speed is hundreds of times faster than that of 4G mobile communications.
  • Millimeter wave signals are the main means to realize 5G mobile communication.
  • millimeter wave antennas are used in electronic equipment, millimeter wave antennas are usually installed in the containment space inside the electronic equipment, and the millimeter wave signal antennas radiate through the electronic equipment.
  • the transmittance is low, which does not meet the requirements of antenna radiation performance. Or, the transmittance of the external millimeter wave signal through the electronic device is low. It can be seen that in the prior art, the communication performance of the 5G millimeter wave signal is poor.
  • the present application provides a housing assembly, an antenna module and an electronic device to solve the technical problem of poor communication performance of traditional millimeter wave signals.
  • the present application provides a housing assembly, including:
  • a dielectric substrate having a first transmittance for a preset dual-band radio frequency signal
  • the coupling structure is carried on the dielectric substrate and covers at least a part of the dielectric substrate.
  • the coupling structure includes one or more coupling element array layers, and the coupling element array layer is Preset resonance characteristics under dual frequency bands;
  • the housing component has a second transmittance to the radio frequency signal of the preset dual band in the region corresponding to the coupling structure, and the second transmittance is greater than the first transmittance.
  • the present application provides an antenna assembly, the antenna assembly includes an antenna module and the housing assembly, the antenna module and the housing assembly are spaced apart, and the antenna module is used for A preset dual-band radio frequency signal is radiated toward a preset direction range, and at least a part of the housing assembly is located within the radiation direction range.
  • the present application provides an electronic device, the electronic device includes the antenna assembly, and the dielectric substrate includes a battery cover or a screen of the electronic device.
  • FIG. 1 is a schematic structural diagram of a housing assembly provided by the first embodiment of the application.
  • Fig. 2 is a schematic structural diagram of a housing assembly provided by a second embodiment of the application.
  • FIG. 3 is a schematic structural diagram of a housing assembly provided by a third embodiment of the application.
  • FIG. 4 is a schematic structural diagram of a housing assembly provided by a fourth embodiment of this application.
  • FIG. 5 is a schematic diagram of the coupling structure provided by the first embodiment of this application.
  • FIG. 6 is a schematic structural diagram of a housing assembly provided by a fifth embodiment of this application.
  • FIG. 7 is a schematic diagram of the coupling structure provided by the second embodiment of this application.
  • FIG. 8 is a schematic diagram of the coupling structure provided by the third embodiment of this application.
  • FIG. 9 is a schematic cross-sectional structure diagram of the coupling structure provided by the fourth embodiment of this application.
  • FIG. 10 is a schematic structural diagram of the first coupling element array layer in the coupling structure provided in the fourth embodiment of this application.
  • FIG. 11 is a schematic diagram of the structure of the second coupling element array layer in the coupling structure provided in the fourth embodiment of this application.
  • FIG. 12 is an equivalent circuit diagram of the coupling structure provided by the fourth embodiment of this application.
  • FIG. 13 is a schematic diagram of the size of the first coupling member and the waveform of the preset dual-band radio frequency signal.
  • FIG. 14 is a schematic diagram of the line width of the second coupling element and the waveform of the preset dual-band radio frequency signal.
  • 15 is a schematic diagram of the period of the coupling element array layer in the coupling structure and the waveform of the radio frequency signal of the preset dual frequency band.
  • FIG. 16 is a stacking schematic diagram of the coupling structure provided by the fifth embodiment of this application.
  • FIG. 17 is a schematic diagram of the structure of the first coupling element in the first coupling array layer in the fifth embodiment of this application.
  • FIG. 18 is a schematic diagram of the structure of the second coupling element in the second coupling array layer in the fifth embodiment of this application.
  • FIG. 19 is a schematic diagram of the projection of the coupling structure on the dielectric substrate provided by the fifth embodiment of this application.
  • 20 is a schematic diagram of the structure of the coupling element array layer in the coupling structure provided by the sixth embodiment of this application.
  • FIG. 21 is a schematic structural diagram of a coupling structure provided by a seventh embodiment of this application.
  • FIG. 22 is a schematic structural diagram of the coupling structure provided by the eighth embodiment of this application.
  • FIG. 23 is a schematic diagram of standing wave curves of radio frequency signals corresponding to free space, a traditional glass casing, and the casing assembly of the present application.
  • Figure 24 is a schematic diagram of the radiation direction of a 1 ⁇ 4 antenna module in free space.
  • FIG. 25 is a schematic diagram of the radiation direction of a 1 ⁇ 4 antenna module under a traditional glass casing.
  • FIG. 26 is a schematic diagram of the radiation direction of a 1 ⁇ 4 antenna module under the housing assembly of the present application.
  • FIG. 27 is a schematic diagram of the first coupling element array layer in the coupling structure provided by the seventh embodiment of this application.
  • FIG. 28 is a schematic diagram of the structure of the first coupling element array layer in the coupling structure provided by the eighth embodiment of this application.
  • FIG. 29 is a schematic diagram of the structure of the first coupling element array layer in the coupling structure provided by the ninth embodiment of this application.
  • FIG. 30 is a schematic structural diagram of the first coupling element array layer in the coupling structure provided by the tenth embodiment of this application.
  • FIG. 31 is a schematic structural diagram of the antenna assembly provided by the first embodiment of the application.
  • 32 is a schematic cross-sectional structure diagram of an antenna module in an embodiment of the application.
  • FIG. 33 is a schematic cross-sectional structure diagram of an antenna module in another embodiment of this application.
  • FIG. 34 is a schematic diagram of an M ⁇ N radio frequency antenna array in an embodiment of this application.
  • FIG. 35 is a schematic diagram of a package structure when the antenna modules in an embodiment of the application form a radio frequency antenna array.
  • FIG. 36 is a top view of an antenna module according to another embodiment of this application.
  • FIG. 37 is a schematic structural diagram of an electronic device provided by the first embodiment of this application.
  • FIG. 38 is a schematic structural diagram of an electronic device provided by the second embodiment of this application.
  • FIG. 39 is a schematic structural diagram of an electronic device provided by the third embodiment of this application.
  • FIG. 40 is a schematic structural diagram of an electronic device provided by the fourth embodiment of this application.
  • the present application provides a housing assembly, including:
  • a dielectric substrate having a first transmittance for a preset dual-band radio frequency signal
  • the coupling structure is carried on the dielectric substrate and covers at least a part of the dielectric substrate.
  • the coupling structure includes one or more coupling element array layers, and the coupling element array layer is Preset resonance characteristics under dual frequency bands;
  • the housing component has a second transmittance to the radio frequency signal of the preset dual band in the region corresponding to the coupling structure, and the second transmittance is greater than the first transmittance.
  • the coupling structure further has dual polarization characteristics under the preset dual frequency bands.
  • the coupling structure includes a first coupling element array layer, a second coupling element array layer, and a third coupling element array layer that are sequentially stacked, and the first coupling element array
  • the layer includes a first coupling element arranged in an array
  • the second coupling element array layer includes a second coupling element arranged in an array
  • the orthographic projection of the first coupling element on the dielectric substrate and the second coupling element do not overlap.
  • the second coupling member includes a coupling main body and a plurality of coupling parts protruding from each side of the coupling main body, and the coupling parts Are arranged at intervals to form a gap, and the first coupling member is arranged corresponding to the gap.
  • the orthographic projection of at least one pair of first coupling members on the substrate is symmetrical with respect to the orthographic projection of one of the second coupling members on the substrate .
  • the coupling element array layer includes a plurality of conductive lines arranged at intervals along the first direction and a plurality of conductive lines arranged at intervals along the second direction, and the array of coupling elements is arranged at intervals along the first direction.
  • the conductive lines of the cloth and the conductive lines arranged at intervals in the second direction are arranged to cross each other, and jointly form a plurality of grid structures arranged in an array.
  • the coupling element array layer includes a plurality of grid structures arranged in an array, each of the grid structures is surrounded by at least one conductive line, and two adjacent grid structures are at least Reuse part of the conductive lines.
  • the preset dual frequency band includes a first preset frequency band and a second preset frequency band
  • the first preset frequency band follows The increase in the width of the conductive line shifts toward high frequency
  • the second preset frequency band shifts toward the low frequency as the width of the conductive line increases, wherein the frequency of the first preset frequency band is less than The frequency of the second preset frequency band.
  • the coupling structure includes patches arranged in an array, and the greater the side length of the patch, the preset dual frequency band shifts toward low frequencies.
  • the preset dual frequency band includes a first preset frequency band and a second preset frequency band, and the greater the thickness of the dielectric substrate, the center frequency of the preset dual frequency band shifts to a low frequency , And the bandwidth is smaller; the dielectric constant of the dielectric substrate is larger, the center frequency of the preset double flat bottom is shifted to low frequency, and the bandwidth is reduced; the period of the coupling element array layer is larger, the first A preset frequency band is shifted to a low frequency, and the second preset frequency band is shifted to a high frequency, wherein the frequency of the first preset frequency band is smaller than the frequency of the second preset frequency band.
  • the present application provides an antenna assembly that includes an antenna module and any one of the first aspect or the first implementation manner of the first aspect to the ninth implementation manner of the first aspect
  • the antenna module and the housing assembly are spaced apart, the antenna module is used to radiate a preset dual-band radio frequency signal in a predetermined direction range, and at least Part of it lies within the range of the radiation direction.
  • the antenna module includes a radio frequency chip, an insulating substrate, and one or more first antenna radiators. Compared with the one or more first antenna radiators, the radio frequency chip is far away from the one or more first antenna radiators.
  • the coupling structure is provided, the insulating substrate is used to carry the one or more first antenna radiators, the first antenna radiators have one or more feeding points, and the feeding points are used to receive radio frequency Excitation signal of the chip to generate a preset dual-band radio frequency signal.
  • the insulating substrate includes a first surface and a second surface opposite to each other, and the one or more first antenna radiators are disposed on the first On one surface, the radio frequency chip is disposed on the second surface, the antenna module further includes a second antenna radiator, the second antenna radiator is embedded in the circuit board, and the second antenna radiates The body and the first antenna radiator are spaced apart, and the second antenna radiator and the first antenna radiator form a stacked antenna through coupling.
  • the first antenna radiator has only one feeding point, and when the feeding point receives the first excitation signal generated by the radio frequency chip The first antenna radiator generates a radio frequency signal in the first frequency band; when the feeding point receives a second excitation signal generated by the radio frequency chip, the first antenna radiator generates a radio frequency signal in the second frequency band, Wherein, the first frequency band is different from the second frequency band.
  • the first antenna radiator has a first feeding point and a second feeding point, and the first feeding point is used to receive the The first excitation signal generated by the radio frequency chip, the first antenna radiator generates the first radio frequency signal of the first frequency band according to the first excitation signal; the second feeding point is used to receive the first excitation signal generated by the radio frequency chip Two excitation signals.
  • the first antenna radiator generates a second radio frequency signal in a second frequency band according to the second excitation signal, wherein the first frequency band is different from the second frequency band.
  • the first radio frequency signal has a first polarization direction
  • the second radio frequency signal has a second polarization direction
  • the first polarization The direction is different from the second polarization direction.
  • the insulating substrate further includes a plurality of metalized via grids, and the metalized via grids radiate around each of the first antennas.
  • the body setting is used to improve the isolation between two adjacent first antenna radiators.
  • the present application provides an electronic device that includes the antenna assembly described in the second aspect, or any one of the first implementation to the sixth implementation of the second aspect, and
  • the dielectric substrate includes a battery cover or a screen of the electronic device.
  • the battery cover when the dielectric substrate includes the battery cover of the electronic device, the battery cover includes a back plate and a frame bent and extended from the periphery of the back plate, and the coupling structure corresponds to The frame is provided, or the coupling structure is provided corresponding to the backplane.
  • the screen when the dielectric substrate includes a screen of the electronic device, the screen includes a screen main body and an extension part bent and extended from the periphery of the screen main body, and the coupling structure corresponds to The screen body is provided, or the coupling structure is provided corresponding to the extension portion.
  • FIG. 1 is a schematic structural diagram of a housing assembly provided by the first embodiment of this application.
  • the housing assembly 100 includes a dielectric substrate 110 and a coupling structure 120.
  • the dielectric substrate 110 has a first transmittance to a preset dual-band radio frequency signal.
  • the coupling structure 120 is carried on the dielectric substrate 110 and covers at least a part of the dielectric substrate 110.
  • the coupling structure 120 includes one or more coupling element array layers 120a, and the coupling element array layer 120a has Resonance characteristics under the preset dual frequency bands.
  • the housing assembly 100 has a second transmittance for the preset dual-band radio frequency signal in an area corresponding to the coupling structure 120, and the second transmittance is greater than the first transmittance.
  • the coupling structure 120 covers the entire area of the dielectric substrate 110 as an example.
  • the preset dual-band radio frequency signal may be, but not limited to, a millimeter wave frequency band radio frequency signal or a terahertz frequency band radio frequency signal.
  • the 5G new radio mainly uses two frequencies: FR1 frequency band and FR2 frequency band.
  • the frequency range of the FR1 frequency band is 450MHz ⁇ 6GHz, also called the sub-6GHz frequency band
  • the frequency range of the FR2 frequency band is 24.25GHz ⁇ 52.6GHz, which belongs to the millimeter wave (mm Wave) frequency band.
  • 3GPP Release 15 standardizes the current 5G millimeter wave frequency bands including: n257 (26.5-29.5GHz), n258 (24.25-27.5GHz), n261 (27.5-28.35GHz) and n260 (37-40GHz).
  • the coupling structure 120 may have dual-frequency dual-polarization characteristics. Correspondingly, the coupling structure 120 has a dual-frequency resonance response.
  • the material of the coupling structure 120 may be a metal material or a non-metal conductive material.
  • the coupling structure 120 on the dielectric substrate 110 is excited by the radio frequency signal of the preset frequency band, and the coupling structure 120 generates the radio frequency of the same frequency band as the preset frequency band according to the radio frequency signal of the preset frequency band.
  • the signal penetrates the dielectric substrate 110 and radiates into the free space. Since the coupling structure 120 is excited and generates a radio frequency signal of the same frequency band as the predetermined frequency band, the amount of the radio frequency signal of the predetermined frequency band that penetrates the dielectric substrate 110 and radiates into the free space increases.
  • the housing assembly 100 includes a coupling structure 120 and a dielectric substrate 110. Therefore, the dielectric constant of the housing assembly 100 can be equivalent to the dielectric constant of a preset material, and the preset material The dielectric constant of is higher in transmittance to the radio frequency signal of the preset frequency band, and the equivalent wave impedance of the preset material is equal to or approximately equal to the equivalent wave impedance of free space.
  • the coupling structure also has dual polarization characteristics under the preset dual frequency bands. Specifically, the coupling structure can not only increase the transmittance of the radio frequency signal of the preset dual band, but also increase the transmittance of the radio frequency signal of two different polarization directions.
  • the housing assembly 100 provided in this application increases the transmittance of the housing assembly 100 to a preset dual-band radio frequency signal by carrying the coupling structure 120 on the dielectric substrate 110, and through the function of the coupling structure 120
  • the housing assembly 100 is applied to an electronic device, the impact of the housing assembly 100 on the radiation performance of the antenna module disposed inside the housing assembly 100 can be reduced, and the The bandwidth when the electronic device communicates, thereby improving the communication performance of the electronic device.
  • FIG. 2 is a schematic structural diagram of a housing assembly provided by a second embodiment of the application.
  • the housing assembly 100 includes a dielectric substrate 110 and a coupling structure 120.
  • the dielectric substrate 110 has a first transmittance to a preset dual-band radio frequency signal;
  • the coupling structure 120 is carried on the dielectric substrate 110 and covers at least a part of the dielectric substrate 110;
  • the housing assembly In the region corresponding to the coupling structure 120, 100 has a second transmittance for the preset dual-band radio frequency signal, and the second transmittance is greater than the first transmittance.
  • the dielectric substrate 110 includes a first surface 110a and a second surface 110b disposed opposite to each other.
  • the coupling structure 120 is disposed on the second surface 110b.
  • the electronic device further includes an antenna module 200, and the first surface 110a is set away from the antenna module 200 compared to the second surface 110b.
  • FIG. 3 is a schematic structural diagram of the housing assembly provided by the third embodiment of the application.
  • the housing assembly 100 includes a dielectric substrate 110 and a coupling structure 120.
  • the dielectric substrate 110 has a first transmittance to a preset dual-band radio frequency signal;
  • the coupling structure 120 is carried on the dielectric substrate 110 and covers at least a part of the dielectric substrate 110;
  • the housing assembly In the region corresponding to the coupling structure 120, 100 has a second transmittance for the preset dual-band radio frequency signal, and the second transmittance is greater than the first transmittance.
  • the coupling structure 120 is embedded in the dielectric substrate 110.
  • the electronic device 1 further includes an antenna module 200, and the first surface 110a is set away from the antenna module 200 compared to the second surface 110b .
  • FIG. 4 is a schematic structural diagram of a housing assembly provided by a fourth embodiment of this application.
  • the housing assembly 100 includes a dielectric substrate 110 and a coupling structure 120.
  • the dielectric substrate 110 has a first transmittance to a preset dual-band radio frequency signal;
  • the coupling structure 120 is carried on the dielectric substrate 110 and covers at least a part of the dielectric substrate 110;
  • the housing assembly In the region corresponding to the coupling structure 120, 100 has a second transmittance for the preset dual-band radio frequency signal, and the second transmittance is greater than the first transmittance.
  • the coupling structure 120 is attached to the carrier film 130, and the carrier film 130 is attached to the dielectric substrate 110.
  • the carrier film 130 may be, but is not limited to, a plastic (Polyethylene terephthalate, PET) film, a flexible circuit board, a printed circuit board, or the like.
  • the PET film can be, but is not limited to, a color film, an explosion-proof film, and the like.
  • the dielectric substrate 110 includes a first surface 110a and a second surface 110b opposite to each other, and the first surface 110a is disposed away from the antenna module 200 compared to the second surface 110b.
  • the coupling structure 120 is attached to the second surface 110b through the carrier film 130 as an example for illustration. It is understandable that in other embodiments, the coupling structure 120 may also pass through The carrier film 130 is attached to the first surface 110a.
  • FIG. 5 is a schematic diagram of the coupling structure provided by the first embodiment of the application.
  • the coupling structure 120 includes one or more coupling element array layers 120a.
  • the coupling structure 120 includes a multi-layer coupling element array layer 120a
  • the multi-layer coupling element array layers 120a are stacked and spaced in a predetermined direction. Set up.
  • a dielectric layer 110c is arranged between two adjacent coupling element array layers 120a, and all the dielectric layers 110c constitute the dielectric substrate 110.
  • the coupling structure 120 includes three coupling element array layers 120a and two dielectric layers 110c as an example.
  • FIG. 6 is a schematic structural diagram of a housing assembly according to a fifth embodiment of the present application.
  • the dielectric substrate 110 includes a first surface 110 a and a second surface 110 b that are opposed to each other. Part of the coupling structure 120 is disposed on the first surface 110 a, and the remaining coupling structure 120 is embedded in the dielectric substrate 110.
  • the electronic device When the housing assembly 100 is applied to an electronic device, the electronic device further includes an antenna module 200, and the first surface 110a is set away from the antenna module 200 compared to the second surface 110b.
  • the coupling structure 120 is made of a metal material or a non-metal conductive material.
  • the material of the dielectric substrate 110 is at least one or a combination of plastic, glass, sapphire, and ceramic.
  • FIG. 7 is a schematic diagram of the coupling structure provided by the second embodiment of this application.
  • the coupling structure 120 can be combined with the housing assembly 100 provided in any of the foregoing embodiments.
  • the coupling structure 120 includes a plurality of resonant units 120b, and the resonant units 120b are periodically arranged.
  • FIG. 8 is a schematic diagram of the coupling structure provided by the third embodiment of this application.
  • the coupling structure 120 can be integrated into the housing assembly 100 provided in any of the foregoing embodiments.
  • the coupling structure 120 includes a plurality of resonance units 120b, and the resonance units 120b are arranged aperiodically.
  • FIG. 9 is a schematic cross-sectional structure diagram of the coupling structure provided in the fourth embodiment of this application
  • FIG. 10 is the first coupling element array in the coupling structure provided in the fourth embodiment of this application Schematic diagram of the structure of the layer
  • FIG. 11 is a schematic diagram of the structure of the second coupling element array layer in the coupling structure provided in the fourth embodiment of this application.
  • the coupling structure 120 can be incorporated into the housing assembly 100 provided in any of the foregoing embodiments.
  • the coupling structure 120 includes a first coupling element array layer 121, a second coupling element array layer 122, and a third coupling element array layer 123 arranged at intervals.
  • the dielectric substrate 110 includes a first dielectric layer 111 and a second dielectric layer. 112.
  • the first coupling element array layer 121, the first dielectric layer 111, the second coupling element array layer 122, the second dielectric layer 112, and the third coupling element array layer 123 are sequentially stacked Set up.
  • the first coupling element array layer 121 includes a plurality of first coupling elements 1211 arranged in an array
  • the first coupling elements 1221 are patches
  • the second coupling element array layer 122 includes second coupling elements arranged in an array.
  • the second coupling element 1221 is a grid structure
  • the third coupling element array layer 123 includes a plurality of third coupling elements 1231 arranged in an array
  • the third coupling element 1231 is a patch.
  • one grid structure corresponds to four first coupling elements 1211
  • one grid structure corresponds to four third coupling elements 1231, and serves as a period of the coupling structure 120.
  • FIG. 12 is an equivalent circuit diagram of the coupling structure provided by the fourth embodiment of this application.
  • factors that have little influence on the preset frequency band are ignored, such as the inductance of the first coupling element array layer 121, the inductance of the third coupling element array layer 123, and the second coupling element The capacitance of the array layer 122.
  • the first coupling element array layer 121 is equivalent to a capacitor C1
  • the second coupling element array layer 122 is equivalent to a capacitor C2
  • the coupling capacitance between the first coupling element array layer 121 and the second coupling element array layer 122 It is equivalent to a capacitor C3
  • the third coupling element array layer 123 is equivalent to an inductor L.
  • Z0 represents the impedance of the free space
  • Z1 represents the impedance of the dielectric substrate 110
  • Z1 Z0/(Dk)1/2
  • the bandwidth ⁇ f/f0 is proportional to (L/C) 1/2.
  • FIG. 13 is a schematic diagram of the size of the first coupling member and the waveform of the preset dual-band radio frequency signal.
  • the horizontal axis is frequency, in GHz
  • the vertical axis is gain, in dB.
  • FIG. 14 is a schematic diagram of the line width of the second coupling element and the waveform of the preset dual-band radio frequency signal.
  • the preset dual frequency bands include a first preset frequency band and a second preset frequency band.
  • the first preset frequency band shifts to high frequencies as the width of the conductive line increases, and the second preset frequency band As the width of the conductive line increases, it shifts to a low frequency, wherein the frequency of the first preset frequency band is smaller than the frequency of the second preset frequency band.
  • the horizontal axis is frequency, in GHz
  • the vertical axis is gain, in dB.
  • curve 1 is the waveform curve when the line width W1 of the conductive circuit is 0.15mm
  • curve 2 is the waveform curve when the line width W1 of the conductive circuit is 0.20mm
  • the preset dual frequency band includes a first preset frequency band and a second preset frequency band. It can be seen that the first preset frequency band shifts toward high frequencies as the width of the conductive line increases, and the The second preset frequency band shifts toward a low frequency as the width of the conductive line increases, wherein the frequency of the first preset frequency band is smaller than the frequency of the second preset frequency band. And it can be seen from this schematic diagram that the line width of the conductive line has a smaller influence on the peak value of the radio frequency signal in the first preset frequency band than the influence on the peak value of the radio frequency signal in the second preset frequency band.
  • FIG. 15 is a schematic diagram of the period of the coupling element array layer in the coupling structure and the waveform of the preset dual-band radio frequency signal.
  • the horizontal axis is frequency, in GHz
  • the vertical axis is gain, in dB.
  • the preset dual frequency band includes a first preset frequency band and a second preset frequency band, the greater the thickness of the dielectric substrate, the lower the center frequency of the preset dual frequency band, and the smaller the bandwidth
  • FIG. 16 is a stacking diagram of the coupling structure provided by the fifth embodiment of this application;
  • FIG. 17 is the first coupling array layer in the fifth embodiment of this application.
  • FIG. 18 is a schematic structural diagram of a second coupling element in the second coupling array layer in the fifth embodiment of this application;
  • FIG. 19 is a schematic projection view of the coupling structure provided by the fifth embodiment of this application on the dielectric substrate .
  • the coupling structure 120 includes a first coupling element array layer 121, a second coupling element array layer 122, and a third coupling element array layer 123 that are sequentially stacked.
  • the first coupling element array layer 121 includes first coupling elements 1211 arranged in an array
  • the second coupling element array layer 122 includes second coupling elements 1221 arranged in an array.
  • the orthographic projection on the dielectric substrate 110 and the orthographic projection of the second coupling element 1221 on the dielectric substrate 110 do not overlap.
  • a first dielectric layer 111 is provided between the first coupling element array layer 121 and the second coupling element array layer 122
  • a second dielectric layer 111 is provided between the second coupling element array layer 122 and the third coupling element array layer 123.
  • the second coupling member includes a coupling body 1223 and a plurality of coupling portions 1224 protruding from each side of the coupling body 1223.
  • the coupling portions 1224 are arranged at intervals to form a gap.
  • the first coupling member 1211 corresponds to the gap setting.
  • the orthographic projection of at least one pair of first coupling members 1221 on the dielectric substrate 110 is symmetrical with respect to the orthographic projection of one of the second coupling members 1222 on the dielectric substrate 110.
  • the coupling element array layer 120a includes a plurality of conductive lines 151 arranged at intervals along the first direction and a plurality of conductive lines 161 arranged at intervals along the second direction, and the conductive lines 161 are arranged at intervals along the first direction.
  • the arranged conductive lines 151 and the conductive lines 161 arranged at intervals along the second direction are arranged to cross each other, and jointly form a plurality of grid structures arranged in an array.
  • two conductive lines 151 arranged at intervals along the first direction intersect with two conductive lines 161 arranged at intervals along the second direction to form the grid structure.
  • the first direction is perpendicular to the second direction.
  • the first direction is not perpendicular to the second direction. It can be understood that, among the plurality of conductive lines 151 arranged at intervals in the first direction, the spacing between two adjacent conductive lines 151 may be the same or different.
  • the spacing between two adjacent conductive lines 151 may be the same or different.
  • the distance between two adjacent conductive lines 151 and the distance between two adjacent conductive lines 151 may be the same or different.
  • the first direction is perpendicular to the second direction and the distance between two adjacent conductive lines 151 is equal to the distance between two adjacent conductive lines 161 as an example.
  • the preset dual frequency bands include a first preset frequency band and a second preset frequency band.
  • the first preset frequency band shifts toward high frequencies as the width of the conductive line increases, and the second The preset frequency band shifts to a low frequency as the width of the conductive line increases, wherein the frequency of the first preset frequency band is smaller than the frequency of the second preset frequency band.
  • FIG. 21 is a schematic structural diagram of the coupling structure provided by the seventh embodiment of this application.
  • the coupling element array layer 120a includes a plurality of grid structures arranged in an array. Each grid structure is surrounded by at least one conductive line 151, and two adjacent grid structures multiplex at least part of the conductive line 151.
  • the preset dual frequency bands include a first preset frequency band and a second preset frequency band.
  • the first preset frequency band shifts toward high frequencies as the width of the conductive line increases, and the second The preset frequency band shifts to a low frequency as the width of the conductive line increases, wherein the frequency of the first preset frequency band is smaller than the frequency of the second preset frequency band.
  • the shape of the mesh structure can be, but is not limited to, any one of a circle, a rectangle, a triangle, a polygon, and an ellipse.
  • the shape of the mesh structure is a polygon
  • the number of sides of the lattice structure is a positive integer greater than 3.
  • the shape of the grid structure is a triangle as an example.
  • FIG. 22 is a schematic structural diagram of the coupling structure provided by the eighth embodiment of this application.
  • the shape of the grid structure is a regular hexagon as an example.
  • FIG. 23 is a schematic diagram of standing wave curves of radio frequency signals corresponding to free space, a conventional glass casing, and the casing assembly of the present application.
  • the comparison is the performance of a 2 ⁇ 2 antenna module generating the radio frequency signal in free space, a traditional housing, and the housing assembly of the application.
  • curve 1 is a schematic diagram of the standing wave curve of the radio frequency signal corresponding to the free space
  • curve 2 is a schematic diagram of the standing wave curve of the radio frequency signal corresponding to a traditional housing (material is glass)
  • curve 3 is the radio frequency corresponding to the housing assembly of the application Schematic diagram of the standing wave curve of the signal.
  • the standing wave curve of the radio frequency signal of the present application is basically the same as the standing wave curve of the free space, which is significantly improved compared to the standing wave curve of the traditional housing.
  • Fig. 24 is a schematic diagram of the radiation direction of a 1 ⁇ 4 antenna module in free space. It can be seen from this schematic diagram that the gain of the antenna module at 28 GHz is 10.4 dB, and the gain of the antenna module at 39 GHz is 12.2 dB.
  • FIG. 25 is a schematic diagram of the radiation direction of a 1 ⁇ 4 antenna module under a traditional glass casing. It can be seen from this schematic diagram that the gain of the antenna module at 28 GHz is 6.82 dB, and the gain of the antenna module at 39 GHz is 7.29 dB. It can be seen that the gain of the antenna module under the traditional glass casing is lower than the gain under the free space.
  • FIG. 26 is a schematic diagram of the radiation direction of a 1 ⁇ 4 antenna module under the housing assembly of the present application. It can be seen from this schematic diagram that the gain of the antenna module at 28 GHz is 9.56 dB, and the gain of the antenna module at 39 GHz is 10.4 dB. It can be seen that the gain of the antenna module under the housing assembly of the present application is basically the same as the gain under the free space.
  • FIG. 27 is a schematic diagram of the first coupling element array layer in the coupling structure provided by the seventh embodiment of this application.
  • the coupling structure 120 provided in this embodiment is basically the same as the coupling structure 120 provided in the fourth embodiment.
  • the first coupling member 1211 is a rectangular patch.
  • the first coupling element array layer 121 includes a plurality of first coupling elements 1211 arranged in an array, and the first coupling elements 1211 are circular.
  • the diameter D of the circular first coupling member 1211 ranges from 0.5 to 0.8 mm.
  • the third coupling element array layer 123 includes a plurality of third coupling elements 1231 arranged in an array, and the third coupling elements 1231 are circular.
  • the diameter D of the circular third coupling member 1231 ranges from 0.5 to 0.8 mm.
  • the structure of the third coupling element array layer 123 may be the same as the structure of the first coupling element array layer 121.
  • FIG. 28 is a schematic structural diagram of the first coupling element array layer in the coupling structure provided by the eighth embodiment of this application.
  • the coupling structure 120 provided in this embodiment is basically the same as the coupling structure 120 provided in the fourth embodiment.
  • the first coupling member 1211 is a rectangular patch.
  • the first coupling element array layer 121 includes a plurality of first coupling elements 1211 arranged in an array, and the first coupling elements 1211 have a circular ring shape.
  • the material of the first coupling member 1211 is metal, the first coupling member 1211 has a circular ring shape so that the transparency of the coupling structure 120 can be improved.
  • the diameter Do of the size of the annular first coupling element 1211 is usually 0.5-0.8 mm, and the inner diameter Di of the annular first coupling element 1211, generally speaking, the smaller the value of Do-Di, The greater the transparency of the coupling structure 120, the greater the insertion loss. In order to take into account the transparency and insertion loss of the coupling structure 120, the value of the Do-Di is usually: Do-Di ⁇ 0.5 mm. Understandably, the structure of the third coupling element array layer 123 may be the same as the structure of the first coupling element array layer 121.
  • FIG. 29 is a schematic structural diagram of the first coupling element array layer in the coupling structure provided by the ninth embodiment of this application.
  • the coupling structure 120 provided in this embodiment is basically the same as the coupling structure 120 provided in the fourth embodiment.
  • the first coupling member 1211 is a rectangular patch.
  • the first coupling element array layer 121 includes a plurality of first coupling elements 1211 arranged in an array, and the first coupling elements 1211 are square ring-shaped patches.
  • the side length of the square first coupling member 1211 is Lo usually 0.5-0.8 mm, and the inside of the square ring-shaped patch becomes Li. Generally speaking, the smaller the value of Lo-Li, the higher the transparency, but The greater the insertion loss.
  • the value of the Do-Di is usually: Lo-Li ⁇ 0.5 mm.
  • the structure of the third coupling element array layer 123 may be the same as the structure of the first coupling element array layer 121.
  • FIG. 30 is a schematic structural diagram of the first coupling element array layer in the coupling structure provided by the tenth embodiment of this application.
  • the coupling structure 120 provided in this embodiment includes a plurality of first coupling members 1211 arranged in an array, and each of the first coupling members 1211 is a square metal mesh grid.
  • the first coupling member 1211 includes a plurality of first branches 1212 and a plurality of second branches 1213, the plurality of first branches 1212 are arranged at intervals, and the plurality of second branches 1213 are arranged at intervals, and The second branch 1213 and the first branch 1212 are crossed and connected.
  • the first branches 1212 extend along a first direction and the plurality of first branches 1212 are arranged at intervals along the second direction.
  • the second branch 1213 and the first branch 1212 cross vertically.
  • the side length of the first coupling member 1211 is 0.5-0.8 mm.
  • FIG. 31 is a schematic structural diagram of the antenna assembly provided by the first embodiment of this application.
  • the antenna assembly 10 includes an antenna module 200 and a housing assembly 100, the antenna module 200 and the housing assembly 100 are spaced apart, and the antenna module 200 is used to radiate a preset dual frequency band in a preset direction range , And at least part of the housing assembly 100 is located within the radiation direction range.
  • the housing assembly 100 please refer to the corresponding description above, which will not be repeated here.
  • FIG. 32 is a schematic cross-sectional structure diagram of an antenna module in an embodiment of this application.
  • the antenna module 200 includes a radio frequency chip 230, an insulating substrate 240, and one or more first antenna radiators 250.
  • the radio frequency chip 230 is used to generate an excitation signal.
  • the radio frequency chip 230 is arranged away from the coupling structure 120 compared to the one or more first antenna radiators 250, and the insulating substrate 240 is used to carry the one or more first antenna radiators 250, so
  • the first antenna radiator 250 has one or more feeding points 251, and the feeding points 251 are used to receive the excitation signal from the radio frequency chip 230 to generate a preset dual-band radio frequency signal.
  • the radio frequency chip 230 is electrically connected to the one or more first antenna radiators 250 through a transmission line embedded in the insulating substrate 240.
  • the insulating substrate 240 includes an upper surface 240a and a lower surface 240a opposite to each other.
  • the insulating substrate 240 is used to carry the one or more first antenna radiators 250, including: the insulating substrate 240 is arranged on the The upper surface 240 a, or the one or more first antenna radiators 250 are embedded in the insulating substrate 240.
  • the one or more first antenna radiators 250 are disposed on the upper surface 240a
  • the radio frequency chip 230 is disposed on the lower surface 240a.
  • the excitation signal generated by the radio frequency chip 230 is electrically connected to the one or more first antenna radiators 250 through a transmission line embedded in the insulating substrate 240.
  • the radio frequency chip 230 may be soldered on the insulating substrate 240 to transmit the excitation signal to the first antenna radiator 250 via a transmission line embedded in the insulating substrate 240.
  • the first antenna radiator 250 receives the excitation signal, and generates a radio frequency signal according to the excitation signal.
  • the first antenna radiator 250 may be, but is not limited to, a patch antenna.
  • the radio frequency chip 230 is away from the coupling structure 120 compared to the first antenna radiator 250, and the output end of the radio frequency chip 230 for outputting the excitation signal is located on the insulating substrate 240 away from the coupling structure.
  • each of the first antenna radiators 250 includes at least one feeding point 251, each of the feeding points 251 is electrically connected to the radio frequency chip 230 through the transmission line, and each of the feeding points The distance between the center of the first antenna radiator 250 corresponding to the feeding point 251 and the feeding point 251 is greater than a preset distance. Adjusting the position of the feeding point 251 can change the input impedance of the first antenna radiator 250. In this embodiment, the center of each feeding point 251 and the corresponding first antenna radiator 250 is set The distance is greater than the preset distance, thereby adjusting the input impedance of the first antenna radiator 250.
  • the input impedance of the first antenna radiator 250 is adjusted so that the input impedance of the first antenna radiator 250 matches the output impedance of the radio frequency chip 230.
  • the first antenna radiator 250 and the radio frequency chip 230 match
  • the output impedance of 230 is matched, the reflection amount of the excitation signal generated by the radio frequency signal is the smallest.
  • FIG. 33 is a schematic cross-sectional structure diagram of an antenna module in another embodiment of this application.
  • the antenna module 200 provided in this embodiment is basically the same as the antenna module 200 provided in the description of the antenna module 200 in the first embodiment. The difference is that, in this embodiment, the antenna module 200 further includes a second antenna radiator 260. That is, in this embodiment, the antenna module 200 includes a radio frequency chip 230, an insulating substrate 240, one or more first antenna radiators 250, and a second antenna radiator 260.
  • the radio frequency chip 230 is used to generate an excitation signal.
  • the insulating substrate 240 includes an upper surface 240a and a lower surface 240a disposed opposite to each other, the one or more first antenna radiators 250 are disposed on the upper surface 240a, and the radio frequency chip 230 is disposed on the lower surface 240a. .
  • the excitation signal generated by the radio frequency chip 230 is electrically connected to the one or more first antenna radiators 250 via a transmission line embedded in the insulating substrate 240.
  • the radio frequency chip 230 can be soldered on the insulating substrate 240 to transmit the excitation signal to the first antenna radiator 250 via a transmission line embedded in the insulating substrate 240.
  • the first antenna radiator 250 receives the excitation signal, and generates a radio frequency signal according to the excitation signal.
  • the radio frequency chip 230 is away from the coupling structure 120 compared to the first antenna radiator 250, and the output end of the radio frequency chip 230 that outputs the excitation signal is located at the insulating substrate 240 away from the coupling structure 120.
  • One side of the coupling structure 120 One side of the coupling structure 120.
  • each of the first antenna radiators 250 includes at least one feeding point 251, each of the feeding points 251 is electrically connected to the radio frequency chip 230 through the transmission line, and each of the feeding points The distance between the center of the first antenna radiator 250 corresponding to the feeding point 251 and the feeding point 251 is greater than a preset distance.
  • the first antenna radiator 250 includes two feeding points 251 as an example.
  • the second antenna radiator 260 is embedded in the insulating substrate 240, the second antenna radiator 260 is spaced apart from the first antenna radiator 250, and the second antenna The radiator 260 and the first antenna radiator 250 form a stacked antenna through coupling.
  • the first antenna radiator 250 is electrically connected to the radio frequency chip 230 and the second antenna
  • the radiator 260 is not electrically connected to the radio frequency chip 230, the second antenna radiator 260 couples the millimeter wave signal radiated by the first antenna radiator 250, and the second antenna radiator 260 is coupled to the first antenna radiator 250.
  • a millimeter wave signal radiated by an antenna radiator 250 generates a new millimeter wave signal.
  • the antenna module 200 is prepared by a high-density interconnection process as an example for description below.
  • the insulating substrate 240 includes a core layer 241 and a plurality of wiring layers 242 stacked on opposite sides of the core layer 241.
  • the core layer 241 is an insulating layer, and an insulating layer 243 is usually provided between each wiring layer 242.
  • the outer surface of the wiring layer 242 located on the side of the core layer 241 adjacent to the coupling structure 120 and farthest from the core layer 241 constitutes the upper surface 240 a of the insulating substrate 240.
  • the outer surface of the wiring layer 242 located on the side of the core layer 241 away from the coupling structure 120 and farthest from the core layer 241 constitutes the lower surface 240 a of the insulating substrate 240.
  • the first antenna radiator 250 is disposed on the upper surface 240a.
  • the second antenna radiator 260 is embedded in the insulating substrate 240, that is, the second antenna radiator 260 can be disposed on another wiring layer 242 for laying out the antenna radiator, and the second antenna radiator The antenna radiator 260 is not provided on the surface of the insulating substrate 240.
  • the insulating substrate 240 has an 8-layer structure as an example for illustration. It is understandable that in other embodiments, the insulating substrate 240 may also have other layers.
  • the insulating substrate 240 includes a core layer 241 and a first wiring layer TM1, a second wiring layer TM2, a third wiring layer TM3, a fourth wiring layer TM4, a fifth wiring layer TM5, a sixth wiring layer TM6, and a seventh wiring layer TM7, and the eighth wiring layer TM8.
  • the first wiring layer TM1, the second wiring layer TM2, the third wiring layer TM3, and the fourth wiring layer TM4 are sequentially stacked on the same surface of the core layer 241, and the first The wiring layer TM1 is disposed away from the core layer 241 relative to the fourth wiring layer TM4, and the surface of the first wiring layer TM1 away from the core layer 241 is the upper surface 240a of the insulating substrate 240.
  • the fifth wiring layer TM5, the sixth wiring layer TM6, the seventh wiring layer TM7, and the eighth wiring layer TM8 are sequentially stacked on the same surface of the core layer 241, and the eighth wiring layer
  • the layer TM8 is disposed away from the core layer 241 relative to the fifth wiring layer TM5, and the surface of the eighth wiring layer TM8 away from the core layer 241 is the lower surface 240a of the insulating substrate 240.
  • the first wiring layer TM1, the second wiring layer TM2, the third wiring layer TM3, and the fourth wiring layer TM4 are wiring layers where an antenna radiator can be provided;
  • the fifth wiring layer TM5 is a ground layer where a ground pole is set;
  • the sixth wiring layer TM6, the seventh wiring layer TM7, and the eighth wiring layer TM8 are the feeder network and control line wiring layers in the antenna module 200.
  • the first antenna radiator 250 is disposed on the surface of the first wiring layer TM1 away from the core layer 241, and the second antenna radiator 260 is disposed on the surface of the third wiring layer.
  • the first antenna radiator 250 is provided on the surface of the first wiring layer TM1 and the second antenna radiator 260 is provided on the third wiring layer TM3 as an example. Understandably, in other embodiments, the first antenna radiator 250 may be disposed on the surface of the first wiring layer TM1 away from the core layer 241, and the second antenna radiator 260 may be disposed on the The second wiring layer TM2, or the second antenna radiator 260 may be provided on the fourth wiring layer TM4.
  • the first wiring layer TM1, the second wiring layer TM2, the third wiring layer TM3, the fourth wiring layer TM4, the sixth wiring layer TM6, the seventh wiring layer TM7, And the eighth wiring layer TM8 are electrically connected to the ground layer in the fifth wiring layer TM5.
  • Both the eighth wiring layer TM8 and the eighth wiring layer TM8 are provided with through holes, and a metal material is provided in the through holes to electrically connect the ground layer in the fifth wiring layer TM5 to ground the devices provided in each wiring layer 242.
  • the seventh wiring layer TM7 and the eighth wiring layer TM8 are further provided with a power line 271 and a control line 272, and the power line 271 and the control line 272 are electrically connected to the radio frequency chip 230, respectively .
  • the power line 271 is used to provide the radio frequency chip 230 with power required by the radio frequency chip 230
  • the control line 272 is used to transmit control signals to the radio frequency chip 230 to control the operation of the radio frequency chip 230.
  • FIG. 34 is a schematic diagram of an M ⁇ N radio frequency antenna array in an embodiment of this application.
  • the electronic device 1 includes a radio frequency antenna array composed of M ⁇ N antenna components 10, where M is a positive integer and N is a positive integer. Illustrated in the figure is an antenna array composed of 4 ⁇ 1 antenna components 10.
  • the insulating substrate 240 further includes a plurality of metalized via grids 244, and the metalized via grids 244 surround each of the first
  • the antenna radiator 250 is arranged to improve the isolation between two adjacent first antenna radiators 250.
  • FIG. 35 is a schematic diagram of a package structure when the antenna modules in an embodiment of the application form a radio frequency antenna array.
  • the metalized via grid 244 is used to form a radio frequency antenna array on a plurality of antenna modules 200, the metalized via grid 244 is used to improve the isolation between adjacent antenna modules 200 to Reduce or even avoid the interference of millimeter wave signals generated by each antenna module 200.
  • the antenna module 200 described above is described by taking the antenna module 200 as a patch antenna and a laminated antenna as an example. It is understandable that the antenna module 200 may also include a dipole antenna and a magnetoelectric dipole antenna. , Quasi-Yagi antennas, etc.
  • the antenna assembly 10 may include at least one or a combination of a patch antenna, a laminated antenna, a dipole antenna, a magnetoelectric dipole antenna, and a quasi-Yagi antenna. Further, the dielectric substrates 110 in the M ⁇ N antenna assemblies 10 may be connected to each other to form an integrated structure.
  • the first antenna radiator has a first feeding point 251a and a second feeding point 251b.
  • the first feeding point 251a is used to receive the first excitation signal generated by the radio frequency chip 230.
  • the first antenna The radiator 250 generates a first radio frequency signal in the first frequency band according to the first excitation signal; the second feeding point 251b is used to receive the second excitation signal generated by the radio frequency chip 230, and the first antenna radiator 250 generates a second radio frequency signal in a second frequency band according to the second excitation signal, wherein the first frequency band is different from the second frequency band.
  • the first radio frequency signal has a first polarization direction
  • the second radio frequency signal has a second polarization direction
  • the first polarization direction is different from the second polarization direction
  • FIG. 36 is a top view of an antenna module according to another embodiment of this application.
  • the first antenna radiator 250 has only one feeding point 251.
  • the feeding point 251 receives the first excitation signal generated by the radio frequency chip 230
  • the The first antenna radiator 250 generates a radio frequency signal in the first frequency band
  • the feeding point 251 receives the second excitation signal generated by the radio frequency chip 250
  • the first antenna radiator generates a radio frequency signal in the second frequency band, wherein, the first frequency band is different from the second frequency band.
  • the polarization direction of the radio frequency signal in the first frequency band is The polarization directions of the second frequency band are the same.
  • This application also provides an electronic device 1, which includes but is not limited to a smart phone, an Internet device (Mobile Internet Device, MID), an e-book, a portable play station (Play Station Portable, PSP), or a personal digital assistant (Personal Digital Assistant, PDA) and other electronic devices with communication functions.
  • an electronic device includes but is not limited to a smart phone, an Internet device (Mobile Internet Device, MID), an e-book, a portable play station (Play Station Portable, PSP), or a personal digital assistant (Personal Digital Assistant, PDA) and other electronic devices with communication functions.
  • FIG. 37 is a schematic structural diagram of the electronic device provided by the first embodiment of this application.
  • the electronic device 1 includes an antenna assembly 10, and the dielectric substrate 110 includes a battery cover 30 or a screen 40 of the electronic device 1.
  • the antenna assembly 10 please refer to the foregoing description, and will not be repeated here.
  • the electronic device 1 further includes a main board, the main board is arranged on the side of the antenna module 200 away from the coupling structure 120, and the main board is arranged with a ground pole to suppress the preset dual-band radio frequency signal direction One side of the main board radiates to avoid the influence on the components on the side of the main board away from the coupling structure 120.
  • the dielectric substrate 110 includes the battery cover 30 of the electronic device 1 as an example.
  • the battery cover 30 includes a back plate 310 and a frame 320 bent and extended from the periphery of the back plate 310, and the coupling structure 120 is disposed corresponding to the frame 320.
  • FIG. 38 is a schematic structural diagram of an electronic device provided by the second embodiment of this application.
  • the electronic device 1 provided in this embodiment is basically the same as the electronic device 1 provided in the first embodiment.
  • the coupling structure 120 is provided corresponding to the backplane 310.
  • the battery cover 30 includes a back plate 310 and a frame 320 bent and extended from the periphery of the back plate 310, and the coupling structure 120 is disposed corresponding to the back plate 310.
  • FIG. 39 is a schematic structural diagram of an electronic device provided by the third embodiment of this application.
  • the dielectric substrate 110 includes the screen 40 of the electronic device 1, and the screen 40 includes a screen main body 410 and an extension 420 extending from the periphery of the screen main body 410, and the coupling structure 120 corresponds to The screen body 410 is set.
  • FIG. 40 is a schematic structural diagram of an electronic device according to a fourth embodiment of this application.
  • the dielectric substrate 110 includes the screen 40 of the electronic device 1, and the screen 40 includes a screen main body 410 and an extension 420 extending from the periphery of the screen main body 410, and the coupling structure 120 corresponds to The extension 420 is provided.

Landscapes

  • Support Of Aerials (AREA)

Abstract

本申请提供了一种壳体组件、天线组件及电子设备。所述壳体组件包括介质基板及耦合结构。所述介质基板对预设双频段的射频信号具有第一透过率;所述耦合结构承载于所述介质基板,并至少覆盖所述介质基板的部分区域,所述耦合结构包括一层或多层耦合元件阵列层,所述耦合元件阵列层具有在所述预设双频段下的谐振特性;所述壳体组件在所述耦合结构对应的区域内,对所述预设双频段的射频信号具有第二透过率,所述第二透过率大于所述第一透过率。

Description

壳体组件、天线组件及电子设备
本申请要求2019年6月30日递交的发明名称为“壳体组件、天线组件及电子设备”的申请号为201910588889.2在先申请优先权,上述在先申请的内容以引入的方式并入本文本中。
技术领域
本申请涉及电子设备领域,尤其涉及一种壳体组件、天线组件及电子设备。
背景技术
随着移动通信技术的发展,传统的第四代(4th-Generation,4G)移动通信已经不能够满足人们的要求。第五代(5th-Generation,5G)移动通信由于具有较高的通信速度,可而备受用户青睐。比如,利用5G移动通信传输数据时的传输速度比4G移动通信传输数据的速度快数百倍。毫米波信号是实现5G移动通信的主要手段,然而,当毫米波天线应用于电子设备时,毫米波天线通常设置于电子设备内部的收容空间中,毫米波信号天线透过电子设备而辐射出去的透过率较低,达不到天线辐射性能的要求。或者,外部的毫米波信号穿透电子设备的透过率较低。由此可见,现有技术中,5G毫米波信号的通信性能较差。
发明内容
本申请提供一种壳体组件、天线模组和电子设备,以解决传统的毫米波信号的通信性能差的技术问题。
第一方面,本申请提供了一种壳体组件,包括:
介质基板,所述介质基板对预设双频段的射频信号具有第一透过率;
耦合结构,所述耦合结构承载于所述介质基板,并至少覆盖所述介质基板的部分区域,所述耦合结构包括一层或多层耦合元件阵列层,所述耦合元件阵列层具有在所述预设双频段下的谐振特性;
所述壳体组件在所述耦合结构对应的区域内,对所述预设双频段的射频信号具有第二透过率,所述第二透过率大于所述第一透过率。
第二方面,本申请提供了一种天线组件,所述天线组件包括天线模组和所述的壳体组件,所述天线模组和所述壳体组件间隔设置,所述天线模组用于朝预设方向范围辐射预设双频段的射频信号,且所述壳体组件的至少部分位于所述辐射方向范围内。
第三方面,本申请提供了一种电子设备,所述电子设备包括所述的天线组件,所述介质基板包括所述电子设备的电池盖或者屏幕。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请第一实施方式提供的壳体组件的结构示意图。
图2为本申请第二实施方式提供的壳体组件的结构示意图。
图3为本申请第三实施方式提供的壳体组件的结构示意图。
图4为本申请第四实施方式提供的壳体组件的结构示意图。
图5为本申请第一实施方式提供的耦合结构的示意图。
图6为本申请第五实施方式提供的壳体组件的结构示意图。
图7为本申请第二实施方式提供的耦合结构的示意图。
图8为本申请第三实施方式提供的耦合结构的示意图。
图9为本申请第四实施方式提供的耦合结构剖面结构示意图。
图10为本申请第四实施方式中提供的耦合结构中第一耦合元件阵列层的结构示意图.
图11为本申请第四实施方式中提供的耦合结构中第二耦合元件阵列层的结构示意图。
图12为本申请第四实施方式提供的耦合结构的等效电路图。
图13为第一耦合件的尺寸与预设双频段的射频信号的波形示意图。
图14为第二耦合件的线宽与预设双频段的射频信号的波形示意图。
图15为耦合结构中耦合元件阵列层的周期与预设双频段的射频信号的波形示意图。
图16为本申请第五实施方式提供的耦合结构的层叠示意图。
图17为本申请第五实施方式中第一耦合阵列层中第一耦合件的结构示意图。
图18为本申请第五实施方式中第二耦合阵列层中第二耦合件的结构示意图。
图19为本申请第五实施方式提供的耦合结构在介质基板的投影示意图。
图20为本申请第六实施方式提供的耦合结构中耦合元件阵列层的结构示意图。
图21为本申请第七实施方式提供的耦合结构的结构示意图。
图22为本申请第八实施方式提供的耦合结构的结构示意图。
图23为自由空间、传统玻璃壳体、及本申请壳体组件对应的射频信号的驻波曲线示意图。
图24为1×4的天线模组在自由空间下的辐射方向示意图。
图25为1×4的天线模组在传统玻璃壳体下的辐射方向示意图。
图26为1×4的天线模组在本申请壳体组件下的辐射方向示意图。
图27为本申请第七实施方式提供的耦合结构中的第一耦合元件阵列层的示意图。
图28为本申请第八实施方式提供的耦合结构中第一耦合元件阵列层的结构示意图。
图29为本申请第九实施方式提供的耦合结构中第一耦合元件阵列层的结构示意图。
图30为本申请第十实施方式提供的耦合结构中第一耦合元件阵列层的结构示意图。
图31为本申请第一实施方式提供的天线组件的结构示意图。
图32为本申请一实施方式中的天线模组的剖面结构示意图。
图33为本申请另一实施方式中的天线模组的剖面结构示意图。
图34为本申请一实施方式中为M×N射频天线阵列示意图。
图35为本申请一实施方式中的天线模组组成射频天线阵列时的封装结构示意图。
图36为本申请又一实施方式所示的天线模组的俯视图。
图37为本申请第一实施方式提供的电子设备的结构示意图。
图38为本申请第二实施方式提供的电子设备的结构示意图。
图39为本申请第三实施方式提供的电子设备的结构示意图。
图40为本申请第四实施方式提供的电子设备的结构示意图。
具体实施方式
第一方面,本申请提供一种壳体组件,包括:
介质基板,所述介质基板对预设双频段的射频信号具有第一透过率;
耦合结构,所述耦合结构承载于所述介质基板,并至少覆盖所述介质基板的部分区域,所述耦合结构包括一层或多层耦合元件阵列层,所述耦合元件阵列层具有在所述预设双频段下的谐振特性;
所述壳体组件在所述耦合结构对应的区域内,对所述预设双频段的射频信号具有第二透过率,所述第二透过率大于所述第一透过率。
在第一方面的第一种实施方式中,所述耦合结构还具有所述预设双频段下的双极化特性。
在第一方面的第二种实施方式中,所述耦合结构包括依次层叠设置的第一耦合元件阵列层、第二耦合元件阵列层、及第三耦合元件阵列层,所述第一耦合元件阵列层包括阵列排布的第一耦合件,所述第二耦合元件阵列层包括阵列排布的第二耦合件,所述第一耦合件在所述介质基板上的正投影与所述第二耦合件在所述介质基板上的正投影不重叠。
结合第一方面的第二种实施方式,在第三种实施方式中,所述第二耦合件包括耦合主体及自所述耦合主体的各个边凸出延伸的多个耦合部,所述耦合部间隔设置以形成间隙,所述第一耦合件对应所述间隙设置。
结合第一方面的第二种实施方式,在第四种实施方式中,至少一对第一耦合件在所述基板上的正投影关于其中一个第二耦合件在所述基板上的正投影对称。
在第五种实施方式中,所述耦合元件阵列层包括多条沿第一方向间隔排布的导电线路及多条沿第二方向间隔排布的导电线路,且所述沿第一方向间隔排布的导电线路与所述沿第二方向间隔排布的导电线路相互交叉设置,并共同形成多个阵列排布的网格结构。
在第六种实施方式中,所述耦合元件阵列层包括多个阵列设置的网格结构,每一个所述网格结构由至少一条导电线路围成,相邻的两个所述网格结构至少复用部分所述导电线路。
结合第五种实施方式或者第六种实施方式中,在第七种实施方式中,所述预设双频段包括第一预设频段及第二预设频段,所述第一预设频段随着所述导电线路宽度的增大而往高频偏移,所述第二预设频段随着所述导电线路宽度的增大而往低频偏移,其中,所述第一预设频段的频率小于第二预设频段的频率。
在第八种实施方式中,所述耦合结构包括阵列排布的贴片,所述贴片的边长越大,所述预设双频段向低频偏移。
在第九种实施方式中,所述预设双频段包括第一预设频段及第二预设频段,所述介质基片的厚度越大,所述预设双频段的中心频率往低频偏移,且带宽越小;所述介质基板的介电常数越大,所述预设双平底的中心频率往低频偏移,且带宽减小;所述耦合元件阵列层的周期越大,所述第一预设频段向低频偏移,所述第二预设频段向高频偏移,其中,所述第一预设频段的频率小于第二预设频段的频率。
在第二方面,本申请提供一种天线组件,所述天线组件包括天线模组和第一方面或第一方面第一种实施方式至第一方面第九种实施方式中的任意一种实施方式所述的壳体组件,所述天线模组和所述壳体组件间隔设置,所述天线模组用于朝预设方向范围辐射预设双频段的射频信号,且所述壳体组件的至少部分位于所述辐射方向范围内。
在第一种实施方式中,所述天线模组包括射频芯片、绝缘基板及一个或多个第一天线辐射体,所述射频芯片相较于所述一个或多个第一天线辐射体背离所述耦合结构设置,所述绝缘基板用于承载所述一个或多个第一天线辐射体,所述第一天线辐射体具有一个或多个馈电点,所述馈电点用于接收来自射频芯片的激励信号,以产生预设双频段的射频信号。
结合第二方面第一种实施方式,在第二种实施方式中,所述绝缘基板包括相背的第一表面和第二表面,所述一个或多个第一天线辐射体设置于所述第一表面,所述射频芯片设置于所述第二表面,所述天线模组还包括第二天线辐射体,所述第二天线辐射体内嵌在所述电路板内,所述第二天线辐射体与所述第一天线辐射体间隔设置,且所述第二天线辐射体及所述第一天线辐射体通过耦合作用而形成叠层天线。
结合第二方面第一种实施方式,在第三种实施方式中,所述第一天线辐射体仅具有一个馈电点,当所述馈电点接收所述射频芯片产生的第一激励信号时,所述第一天线辐射体产生第一频段的射频信号;当所述馈电点接收所述射频芯片产生的第二激励信号时,所述第一天线辐射体产生第二频段的射频信号,其中,所述第一频段的不同于所述第二频段。
结合第二方面第一种实施方式,在第四种实施方式中,所述第一天线辐射体具有第一馈电点及第二馈电点,所述第一馈电点用于接收所述射频芯片产生的第一激励信号,所述第一天线辐射体根据所述第一激励信号产生第一频段的第一射频信号;所述第二馈电点用于接收所述射频芯片产生的第二激励信号,所述第一天线辐射体根据所述第二激励信号产生第二频段的第二射频信号,其中,所述第一频段的不同于所述第二频段。
结合第二方面第四种实施方式,在第五种实施方式中,所述第一射频信号具有第一极化方向,所述第二射频信号具有第二极化方向,所述第一极化方向与所述第二极化方向不同。
结合第二方面第一种实施方式,在第六种实施方式中,所述绝缘基板还包括多个金属化过孔栅格,所述金属化过孔栅格围绕每一个所述第一天线辐射体设置,用于提升相邻的两个所述第一天线辐射体之间的隔离度。
第三方面,本申请提供一种电子设备,所述电子设备包括第二方面、或者第二方面第一种实施方式至第六种实施方式中的任意一种实施方式所述的天线组件,所述介质基板包括所述电子设备的电池盖或者屏幕。
在第三方面的第一种实施方式中,当所述介质基板包括所述电子设备的电池盖时,所述电池盖包括背板及自所述背板周缘弯折延伸的边框,耦合结构对应所述边框设置,或者,耦合结构对应所述背板设置。
在第三方面的第二种实施方式中,当所述介质基板包括所述电子设备的屏幕时,所述屏幕包括屏幕主体及自所述屏幕主体周缘弯曲延伸的延伸部,所述耦合结构对应所述屏幕主体设置,或者,所述耦合结构对应所述延伸部设置。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参阅1,图1为本申请第一实施方式提供的壳体组件的结构示意图。所述壳体组件100包括介质基板110和耦合结构120。所述介质基板110对预设双频段的射频信号具有第一透过率。所述耦合结构120承载于所述介质基板110,并至少覆盖所述介质基板110的部分区域,所述耦合结构120包括一层或多层耦合元件阵列层120a,所述耦合元件阵列层120a具有在所述预设双频段下的谐振特性。所述壳体组件100在所述耦合结构120对应的区域内,对所述预设双频段的射频信号具有第二透过率,所述第二透过率大于所述第一透过率。
在本实施方式的示意图中以所述耦合结构120覆盖于所述介质基板110的全部区域为例进行示意。所述预设双频段的射频信号可以为但不仅限于为毫米波频段的射频信号或者太赫兹频段的射频信号。目前,在第五代移动通信技术(5th generation wireless systems,5G)中,根据3GPP TS 38.101协议的规定,5G新空口(new radio,NR)主要使用两段频率:FR1频段和FR2频段。其中,FR1频段的频率范围是450MHz~6GHz,又叫sub-6GHz频段;FR2频段的频率范围是24.25GHz~52.6GHz,属于毫米波(mm Wave)频段。3GPP Release 15版本规范了目前5G毫米波频段包括:n257(26.5~29.5GHz),n258(24.25~27.5GHz),n261(27.5~28.35GHz)和n260(37~40GHz)。
所述耦合结构120可以具有双频双极化、特性。相应地,所述耦合结构120具有双频谐振响应。所述耦合结构120的材质可以为金属材质,也可以为非金属导电材质。
一方面,所述介质基板110上的耦合结构120被所述预设频段的射频信号的激励,所述耦合结构120根据所述预设频段的射频信号产生与所述预设频段同频段的射频信号,且穿透所述介质基板110并辐射至自由空间中。由于所述耦合结构120被激励且产生与所述预设频段同频段的射频信号,因此,透过所述介质基板110并辐射至自由空间中的预设频段的射频信号的量增加。
另一方面,所述壳体组件100包括了耦合结构120及介质基板110,因此,所述壳体组件100的介电常数可以等效为预设材料的介电常数,而所述预设材料的介电常数对所述预设频段的射频信号的透过率较高,且所述预设材料的等效波阻抗等于或者近似等于自由空间的等效波阻抗。
进一步地,所述耦合结构还具有所述预设双频段下的双极化特性。具体地,所述耦合结构不但可 使得预设双频段的射频信号的透过率增加,也可使得两个不同极化方向的射频信号的透过率增加。
本申请提供的壳体组件100通过将所述耦合结构120承载于所述介质基板110上,通过所述耦合结构120的作用使得壳体组件100对预设双频段的射频信号的透过率提升,当所述壳体组件100应用于电子设备中时,可降低所述壳体组件100对设置于所述壳体组件100内部的天线模组的辐射性能的影响,且可以提升所述所述电子设备进行通信时的带宽,从而提升所述电子设备的通信性能。
请参阅图2,图2为本申请第二实施方式提供的壳体组件的结构示意图。所述壳体组件100包括介质基板110及耦合结构120。所述介质基板110对预设双频段的射频信号具有第一透过率;所述耦合结构120承载于所述介质基板110,并至少覆盖所述介质基板110的部分区域;所述壳体组件100在所述耦合结构120对应的区域内,对所述预设双频段的射频信号具有第二透过率,所述第二透过率大于所述第一透过率。进一步地,所述介质基板110包括相背设置的第一表面110a及第二表面110b。在本实施方式中,所述耦合结构120设置于所述第二表面110b。当所述壳体组件100应用于电子设备中时,所述电子设备还包括天线模组200,所述第一表面110a相较于所述第二表面110b背离所述天线模组200设置。
请参阅3,图3为本申请第三实施方式提供的壳体组件的结构示意图。所述壳体组件100包括介质基板110及耦合结构120。所述介质基板110对预设双频段的射频信号具有第一透过率;所述耦合结构120承载于所述介质基板110,并至少覆盖所述介质基板110的部分区域;所述壳体组件100在所述耦合结构120对应的区域内,对所述预设双频段的射频信号具有第二透过率,所述第二透过率大于所述第一透过率。在本实施方式中,所述耦合结构120内嵌于所述介质基板110内。当所述壳体组件100应用于电子设备1中时,所述电子设备1还包括天线模组200,所述第一表面110a相较于所述第二表面110b背离所述天线模组200设置。
请参阅图4,图4为本申请第四实施方式提供的壳体组件的结构示意图。所述壳体组件100包括介质基板110及耦合结构120。所述介质基板110对预设双频段的射频信号具有第一透过率;所述耦合结构120承载于所述介质基板110,并至少覆盖所述介质基板110的部分区域;所述壳体组件100在所述耦合结构120对应的区域内,对所述预设双频段的射频信号具有第二透过率,所述第二透过率大于所述第一透过率。进一步地,所述耦合结构120贴附于承载膜130上,所述承载膜130贴合在所述介质基板110上。当所述耦合结构120贴附于所述承载膜130上时,所述承载膜130可以为但不仅限于为塑料(Polyethylene terephthalate,PET)薄膜、柔性电路板、印刷电路板等。所述PET薄膜可以为但不仅限于为彩色膜、防爆膜等。进一步地,所述介质基板110包括相对的第一表面110a及第二表面110b,所述第一表面110a相较于所述第二表面110b背离所述天线模组200设置。在图4中以所述耦合结构120通过所述承载膜130贴合于所述第二表面110b上为例进行示意,可以理解地,在其他实施方式中,所述耦合结构120也可通过所述承载膜130贴合于所述第一表面110a上。
进一步地,请参阅图5,图5为本申请第一实施方式提供的耦合结构的示意图。所述耦合结构120包括一层或者多层耦合元件阵列层120a,当所述耦合结构120包括多层耦合元件阵列层120a时,所述多层耦合元件阵列层120a在预设方向上层叠且间隔设置。当所述耦合结构120包括多层耦合元件阵列层120a时,相邻的两层耦合元件阵列层120a之间设置有介质层110c,所有的介质层110c构成所述介质基板110。在本实施方式的示意图中以所述耦合结构120包括三层耦合元件阵列层120a,两层介质层110c为例进行示意。
请一并参阅图6,图6为本申请第五实施方式提供的壳体组件的结构示意图。所述介质基板110包括相对设置的第一表面110a及第二表面110b,部分所述耦合结构120设置于所述第一表面110a,剩余的所述耦合结构120内嵌于所述介质基板110。当所述壳体组件100应用于电子设备中时,所述电子设备还包括天线模组200,所述第一表面110a相较于所述第二表面110b背离所述天线模组200设置。
结合前述任意实施方式提供的壳体组件100,所述耦合结构120为金属材质,或者非金属导电材质。
结合前述任意实施方式提供的壳体组件100,所述介质基板110的材料为塑料、玻璃、蓝宝石、 陶瓷的至少一种或者多种组合。
请参阅图7,图7为本申请第二实施方式提供的耦合结构的示意图。所述耦合结构120可结合到前述任意实施方式提供的壳体组件100中所述耦合结构120包括多个谐振单元120b,所述谐振单元120b周期性排布。
请参阅图8,图8为本申请第三实施方式提供的耦合结构的示意图。所述耦合结构120可结合到前述任意实施方式提供的壳体组件100中,所述耦合结构120包括多个谐振单元120b,所述谐振单元120b非周期性排布。
请一并参阅图9、图10及图11,图9为本申请第四实施方式提供的耦合结构剖面结构示意图;图10为本申请第四实施方式中提供的耦合结构中第一耦合元件阵列层的结构示意图;图11为本申请第四实施方式中提供的耦合结构中第二耦合元件阵列层的结构示意图。所述耦合结构120可以结合到前述任意实施方式提供的壳体组件100中。所述耦合结构120包括间隔设置的第一耦合元件阵列层121、第二耦合元件阵列层122、及第三耦合元件阵列层123,所述介质基板110包括第一介质层111及第二介质层112,所述第一耦合元件阵列层121、所述第一介质层111、所述第二耦合元件阵列层122、所述第二介质层112、及所述第三耦合元件阵列层123依次层叠设置。所述第一耦合元件阵列层121包括阵列排布的多个第一耦合件1211,所述第一耦合件1221为贴片,所述第二耦合元件阵列层122包括阵列排布的第二耦合件1221,所述第二耦合件1221为网格结构,所述第三耦合元件阵列层123包括阵列排布的多个第三耦合件1231,所述第三耦合件1231为贴片。在本实施方式中,一个网格结构对应四个第一耦合件1211,且一个网格结构对应四个第三耦合件1231,并作为耦合结构120的一个周期。
请一并参阅图12,图12为本申请第四实施方式提供的耦合结构的等效电路图。在此等效电路图中忽略了对预设频段影响较小的因素,比如,第一耦合元件阵列层121层的电感量,所述第三耦合元件阵列层123的电感量,以及第二耦合元件阵列层122的电容量。其中,第一耦合元件阵列层121等效为电容C1,第二耦合元件阵列层122等效为电容C2,所述第一耦合元件阵列层121与所述第二耦合元件阵列层122的耦合电容等效为电容C3,第三耦合元件阵列层123等效为电感L。另外Z0表示自由空间的阻抗,Z1表示介质基板110的阻抗,其中,Z1=Z0/(Dk)1/2,那么,所述预设频段的中心频率f0为:f0=1/[2π/(LC)1/2],带宽Δf/f0正比于(L/C)1/2。
所述第一耦合件1221或第三耦合件1231的尺寸越大,等效为增大等效电路的电容,从而导致所述预设频段的射频信号的往低频偏移。请一并参阅图图13,图13为第一耦合件的尺寸与预设双频段的射频信号的波形示意图。在本示意图中,横轴为频率,单位为GHz,纵轴为增益,单位为dB。其中,曲线①为第一耦合件1221的边长L1=0.5mm时的波形曲线,曲线②为第一耦合件1221的尺寸L1=0.51mm时的波形曲线,曲线③为第一耦合件1221的尺寸L1=0.52mm时的波形曲线,曲线④为第一耦合件1221的尺寸L1=0.55mm时的波形曲线。
请一并参阅图14,图14为第二耦合件的线宽与预设双频段的射频信号的波形示意图。所述预设双频段包括第一预设频段及第二预设频段,所述第一预设频段随着所述导电线路宽度的增大而往高频偏移,所述第二预设频段随着所述导电线路宽度的增大而往低频偏移,其中,所述第一预设频段的频率小于第二预设频段的频率。在本示意图中,横轴为频率,单位为GHz,纵轴为增益,单位为dB。其中,曲线①为导电线路的线宽W1=0.15mm时的波形曲线,曲线②为导电线路的线宽W1=0.20mm时的波形曲线,曲线③为导电线路的线宽W1=0.25mm时的波形曲线。所述述预设双频段包括第一预设频段及第二预设频段,由此可见,所述第一预设频段随着所述导电线路宽度的增大而往高频偏移,所述第二预设频段随着所述导电线路宽度的增大而往低频偏移,其中,所述第一预设频段的频率小于第二预设频段的频率。且由本示意图中可见,所述导电线路的线宽对第一预设频段的射频信号的峰值影响比对第二预设频段的射频信号的峰值影响小。
进一步地,请一并参阅图15,图15为耦合结构中耦合元件阵列层的周期与预设双频段的射频信号的波形示意图。在本示意图中,横轴为频率,单位为GHz,纵轴为增益,单位为dB。其中,曲线①为周期P=2mm时的波形曲线,曲线②为周期P=2.1mm时的波形曲线。周期P越大,等效电路中的 电容越小,则,所述第一预设频段向低频偏移,所述第二预设频段向高频偏移,其中,所述第一频段小于所述第二预设频段。
进一步地,所述预设双频段包括第一预设频段及第二预设频段,所述介质基片的厚度越大,所述预设双频段的中心频率往低频偏移,且带宽越小;所述介质基板的介电常数越大,所述预设双平底的中心频率往低频偏移,且带宽减小;所述耦合元件阵列层的周期越大,所述第一预设频段向低频偏移,所述第二预设频段向高频偏移,其中,所述第一预设频段的频率小于第二预设频段的频率。
请一并参阅图16、图17、图18及图19,图16为本申请第五实施方式提供的耦合结构的层叠示意图;图17为本申请第五实施方式中第一耦合阵列层中第一耦合件的结构示意图;图18为本申请第五实施方式中第二耦合阵列层中第二耦合件的结构示意图;图19为本申请第五实施方式提供的耦合结构在介质基板的投影示意图。在本实施方式中,所述耦合结构120包括依次层叠设置的第一耦合元件阵列层121、第二耦合元件阵列层122、及第三耦合元件阵列层123。所述第一耦合元件阵列层121包括阵列排布的第一耦合件1211,所述第二耦合元件阵列层122包括阵列排布的第二耦合件1221,所述第一耦合件1211在所述介质基板110上的正投影与所述第二耦合件1221在所述介质基板110上的正投影不重叠。第一耦合元件阵列层121与第二耦合元件阵列层122之间设置有第一介质层111,所述第二耦合元件阵列层122与所述第三耦合元件阵列层123之间设置有第二介质层112。
进一步地,所述第二耦合件包括耦合主体1223及自所述耦合主体1223的各个边凸出延伸的多个耦合部1224,所述耦合部1224间隔设置以形成间隙,所述第一耦合件1211对应所述间隙设置。
进一步地,至少一对第一耦合件1221在所述介质基板110上的正投影关于其中一个第二耦合件1222在所述介质基板110上的正投影对称。
请参阅图20,图20为本申请第六实施方式提供的耦合结构中耦合元件阵列层的结构示意图。在本实施方式中,所述耦合元件阵列层120a包括多条沿第一方向间隔排布的导电线路151及多条沿第二方向间隔排布的导电线路161,且所述沿第一方向间隔排布的导电线路151与所述沿第二方向间隔排布的导电线路161相互交叉设置,并共同形成多个阵列排布的网格结构。具体地,沿第一方向间隔排布的两个导电线路151与沿所述第二方向间隔排布的两个导电线路161交叉形成一个所述网格结构。可以理解地,在一实施方式中,所述第一方向垂直于所述第二方向。在其他实施方式中,所述第一方向不垂直于所述第二方向。可以理解地,在第一方向间隔排布的多个导电线路151中,相邻的两个导电线路151之间的间距可以相同,也可以不相同。相应地,在第二方向间隔排布的多个导电线路151中,相邻的两个导电线路151之间的间距可以相同,也可以不相同。相邻的两个导电线路151之间的间距与相邻的两个导电线路151之间的间距可以相同也可以不相同。在图中,以所述第一方向垂直于所述第二方向且相邻的两个导电线路151之间的间距等于相邻的两个导电线路161之间的间距为例进行示意。
进一步地,所述预设双频段包括第一预设频段及第二预设频段,所述第一预设频段随着所述导电线路宽度的增大而往高频偏移,所述第二预设频段随着所述导电线路宽度的增大而往低频偏移,其中,所述第一预设频段的频率小于第二预设频段的频率。
请参阅图21,图21为本申请第七实施方式提供的耦合结构的结构示意图。所述耦合元件阵列层120a包括多个阵列设置的网格结构。每一个所述网格结构由至少一个导电线路151围成,相邻的两个所述网格结构至少复用部分所述导电线路151。
进一步地,所述预设双频段包括第一预设频段及第二预设频段,所述第一预设频段随着所述导电线路宽度的增大而往高频偏移,所述第二预设频段随着所述导电线路宽度的增大而往低频偏移,其中,所述第一预设频段的频率小于第二预设频段的频率。
具体地,所述网格结构的形状可以为但不仅限于为圆形、矩形、三角形、多边形、椭圆形中的任意一种,其中,当所述网格结构的形状为多边形时,所述网格结构的边的个数为大于3的正整数。在本实施方式的示意图中以所述网格结构的形状为三角形为例进行示意。
请参阅图22,图22为本申请第八实施方式提供的耦合结构的结构示意图。在本实施方式的示意图中以所述网格结构的形状为正六边形为例进行示意。
请参阅图23,图23为自由空间、传统玻璃壳体、及本申请壳体组件对应的射频信号的驻波曲线示意图。在本示意图中,对比的是2×2的天线模组产生所述射频信号在自由空间、传统壳体、本申请的壳体组件下的性能。其中,曲线①为自由空间对应的射频信号的驻波曲线示意图,曲线②为传统壳体(材质为玻璃)对应的射频信号的驻波曲线示意图,曲线③为本申请的壳体组件对应的射频信号的驻波曲线示意图。由此可见,本申请的射频信号的驻波曲线和自由空间的驻波曲线基本一致,比传统壳体的驻波曲线有较为明显的改善。
请参阅图24,图24为1×4的天线模组在自由空间下的辐射方向示意图。由本示意图可见,天线模组在28GHz的增益为10.4dB,所述天线模组在39GHz的增益为12.2dB。
请参阅图25,图25为1×4的天线模组在传统玻璃壳体下的辐射方向示意图。由本示意图可见,天线模组在28GHz的增益为6.82dB,所述天线模组在39GHz的增益为7.29dB。由此可见,在传统玻璃壳体下天线模组的增益相较于在自由空间下时的增益下降。
图26为1×4的天线模组在本申请壳体组件下的辐射方向示意图。由本示意图可见,天线模组在28GHz的增益为9.56dB,所述天线模组在39GHz的增益为10.4dB。由此可见,在本申请的壳体组件下天线模组的增益和自由空间下时的增益基本相同。
请参阅图27,图27为本申请第七实施方式提供的耦合结构中的第一耦合元件阵列层的示意图。本实施方式提供的耦合结构120与第四实施方式提供的耦合结构120基本相同,不同之处在于,在第四实施方式中,第一耦合件1211为矩形贴片,在本实施方式中,所述第一耦合元件阵列层121包括阵列排布的多个第一耦合件1211,所述第一耦合件1211为圆形。可选地,圆形的所述第一耦合件1211的直径D的范围为0.5~0.8mm。
在本实施方式中,所述第三耦合元件阵列层123包括阵列排布的多个第三耦合件1231,所述第三耦合件1231为圆形。可选地,所述圆形的所述第三耦合件1231的直径D的范围为0.5~0.8mm。可以理解地,所述第三耦合元件阵列层123的结构可与所述第一耦合元件阵列层121的结构相同。
请参阅图28,图28为本申请第八实施方式提供的耦合结构中第一耦合元件阵列层的结构示意图。本实施方式提供的耦合结构120与第四实施方式提供的耦合结构120基本相同,不同之处在于,在第四实施方式中,所述第一耦合件1211为矩形贴片,在本实施方式中,所述第一耦合元件阵列层121包括阵列排布的多个第一耦合件1211,所述第一耦合件1211为圆环形。当所述第一耦合件1211的材质为金属时,所述第一耦合件1211为圆环形从而可以提升所述耦合结构120的透明度。所述圆环形的第一耦合件1211的尺寸的直径Do通常为0.5~0.8mm,圆环形的所述第一耦合件1211的内径Di,通常而言,Do-Di的值越小,所述耦合结构120的透明度越高,但是插入损耗越大。为了兼顾所述耦合结构120的透明度及插入损耗,所述Do-Di的取值通常为:Do-Di≥0.5mm。可以理解地,所述第三耦合元件阵列层123的结构可与所述第一耦合元件阵列层121的结构相同。
请参阅图29,图29为本申请第九实施方式提供的耦合结构中第一耦合元件阵列层的结构示意图。本实施方式提供的耦合结构120与第四实施方式提供的耦合结构120基本相同,不同之处在于,在第四实施方式中,所述第一耦合件1211为矩形贴片,在本实施方式中,所述第一耦合元件阵列层121包括阵列排布的多个第一耦合件1211,所述第一耦合件1211为正方形环状贴片。所述正方形的第一耦合件1211的边长为Lo通常为0.5~0.8mm,正方形环状贴片的内变成为Li,通常而言,Lo-Li的值越小,透明度越高,但是插入损耗越大。为了兼顾所述耦合结构120的透明度及插入损耗,所述Do-Di的取值通常为:Lo-Li≥0.5mm。可以理解地,所述第三耦合元件阵列层123的结构可与所述第一耦合元件阵列层121的结构相同。
请参阅图30,图30为本申请第十实施方式提供的耦合结构中第一耦合元件阵列层的结构示意图。本实施方式提供的耦合结构120包括阵列排布的多个第一耦合件1211,每个第一耦合件1211均为正方形的金属网格贴片(mesh grid)。具体地,所述第一耦合件1211包括多个第一分支1212以及多个第二分支1213,所述多个第一分支1212间隔排布,所述多个第二分支1213间隔排布,且所述第二分支1213与所述第一分支1212交叉设置且连接。可选地,所述第一分支1212沿着第一方向延伸且所述多个第一分支1212沿所述第二方向间隔排布。可选地,所述第二分支1213与所述第一分支1212垂直 交叉。可选地,所述第一耦合件1211的边长为:0.5~0.8mm。
本申请还提供了一种天线组件,请参阅图31,图31为本申请第一实施方式提供的天线组件的结构示意图。所述天线组件10包括天线模组200和壳体组件100,所述天线模组200和所述壳体组件100间隔设置,所述天线模组200用于朝预设方向范围辐射预设双频段的射频信号,且所述壳体组件100的至少部分位于所述辐射方向范围内。所述壳体组件100请参阅前面相应描述,在此不再赘述。
请参阅图32,图32为本申请一实施方式中的天线模组的剖面结构示意图。所述天线模组200包括射频芯片230、绝缘基板240、及一个或多个第一天线辐射体250。所述射频芯片230用于产生激励信号。所述射频芯片230相较于所述一个或多个第一天线辐射体250背离所述耦合结构120设置,所述绝缘基板240用于承载所述一个或多个第一天线辐射体250,所述第一天线辐射体250具有一个或多个馈电点251,所述馈电点251用于接收来自所述射频芯片230的激励信号,以产生预设双频段的射频信号。
进一步地,所述射频芯片230通过内嵌于所述绝缘基板240中的传输线与所述一个或多个第一天线辐射体250电连接。具体地,所述绝缘基板240包括相背的上表面240a和下表面240a,所述绝缘基板240用于承载所述一个或多个第一天线辐射体250包括:所述绝缘基板240设置在所述上表面240a,或者,所述一个或多个第一天线辐射体250内嵌于所述绝缘基板240内。在本实施方式的示意图中以所述一个或多个第一天线辐射体250设置于所述上表面240a,所述射频芯片230设置于所述下表面240a为例进行示意。所述射频芯片230产生的所述激励信号通过内嵌于所述绝缘基板240中的传输线传输与所述一个或多个第一天线辐射体250电连接。所述射频芯片230可焊接在所述绝缘基板240上,以将所述激励信号经由内嵌于绝缘基板240中的传输线传输至第一天线辐射体250。所述第一天线辐射体250接收所述激励信号,并根据所述激励信号产生射频信号。所述第一天线辐射体250可以为但不仅限于为贴片天线。
进一步地,所述射频芯片230相较于所述第一天线辐射体250背离所述耦合结构120,且所述射频芯片230输出所述激励信号的输出端位于所述绝缘基板240背离所述耦合结构120的一侧。即,所述射频芯片230邻近所述绝缘基板240的下表面240a而远离所述绝缘基板240的上表面240a设置。
进一步地,每一个所述第一天线辐射体250包括至少一个馈电点251,每一个所述馈电点251均通过所述传输线与所述射频芯片230电连接,每一个所述馈电点251与所述馈电点251对应的第一天线辐射体250的中心之间的距离大于预设距离。调整所述馈电点251的位置可以改变所述第一天线辐射体250的输入阻抗,本实施方式中通过设置每一个所述馈电点251与对应的第一天线辐射体250的中心之间的距离大于预设距离,从而调整所述第一天线辐射体250的输入阻抗。调整所述第一天线辐射体250的输入阻抗以使得所述第一天线辐射体250的输入阻抗与所述射频芯片230的输出阻抗匹配,当所述第一天线辐射体250与所述射频芯片230的输出阻抗匹配时,所述射频信号产生的激励信号的反射量最小。
请参阅图33,图33为本申请另一实施方式中的天线模组的剖面结构示意图。本实施方式提供的天线模组200与第一实施方式中的天线模组200描述中提供的天线模组200基本相同。不同之处在于,在本实施方式中,所述天线模组200还包括第二天线辐射体260。即,在本实施方式中,所述天线模组200包括射频芯片230、绝缘基板240、一个或多个第一天线辐射体250、及第二天线辐射体260。所述射频芯片230用于产生激励信号。所述绝缘基板240包括相背设置的上表面240a和下表面240a,所述一个或多个第一天线辐射体250设置于所述上表面240a,所述射频芯片230设置于所述下表面240a。所述射频芯片230产生的所述激励信号经由内嵌于所述绝缘基板240中的传输线与所述一个或多个第一天线辐射体250电连接。所述射频芯片230可焊接在所述绝缘基板240上,以将所述激励信号经由内嵌于绝缘基板240中的传输线传输至第一天线辐射体250。所述第一天线辐射体250接收所述激励信号,并根据所述激励信号产生射频信号。
进一步地,所述射频芯片230相较于所述第一天线辐射体250背离所述耦合结构120,且所述射频芯片230输出所述激励信号的的输出端位于所述绝缘基板240背离所述耦合结构120的一侧。
进一步地,每一个所述第一天线辐射体250包括至少一个馈电点251,每一个所述馈电点251均 通过所述传输线与所述射频芯片230电连接,每一个所述馈电点251与所述馈电点251对应的第一天线辐射体250的中心之间的距离大于预设距离。在图中以所述第一天线辐射体250包括两个馈电点251为例进行示意。
在本实施方式中,所述第二天线辐射体260内嵌在所述绝缘基板240内,所述第二天线辐射体260与所述第一天线辐射体250间隔设置,且所述第二天线辐射体260及所述第一天线辐射体250通过耦合作用而形成叠层天线。当所述第二天线辐射体260与所述第一天线辐射体250通过耦合作用而形成叠层天线时,所述第一天线辐射体250与所述射频芯片230电连接且所述第二天线辐射体260未与所述射频芯片230电连接,第二天线辐射体260耦合所述第一天线辐射体250辐射的毫米波信号,并且所述第二天线辐射体260根据耦合到的所述第一天线辐射体250辐射的毫米波信号而产生新的毫米波信号。
具体地,下面以所述天线模组200采用高密度互联工艺制备而成为例进行说明。所述绝缘基板240包括核心层241、以及多个层叠设置在所述核心层241相对两侧的布线层242。所述核心层241为绝缘层,各个布线层242之间通常设置绝缘层243。位于所述核心层241邻近所述耦合结构120一侧且距离所述核心层241最远的布线层242的外表面构成所述绝缘基板240的上表面240a。位于在所述核心层241背离所述耦合结构120一侧且距离所述核心层241最远的布线层242的外表面构成所述绝缘基板240的下表面240a。所述第一天线辐射体250设置于所述上表面240a。所述第二天线辐射体260内嵌在所述绝缘基板240内,即,所述第二天线辐射体260可设置在其他的用于布局天线辐射体的布线层242上,且所述第二天线辐射体260未设置在所述绝缘基板240的表面。
在本实施方式中,以所述绝缘基板240为8层结构为例进行示意,可以理解地,在其他实施方式中,所述绝缘基板240也可以为其他层数。所述绝缘基板240包括核心层241以及第一布线层TM1、第二布线层TM2、第三布线层TM3、第四布线层TM4、第五布线层TM5、第六布线层TM6、第七布线层TM7、及第八布线层TM8。所述第一布线层TM1、所述第二布线层TM2、所述第三布线层TM3、及所述第四布线层TM4依次层叠设置在所述核心层241的同一表面,且所述第一布线层TM1相对于所述第四布线层TM4背离所述核心层241设置,所述第一布线层TM1背离所述核心层241的表面为所述绝缘基板240的上表面240a。所述第五布线层TM5、所述第六布线层TM6、所述第七布线层TM7、及所述第八布线层TM8依次层叠在所述核心层241的同一表面,且所述第八布线层TM8相对于所述第五布线层TM5背离所述核心层241设置,所述第八布线层TM8背离所述核心层241的表面为所述绝缘基板240的下表面240a。通常情况下,所述第一布线层TM1、所述第二布线层TM2、所述第三布线层TM3、及第四布线层TM4为可设置天线辐射体的布线层;所述第五布线层TM5为设置地极的地层;所述第六布线层TM6、所述第七布线层TM7、及所述第八布线层TM8为天线模组200中的馈电网络及控制线布线层。在本实施方式中,所述第一天线辐射体250设置在所述第一布线层TM1背离所述核心层241的表面,所述第二天线辐射体260设置在可设置在所述第三布线层TM3。在本实施例的示意图中以第一天线辐射体250设置在所述第一布线层TM1的表面、所述第二天线辐射体260设置在所述第三布线层TM3为例进行示意。可以理解地,在其他实施方式中,所述第一天线辐射体250可设置在所述第一布线层TM1背离所述核心层241的表面,所述第二天线辐射体260可设置在所述第二布线层TM2,或者所述第二天线辐射体260可设置在所述第四布线层TM4。
进一步地,所述绝缘基板240中的第一布线层TM1、第二布线层TM2、第三布线层TM3、第四布线层TM4、所述第六布线层TM6、所述第七布线层TM7、及所述第八布线层TM8均电连接至所述第五布线层TM5中的地层。具体地,所述绝缘基板240中的第一布线层TM1、第二布线层TM2、第三布线层TM3、第四布线层TM4、所述第六布线层TM6、所述第七布线层TM7、及所述第八布线层TM8均开设通孔,通孔里设置金属材料以电连接所述第五布线层TM5中的地层,以将各个布线层242中设置的器件接地。
进一步地,所述第七布线层TM7及所述第八布线层TM8还设置有电源线271、及控制线272,所述电源线271及所述控制线272分别与所述射频芯片230电连接。所述电源线271用于为所述射频芯片230提供所述射频芯片230所需要的电能,所述控制线272用于传输控制信号至所述射频芯片230, 以控制所述射频芯片230工作。
进一步地,请参阅图34,图34为本申请一实施方式中为M×N射频天线阵列示意图。所述电子设备1包括M×N个天线组件10构成的射频天线阵列,其中,M为正整数,N为正整数。在图中示意出来的是4×1个天线组件10构成的天线阵列。在在所述天线组件10中的所述天线模组200中,所述绝缘基板240还包括多个金属化过孔栅格244,所述金属化过孔栅格244围绕每一个所述第一天线辐射体250设置,以提升相邻的两个所述第一天线辐射体250之间的隔离度。请继续参阅图35,图35为本申请一实施方式中的天线模组组成射频天线阵列时的封装结构示意图。当所述金属化过孔栅格244用于在多个天线模组200形成射频天线阵列时,所述金属化过孔栅格244用于提升相邻天线模组200之间的隔离度,以减少甚至避免各个天线模组200产生的毫米波信号的干扰。
前面描述的天线模组200中以天线模组200为贴片天线、叠层天线为例进行描述,可以理解地,所述天线模组200还可以包括偶极子天线、磁电偶极子天线、准八木天线等。所述天线组件10可包括贴片天线、叠层天线、偶极子天线、磁电偶极子天线、准八木天线中的至少一种或者多种的组合。进一步地,所述M×N个天线组件10中的介质基板110可相互连接为一体结构。
所述第一天线辐射体具有第一馈电点251a及第二馈电点251b,所述第一馈电点251a用于接收所述射频芯片230产生的第一激励信号,所述第一天线辐射体250根据所述第一激励信号产生第一频段的第一射频信号;所述第二馈电点251b用于接收所述射频芯片230产生的第二激励信号,所述第一天线辐射体250根据所述第二激励信号产生第二频段的第二射频信号,其中,所述第一频段的不同于所述第二频段。
进一步地,所述第一射频信号具有第一极化方向,所述第二射频信号具有第二极化方向,所述第一极化方向与所述第二极化方向不同。
进一步地,请参阅图36,图36为本申请又一实施方式所示的天线模组的俯视图。在本实施方式的天线模组200中,所述第一天线辐射体250仅具有一个馈电点251,当所述馈电点251接收所述射频芯片230产生的第一激励信号时,所述第一天线辐射体250产生第一频段的射频信号;当所述馈电点251接收所述射频芯片250产生的第二激励信号时,所述第一天线辐射体产生第二频段的射频信号,其中,所述第一频段的不同于所述第二频段。此时,由于所述第一激励信号及所述第二激励信号均通过同一馈电点251馈入所述第一天线辐射体250,那么,所述第一频段的射频信号的极化方向与所述第二频段的极化方向相同。
本申请还提供了一种电子设备1,所述电子设备1包括但不仅限于智能手机、互联网设备(Mobile Internet Device,MID)、电子书、便携式播放站(Play Station Portable,PSP)或个人数字助理(Personal Digital Assistant,PDA)等具有通信功能的电子设备。
进一步地,请参阅图图37,图37为本申请第一实施方式提供的电子设备的结构示意图。所述电子设备1包括天线组件10,所述介质基板110包括所述电子设备1的电池盖30或者屏幕40。所述天线组件10请参阅前面描述,在此不再赘述。进一步地,所述电子设备1还包括主板,所述主板设置于所述天线模组200背离所述耦合结构120的一侧,所述主板设置地极,以抑制预设双频段的射频信号朝向所述主板的一侧辐射,以避免对所述主板背离所述耦合结构120一侧的元器件的影响。
在本实施方式中以所述所述介质基板110包括所述电子设备1的电池盖30为例进行示意。所述电池盖30包括背板310及自所述背板310周缘弯折延伸的边框320,耦合结构120对应所述边框320设置。
请参阅图38,图38为本申请第二实施方式提供的电子设备的结构示意图。在本实施方式提供的电子设备1与第一实施方式提供的电子设备1基本相同,不同之处在于,在本实施方式中,所述耦合结构120对应所述背板310设置。具体地,所述电池盖30包括背板310及自所述背板310周缘弯折延伸的边框320,所述耦合结构120对应所述背板310设置。
请参阅图39,图39为本申请第三实施方式提供的电子设备的结构示意图。在本实施方式中,所述介质基板110包括所述电子设备1的屏幕40,所述屏幕40包括屏幕主体410及自所述屏幕主体410周缘弯曲延伸的延伸部420,所述耦合结构120对应所述屏幕主体410设置。
请参阅图40,图40为本申请第四实施方式提供的电子设备的结构示意图。在本实施方式中,所述介质基板110包括所述电子设备1的屏幕40,所述屏幕40包括屏幕主体410及自所述屏幕主体410周缘弯曲延伸的延伸部420,所述耦合结构120对应所述延伸部420设置。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型,这些改进和润饰也视为本申请的保护范围。

Claims (20)

  1. 一种壳体组件,其特征在于,包括:
    介质基板,所述介质基板对预设双频段的射频信号具有第一透过率;
    耦合结构,所述耦合结构承载于所述介质基板,并至少覆盖所述介质基板的部分区域,所述耦合结构包括一层或多层耦合元件阵列层,所述耦合元件阵列层具有在所述预设双频段下的谐振特性;
    所述壳体组件在所述耦合结构对应的区域内,对所述预设双频段的射频信号具有第二透过率,所述第二透过率大于所述第一透过率。
  2. 如权利要求1所述的壳体组件,其特征在于,所述耦合结构还具有所述预设双频段下的双极化特性。
  3. 如权利要求1所述的壳体组件,其特征在于,所述耦合结构包括依次层叠设置的第一耦合元件阵列层、第二耦合元件阵列层、及第三耦合元件阵列层,所述第一耦合元件阵列层包括阵列排布的第一耦合件,所述第二耦合元件阵列层包括阵列排布的第二耦合件,所述第一耦合件在所述介质基板上的正投影与所述第二耦合件在所述介质基板上的正投影不重叠。
  4. 如权利要求3所述的壳体组件,其特征在于,所述第二耦合件包括耦合主体及自所述耦合主体的各个边凸出延伸的多个耦合部,所述耦合部间隔设置以形成间隙,所述第一耦合件对应所述间隙设置。
  5. 如权利要求3所述的壳体组件,其特征在于,至少一对第一耦合件在所述基板上的正投影关于其中一个第二耦合件在所述基板上的正投影对称。
  6. 如权利要求1所述的壳体组件,其特征在于,所述耦合元件阵列层包括多条沿第一方向间隔排布的导电线路及多条沿第二方向间隔排布的导电线路,且所述沿第一方向间隔排布的导电线路与所述沿第二方向间隔排布的导电线路相互交叉设置,并共同形成多个阵列排布的网格结构。
  7. 如权利要求1所述的壳体组件,其特征在于,所述耦合元件阵列层包括多个阵列设置的网格结构,每一个所述网格结构由至少一条导电线路围成,相邻的两个所述网格结构至少复用部分所述导电线路。
  8. 如权利要求6或7所述的壳体组件,其特征在于,所述预设双频段包括第一预设频段及第二预设频段,所述第一预设频段随着所述导电线路宽度的增大而往高频偏移,所述第二预设频段随着所述导电线路宽度的增大而往低频偏移,其中,所述第一预设频段的频率小于第二预设频段的频率。
  9. 如权利要求1所述的壳体组件,其特征在于,所述耦合结构包括阵列排布的贴片,所述贴片的边长越大,所述预设双频段向低频偏移。
  10. 如权利要求1所述的壳体组件,其特征在于,所述预设双频段包括第一预设频段及第二预设频段,所述介质基片的厚度越大,所述预设双频段的中心频率往低频偏移,且带宽越小;所述介质基板的介电常数越大,所述预设双平底的中心频率往低频偏移,且带宽减小;所述耦合元件阵列层的周期越大,所述第一预设频段向低频偏移,所述第二预设频段向高频偏移,其中,所述第一预设频段的频率小于第二预设频段的频率。
  11. 一种天线组件,其特征在于,所述天线组件包括天线模组和如权利要求1-10任意一项所述的壳体组件,所述天线模组和所述壳体组件间隔设置,所述天线模组用于朝预设方向范围辐射预设双频段的射频信号,且所述壳体组件的至少部分位于所述辐射方向范围内。
  12. 如权利要求11所述的天线组件,其特征在于,所述天线模组包括射频芯片、绝缘基板及一个或多个第一天线辐射体,所述射频芯片相较于所述一个或多个第一天线辐射体背离所述耦合结构设置,所述绝缘基板用于承载所述一个或多个第一天线辐射体,所述第一天线辐射体具有一个或多个馈电点,所述馈电点用于接收来自射频芯片的激励信号,以产生预设双频段的射频信号。
  13. 如权利要求12所述的天线组件,其特征在于,所述绝缘基板包括相背的第一表面和第二表面, 所述一个或多个第一天线辐射体设置于所述第一表面,所述射频芯片设置于所述第二表面,所述天线模组还包括第二天线辐射体,所述第二天线辐射体内嵌在所述电路板内,所述第二天线辐射体与所述第一天线辐射体间隔设置,且所述第二天线辐射体及所述第一天线辐射体通过耦合作用而形成叠层天线。
  14. 如权利要求12所述的天线组件,其特征在于,所述第一天线辐射体仅具有一个馈电点,当所述馈电点接收所述射频芯片产生的第一激励信号时,所述第一天线辐射体产生第一频段的射频信号;当所述馈电点接收所述射频芯片产生的第二激励信号时,所述第一天线辐射体产生第二频段的射频信号,其中,所述第一频段的不同于所述第二频段。
  15. 如权利要求12所述的天线组件,其特征在于,所述第一天线辐射体具有第一馈电点及第二馈电点,所述第一馈电点用于接收所述射频芯片产生的第一激励信号,所述第一天线辐射体根据所述第一激励信号产生第一频段的第一射频信号;所述第二馈电点用于接收所述射频芯片产生的第二激励信号,所述第一天线辐射体根据所述第二激励信号产生第二频段的第二射频信号,其中,所述第一频段的不同于所述第二频段。
  16. 如权利要求15所述的天线组件,其特征在于,所述第一射频信号具有第一极化方向,所述第二射频信号具有第二极化方向,所述第一极化方向与所述第二极化方向不同。
  17. 如权利要求12所述的天线组件,其特征在于,所述绝缘基板还包括多个金属化过孔栅格,所述金属化过孔栅格围绕每一个所述第一天线辐射体设置,用于提升相邻的两个所述第一天线辐射体之间的隔离度。
  18. 一种电子设备,其特征在于,所述电子设备包括如权利要求11至17任意一项所述的天线组件,所述介质基板包括所述电子设备的电池盖或者屏幕。
  19. 如权利要求18所述的电子设备,其特征在于,当所述介质基板包括所述电子设备的电池盖时,所述电池盖包括背板及自所述背板周缘弯折延伸的边框,耦合结构对应所述边框设置,或者,耦合结构对应所述背板设置。
  20. 如权利要求18所述的电子设备,其特征在于,当所述介质基板包括所述电子设备的屏幕时,所述屏幕包括屏幕主体及自所述屏幕主体周缘弯曲延伸的延伸部,所述耦合结构对应所述屏幕主体设置,或者,所述耦合结构对应所述延伸部设置。
PCT/CN2020/096619 2019-06-30 2020-06-17 壳体组件、天线组件及电子设备 WO2021000732A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910588889.2A CN112234340B (zh) 2019-06-30 2019-06-30 壳体组件、天线组件及电子设备
CN201910588889.2 2019-06-30

Publications (1)

Publication Number Publication Date
WO2021000732A1 true WO2021000732A1 (zh) 2021-01-07

Family

ID=74100622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/096619 WO2021000732A1 (zh) 2019-06-30 2020-06-17 壳体组件、天线组件及电子设备

Country Status (2)

Country Link
CN (1) CN112234340B (zh)
WO (1) WO2021000732A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220069630A1 (en) * 2020-08-25 2022-03-03 Nanjing Silergy Micro (HK) Co., Limited Wireless energy transmission device and system comprising the same
CN114156632A (zh) * 2021-12-06 2022-03-08 Oppo广东移动通信有限公司 天线装置及电子设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102637926A (zh) * 2012-04-13 2012-08-15 深圳光启创新技术有限公司 一种无线通信装置
CN102664313A (zh) * 2012-04-13 2012-09-12 深圳光启创新技术有限公司 一种带有柔性膜的壳结构及其制备方法
CN205050995U (zh) * 2015-08-14 2016-02-24 深圳光启高等理工研究院 低通滤波结构、天线罩及天线系统
EP3361571A1 (en) * 2017-02-10 2018-08-15 HPS - High Performance Structures, Gestao e Engenharia Lda Thermal multi-layer insulation and radio-frequency absorber blanket
CN109103589A (zh) * 2018-08-12 2018-12-28 瑞声科技(南京)有限公司 天线模组及移动终端
CN208352525U (zh) * 2018-07-20 2019-01-08 电子科技大学 一种带通型宽阻带可重构频率选择表面
CN110635242A (zh) * 2019-09-30 2019-12-31 Oppo广东移动通信有限公司 天线装置及电子设备
CN111276792A (zh) * 2020-01-22 2020-06-12 Oppo广东移动通信有限公司 电子设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102637066B (zh) * 2012-04-13 2016-08-24 深圳光启创新技术有限公司 一种笔记本电脑
CN102842758B (zh) * 2012-07-31 2016-06-08 深圳光启创新技术有限公司 透波材料及其天线罩和天线系统
US20190393597A1 (en) * 2017-03-31 2019-12-26 Nec Corporation Antenna, multiband antenna, and wireless communication device
CN207098050U (zh) * 2017-06-28 2018-03-13 国巨电子(中国)有限公司 双频双极化天线及其数组

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102637926A (zh) * 2012-04-13 2012-08-15 深圳光启创新技术有限公司 一种无线通信装置
CN102664313A (zh) * 2012-04-13 2012-09-12 深圳光启创新技术有限公司 一种带有柔性膜的壳结构及其制备方法
CN205050995U (zh) * 2015-08-14 2016-02-24 深圳光启高等理工研究院 低通滤波结构、天线罩及天线系统
EP3361571A1 (en) * 2017-02-10 2018-08-15 HPS - High Performance Structures, Gestao e Engenharia Lda Thermal multi-layer insulation and radio-frequency absorber blanket
CN208352525U (zh) * 2018-07-20 2019-01-08 电子科技大学 一种带通型宽阻带可重构频率选择表面
CN109103589A (zh) * 2018-08-12 2018-12-28 瑞声科技(南京)有限公司 天线模组及移动终端
CN110635242A (zh) * 2019-09-30 2019-12-31 Oppo广东移动通信有限公司 天线装置及电子设备
CN111276792A (zh) * 2020-01-22 2020-06-12 Oppo广东移动通信有限公司 电子设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220069630A1 (en) * 2020-08-25 2022-03-03 Nanjing Silergy Micro (HK) Co., Limited Wireless energy transmission device and system comprising the same
CN114156632A (zh) * 2021-12-06 2022-03-08 Oppo广东移动通信有限公司 天线装置及电子设备

Also Published As

Publication number Publication date
CN112234340A (zh) 2021-01-15
CN112234340B (zh) 2022-01-11

Similar Documents

Publication Publication Date Title
WO2021083027A1 (zh) 天线模组及电子设备
WO2021082967A1 (zh) 天线模组及电子设备
CN210897636U (zh) 壳体组件、天线组件及电子设备
US11205850B2 (en) Housing assembly, antenna assembly, and electronic device
US11532870B2 (en) Housing assembly and electronic devices
US11201394B2 (en) Antenna device and electronic device
US20220085493A1 (en) Housing assembly, antenna device, and electronic device
WO2021000732A1 (zh) 壳体组件、天线组件及电子设备
US20220094041A1 (en) Housing assembly, antenna device, and electronic device
WO2021000733A1 (zh) 壳体组件、天线组件及电子设备
WO2021000746A1 (zh) 显示屏组件、天线组件及电子设备
US20190379127A1 (en) Terminal Antenna and Terminal
CN112312690B (zh) 壳体组件、天线组件及电子设备
WO2022226918A1 (zh) 天线及其制备方法、天线系统
CN117477222A (zh) 天线及通讯设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20835315

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20835315

Country of ref document: EP

Kind code of ref document: A1