WO2021083027A1 - 天线模组及电子设备 - Google Patents

天线模组及电子设备 Download PDF

Info

Publication number
WO2021083027A1
WO2021083027A1 PCT/CN2020/122827 CN2020122827W WO2021083027A1 WO 2021083027 A1 WO2021083027 A1 WO 2021083027A1 CN 2020122827 W CN2020122827 W CN 2020122827W WO 2021083027 A1 WO2021083027 A1 WO 2021083027A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiator
antenna
antenna radiator
parasitic
frequency band
Prior art date
Application number
PCT/CN2020/122827
Other languages
English (en)
French (fr)
Inventor
贾玉虎
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP20881578.7A priority Critical patent/EP4044368A4/en
Publication of WO2021083027A1 publication Critical patent/WO2021083027A1/zh
Priority to US17/733,468 priority patent/US20220263225A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2283Supports; Mounting means by structural association with other equipment or articles mounted in or on the surface of a semiconductor substrate as a chip-type antenna or integrated with other components into an IC package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • H01Q1/523Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas between antennas of an array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/005Patch antenna using one or more coplanar parasitic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/378Combination of fed elements with parasitic elements
    • H01Q5/385Two or more parasitic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0414Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture

Definitions

  • This application relates to the field of electronic equipment, and in particular to an antenna module and electronic equipment.
  • the fifth-generation (5th-Generation, 5G) mobile communication is favored by users due to its high communication speed.
  • the transmission speed is hundreds of times faster than that of 4G mobile communication.
  • the millimeter wave signal is the main means to realize 5G mobile communication.
  • the millimeter wave antenna is applied to electronic equipment, the communication effect of the millimeter wave antenna module is poor.
  • the present application provides an antenna module and electronic equipment.
  • the present application provides an antenna module, the antenna module includes:
  • a first antenna radiator where the first antenna radiator is used to generate a first resonance in a first frequency range
  • the first parasitic radiator, the first parasitic radiator and the first antenna radiator are stacked and spaced apart, and the first parasitic radiator is coupled with the first antenna radiator to generate a Internal second resonance;
  • the second antenna radiator, the second antenna radiator and the first antenna radiator are stacked and arranged at intervals on the side of the first antenna radiator away from the first parasitic radiator, the first antenna radiator
  • the two antenna radiators are used to generate the first resonance in the second frequency range
  • the second parasitic radiator, the second parasitic radiator and the second antenna radiator are stacked and spaced apart, or the second parasitic radiator and the second antenna radiator are on the same layer and spaced apart, so The second parasitic radiator is coupled with the second antenna radiator to generate a second resonance in a second frequency band range, wherein the second frequency band range and the first frequency band range at least partially do not overlap.
  • the present application also provides an electronic device, the electronic device includes the antenna module described above by the controller, the controller is electrically connected to the antenna module, and the antenna module is used to connect to the controller Work under the control of the company.
  • FIG. 1 is a schematic diagram of a three-dimensional structure of an antenna module provided by an embodiment of this application.
  • FIG. 2 is a schematic diagram of packaging of an antenna module provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of the cross-sectional structure of FIG. 2 along the line I-I in an embodiment of the application.
  • Fig. 4 is a schematic cross-sectional view of Fig. 2 along the line I-I in another embodiment of this application.
  • FIG. 5 is a top view of the first parasitic radiator in the antenna module provided by an embodiment of the application.
  • FIG. 6 is a perspective view of the first antenna radiator in the antenna module provided by an embodiment of this application.
  • Fig. 7 is a schematic cross-sectional view of Fig. 2 along line II-II in an embodiment of the application.
  • FIG. 8 is a top view of the first antenna radiator and the first parasitic radiator in the antenna module provided by an embodiment of the application.
  • FIG. 9 is a top view of the first antenna radiator and the first parasitic radiator in the antenna module provided by another embodiment of this application.
  • FIG. 10 is a top view of the first parasitic radiator in the antenna module provided by an embodiment of the application.
  • FIG. 11 is a perspective view of a first antenna radiator in an antenna module provided by an embodiment of this application.
  • Fig. 12 is a schematic cross-sectional view taken along the line III-III in Fig. 10.
  • FIG. 13 is a top view of the first parasitic radiator in the antenna module provided by an embodiment of the application.
  • FIG. 14 is a perspective view of the first antenna radiator in the antenna module provided by an embodiment of the application.
  • Fig. 15 is a schematic cross-sectional view taken along the line IV-IV in Fig. 13.
  • FIG. 16 is a top view of the second antenna radiator and the second parasitic radiator in the antenna module provided by an embodiment of the application.
  • FIG. 17 is a top view of the first antenna radiator and the first parasitic radiator in the antenna module provided by an embodiment of the application.
  • FIG. 18 is a top view of a first antenna radiator provided by an embodiment of this application.
  • FIG. 19 is a top view of a second antenna radiator provided by an embodiment of this application.
  • FIG. 20 is a cross-sectional view of an antenna module provided by an embodiment of the application.
  • FIG. 21 is a schematic diagram of the dimensions of the first antenna radiator and the first parasitic radiator provided by an embodiment of the application.
  • FIG. 22 is a variation curve of return loss and frequency after optimization of the antenna module provided by an embodiment of the application.
  • Fig. 23 is a perspective view of a second antenna radiator and a second parasitic radiator.
  • FIG. 24 is a schematic diagram of an antenna module provided by an embodiment of this application.
  • FIG. 25 is a schematic diagram of an antenna module provided by another embodiment of this application.
  • FIG. 26 is a schematic diagram of the radiation efficiency of the antenna module of the application radiating radio frequency signals of 24 to 30 GHz.
  • FIG. 27 is a schematic diagram of the radiation efficiency of radio frequency signals radiating 36-41 GHz by the antenna module of this application.
  • FIG. 28 is a simulation diagram of the direction of the antenna module of this application at 26 GHz.
  • FIG. 29 is a simulation diagram of the direction of the antenna module of this application at 28 GHz.
  • FIG. 30 is a simulation diagram of the direction of the antenna module of this application at 39 GHz.
  • FIG. 31 is a circuit block diagram of an electronic device provided by an embodiment of this application.
  • FIG. 32 is a cross-sectional view of an electronic device according to an embodiment of the application.
  • FIG. 33 is a cross-sectional view of an electronic device according to another embodiment of the application.
  • the present application provides an antenna module, which includes:
  • a first antenna radiator where the first antenna radiator is used to generate a first resonance in a first frequency range
  • the first parasitic radiator, the first parasitic radiator and the first antenna radiator are stacked and spaced apart, and the first parasitic radiator is coupled with the first antenna radiator to generate a Second resonance
  • the second antenna radiator, the second antenna radiator and the first antenna radiator are laminated, and are arranged at intervals on the side of the first antenna radiator away from the first parasitic radiator, and the second antenna radiator
  • the antenna radiator is used to generate the first resonance in the second frequency range
  • the second parasitic radiator, the second parasitic radiator and the second antenna radiator are stacked and spaced apart, or the second parasitic radiator and the second antenna radiator are on the same layer and spaced apart, so The second parasitic radiator is coupled with the second antenna radiator to generate a second resonance in a second frequency band range, wherein the second frequency band range and the first frequency band range at least partially do not overlap.
  • the first resonance of the first antenna radiator in the first frequency band is used to generate the radio frequency signal of the first preset frequency band
  • the second resonance of the first parasitic radiator in the first frequency band is used to generate the first frequency signal.
  • Radio frequency signals of two preset frequency bands wherein the first preset frequency band and the second preset frequency band are both within the range of the first frequency band, and the first preset frequency band and the second preset frequency band are at least Partly different.
  • the antenna module further includes a radio frequency chip
  • the first antenna radiator is adjacent to the radio frequency chip compared to the first parasitic radiator, the first antenna radiator and the first parasitic radiator are both conductive patches, and the first antenna radiates
  • the body is electrically connected with the radio frequency chip.
  • the size of the first antenna radiator is larger than the size of the first parasitic radiator, and the orthographic projection of the first parasitic radiator in the plane where the first antenna radiator is located and the first antenna The areas where the radiators are located at least partially overlap.
  • the orthographic projection of the first parasitic radiator on the plane where the first antenna radiator is located falls within the area where the first antenna radiator is located.
  • the first antenna radiator has a first hollow structure that penetrates two opposite surfaces of the first antenna radiator, and the size of the first antenna radiator is smaller than or equal to the size of the first parasitic radiator , And as the area of the first hollow structure increases, the size difference between the first antenna radiator and the first parasitic radiator becomes larger.
  • the first antenna radiator has a first hollow structure that penetrates two opposing surfaces of the first antenna radiator, and the first parasitic radiator has two opposing surfaces that penetrate the first parasitic radiator.
  • the size of the first antenna radiator is smaller than or equal to the size of the first parasitic radiator, and the area of the first hollow structure is larger than the area of the second hollow structure.
  • the second antenna radiator is electrically connected to the radio frequency chip, and both the second antenna radiator and the second parasitic antenna radiator are conductive patches.
  • the second antenna radiator is stacked and arranged, the second antenna radiator is adjacent to the radio frequency chip compared to the second parasitic radiator.
  • the first antenna radiator and the second antenna radiator are both conductive patches
  • the second antenna radiator is arranged adjacent to the radio frequency chip compared to the first antenna radiator
  • the The frequency of the radio frequency signal in the second frequency band is smaller than the frequency of the radio frequency signal in the first frequency band.
  • the antenna module further includes a power feeding member, the second antenna radiator has a through hole, the power feeding member passes through the through hole, and the power feeding member is electrically connected to the radio frequency chip and the radio frequency chip.
  • the first antenna radiator feeder is electrically connected to the radio frequency chip and the radio frequency chip.
  • the number of the second parasitic radiator is multiple, the center of the area where the second antenna radiator is located and the distance between the multiple second parasitic radiators in the plane where the second antenna radiator is located The centers of the orthographic projection coincide.
  • the second parasitic radiator is a rectangular conductive patch
  • the second parasitic radiator includes a first side facing the second antenna radiator and a second side connected to the first side, wherein , The length of the first side is greater than the length of the second side, the first side is used to adjust the resonant frequency of the second parasitic radiator, and the second side is used to adjust the second parasitic radiation The impedance between the body and the second antenna radiator.
  • the first resonance of the second antenna radiator in the second frequency band is used to generate a radio frequency signal of the third preset frequency band
  • the second resonance of the second parasitic radiator in the second frequency band is Is used to generate a radio frequency signal of a fourth preset frequency band
  • the third preset frequency band and the fourth preset frequency band are both located within the range of the second frequency band, and the third preset frequency band and the The fourth preset frequency band is at least partially different.
  • the first antenna radiator is a square conductive patch
  • the side length of the first antenna radiator ranges from 1.6mm to 2.0mm
  • the first parasitic radiator is a rectangular conductive patch
  • the first antenna radiator is a rectangular conductive patch.
  • the length of the long side of the parasitic radiator is equal to the length of the side length of the first antenna radiator
  • the length of the short side of the first parasitic radiator ranges from 0.2 mm to 0.9 mm
  • the first parasitic radiator reaches
  • the range of the pitch of the first antenna radiator is 0-0.8 mm.
  • the second antenna radiator is a square conductive patch
  • the side length of the second antenna radiator ranges from 2.0 mm to 2.8 mm
  • the second parasitic radiator is a rectangular conductive patch
  • the second antenna radiator is a rectangular conductive patch.
  • the length of the long side of the parasitic radiator is equal to the length of the side of the second antenna radiator
  • the length of the short side of the second parasitic radiator ranges from 0.2 mm to 0.9 mm.
  • the range of the distance of the second antenna radiator is 0-0.6 mm.
  • the range of the gap between the projection of the second parasitic radiator perpendicular to the plane where the second antenna radiator is located and the area where the second antenna radiator is located is 0.2-0.8 mm.
  • the first frequency band range includes the millimeter wave 39GHz frequency band
  • the first resonance and the second resonance in the first frequency band range cover the n260 frequency band
  • the second frequency band range includes 28 GHz
  • the first resonance and the second resonance in the second frequency band range The second resonance covers millimeter wave n257, n258 and n261 frequency bands.
  • the application also provides an array of electronic equipment, the electronic equipment includes a controller and the antenna module as described in any one of the preceding, the controller is electrically connected to the antenna module, the antenna module is used for Work under the control of the controller.
  • the electronic device includes a battery cover and a wave-transmitting structure
  • the wave-transmitting structure is carried on the battery cover, the radiation surface of the antenna module at least partially faces the battery cover and the wave-transmitting structure
  • the transmittance of the battery cover to the radio frequency signal in the first frequency range is lower than the transmittance of the battery cover and the wave-transmitting structure to the radio frequency signal in the first frequency range; the battery cover to the first frequency range
  • the transmittance of the radio frequency signal in the second frequency range is lower than the transmittance of the battery cover and the wave-transmitting structure to the radio frequency signal in the second frequency range.
  • the electronic device includes a screen and a wave-transmitting structure, the wave-transmitting structure is carried on the screen, the radiating surface of the antenna module is at least partially facing the screen and the wave-transmitting structure, and the screen is opposite to the screen.
  • the transmittance of the radio frequency signal in the first frequency band range is less than the transmittance of the screen and the wave-transmitting structure to the radio frequency signal in the first frequency band range; the screen to the radio frequency signal in the second frequency band range
  • the transmittance of is smaller than the transmittance of the screen and the wave-transmitting structure to the radio frequency signal in the second frequency range.
  • FIG. 1 is a schematic diagram of a three-dimensional structure of an antenna module provided by an embodiment of the application
  • FIG. 2 is a schematic diagram of a package of an antenna module provided by an embodiment of the application
  • This is a schematic diagram of the cross-sectional structure of FIG. 2 along line II in an embodiment of the present application.
  • the application provides an antenna module 10.
  • the antenna module 10 includes a first antenna radiator 130, a first parasitic radiator 140, a second antenna radiator 150, and a second parasitic radiator 160.
  • the first antenna radiator 130 is used to generate a first resonance in a first frequency range.
  • the first parasitic radiator 140 and the first antenna radiator 130 are stacked and spaced apart, and the first parasitic radiator 140 is coupled with the first antenna radiator 130 to generate a second frequency range in the first frequency band. resonance.
  • the second antenna radiator 150 and the first antenna radiator 130 are stacked, and are arranged at intervals on the side of the first antenna radiator 130 away from the first parasitic radiator 140.
  • the second antenna radiates
  • the body 150 is used to generate the first resonance in the second frequency range.
  • the second parasitic radiator 160 and the second antenna radiator 150 are stacked and spaced apart, and the second parasitic radiator 160 is coupled with the second antenna radiator 150 to generate a second frequency range in the second frequency band. Resonance, wherein the second frequency band range and the first frequency band range at least partially do not overlap.
  • the first frequency band range and the second frequency band range may include, but are not limited to, a millimeter wave frequency band or a terahertz frequency band.
  • 5G new radio mainly uses two frequency bands: FR1 frequency band and FR2 frequency band.
  • the frequency range of the FR1 frequency band is 450MHz to 6GHz, which is also called the sub-6GHz frequency band;
  • the frequency range of the FR2 frequency band is 24.25GHz to 52.6GHz, which belongs to the millimeter wave (mm Wave) frequency band.
  • 3GPP Release 15 standardizes the current 5G millimeter wave frequency bands including: n257 (26.5-29.5GHz), n258 (24.25-27.5GHz), n261 (27.5-28.35GHz) and n260 (37-40GHz).
  • the first frequency band range may include the millimeter wave 39 GHz frequency band, and the first resonance and the second resonance in the first frequency band range may cover the transmission and reception requirements of radio frequency signals in the millimeter wave n260 (37-40 GHz) frequency band;
  • second The frequency band range can include the millimeter wave 28GHz frequency band, and the first resonance and the second resonance in the second frequency band range can cover the millimeter wave n257 (26.5-29.5GHz), n258 (24.25-27.5GHz) and n261 (27.5-28.35GHz) frequency bands Requirements for receiving and sending radio frequency signals.
  • the first antenna radiator 130 and the first parasitic radiator 140 both generate resonance in the first frequency range, and the second antenna radiator 150 and the second parasitic radiator 160 are both A resonance in the second frequency band is generated, so that the antenna module 10 works in two frequency bands, and the bandwidth of the antenna module 10 is expanded.
  • the first parasitic radiator 140 and the first antenna radiator 130 are stacked and spaced apart, so as to make use of the stacking direction (Z direction) of the first parasitic radiator 140 and the first antenna radiator 130.
  • the space reduces the size of the first parasitic radiator 140 and the first antenna radiator 130 on the plane (X direction and Y direction) perpendicular to the stacking direction.
  • the second parasitic radiator 160 and the second antenna radiator 150 are stacked and spaced apart, thereby utilizing the stacking direction (Z) of the second parasitic radiator 160 and the second antenna radiator 150
  • the space in the direction reduces the size of the first parasitic radiator 140 and the first antenna radiator 130 on the plane (X direction and Y direction) perpendicular to the stacking direction.
  • the material of the first antenna radiator 130 may be a conductive material such as metal or non-metal. When the material of the first antenna radiator 130 is a non-metal conductive material, the first antenna radiator 130 may be opaque Yes, it can also be transparent.
  • the material of the first parasitic radiator 140 may be a conductive material such as metal or non-metal. When the material of the first parasitic radiator 140 is a non-metal conductive material, the first parasitic radiator 140 may be opaque Yes, it can also be transparent.
  • the material of the second antenna radiator 150 may be, but is not limited to, a conductive material such as metal or non-metal.
  • the second antenna radiator 150 When the material of the second antenna radiator 150 is a non-metal conductive material, the second antenna radiator 150 The antenna radiator 150 may be opaque or transparent.
  • the material of the second parasitic radiator 160 may be a conductive material such as metal or non-metal.
  • the second parasitic radiator 160 When the material of the second parasitic radiator 160 is a non-metal conductive material, the second parasitic radiator 160 may be opaque Yes, it can also be transparent.
  • the materials of the first antenna radiator 130, the first parasitic radiator 140, the second antenna radiator 150, and the second parasitic radiator 160 may be the same or different.
  • the first resonance of the first antenna radiator 130 in the first frequency band is used to generate a radio frequency signal of the first preset frequency band
  • the first parasitic radiator 140 is in the first frequency band.
  • the second resonance is used to generate a radio frequency signal of a second preset frequency band, wherein the first preset frequency band and the second preset frequency band are both located within the range of the first frequency band, and the first preset frequency band and The second preset frequency band is at least partially different.
  • the first resonance of the second antenna radiator 150 in the second frequency band is used to generate the radio frequency signal of the third preset frequency band
  • the second resonance of the second parasitic radiator 160 in the second frequency band is used for the second resonance.
  • the third preset frequency band and the fourth preset frequency band are both located within the range of the second frequency band, and the third preset frequency band and the first frequency band
  • the four preset frequency bands are at least partially different.
  • the radio frequency band range is (P1 to P2)
  • the first preset frequency band is (P1 to P3)
  • the second preset frequency band is (P4 to P2).
  • P3 is less than or equal to P2
  • P4 is greater than or equal to P1
  • the first preset frequency band is not equal to the second preset frequency band.
  • the relationship between P3 and P4 may be that P3 is smaller than P4. In this case, the first preset frequency band and the second preset frequency band do not overlap. The relationship between P3 and P4 may be that P3 is greater than or equal to P4.
  • the first preset frequency band overlaps with the second preset frequency band, that is, the first preset frequency band and the second preset frequency band overlap.
  • the frequency band constitutes the first continuous frequency band.
  • the first frequency band is n260 (37-40 GHz)
  • the first preset frequency band is 37-A GHz
  • the second preset frequency band is B-40 GHz, where A is less than or equal to 40, and B 37 or more and less than 40.
  • the relationship between A and B may be that A is less than B.
  • the first preset frequency band and the second preset frequency band do not overlap.
  • the relationship between A and B may be that A is greater than or equal to B.
  • the first preset frequency band overlaps with the second preset frequency band, that is, the first preset frequency band and the second preset frequency band overlap.
  • the frequency band constitutes a complete n260 frequency band.
  • the antenna module 10 of the present application can radiate radio frequency signals in the first frequency band range and radio frequency signals in the second frequency band range, so that the antenna module 10 has the communication function of radio frequency signals in two frequency bands.
  • the first antenna radiator 130 can radiate a radio frequency signal of a first preset frequency band
  • the first parasitic radiator 140 is coupled with the first antenna radiator 130 to generate a radio frequency signal of a second preset frequency band. If the first preset frequency band and the second preset frequency band do not overlap, the bandwidth of the antenna module 10 within the range of the first frequency band can be increased.
  • the radiation efficiency of the antenna module 10 in the first frequency band can be improved; in addition, the first parasitic radiator 140 and the first antenna radiator 130 are stacked The space between the antenna modules 10 in the stacking direction of the first parasitic radiator 140 and the first antenna radiator 130 can be used to reduce the size of the plane perpendicular to the stacking direction.
  • the second antenna radiator 150 can radiate a radio frequency signal of a third preset frequency band, and the second parasitic radiator 160 is coupled with the second antenna radiator 150 to generate a radio frequency of a fourth preset frequency band.
  • the bandwidth of the antenna module 10 within the first frequency band can be increased, if the third preset frequency band If there is overlap with the fourth preset frequency band, the radiation efficiency of the antenna module 10 in the first frequency band range can be improved; in addition, the second parasitic radiator 160 and the second antenna radiator When the antenna module 10 is stacked and arranged at intervals, the space between the second parasitic radiator 160 and the second antenna radiator 150 in the stacking direction can be used to reduce the space between the second parasitic radiator 160 and the second antenna radiator 150 in the stacking direction. The size of the vertical plane.
  • the antenna module 10 further includes a radio frequency chip 110, the first antenna radiator 130 is adjacent to the radio frequency chip 110 compared to the first parasitic radiator 140, the first antenna radiator 130 and the second antenna A parasitic radiator 140 is a conductive patch.
  • the radio frequency chip 110 is used to generate a first excitation signal, and the radio frequency chip 110 is electrically connected to the first antenna radiator 130 to transmit the first excitation signal to the first antenna radiator 130.
  • the first antenna radiator 130 generates a first resonance in a first frequency range according to the first excitation signal.
  • the first antenna radiator 130 and the first parasitic radiator 140 are both conductive patches. It can be understood that the first antenna radiator 130 and the first parasitic radiator 140 may also be microstrip lines, conductive silver paste, or the like.
  • the distance between the first parasitic radiator 140 and the radio frequency chip 110 is constant, if the first antenna radiator 130 is farther away from the radio frequency chip 110 than the first parasitic radiator 140 Setting, the distance between the first antenna radiator 130 and the radio frequency chip 110 is a first distance; and the first antenna radiator 130 is adjacent to the radio frequency chip compared to the first parasitic radiator 140 110 setting, the distance between the first antenna radiator 130 and the radio frequency chip 110 is a second distance, then the second distance is smaller than the first distance.
  • the first antenna radiator 130 is disposed adjacent to the radio frequency chip 110, so that the distance between the first antenna radiator 130 and the radio frequency chip 110 is The length of the feeding element (such as the feeding wire and the feeding probe) is relatively short, thereby reducing the first excitation caused by the excessive length of the feeding element between the first antenna radiator 130 and the radio frequency chip 110
  • the loss when the signal is transmitted to the first antenna radiator 130 increases the gain of the radio frequency signal of the first preset frequency band generated by the first antenna radiator 130.
  • the size of the first antenna radiator 130 is larger than the size of the first parasitic radiator 140, and the first antenna radiator 130 is adjacent to the radio frequency chip 110 compared to the first parasitic radiator 140 , So that the radio frequency signal of the first preset frequency band generated by the first antenna radiator 130 will not be blocked by the first parasitic radiator 140.
  • the radio frequency signal radiation intensity is weak or even shielded.
  • the antenna module 10 further includes a substrate 120 for carrying the first antenna radiator 130, the first parasitic radiator 140, and the radio frequency chip 110.
  • the substrate 120 includes a first surface 120a and a second surface 120b opposite to each other.
  • the first parasitic radiator 140 is disposed on the first surface 120a
  • the first antenna radiator 130 is embedded in the substrate 120
  • the radio frequency chip 110 is disposed on the second surface 120a.
  • Surface 120b The radio frequency chip 110 is used to generate a first excitation signal, and the radio frequency chip 110 is electrically connected to the first antenna radiator 130 through a first feeder 170 embedded in the substrate 120.
  • the first parasitic radiator 140 and the first antenna radiator 130 may also be embedded in the substrate 120, as long as the first parasitic radiator 140 and the first antenna radiator 130
  • the first antenna radiator 130 is stacked and arranged at intervals, and the first parasitic radiator 140 radiates away from the radio frequency chip 110 compared to the first antenna radiation.
  • the radio frequency chip 110 may be fixed on the second surface 120b of the substrate 120 by welding or the like.
  • the first power feeder 170 may be, but is not limited to, a power feed wire or a power feed probe.
  • the pins of the radio frequency chip 110 outputting the first excitation signal are arranged on the surface of the radio frequency chip 110 facing the substrate 120, and the pins of the radio frequency chip 110 outputting the first excitation signal are disposed on the surface of the radio frequency chip 110 facing the substrate 120.
  • This arrangement can make the length of the first feeding element 170 shorter, thereby reducing the first excitation caused by the excessive length of the feeding element between the first antenna radiator 130 and the radio frequency chip 110
  • the loss when the signal is transmitted to the first antenna radiator 130 increases the gain of the radio frequency signal of the first preset frequency band generated by the first antenna radiator 130.
  • FIG. 5 is a top view of the first parasitic radiator in the antenna module provided by an embodiment of the application
  • FIG. 6 is the antenna module of the antenna module provided by an embodiment of the application.
  • FIG. 7 is a schematic cross-sectional view of FIG. 2 along the line II-II in an embodiment of the application.
  • the viewing angle of view in FIG. 7 is the same as that of FIG. 6.
  • the shape of the first antenna radiator 130 may be, but is not limited to, a rectangle, a circle, a polygon, etc.; correspondingly, the first parasitic radiator 140
  • the shape can be, but is not limited to, rectangle, circle, polygon, etc.
  • the shape of the first parasitic radiator 140 may be the same as or different from the shape of the first antenna radiator 130.
  • the first antenna radiator 130 and the first parasitic radiator 140 are both square as an example for illustration. Since the first antenna radiator 130 and the first parasitic radiator 140 are stacked, one or more layers of insulation may be provided between the first parasitic radiator 140 and the first antenna radiator 130 For the layer 123, in FIG. 7, an insulating layer 123 is provided between the first antenna radiator 130 and the first parasitic radiator 140 and other components in the antenna module 10 are omitted as an example for illustration.
  • FIG. 8 is a top view of the first antenna radiator and the first parasitic radiator in the antenna module provided by an embodiment of the application
  • FIG. 9 is an antenna provided by another embodiment of the application
  • the size of the first antenna radiator 130 is larger than the size of the first parasitic radiator 140, and the orthographic projection of the first parasitic radiator 140 in the plane where the first antenna radiator 130 is located and the first The area where an antenna radiator 130 is located at least partially overlaps.
  • the orthographic projection of the first parasitic radiator 140 in the plane where the first antenna radiator 130 is located at least partially overlaps with the area where the first antenna radiator 130 is located.
  • the first parasitic radiator 140 is The orthographic projection in the plane where the first antenna radiator 130 is located partially overlaps the area where the first antenna radiator 130 is located, and the first parasitic radiator 140 is located where the first antenna radiator 130 is located.
  • the orthographic projection in the plane does not overlap with the area where the first antenna radiator 130 is located (please refer to FIG. 8).
  • a part of the orthographic projection of the first parasitic radiator 140 on the plane where the first antenna radiator 130 is located falls within the area where the first antenna radiator 130 is located, and the first parasitic radiation Another part of the orthographic projection of the body 140 on the plane where the first antenna radiator 130 is located falls outside the area where the first antenna radiator 130 is located.
  • the orthographic projection of the first parasitic radiator 140 in the plane where the first antenna radiator 130 is located at least partially overlaps the area where the first antenna radiator 130 is located, and further includes: the first parasitic radiator 140
  • the orthographic projection on the plane where the first antenna radiator 130 is located falls within the area where the first antenna radiator 130 is located.
  • the orthographic projection of the first parasitic radiator 140 on the plane where the first antenna radiator 130 is located at least partially overlaps with the area where the first antenna radiator 130 is located, so that the first parasitic radiator 140 can be enhanced
  • the coupling effect between the first antenna radiator 130 and the first antenna radiator 130 increases the strength of the radio frequency signal of the second preset frequency band generated by the first parasitic radiator 140 coupled to the first antenna radiator 130.
  • the orthographic projection of the first parasitic radiator 140 on the plane where the first antenna radiator 130 is located falls within the area where the first antenna radiator 130 is located, which can further enhance the relationship between the first parasitic radiator 140 and the first antenna radiator 130.
  • the coupling effect of the first antenna radiator 130 further enhances the strength of the radio frequency signal of the second preset frequency band generated by the first parasitic radiator 140 coupled to the first antenna radiator 130, and further enhances the antenna mode Communication quality of group 10.
  • the orthographic projection of the first parasitic radiator 140 on the plane where the first antenna radiator 130 is located falls within the area where the first antenna radiator 130 is located, and the first parasitic radiator The center of the orthographic projection 140 on the plane where the first antenna radiator 130 is located completely coincides with the center of the area where the first antenna radiator 130 is located (please refer to FIG. 9).
  • the coupling effect of the first parasitic radiator 140 and the first antenna radiator 130 can be further enhanced, and the second parasitic radiator 140 coupled with the first antenna radiator 130 can be further improved.
  • the strength of the radio frequency signal of the preset frequency band further improves the communication quality of the antenna module 10.
  • FIG. 10 is a top view of the first parasitic radiator in the antenna module provided by an embodiment of the application
  • FIG. 11 is the antenna module of the antenna module provided by an embodiment of the application.
  • FIG. 12 is a schematic cross-sectional view along the line III-III in FIG. 10.
  • the antenna module 10 further includes a radio frequency chip 110 (refer to FIG. 4).
  • the first antenna radiator 130 is adjacent to the radio frequency chip 110 compared to the first parasitic radiator 140, and the first antenna radiator 130 has two opposite surfaces that penetrate the first antenna radiator 130
  • the first hollow structure 131 the size of the first antenna radiator 130 is smaller than or equal to the size of the first parasitic radiator 140, and as the area of the first hollow structure 131 increases, the first antenna radiator 130
  • the size difference between an antenna radiator 130 and the first parasitic radiator 140 is greater.
  • the size of the first antenna radiator 130 is equal to the size of the first parasitic radiator 140.
  • one or more insulating layers 123 may be provided between the first antenna radiator 130 and the first parasitic radiator 140.
  • the first antenna radiator 130 is combined with the first parasitic radiator 140.
  • the first parasitic radiator 140 is provided with an insulating layer 123 and other components in the antenna module 10 are omitted as an example for illustration.
  • the size of the first antenna radiator 130 generally refers to the outer contour size of the first antenna radiator 130
  • the size of the first parasitic radiator 140 generally refers to the outer contour size of the first antenna radiator 130. size.
  • the first antenna radiator 130 and the first parasitic radiator 140 have the same shape, and the first antenna radiator 130 is smaller than or equal to the outer contour size of the first parasitic radiator 140
  • the The side length of the first antenna radiator 130 is also smaller than or equal to the outer contour size of the first parasitic radiator 140.
  • the shape of the first antenna radiator 130 is a square
  • the shape of the first parasitic radiator 140 is a square
  • the outer contour size of the first antenna radiator 130 is equal to that of the first antenna radiator 130.
  • the dimensions of the outer contour of the parasitic radiator 140 and the shape of the first hollow structure 131 are square as an example.
  • the first antenna radiates
  • the surface current distribution of the body 130 with the first hollow structure 131 is different from the surface current distribution without the first hollow structure 131. Therefore, for the radio frequency signal radiating the same first preset frequency band, the surface current distribution with the first hollow structure 131
  • the outer contour size of the first antenna radiator 130 is smaller than the outer contour size of the first antenna radiator 130 without the first hollow structure 131, which is beneficial to the miniaturization of the antenna module 10.
  • FIG. 13 is a top view of the first parasitic radiator in the antenna module provided by an embodiment of the application
  • FIG. 14 is the antenna module of the antenna module provided by an embodiment of the application.
  • FIG. 15 is a schematic cross-sectional view along the line IV-IV in FIG. 13.
  • the antenna module 10 of the second hollow structure 141 further includes a radio frequency chip 110 (please refer to FIG. 4).
  • the first antenna radiator 130 is adjacent to the radio frequency chip 110 compared to the first parasitic radiator 140, and the first antenna radiator 130 has two opposite surfaces of the first antenna radiator 130.
  • the first hollow structure 131, the first parasitic radiator 140 has a second hollow structure 141 that penetrates two opposite surfaces of the first parasitic radiator 140, and the size of the first antenna radiator 130 is less than or equal to that of the first parasitic radiator 140.
  • the size of the first parasitic radiator 140 and the area of the first hollow structure 131 are larger than the area of the second hollow structure 141.
  • the size of the first antenna radiator 130 is equal to the size of the first parasitic radiator 140.
  • the viewing angle of view in FIG. 14 is the same as the viewing angle of view in FIG.
  • the shape of the outer contour of the first antenna radiator 130 may be, but is not limited to, a rectangle, a circle, a polygon, etc.; accordingly
  • the shape of the first parasitic radiator 140 can also be, but not limited to, a rectangle, a circle, a polygon, or the like.
  • the shape of the first hollow structure 131 may also be, but not limited to, a rectangle, a circle, a polygon, etc.; correspondingly, the shape of the outer contour of the second hollow structure 141 may also be, but is not limited to, a rectangle or a circle. , Polygon, etc.
  • the shape of the first antenna radiator 130 may be the same as or different from the shape of the first parasitic radiator 140.
  • one or more insulating layers 123 may be provided between the first antenna radiator 130 and the first parasitic radiator 140.
  • the first antenna radiator 130 is combined with the first parasitic radiator 140.
  • the first parasitic radiator 140 is provided with an insulating layer 123 and other components in the antenna module 10 are omitted as an example for illustration.
  • the first The surface current distribution of the parasitic radiator 140 with the second hollow structure 141 is different from the surface current distribution without the second hollow structure 141. Therefore, for the radio frequency signal radiating the same second preset frequency band, it has a second hollow structure
  • the outer contour size of the first parasitic radiator 140 of 141 is smaller than the outer contour size of the first parasitic radiator 140 without the second hollow structure 141, which is beneficial to the miniaturization of the antenna module 10.
  • the antenna module 10 further includes a radio frequency chip 110.
  • the second antenna radiator 150 and the second parasitic radiator 160 are both conductive patches. When the second parasitic radiator 160 and the second antenna radiator 150 are stacked, the second antenna The radiator 150 is adjacent to the radio frequency chip 110 compared to the second parasitic radiator 160.
  • the radio frequency chip 110 is used to generate a second excitation signal, and the radio frequency chip 110 is electrically connected to the second antenna radiator 150 to transmit the second excitation signal to the second antenna radiator 150.
  • the second antenna radiator 150 generates a second resonance in a second frequency range according to the second excitation signal.
  • the distance between the second parasitic radiator 160 and the radio frequency chip 110 is constant, if the second antenna radiator 150 is farther away from the radio frequency chip 110 than the second parasitic radiator 160 Setting, the distance between the second antenna radiator 150 and the radio frequency chip 110 is a third distance; and the second antenna radiator 150 is adjacent to the radio frequency chip compared to the second parasitic radiator 160 110 setting, the distance between the second antenna radiator 150 and the radio frequency chip 110 is a fourth distance, then the fourth distance is smaller than the third distance.
  • the second antenna radiator 150 is disposed adjacent to the radio frequency chip 110, so that the distance between the second antenna radiator 150 and the radio frequency chip 110
  • the length of the feeding element (such as the feeding wire and the feeding probe) is relatively short, thereby reducing the second excitation caused by the excessive length of the feeding element between the second antenna radiator 150 and the radio frequency chip 110
  • the loss when the signal is transmitted to the second antenna radiator 150 increases the gain of the radio frequency signal of the third preset frequency band generated by the second antenna radiator 150.
  • the size of the second antenna radiator 150 is larger than the size of the second parasitic radiator 160, and the second antenna The radiator 150 is adjacent to the radio frequency chip 110 compared to the second parasitic radiator 160, so that the radio frequency signal of the third preset frequency band generated by the second antenna radiator 150 will not be radiated by the second parasitic radiator.
  • the radiation intensity of the radio frequency signal of the third preset frequency band generated by the second antenna radiator 150 caused by the shielding of the body 160 is weak or even shielded. Therefore, in this embodiment, the arrangement of the second antenna radiator 150 and the second parasitic radiator 160 can improve the communication effect of the antenna module 10.
  • FIG. 16 is a top view of the second antenna radiator and the second parasitic radiator in the antenna module provided by an embodiment of the application.
  • the number of the second parasitic radiator 160 is multiple, and the center of the area where the second antenna radiator 150 is located and the multiple second parasitic radiators 160 are on the plane where the second antenna radiator 150 is located. The centers of the orthographic projections within coincide.
  • the number of the second parasitic radiator 160 is four as an example for illustration.
  • the center of the second antenna radiator 150 is denoted as O2
  • the center of the plurality of second parasitic radiators 160 refers to the plurality of second parasitic radiators 160 as a whole.
  • O2' the whole The center of it is denoted as O2'.
  • O2 and O2’ coincide.
  • the center of the area where the second antenna radiator 150 is located coincides with the center of the orthographic projection of the plurality of second parasitic radiators 160 in the plane where the second antenna radiator 150 is located, which can enhance the second
  • the coupling effect of the parasitic radiator 160 and the second antenna radiator 150 further improves the strength of the radio frequency signal of the fourth preset frequency band generated by the coupling of the second parasitic radiator 160 and the second antenna radiator 150, The communication quality of the antenna module 10 is further improved.
  • the second parasitic radiator 160 is a rectangular conductive patch.
  • the second parasitic radiator 160 includes a first side 161 facing the second antenna radiator 150 and a second side 161 connected to the first side 161.
  • Side 162 wherein the length of the first side 161 is greater than the length of the second side 162, the first side 161 is used to adjust the resonant frequency of the second parasitic radiator 160, and the second side 162 It is used to adjust the impedance between the second parasitic radiator 160 and the second antenna radiator 150.
  • the length of the first side 161 is different, the resonant frequency of the second parasitic radiator 160 is different; the length of the second side 162 is different, the second parasitic radiator 160 is different from the second antenna
  • the impedance matching degree between the radiators 150 is different.
  • the relationship between the length of the second side 162 and the impedance matching degree between the second parasitic radiator 160 and the second antenna radiator 150 is in a normal distribution, in other words For radio frequency signals radiating the same fourth preset frequency band, when the length of the second side 162 is the preset length a, the second parasitic radiator 160 and the second antenna radiator 150
  • the impedance matching between the two sides is optimal.
  • the matching degree between the second parasitic radiator 160 and the second antenna radiator 150 decline.
  • the distance between the second parasitic radiator 160 and the second antenna radiator 150 will also affect the distance between the second parasitic radiator 160 and the second antenna radiator 150.
  • the degree of coupling between the second parasitic radiator 160 and the second antenna radiator 150 When the distance between the second parasitic radiator 160 and the second antenna radiator 150 is larger, the coupling degree between the second parasitic radiator 160 and the second antenna radiator 150 is smaller; Conversely, when the distance between the second parasitic radiator 160 and the second antenna radiator 150 is smaller, the degree of coupling between the second parasitic radiator 160 and the second antenna radiator 150 is greater. Big.
  • the degree of coupling between the second parasitic radiator 160 and the first antenna radiator 130 is greater, the intensity of the radio frequency signal of the fourth preset frequency band generated by the second parasitic radiator 160 is also greater.
  • the communication performance of the antenna module 10 is also better.
  • FIG. 17 is a top view of the first antenna radiator and the first parasitic radiator in the antenna module provided by an embodiment of the application.
  • the center of the area where the first antenna radiator 130 is located coincides with the center of the orthographic projection of the first parasitic radiator 140 in the plane where the first antenna radiator 130 is located.
  • the center where the first antenna radiator 130 is located is denoted as O1
  • the center of the orthographic projection of the first parasitic radiator 140 in the plane where the first antenna radiator 130 is located is denoted as O1'
  • the O1' coincides with the O1.
  • the structure of the first antenna radiator 130 and the first parasitic radiator 140 can improve the coupling effect of the first parasitic radiator 140 and the first antenna radiator 130, and further The strength of the radio frequency signal of the second preset frequency band generated by the coupling between the first parasitic radiator 140 and the first antenna radiator 130 is improved, and the communication quality of the antenna module 10 is further improved.
  • the distance between the first parasitic radiator 140 and the first antenna radiator 130 also affects the degree of coupling between the first parasitic radiator 140 and the first antenna radiator 130.
  • the coupling degree between the first parasitic radiator 140 and the first antenna radiator 130 is smaller
  • the degree of coupling between the first parasitic radiator 140 and the first antenna radiator 130 is Bigger. The greater the coupling between the first parasitic radiator 140 and the first antenna radiator 130, the greater the intensity of the radio frequency signal of the second preset frequency band generated by the first parasitic radiator 140 , The communication performance of the antenna module 10 is better.
  • the first antenna radiator 130 and the second antenna radiator 150 are both conductive patches, and the second antenna radiator 150 is compared with the first antenna
  • the radiator 130 is arranged adjacent to the radio frequency chip 110, and the frequency of the radio frequency signal in the second frequency band is smaller than the frequency of the radio frequency signal in the first frequency band.
  • the second antenna radiator 150 is arranged adjacent to the radio frequency chip 110, so that the radio frequency signal of the third preset frequency band generated by the second antenna radiator 150 is not Being blocked by the first antenna radiator 130 causes the radio frequency signal of the third preset frequency band generated by the second antenna radiator 150 to be weak or even shielded. Therefore, in this embodiment, the arrangement of the first antenna radiator 130 and the second antenna radiator 150 can improve the communication effect of the antenna module 10.
  • the antenna module 10 further includes a feeder, the second antenna radiator 150 has a through hole 152, and the feeder passes through the through hole 152.
  • the feeder is electrically connected to the radio frequency chip 110 and the first antenna radiator 130.
  • the power feeding member electrically connecting the radio frequency chip 110 and the first antenna radiator 130 is named the first power feeding member 170. That is, the radio frequency chip 110 is electrically connected to the first antenna radiator 130 through the first feeder 170 embedded in the substrate 120.
  • the first antenna radiator 130 is away from the radio frequency chip 110 compared to the second antenna radiator 150, and the first antenna radiator 130 and the second antenna radiator 150 are stacked
  • the second antenna radiator 150 has a through hole 152, on the one hand, the first feeder 170 can pass through, and on the other hand, for the radio frequency signal radiating the same third frequency band, compared with In the second antenna radiator 150 without the through hole 152, opening the through hole 152 on the second antenna radiator 150 can change the surface current distribution on the second antenna radiator 150, thereby making
  • the size of the second antenna radiator 150 with the through hole 152 is smaller than the size of the second antenna radiator 150 without the through hole 152, which is beneficial to the miniaturization of the antenna module 10.
  • the antenna module 10 further includes a second feeder 180, and the radio frequency chip 110 passes through the second feeder 180 embedded in the substrate 120 and the second antenna radiator. 150 electrical connections.
  • the first power feeder 170 can be, but is not limited to, a power feed wire or a power feed probe, etc.
  • the second power feeder 180 can be, but is not limited to, a power feed wire or a power feed probe, etc. .
  • the first antenna radiator 130 is farther away from the radio frequency chip 110 than the second antenna radiator 150, and the second parasitic radiator 160 is disposed at a position where the second antenna radiator 150 is far away.
  • the first parasitic radiator 140 is disposed on a side of the second parasitic radiator 160 away from the first antenna radiator 130.
  • the second parasitic radiator 160 may also be arranged on the same layer as the second antenna radiator 150, or the second antenna radiator 150 may be arranged away from the radio frequency chip 110.
  • the second parasitic radiator 160 and the first antenna radiator 130 are arranged on the same layer, or the second parasitic radiator 160 and the first parasitic radiator 140 are arranged on the same layer , As long as it is satisfied that the second parasitic radiator 160 and the second antenna radiator 150 generate the radio frequency signal of the fourth preset frequency band.
  • FIG. 18 is a top view of a first antenna radiator according to an embodiment of the application.
  • the first antenna radiator 130 includes at least two first feeding points 132, and each first feeding point 132 is electrically connected to the radio frequency chip 110 through a first feeding member 170, and each first feeding point 132 is electrically connected to the radio frequency chip 110.
  • the distance between the point 132 and the center of the first antenna radiator 130 is greater than a first preset distance, so that the output impedance of the radio frequency chip 110 matches the input impedance of the first antenna radiator 130.
  • Adjusting the position of the first feeding point 132 can change the input impedance of the first antenna radiator 130, which in turn can change the difference between the input impedance of the first antenna radiator 130 and the output impedance of the radio frequency signal.
  • the degree of matching allows the first excitation signal generated by the radio frequency signal to be more converted into the radio frequency signal output of the first preset frequency band, while reducing the first excitation signal that does not participate in the conversion into the radio frequency signal of the first preset frequency band Therefore, the conversion efficiency of converting the first excitation signal into a radio frequency signal of the first preset frequency band is improved. Understandably, only two first feeding points 132 are shown in FIG. 18, and the positions of the two first feeding points 132 are merely illustrative, and do not constitute a limitation on the position of the first feeding points 132. In other embodiments, the first feeding point 132 may also be arranged in other positions.
  • the first antenna radiator 130 includes at least two first feeding points 132, and the positions of the two first feeding points 132 are different, the first preset frequency band radiated by the first antenna radiator 130 can be realized The dual polarization of the radio frequency signal.
  • the first antenna radiator 130 includes two first feeding points 132 as an example for description.
  • the two first feeding points 132 are respectively denoted as the first feeding point 132a and the first feeding point 132b. .
  • the first antenna radiator 130 When the first excitation signal is loaded on the first antenna radiator 130 through the first feeding point 132a, the first antenna radiator 130 generates a radio frequency signal of a first preset frequency band, and the first The polarization direction of the radio frequency signal of the preset frequency band is the first polarization direction; when the first excitation signal is loaded on the first antenna radiator 130 through the first feeding point 132b, the first antenna radiates
  • the body 130 generates a radio frequency signal of a first predetermined frequency band, and the polarization direction of the radio frequency signal of the first predetermined frequency band is a second polarization direction, wherein the second polarization direction is different from the first polarization direction.
  • the first antenna radiator 130 in this embodiment can realize dual polarization.
  • the communication effect of the antenna module 10 can be improved. Compared with the traditional technology using two antennas to achieve different polarizations, this embodiment can reduce The number of antennas in the antenna module 10 is small.
  • FIG. 19 is a top view of a second antenna radiator according to an embodiment of the application.
  • the second antenna radiator 150 includes at least two second feeding points 153.
  • Each second feeding point 153 is electrically connected to the radio frequency chip 110 through a second feeding member 180, and each second feeding point 153 is electrically connected to the radio frequency chip 110.
  • the distance between the point 153 and the center of the second antenna radiator 150 is greater than a second preset distance, so that the output impedance of the radio frequency chip 110 matches the input impedance of the second antenna radiator 150.
  • Adjusting the position of the second feeding point 153 can change the input impedance of the second antenna radiator 150, which in turn can change the difference between the input impedance of the second antenna radiator 150 and the output impedance of the radio frequency signal.
  • the degree of matching allows the second excitation signal generated by the radio frequency signal to be more converted into the radio frequency signal output of the third preset frequency band, while reducing the second excitation signal that does not participate in the conversion into the radio frequency signal of the third preset frequency band Therefore, the conversion efficiency of the second excitation signal into the radio frequency signal of the third preset frequency band is improved. Understandably, only two second feeding points 153 are shown in FIG. 19, and the positions of the two second feeding points 153 are merely illustrative, and do not constitute a limitation on the positions of the second feeding points 153. In other embodiments, the second feeding point 153 can also be arranged in other positions.
  • the second antenna radiator 150 includes at least two second feeding points 153, and the positions of the two second feeding points 153 are different, the third preset frequency band radiated by the second antenna radiator 150 can be realized The dual polarization of the radio frequency signal.
  • the second antenna radiator 150 includes two second feeding points 153 as an example for description, and the two second feeding points 153 are respectively denoted as the second feeding point 153a and the second feeding point 153b. .
  • the second antenna radiator 150 When the second excitation signal is loaded on the second antenna radiator 150 through the second feeding point 153a, the second antenna radiator 150 generates a radio frequency signal of a third preset frequency band, and the third The polarization direction of the radio frequency signal of the preset frequency band is the third polarization direction; when the second excitation signal is loaded on the second antenna radiator 150 through the second feeding point 153b, the second antenna radiates The body 150 generates a radio frequency signal of a third preset frequency band, and the polarization direction of the radio frequency signal of the third preset frequency band is a fourth polarization direction, wherein the third polarization direction is different from the fourth polarization direction. Orientation. It can be seen that the second antenna radiator 150 in this embodiment can realize dual polarization. When the second antenna radiator 150 can achieve dual polarization, the communication effect of the antenna module 10 can be improved. Compared with the traditional technology using two antennas to achieve different polarizations, this embodiment can reduce The number of antennas in the antenna module 10 is small.
  • FIG. 20 is a cross-sectional view of an antenna module according to an embodiment of the application.
  • a multi-layer structure formed by the antenna module 10 using a high-density interconnection (HDI) or integrated circuit (IC) carrier process is taken as an example for description.
  • the substrate 120 includes a first surface 120a and a second surface 120b that are opposed to each other.
  • the first parasitic radiator 140 is disposed on the first surface 120a of the substrate 120
  • the radio frequency chip 110 is disposed on the second surface 120b of the substrate 120
  • the first antenna radiator 130, the second antenna radiator 150 and the second parasitic radiation
  • the body 160 is embedded in the substrate 120.
  • the first antenna radiator 130 is embedded in the substrate 120 and stacked with the first parasitic radiator 140, and the second parasitic radiator 160 is provided on the first parasitic radiator. Between the radiator 140 and the first antenna radiator 130, the second antenna radiator 150 is disposed on a side of the first antenna radiator 130 away from the second parasitic radiator 160. It can be understood that, in other embodiments, the positional relationship of the first parasitic radiator 140, the first antenna radiator 130, the second parasitic radiator 160, and the second antenna radiator 150 is also It may be other, as long as the first parasitic radiator 140 is coupled with the first antenna radiator 130, and the second parasitic radiator 160 is coupled with the second antenna radiator 150.
  • the substrate 120 includes a core layer 121 and a plurality of wiring layers 122 stacked on opposite sides of the core layer 121.
  • the core layer 121 is an insulating layer, and an insulating layer 123 is usually arranged between each wiring layer 122.
  • the core layer 121 and the insulating layer 123 may be made of millimeter wave high frequency low loss materials.
  • the thickness of the core layer 121 may be but not limited to 0.45 mm, the thickness of all the insulating layers 123 in the substrate 120 may be but not limited to 0.35 mm, and the thickness of each insulating layer 123 in the substrate 120 may be Equal or unequal.
  • the substrate 120 has an 8-layer structure as an example for illustration. It is understandable that in other embodiments, the substrate 120 may also have other layers.
  • the substrate 120 includes a core layer 121 and a first wiring layer TM1, a second wiring layer TM2, a third wiring layer TM3, a fourth wiring layer TM4, a fifth wiring layer TM5, a sixth wiring layer TM6, and a seventh wiring layer TM7 , And the eighth wiring layer TM8.
  • the first wiring layer TM1, the second wiring layer TM2, the third wiring layer TM3, and the fourth wiring layer TM4 are sequentially stacked on the same side of the core layer 121, and the first The wiring layer TM1 is disposed away from the core layer 121 relative to the fourth wiring layer TM4, and the surface of the first wiring layer TM1 away from the core layer 121 is the first surface 120 a of the substrate 120.
  • the fifth wiring layer TM5, the sixth wiring layer TM6, the seventh wiring layer TM7, and the eighth wiring layer TM8 are sequentially stacked on the same side of the core layer 121, and the eighth wiring layer
  • the layer TM8 is disposed away from the core layer 121 with respect to the fifth wiring layer TM5, the surface of the eighth wiring layer TM8 away from the core layer 121 is the second surface 120b of the substrate 120, and the fifth wiring layer
  • the layer TM5 and the fourth wiring layer TM4 are disposed on opposite sides of the core layer 121.
  • the first wiring layer TM1, the second wiring layer TM2, the third wiring layer TM3, and the fourth wiring layer TM4 are wiring layers where an antenna radiator can be arranged;
  • the fifth wiring layer TM5 is a ground layer for setting a ground pole;
  • the sixth wiring layer TM6, the seventh wiring layer TM7, and the eighth wiring layer TM8 are the feeder network and control line wiring layers in the antenna module 10.
  • the first parasitic radiator 140 is provided on the first wiring layer TM1
  • the second parasitic radiator 160 is provided on the second wiring layer TM2
  • the first antenna radiates
  • the body 130 is disposed on the third wiring layer TM3
  • the second antenna radiator 150 is disposed on the fourth wiring layer TM4 as an example for illustration.
  • the first wiring layer TM1, the second wiring layer TM2, the third wiring layer 122, the wiring layer TM3, the fourth wiring layer TM4, the sixth wiring layer TM6, and the seventh wiring layer Both TM7 and the eighth wiring layer TM8 are electrically connected to the ground layer in the fifth wiring layer TM5.
  • Both TM7 and the eighth wiring layer TM8 are provided with through holes, and conductive materials are arranged in the through holes to electrically connect the grounding layer in the fifth wiring layer TM5 to ground the devices provided in each wiring layer 122.
  • the devices provided in each wiring layer 122 may be devices required for the operation of the antenna module 10, such as receiving signal processing devices, transmitting signal processing devices, and the like.
  • the seventh wiring layer TM7 and the eighth wiring layer TM8 are further provided with a power line 124 and a control line 125, and the power line 124 and the control line 125 are respectively electrically connected to the radio frequency chip 110 .
  • the power line 124 is used to provide the radio frequency chip 110 with power required by the radio frequency chip 110
  • the control line 125 is used to transmit control signals to the radio frequency chip 110 to control the operation of the radio frequency chip 110.
  • the surface of the radio frequency chip 110 facing the core layer 121 is provided with a first output terminal 111 and a second output terminal 112.
  • the first antenna radiator 130 includes at least one first feeding point 132 (please refer to FIG. 18).
  • the radio frequency chip 110 is used to generate a first excitation signal
  • the first output terminal 111 is used to electrically connect the first feeding point 132 of the first antenna radiator 130 through the first feeding member 170 to remove the The first excitation signal is output to the first antenna radiator 130.
  • the first sky radiator 130 generates a radio frequency signal of a first preset frequency band according to the first excitation signal.
  • the second antenna radiator 150 includes at least one second feeding point 153 (please refer to FIG. 19).
  • the radio frequency chip 110 is also used to generate a second excitation signal, and the second output terminal 112 is used to electrically connect the second feed point 153 of the second antenna radiator 150 through the second feeder 180 to connect The second excitation signal is output to the second antenna radiator 150.
  • the second antenna radiator 150 is used to generate a radio frequency signal of the third preset frequency band according to the second excitation signal.
  • the first output end 111 and the second output end 112 face the core layer 121, so that the length of the first feeder 170 electrically connected to the first antenna radiator 130 is shorter, thereby reducing the A power feeder 170 transmits the loss of the first excitation signal, so that the generated radio frequency signal of the first preset frequency band has a better radiation gain.
  • the length of the second power feeder 180 electrically connected to the second antenna radiator 150 is relatively short, thereby reducing the loss of the second power feeder 180 for transmitting the second excitation signal, so that the generated first The radio frequency signals of the three preset frequency bands have better radiation gain.
  • the first output terminal 111 and the second output terminal 112 may also be connected to the substrate 120 through a welding process.
  • the first output terminal 111 and the second output terminal 112 described above are connected to the substrate 120 through a soldering process, and the first output terminal 111 and the second output terminal 112 face the core layer 121, this process is called It is a flip chip process (Flip-Chip) process, and the radio frequency chip 110 is electrically connected to the first antenna radiator 130 and the second antenna radiator 150 through a carrier board process or a high-density interconnection process to achieve radio frequency.
  • the chip 110 is respectively interconnected with the first antenna radiator 130 and the second antenna radiator 150.
  • the first antenna radiator 130, the first parasitic radiator 140, the second antenna radiator 150, and the second parasitic radiator 160 may be antennas in the form of conductive patches (also called patch Antenna) or dipole antenna form.
  • the first power feeding member 170 may be a power feeding conductive wire or a power feeding probe.
  • the second power feeding member 180 may be a power feeding conductive wire or a power feeding probe.
  • FIG. 21 is a schematic diagram of the dimensions of the first antenna radiator and the first parasitic radiator according to an embodiment of the application. The dimensions of the first antenna radiator 130 and the first parasitic radiator 140 will be described below with reference to FIG. 21.
  • the selection of the size of the first antenna radiator 130, the size of the second antenna radiator 150, and the distance between the first parasitic radiator 140 and the first antenna radiator 130 is not arbitrary. Instead, the frequency band of the radio frequency signal of the first preset frequency band radiated by the first parasitic radiator 140 and the frequency band of the radio frequency signal of the second preset frequency band radiated by the first antenna radiator 130 and the bandwidth of the first frequency band range are considered. , After rigorous design and adjustment, the design and adjustment process are explained as follows.
  • the antenna module 10 in the first antenna radiator 130, a first parasitic radiator 140 is typically supported on a substrate 120, the substrate relative permittivity ⁇ r 120 is generally 3.4.
  • the distance between the first antenna radiator 130 and the ground layer in the substrate 120 is 0.4 mm, then the width w of the first antenna radiator 130 in the first antenna radiator 130 can be calculated by formula (1):
  • c is the speed of light
  • f is the resonant frequency of the first antenna radiator 130
  • ⁇ r is the relative permittivity of the medium between the first antenna radiator 130 and the ground layer in the antenna module 10.
  • the medium of the first antenna radiator 130 and the ground layer in the antenna module 10 is the core between the first antenna radiator 130 and the ground layer.
  • the length of the first antenna radiator 130 is generally taken as However, due to the edge effect, the actual size L of the first antenna radiator 130 is usually larger than Big.
  • the actual length L of the first antenna radiator 130 can be calculated using formulas (2) and (3):
  • is the guided wave wavelength in the medium
  • ⁇ 0 is the free space wavelength
  • ⁇ e is the effective dielectric constant
  • ⁇ L is the equivalent radiation gap width.
  • the effective dielectric constant ⁇ e can be calculated using formula (4):
  • h is the distance between the first antenna radiator 130 and the ground layer.
  • Formula (5) can be used to calculate the equivalent radiation slit width ⁇ L:
  • the resonant frequency of the first antenna radiator 130 can be calculated by formula (6):
  • the resonant frequency of the first antenna radiator 130 is 39 GHz
  • the length and width of the first antenna radiator 130 are calculated according to formulas (1)-(6).
  • the distance between the first antenna radiator 130 and the first parasitic radiator 140, the distance between the first antenna radiator 130 and the ground layer, and the length of the first parasitic radiator 140 are preset And width, modeling and analysis are performed according to the above-mentioned parameters, the radiation boundary and radiation port of the antenna module 10 are set, and the return loss and frequency variation curve obtained by frequency sweeping are obtained.
  • the bandwidth of the radio frequency signal of the first preset frequency band radiated by the first antenna radiator 130 is further optimized.
  • the distance S1 between the first antenna radiator 130 and the first parasitic radiator 140 (see FIG. 20), and the distance between the first antenna radiator 130 and the ground layer
  • the distance h1 (please refer to FIG. 20) and the length L2 of the first parasitic radiator 140 are further adjusted to optimize the return loss and frequency variation curve.
  • FIG. 22 which is provided by an embodiment of the application
  • the return loss and frequency change curve after the optimization of the antenna module is used to obtain the RF signal in the first frequency band with a bandwidth of 37 ⁇ 40.5 GHz (see curve 1). That is, the first frequency band range includes the n260 frequency band.
  • the adjustment process of the length L2 of the first parasitic radiator 140 can be obtained.
  • the range of the length L1 and the width W1 of the first antenna radiator 130, the distance between the first antenna radiator 130 and the first parasitic radiator 140 The range of the interval S1, the range of the interval h1 between the first antenna radiator 130 and the ground layer, and the range of the length L2 of the first parasitic radiator 140.
  • the first antenna radiator 130 is a rectangular patch antenna, the size of the first antenna radiator 130 in the first direction D1 and the first antenna radiator 130 in the second direction D2 The dimensions are less than or equal to 2mm.
  • the size of the first antenna radiator 130 in the first direction D1 is the length of the first antenna radiator 130, and the length of the first antenna radiator 130 in the second direction D2 is the first The width W1 of the antenna radiator 130. That is, the length L1 of the first antenna radiator 130 ranges from 0 to 2.0 mm, and the width W1 of the first antenna radiator 130 is 0 to 2.0 mm.
  • the length L1 of the first antenna radiator 130 ranges from 1.6 to 2.0 mm
  • the width W1 of the first antenna radiator 130 ranges from 1.6 to 2.0 mm, so that the first antenna radiator 130 and The bandwidth of the radio frequency signal in the first frequency range radiated by the first parasitic radiator 140 is 37-40.5 GHz.
  • the greater the length L1 of the first antenna radiator 130 the more the resonant frequency of the radio frequency signal of the first preset frequency band shifts toward the lower frequency;
  • the smaller the length L1 of the first antenna radiator 130 is, the more the resonant frequency of the radio frequency signal of the first preset frequency band shifts toward higher frequencies.
  • the length L2 of the first parasitic radiator 140 is equal to the length L1 of the first antenna radiator 130, the width W2 of the second parasitic radiator 160 ranges from 0.2 to 0.9 mm, and the first antenna The distance S1 between the radiator 130 and the first parasitic radiator 140 ranges from 0.2 mm to 0.8 mm.
  • the first antenna radiator 130 excites a radio frequency signal of a first preset frequency band between the first antenna radiator 130 and the ground layer, and passes through the gap between the first antenna radiator 130 and the ground layer Radiating outward, the first parasitic radiator 140 couples with the radio frequency signal of the first preset frequency band radiated by the first antenna radiator 130 to generate the radio frequency signal of the second preset frequency band.
  • the distance between the first antenna radiator 130 and the first parasitic radiator 140 is too large or too small to achieve effective coupling; when the first antenna radiator 130 and the first parasitic radiator 140
  • the distance S1 between 140 is in the range of 0.2 to 0.8 mm, the coupling effect between the first antenna radiator 130 and the first parasitic radiator 140 is better, and the radio frequency signal in the first frequency range has a larger Bandwidth.
  • the distance h1 between the first antenna radiator 130 and the ground layer is within a range of 0.7 to 0.9 mm.
  • the distance h2 between the second antenna radiator 150 and the ground layer is within a range of 0.3 mm to 0.6 mm.
  • the distance h2 between the second antenna radiator 150 and the ground layer is the thickness of the core layer 121 in the substrate 120.
  • the thickness of the core layer 121 in the substrate 120 is too small, it is easy to cause the antenna module 10 Warping during molding.
  • the distance h2 between the second antenna radiator 150 and the core layer 121 is designed to be 0.3-0.6 mm, which can meet the requirements of the antenna module 10 to be thinner and less warped.
  • the distance between the first antenna radiator 130 and the ground layer can be adjusted appropriately.
  • the distance h1 between the first antenna radiator 130 and the ground layer is proportional to the frequency bandwidth.
  • the greater the distance h1 between the first antenna radiator 130 and the ground layer the greater the frequency bandwidth of the radio frequency signal of the first preset frequency band radiated by the first antenna radiator 130;
  • the smaller the distance h1 between the first antenna radiator 130 and the ground layer the smaller the bandwidth of the radio frequency signal of the first preset frequency band radiated by the first antenna radiator 130.
  • the distance between the first antenna radiator 130 and the ground layer can increase the energy radiated by the first antenna radiator 130, that is, increase the first antenna radiator 130 The frequency bandwidth of the radiated radio frequency signal of the first preset frequency band.
  • an increase in the distance between the first antenna radiator 130 and the ground layer will excite more surface waves, and the surface waves will reduce the radiation of the radio frequency signal of the first preset frequency band in the required direction. And it will change the directional characteristics of the first antenna radiator 130 radiation. Therefore, the distance h1 between the first antenna radiator 130 and the ground layer is selected considering the bandwidth of the radio frequency signal of the first preset frequency band and the directivity of the radio frequency signal of the first preset frequency band.
  • the distance h1 between the antenna radiator 130 and the ground layer is 0.7 to 0.9 mm.
  • the first antenna radiator 130 is adjusted.
  • the size of the antenna radiator 130, the size of the first parasitic radiator 140, and the distance between the first antenna radiator 130 and the first parasitic radiator 140 are used to optimize the return loss and frequency change curve, please refer to the figure 22.
  • FIG. 22 shows the return loss and frequency variation curve of the optimized antenna module provided by an embodiment of the application, and then obtains a radio frequency signal in the first frequency range with a frequency band of 37-40.5 GHz.
  • the horizontal axis is the frequency, in GHz
  • the vertical axis is the return loss, in dB.
  • the curve 1 represents the change curve of the return loss and frequency of the RF signal in the first frequency band
  • the curve 2 represents the second frequency band.
  • the frequency corresponding to the ordinate being less than or equal to -10 dB is the working frequency band of the antenna module 10. It can be seen from curve 1 that the frequency band of the radio frequency signal in the first frequency band range is 37 ⁇ 40.5 GHz, that is, the n260 (37 ⁇ 40 GHz) frequency band is realized.
  • Adjusting the size of the first antenna radiator 130, the size of the first parasitic radiator 140, and the distance between the first antenna radiator 130 and the first parasitic radiator 140 can make the first antenna radiator 130 generates a first resonance in a first frequency range, and the first parasitic radiator 140 generates a second resonance in a second frequency range.
  • the resonance frequencies of the first resonance and the second resonance are 37.8 GHz and 39.9 GHz, respectively, that is, the first antenna radiator 130 and the first parasitic radiator 140 resonate at 37.8 GHz and 39.9 GHz, respectively .
  • the bandwidth of the radio frequency signal of the first preset frequency band generated by the first antenna radiator 130 is constant, and the bandwidth of the radio frequency signal of the second preset frequency band generated by the first parasitic radiator 140 is constant.
  • the first resonance is different from the second resonance, which can expand the bandwidth of the first frequency range and improve the communication performance of the antenna module 10.
  • the center frequencies of the radio frequency signal of the third preset frequency band and the radio frequency signal of the fourth preset frequency band radiated by the second antenna radiator 150 and the second parasitic radiator 160 are respectively 25 GHz , 29GHz, through the design of the size of the second antenna radiator 150, the design of the distance between the second antenna radiator 150 and the second parasitic radiator 160, the distance between the second antenna radiator 150 and the ground layer, the second The size design of the parasitic radiator 160 and the design of the distance between the second parasitic radiator 160 and the ground layer are designed to broaden the bandwidth of the radio frequency signal in the second frequency range, and obtain the radio frequency signal in the frequency range of 24.5 ⁇ 29.9 GHz (see figure The curve 2 in 22) basically realizes the coverage of radio frequency signals in the frequency bands of n257 (26.5-29.5GHz), n258 (24.25-27.5GHz) and n261 (27.5-28.35GHz).
  • the specific regulation implementation is as follows.
  • the formulas (1)-(6) can be directly applied to the second antenna radiator 150, and
  • the relative permittivity ⁇ r of the insulating layer 123 in the substrate 120 is 3.4.
  • the distance between the second antenna radiator 150 and the ground layer is 0.5 mm.
  • the length L3 and the width W3 of the second antenna radiator 150 can be calculated according to formulas (1)-(6).
  • the horizontal distance S2 and the vertical distance h3 between the second antenna radiator 150 and the second parasitic radiator 160 are preset, the distance h2 between the second antenna radiator 150 and the ground layer, and the length L4 of the second parasitic radiator 160 And width W4. Perform modeling and analysis based on the above parameters, set the radiation boundary, boundary conditions and radiation port, and obtain the return loss and frequency variation curve obtained by sweeping the frequency.
  • the bandwidth of the radio frequency signal of the third preset frequency band radiated by the second antenna radiator 150 is further optimized.
  • the length L3 and width W3 of the second antenna radiator 150, the horizontal distance S2 and the vertical distance h3 between the second antenna radiator 150 and the second parasitic radiator 160, the distance between the second antenna radiator 150 and the ground layer The distance h2 and the length L4 of the second parasitic radiator 160 are further adjusted to optimize the return loss and frequency variation curve, thereby obtaining a radio frequency signal in the second frequency band with a bandwidth of 24.5 ⁇ 29.9 GHz (see Figure 22 The curve 2).
  • the adjustment method of the first antenna radiator 130 is the same, based on the above-mentioned length L3 and width W3 of the second antenna radiator 150, the horizontal distance S2 and the vertical distance between the second antenna radiator 150 and the second parasitic radiator 160 h3, the distance between the second antenna radiator 150 and the ground layer h2, the length L4 of the second parasitic radiator 160 can be obtained by adjusting the length L3 range and width range of the second antenna radiator 150, and the second antenna radiation
  • the horizontal distance range and the vertical distance range between the body 150 and the second parasitic radiator 160, the distance range between the second antenna radiator 150 and the ground layer, and the length range of the second parasitic radiator 160 are the horizontal distance range and the vertical distance range between the body 150 and the second parasitic radiator 160, the distance range between the second antenna radiator 150 and the ground layer, and the length range of the second parasitic radiator 160.
  • FIG. 23 is a perspective view of the second antenna radiator and the second parasitic radiator.
  • the second antenna radiator 150 is a rectangular conductive patch, and its size in the first direction D1 is within the range of 2.0 to 2.8 mm.
  • the size of the second antenna radiator 150 in the first direction D1 is the The length of the second antenna radiator 150 is denoted as L3, that is, the length L3 of the second antenna radiator 150 is in the range of 2.0 to 2.8 mm.
  • the size of the second antenna radiator 150 in the second direction D2 is also within a range of 2.0 to 2.8 mm.
  • the size of the second antenna radiator 150 in the second direction D2 is the width of the second antenna radiator 150, denoted as W3, that is, the width W3 of the second antenna radiator 150 lies between 2.0 and 2.8 Within the range of mm, the bandwidth of the radio frequency signal in the second frequency range radiated by the second antenna radiator 150 and the second parasitic radiator 160 is 24.5-29.9 GHz.
  • the greater the length L3 of the second antenna radiator 150 is, the resonant frequency of the radio frequency signal of the third preset frequency band radiated by the second antenna radiator 150 shifts to a low frequency.
  • the second parasitic radiator 160 is a rectangular conductive patch
  • the second parasitic radiator 160 is a rectangular conductive patch
  • the length L3 of the second antenna radiator 150 is equal to the first
  • the length of the two parasitic radiators 160 is L4.
  • the length of the short side of the second parasitic radiator 160 ranges from 0.2 to 0.9 mm, that is, the width W4 of the second parasitic radiator 160 ranges from 0.2 to 0.9 mm.
  • the range of the gap between the projection of the second parasitic radiator 160 perpendicular to the plane where the second antenna radiator 150 is located and the area where the second antenna radiator 150 is located is 0.2 mm to 0.8 mm.
  • the structure of the second antenna radiator 150 and the second parasitic radiator 160 can make the resonance of the second antenna radiator 150 and the second parasitic radiator 160 different, so that the antenna mode Group 10 has a larger bandwidth in the second frequency range.
  • the third resonance and the fourth resonance are 25 GHz and 29 GHz, respectively.
  • Adjusting the size of the second antenna radiator 150, the size of the second parasitic radiator 160, and the distance between the second antenna radiator 150 and the second parasitic radiator 160 can make the second antenna radiator 150 resonates at the third resonance, and the second parasitic radiator 160 resonates at the fourth resonance, which is different from the third resonance.
  • the third resonance and the fourth resonance are 25 GHz and 29 GHz, respectively, that is, the second antenna radiator 150 and the second parasitic radiator 160 resonate at 25 GHz and 29 GHz, respectively.
  • the bandwidth of the radio frequency signal of the third preset frequency band generated by the second antenna radiator 150 is constant, and the bandwidth of the radio frequency signal of the fourth preset frequency band generated by the second parasitic radiator 160 is constant.
  • the third frequency band is different from the fourth frequency band, which can expand the bandwidth of the second frequency band and improve the communication performance of the antenna module 10.
  • FIG. 24 is a schematic diagram of an antenna module provided by an embodiment of this application.
  • the antenna module 10 includes a plurality of antenna elements 10a arranged in an array.
  • the plurality of antenna elements 10a form an M ⁇ N array to form a phased array antenna.
  • Each antenna unit 10 a includes the first antenna radiator 130, the first parasitic radiator 140, the second antenna radiator 150, and the second parasitic radiator 160.
  • the first antenna radiator 130, the first parasitic radiator 140, the second antenna radiator 150, and the second parasitic radiator 160 please refer to the foregoing description, and will not be repeated here.
  • the width of the antenna unit 10a may be less than 4.2 mm, and the width of the antenna unit 10a The length can be less than 5 mm, which realizes the miniaturization of the antenna unit 10a, and further, realizes the miniaturization of the antenna module 10.
  • the antenna module 10 is applied to the electronic device 1, it is beneficial to the thin design of the electronic device 1.
  • FIG. 25 is a schematic diagram of an antenna module provided by another embodiment of this application.
  • the antenna module 10 includes a plurality of antenna elements 10a arranged in an array, and each antenna element 10a includes the first antenna radiator 130, the first parasitic radiator 140, the second antenna radiator 150, And the second parasitic radiator 160.
  • first antenna radiator 130, the first parasitic radiator 140, the second antenna radiator 150, and the second parasitic radiator 160 please refer to the foregoing description, and will not be repeated here.
  • a plurality of metalized via grids 10b are provided between adjacent antenna units 10a.
  • the metalized via grid 10b is used to isolate the interference between adjacent antenna units 10a, so as to improve the radiation effect of the antenna module 10.
  • FIG. 26 is a schematic diagram of the radiation efficiency of the antenna module of the present application radiating radio frequency signals of 24 to 30 GHz.
  • the horizontal axis is frequency, the unit is GHz; the vertical axis is radiation efficiency, without unit.
  • the curve indicates the radiation efficiency of radio frequency signals from 24 to 30 GHz.
  • the radiation efficiency of the radio frequency signal at 24 to 30 GHz is relatively high, all of which are greater than 0.80.
  • the 24-30 GHz radio frequency signal covers the n257, n258, and n261 frequency bands. That is, the antenna module 10 of the present application has relatively high radiation efficiency when the second frequency band is in the n257, n258, and n261 frequency bands.
  • FIG. 27 is a schematic diagram of the radiation efficiency of radio frequency signals radiating 36-41 GHz by the antenna module of this application.
  • the horizontal axis is frequency, the unit is GHz; the vertical axis is radiation efficiency, without unit.
  • the curve indicates the radiation efficiency of the 36-41 GHz radio frequency signal. It can be seen from the curve that the radiation efficiency of the radio frequency signal at 36-41 GHz is relatively high, all of which are greater than 0.65.
  • the first frequency range is n260 (37-40GHz)
  • the radiation efficiency is also relatively high.
  • FIG. 28 is a directional simulation diagram of the antenna module of this application at 26 GHz.
  • the maximum value of the gain at 26 GHz is 5.99 dB, which indicates that at 26 GHz, it has better directivity, and the antenna module 10 has a better communication effect at 26 GHz.
  • FIG. 29 is a directional simulation diagram of the antenna module of this application at 28 GHz.
  • the maximum value of the gain is 5.57 dB, which indicates that it has better directivity at 28 GHz, and the antenna module 10 has a better communication effect at 26 GHz.
  • FIG. 30 is a directional simulation diagram of the antenna module of this application at 39 GHz.
  • the maximum value of the gain at 39 GHz is 5.75 dB, which indicates that at 39 GHz, it has better directivity, and the antenna module 10 has a better communication effect at 26 GHz.
  • FIG. 31 is a circuit block diagram of an electronic device according to an embodiment of the application.
  • the present application also provides an electronic device 1, which may be, but is not limited to, a device with communication function such as a mobile phone.
  • the electronic device 1 includes a controller 30 and the antenna module 10 described in any of the foregoing embodiments.
  • the controller 30 is electrically connected to the antenna module 10, and the antenna module 10 is configured to work under the control of the controller 30.
  • the antenna module 10 works under the control of the controller 30.
  • FIG. 32 is a cross-sectional view of an electronic device according to an embodiment of the application.
  • the electronic device 1 includes a battery cover 50 and a wave-transmitting structure 80.
  • the wave-transmitting structure 80 is carried on the battery cover 50.
  • the radiation surface of the antenna module 10 is at least partially oriented toward the battery cover 50 and the transparent structure. Wave structure 80.
  • the transmittance of the battery cover 50 to radio frequency signals in the first frequency range is lower than the transmittance of the battery cover 50 and the wave-transmitting structure 80 to radio frequency signals in the first frequency range; the battery The transmittance of the cover 50 to the radio frequency signal in the second frequency range is lower than the transmittance of the battery cover 50 and the wave-transmitting structure 80 to the radio frequency signal in the second frequency range.
  • the radiating surface of the antenna module 10 radiates the radio frequency signal of the first preset frequency band, the radio frequency signal of the second preset frequency band, the radio frequency signal of the third preset frequency, and the fourth preset frequency band Of the radio frequency signal.
  • the battery cover 50 and at least part of the wave-transmitting structure 80 are located in the radio frequency signal of the first preset frequency band, the radio frequency signal of the second preset frequency band, the radio frequency signal of the third preset frequency, and Within the radio frequency signal radiation range of the fourth preset frequency band.
  • the material of the battery cover 50 is at least one or a combination of plastic, glass, sapphire, and ceramic.
  • the wave-transmitting structure 80 carried on the battery cover 50 includes the wave-transmitting structure 80 directly disposed on the inner surface of the battery cover 50, or the wave-transmitting structure 80 is disposed on the outer surface of the battery cover 50 , Or, the wave-transmitting structure 80 is embedded in the battery cover 50, or the wave-transmitting structure 80 is provided on the inner surface or the outer surface of the battery cover 50 through a carrier film, etc., as long as the The battery cover 50 can be used directly or indirectly as a supporting substrate to support the wave-transmitting structure 80.
  • the carrier film may be, but is not limited to, a plastic (Polyethylene terephthalate, PET) film, a flexible circuit board, a printed circuit board, or the like.
  • the PET film can be, but is not limited to, a color film, an explosion-proof film, and the like.
  • the material of the wave-transmitting structure 80 is a conductive material, which may be metallic or non-metallic. When the material of the wave-transmitting structure 80 is a non-metal conductive material, the wave-transmitting structure 80 may be transparent or non-transparent.
  • the wave-transmitting structure 80 may be integrated or non-integrated.
  • the dielectric constant of the battery cover 50 is the first dielectric constant
  • the transmittance of the battery cover 50 with the first dielectric constant to the radio frequency signal in the first frequency range is the first transmittance.
  • the dielectric constant of the battery cover 50 and the transparent structure 80 as a whole is the second dielectric constant, which is equivalent to the second dielectric constant of the battery
  • the transmittance of the cover 50 and the wave-transmitting structure 80 to the radio frequency signal in the first frequency range is a second transmittance, and the second transmittance is greater than the first transmittance.
  • the wave-transmitting structure 80 is provided to increase the transmittance of the radio frequency signal in the first frequency band, and further improve the communication quality when the antenna module 10 uses the radio frequency signal in the first frequency band to communicate.
  • the transmittance of the battery cover 50 with the first dielectric constant to the radio frequency signal in the second frequency range is the third transmittance, which is equivalent to the battery cover 50 with the second dielectric constant and the transmittance.
  • the transmittance of the wave-transmitting structure 80 to the radio frequency signal in the second frequency range is a fourth transmittance, and the fourth transmittance is greater than the third transmittance.
  • the transmittance of the radio frequency signal in the second frequency band is improved, and the communication quality of the antenna module 10 when the radio frequency signal in the second frequency band is used for communication is improved.
  • the battery cover 50 generally includes a back plate 510 and a frame 520 connected to the periphery of the back plate 510 by bending.
  • the wave-transmitting structure 80 is carried on the backplane 510, or the wave-transmitting structure 80 is carried on the frame 520, or a part of the wave-transmitting structure 80 is carried on the backboard 510 and the other part of the wave-transmitting structure 80 is carried on the backplane 510.
  • the frame 520 In one embodiment, the number of the antenna modules 10 is one or more, all radiation surfaces of the antenna modules 10 face the back plate 510, and the wave-transmitting structure 80 is at least partially carried on the back plate 510. ⁇ 510 ⁇ Board 510.
  • the number of the antenna modules 10 is one or more, the radiation surfaces of the antenna modules 10 all face the frame 520, and the wave-transmitting structure 80 is at least partially carried on the frame 520. In another embodiment, the number of the antenna modules 10 is one or more. When the number of the antenna modules 10 is more than one, the radiation surface of part of the antenna modules 10 faces the back plate 510, The radiation surface of the remaining part of the antenna module 10 faces the frame 520. Accordingly, the wave-transmitting structure 80 is partly carried on the back plate 510, and the other part of the wave-transmitting structure 80 is carried on the frame 520.
  • the radiation surface of the antenna module 10 faces the frame 520 and the wave-transmitting structure 80 is completely carried on the frame 520, and the number of the antenna modules 10 is two. Take this as an example. It should be noted that when the radiation surface of the antenna module 10 faces the back plate 510 and the wave-transmitting structure 80 is at least partially carried on the back plate 510, the back plate 510 and the wave-transmitting structure 80 is located within the radiation range of the radio frequency signal of the first preset frequency band, the radio frequency signal of the second preset frequency band, the radio frequency signal of the third preset frequency, and the radio frequency signal of the fourth preset frequency band.
  • the frame 520 and the wave-transmitting structure 80 are located in the first preset Within the radiation range of the radio frequency signal of the frequency band, the radio frequency signal of the second preset frequency band, the radio frequency signal of the third preset frequency, and the radio frequency signal of the fourth preset frequency band.
  • the electronic device 1 in this embodiment further includes a screen 70 which is arranged at the opening of the battery cover 50.
  • the screen 70 is used to display text, images, videos, and the like.
  • FIG. 33 is a cross-sectional view of an electronic device according to another embodiment of the present application.
  • the electronic device 1 includes a screen 70 and a wave-transmitting structure 80, the wave-transmitting structure 80 is carried on the screen 70, and at least a part of the radiating surface of the antenna module 10 faces the screen 70 and the wave-transmitting structure 80 .
  • the transmittance of the screen 70 to the radio frequency signal in the first frequency range is lower than the transmittance of the screen 70 and the wave-transmitting structure 80 to the radio frequency signal in the first frequency range;
  • the transmittance of the radio frequency signal in the second frequency band range is lower than the transmittance of the screen 70 and the wave-transmitting structure 80 to the radio frequency signal in the second frequency band range.
  • the radiating surface of the antenna module 10 radiates the radio frequency signal of the first preset frequency band, the radio frequency signal of the second preset frequency band, the radio frequency signal of the third preset frequency, and the fourth preset frequency band Of the radio frequency signal.
  • the screen 70 and at least part of the wave-transmitting structure 80 are located in the radio frequency signal of the first preset frequency band, the radio frequency signal of the second preset frequency band, the radio frequency signal of the third preset frequency, and the radio frequency signal of the third preset frequency.
  • the screen 70 may be, but is not limited to, a liquid crystal display screen or an organic light emitting diode display screen.
  • the wave-transmitting structure 80 carried on the screen 70 includes that the wave-transmitting structure 80 is directly arranged on the inner surface of the screen 70, or the wave-transmitting structure 80 is arranged on the outer surface of the screen 70, or, The wave-transmitting structure 80 is embedded in the screen 70, or the wave-transmitting structure 80 is provided on the inner surface or the outer surface of the screen 70 through a carrier film, etc., as long as the screen 70 is directly or indirectly It is sufficient that the wave-transmitting structure 80 is carried as a supporting substrate.
  • the carrier film may be, but is not limited to, a plastic (Polyethylene terephthalate, PET) film, a flexible circuit board, a printed circuit board, or the like.
  • the PET film can be, but is not limited to, an explosion-proof film or the like.
  • the material of the wave-transmitting structure 80 is a conductive material, which may be metallic or non-metallic. When the material of the wave-transmitting structure 80 is a non-metal conductive material, the wave-transmitting structure 80 may be transparent or non-transparent.
  • the wave-transmitting structure 80 may be integrated or non-integrated.
  • the dielectric constant of the screen 70 is the third dielectric constant
  • the transmittance of the screen 70 with the third dielectric constant to the radio frequency signal in the first frequency range is the fifth transmittance.
  • the dielectric constant of the screen 70 and the transparent structure 80 as a whole is the fourth dielectric constant, which is equivalent to the fourth dielectric constant of the screen 70 and
  • the transmittance of the wave-transmitting structure 80 to the radio frequency signal in the first frequency range is a sixth transmittance, and the sixth transmittance is greater than the fifth transmittance.
  • the wave-transmitting structure 80 is provided to increase the transmittance of the radio frequency signal in the first frequency band, and further improve the communication quality when the antenna module 10 uses the radio frequency signal in the first frequency band to communicate.
  • the transmittance of the screen 70 with the third dielectric constant to the radio frequency signal in the second frequency band is the seventh transmittance, which is equivalent to the screen 70 with the fourth dielectric constant and the transmittance
  • the transmittance of the wave structure 80 to the radio frequency signal in the second frequency range is an eighth transmittance, and the eighth transmittance is greater than the seventh transmittance.
  • the electronic device 1 further includes a battery cover 50, and the screen 70 is disposed at the opening of the battery cover 50.
  • the battery cover 50 generally includes a back plate 510 and a frame 520 connected to the periphery of the back plate 510 by bending.
  • first and second in the "first dielectric constant” and “second dielectric constant” used in this application are only used to distinguish the dielectric constant in name. It does not represent the comparison between the dielectric constants. Similarly, the other "first” and “second” used in this application are only for name distinction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

本申请提供了一种天线模组及电子设备。天线模组包括:第一、第二天线辐射体、第一、第二寄生辐射体。第一天线辐射体产生第一频段范围内的第一谐振。第一寄生辐射体与第一天线辐射体层叠且间隔设置,第一寄生辐射体与第一天线辐射体耦合而产生第一频段范围内的第二谐振。第二天线辐射体与第一天线辐射体层叠设置,且间隔设置于第一天线辐射体背离第一寄生辐射体的一侧,第二天线辐射体产生第二频段范围内的第一谐振。第二寄生辐射体与第二天线辐射体层叠且间隔设置,或,第二寄生辐射体与第二天线辐射体同层且间隔设置,第二寄生辐射体与第二天线辐射体耦合而产生第二频段范围内的第二谐振,其中,第二频段范围与第一频段范围至少部分不交叠。

Description

天线模组及电子设备 技术领域
本申请涉及电子设备领域,尤其涉及一种天线模组及电子设备。
背景技术
随着移动通信技术的发展,传统的第四代(4th-Generation,4G)移动通信已经不能够满足人们的要求。第五代(5th-Generation,5G)移动通信由于具有较高的通信速度,可而备受用户青睐。比如,利用5G移动通信传输数据时的传输速度比4G移动通信传输数据的速度快数百倍。毫米波信号是实现5G移动通信的主要手段,然而,当毫米波天线应用于电子设备时,毫米波天线模组的通信效果较差。
发明内容
为了解决现有技术中毫米波天线模组通信效果差的技术问题,本申请提供了一种天线模组、及电子设备。
本申请提供一种天线模组,所述天线模组包括:
第一天线辐射体,所述第一天线辐射体用于产生第一频段范围内的第一谐振;
第一寄生辐射体,所述第一寄生辐射体与所述第一天线辐射体层叠且间隔设置,所述第一寄生辐射体与所述第一天线辐射体耦合而产生第一频段范围内的内第二谐振;
第二天线辐射体,所述第二天线辐射体与所述第一天线辐射体层叠设置,且间隔设置于所述第一天线辐射体背离所述第一寄生辐射体的一侧,所述第二天线辐射体用于产生第二频段范围内的第一谐振;及
第二寄生辐射体,所述第二寄生辐射体与所述第二天线辐射体层叠且间隔设置,或者,所述第二寄生辐射体与所述第二天线辐射体同层且间隔设置,所述第二寄生辐射体与所述第二天线辐射体耦合而产生第二频段范围内的第二谐振,其中,所述第二频段范围与所述第一频段范围至少部分不交叠。
本申请还提供了一种电子设备,所述电子设备包括控制器前面所述的天线模组,所述控制器与所述天线模组电连接,所述天线模组用于在所述控制器的控制下工作。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一实施方式提供的天线模组的立体结构示意图。
图2为本申请一实施方式提供的天线模组的封装示意图。
图3为本申请一实施方式中图2沿I-I线的剖面结构示意图。
图4为本申请另一实施方式中图2沿I-I线的剖面示意图。
图5为本申请一实施方式提供的天线模组中第一寄生辐射体的俯视图。
图6为本申请一实施方式提供的天线模组中第一天线辐射体的透视图。
图7为本申请一实施方式中图2沿II-II线的剖面示意图。
图8为本申请一实施方式提供的天线模组中第一天线辐射体与第一寄生辐射体的俯视图。
图9为本申请另一实施方式提供的天线模组中第一天线辐射体与第一寄生辐射体的俯视图。
图10为本申请一实施方式提供的天线模组中第一寄生辐射体的俯视图。
图11为本申请一实施方式提供的天线模组中第一天线辐射体的透视图。
图12为图10中沿III-III线的剖面示意图。
图13为本申请一实施方式提供的天线模组中第一寄生辐射体的俯视图。
图14为本申请一实施方式提供的天线模组中第一天线辐射体的透视图。
图15为图13中沿IV-IV线的剖面示意图。
图16为本申请一实施方式提供的天线模组中第二天线辐射体与第二寄生辐射体的俯视图。
图17为本申请一实施方式提供的天线模组中第一天线辐射体与第一寄生辐射体的俯视图。
图18为本申请一实施方式提供的第一天线辐射体的俯视图。
图19为本申请一实施方式提供的第二天线辐射体的俯视图。
图20为本申请一实施方式提供的天线模组的剖面图。
图21为本申请一实施方式提供的第一天线辐射体及第一寄生辐射体的尺寸示意图。
图22为本申请一实施方式提供的天线模组优化后的回波损耗与频率的变化曲线。
图23为第二天线辐射体及第二寄生辐射体的透视图。
图24为本申请一实施方式提供的天线模组的示意图。
图25为本申请另一实施方式提供的天线模组的示意图。
图26为本申请的天线模组辐射24~30GHz的射频信号的辐射效率示意图。
图27为本申请天线模组辐射36~41GHz的射频信号的辐射效率示意图。
图28为本申请的天线模组在26GHz时的方向仿真图。
图29为本申请的天线模组在28GHz时的方向仿真图。
图30为本申请的天线模组在39GHz时的方向仿真图。
图31为本申请一实施方式提供的电子设备的电路框图。
图32为本申请一实施方式提供的电子设备的剖视图。
图33为本申请另一实施方式提供的电子设备的剖视图。
具体实施方式
本申请提供了一种天线模组,所述天线模组包括:
第一天线辐射体,所述第一天线辐射体用于产生第一频段范围内的第一谐振;
第一寄生辐射体,所述第一寄生辐射体与所述第一天线辐射体层叠且间隔设置,所述第一寄生辐射体与所述第一天线辐射体耦合而产生第一频段范围内的第二谐振;
第二天线辐射体,所述第二天线辐射体与所述第一天线辐射体层叠,且间隔设置于所述第一天线辐射体背离所述第一寄生辐射体的一侧,所述第二天线辐射体用于产生第二频段范围内的第一谐振;及
第二寄生辐射体,所述第二寄生辐射体与所述第二天线辐射体层叠且间隔设置,或者,所述第二寄生辐射体与所述第二天线辐射体同层且间隔设置,所述第二寄生辐射体与所述第二天线辐射体耦合而产生第二频段范围内的第二谐振,其中,所述第二频段范围与所述第一频段范围至少部分不交叠。
其中,第一天线辐射体在第一频段范围内的第一谐振用于产生第一预设频段的射频信号,所述第一寄生辐射体在第一频段范围内的第二谐振用于产生第二预设频段的射频信号,其中,所述第一预设频段及所述第二预设频段均位于第一频段范围内,且所述第一预设频段及所述第二预设频段至少部分不同。
其中,所述天线模组还包括射频芯片;
所述第一天线辐射体相较于所述第一寄生辐射体邻近所述射频芯片,所述第一天线辐射体及所述第一寄生辐射体均为导电贴片,所述第一天线辐射体与所述射频芯片电性连接。
其中,所述第一天线辐射体的尺寸大于所述第一寄生辐射体的尺寸,所述第一寄生辐射体在所述第一天线辐射体所在的平面内的正投影与所述第一天线辐射体所在的区域至少部分重叠。
其中,所述第一寄生辐射体在所述第一天线辐射体所在平面的正投影落入所述第一天线辐射体所在 的区域内。
其中,所述第一天线辐射体具有贯穿所述第一天线辐射体相对的两个表面的第一镂空结构,所述第一天线辐射体的尺寸小于或等于所述第一寄生辐射体的尺寸,且随着所述第一镂空结构的面积的增大,所述第一天线辐射体与所述第一寄生辐射体的尺寸差异越大。
其中,所述第一天线辐射体具有贯穿所述第一天线辐射体相对的两个表面的第一镂空结构,所述第一寄生辐射体具有贯穿所述第一寄生辐射体相对的两个表面的第二镂空结构,所述第一天线辐射体的尺寸小于或等于所述第一寄生辐射体的尺寸,且所述第一镂空结构的面积大于所述第二镂空结构的面积。
其中,所述第二天线辐射体与所述射频芯片电性连接,所述第二天线辐射体及所述第二寄生天线辐射体均为导电贴片,当所述第二寄生辐射体与所述第二天线辐射体层叠设置时,所述第二天线辐射体相较于所述第二寄生辐射体邻近所述射频芯片。
其中,所述第一天线辐射体及所述第二天线辐射体均为导电贴片,所述第二天线辐射体相较于所述第一天线辐射体邻近所述射频芯片设置,且所述第二频段范围内的射频信号的频率小于所述第一频段范围内的射频信号的频率。
其中,所述天线模组还包括馈电件,所述第二天线辐射体具有通孔,所述馈电件穿过所述通孔,所述馈电件电连接所述射频芯片及所述第一天线辐射体馈电件。
其中,所述第二寄生辐射体的数目为多个,所述第二天线辐射体所在的区域的中心与所述多个第二寄生辐射体在所述第二天线辐射体所在的平面内的正投影的中心重合。
其中,所述第二寄生辐射体为矩形导电贴片,所述第二寄生辐射体包括面对所述第二天线辐射体的第一边以及与所述第一边相连的第二边,其中,所述第一边的长度大于所述第二边的长度,所述第一边用于调整所述第二寄生辐射体的谐振频率,所述第二边用于调整所述第二寄生辐射体和所述第二天线辐射体之间的阻抗。
其中,所述第二天线辐射体在所述第二频段范围内的第一谐振用于产生第三预设频段的射频信号,所述第二寄生辐射体在第二频段范围内的第二谐振用于产生第四预设频段的射频信号,其中,所述第三预设频段及所述第四预设频段均位于所述第二频段范围内,且所述第三预设频段与所述第四预设频段至少部分不同。
其中,所述第一天线辐射体为正方形导电贴片,所述第一天线辐射体的边长范围为1.6mm~2.0mm,所述第一寄生辐射体为长方形导电贴片,所述第一寄生辐射体的长边的长度等于所述第一天线辐射体的边长的长度,所述第一寄生辐射体的短边的长度范围为0.2mm~0.9mm,所述第一寄生辐射体到所述第一天线辐射体的间距的范围为:0~0.8mm。
其中,所述第二天线辐射体为正方形导电贴片,所述第二天线辐射体的边长范围为2.0mm~2.8mm,所述第二寄生辐射体为长方形导电贴片,所述第二寄生辐射体的长边的长度等于所述第二天线辐射体的边长的长度,所述第二寄生辐射体的短边的长度范围为0.2mm~0.9mm,所述第二寄生辐射体到所述第二天线辐射体的间距的范围为:0~0.6mm。
其中,所述第二寄生辐射体在垂直于所述第二天线辐射体所在平面的投影与所述第二天线辐射体所在的区域之间的间隙的范围为0.2~0.8mm。
其中,第一频段范围包括毫米波39GHz频段,所述第一频段范围内的第一谐振和第二谐振覆盖n260频段,第二频段范围包括28GHz,所述第二频段范围的第一谐振和第二谐振覆盖毫米波n257,n258和n261频段。
本申请还提供了一阵电子设备,所述电子设备包括控制器和如前面任意一项所述的天线模组,所述控制器与所述天线模组电连接,所述天线模组用于在所述控制器的控制下工作。
其中,所述电子设备包括电池盖和透波结构,所述透波结构承载于所述电池盖,所述天线模组的辐射面至少部分朝向所述电池盖和所述透波结构,所述电池盖对所述第一频段范围的射频信号的透过率小于所述电池盖和所述透波结构对所述第一频段范围的射频信号的透过率;所述电池盖对所述第二频段范围的射频信号的透过率小于所述电池盖和所述透波结构对所述第二频段范围的射频信号的透过率。
其中,所述电子设备包括屏幕和透波结构,所述透波结构承载于所述屏幕,所述天线模组的辐射面至少部分朝向所述屏幕和所述透波结构,所述屏幕对所述第一频段范围的射频信号的透过率小于所述屏幕和所述透波结构对所述第一频段范围的射频信号的透过率;所述屏幕对所述第二频段范围的射频信号的透过率小于所述屏幕和所述透波结构对所述第二频段范围的射频信号的透过率。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请一并参阅图1、图2及图3,图1为本申请一实施方式提供的天线模组的立体结构示意图;图2为本申请一实施方式提供的天线模组的封装示意图;图3为本申请一实施方式中图2沿I-I线的剖面结构示意图。本申请提供了一种天线模组10。所述天线模组10包括:第一天线辐射体130、第一寄生辐射体140、第二天线辐射体150、及第二寄生辐射体160。所述第一天线辐射体130用于产生第一频段范围内的第一谐振。所述第一寄生辐射体140与所述第一天线辐射体130层叠且间隔设置,所述第一寄生辐射体140与所述第一天线辐射体130耦合而产生第一频段范围内的第二谐振。所述第二天线辐射体150与所述第一天线辐射体130层叠,且间隔设置于所述第一天线辐射体130背离所述第一寄生辐射体140的一侧,所述第二天线辐射体150用于产生第二频段范围内的第一谐振。所述第二寄生辐射体160与所述第二天线辐射体150层叠且间隔设置,所述第二寄生辐射体160与所述第二天线辐射体150耦合而产生第二频段范围内的第二谐振,其中,所述第二频段范围与所述第一频段范围至少部分不交叠。
所述第一频段范围和所述第二频段范围可以包括但不仅限于为毫米波频段或者太赫兹频段。目前,在第五代移动通信技术(5th generation wireless systems,5G)中,根据3GPP TS 38.101协议的规定,5G新空口(new radio,NR)主要使用两段频率:FR1频段和FR2频段。其中,FR1频段的频率范围是450MHz~6GHz,又叫sub-6GHz频段;FR2频段的频率范围是24.25GHz~52.6GHz,属于毫米波(mm Wave)频段。3GPP Release 15版本规范了目前5G毫米波频段包括:n257(26.5~29.5GHz),n258(24.25~27.5GHz),n261(27.5~28.35GHz)和n260(37~40GHz)。在一些实施例中,第一频段范围可以包括毫米波39GHz频段,第一频段范围内的第一谐振和第二谐振可以覆盖毫米波n260(37~40GHz)频段的射频信号的收发需求;第二频段范围可以包括毫米波28GHz频段,第二频段范围内的第一谐振和第二谐振可以覆盖毫米波n257(26.5~29.5GHz),n258(24.25~27.5GHz)和n261(27.5~28.35GHz)频段的射频信号的收发需求。
本申请的天线模组10中第一天线辐射体130和第一寄生辐射体140均产生第一频段范围内的谐振,且所述第二天线辐射体150及所述第二寄生辐射体160均产生第二频段范围内的谐振,从而使得所述天线模组10工作在两个频段范围,拓展了所述天线模组10的带宽。所述第一寄生辐射体140与所述第一天线辐射体130层叠且间隔设置,从而利用了所述第一寄生辐射体140与所述第一天线辐射体130层叠方向上(Z方向)的空间,减小了所述第一寄生辐射体140与所述第一天线辐射体130在与所述层叠方向垂直的平面(X方向及Y方向)上的尺寸。相应地,所述第二寄生辐射体160与所述第二天线辐射体150层叠且间隔设置,从而利用了所述第二寄生辐射体160与所述第二天线辐射体150层叠方向(Z)方向上的空间,减小了所述第一寄生辐射体140与所述第一天线辐射体130在与所述层叠方向垂直的平面(X方向及Y方向)上的尺寸。
所述第一天线辐射体130的材质可以为金属或者非金属等导电材质,当所述第一天线辐射体130的材质为非金属的导电材质时,所述第一天线辐射体130可以为不透明的,也可以为透明的。所述第一寄生辐射体140的材质可以为金属或者非金属等导电材质,当所述第一寄生辐射体140的材质为非金属的导电材质时,所述第一寄生辐射体140可以为不透明的,也可以为透明的。相应地,所述第二天线辐射体150的材质可以为但不仅限为金属或者非金属等导电材质,当所述第二天线辐射体150的材质为非金属的导电材质时,所述第二天线辐射体150可以为不透明的,也可以为透明的。所述第二寄生辐射体160的材质可以为金属或者非金属等导电材质,当所述第二寄生辐射体160的材质为非金属的导电材质时,所述第二寄生辐射体160可以为不透明的,也可以为透明的。所述第一天线辐射体130、所述第一寄生辐射体140、所述第二天线辐射体150、及所述第二寄生辐射体160的材质可以相同也可以不同。
在一些实施例中,所述第一天线辐射体130在第一频段范围内的第一谐振用于产生第一预设频段的射频信号,所述第一寄生辐射体140在第一频段范围内的第二谐振用于产生第二预设频段的射频信号,其中,所述第一预设频段及所述第二预设频段均位于第一频段范围内,且所述第一预设频段及所述第二预设频段至少部分不同。相应地,所述第二天线辐射体150在第二频段范围内的第一谐振用于产生第三预设频段的射频信号,第二寄生辐射体160在第二频段范围内的第二谐振用于产生第四预设频段的射频信号,其中,所述第三预设频段及所述第四预设频段均位于所述第二频段范围内,且所述第三预设频段与所述第四预设频段至少部分不同。
以第一频段范围内的第一谐振及第二谐振产生的射频信号为例,由于第一预设频段的射频信号及第二预设频段的射频信号均属于第一频段范围,且所述第一预设频段及所述第二预设频段至少部分不相同从而使得所述第一频段范围可以覆盖较大的频带宽度。具体地,所述第一频段范围为(P1~P2),所述第一预设频段为(P1~P3),所述第二预设频段为(P4~P2)。其中,P3小于或等于P2,P4大于或等于P1,且第一预设频段不等于第二预设频段。P3和P4的关系可以为P3小于P4,此时,第一预设频段与所述第二预设频段不交叠。P3和P4的关系可以为P3大于或等于P4,此时,所述第一预设频段与所述第二预设频段存在交叠,即,所述第一预设频段及所述第二预设频段组成连续的第一频段。举例而言,所述第一频段为n260(37~40GHz),所述第一预设频段为37~A GHz,所述第二预设频段为B~40GHz,其中,A小于等于40,B大于等于37且小于40。A和B的关系可以为A小于B,此时,所述第一预设频段与所述第二预设频段不交叠。A和B的关系可以为A大于或等于B,此时,所述第一预设频段与所述第二预设频段存在交叠,即,所述第一预设频段与所述第二预设频段组成完整的n260频段。
相较于现有技术,本申请的天线模组10可辐射第一频段范围的射频信号及第二频段范围的射频信号,从而使得所述天线模组10具有两个频段的射频信号的通信功能,实现较大带宽的覆盖。所述第一天线辐射体130可辐射第一预设频段的射频信号,且所述第一寄生辐射体140与所述第一天线辐射体130耦合而产生第二预设频段的射频信号,若所述第一预设频段与所述第二预设频段不交叠,则可以提升所述天线模组10在所述第一频段范围内的带宽,若所述第一预设频段与所述第二预设频段存在交叠,则可以提升所述天线模组10在所述第一频段范围内的辐射效率;此外,所述第一寄生辐射体140与所述第一天线辐射体130层叠且间隔设置,可利用所述天线模组10在所述第一寄生辐射体140与所述第一天线辐射体130层叠方向的空间,有利于缩小在与所述层叠方向垂直的平面的尺寸。相应地,所述第二天线辐射体150可辐射第三预设频段的射频信号,且所述第二寄生辐射体160与所述第二天线辐射体150耦合而产生第四预设频段的射频信号,若所述第三预设频段与所述第四预设频段不交叠,则可提升所述天线模组10在所述第一频段范围内的带宽,若所述第三预设频段与所述第四预设频段存在交叠,则可提升所述天线模组10在所述第一频段范围的辐射效率;此外,所述第二寄生辐射体160与所述第二天线辐射体150层叠且间隔设置时,可利用所述天线模组10在所述第二寄生辐射体160与所述第二天线辐射体150在所述层叠方向的空间,有利于缩小在与所述层叠方向垂直的平面的尺寸。
请参阅图4,图4为本申请另一实施方式中图2沿I-I线的剖面示意图。所述天线模组10还包括射频芯片110,所述第一天线辐射体130相较于所述第一寄生辐射体140邻近所述射频芯片110,所述第一天线辐射体130及所述第一寄生辐射体140均为导电贴片。
所述射频芯片110用于产生第一激励信号,所述射频芯片110与第一天线辐射体130电连接,以将所述第一激励信号传输至所述第一天线辐射体130。所述第一天线辐射体130根据所述第一激励信号产生第一频段范围内的第一谐振。在一些实施例中,所述第一天线辐射体130及所述第一寄生辐射体140均为导电贴片。可以理解,所述第一天线辐射体130及所述第一寄生辐射体140也可以为微带线、导电银浆等。
在所述第一寄生辐射体140与所述射频芯片110之间的距离一定的情况下,倘若所述第一天线辐射体130相较于所述第一寄生辐射体140背离所述射频芯片110设置,所述第一天线辐射体130与所述射频芯片110之间的距离为第一距离;而所述第一天线辐射体130相较于所述第一寄生辐射体140邻近所述射频芯片110设置,所述第一天线辐射体130与所述射频芯片110之间的距离为第二距离,则,所述 第二距离小于所述第一距离。由此可见,所述第一天线辐射体130相较于所述第一寄生辐射体140邻近所述射频芯片110设置,从而使得所述第一天线辐射体130与所述射频芯片110之间的馈电件(比如馈电导线,馈电探针)的长度较短,进而减小了所述第一天线辐射体130与所述射频芯片110之间的馈电件过长导致的第一激励信号传输至所述第一天线辐射体130上时的损耗,提升了所述第一天线辐射体130产生的第一预设频段的射频信号的增益。
此外,所述第一天线辐射体130的尺寸大于所述第一寄生辐射体140的尺寸,且所述第一天线辐射体130相较于所述第一寄生辐射体140邻近所述射频芯片110,从而使得所述第一天线辐射体130产生的第一预设频段的射频信号不会被所述第一寄生辐射体140遮挡而造成的第一天线辐射体130产生的第一预设频段的射频信号辐射强度较弱或者甚至被屏蔽。
所述天线模组10还包括基板120,所述基板120用于承载所述第一天线辐射体130、所述第一寄生辐射体140、及所述射频芯片110。所述基板120包括相对设置的第一表面120a及第二表面120b。在本实施方式中,所述第一寄生辐射体140设置于所述第一表面120a,所述第一天线辐射体130内嵌于所述基板120,所述射频芯片110设置于所述第二表面120b。所述射频芯片110用于产生第一激励信号,所述射频芯片110通过内嵌在所述基板120内的第一馈电件170电连接所述第一天线辐射体130。可以理解地,在其他实施方式中,所述第一寄生辐射体140及所述第一天线辐射体130也可均内嵌于所述基板120,只要满足所述第一寄生辐射体140与所述第一天线辐射体130层叠且间隔设置,且所述第一寄生辐射体140相较于所述第一天线辐射背离所述射频芯片110即可。所述射频芯片110可通过焊接等方式固定在所述基板120的第二表面120b上。所述第一馈电件170可以为但不仅限于为馈电导线或馈电探针等。
在一些实施例中,所述射频芯片110输出第一激励信号的引脚设置于所述射频芯片110面对所述基板120的表面上,所述射频芯片110输出第一激励信号的引脚的这种设置方式可使得所述第一馈电件170的长度较短,进而减小了所述第一天线辐射体130与所述射频芯片110之间的馈电件过长导致的第一激励信号传输至所述第一天线辐射体130上时的损耗,提升了所述第一天线辐射体130产生的第一预设频段的射频信号的增益。
请一并参阅图5、图6、及图7,图5为本申请一实施方式提供的天线模组中第一寄生辐射体的俯视图;图6为本申请一实施方式提供的天线模组中第一天线辐射体的透视图;图7为本申请一实施方式中图2沿II-II线的剖面示意图。图7中的观察视角和图6的观察视角相同,所述第一天线辐射体130的形状可以为但不仅限于为矩形,圆形,多边形等;相应地,所述第一寄生辐射体140的形状可以为但不仅限于为矩形,圆形,多边形等。所述第一寄生辐射体140的形状可以与所述第一天线辐射体130的形状相同或者不同。在本实施方式中,以所述第一天线辐射体130以及所述第一寄生辐射体140均为正方形为例进行示意。由于所述第一天线辐射体130与所述第一寄生辐射体140之间层叠设置,所述第一寄生辐射体140与所述第一天线辐射体130之间可设置一层或多层绝缘层123,在图7中以所述第一天线辐射体130与所述第一寄生辐射体140之间设置一层绝缘层123且省略了天线模组10中的其他器件为例进行示意。
请一并参阅图8及图9,图8为本申请一实施方式提供的天线模组中第一天线辐射体与第一寄生辐射体的俯视图;图9为本申请另一实施方式提供的天线模组中第一天线辐射体与第一寄生辐射体的俯视图。所述第一天线辐射体130的尺寸大于所述第一寄生辐射体140的尺寸,所述第一寄生辐射体140在所述第一天线辐射体130所在的平面内的正投影与所述第一天线辐射体130所在的区域至少部分重叠。
所述第一寄生辐射体140在所述第一天线辐射体130所在的平面内的正投影与所述第一天线辐射体130所在的区域至少部分重叠包括,所述第一寄生辐射体140在所述第一天线辐射体130所在的平面内的正投影与所述第一天线辐射体130所在的区域部分重叠,且所述第一寄生辐射体140在所述第一天线辐射体130所在的平面内的正投影与所述第一天线辐射体130所在的区域部分不重叠(请参阅图8)。换而言之,所述第一寄生辐射体140在所述第一天线辐射体130所在平面的正投影的一部分落入所述第一天线辐射体130所在的区域内,所述第一寄生辐射体140在所述第一天线辐射体130所在的平面的正 投影的另外一部分落入所述第一天线辐射体130所在的区域之外。
所述第一寄生辐射体140在所述第一天线辐射体130所在的平面内的正投影与所述第一天线辐射体130所在的区域至少部分重叠还包括,所述第一寄生辐射体140在所述第一天线辐射体130所在平面的正投影落入所述第一天线辐射体130所在的区域内。
所述第一寄生辐射体140在所述第一天线辐射体130所在的平面的正投影与所述第一天线辐射体130所在的区域至少部分重叠,从而可增强所述第一寄生辐射体140与所述第一天线辐射体130之间的耦合效果,从而提升了所述第一寄生辐射体140耦合所述第一天线辐射体130产生的第二预设频段的射频信号的强度,提升了所述天线模组10的通信质量。所述第一寄生辐射体140在所述第一天线辐射体130所在的平面的正投影落入所述第一天线辐射体130所在的区域内,可进一步增强所述第一寄生辐射体140与所述第一天线辐射体130的耦合效果,进一步提升所述第一寄生辐射体140耦合所述第一天线辐射体130产生的第二预设频段的射频信号的强度,进一步提升所述天线模组10的通信质量。
在一些实施例中,所述第一寄生辐射体140在所述第一天线辐射体130所在平面的正投影落入所述第一天线辐射体130所在的区域内且所述第一寄生辐射体140在所述第一天线辐射体130所在平面的正投影的中心与所述第一天线辐射体130所在的区域的中心完全重合(请参阅图9)。此时,可进一步增强所述第一寄生辐射体140与所述第一天线辐射体130的耦合效果,进一步提升所述第一寄生辐射体140耦合所述第一天线辐射体130产生的第二预设频段的射频信号的强度,进一步提升所述天线模组10的通信质量。
请一并参阅图10、图11、及图12,图10为本申请一实施方式提供的天线模组中第一寄生辐射体的俯视图;图11为本申请一实施方式提供的天线模组中第一天线辐射体的透视图;图12为图10中沿III-III线的剖面示意图。在本实施方式中,所述天线模组10还包括射频芯片110(参阅图4)。所述第一天线辐射体130相较于所述第一寄生辐射体140邻近所述射频芯片110,且所述第一天线辐射体130具有贯穿所述第一天线辐射体130相对的两个表面的第一镂空结构131,所述第一天线辐射体130的尺寸小于或等于所述第一寄生辐射体140的尺寸,且随着所述第一镂空结构131的面积的增大,所述第一天线辐射体130与所述第一寄生辐射体140的尺寸差异越大。在本实施方式的示意图中,以所述第一天线辐射体130的尺寸等于所述第一寄生辐射体140的尺寸为例进行示意。可以理解地,所述第一天线辐射体130与所述第一寄生辐射体140之间可设置一层或多层绝缘层123,在本实施方式中,以所述第一天线辐射体130与所述第一寄生辐射体140之间以设置有一层绝缘层123且省略了天线模组10中的其他器件为例进行示意。
所述第一天线辐射体130的尺寸通常是指所述第一天线辐射体130的外轮廓尺寸,所述第一寄生辐射体140的尺寸通常是指所述第一天线辐射体130的外轮廓尺寸。当所述第一天线辐射体130与所述第一寄生辐射体140的形状相同时,所述第一天线辐射体130小于或等于所述第一寄生辐射体140的外轮廓尺寸时,所述第一天线辐射体130的边长也小于或等于所述第一寄生辐射体140的外轮廓尺寸。在本实施方式中,以所述第一天线辐射体130的形状为正方形,所述第一寄生辐射体140的形状为正方形,所述第一天线辐射体130的外轮廓尺寸等于所述第一寄生辐射体140的外轮廓尺寸,且所述第一镂空结构131的形状为正方形为例进行示意。
对于辐射同一频段的第一预设频段的射频信号且相较于不具有第一镂空结构131的第一天线辐射体130而言,当加载第一激励信号时,本实施方式中第一天线辐射体130具有第一镂空结构131的表面电流分布与不具有第一镂空结构131的表面电流分布不同,因此,对于辐射同样的第一预设频段的射频信号而言,具有第一镂空结构131的第一天线辐射体130的外轮廓尺寸小于不具有第一镂空结构131的第一天线辐射体130的外轮廓尺寸,有利于天线模组10的小型化。
请一并参阅图13、图14、及图15,图13为本申请一实施方式提供的天线模组中第一寄生辐射体的俯视图;图14为本申请一实施方式提供的天线模组中第一天线辐射体的透视图;图15为图13中沿IV-IV线的剖面示意图。第二镂空结构141所述天线模组10还包括射频芯片110(请参阅图4)。所述第一天线辐射体130相较于所述第一寄生辐射体140邻近所述射频芯片110,所述第一天线辐射体130具有贯 穿所述第一天线辐射体130相对的两个表面的第一镂空结构131,所述第一寄生辐射体140具有贯穿所述第一寄生辐射体140相对的两个表面的第二镂空结构141,所述第一天线辐射体130的尺寸小于或等于所述第一寄生辐射体140的尺寸,且所述第一镂空结构131的面积大于所述第二镂空结构141的面积。在本实施方式的示意图中,以所述第一天线辐射体130的尺寸等于所述第一寄生辐射体140的尺寸为例进行示意。在本实施方式中,图14中的观察视角和图13中的观察视角相同,所述第一天线辐射体130的外轮廓的形状可以为但不仅限于为矩形,圆形,多边形等;相应地,所述第一寄生辐射体140的形状也可以为但不仅限于为矩形,圆形,多边形等。所述第一镂空结构131的形状也可以为但不仅限于为矩形,圆形,多边形等;相应地,所述第二镂空结构141的外轮廓的形状也可以为但不仅限于为矩形,圆形,多边形等。所述第一天线辐射体130的形状可以与所述第一寄生辐射体140的形状相同,也可以不相同。
可以理解地,所述第一天线辐射体130与所述第一寄生辐射体140之间可设置一层或多层绝缘层123,在本实施方式中,以所述第一天线辐射体130与所述第一寄生辐射体140之间以设置有一层绝缘层123且省略了天线模组10中的其他器件为例进行示意。
相应地,对于辐射同样的第二预设频段的射频信号且相较于不具有第二镂空结构141的第一寄生辐射体140而言,当加载第一激励信号时,本实施方式中第一寄生辐射体140具有第二镂空结构141的表面电流分布与不具有第二镂空结构141的表面电流分布不同,因此,对于辐射同样的第二预设频段的射频信号而言,具有第二镂空结构141的第一寄生辐射体140的外轮廓尺寸小于不具有第二镂空结构141的第一寄生辐射体140的外轮廓尺寸,有利于天线模组10的小型化。
请再次参阅图4,所述天线模组10还包括:射频芯片110。所述第二天线辐射体150及所述第二寄生辐射体160均为导电贴片,当所述第二寄生辐射体160与所述第二天线辐射体150层叠设置时,所述第二天线辐射体150相较于所述第二寄生辐射体160邻近所述射频芯片110。所述射频芯片110用于产生第二激励信号,所述射频芯片110与第二天线辐射体150电连接,以将所述第二激励信号传输至所述第二天线辐射体150。所述第二天线辐射体150根据所述第二激励信号产生第二频点范围内的第二谐振。在所述第二寄生辐射体160与所述射频芯片110之间的距离一定的情况下,倘若所述第二天线辐射体150相较于所述第二寄生辐射体160背离所述射频芯片110设置,所述第二天线辐射体150与所述射频芯片110之间的距离为第三距离;而所述第二天线辐射体150相较于所述第二寄生辐射体160邻近所述射频芯片110设置,所述第二天线辐射体150与所述射频芯片110之间的距离为第四距离,则,所述第四距离小于所述第三距离。由此可见,所述第二天线辐射体150相较于所述第二寄生辐射体160邻近所述射频芯片110设置,能使得所述第二天线辐射体150与所述射频芯片110之间的馈电件(比如馈电导线,馈电探针)的长度较短,进而减小了所述第二天线辐射体150与所述射频芯片110之间的馈电件过长导致的第二激励信号传输至所述第二天线辐射体150上时的损耗,提升了所述第二天线辐射体150产生的第三预设频段的射频信号的增益。
此外,对于导电贴片形式的第二天线辐射体150及第二寄生辐射体160,所述第二天线辐射体150的尺寸大于所述第二寄生辐射体160的尺寸,且所述第二天线辐射体150相较于所述第二寄生辐射体160邻近所述射频芯片110,从而使得所述第二天线辐射体150产生的第三预设频段的射频信号不会被所述第二寄生辐射体160遮挡而造成的第二天线辐射体150产生的第三预设频段的射频信号辐射强度较弱或者甚至被屏蔽。因此,本实施方式中,所述第二天线辐射体150及所述第二寄生辐射体160的设置可提升所述天线模组10的通信效果。
请一并参阅图16,图16为本申请一实施方式提供的天线模组中第二天线辐射体与第二寄生辐射体的俯视图。所述第二寄生辐射体160的数目为多个,所述第二天线辐射体150所在的区域的中心与所述多个第二寄生辐射体160在所述第二天线辐射体150所在的平面内的正投影的中心重合。
在图中以所述第二寄生辐射体160的数目为4个为例进行示意。所述第二天线辐射体150的中心记为O2,所述多个第二寄生辐射体160的中心是指,以所述多个第二寄生辐射体160为整体,为了方便描述,所述整体的中心记为O2’。O2和O2’重合。所述第二天线辐射体150所在的区域的中心与所述多 个第二寄生辐射体160在所述第二天线辐射体150所在的平面内的正投影的中心重合,可增强所述第二寄生辐射体160与所述第二天线辐射体150的耦合效果,进一步提升所述第二寄生辐射体160与所述第二天线辐射体150耦合产生的第四预设频段的射频信号的强度,进一步提升所述天线模组10的通信质量。
所述第二寄生辐射体160为矩形导电贴片,所述第二寄生辐射体160包括面对所述第二天线辐射体150的第一边161以及与所述第一边161相连的第二边162,其中,所述第一边161的长度大于所述第二边162的长度,所述第一边161用于调整所述第二寄生辐射体160的谐振频率,所述第二边162用于调整所述第二寄生辐射体160和所述第二天线辐射体150之间的阻抗。
具体地,所述第一边161的长度不同,所述第二寄生辐射体160的谐振频率不同;所述第二边162的长度不同,所述第二寄生辐射体160与所述第二天线辐射体150之间的阻抗匹配度不同。通常而言,所述第二边162的长度对所述第二寄生辐射体160与所述第二天线辐射体150之间的阻抗匹配度之间是呈正态分布的关系,换而言之,对于辐射同样的第四预设频段的射频信号而言,当所述第二边162的长度为预设长度a时,所述第二寄生辐射体160与所述第二天线辐射体150之间的阻抗匹配达到最佳,当所述第二边162的长度小于预设长度或者大于预设长度时,所述第二寄生辐射体160与所述第二天线辐射体150之间的匹配度下降。
此外,当所述第二寄生辐射体160与所述第二天线辐射体150层叠设置时,所述第二寄生辐射体160与所述第二天线辐射体150之间的间距也会影响所述第二寄生辐射体160与所述第二天线辐射体150之间的耦合度。当所述第二寄生辐射体160与所述第二天线辐射体150之间的间距越大,所述第二寄生辐射体160与所述第二天线辐射体150之间的耦合度越小;反之,当所述第二寄生辐射体160与所述第二天线辐射体150之间的间距越小时,所述第二寄生辐射体160与所述第二天线辐射体150之间的耦合度越大。当所述第二寄生辐射体160与所述第一天线辐射体130之间的耦合度越大,所述第二寄生辐射体160产生的第四预设频段的射频信号的强度也越大,所述天线模组10的通信性能也越好。
可以理解地,请参阅图17,图17为本申请一实施方式提供的天线模组中第一天线辐射体与第一寄生辐射体的俯视图。所述第一天线辐射体130所在的区域的中心与所述第一寄生辐射体140在所述第一天线辐射体130所在的平面内的正投影的中心重合。为了方便描述,所述第一天线辐射体130所在的中心记为O1,所述第一寄生辐射体140在所述第一天线辐射体130所在的平面内的正投影的中心记为O1’,所述O1’与所述O1重合。本实施方式中,所述第一天线辐射体130及所述第一寄生辐射体140的这种结构可提升所述第一寄生辐射体140与所述第一天线辐射体130的耦合效果,进一步提升所述第一寄生辐射体140与所述第一天线辐射体130耦合产生的第二预设频段的射频信号的强度,进一步提升所述天线模组10的通信质量。
此外,所述第一寄生辐射体140与所述第一天线辐射体130之间的间距也会影响所述第一寄生辐射体140与所述第一天线辐射体130之间的耦合度。当所述第一寄生辐射体140与所述第一天线辐射体130之间的间距越大时,所述第一寄生辐射体140与所述第一天线辐射体130之间的耦合度越小;反之,当所述第一寄生辐射体140与所述第一天线辐射体130之间的间距越小时,所述第一寄生辐射体140与所述第一天线辐射体130之间的耦合度越大。当所述第一寄生辐射体140辐射体与所述第一天线辐射体130之间的耦合度越大,所述第一寄生辐射体140产生的第二预设频段的射频信号的强度越大,则所述天线模组10的通信性能越好。
请再次一并参阅图1至图3,所述第一天线辐射体130及所述第二天线辐射体150均为导电贴片,所述第二天线辐射体150相较于所述第一天线辐射体130邻近所述射频芯片110设置,且所述第二频段范围的射频信号的频率小于所述第一频段范围的射频信号的频率。
对于导电贴片形式的天线辐射体而言,所述导电贴片辐射的射频信号的频率越高,则所述导电贴片的尺寸越小。因此,本实施方式中,所述第二频段范围的射频信号的频段小于所述第一频段范围的射频信号的频率时,所述第一天线辐射体130的尺寸小于所述第二天线辐射体150的尺寸。将所述第二天线辐射体150相较于所述第一天线辐射体130邻近所述射频芯片110设置,可使得所述第二天线辐射体150 产生的第三预设频段的射频信号不会被所述第一天线辐射体130遮挡而造成所述第二天线辐射体150产生的第三预设频段的射频信号辐射强度较弱或甚至被屏蔽。因此,本实施方式中,所述第一天线辐射体130及所述第二天线辐射体150的设置可提升所述天线模组10的通信效果。
请继续参阅图4,在一些实施例中,所述天线模组10还包括馈电件,所述第二天线辐射体150具有通孔152,所述馈电件穿过所述通孔152,所述馈电件电连接所述射频芯片110及所述第一天线辐射体130。
为了方便描述,电连接所述射频芯片110及所述第一天线辐射体130的馈电件命名为第一馈电件170。即,所述射频芯片110通过内嵌于所述基板120内的第一馈电件170与所述第一天线辐射体130电连接。本实施方式中,所述第一天线辐射体130相较于所述第二天线辐射体150背离所述射频芯片110,且所述第一天线辐射体130与所述第二天线辐射体150层叠设置,那么,所述第二天线辐射体150上具有通孔152,一方面可以供所述第一馈电件170穿过,另一方面对于辐射同一第三频段的射频信号而言,相较于未开设所述通孔152的第二天线辐射体150,在所述第二天线辐射体150上开设所述通孔152可改变所述第二天线辐射体150上的表面电流分布,进而使得开设通孔152的第二天线辐射体150的尺寸小于不开设通孔152的第二天线辐射体150的尺寸,有利于所述天线模组10的小型化。
在一些实施例中,所述天线模组10还包括第二馈电件180,所述射频芯片110通过内嵌在所述基板120内的第二馈电件180与所述第二天线辐射体150电连接。所述第一馈电件170可以为但不仅限于为馈电导线或者馈电探针等,相应地,所述第二馈电件180可以为但不仅限于为馈电导线或者馈电探针等。
在一些实施例中,所述第一天线辐射体130相较于所述第二天线辐射体150背离所述射频芯片110,所述第二寄生辐射体160设置在第二天线辐射体150背离所述第一天线辐射体130的一侧,所述第一寄生辐射体140设置在第二寄生辐射体160背离所述第一天线辐射体130的一侧。可以理解地,在其他实施方式中,所述第二寄生辐射体160还可以与所述第二天线辐射体150同层设置,也可以设置所述第二天线辐射体150背离所述射频芯片110的任意一层,比如,所述第二寄生辐射体160与所述第一天线辐射体130同层设置,或者,所述第二寄生辐射体160与所述第一寄生辐射体140同层设置,只要满足所述第二寄生辐射体160与所述第二天线辐射体150产生所述第四预设频段的射频信号即可。
请一并参阅图4及参阅图18,图18为本申请一实施方式提供的第一天线辐射体的俯视图。所述第一天线辐射体130包括至少两个第一馈电点132,每个第一馈电点132均通过第一馈电件170与所述射频芯片110电联,每个第一馈电点132与所述第一天线辐射体130的中心之间的距离大于第一预设距离,以使得所述射频芯片110的输出阻抗与所述第一天线辐射体130的输入阻抗匹配。调整所述第一馈电点132的位置可改变所述第一天线辐射体130的输入阻抗,进而可改变所述第一天线辐射体130的输入阻抗与所述射频信号的输出阻抗之间的匹配度,使得所述射频信号产生的第一激励信号更多地转换成所述第一预设频段的射频信号输出,而减少未参与转化成第一预设频段的射频信号的第一激励信号的量,从而提升了所述第一激励信号转换为第一预设频段的射频信号的转化效率。可以理解地,在图18仅仅示意出了两个第一馈电点132,所述两个第一馈电点132的位置仅仅是示意,并不构成对第一馈电点132位置的限定,在其他实施方式中,第一馈电点132也可设置在其他位置。
当所述第一天线辐射体130包括至少两个第一馈电点132时,两个第一馈电点132的位置不同,可以实现所述第一天线辐射体130辐射的第一预设频段的射频信号的双极化。具体地,以所述第一天线辐射体130包括两个第一馈电点132为例进行描述,两个第一馈电点132分别记为第一馈电点132a及第一馈电点132b。当所述第一激励信号通过第一馈电点132a加载在所述第一天线辐射体130上时,所述第一天线辐射体130产生第一预设频段的射频信号,且所述第一预设频段的射频信号的极化方向为第一极化方向;当所述第一激励信号通过第一馈电点132b加载在所述第一天线辐射体130上时,所述第一天线辐射体130产生第一预设频段的射频信号,且所述第一预设频段的射频信号的极化方向为第二极化方向,其中,所述第二极化方向不同于所述第一极化方向。由此可见,本实施方式中第一天线辐射体130可实现双极化。当所述第一天线辐射体130可以实现双极化时,可提升所述天线模组10的通信效果,相较于传统技术中使用两个天线实现不同极化而言,本实施方式可减小所述天线模组10中天线的个数。
请参阅图19,图19为本申请一实施方式提供的第二天线辐射体的俯视图。所述第二天线辐射体150包括至少两个第二馈电点153,每个第二馈电点153均通过第二馈电件180与所述射频芯片110电联,每个第二馈电点153与所述第二天线辐射体150的中心之间的距离大于第二预设距离,以使得所述射频芯片110的输出阻抗与所述第二天线辐射体150的输入阻抗匹配。调整所述第二馈电点153的位置可改变所述第二天线辐射体150的输入阻抗,进而可改变所述第二天线辐射体150的输入阻抗与所述射频信号的输出阻抗之间的匹配度,使得所述射频信号产生的第二激励信号更多地转换成所述第三预设频段的射频信号输出,而减少未参与转化成第三预设频段的射频信号的第二激励信号的量,从而提升了所述第二激励信号转换为第三预设频段的射频信号的转化效率。可以理解地,在图19中仅仅示意出了两个第二馈电点153,所述两个第二馈电点153的位置仅仅是示意,并不构成对第二馈电点153位置的限定,在其他实施方式中,第二馈电点153也可设置在其他位置。
当所述第二天线辐射体150包括至少两个第二馈电点153时,两个第二馈电点153的位置不同,可以实现所述第二天线辐射体150辐射的第三预设频段的射频信号的双极化。具体地,以所述第二天线辐射体150包括两个第二馈电点153为例进行描述,两个第二馈电点153分别记为第二馈电点153a及第二馈电点153b。当所述第二激励信号通过第二馈电点153a加载在所述第二天线辐射体150上时,所述第二天线辐射体150产生第三预设频段的射频信号,且所述第三预设频段的射频信号的极化方向为第三极化方向;当所述第二激励信号通过第二馈电点153b加载在所述第二天线辐射体150上时,所述第二天线辐射体150产生第三预设频段的射频信号,且所述第三预设频段的射频信号的极化方向为第四极化方向,其中,所述第三极化方向不同于所述第四极化方向。由此可见,本实施方式中第二天线辐射体150可实现双极化。当所述第二天线辐射体150可以实现双极化时,可提升所述天线模组10的通信效果,相较于传统技术中使用两个天线实现不同极化而言,本实施方式可减小所述天线模组10中天线的个数。
请参阅图20,图20为本申请一实施方式提供的天线模组的剖面图。在本实施方式中以所述天线模组10采用高密度互联工艺(High Density Interconnection,HDI)或集成电路(Integrated circuit,IC)载板工艺形成的多层结构为例进行说明。在本实施方式中,所述基板120包括相对设置的第一表面120a及第二表面120b。第一寄生辐射体140设置于基板120的第一表面120a,所述射频芯片110设置于基板120的第二表面120b,第一天线辐射体130、第二天线辐射体150、及第二寄生辐射体160内嵌在所述基板120内。在本实施方式中,所述第一天线辐射体130内嵌在所述基板120内且与所述第一寄生辐射体140层叠设置,所述第二寄生辐射体160设置于所述第一寄生辐射体140与所述第一天线辐射体130之间,所述第二天线辐射体150设置于所述第一天线辐射体130背离所述第二寄生辐射体160的一侧。可以理解地,在其他实施方式中,所述第一寄生辐射体140、所述第一天线辐射体130、所述第二寄生辐射体160、及所述第二天线辐射体150的位置关系也可以为其他,只要满足所述第一寄生辐射体140与所述第一天线辐射体130耦合,且所述第二寄生辐射体160与所述第二天线辐射体150耦合即可。
所述基板120包括核心层121、以及多个层叠设置在所述核心层121相对两侧的布线层122。所述核心层121为绝缘层,各个布线层122之间通常设置绝缘层123。所述核心层121及绝缘层123可采用毫米波高频低损耗材料,举例而言,所述毫米波高频低损耗材料的介电常数Dk=3.4,损耗因子Df=0.004。所述核心层121的厚度可以为但不仅限于为0.45mm,所述基板120中所有的绝缘层123的厚度可以为但不仅限于为0.35mm,所述基板120中每层绝缘层123的厚度可以相等也可以不相等。
在本实施方式中,以所述基板120为8层结构为例进行示意,可以理解地,在其他实施方式中,所述基板120也可以为其他层数。所述基板120包括核心层121以及第一布线层TM1、第二布线层TM2、第三布线层TM3、第四布线层TM4、第五布线层TM5、第六布线层TM6、第七布线层TM7、及第八布线层TM8。所述第一布线层TM1、所述第二布线层TM2、所述第三布线层TM3、及所述第四布线层TM4依次层叠设置在所述核心层121的同一侧,且所述第一布线层TM1相对于所述第四布线层TM4背离所述核心层121设置,所述第一布线层TM1背离所述核心层121的表面为所述基板120的第一表面120a。所述第五布线层TM5、所述第六布线层TM6、所述第七布线层TM7、及所述第八布线层TM8依次层叠在所述核心层121的同一侧,且所述第八布线层TM8相对于所述第五布线层TM5背离所述核 心层121设置,所述第八布线层TM8背离所述核心层121的表面为所述基板120的第二表面120b,所述第五布线层TM5与所述第四布线层TM4设置于所述核心层121相对的两侧。通常情况下,所述第一布线层TM1、所述第二布线层TM2、所述第三布线层TM3、及第四布线层TM4为可设置天线辐射体的布线层;所述第五布线层TM5为设置地极的接地层;所述第六布线层TM6、所述第七布线层TM7、及所述第八布线层TM8为天线模组10中的馈电网络及控制线布线层。
在实施方式的示意图中,以所述第一寄生辐射体140设置于所述第一布线层TM1,所述第二寄生辐射体160设置于所述第二布线层TM2,所述第一天线辐射体130设置于所述第三布线层TM3,所述第二天线辐射体150设置于所述第四布线层TM4为例进行示意。
进一步地,所述基板120中的第一布线层TM1、第二布线层TM2、第三布线层122布线层TM3、第四布线层TM4、所述第六布线层TM6、所述第七布线层TM7、及所述第八布线层TM8均电连接至所述第五布线层TM5中的接地层。具体地,所述基板120中的第一布线层TM1、第二布线层TM2、第三布线层122布线层TM3、第四布线层TM4、所述第六布线层TM6、所述第七布线层TM7、及所述第八布线层TM8均开设贯孔,贯孔里设置导电材料以电连接所述第五布线层TM5中的接地层,以将各个布线层122中设置的器件接地。各个布线层122中设的器件可以为所述天线模组10中工作所需要的器件,比如,接收信号处理器件,发射信号处理器件等。
进一步地,所述第七布线层TM7及所述第八布线层TM8还设置有电源线124、及控制线125,所述电源线124及所述控制线125分别与所述射频芯片110电连接。所述电源线124用于为所述射频芯片110提供所述射频芯片110所需要的电能,所述控制线125用于传输控制信号至所述射频芯片110,以控制所述射频芯片110工作。
所述射频芯片110面对所述核心层121的表面设置有第一输出端111及第二输出端112。所述第一天线辐射体130包括至少一个第一馈电点132(请参阅图18)。所述射频芯片110用于产生第一激励信号,所述第一输出端111用于通过第一馈电件170电连接所述第一天线辐射体130的第一馈电点132,以将所述第一激励信号输出至所述第一天线辐射体130。所述第一天辐射体130根据所述第一激励信号产生第一预设频段的射频信号。相应地,所述第二天线辐射体150包括至少一个第二馈电点153(请参阅图19)。所述射频芯片110还用于产生第二激励信号,所述第二输出端112用于通过第二馈电件180电连接所述第二天线辐射体150的第二馈电点153,以将所述第二激励信号输出至所述第二天线辐射体150。所述第二天线辐射体150用于根据所述第二激励信号产生所述第三预设频段的射频信号。所述第一输出端111及所述第二输出端112面对核心层121,从而使得电连接至所述第一天线辐射体130的第一馈电件170的长度较短,从而减少了第一馈电件170传输第一激励信号的损耗,使得产生的第一预设频段的射频信号具有更好的辐射增益。同样地,电连接至所述第二天线辐射体150的第二馈电件180的长度较短,从而减小了所述第二馈电件180传输第二激励信号的损耗,使得产生的第三预设频段的射频信号具有更好的辐射增益。所述第一输出端111及所述第二输出端112也可以通过焊接工艺连接到所述基板120上。由于前面描述的第一输出端111及第二输出端112通过焊接工艺连接到基板120上,且第一输出端111及第二输出端112面对所述核心层121,因此,这种工艺称为倒焊芯片工艺(Flip-Chip)工艺,而通过射频芯片110分别与所述第一天线辐射体130及第二天线辐射体150电连接的方式可以通过载板工艺或高密度互联工艺实现射频芯片110分别与所述第一天线辐射体130及第二天线辐射体150互联。所述第一天线辐射体130、所述第一寄生辐射体140、所述第二天线辐射体150、及所述第二寄生辐射体160可采用导电贴片形式的天线(也称为贴片天线)或者偶极子天线形式。所述第一馈电件170可以为馈电导电线,或者馈电探针。所述第二馈电件180可以为馈电导电线,或者馈电探针。
请参阅图21,图21为本申请一实施方式提供的第一天线辐射体及第一寄生辐射体的尺寸示意图。下面结合图21对第一天线辐射体130及第一寄生辐射体140的尺寸进行描述。
所述第一天线辐射体130的尺寸、所述第二天线辐射体150的尺寸、以及所述第一寄生辐射体140与所述第一天线辐射体130之间的距离的选择不是任意的,而是考量了第一寄生辐射体140辐射的第一预设频段的射频信号及所述第一天线辐射体130所辐射的第二预设频段的射频信号的频段,以及第一频 段范围的带宽,经过严格的设计即调整得出的,设计及调整过程说明如下。
所述天线模组10中的第一天线辐射体130、第一寄生辐射体140通常承载于基板120上,所述基板120的相对介电常数ε r通常为3.4。第一天线辐射体130与基板120中接地层之间的间距为0.4mm,那么,可以用公式(1)计算第一天线辐射体130中的第一天线辐射体130的宽度w:
Figure PCTCN2020122827-appb-000001
其中,c为光速,f为第一天线辐射体130的谐振频率,ε r是第一天线辐射体130与所述天线模组10中的接地层之间的介质的相对介电常数。以前面介绍的天线模组10为例,所述第一天线辐射体130与所述天线模组10中的接地层的介质为所述第一天线辐射体130与所述接地层之间的核心层121以及各个绝缘层123。
第一天线辐射体130的长度一般取为
Figure PCTCN2020122827-appb-000002
但是由于边缘效应,所述第一天线辐射体130的实际尺寸L通常要比
Figure PCTCN2020122827-appb-000003
大。可以用公式(2)和(3)来计算第一天线辐射体130的实际长度L:
Figure PCTCN2020122827-appb-000004
Figure PCTCN2020122827-appb-000005
其中,λ是介质内的导波波长;λ 0为自由空间波长;ε e是有效介电常数,ΔL是等效辐射缝隙宽度。
可以用公式(4)计算有效介电常数ε e
Figure PCTCN2020122827-appb-000006
其中,h是第一天线辐射体130与接地层之间的间距。
可以用公式(5)计算有等效辐射缝隙宽度ΔL:
Figure PCTCN2020122827-appb-000007
可以用公式(6)计算第一天线辐射体130的谐振频率:
Figure PCTCN2020122827-appb-000008
举例而言,所述第一天线辐射体130的谐振频率为39GHz,根据公式(1)-(6)计算第一天线辐射体130的长度和宽度。预设所述第一天线辐射体130与所述第一寄生辐射体140之间的间距、第一天线辐射体130与所述接地层之间的间距、所述第一寄生辐射体140的长度和宽度,根据上述的参数进行建模分析,设置好所述天线模组10的辐射边界、及辐射端口,扫频得到的回波损耗与频率的变化曲线。
再根据得到的回波损耗与频率的变化曲线,进一步优化第一天线辐射体130辐射的第一预设频段的射频信号的带宽。对于第一天线辐射体130的长度L1及宽度W1、第一天线辐射体130与第一寄生辐射体140之间的间距S1(请参阅图20)、第一天线辐射体130与接地层之间的间距h1(请参阅图20)、第一寄生辐射体140的长度L2进行进一步地调节,以优化回波损耗与频率的变化曲线,请参阅图22,图22为本申请一实施方式提供的天线模组优化后的回波损耗与频率的变化曲线,进而得到带宽为37 ̄40.5GHz的第一频段范围的射频信号(见曲线①)。即,所述第一频段范围包括n260频段。
基于上述对第一天线辐射体130的长度L1及宽度W1、第一天线辐射体130与所述第一寄生辐射体140之间的间距S1、第一天线辐射体130与接地层之间的间距h1、第一寄生辐射体140的长度L2的调节过程可以得到,第一天线辐射体130的长度L1的范围及宽度W1的范围、第一天线辐射体130与第一寄生辐射体140之间的间距S1的范围、第一天线辐射体130与接地层之间的间距h1的范围及第一寄生辐射体140的长度L2的范围。
请再次参阅图21,所述第一天线辐射体130为矩形贴片天线,所述第一天线辐射体130在第一方向D1的尺寸和所述第一天线辐射体130在第二方向D2上的尺寸均小于或等于2mm。所述第一天线辐射体130在所述第一方向D1的尺寸为所述第一天线辐射体130的长度,所述第一天线辐射体130在所述第二方向D2上的长度为第一天线辐射体130的宽度W1。即,所述第一天线辐射体130的长度L1的范围为0 ̄2.0mm,所述第一天线辐射体130的宽度W1为0 ̄2.0mm。进一步地,所述第一天线辐射体130的长度L1范围为1.6 ̄2.0mm,所述第一天线辐射体130的宽度W1范围为1.6 ̄2.0mm,以使得所述第一天线辐射体130及所述第一寄生辐射体140辐射的第一频段范围的射频信号的带宽为37 ̄40.5GHz。通常而言,对于宽度一定的第一天线辐射体130而言,所述第一天线辐射体130的长度L1越大,所述第一预设频段的射频信号的谐振频率越往低频偏移;对于宽度一定的第一天线辐射体130而言,所述第一天线辐射体130的长度L1越小,所述第一预设频段的射频信号的谐振频率越往高频偏移。
请参阅图21,第一寄生辐射体140的长度L2等于所述第一天线辐射体130的长度L1,所述第二寄生辐射体160的宽度W2范围为0.2 ̄0.9mm,所述第一天线辐射体130与所述第一寄生辐射体140之间的间距S1的范围为0.2 ̄0.8mm。所述第一天线辐射体130在所述第一天线辐射体130与所述接地层之间激励起第一预设频段的射频信号,并通过第一天线辐射体130与接地层之间的空隙向外辐射,所述第一寄生辐射体140与所述第一天线辐射体130辐射的第一预设频段的射频信号耦合而产生第二预设频段的射频信号。所述第一天线辐射体130与所述第一寄生辐射体140之间的间距过大或者过小均不能实现有效的耦合;当所述第一天线辐射体130与所述第一寄生辐射体140之间的间距S1的范围为0.2 ̄0.8mm,第一天线辐射体130与所述第一寄生辐射体140之间的耦合效果较好,且所述第一频段范围的射频信号具有较大的带宽。
请参阅图20,所述第一天线辐射体130与所述接地层之间的间距h1位于0.7 ̄0.9mm范围内。所述第二天线辐射体150与所述接地层之间的间距h2位于0.3 ̄0.6mm范围内。
具体地,所述第二天线辐射体150与所述接地层之间的间距h2为基板120中的核心层121的厚度,当基板120中的核心层121的厚度过小时,容易造成天线模组10成型时起翘。当基板120中的核心层121的厚度过大时,不利于所述天线模组10的轻薄化。因此,综合考虑,将所述第二天线辐射体150与所述核心层121之间的间距h2设计为0.3 ̄0.6mm,能够兼顾所述天线模组10的轻薄化以及不起翘的要求。
为了得到需要的频带宽度,可适当调整所述第一天线辐射体130与所述接地层之间的间距。通常而言,所述第一天线辐射体130与所述接地层之间的间距h1跟频带宽度成正比。换而言之,所述第一天线辐射体130与所述接地层之间的间距h1越大,所述第一天线辐射体130辐射的第一预设频段的射频信号的频带宽度越大;反之,所述第一天线辐射体130与所述接地层之间的间距h1越小,所述第一天线辐射体130辐射的第一预设频段的射频信号的频带宽度越小。具体地,增大所述第一天线辐射体130与所述接地层之间的间距,可增加所述第一天辐射体130辐射出去的能量,即,增加了所述第一天线辐射体130辐射的第一预设频段的射频信号的频带宽度。但是,所述第一天线辐射体130与所述接地层之 间的距离的增大会激励起更多的表面波,表面波会降低第一预设频段的射频信号在所需要方向上的辐射,并且会改变所述第一天线辐射体130辐射的方向特性。因此,所述第一天线辐射体130与所述接地层之间的间距h1选取考量了第一预设频段的射频信号的频带宽度以及第一预设频段的射频信号的方向性才选取了第一天线辐射体130与接地层之间的间距h1为0.7 ̄0.9mm。
根据第一天线辐射体130的尺寸、第一寄生辐射体140的尺寸、第一天线辐射体130与所述第一寄生辐射体140之间的间距与频率之间的关系,调节所述第一天线辐射体130的尺寸、第一寄生辐射体140的尺寸、第一天线辐射体130与所述第一寄生辐射体140之间的间距,来优化回波损耗与频率的变化曲线,请参阅图22,图22为本申请一实施方式提供的天线模组优化后的回波损耗与频率的变化曲线,进而得到频段为37 ̄40.5GHz的第一频段范围的射频信号。图22中横轴为频率,单位为GHz,纵轴为回波损耗,单位为dB,曲线①表示第一频段范围的射频信号的回波损耗与频率的变化曲线,曲线②表示第二频段范围的射频信号的回波损耗与频率的变化曲线。图中纵坐标小于或等于-10dB对应的频率为所述天线模组10的工作的频段。由曲线①可见,所述第一频段范围的射频信号的频段为37 ̄40.5GHz,即实现了n260(37 ̄40GHz)频段。
调节所述第一天线辐射体130的尺寸、第一寄生辐射体140的尺寸、第一天线辐射体130与所述第一寄生辐射体140之间的间距,可使得所述第一天线辐射体130产生第一频段范围的第一谐振,所述第一寄生辐射体140产生第二频段范围内的第二谐振。由图22可见,第一谐振及第二谐振的谐振频点分别为37.8GHz及39.9GHz,即所述第一天线辐射体130及所述第一寄生辐射体140分别谐振在37.8GHz及39.9GHz。在所述第一天线辐射体130产生的第一预设频段的射频信号的带宽一定的情况下,且在所述第一寄生辐射体140产生的第二预设频段的射频信号的带宽一定的情况下,相较于第一谐振与第二谐振相同的情况,第一谐振不同于第二谐振可拓展所述第一频段范围的带宽,提升所述天线模组10的通信性能。
与第一天线辐射体130相类似地,取第二天线辐射体150和第二寄生辐射体160辐射的第三预设频段的射频信号以及第四预设频段的射频信号的中心频率分别为25GHz、29GHz,通过对第二天线辐射体150的尺寸设计、第二天线辐射体150与第二寄生辐射体160之间的间距设计、第二天线辐射体150与接地层之间的距离、第二寄生辐射体160的尺寸设计及第二寄生辐射体160与接地层之间的距离设计,以扩宽第二频段范围的射频信号的带宽,得到频段为24.5 ̄29.9GHz的射频信号(请参阅图22中的曲线②),基本是实现n257(26.5~29.5GHz),n258(24.25~27.5GHz)和n261(27.5~28.35GHz)频段的射频信号的覆盖。具体的调控实施方式如下。公式(1)-(6)可以直接用于第二天线辐射体150,在此对公式(1)-(6)不再赘述。
确定基板120中的绝缘层123的相对介电常数ε r为3.4。取第二天线辐射体150与接地层之间的间距为0.5mm。根据要设计的第二天线辐射体150的谐振频率为39GHz,根据公式(1)-(6)可以计算第二天线辐射体150的长度L3及宽度W3。预设第二天线辐射体150与第二寄生辐射体160之间的水平间距S2和垂直间距h3、第二天线辐射体150与接地层之间的间距h2、第二寄生辐射体160的长度L4和宽度W4。根据上述的参数进行建模分析,设置好辐射边界、边界条件及辐射端口,扫频得到的回波损耗与频率的变化曲线。
根据上述的回波损耗与频率的变化曲线,进一步优化第二天线辐射体150辐射的第三预设频段的射频信号的带宽。对第二天线辐射体150的长度L3及宽度W3、第二天线辐射体150与第二寄生辐射体160之间的水平间距S2和垂直间距h3、第二天线辐射体150与接地层之间的间距h2、第二寄生辐射体160的长度L4进行进一步地调节,以优化回波损耗与频率的变化曲线,进而得到带宽为24.5 ̄29.9GHz的第二频段范围的射频信号(请参阅图22中的曲线②)。
与第一天线辐射体130的调节方式相同,基于上述对第二天线辐射体150的长度L3及宽度W3、第二天线辐射体150与第二寄生辐射体160之间的水平间距S2和垂直间距h3、第二天线辐射体150与接地层之间的间距h2、第二寄生辐射体160的长度L4的调节过程可以得到,第二天线辐射体150的长 度L3范围及宽度范围、第二天线辐射体150与第二寄生辐射体160之间的水平间距范围和垂直间距范围、第二天线辐射体150与接地层之间的间距范围、第二寄生辐射体160的长度范围。
请参阅图23,图23为第二天线辐射体及第二寄生辐射体的透视图。在本实施方式中仅仅示意出了天线模组10中的第二天线辐射体150及第二寄生辐射体160,而省略了其余的部件。所述第二天线辐射体150为矩形导电贴片,在第一方向D1上的尺寸位于2.0 ̄2.8mm范围内,所述第二天线辐射体150在第一方向D1上的尺寸即为所述第二天线辐射体150的长度,记为L3,即,所述第二天线辐射体150的长度L3位于2.0 ̄2.8mm范围内。所述第二天线辐射体150在第二方向D2上的尺寸也位于2.0 ̄2.8mm范围内。所述第二天线辐射体150在第二方向D2上的尺寸即为所述第二天线辐射体150的宽度,记为W3,即,所述第二天线辐射体150的宽度W3位于2.0 ̄2.8mm范围内,以使第二天线辐射体150和第二寄生辐射体160辐射的第二频段范围的射频信号的带宽为24.5 ̄29.9GHz。一般而言,第二天线辐射体150的长度L3越大,所述第二天线辐射体150辐射的第三预设频段的射频信号的谐振频率向低频偏移。
进一步地,请参阅图23,所述第二寄生辐射体160为矩形导电贴片,所述第二寄生辐射体160为长方形导电贴片,所述第二天线辐射体150长度L3等于所述第二寄生辐射体160的长度L4。所述第二寄生辐射体160的短边的长度范围为0.2~0.9mm,即,所述第二寄生辐射体160的宽度W4的范围为0.2~0.9mm。所述第二寄生辐射体160与所述第二天线辐射体150层叠设置时,所述第二寄生辐射体160到所述第二天线辐射体150的间距h3(请参阅图20)的范围为0~0.6mm。
所述第二寄生辐射体160在垂直于所述第二天线辐射体150所在的平面的投影与所述第二天线辐射体150所在区域之间的间隙的范围为:0.2mm~0.8mm。
所述第二天线辐射体150及所述第二寄生辐射体160的此种结构可使得所述第二天线辐射体150与所述第二寄生辐射体160的谐振不同,以使得所述天线模组10在第二频段范围具有较大的带宽。具体地,请参阅图22中曲线②,第三谐振和第四谐振分别为25GHz及29GHz。
调节所述第二天线辐射体150的尺寸、第二寄生辐射体160的尺寸、第二天线辐射体150与所述第二寄生辐射体160之间的间距,可使得所述第二天线辐射体150谐振在第三谐振,所述第二寄生辐射体160谐振在第四谐振,所述第四谐振不同于所述第三谐振。由图22可见,第三谐振及第四谐振分别为25GHz及29GHz,即所述第二天线辐射体150及所述第二寄生辐射体160分别谐振在25GHz及29GHz。在所述第二天线辐射体150产生的第三预设频段的射频信号的带宽一定的情况下,且在所述第二寄生辐射体160产生的第四预设频段的射频信号的带宽一定的情况下,相较于第三频段与第四频段相同的情况,第三频段不同于第四频段可拓展所述第二频段范围的带宽,提升所述天线模组10的通信性能。
请参阅图24,图24为本申请一实施方式提供的天线模组的示意图。所述天线模组10包括阵列排布的多个天线单元10a,比如,所述多个天线单元10a构成M×N的阵列,形成相控阵阵列天线。每个天线单元10a包括所述第一天线辐射体130、所述第一寄生辐射体140、所述第二天线辐射体150、及所述第二寄生辐射体160。所述第一天线辐射体130、所述第一寄生辐射体140、所述第二天线辐射体150、及所述第二寄生辐射体160的相关描述请参阅前面描述,在此不再赘述。基于以上描述的第一天线辐射体130、第一寄生辐射体140、第二天线辐射体150、及第二寄生辐射体160的尺寸设计,天线单元10a的宽度可以小于4.2mm,天线单元10a的长度可以小于5mm,实现了天线单元10a的小型化,进一步地,实现了所述天线模组10的小型化。当所述天线模组10应用于电子设备1中时,有利于所述电子设备1的薄型化设计。
请参阅图25,图25为本申请另一实施方式提供的天线模组的示意图。所述天线模组10包括阵列排布的多个天线单元10a,每个天线单元10a包括所述第一天线辐射体130、所述第一寄生辐射体140、所述第二天线辐射体150、及所述第二寄生辐射体160。所述第一天线辐射体130、所述第一寄生辐射体140、所述第二天线辐射体150、及所述第二寄生辐射体160请参阅前面描述,在此不再赘述。在本实施方式中,相邻的天线单元10a之间设置有多个金属化过孔栅格10b。所述金属化过孔栅格10b用于隔离相邻的天线单元10a之间的干扰,以提升所述天线模组10的辐射效果。
下面对本申请提供的天线模组10进行仿真,请参参阅图26,图26为本申请的天线模组辐射 24~30GHz的射频信号的辐射效率示意图。其中,横轴为频率,单位为GHz;纵轴为辐射效率,无单位。其中,曲线示意出了24~30GHz的射频信号的辐射效率。射频信号在24~30GHz时的辐射效率均较高,均大于0.80。而24~30GHz的射频信号覆盖n257、n258、及n261频段。即,本申请的天线模组10在第二频段范围为n257、n258、及n261频段时的辐射效率较高。
请参阅图27,图27为本申请天线模组辐射36~41GHz的射频信号的辐射效率示意图。其中,横轴为频率,单位为GHz;纵轴为辐射效率,无单位。其中,曲线示意出了36~41GHz的射频信号的辐射效率。由曲线可见,射频信号在36~41GHz时的辐射效率均较高,均大于0.65。当第一频段范围为n260(37~40GHz)时的辐射效率也比较高。
请参阅图28,图28为本申请的天线模组在26GHz时的方向仿真图。在26GHz时的增益的最大值为5.99dB,说明在26GHz时,具有较好的方向性,所述天线模组10在26GHz时的通信效果较好。
请参阅图29,图29为本申请的天线模组在28GHz时的方向仿真图。在本仿真图中,增益的最大值为5.57dB,说明在在28GHz时,具有较好的方向性,所述天线模组10在26GHz时的通信效果较好。
请参阅图30,图30为本申请的天线模组在39GHz时的方向仿真图。在39GHz时的增益的最大值为5.75dB,说明在39GHz时,具有较好的方向性,所述天线模组10在26GHz时的通信效果较好。
请参阅图31,图31为本申请一实施方式提供的电子设备的电路框图。本申请还提供了一种电子设备1,所述电子设备1可以为但不仅限于手机等具有通信功能的设备。所述电子设备1包括控制器30和前面任意实施方式所述的天线模组10。所述控制器30与所述天线模组10电连接,所述天线模组10用于在所述控制器30的控制下工作。具体地,所述天线模组10在所述控制器30的控制下工作。
请参阅图32,图32为本申请一实施方式提供的电子设备的剖视图。所述电子设备1包括电池盖50和透波结构80,所述透波结构80承载于所述电池盖50,所述天线模组10的辐射面至少部分朝向所述电池盖50和所述透波结构80。所述电池盖50对所述第一频段范围的射频信号的透过率小于所述电池盖50和所述透波结构80对所述第一频段范围的射频信号的透过率;所述电池盖50对所述第二频段范围的射频信号的透过率小于所述电池盖50和所述透波结构80对所述第二频段范围的射频信号的透过率。其中,所述天线模组10的辐射面为辐射所述第一预设频段的射频信号、所述第二预设频段的射频信号、第三预设频的射频信号、及第四预设频段的射频信号的面。换而言之,所述电池盖50及至少部分透波结构80位于所述第一预设频段的射频信号、所述第二预设频段的射频信号、第三预设频的射频信号、及第四预设频段的射频信号辐射范围内。
所述电池盖50的材质为塑料、玻璃、蓝宝石、陶瓷的至少一种或者多种组合。所述透波结构80承载于所述电池盖50包括所述透波结构80直接设置于所述电池盖50的内表面,或者,所述透波结构80设置于所述电池盖50的外表面,或者,所述透波结构80内嵌于所述电池盖50中,或者,所述透波结构80通过承载膜设置于所述电池盖50的内表面或者外表面等情况,只要满足所述电池盖50直接或间接作为承载基体承载所述透波结构80即可。当所述透波结构80通过承载膜承载于所述电池盖50时,所述承载膜可以为但不仅限于为塑料(Polyethylene terephthalate,PET)薄膜、柔性电路板、印刷电路板等。所述PET薄膜可以为但不仅限于为彩色膜、防爆膜等。所述透波结构80的材质为导电材质,其可以为金属的也可以为非金属的。当所述透波结构80的材质为非金属导电材质时,所述透波结构80可以为透明的也可以为非透明的。所述透波结构80可以为一体式的,也可以为非一体式的。
所述电池盖50的介电常数为第一介电常数,第一介电常数的所述电池盖50对第一频段范围的射频信号的透过率为第一透过率。当所述透波结构80承载于所述电池盖50时,所述电池盖50与所述透明结构80作为整体的介电常数为第二介电常数,等效为第二介电常数的电池盖50与所述透波结构80对所述第一频段范围的射频信号的透过率为第二透过率,所述第二透过率大于所述第一透过率。本实施方式通过设置透波结构80从而提升了所述第一频段范围的射频信号的透过率,进而提升了所述天线模组10利用第一频段范围的射频信号进行通信时的通信质量。相应地,所述第一介电常数的所述电池盖50对第二频段范围内的射频信号的透过率为第三透过率,等效为第二介电常数的电池盖50与所述透波结构80对所述第二频段范围的射频信号的透过率为第四透过率,所述第四透过率大于所述第三透过率。 本实施方式通过设置透波结构80从而提升了所述第二频段范围的射频信号的透过率,进而提升了所述天线模组10利用第二频段范围的射频信号进行通信时的通信质量。
所述电池盖50通常包括背板510及与所述背板510的周缘弯折相连的边框520。所述透波结构80承载于所述背板510、或者所述透波结构80承载于所述边框520、或者部分透波结构80承载于所述背板510且另外部分透波结构80承载于所述边框520。在一实施方式中,所述天线模组10的数目为一个或多个,所述天线模组10的所有辐射面朝向所述背板510且所述透波结构80至少部分承载于所述背板510。在另一实施方式中,所述天线模组10的数目为一个或多个,所述天线模组10的辐射面均朝向所述边框520且所述透波结构80至少部分承载于所述边框520。在另一实施方式中,所述天线模组10的数目为一个或多个,当所述天线模组10的数目为多个时,部分天线模组10的辐射面朝向所述背板510,剩余的部分天线模组10的辐射面朝向所述边框520,相应地,所述透波结构80部分承载于所述背板510,另外部分透波结构80承载于所述边框520。在本实施方式的示意图中,以所述天线模组10的辐射面朝向所述边框520且所述透波结构80完全承载于所述边框520,且以所述天线模组10的数目为两个为例进行示意。需要说明的是,当所述天线模组10的辐射面朝向所述背板510且所述透波结构80至少部分承载于所述背板510时,所述背板510及所述透波结构80位于所述第一预设频段的射频信号、所述第二预设频段的射频信号、第三预设频的射频信号、及第四预设频段的射频信号的辐射范围内。当所述天线模组10的辐射面朝向所述边框520且所述透波结构80至少部分承载于所述边框520时,所述边框520及所述透波结构80位于所述第一预设频段的射频信号、所述第二预设频段的射频信号、第三预设频的射频信号、及第四预设频段的射频信号的辐射范围内。
进一步地,本实施方式中的电子设备1还包括屏幕70,所述屏幕70设置于所述电池盖50的开口处。所述屏幕70用于显示文字、图像、视频等。
请参阅图33,图33为本申请另一实施方式提供的电子设备的剖视图。所述电子设备1包括屏幕70和透波结构80,所述透波结构80承载于所述屏幕70,所述天线模组10的至少部分辐射面朝向所述屏幕70和所述透波结构80。所述屏幕70对所述第一频段范围的射频信号的透过率小于所述屏幕70和所述透波结构80对所述第一频段范围的射频信号的透过率;所述屏幕70对所述第二频段范围的射频信号的透过率小于所述屏幕70和所述透波结构80对所述第二频段范围的射频信号的透过率。其中,所述天线模组10的辐射面为辐射所述第一预设频段的射频信号、所述第二预设频段的射频信号、第三预设频的射频信号、及第四预设频段的射频信号的面。换而言之,所述屏幕70及至少部分透波结构80位于所述第一预设频段的射频信号、所述第二预设频段的射频信号、第三预设频的射频信号、及第四预设频段的射频信号的辐射范围内。
所述屏幕70可以为但不仅限于为液晶显示屏或有机发光二极管显示屏。
所述透波结构80承载于所述屏幕70包括所述透波结构80直接设置于所述屏幕70的内表面,或者,所述透波结构80设置于所述屏幕70的外表面,或者,所述透波结构80内嵌于所述屏幕70中,或者,所述透波结构80通过承载膜设置于所述屏幕70的内表面或者外表面等情况,只要满足所述屏幕70直接或间接作为承载基体承载所述透波结构80即可。当所述透波结构80通过承载膜承载于所述屏幕70时,所述承载膜可以为但不仅限于为塑料(Polyethylene terephthalate,PET)薄膜、柔性电路板、印刷电路板等。所述PET薄膜可以为但不仅限于为防爆膜等。所述透波结构80的材质为导电材质,其可以为金属的也可以为非金属的。当所述透波结构80的材质为非金属导电材质时,所述透波结构80可以为透明的也可以为非透明的。所述透波结构80可以为一体式的,也可以为非一体式的。
所述屏幕70的介电常数为第三介电常数,第三介电常数的所述屏幕70对第一频段范围的射频信号的透过率为第五透过率。当所述透波结构80承载于所述屏幕70时,所述屏幕70与所述透明结构80作为整体的介电常数为第四介电常数,等效为第四介电常数的屏幕70与所述透波结构80对所述第一频段范围的射频信号的透过率为第六透过率,所述第六透过率大于所述第五透过率。本实施方式通过设置透波结构80从而提升了所述第一频段范围的射频信号的透过率,进而提升了所述天线模组10利用第一频段范围的射频信号进行通信时的通信质量。相应地,所述第三介电常数的所述屏幕70对第二频段范围 内的射频信号的透过率为第七透过率,等效为第四介电常数的屏幕70与所述透波结构80对所述第二频段范围的射频信号的透过率为第八透过率,所述第八透过率大于所述第七透过率。本实施方式通过设置透波结构80从而提升了所述第二频段范围的射频信号的透过率,进而提升了所述天线模组10利用第二频段范围的射频信号进行通信时的通信质量。进一步地,所述电子设备1还包括电池盖50,所述屏幕70设置于所述电池盖50的开口处。所述电池盖50通常包括背板510及与所述背板510周缘弯折相连的边框520。
需要说明的是,本申请中用到的“第一介电常数”、“第二介电常数”中的“第一”和“第二”仅仅是为了将介电常数进行名称上的区分,并不代表介电常数之间的大小比较等。类似的,本申请中用到的其他“第一”和“第二”等也仅仅是为了名称上的区分。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型,这些改进和润饰也视为本申请的保护范围。

Claims (20)

  1. 一种天线模组,其特征在于,所述天线模组包括:
    第一天线辐射体,所述第一天线辐射体用于产生第一频段范围内的第一谐振;
    第一寄生辐射体,所述第一寄生辐射体与所述第一天线辐射体层叠且间隔设置,所述第一寄生辐射体与所述第一天线辐射体耦合而产生第一频段范围内的第二谐振;
    第二天线辐射体,所述第二天线辐射体与所述第一天线辐射体层叠,且间隔设置于所述第一天线辐射体背离所述第一寄生辐射体的一侧,所述第二天线辐射体用于产生第二频段范围内的第一谐振;及
    第二寄生辐射体,所述第二寄生辐射体与所述第二天线辐射体层叠且间隔设置,或者,所述第二寄生辐射体与所述第二天线辐射体同层且间隔设置,所述第二寄生辐射体与所述第二天线辐射体耦合而产生第二频段范围内的第二谐振,其中,所述第二频段范围与所述第一频段范围至少部分不交叠。
  2. 如权利要求1所述的天线模组,其特征在于,
    第一天线辐射体在第一频段范围内的第一谐振用于产生第一预设频段的射频信号,所述第一寄生辐射体在第一频段范围内的第二谐振用于产生第二预设频段的射频信号,其中,所述第一预设频段及所述第二预设频段均位于第一频段范围内,且所述第一预设频段及所述第二预设频段至少部分不同。
  3. 如权利要求1所述天线模组,其特征在于,所述天线模组还包括射频芯片;
    所述第一天线辐射体相较于所述第一寄生辐射体邻近所述射频芯片,所述第一天线辐射体及所述第一寄生辐射体均为导电贴片,所述第一天线辐射体与所述射频芯片电性连接。
  4. 如权利要求3所述的天线模组,其特征在于,所述第一天线辐射体的尺寸大于所述第一寄生辐射体的尺寸,所述第一寄生辐射体在所述第一天线辐射体所在的平面内的正投影与所述第一天线辐射体所在的区域至少部分重叠。
  5. 如权利要求4所述的天线模组,其特征在于,所述第一寄生辐射体在所述第一天线辐射体所在平面的正投影落入所述第一天线辐射体所在的区域内。
  6. 如权利要求3所述的天线模组,其特征在于,所述第一天线辐射体具有贯穿所述第一天线辐射体相对的两个表面的第一镂空结构,所述第一天线辐射体的尺寸小于或等于所述第一寄生辐射体的尺寸,且随着所述第一镂空结构的面积的增大,所述第一天线辐射体与所述第一寄生辐射体的尺寸差异越大。
  7. 如权利要求3所述的天线模组,其特征在于,所述第一天线辐射体具有贯穿所述第一天线辐射体相对的两个表面的第一镂空结构,所述第一寄生辐射体具有贯穿所述第一寄生辐射体相对的两个表面的第二镂空结构,所述第一天线辐射体的尺寸小于或等于所述第一寄生辐射体的尺寸,且所述第一镂空结构的面积大于所述第二镂空结构的面积。
  8. 如权利要求3所述的天线模组,其特征在于,所述第二天线辐射体与所述射频芯片电性连接,所述第二天线辐射体及所述第二寄生天线辐射体均为导电贴片,当所述第二寄生辐射体与所述第二天线辐射体层叠设置时,所述第二天线辐射体相较于所述第二寄生辐射体邻近所述射频芯片。
  9. 如权利要求8所述的天线模组,其特征在于,所述第一天线辐射体及所述第二天线辐射体均为导电贴片,所述第二天线辐射体相较于所述第一天线辐射体邻近所述射频芯片设置,且所述第二频段范围内的射频信号的频率小于所述第一频段范围内的射频信号的频率。
  10. 如权利要求9所述的天线模组,其特征在于,所述天线模组还包括馈电件,所述第二天线辐射体具有通孔,所述馈电件穿过所述通孔,所述馈电件电连接所述射频芯片及所述第一天线辐射体馈电件。
  11. 如权利要求1所述的天线模组,其特征在于,所述第二寄生辐射体的数目为多个,所述第二天线辐射体所在的区域的中心与所述多个第二寄生辐射体在所述第二天线辐射体所在的平面内的正投影的中心重合。
  12. 如权利要求1所述的天线模组,其特征在于,所述第二寄生辐射体为矩形导电贴片,所述第二寄生辐射体包括面对所述第二天线辐射体的第一边以及与所述第一边相连的第二边,其中,所述第一边的长度大于所述第二边的长度,所述第一边用于调整所述第二寄生辐射体的谐振频率,所述第二边用于调 整所述第二寄生辐射体和所述第二天线辐射体之间的阻抗。
  13. 如权利要求1-12任意一项所述的天线模组,其特征在于,所述第二天线辐射体在所述第二频段范围内的第一谐振用于产生第三预设频段的射频信号,所述第二寄生辐射体在第二频段范围内的第二谐振用于产生第四预设频段的射频信号,其中,所述第三预设频段及所述第四预设频段均位于所述第二频段范围内,且所述第三预设频段与所述第四预设频段至少部分不同。
  14. 如权利要求1所述的天线模组,其特征在于,所述第一天线辐射体为正方形导电贴片,所述第一天线辐射体的边长范围为1.6mm~2.0mm,所述第一寄生辐射体为长方形导电贴片,所述第一寄生辐射体的长边的长度等于所述第一天线辐射体的边长的长度,所述第一寄生辐射体的短边的长度范围为0.2mm~0.9mm,所述第一寄生辐射体到所述第一天线辐射体的间距的范围为:0~0.8mm。
  15. 如权利要求1或14所述的天线模组,其特征在于,所述第二天线辐射体为正方形导电贴片,所述第二天线辐射体的边长范围为2.0mm~2.8mm,所述第二寄生辐射体为长方形导电贴片,所述第二寄生辐射体的长边的长度等于所述第二天线辐射体的边长的长度,所述第二寄生辐射体的短边的长度范围为0.2mm~0.9mm,所述第二寄生辐射体到所述第二天线辐射体的间距的范围为:0~0.6mm。
  16. 如权利要求15所述的天线模组,其特征在于,所述第二寄生辐射体在垂直于所述第二天线辐射体所在平面的投影与所述第二天线辐射体所在的区域之间的间隙的范围为0.2~0.8mm。
  17. 如权利要求1所述的天线模组,其特征在于,第一频段范围包括毫米波39GHz频段,所述第一频段范围内的第一谐振和第二谐振覆盖n260频段,第二频段范围包括28GHz,所述第二频段范围的第一谐振和第二谐振覆盖毫米波n257,n258和n261频段。
  18. 一种电子设备,其特征在于,所述电子设备包括控制器和如权利要求1-17任意一项所述的天线模组,所述控制器与所述天线模组电连接,所述天线模组用于在所述控制器的控制下工作。
  19. 如权利要求18所述的电子设备,其特征在于,所述电子设备包括电池盖和透波结构,所述透波结构承载于所述电池盖,所述天线模组的辐射面至少部分朝向所述电池盖和所述透波结构,所述电池盖对所述第一频段范围的射频信号的透过率小于所述电池盖和所述透波结构对所述第一频段范围的射频信号的透过率;所述电池盖对所述第二频段范围的射频信号的透过率小于所述电池盖和所述透波结构对所述第二频段范围的射频信号的透过率。
  20. 如权利要求18所述的电子设备,其特征在于,所述电子设备包括屏幕和透波结构,所述透波结构承载于所述屏幕,所述天线模组的辐射面至少部分朝向所述屏幕和所述透波结构,所述屏幕对所述第一频段范围的射频信号的透过率小于所述屏幕和所述透波结构对所述第一频段范围的射频信号的透过率;所述屏幕对所述第二频段范围的射频信号的透过率小于所述屏幕和所述透波结构对所述第二频段范围的射频信号的透过率。
PCT/CN2020/122827 2019-10-31 2020-10-22 天线模组及电子设备 WO2021083027A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20881578.7A EP4044368A4 (en) 2019-10-31 2020-10-22 ANTENNA MODULE AND ELECTRONIC DEVICE
US17/733,468 US20220263225A1 (en) 2019-10-31 2022-04-29 Antenna module and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911063649.7A CN111063988A (zh) 2019-10-31 2019-10-31 天线模组及电子设备
CN201911063649.7 2019-10-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/733,468 Continuation US20220263225A1 (en) 2019-10-31 2022-04-29 Antenna module and electronic device

Publications (1)

Publication Number Publication Date
WO2021083027A1 true WO2021083027A1 (zh) 2021-05-06

Family

ID=70298475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122827 WO2021083027A1 (zh) 2019-10-31 2020-10-22 天线模组及电子设备

Country Status (4)

Country Link
US (1) US20220263225A1 (zh)
EP (1) EP4044368A4 (zh)
CN (1) CN111063988A (zh)
WO (1) WO2021083027A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111063988A (zh) * 2019-10-31 2020-04-24 Oppo广东移动通信有限公司 天线模组及电子设备
CN113594687B (zh) * 2020-04-30 2022-10-28 Oppo广东移动通信有限公司 天线模组及电子设备
CN113839182A (zh) * 2020-06-24 2021-12-24 大唐移动通信设备有限公司 一种天线及基站
US11349204B2 (en) * 2020-09-22 2022-05-31 Apple Inc. Electronic devices having multilayer millimeter wave antennas
US20220094061A1 (en) * 2020-09-24 2022-03-24 Apple Inc. Electronic Devices Having Co-Located Millimeter Wave Antennas
CN112821042B (zh) * 2020-12-31 2023-09-22 Oppo广东移动通信有限公司 电子设备
CN112909506B (zh) * 2021-01-16 2021-10-12 深圳市睿德通讯科技有限公司 天线结构及天线阵列
CN113013616A (zh) * 2021-02-24 2021-06-22 Oppo广东移动通信有限公司 天线组件及电子设备
CN113067121B (zh) * 2021-03-24 2023-12-22 Oppo广东移动通信有限公司 电子设备
CN113437505A (zh) * 2021-06-24 2021-09-24 维沃移动通信有限公司 多层天线结构及电子设备
CN113422199A (zh) * 2021-06-25 2021-09-21 深圳瑞森特电子科技有限公司 天线模组的制造方法、天线模组及通信设备
CN113659344A (zh) * 2021-07-13 2021-11-16 荣耀终端有限公司 一种基于寄生耦合的贴片天线和电子设备
US11888210B2 (en) * 2021-08-06 2024-01-30 Advanced Semiconductor Engineering, Inc. Electronic package and method of manufacturing the same
CN113659305B (zh) * 2021-08-06 2024-02-13 Oppo广东移动通信有限公司 电子设备
WO2024071012A1 (ja) * 2022-09-29 2024-04-04 日東電工株式会社 パッチアンテナ

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101014347B1 (ko) * 2010-11-03 2011-02-15 삼성탈레스 주식회사 이중 대역 이중 편파의 구현이 가능한 마이크로스트립 스택 패치 배열 안테나
KR101014352B1 (ko) * 2010-11-03 2011-02-15 삼성탈레스 주식회사 이중 대역 이중 편파의 구현이 가능한 마이크로스트립 스택 패치 안테나
CN105932419A (zh) * 2016-07-01 2016-09-07 西安电子科技大学 基于阶梯型层叠结构的多频段封装天线
CN106549232A (zh) * 2016-11-04 2017-03-29 北京航空航天大学 一种互补的双频正交极化微带天线阵设计方法
CN107516763A (zh) * 2017-08-15 2017-12-26 武汉雷毫科技有限公司 贴片天线单元及阵列
CN107732459A (zh) * 2017-08-16 2018-02-23 电子科技大学 一种宽带小型化贴片天线
CN209515999U (zh) * 2018-12-24 2019-10-18 成都信息工程大学 一种圆极化微带天线
CN111063988A (zh) * 2019-10-31 2020-04-24 Oppo广东移动通信有限公司 天线模组及电子设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2225677A1 (en) * 1997-12-22 1999-06-22 Philippe Lafleur Multiple parasitic coupling to an outer antenna patch element from inner path elements
FR2975537B1 (fr) * 2011-05-17 2013-07-05 Thales Sa Element rayonnant pour antenne reseau active constituee de tuiles elementaires
CN103066395B (zh) * 2011-10-20 2016-01-20 西北工业大学 基于完全吸收器的低rcs微带天线
CN102637926B (zh) * 2012-04-13 2015-02-04 深圳光启创新技术有限公司 一种无线通信装置
US10651555B2 (en) * 2017-07-14 2020-05-12 Apple Inc. Multi-band millimeter wave patch antennas
US11211688B2 (en) * 2017-10-03 2021-12-28 Intel Corporation Hybrid and thinned millimeter-wave antenna solutions
US11018418B2 (en) * 2018-01-31 2021-05-25 Samsung Electro-Mechanics Co., Ltd. Chip antenna and chip antenna module including the same
CN110098474A (zh) * 2019-04-26 2019-08-06 维沃移动通信有限公司 一种天线模组及终端设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101014347B1 (ko) * 2010-11-03 2011-02-15 삼성탈레스 주식회사 이중 대역 이중 편파의 구현이 가능한 마이크로스트립 스택 패치 배열 안테나
KR101014352B1 (ko) * 2010-11-03 2011-02-15 삼성탈레스 주식회사 이중 대역 이중 편파의 구현이 가능한 마이크로스트립 스택 패치 안테나
CN105932419A (zh) * 2016-07-01 2016-09-07 西安电子科技大学 基于阶梯型层叠结构的多频段封装天线
CN106549232A (zh) * 2016-11-04 2017-03-29 北京航空航天大学 一种互补的双频正交极化微带天线阵设计方法
CN107516763A (zh) * 2017-08-15 2017-12-26 武汉雷毫科技有限公司 贴片天线单元及阵列
CN107732459A (zh) * 2017-08-16 2018-02-23 电子科技大学 一种宽带小型化贴片天线
CN209515999U (zh) * 2018-12-24 2019-10-18 成都信息工程大学 一种圆极化微带天线
CN111063988A (zh) * 2019-10-31 2020-04-24 Oppo广东移动通信有限公司 天线模组及电子设备

Also Published As

Publication number Publication date
CN111063988A (zh) 2020-04-24
EP4044368A4 (en) 2022-12-07
EP4044368A1 (en) 2022-08-17
US20220263225A1 (en) 2022-08-18

Similar Documents

Publication Publication Date Title
WO2021083027A1 (zh) 天线模组及电子设备
WO2021082967A1 (zh) 天线模组及电子设备
EP4047746A1 (en) Antenna module and electronic device
CN110021812B (zh) 天线组件及电子设备
KR20180105833A (ko) 다이폴 안테나 장치 및 이를 이용한 배열 안테나 장치
CN210897636U (zh) 壳体组件、天线组件及电子设备
CN112290193B (zh) 毫米波模组、电子设备及毫米波模组的调节方法
US11201394B2 (en) Antenna device and electronic device
US11532870B2 (en) Housing assembly and electronic devices
EP3761449A1 (en) Housing assembly, antenna assembly, and electronic device
US20220094041A1 (en) Housing assembly, antenna device, and electronic device
US20220085493A1 (en) Housing assembly, antenna device, and electronic device
WO2024093310A1 (zh) 全息天线、通信设备及全息天线的制备方法
WO2021000732A1 (zh) 壳体组件、天线组件及电子设备
WO2021000733A1 (zh) 壳体组件、天线组件及电子设备
CN111403901B (zh) 天线模组及电子设备
WO2024017164A1 (zh) 天线及通讯设备
CN112312690B (zh) 壳体组件、天线组件及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20881578

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020881578

Country of ref document: EP

Effective date: 20220426

NENP Non-entry into the national phase

Ref country code: DE