WO2021000746A1 - 显示屏组件、天线组件及电子设备 - Google Patents

显示屏组件、天线组件及电子设备 Download PDF

Info

Publication number
WO2021000746A1
WO2021000746A1 PCT/CN2020/096942 CN2020096942W WO2021000746A1 WO 2021000746 A1 WO2021000746 A1 WO 2021000746A1 CN 2020096942 W CN2020096942 W CN 2020096942W WO 2021000746 A1 WO2021000746 A1 WO 2021000746A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
wave
display screen
electrode
transmitting
Prior art date
Application number
PCT/CN2020/096942
Other languages
English (en)
French (fr)
Inventor
贾玉虎
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to JP2021576354A priority Critical patent/JP2022537219A/ja
Priority to KR1020217043337A priority patent/KR20220015472A/ko
Priority to EP20834584.3A priority patent/EP3979508A4/en
Publication of WO2021000746A1 publication Critical patent/WO2021000746A1/zh
Priority to US17/535,322 priority patent/US20220085078A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1255Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs integrated with passive devices, e.g. auxiliary capacitors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/552Protection against radiation, e.g. light or electromagnetic waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/66High-frequency adaptations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78633Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device with a light shield
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • H04B1/52Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136209Light shielding layers, e.g. black matrix, incorporated in the active matrix substrate, e.g. structurally associated with the switching element
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6644Packaging aspects of high-frequency amplifiers
    • H01L2223/6655Matching arrangements, e.g. arrangement of inductive and capacitive components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6661High-frequency adaptations for passive devices
    • H01L2223/6677High-frequency adaptations for passive devices for antenna, e.g. antenna included within housing of semiconductor device

Definitions

  • This application relates to the field of electronic equipment, and in particular to a display screen assembly, an antenna assembly and an electronic device.
  • the fifth-generation mobile communication technology (5th-Generation wireless systems, 5G) is favored by users due to its high communication speed.
  • 5G mobile communications For example, when using 5G mobile communications to transmit data, the transmission speed is hundreds of times faster than that of 4G mobile communications.
  • Millimeter wave signals are the main means to realize 5G mobile communication technology.
  • millimeter wave antennas are applied to electronic devices, millimeter wave antennas are usually installed in the containment space inside the electronic device, and the millimeter wave signal antennas radiate through the screen of the electronic device.
  • the outgoing transmittance is low, which cannot meet the requirements of antenna radiation performance.
  • the transmittance of the external millimeter wave signal through the screen of the electronic device is low. It can be seen that in the prior art, the communication performance of the 5G millimeter wave signal is poor.
  • the present application provides a display screen assembly, an antenna assembly and an electronic device.
  • the present application provides a display screen assembly, including:
  • a display screen body which has a first transmittance for radio frequency signals of a preset frequency band
  • a wave-transmitting structure is carried on the display screen body and covers at least a part of the display screen body;
  • the display screen assembly has a second transmittance to the radio frequency signal of the preset frequency band in an area corresponding to the wave-transmitting structure, and the second transmittance is greater than the first transmittance.
  • the present application provides an antenna assembly.
  • the antenna assembly includes an antenna module and a display screen assembly.
  • the antenna module is used to transmit and receive radio frequency signals of a preset frequency band within a preset range.
  • the wave-transmitting structure in the component is at least partially located within the preset range.
  • the present application also provides an electronic device, the electronic device including the antenna assembly.
  • this application also provides an electronic device, which includes:
  • a first antenna module where the first antenna module is used to transmit and receive a first radio frequency signal in a first frequency band within a first preset direction range;
  • the display screen body, the display screen body and the first antenna module are spaced apart, and at least part of the display screen body is located within the first preset direction range, and has a first transparency to radio frequency signals of a preset frequency band Overrate
  • the first wave-transmitting structure the first wave-transmitting structure is carried on the display screen body, and covers at least a part of the display screen body, and at least part of the first wave-transmitting structure is located in the first preset Within the range, the electronic device has a second transmittance to the first radio frequency signal of the first frequency band in the area corresponding to the first wave-transmitting structure, wherein the second transmittance is greater than The first transmittance.
  • FIG. 1 is a schematic structural diagram of a display screen assembly provided by the first embodiment of this application.
  • FIG. 2 is a schematic structural diagram of a display screen assembly provided by the second embodiment of the application.
  • FIG. 3 is a schematic cross-sectional structure diagram of the array substrate in FIG. 2.
  • FIG. 4 is a schematic cross-sectional structure diagram of the array substrate in the display screen assembly provided in the third method described in this application.
  • FIG. 5 is a schematic diagram of a cross-sectional structure of an array substrate in a display screen assembly provided in the fourth method described in this application.
  • FIG. 6 is a schematic diagram of a cross-sectional structure of the array substrate in the display screen assembly provided in the fifth method described in this application.
  • FIG. 7 is a schematic cross-sectional structure diagram of the array substrate in the display screen assembly provided in the fifth method of the application.
  • FIG. 8 is a schematic cross-sectional structure diagram of the array substrate in the display screen assembly provided by the sixth method described in this application.
  • FIG. 9 is a schematic structural diagram of a display screen assembly provided by a seventh embodiment of this application.
  • FIG. 10 is a schematic structural diagram of the display screen assembly according to the eighth embodiment of this application.
  • FIG. 11 is a schematic structural diagram of the display screen assembly according to the ninth embodiment of this application.
  • FIG. 12 is a schematic cross-sectional structure diagram of the display screen assembly in FIG. 11.
  • FIG. 13 is a schematic structural diagram of the display screen assembly according to the tenth embodiment of this application.
  • FIG. 14 is a schematic cross-sectional structure diagram of the display screen assembly in FIG. 13.
  • 15 is a schematic diagram of the structure of the display screen assembly according to the eleventh embodiment of this application.
  • FIG. 16 is a schematic structural diagram of the display screen assembly according to the twelfth embodiment of this application.
  • FIG. 17 is a schematic diagram of the wave-transmitting structure provided by the first embodiment of this application.
  • FIG. 18 is a schematic diagram of the wave-transmitting structure provided by the second embodiment of this application.
  • FIG. 19 is a schematic diagram of the wave-transmitting structure provided by the third embodiment of this application.
  • FIG. 20 is a schematic cross-sectional structure diagram of the wave-transmitting structure provided by the fourth embodiment of this application.
  • FIG. 21 is a schematic diagram of the structure of the first wave-transmitting layer in the wave-transmitting structure provided in the fourth embodiment of this application.
  • FIG. 22 is a schematic structural diagram of the second wave-transmitting layer in the wave-transmitting structure provided in the fourth embodiment of this application.
  • FIG. 23 is an equivalent circuit diagram of the wave-transmitting structure provided by the fourth embodiment of this application.
  • FIG. 24 is a schematic diagram of the first wave-transmitting layer in the wave-transmitting structure provided by the fifth embodiment of this application.
  • 25 is a schematic diagram of the structure of the first wave-transmitting layer in the wave-transmitting structure provided by the sixth embodiment of this application.
  • FIG. 26 is a schematic diagram of the structure of the first wave-transmitting layer in the wave-transmitting structure provided by the seventh embodiment of this application.
  • FIG. 27 is a schematic structural diagram of the first wave-transmitting layer in the wave-transmitting structure provided by the eighth embodiment of this application.
  • FIG. 28 is a schematic structural diagram of the antenna assembly provided by this application.
  • FIG. 29 is a schematic structural diagram of an electronic device provided by the first embodiment of this application.
  • FIG. 30 is a schematic structural diagram of an electronic device provided by the second embodiment of this application.
  • Fig. 31 is a schematic cross-sectional structure view taken along line III-III in Fig. 30.
  • FIG. 32 is a schematic structural diagram of an electronic device provided by the third embodiment of this application.
  • Fig. 33 is a schematic cross-sectional structure view taken along line IV-IV in Fig. 32.
  • FIG. 34 is a schematic cross-sectional structure diagram of an antenna module in an embodiment of this application.
  • FIG. 35 is a schematic cross-sectional structure diagram of an antenna module in another embodiment of this application.
  • FIG. 36 is a schematic diagram of an M ⁇ N radio frequency antenna array in an embodiment of this application.
  • FIG. 37 is a schematic diagram of a package structure when the antenna modules in an embodiment of the application form a radio frequency antenna array.
  • FIG. 38 is a schematic structural diagram of an electronic device provided by the fourth embodiment of this application.
  • FIG. 39 is a schematic structural diagram of an electronic device provided by the fifth embodiment of this application.
  • FIG. 40 is a schematic structural diagram of an electronic device provided by a sixth embodiment of this application.
  • FIG. 41 is a schematic structural diagram of an electronic device provided by a seventh embodiment of this application.
  • the present application provides a display screen assembly, including:
  • a display screen body which has a first transmittance for radio frequency signals of a preset frequency band
  • a wave-transmitting structure is carried on the display screen body and covers at least a part of the display screen body;
  • the display screen assembly has a second transmittance to the radio frequency signal of the preset frequency band in an area corresponding to the wave-transmitting structure, and the second transmittance is greater than the first transmittance.
  • the display screen body includes a stacked display screen and a cover plate, and the wave-transmitting structure is provided on the cover plate.
  • the display screen body includes an array substrate, the array substrate includes a substrate and a plurality of thin film transistors arranged in an array on the substrate, and the thin film transistor includes a gate, A gate insulating layer, a channel layer, a source electrode, and a drain electrode, the gate electrode is arranged on one side of the substrate, the gate insulating layer covers the gate electrode, and the channel layer is arranged on the gate electrode Are arranged on the insulating layer and corresponding to the gate, the source and the drain are arranged at opposite ends of the channel layer at intervals and are both connected to the channel layer, and the wave-transmitting structure is a single layer Structure: The wave-transmitting structure and the gate are arranged in the same layer; or, the wave-transmitting structure is arranged in the same layer as the source and the drain.
  • the display screen body includes an array substrate, the array substrate includes a substrate and a plurality of thin film transistors arranged in an array on the substrate, and the thin film transistor includes a gate, A gate insulating layer, a channel layer, a source electrode, and a drain electrode, the gate electrode is arranged on one side of the substrate, the gate insulating layer covers the gate electrode, and the channel layer is arranged on the gate electrode Are arranged on the insulating layer and corresponding to the gate, the source and the drain are arranged at opposite ends of the channel layer at intervals and are both connected to the channel layer, and the wave-transmitting structure includes an interval stack
  • the first wave-permeable layer and the second wave-permeable layer are provided, the first wave-permeable layer is provided in the same layer as the gate, and the second wave-permeable layer is provided in the same layer as the source electrode and the drain electrode .
  • the display screen body includes an array substrate, the array substrate includes a substrate and a plurality of thin film transistors arranged in an array on the substrate, and the thin film transistor includes a light-shielding layer,
  • the channel layer is disposed on the first insulating layer and corresponding to the light-shielding layer, and the source electrode and the drain electrode are disposed at opposite ends of the channel layer at intervals and are both connected to the
  • the channel layer is connected, the second insulation covers the source and the drain, the gate is disposed on the second insulation layer, and the wave-transmitting structure is a single-layer structure: the wave-transmitting structure It is provided in the same layer as the light shielding layer; or, the wave-transmitting
  • the display screen body includes an array substrate, the array substrate includes a substrate and a plurality of thin film transistors arranged in an array on the substrate, and the thin film transistor includes a light-shielding layer,
  • the channel layer is disposed on the first insulating layer and corresponding to the light-shielding layer, and the source electrode and the drain electrode are disposed at opposite ends of the channel layer at intervals and are both connected to the The channel layers are connected, the second insulation covers the source and the drain, the gate is disposed on the second insulating layer, and the wave-transmitting structure includes first wave-transmitting layers stacked at intervals And a second wave-transmitting layer, the first wave-transmitting layer and the
  • the display screen body includes an array substrate, the array substrate includes a substrate and a plurality of thin film transistors arranged in an array on the substrate, and the thin film transistor includes a light-shielding layer,
  • the channel layer is disposed on the first insulating layer and corresponding to the light-shielding layer, and the source electrode and the drain electrode are disposed at opposite ends of the channel layer at intervals and are both connected to the The channel layers are connected, the second insulation covers the source and the drain, the gate is disposed on the second insulating layer, and the wave-transmitting structure includes first wave-transmitting layers stacked at intervals , A second wave-transmitting layer, and a third wave-transmitting layer
  • the display panel includes an array substrate, the array substrate includes a pixel electrode, the pixel electrode is made of a transparent metal oxide semiconductor, and at least part of the wave-transmitting structure It is arranged in the same layer as the pixel electrode and has the same material as the pixel electrode.
  • the display panel includes an array substrate and a color filter substrate, the array substrate is opposed to the color filter substrate and is arranged at intervals, and the wave-transmitting structure includes a first wave-transmitting layer And a second transparent layer, the first transparent layer is disposed on the array substrate, and the second transparent layer is disposed on the color filter substrate.
  • the color filter substrate includes a pixel electrode
  • the array substrate includes a common electrode
  • the first wave-transmitting layer is in the same layer as the pixel electrode
  • the second wave-transmitting layer is provided in the same layer as the common electrode.
  • the display screen body includes a substrate and light-emitting units arranged in an array on the substrate, and the light-emitting units include a first electrode, a light-emitting layer, and a second electrode.
  • the first electrode is arranged adjacent to the substrate, the light-emitting layer is arranged on the side of the first electrode away from the substrate, and the second electrode is arranged on the substrate.
  • the light-emitting layer is on the side facing away from the first electrode, the first electrode is used for loading a first voltage, the second electrode is used for loading a second voltage, and the light-emitting layer is used for loading between the first voltage and the Light is emitted under the action of the second voltage, the wave-transmitting structure is a single-layer structure, and the wave-transmitting structure is provided in the same layer as the first electrode or the second electrode.
  • the display screen body includes a substrate and light-emitting units arranged in an array on the substrate, and the light-emitting units include a first electrode, a light-emitting layer, and a second electrode,
  • the first electrode is arranged adjacent to the substrate compared to the light-emitting layer and the second electrode, the light-emitting layer is arranged on a side of the first electrode away from the substrate, and the second electrode is arranged on The light-emitting layer is on a side away from the first electrode, the first electrode is used to load a first voltage, the second electrode is used to load a second voltage, and the light-emitting layer is used to load a voltage at the first voltage.
  • the wave-transmitting structure includes a first wave-transmitting layer and a second wave-transmitting layer, the first wave-transmitting layer and the first electrode are provided in the same layer, and the second The wave-transmitting structure is arranged in the same layer as the second electrode.
  • the first electrode is an anode
  • the second electrode is a cathode
  • the second electrode is an anode
  • the first wave-transmitting structure has a through hole, The orthographic projection of the second wave-transmitting structure on the first wave-transmitting structure falls into the through hole.
  • the display screen body includes an inner surface and an outer surface that are opposed to each other, and the wave-transmitting structure is provided on the inner surface.
  • the display screen body includes a screen body and an extension portion bent and extended from the periphery of the screen body, and the wave-transmitting structure is provided corresponding to the screen body, or The wave-transmitting structure is arranged corresponding to the extension part.
  • the present application provides an antenna assembly, characterized in that the antenna assembly includes an antenna module and any one of the first aspect and the first implementation to the fifteenth implementation of the first aspect.
  • the antenna module is used to transmit and receive radio frequency signals of a preset frequency band within a preset range, and the wave-transmitting structure in the display screen assembly is at least partially located within the preset range.
  • the present application provides an electronic device that includes the antenna assembly provided in the second aspect.
  • the present application provides an electronic device, which includes:
  • a first antenna module where the first antenna module is used to transmit and receive a first radio frequency signal in a first frequency band within a first preset direction range;
  • the display screen body, the display screen body and the first antenna module are spaced apart, and at least part of the display screen body is located within the first preset direction range, and has a first transparency to radio frequency signals of a preset frequency band Overrate
  • the first wave-transmitting structure the first wave-transmitting structure is carried on the display screen body, and covers at least a part of the display screen body, and at least part of the first wave-transmitting structure is located in the first preset Within the range, the electronic device has a second transmittance to the first radio frequency signal of the first frequency band in the area corresponding to the first wave-transmitting structure, wherein the second transmittance is greater than The first transmittance.
  • the electronic device further includes:
  • a second antenna module, the second antenna module and the first antenna module are spaced apart and the second antenna module is located outside the first preset direction range, the second antenna module For transmitting and receiving a second radio frequency signal in the second frequency band within a second preset direction range;
  • the display screen body is also spaced apart from the second antenna module, at least part of the display screen body is located within the second preset direction range, and the display screen body is located within the second preset direction range
  • the part of has a third transmittance for the second radio frequency signal of the second frequency band
  • the second wave-transmitting structure the second wave-transmitting structure is carried on the display screen body, and at least part of the second wave-transmitting structure is located within the second preset direction range, and the electronic device is In the area corresponding to the second wave-transmitting structure, the second radio frequency signal in the first frequency band has a fourth transmittance, wherein the fourth transmittance is greater than the third transmittance.
  • the display screen body includes a screen body and an extension portion bent and extended from the periphery of the screen body, wherein the first antenna module and the The second antenna module is set corresponding to the screen body; or, the first antenna module and the second antenna module are both set corresponding to the extension part; or, the first antenna module corresponds to the The screen body is provided, and the second antenna module is provided corresponding to the extension part.
  • FIG. 1 is a schematic structural diagram of a display screen assembly provided by the first embodiment of this application.
  • the display screen assembly 100 includes a display screen body 110 and a wave-transmitting structure 120.
  • the display main body 110 has a first transmittance for radio frequency signals of a predetermined frequency band.
  • the wave-transmitting structure 120 is carried on the display screen body 110 and covers at least a part of the display screen body 110.
  • the display screen assembly 100 has a second transmittance for radio frequency signals of the predetermined frequency band in an area corresponding to the wave-transmitting structure 120, and the second transmittance is greater than the first transmittance.
  • the wave-transmitting structure 120 may be directly arranged on the display screen body 110, or may be arranged on the display screen body 110 through a carrier film, or embedded in the display screen body 110.
  • the carrier film may be, but not limited to, a plastic (Polyethylene terephthalate, PET) film, a flexible circuit board, a printed circuit board, or the like.
  • the PET film can be, but is not limited to, a color film, an explosion-proof film, and the like.
  • the wave-transmitting structure 120 may cover a part of the display screen body 110, and the wave-transmitting structure 120 may also cover the entire area of the display screen body 110.
  • the display screen body 110 includes opposite inner and outer surfaces, and the wave-transmitting structure 120 may be arranged on the inner surface of the display screen body 110, or on the outer surface of the display screen body 110 .
  • the so-called display screen body 110 refers to a component that performs a display function in an electronic device.
  • the display screen body 110 generally includes a display screen 100a and a cover plate 100b laminated with the display screen 100a.
  • the display screen 100a may be a liquid crystal display screen or an organic diode light emitting display screen.
  • the cover plate 100b is arranged on the display screen 100a for protecting the display screen 100a.
  • the wave-transmitting structure 120 is disposed on the cover plate 100b.
  • the wave-transmitting structure 120 may be arranged on the surface of the cover plate 100b close to the display screen 100a; or, the wave-transmitting structure 120 may also be arranged on the surface of the cover plate 100b away from the display screen 100a; or The wave-transmitting structure 120 is embedded in the cover plate 100b. Since the cover 100b is an independent component, when the wave-transmitting structure 120 is arranged on the cover 100b and the wave-transmitting structure 120 is arranged on the surface of the cover 100b close to the display screen 100 or is arranged When the cover plate 100b is away from the surface of the display screen 100a, the difficulty of combining the wave-transmitting structure 120 with the display screen body 110 can be reduced. In FIG. 1, the wave-transmitting structure 120 covers the entire area of the display screen body 110 and the wave-transmitting structure 120 is directly disposed on the surface of the cover plate 100b close to the display screen 100a as an example. .
  • the wave-transmitting structure 120 may have any one of single-frequency single-polarization, single-frequency dual-polarization, dual-frequency dual-polarization, dual-frequency single-polarization, broadband single-polarization, broadband dual-polarization, and other characteristics.
  • the wave-transmitting structure 120 may have any one of a dual-frequency resonance response, or a single-frequency resonance response, or a broadband resonance response, or a multi-frequency resonance response.
  • the material of the wave-transmitting structure 120 may be a metal material or a non-metal conductive material.
  • the wave-transmitting structure 120 on the display body 110 is excited by the radio frequency signal of the preset frequency band, and the wave-transmitting structure 120 generates the same frequency as the radio frequency signal of the preset frequency band.
  • the radio frequency signal of the frequency band penetrates the display screen body 110 and radiates into the free space. Since the wave-transmitting structure 120 is excited and generates a radio frequency signal of the same frequency band as the preset frequency band, the amount of the radio frequency signal of the preset frequency band that passes through the display screen body 110 and is radiated into the free space increases. That is, by providing the wave-transmitting structure 120, the transmittance of the display screen assembly 100 to the radio frequency signal of the preset frequency band is improved.
  • the display screen assembly 100 includes a wave-transmitting structure 120 and a display screen body 110. Therefore, the dielectric constant of the display screen assembly 100 can be equivalent to the dielectric constant of a preset material, and the preset material It is assumed that the dielectric constant of the material has a high transmittance to the radio frequency signal of the predetermined frequency band, and the equivalent wave impedance of the predetermined material is equal to or approximately equal to the equivalent wave impedance of free space.
  • the radio frequency signal may be, but is not limited to, a radio frequency signal in the millimeter wave frequency band or a radio frequency signal in the terahertz frequency band.
  • 5G new radio mainly uses two frequencies: FR1 frequency band and FR2 frequency band.
  • the frequency range of the FR1 frequency band is 450MHz ⁇ 6GHz, also called the sub-6GHz frequency band;
  • the frequency range of the FR2 frequency band is 24.25GHz ⁇ 52.6GHz, which belongs to the millimeter wave (mm Wave) frequency band.
  • 3GPP Release 15 standardizes the current 5G millimeter wave frequency bands including: n257 (26.5-29.5GHz), n258 (24.25-27.5GHz), n261 (27.5-28.35GHz) and n260 (37-40GHz).
  • the display assembly 100 provided by the present application carries the wave-transmitting structure 120 on the display body 110, and the wave-transmitting structure 120 increases the transmittance of the radio frequency signal of the preset frequency band.
  • the display screen assembly 100 is applied to the electronic device 1, the influence of the display screen assembly 100 on the radiation performance of the antenna module arranged inside the electronic device can be reduced, thereby improving the communication performance of the electronic device 1.
  • the light transmittance of the wave-transmitting structure 120 is greater than the preset transmittance, so that the display screen body 110 displays normally.
  • the predetermined transmittance may be, but is not limited to, 80%. Since the wave-transmitting structure 120 is applied to the display screen body 110, the light transmittance of the wave-transmitting structure 120 is greater than the predetermined transmittance, Therefore, the transmittance of the display screen assembly 100 provided with the wave-transmitting component is relatively high, and the normal display of the display screen assembly 100 will not be greatly affected.
  • FIG. 2 is a schematic structural diagram of a display screen assembly provided by a second embodiment of the application
  • FIG. 3 is a schematic cross-sectional structural diagram of the array substrate in FIG. 2.
  • the display screen body 110 includes an array substrate 111, and the array substrate 111 includes a substrate 111a and a plurality of thin film transistors 111b arranged in an array on the substrate 111a.
  • the thin film transistor 111b includes a gate 510, a gate insulating layer 520, a channel layer 530, a source 540, and a drain 550.
  • the gate 510 is disposed on one side of the substrate 111a, the gate insulating layer 520 covers the gate 510, and the channel layer 530 is disposed on the gate insulating layer 520 and corresponds to the gate 510.
  • the source electrode 540 and the drain electrode 550 are arranged at two opposite ends of the channel layer 530 at intervals and are connected to the channel layer 530.
  • the wave-transmitting structure 120 is a single-layer structure, and the wave-transmitting structure 120 and the gate 510 are arranged in the same layer.
  • the thin film transistor 111b further includes a flat layer 580.
  • the flat layer 580 covers the source electrode 540 and the drain electrode 550.
  • the display screen assembly 100 of the present application is carried on the display screen body 110 by arranging a wave-transmitting structure 120.
  • the wave-transmitting structure 120 improves the transmittance of radio frequency signals of a preset frequency band.
  • the display screen assembly 100 of the present application is formed by arranging the wave-transmitting structure 120 and the gate 510 in the same layer. Therefore, during preparation, the wave-transmitting structure 120 and the gate 510 can be manufactured in the same process. , Thereby reducing the preparation process.
  • FIG. 4 is a schematic cross-sectional structure diagram of the array substrate in the display screen assembly provided in the third method described in this application.
  • the structure of the display screen assembly 100 provided in this embodiment is basically the same as that of the display screen assembly 100 provided in the second embodiment of the present application. The difference is that in this embodiment, the wave-transmitting structure 120 and the source 540 And the drain electrode 550 are arranged in the same layer.
  • the thin film transistor 111b further includes a flat layer 580.
  • the flat layer 580 covers the source electrode 540, the drain electrode 550, and the wave-transmitting structure 120.
  • the display screen assembly 100 of the present application is carried on the display screen body 110 by arranging a wave-transmitting structure 120.
  • the wave-transmitting structure 120 improves the transmittance of radio frequency signals of a preset frequency band.
  • the influence of the display screen assembly 100 on the radiation performance of the antenna module disposed inside the electronic device can be reduced, thereby improving the communication performance of the electronic device 1.
  • the wave-transmitting structure 120 and the gate electrode 510 are arranged in the same layer. Therefore, during preparation, the wave-transmitting structure 120 can be combined with the source electrode 540 and the drain electrode 550. Prepared in the same process, thereby reducing the preparation process.
  • FIG. 5 is a schematic cross-sectional structure diagram of the array substrate in the display screen assembly provided in the fourth method of this application.
  • the display screen body 110 includes an array substrate 111, and the array substrate 111 includes a substrate 111a and a plurality of thin film transistors 111b arranged in an array on the substrate 111a.
  • the thin film transistor 111b includes a gate 510, a gate insulating layer 520, a channel layer 530, a source 540, and a drain 550.
  • the gate 510 is disposed on one side of the substrate 111a, the gate insulating layer 520 covers the gate 510, and the channel layer 530 is disposed on the gate insulating layer 520 and corresponds to the gate 510.
  • Set up the gate insulating layer 520
  • the source electrode 540 and the drain electrode 550 are spaced apart at two opposite ends of the channel layer 530 and are connected to the channel layer 530.
  • the wave-transmitting structure 120 includes a first wave-transmitting layer 121 and a second wave-transmitting layer 122 stacked at intervals, the first wave-transmitting layer 121 and the gate 510 are provided in the same layer, and the second wave-transmitting layer
  • the layer 122 is provided in the same layer as the source electrode 540 and the drain electrode 550.
  • the display screen assembly 100 of the present application is carried on the display screen body 110 by arranging a wave-transmitting structure 120.
  • the wave-transmitting structure 120 improves the transmittance of radio frequency signals of a preset frequency band.
  • the wave-transmitting structure 120 and the gate 510 are arranged in the same layer. Therefore, during preparation, the first wave-transmitting layer 121 and the gate 510 can be in the same process.
  • the second wave-transmitting layer 122 can be prepared in the same process as the source electrode 540 and the drain electrode 550, thereby reducing the preparation process.
  • FIG. 6 is a schematic cross-sectional structure diagram of the array substrate in the display screen assembly provided in the fifth method of this application.
  • the display screen body 110 includes an array substrate 111, and the array substrate 111 includes a substrate 111a and a plurality of thin film transistors 111b arranged in an array on the substrate 111a.
  • the thin film transistor 111b includes a light shielding layer 590, a first insulating layer 560, a channel layer 530, a source electrode 540, a drain electrode 550, a second insulating layer 570, a gate electrode 510, and a flat layer 580.
  • the light-shielding layer 590 is provided on one side of the substrate 111a, the first insulating layer 560 covers the light-shielding layer 590, and the channel layer 530 is provided on the first insulating layer 560 and corresponds to the light-shielding layer.
  • the source electrode 540 and the drain electrode 550 are arranged at the opposite ends of the channel layer 530 at intervals and are connected to the channel layer 530.
  • the second insulating layer 570 covers the source The electrode 540 and the drain electrode 550, and the gate electrode 510 is disposed on the second insulating layer 570.
  • the wave-transmitting structure 120 is a single-layer structure: the wave-transmitting structure 120 and the light shielding layer 590 are arranged in the same layer.
  • the wave-transmitting structure 120 and the gate 510 are provided in the same layer.
  • the wave-transmitting structure 120 is provided in the same layer as the source electrode 540 and the drain electrode 550.
  • the thin film transistor 111b further includes a flat layer 580. The flat layer 580 covers the gate 510. What is illustrated in the figure is that the wave-transmitting structure 120 is arranged in the same layer as the source electrode 540 and the drain electrode 550.
  • the display screen assembly 100 of the present application is carried on the display screen body 110 by arranging a wave-transmitting structure 120.
  • the wave-transmitting structure 120 improves the transmittance of radio frequency signals of a preset frequency band.
  • the influence of the display screen assembly 100 on the radiation performance of the antenna module disposed inside the electronic device can be reduced, thereby improving the communication performance of the electronic device 1.
  • the wave-transmitting structure 120 and the gate electrode 510 are arranged in the same layer, or the wave-transmitting structure 120 is arranged in the same layer as the source electrode 540 and the drain electrode 550 to further reduce the manufacturing process.
  • FIG. 7 is a schematic cross-sectional structure diagram of the array substrate in the display screen assembly provided in the fifth method of this application.
  • the display screen body 110 includes an array substrate 111, and the array substrate 111 includes a substrate 111a and a plurality of thin film transistors 111b arranged in an array on the substrate 111a.
  • the thin film transistor 111b includes a light shielding layer 590, a first insulating layer 560, a channel layer 530, a source electrode 540, a drain electrode 550, a second insulating layer 570, a gate electrode 510, and a flat layer 580.
  • the light-shielding layer 590 is provided on one side of the substrate 111a, the first insulating layer 560 covers the light-shielding layer 590, and the channel layer 530 is provided on the first insulating layer 560 and corresponds to the light-shielding layer. Layer 590 settings.
  • the source electrode 540 and the drain electrode 550 are spaced apart at opposite ends of the channel layer 530 and are connected to the channel layer 530.
  • the second insulating layer 570 covers the source electrode 540 and the channel layer 530.
  • the gate electrode 510 is disposed on the second insulating layer 570.
  • the wave-transmitting structure 120 includes a first wave-transmitting layer 121 and a second wave-transmitting layer 122 stacked at intervals, the first wave-transmitting layer 121 and the second wave-transmitting layer 122 and the light-shielding layer 590, Any two layers of the gate 510 and the source 540 are arranged in the same layer.
  • the first wave-transmitting layer 121 and the light shielding layer 590 are arranged in the same layer
  • the second wave-transmitting layer 122 is arranged in the same layer as the source electrode 540 and the drain electrode 550 as an example for illustration.
  • the display screen assembly 100 of the present application is carried on the display screen body 110 by arranging a wave-transmitting structure 120.
  • the wave-transmitting structure 120 improves the transmittance of radio frequency signals of a preset frequency band.
  • the influence of the display screen assembly 100 on the radiation performance of the antenna module disposed inside the electronic device can be reduced, thereby improving the communication performance of the electronic device 1.
  • the first wave-transmitting layer 121 and the second wave-transmitting layer 122 and any two layers of the light-shielding layer 590, the gate 510, and the source 540 are arranged in the same layer to reduce manufacturing Process.
  • the first wave-transmitting layer 121 may serve as the The light shielding layer 590 of the display screen assembly 100.
  • the light-shielding layer 590 is used to prevent the light from the substrate 111a away from the surface of the light-shielding layer 590 from entering the channel layer 530 and causing the thin film transistor 111b to malfunction.
  • FIG. 8 is a schematic cross-sectional structure diagram of the array substrate in the display screen assembly provided in the sixth method of this application.
  • the display screen body 110 includes an array substrate 111, and the array substrate 111 includes a substrate 111a and a plurality of thin film transistors 111b arranged in an array on the substrate 111a.
  • the thin film transistor 111b includes a light shielding layer 590, a first insulating layer 560, a channel layer 530, a source electrode 540, a drain electrode 550, a second insulating layer 570, a gate electrode 510, and a flat layer 580.
  • the light-shielding layer 590 is provided on one side of the substrate 111a, the first insulating layer 560 covers the light-shielding layer 590, and the channel layer 530 is provided on the first insulating layer 560 and corresponds to the light-shielding layer.
  • the source electrode 540 and the drain electrode 550 are arranged at the opposite ends of the channel layer 530 at intervals and are connected to the channel layer 530.
  • the second insulating layer 570 covers the source The electrode 540 and the drain electrode 550, the gate electrode 510 is disposed on the second insulating layer 570, and the wave-transmitting structure 120 includes a first wave-transmitting layer 121, a second wave-transmitting layer 122, And the third wave-transmitting layer 123, the first wave-transmitting layer 121 and the light-shielding layer 590 are arranged in the same layer, and the second wave-transmitting layer 122 is arranged in the same layer as the source electrode 540 and the drain electrode 550, The third wave-transmitting layer 123 and the gate 510 are provided in the same layer.
  • FIG. 9 is a schematic structural diagram of a display screen assembly provided by a seventh embodiment of this application.
  • the display screen assembly 100 includes an array substrate 111, a color filter substrate 112, and a liquid crystal layer 113.
  • the array substrate 111 is opposite to the color filter substrate 112 and is arranged at intervals, and the liquid crystal layer 113 is arranged between the array substrate 111 and the color filter substrate 112.
  • the array substrate 111 includes pixel electrodes 610.
  • the material of the pixel electrode 610 is a transparent metal oxide semiconductor, and at least a part of the wave-transmitting structure 120 and the pixel electrode 610 are arranged in the same layer and the material of the pixel electrode 610 is the same.
  • the pixel electrode 610 is electrically connected to the drain electrode 550 of the thin film transistor 111b.
  • the pixel electrode 610 can be incorporated into the thin film transistor 111b described in any of the foregoing embodiments.
  • a thin film transistor 111b in which the pixel electrode 610 is incorporated is taken as an example for illustration.
  • FIG. 10 is a schematic structural diagram of the display screen assembly according to the eighth embodiment of this application.
  • the display panel includes an array substrate 111 and a color filter substrate 112, and the array substrate 111 is opposite to the color filter substrate 112 and is arranged at intervals.
  • the wave-transmitting structure 120 includes a first wave-transmitting layer 121 and a second wave-transmitting layer 122, the first transmitting layer is disposed on the array substrate 111, and the second wave-transmitting layer 122 is disposed on the color filter substrate 112.
  • the display screen assembly 100 further includes a liquid crystal layer 113.
  • the array substrate 111 is opposite to the color filter substrate 112 and is arranged at intervals, and the liquid crystal layer 113 is arranged between the array substrate 111 and the color filter substrate 112.
  • the color filter substrate 112 includes a pixel electrode 610
  • the array substrate 111 includes a common electrode 1121
  • the first wave-transmitting layer 121 and the pixel electrode 610 are provided in the same layer
  • the second wave-transmitting layer 122 The same layer as the common electrode 1121 is provided.
  • the pixel electrode 610 and the common electrode 1121 cooperate to control the turning of the liquid crystal molecules in the liquid crystal layer 113.
  • FIG. 11 is a schematic structural diagram of the display screen assembly according to the ninth embodiment of this application
  • FIG. 12 is a schematic cross-sectional structural diagram of the display screen assembly in FIG. 11.
  • the display screen body 110 includes a substrate 111a and 700 arranged in an array on the substrate 111a.
  • the light emitting unit 700 includes a first electrode 710, a light emitting layer 730, and a second electrode 720.
  • the first electrode 710 is disposed adjacent to the substrate 111a compared to the light-emitting layer 730 and the second electrode 720.
  • the light-emitting layer 730 is disposed on the side of the first electrode 710 away from the substrate 111 a, and the second electrode 720 is disposed on the side of the light-emitting layer 730 away from the first electrode 710.
  • the first electrode 710 is used to load a first voltage
  • the second electrode 720 is used to load a second voltage
  • the light-emitting layer 730 is used to emit light under the action of the first voltage and the second voltage.
  • the wave-transmitting structure 120 is a single-layer structure, and the wave-transmitting structure 120 is provided in the same layer as the first electrode 710 or the second electrode 720. In the figure, the wave-transmitting structure 120 and the first electrode 710 are arranged in the same layer as an example for illustration.
  • the first electrode 710 is an anode
  • the second electrode 720 is a cathode.
  • the first electrode 710 is used to generate holes
  • the second electrode 720 is used to generate electrons.
  • the holes generated by the first electrode 710 and the electrons generated by the second electrode 720 recombine in the light-emitting layer 730 to generate light.
  • the first electrode 710 is a cathode
  • the second electrode 720 is an anode.
  • the light-emitting unit 700 further includes a hole injection and transport layer 740 and an electron injection and transport layer 750.
  • the hole injection and transport layer 740 is disposed between the first electrode 710 and the light-emitting layer 730 to protect the The holes generated by the first electrode 710 are transported to the light-emitting layer 730.
  • the electron injection and transport layer 750 is disposed between the second electrode 720 and the light-emitting layer 730 to transmit electrons generated by the second electrode 720 to the light-emitting layer 730.
  • FIG. 13 is a schematic structural diagram of the display screen assembly according to the tenth embodiment of this application;
  • FIG. 14 is a schematic cross-sectional structural diagram of the display screen assembly in FIG. 13.
  • the display screen body 110 includes a substrate 111a and light emitting units 700 arranged in an array on the substrate 111a.
  • the light emitting unit 700 includes a first electrode 710, a light emitting layer 730, and a second electrode 720.
  • the first electrode 710 is disposed adjacent to the substrate 111a compared to the light-emitting layer 730 and the second electrode 720.
  • the light-emitting layer 730 is disposed on the side of the first electrode 710 away from the substrate 111 a, and the second electrode 720 is disposed on the side of the light-emitting layer 730 away from the first electrode 710.
  • the first electrode 710 is used to load a first voltage
  • the second electrode 720 is used to load a second voltage
  • the light-emitting layer 730 is used to emit light under the action of the first voltage and the second voltage.
  • the wave-transmitting structure 120 includes a first wave-permeable layer 121 and a second wave-permeable layer 122.
  • the first wave-permeable layer 121 and the first electrode 710 are provided in the same layer.
  • the second electrode 720 is arranged in the same layer.
  • the first electrode 710 is an anode
  • the second electrode 720 is a cathode
  • the first electrode 710 is a cathode
  • the second electrode 720 is an anode
  • the light-emitting unit 700 further includes a hole injection and transport layer 740 and an electron injection and transport layer 750.
  • the hole injection and transport layer 740 is disposed between the first electrode 710 and the light-emitting layer 730 to protect the The holes generated by the first electrode 710 are transported to the light-emitting layer 730.
  • the electron injection and transport layer 750 is disposed between the second electrode 720 and the light-emitting layer 730 to transmit electrons generated by the second electrode 720 to the light-emitting layer 730. Understandably, an insulating layer 761 is provided between the first wave-permeable layer 121 and the second wave-permeable layer 122.
  • FIG. 15 is a schematic structural diagram of the display screen assembly according to the eleventh embodiment of this application.
  • the display screen body 110 includes a screen body 410 and an extension part 420 bent and extended from the periphery of the screen body 410, and the wave-transmitting structure 120 is disposed corresponding to the screen body 410.
  • the display screen body 110 includes a display screen 100a and a cover plate 100b that are stacked, and the wave-transmitting structure 120 is disposed on the surface of the cover plate 100b facing the display screen 100a.
  • a gesture is taken as an example that the display screen body 110 includes a display screen 100a and a cover plate 100b that are stacked, and the wave-transmitting structure 120 is disposed on the surface of the cover plate 100b facing the display screen 100a.
  • FIG. 16 is a schematic structural diagram of the display screen assembly according to the twelfth embodiment of this application.
  • the structure of the display screen assembly 100 provided in this embodiment is basically the same as that of the display screen assembly 100 provided in the eleventh mode of the present application. The difference is that the wave-transmitting structure 120 is provided corresponding to the extension 420.
  • FIG. 17 is a schematic diagram of the wave-transmitting structure provided by the first embodiment of this application.
  • the wave-transmitting structure 120 includes a first wave-transmitting layer 121 and a second wave-transmitting layer 122 that are spaced apart and coupled to each other.
  • the first wave-transmitting structure 125 has a through hole 1251, and the orthographic projection of the second wave-transmitting structure 126 on the first wave-transmitting structure 125 falls into the through hole 1251.
  • the wave-transmitting structure 120 includes a first wave-transmitting layer 121 and a second wave-transmitting layer 122 that are arranged at intervals, the first wave-transmitting layer 121 and the second wave-transmitting layer 122 are coupled to each other, In this way, the transmittance of the display screen assembly 100 to the radio frequency signal of the predetermined frequency band in the area corresponding to the wave-transmitting structure 120 is improved compared to when the wave-transmitting structure 120 is not provided.
  • FIG. 18 is a schematic diagram of the wave-transmitting structure provided by the second embodiment of this application.
  • the wave-transmitting structure 120 can be combined with the display screen assembly provided in any of the foregoing embodiments.
  • the wave-transmitting structure 120 includes a plurality of resonance units 120b, and the resonance units 120b are periodically arranged.
  • FIG. 19 is a schematic diagram of the wave-transmitting structure provided by the third embodiment of this application.
  • the wave-transmitting structure 120 can be combined with the display screen assembly provided in any of the foregoing embodiments.
  • the wave-transmitting structure 120 includes a plurality of resonant units 120b, and the resonant units 120b are arranged aperiodically.
  • FIG. 20 is a schematic cross-sectional structure diagram of the wave-transmitting structure provided in the fourth embodiment of this application
  • FIG. 21 is the first wave-transmitting structure in the wave-transmitting structure provided in the fourth embodiment of this application.
  • a schematic diagram of the structure of the layer is a schematic diagram of the second wave-transmitting layer in the wave-transmitting structure provided in the fourth embodiment of this application.
  • the wave-transmitting structure 120 can be incorporated into the display screen assembly provided in any of the foregoing embodiments.
  • the wave-transmitting structure 120 includes a first wave-permeable layer 121, a second wave-permeable layer 122, and a third wave-permeable layer 123 that are arranged at intervals.
  • the first wave-permeable layer 121 and the second wave-permeable layer 122 A first dielectric layer 111 is provided between the second wave-permeable layer 122 and the third wave-permeable layer 123, and a second dielectric layer 112 is provided between the second wave-permeable layer 122 and the third wave-permeable layer 123. 111.
  • the second wave-transmitting layer 122, the second dielectric layer 112, and the third wave-transmitting layer 123 are stacked in sequence.
  • the first wave-permeable layer 121 includes a plurality of first patches 1211 arranged in an array
  • the second wave-permeable layer 122 includes a grid structure 1221 that is periodically arranged
  • the third wave-permeable layer 123 includes an array A plurality of second patches 1231 are arranged. The smaller the size L1 of the first patch 1211 or the second patch 1231 is, the preset frequency band shifts toward low frequencies and the bandwidth decreases.
  • one grid structure 1221 corresponds to four first patches 1211
  • one grid connection 1221 corresponds to four third patches 1231, and serves as a period of the wave-transmitting structure 1221.
  • FIG. 23 is an equivalent circuit diagram of the wave-transmitting structure provided by the fourth embodiment of this application.
  • factors that have little influence on the preset frequency band are ignored, for example, the inductance of the first wave-transmitting layer 121, the inductance of the third wave-transmitting layer 123, and the second wave-transmitting layer 122 The electric capacity.
  • the first wave-transmitting layer 121 is equivalent to a capacitor C1
  • the second wave-transmitting layer 122 is equivalent to a capacitor C2
  • the coupling capacitance of the first wave-transmitting layer 121 and the second wave-transmitting layer 122 is equivalent to a capacitor C3
  • the third wave-transmitting layer 123 is equivalent to the inductor L.
  • Z0 represents the impedance of the free space
  • the bandwidth ⁇ f/f0 is proportional to (L/C) 1/2 .
  • the preset frequency band shifts to a low frequency and the bandwidth decreases.
  • the dielectric constant of the glass is usually between 6 and 7.6.
  • the size range of the first patch 1211 is usually selected to be between 0.5 and 0.8 mm
  • the width of the solid part of the grid in the second wave-transmitting structure 128 is usually selected to be between 0.1 and 0.5 mm
  • a period is usually 1.5 to 3.0mm
  • the wave-transmitting structure 120 is applied to the display screen assembly of an electronic device, the gap between the upper surface of the antenna module 200 and the inner surface of the display screen assembly is usually selected to be greater than or equal to zero, usually 0.5 ⁇ 1.2mm.
  • FIG. 24 is a schematic diagram of the first wave-transmitting layer in the wave-transmitting structure provided by the fifth embodiment of this application.
  • the wave-transmitting structure 120 provided in this embodiment is basically the same as the wave-transmitting structure 120 provided in the fourth embodiment.
  • the difference is that in the fourth embodiment, the first patch 1211 is a rectangular patch.
  • the first wave-transmitting layer 121 includes a plurality of first patches 1211 arranged in an array, and the first patches 1211 are circular.
  • the diameter D of the circular first patch 1211 ranges from 0.5 to 0.8 mm.
  • the third wave-transmitting layer 123 includes a plurality of second patches 1231 arranged in an array, and the second patches 1231 are circular.
  • the diameter D of the circular second patch 1231 ranges from 0.5 to 0.8 mm.
  • the structure of the third wave-permeable layer 123 may be the same as the structure of the first wave-permeable layer 121.
  • FIG. 25 is a schematic diagram of the first wave-transmitting layer in the wave-transmitting structure provided by the sixth embodiment of this application.
  • the wave-transmitting structure 120 provided in this embodiment is basically the same as the wave-transmitting structure 120 provided in the fourth embodiment.
  • the first patch 1211 is a rectangular patch.
  • the first wave-transmitting layer 121 includes a plurality of first patches 1211 arranged in an array, and the first patches 1211 have a circular ring shape.
  • the material of the first patch 1211 is metal
  • the first patch 1211 has a circular ring shape so that the transparency of the wave-transmitting structure 120 can be improved.
  • the diameter Do of the size of the circular first patch 1211 is usually 0.5-0.8 mm, and the inner diameter Di of the circular first patch 1211, generally speaking, the smaller the value of Do-Di,
  • the transparency of the wave-transmitting structure 120 is higher, but the insertion loss is higher.
  • the value of the Do-Di is usually: Do-Di ⁇ 0.5 mm.
  • the structure of the third wave-permeable layer 123 may be the same as the structure of the first wave-permeable layer 121.
  • FIG. 26 is a schematic structural diagram of the first wave-transmitting layer in the wave-transmitting structure provided by the seventh embodiment of this application.
  • the wave-transmitting structure 120 provided in this embodiment is basically the same as the wave-transmitting structure 120 provided in the fourth embodiment.
  • the first patch 1211 is a rectangular patch.
  • the first wave-transmitting layer 121 includes a plurality of first patches 1211 arranged in an array, and the first patches 1211 are square ring-shaped patches.
  • the side length of the square first patch 1211 is Lo usually 0.5-0.8mm, and the inside of the square ring patch becomes Li.
  • the value of the Do-Di is usually: Lo-Li ⁇ 0.5 mm.
  • the structure of the third wave-permeable layer 123 may be the same as the structure of the first wave-permeable layer 121.
  • FIG. 27 is a schematic structural diagram of the first wave-transmitting layer in the wave-transmitting structure provided by the eighth embodiment of this application.
  • the wave-transmitting structure 120 provided in this embodiment includes a plurality of first patches 1211 arranged in an array, and each of the first patches 1211 is a square metal grid patch (mesh grid).
  • the first patch 1211 includes a plurality of first branches 1212 and a plurality of second branches 1213, the plurality of first branches 1212 are arranged at intervals, and the plurality of second branches 1213 are arranged at intervals, and The second branch 1213 and the first branch 1212 are crossed and connected.
  • the first branches 1212 extend along a first direction and the plurality of first branches 1212 are arranged at intervals along the second direction.
  • the second branch 1213 crosses the first branch 1212 perpendicularly.
  • the side length of the first patch 1211 is 0.5-0.8 mm.
  • FIG. 28 is a schematic structural diagram of the antenna assembly provided by this application.
  • the antenna assembly 10 includes an antenna module 200 and the display screen assembly 100 in any of the foregoing embodiments.
  • the antenna module 200 is used to transmit and receive radio frequency signals of a preset frequency band within a preset range, and the wave-transmitting structure 120 in the display screen assembly 100 is at least partially located within the preset range.
  • the display screen assembly 100 included in the antenna assembly 10 described in this embodiment is illustrated by taking the display screen assembly 100 provided in the first embodiment of the present application as an example.
  • FIG. 29 is a schematic structural diagram of an electronic device provided by the first embodiment of this application.
  • the electronic device 1 includes the antenna assembly 10.
  • the antenna assembly 10 please refer to the foregoing description, and will not be repeated here.
  • FIG. 30 is a schematic structural diagram of an electronic device provided by a second embodiment of the application
  • FIG. 31 is a schematic cross-sectional structural diagram along the line III-III in FIG. 30.
  • the electronic device 1 includes an antenna assembly 10, please refer to the foregoing description for the antenna assembly 10, and will not be repeated here.
  • the display screen body 110 includes a screen body 410 and an extension portion 420 curved and extended from the periphery of the screen body 410, and the wave-transmitting structure 120 is disposed corresponding to the screen body 410.
  • FIG. 32 is a schematic structural diagram of an electronic device provided by the third embodiment of this application;
  • FIG. 33 is a schematic cross-sectional structural diagram along line IV-IV in FIG. 32.
  • the electronic device 1 includes an antenna assembly 10, please refer to the foregoing description for the antenna assembly 10, and will not be repeated here.
  • the display screen body 110 includes a screen body 410 and an extension portion 420 curved and extended from the periphery of the screen body 410, and the wave-transmitting structure 120 is disposed corresponding to the extension portion 420.
  • FIG. 34 is a schematic cross-sectional structure diagram of an antenna module in an embodiment of this application.
  • the antenna module 200 includes a radio frequency chip 230, an insulating substrate 240, and one or more first antenna radiators 250.
  • the radio frequency chip 230 is used to generate an excitation signal (also called a radio frequency signal).
  • the radio frequency chip 230 is arranged away from the wave-transmitting structure 120, and the insulating substrate 240 is used to carry the one or more first antenna radiators 250
  • the radio frequency chip 230 is electrically connected to the one or more first antenna radiators 250 through a transmission line embedded in the insulating substrate 240.
  • the insulating substrate 240 includes a first surface 240a and a second surface 240b that are opposite to each other.
  • the insulating substrate 240 is used to carry the one or more first antenna radiators 250.
  • the insulating substrate 240 is arranged on The first surface 240 a or the one or more first antenna radiators 250 are embedded in the insulating substrate 240.
  • the one or more first antenna radiators 250 are disposed on the first surface 240a, and the radio frequency chip 230 is disposed on the second surface 240b as an example for illustration.
  • the excitation signal generated by the radio frequency chip 230 is electrically connected to the one or more first antenna radiators 250 through a transmission line embedded in the insulating substrate 240.
  • the radio frequency chip 230 can be soldered on the insulating substrate 240 to transmit the excitation signal to the first antenna radiator 250 via a transmission line embedded in the insulating substrate 240.
  • the first antenna radiator 250 receives the excitation signal, and generates a millimeter wave signal according to the excitation signal.
  • the first antenna radiator 250 may be, but is not limited to, a patch antenna.
  • the radio frequency chip 230 is away from the wave-transmitting structure 120 compared to the first antenna radiator 250, and the output terminal of the radio frequency chip 230 that outputs the excitation signal is located at the insulating substrate 240 away from the One side of the wave-transmitting structure 120. That is, the radio frequency chip 230 is disposed adjacent to the second surface 240 b of the insulating substrate 240 and away from the first surface 240 a of the insulating substrate 240.
  • each of the first antenna radiators 250 includes at least one feeding point 251, each of the feeding points 251 is electrically connected to the radio frequency chip 230 through the transmission line, and each of the feeding points The distance between the center of the first antenna radiator 250 corresponding to the feeding point 251 and the feeding point 251 is greater than a preset distance. Adjusting the position of the feeding point 251 can change the input impedance of the first antenna radiator 250. In this embodiment, the center of each feeding point 251 and the corresponding first antenna radiator 250 is set The distance is greater than the preset distance, thereby adjusting the input impedance of the first antenna radiator 250.
  • the input impedance of the first antenna radiator 250 is adjusted so that the input impedance of the first antenna radiator 250 matches the output impedance of the radio frequency chip 230.
  • the first antenna radiator 250 and the radio frequency chip 230 match
  • the output impedance of 230 is matched, the reflection amount of the excitation signal generated by the radio frequency signal is the smallest.
  • FIG. 35 is a schematic cross-sectional structure diagram of an antenna module in another embodiment of this application.
  • the antenna module 200 provided in this embodiment is basically the same as the antenna module 200 provided in the description of the antenna module 200 in the first embodiment. The difference is that, in this embodiment, the antenna module 200 further includes a second antenna radiator 260. That is, in this embodiment, the antenna module 200 includes a radio frequency chip 230, an insulating substrate 240, one or more first antenna radiators 250, and a second antenna radiator 260.
  • the radio frequency chip 230 is used to generate an excitation signal.
  • the insulating substrate 240 includes a first surface 240a and a second surface 240b disposed opposite to each other, the one or more first antenna radiators 250 are disposed on the first surface 240a, and the radio frequency chip 230 is disposed on the The second surface 240b.
  • the excitation signal generated by the radio frequency chip 230 is electrically connected to the one or more first antenna radiators 250 via a transmission line embedded in the insulating substrate 240.
  • the radio frequency chip 230 can be soldered on the insulating substrate 240 to transmit the excitation signal to the first antenna radiator 250 via a transmission line embedded in the insulating substrate 240.
  • the first antenna radiator 250 receives the excitation signal, and generates a millimeter wave signal according to the excitation signal.
  • the radio frequency chip 230 is away from the wave-transmitting structure 120 compared to the first antenna radiator 250, and the output terminal of the radio frequency chip 230 that outputs the excitation signal is located at the insulating substrate 240 away from the One side of the wave-transmitting structure 120.
  • each of the first antenna radiators 250 includes at least one feeding point 251, each of the feeding points 251 is electrically connected to the radio frequency chip 230 through the transmission line, and each of the feeding points The distance between the center of the first antenna radiator 250 corresponding to the feeding point 251 and the feeding point 251 is greater than a preset distance.
  • the second antenna radiator 260 is embedded in the insulating substrate 240, the second antenna radiator 260 is spaced apart from the first antenna radiator 250, and the second antenna The radiator 260 and the first antenna radiator 250 form a stacked antenna through coupling.
  • the first antenna radiator 250 is electrically connected to the radio frequency chip 230 and the second antenna
  • the radiator 260 is not electrically connected to the radio frequency chip 230, the second antenna radiator 260 couples the millimeter wave signal radiated by the first antenna radiator 250, and the second antenna radiator 260 is coupled to the first antenna radiator 250.
  • a millimeter wave signal radiated by an antenna radiator 250 generates a new millimeter wave signal.
  • the antenna module 200 is prepared by a high-density interconnection process as an example for description below.
  • the insulating substrate 240 includes a core layer 241 and a plurality of wiring layers 242 stacked on opposite sides of the core layer 241.
  • the core layer 241 is an insulating layer, and an insulating layer 243 is usually provided between each wiring layer 242.
  • the outer surface of the wiring layer 242 located on the side of the core layer 241 adjacent to the wave-transmitting structure 120 and farthest from the core layer 241 constitutes the first surface 240 a of the insulating substrate 240.
  • the outer surface of the wiring layer 242 located on the side of the core layer 241 away from the wave-transmitting structure 120 and farthest from the core layer 241 constitutes the second surface 240 b of the insulating substrate 240.
  • the first antenna radiator 250 is disposed on the first surface 240a.
  • the second antenna radiator 260 is embedded in the insulating substrate 240, that is, the second antenna radiator 260 can be disposed on another wiring layer 242 for laying out the antenna radiator, and the second antenna radiator The antenna radiator 260 is not provided on the surface of the insulating substrate 240.
  • the insulating substrate 240 has an 8-layer structure as an example for illustration. It is understandable that in other embodiments, the insulating substrate 240 may also have other layers.
  • the insulating substrate 240 includes a core layer 241 and a first wiring layer TM1, a second wiring layer TM2, a third wiring layer TM3, a fourth wiring layer TM4, a fifth wiring layer TM5, a sixth wiring layer TM6, and a seventh wiring layer TM7, and the eighth wiring layer TM8.
  • the first wiring layer TM1, the second wiring layer TM2, the third wiring layer TM3, and the fourth wiring layer TM4 are sequentially stacked on the same surface of the core layer 241, and the first The wiring layer TM1 is disposed away from the core layer 241 relative to the fourth wiring layer TM4, and the surface of the first wiring layer TM1 away from the core layer 241 is the first surface 240a of the insulating substrate 240.
  • the fifth wiring layer TM5, the sixth wiring layer TM6, the seventh wiring layer TM7, and the eighth wiring layer TM8 are sequentially stacked on the same surface of the core layer 241, and the eighth wiring layer
  • the layer TM8 is disposed away from the core layer 241 relative to the fifth wiring layer TM5, and the surface of the eighth wiring layer TM8 away from the core layer 241 is the second surface 240b of the insulating substrate 240.
  • the first wiring layer TM1, the second wiring layer TM2, the third wiring layer TM3, and the fourth wiring layer TM4 are wiring layers where an antenna radiator can be provided;
  • the fifth wiring layer TM5 is a ground layer where a ground pole is set;
  • the sixth wiring layer TM6, the seventh wiring layer TM7, and the eighth wiring layer TM8 are the feeder network and control line wiring layers in the antenna module 200.
  • the first antenna radiator 250 is disposed on the surface of the first wiring layer TM1 away from the core layer 241, and the second antenna radiator 260 is disposed on the surface of the third wiring layer.
  • the first antenna radiator 250 is provided on the surface of the first wiring layer TM1 and the second antenna radiator 260 is provided on the third wiring layer TM3 as an example for illustration. Understandably, in other embodiments, the first antenna radiator 250 may be disposed on the surface of the first wiring layer TM1 away from the core layer 241, and the second antenna radiator 260 may be disposed on the The second wiring layer TM2, or the second antenna radiator 260 may be provided on the fourth wiring layer TM4.
  • the first wiring layer TM1, the second wiring layer TM2, the third wiring layer TM3, the fourth wiring layer TM4, the sixth wiring layer TM6, the seventh wiring layer TM7, And the eighth wiring layer TM8 are electrically connected to the ground layer in the fifth wiring layer TM5.
  • Both the eighth wiring layer TM8 and the eighth wiring layer TM8 are provided with through holes, and a metal material is provided in the through holes to electrically connect the ground layer in the fifth wiring layer TM5 to ground the devices provided in each wiring layer 242.
  • the seventh wiring layer TM7 and the eighth wiring layer TM8 are further provided with a power line 271 and a control line 272, and the power line 271 and the control line 272 are electrically connected to the radio frequency chip 230, respectively .
  • the power line 271 is used to provide the radio frequency chip 230 with power required by the radio frequency chip 230
  • the control line 272 is used to transmit control signals to the radio frequency chip 230 to control the operation of the radio frequency chip 230.
  • FIG. 36 is a schematic diagram of an M ⁇ N radio frequency antenna array in an embodiment of this application.
  • the electronic device 1 includes a radio frequency antenna array composed of M ⁇ N antenna components 10, where M is a positive integer and N is a positive integer. Illustrated in the figure is an antenna array composed of 4 ⁇ 1 antenna components 10.
  • the insulating substrate 240 further includes a plurality of metalized via grids 244, and the metalized via grids 244 surround each of the first
  • the antenna radiator 250 is arranged to improve the isolation between two adjacent first antenna radiators 250.
  • FIG. 37 is a schematic diagram of the package structure when the antenna modules in an embodiment of the application form a radio frequency antenna array.
  • the metalized via grid 244 is used to form a radio frequency antenna array on a plurality of antenna modules 200, the metalized via grid 244 is used to improve the isolation between adjacent antenna modules 200 to Reduce or even avoid the interference of millimeter wave signals generated by each antenna module 200.
  • the antenna module 200 described above is described by taking the antenna module 200 as a patch antenna and a laminated antenna as an example. It is understandable that the antenna module 200 may also include a dipole antenna and a magnetoelectric dipole antenna. , Quasi-Yagi antennas, etc.
  • the antenna assembly 10 may include at least one or a combination of a patch antenna, a laminated antenna, a dipole antenna, a magnetoelectric dipole antenna, and a quasi-Yagi antenna. Further, the dielectric substrates in the M ⁇ N antenna assemblies 10 may be connected to each other to form an integrated structure.
  • FIG. 38 is a schematic structural diagram of the electronic device according to the fourth embodiment of the application.
  • the electronic device 1 includes a first antenna module 210, a display body 110, and a first wave-transmitting structure 125.
  • the first antenna module 210 is used to transmit and receive a first radio frequency signal in a first frequency band within a first preset direction range.
  • the display screen body 110 and the first antenna module 210 are spaced apart, and at least part of the display screen body 110 is located within the first preset direction range, and has a first transmittance to radio frequency signals of a preset frequency band. rate.
  • the first wave-transmitting structure 125 is carried on the display screen body 110 and covers at least a part of the display screen body 110, and at least a part of the first wave-transmitting structure 125 is located in the first predetermined range Inside.
  • the electronic device 1 has a second transmittance to the first radio frequency signal in the first frequency band in the area corresponding to the first wave-transmitting structure 125, wherein the second transmittance is greater than the first radio frequency signal.
  • the first wave-transmitting structure 125 may be the wave-transmitting structure described in any of the foregoing embodiments.
  • the electronic device 1 further includes a middle frame 80 and a battery cover 90.
  • the middle frame 80 is used to carry the display screen body 110, and the battery cover 90 cooperates with the display screen body 110 to form a receiving space for accommodating the middle frame 80 and other electronic devices.
  • the display screen body 110 includes a display screen 100a and a cover 100b that are stacked, and the first wave-transmitting structure 125 is disposed on the side of the display screen 100a away from the cover 100b. Give a gesture.
  • FIG. 39 is a schematic structural diagram of an electronic device according to a fifth embodiment of this application.
  • the electronic device 1 provided in this embodiment is basically the same as the electronic device 1 provided in the fourth embodiment of the present application. The difference is that in this embodiment, the electronic device 1 further includes a second antenna module 220 and a second antenna module 220. Transparent structure 126.
  • the second antenna module 220 and the first antenna module 210 are spaced apart and the second antenna module 220 is located outside the first preset direction range, and the second antenna module 220 is used for Transceiving a second radio frequency signal in the second frequency band within the second preset direction range.
  • the display screen body 110 is also spaced apart from the second antenna module 220, at least part of the display screen body 110 is located within the second preset direction range, and the display screen body 110 is located in the second preset direction. It is assumed that the part within the direction range has a third transmittance for the second radio frequency signal of the second frequency band.
  • the second wave-transmitting structure 126 is carried on the display body 110, and at least part of the second wave-transmitting structure 126 is located within the second predetermined direction range, and the electronic device 1 is in the first In the area corresponding to the two-wave transmission structure 126, the second radio frequency signal in the first frequency band has a fourth transmittance, wherein the fourth transmittance is greater than the third transmittance.
  • Both the first wave-transmitting structure 125 and the second wave-transmitting structure 126 may be the wave-transmitting structure described in any of the foregoing embodiments.
  • the display screen body 110 includes a screen body 410 and an extension portion 420 bent and extended from the periphery of the screen body 410, wherein the first antenna module 210 and the second antenna module 220 both correspond to The screen body 410 settings are described.
  • FIG. 40 is a schematic structural diagram of an electronic device provided by a sixth embodiment of this application.
  • the electronic device 1 provided in this embodiment is basically the same as the electronic device 1 provided in the fifth embodiment of this application. The difference is that in this embodiment, the first antenna module 210 and the second antenna module The groups 220 are all provided corresponding to the extension part 420.
  • FIG. 41 is a schematic structural diagram of an electronic device according to a seventh embodiment of this application.
  • the electronic device 1 provided in this embodiment is basically the same as the electronic device 1 provided in the fifth embodiment of the present application. The difference is that in this embodiment, the first antenna module 210 is provided corresponding to the screen body 410 , The second antenna module 220 is disposed corresponding to the extension portion 420.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nonlinear Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Signal Processing (AREA)
  • Ceramic Engineering (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)
  • Aerials With Secondary Devices (AREA)
  • Transceivers (AREA)

Abstract

本申请提供了一种显示屏组件、天线组件及电子设备。所述显示屏组件,包括:显示屏本体及透波结构。所述显示屏本体对预设频段的射频信号具有第一透过率;所述透波结构承载于所述显示屏本体,并至少覆盖所述显示屏本体的部分区域;所述显示屏组件在所述透波结构对应的区域内,对所述预设频段的射频信号具有第二透过率,所述第二透过率大于所述第一透过率。本申请提供的显示屏组件通过将所述透波结构承载于所述显示屏本体上,通过所述透波结构的作用使得对预设频段的射频信号的透过率提升,当所述显示屏组件应用于电子设备中时,可降低显示屏组件对于设置于所述电子设备内部的天线模组的辐射性能的影响,从而提升所述电子设备的通信性能。

Description

显示屏组件、天线组件及电子设备
本申请要求2019年6月30日递交的发明名称为“显示屏组件、天线组件及电子设备”的申请号为201910588888.8在先申请优先权,上述在先申请的内容以引入的方式并入本文本中。
技术领域
本申请涉及电子设备领域,尤其涉及一种显示屏组件、天线组件及电子设备。
背景技术
随着移动通信技术的发展,传统的第四代移动通信技术(4th-Generation wireless systems,4G)已经不能够满足人们的要求。第五代移动通信技术(5th-Generation wireless systems,5G)由于具有较高的通信速度,可而备受用户青睐。比如,利用5G移动通信传输数据时的传输速度比4G移动通信传输数据的速度快数百倍。毫米波信号是实现5G移动通信技术的主要手段,然而,当毫米波天线应用于电子设备时,毫米波天线通常设置于电子设备内部的收容空间中,毫米波信号天线透过电子设备屏幕而辐射出去的透过率较低,达不到天线辐射性能的要求。或者,外部的毫米波信号穿透电子设备的屏幕的透过率较低。由此可见,现有技术中,5G毫米波信号的通信性能较差。
发明内容
为了解决传统的毫米波信号穿透电子设备的屏幕穿透率低的技术问题,本申请提供了一种显示屏组件、天线组件及电子设备。
第一方面,本申请提供了一种显示屏组件,包括:
显示屏本体,所述显示屏本体对预设频段的射频信号具有第一透过率;
透波结构,所述透波结构承载于所述显示屏本体,并至少覆盖所述显示屏本体的部分区域;
所述显示屏组件在所述透波结构对应的区域内,对所述预设频段的射频信号具有第二透过率,所述第二透过率大于所述第一透过率。
第二方面,本申请提供了一种天线组件,所述天线组件包括天线模组及显示屏组件,所述天线模组用于在预设范围内收发预设频段的射频信号,所述显示屏组件中的透波结构至少部分位于所述预设范围内。
第三方面,本申请还提供了一种电子设备,所述电子设备包括所述天线组件。
第四方面,本申请还提供了一种电子设备,所述电子设备包括:
第一天线模组,所述第一天线模组用于在第一预设方向范围内收发第一频段的第一射频信号;
显示屏本体,所述显示屏本体与所述第一天线模组间隔设置,且至少部分所述显示屏本体位于所述第一预设方向范围内,对预设频段的射频信号具有第一透过率;
第一透波结构,所述第一透波结构承载于所述显示屏本体,并至少覆盖所述显示屏本体的部分区域,且所述第一透波结构的至少部分位于所述第一预设范围内,所述电子设备在所述第一透波结构对应的区域内,对所述第一频段的第一射频信号具有第二透过率,其中,所述第二透过率大于所述第一透过率。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施方式中所需要使用的附图作简单地介 绍,显而易见地,下面描述中的附图是本申请一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请第一实施方式提供的显示屏组件的结构示意图。
图2为本申请第二实施方式提供的显示屏组件的结构示意图。
图3为图2中的阵列基板的剖面结构示意图。
图4为本申请第三所述方式提供的显示屏组件中的阵列基板的剖面结构示意图。
图5为本申请第四所述方式提供的显示屏组件中的阵列基板的剖面结构示意图。
图6为本申请第五所述方式提供的显示屏组件中的阵列基板的剖面结构示意图。
图7为本申请第五所述方式提供的显示屏组件中的阵列基板的剖面结构示意图。
图8为本申请第六所述方式提供的显示屏组件中的阵列基板的剖面结构示意图。
图9为本申请第七实施方式提供的显示屏组件的结构示意图。
图10为本申请第八实施方式所述的显示屏组件的结构示意图。
图11为本申请第九实施方式所述的显示屏组件的结构示意图。
图12为图11中的显示屏组件的剖面结构示意图。
图13为本申请第十实施方式所述的显示屏组件的结构示意图。
图14为图13中的显示屏组件的剖面结构示意图。
图15为本申请第十一实施方式所述的显示屏组件的结构示意图。
图16为本申请第十二实施方式所述的显示屏组件的结构示意图。
图17为本申请第一实施方式提供的透波结构的示意图。
图18为本申请第二实施方式提供的透波结构的示意图。
图19为本申请第三实施方式提供的透波结构的示意图。
图20为本申请第四实施方式提供的透波结构剖面结构示意图。
图21为本申请第四实施方式中提供的透波结构中第一透波层的结构示意图。
图22为本申请第四实施方式中提供的透波结构中第二透波层的结构示意图。
图23为本申请第四实施方式提供的透波结构的等效电路图。
图24为本申请第五实施方式提供的透波结构中的第一透波层的示意图。
图25为本申请第六实施方式提供的透波结构中第一透波层的结构示意图。
图26为本申请第七实施方式提供的透波结构中第一透波层的结构示意图。
图27为本申请第八实施方式提供的透波结构中第一透波层的结构示意图。
图28为本申请提供的天线组件的结构示意图。
图29为本申请第一实施方式提供的电子设备的结构示意图。
图30为本申请第二实施方式提供的电子设备的结构示意图。
图31为图30中沿III-III线的剖面结构示意图。
图32为本申请第三实施方式提供的电子设备的结构示意图。
图33为图32中沿IV-IV线的剖面结构示意图。
图34为本申请一实施方式中的天线模组的剖面结构示意图。
图35为本申请另一实施方式中的天线模组的剖面结构示意图。
图36为本申请一实施方式中为M×N射频天线阵列示意图。
图37为本申请一实施方式中的天线模组组成射频天线阵列时的封装结构示意图。
图38为本申请第四实施方式提供的电子设备的结构示意图。
图39为本申请第五实施方式提供的电子设备的结构示意图。
图40为本申请第六实施方式提供的电子设备的结构示意图。
图41为本申请第七实施方式提供的电子设备的结构示意图。
具体实施方式
第一方面,本申请提供了一种显示屏组件,包括:
显示屏本体,所述显示屏本体对预设频段的射频信号具有第一透过率;
透波结构,所述透波结构承载于所述显示屏本体,并至少覆盖所述显示屏本体的部分区域;
所述显示屏组件在所述透波结构对应的区域内,对所述预设频段的射频信号具有第二透过率,所述第二透过率大于所述第一透过率。
在第一方面的第一种实施方式中,所述显示屏本体包括层叠设置的显示屏及盖板,所述透波结构设置于所述盖板上。
在第一方面的第二种实施方式中,所述显示屏本体包括阵列基板,所述阵列基板包括基板以及设置在所述基板上阵列分布的多个薄膜晶体管,所述薄膜晶体管包括栅极、栅极绝缘层、沟道层、源极、及漏极,所述栅极设置在所述基板的一侧,所述栅极绝缘层覆盖所述栅极,所述沟道层设置在栅极绝缘层上且对应所述栅极设置,所述源极及所述漏极间隔设置在所述沟道层相对的两端且均与所述沟道层相连,所述透波结构为单层结构:所述透波结构与所述栅极同层设置;或者,所述透波结构与所述源极及所述漏极同层设置。
在第一方面的第三种实施方式中,所述显示屏本体包括阵列基板,所述阵列基板包括基板以及设置在所述基板上阵列分布的多个薄膜晶体管,所述薄膜晶体管包括栅极、栅极绝缘层、沟道层、源极、及漏极,所述栅极设置在所述基板的一侧,所述栅极绝缘层覆盖所述栅极,所述沟道层设置在栅极绝缘层上且对应所述栅极设置,所述源极及所述漏极间隔设置在所述沟道层相对的两端且均与所述沟道层相连,所述透波结构包括间隔层叠设置的第一透波层及第二透波层,所述第一透波层与所述栅极同层设置,所述第二透波层与所述源极及所述漏极同层设置。
在第一方面的第四种实施方式中,所述显示屏本体包括阵列基板,所述阵列基板包括基板以及设置在所述基板上阵列分布的多个薄膜晶体管,所述薄膜晶体管包括遮光层、第一绝缘层、沟道层、源极、漏极、第二绝缘层、栅极、及平坦层,所述遮光层设置在所述基板的一侧,所述第一绝缘层覆盖所述遮光层,所述沟道层设置在所述第一绝缘层上且对应所述遮光层设置,所述源极及所述漏极间隔设置在所述沟道层相对的两端且均与所述沟道层相连,所述第二绝缘覆盖所述源极及所述漏极,所述栅极设置在所述第二绝缘层上,所述透波结构为单层结构:所述透波结构与所述遮光层同层设置;或者,所述透波结构与所述栅极同层设置;或者,所述透波结构与所述源极及所述漏极同层设置。
在第一方面的第五种实施方式中,所述显示屏本体包括阵列基板,所述阵列基板包括基板以及设置在所述基板上阵列分布的多个薄膜晶体管,所述薄膜晶体管包括遮光层、第一绝缘层、沟道层、源极、漏极、第二绝缘层、栅极、及平坦层,所述遮光层设置在所述基板的一侧,所述第一绝缘层覆盖所述遮光层,所述沟道层设置在所述第一绝缘层上且对应所述遮光层设置,所述源极及所述漏极间隔设置在所述沟道层相对的两端且均与所述沟道层相连,所述第二绝缘覆盖所述源极及所述漏极,所述栅极设置在所述第二绝缘层上,所述透波结构包括间隔层叠设置的第一透波层及第二透波层,所述第一透波层及所述第二透波层与所述遮光层、所述栅极、所述源极中的任何两层同层设置。
在第一方面的第六种实施方式中,所述显示屏本体包括阵列基板,所述阵列基板包括基板以及设置在所述基板上阵列分布的多个薄膜晶体管,所述薄膜晶体管包括遮光层、第一绝缘层、沟道层、源极、漏极、第二绝缘层、栅极、及平坦层,所述遮光层设置在所述基板的一侧,所述第一绝缘层覆盖所述遮光层,所述沟道层设置在所述第一绝缘层上且对应所述遮光层设置,所述源极及所述漏极间隔设置在所述沟道层相对的两端且均与所述沟道层相连,所述第二绝缘覆盖所述源极及所述漏极,所述栅极设置在所述第二绝缘层上,所述透波结构包括间隔层叠设置的第一透波层、第二透波层、及第三透波层,所述第一透波层与所述遮光层同层设置,所述第二透波层与所述栅极同层设置,所述第三透波层与所述源极同层设置。
在第一方面的第七种实施方式中,所述显示面板包括阵列基板,所述阵列基板包括像素电极,所述像素电极的材质为透明的金属氧化物半导体,所述透波结构的至少部分和所述像素电极同层设置且与所 述像素电极的材料相同。
在第一方面的第八种实施方式中,所述显示面板包括阵列基板及彩膜基板,所述阵列基板与所述彩膜基板相对且间隔设置,所述透波结构包括第一透波层及第二透波层,所述第一透层设置于所述阵列基板,所述第二透波层设置于所述彩膜基板。
结合第一方面的第八种实施方式,在第九种实施方式中,所述彩膜基板包括像素电极,所述阵列基板包括公共电极,所述第一透波层与所述像素电极同层设置,所述第二透波层与所述公共电极同层设置。
在第一方面的第十种实施方式中,所述显示屏本体包括基板以及设置在所述基板上阵列分布的发光单元,所述发光单元包括第一电极、发光层、及第二电极,所述第一电极相较于所述发光层及所述第二电极邻近所述基板设置,所述发光层设置在所述第一电极背离所述基板的一侧,所述第二电极设置在所述发光层背离所述第一电极的一侧,所述第一电极用于加载第一电压,所述第二电极用于加载第二电压,所述发光层用于在所述第一电压及所述第二电压的作用下发光,所述透波结构为单层结构,所述透波结构与所述第一电极或者第二电极同层设置。
在第一方面的第十一种实施方式中,所述显示屏本体包括基板以及设置在所述基板上阵列分布的发光单元,所述发光单元包括第一电极、发光层、及第二电极,所述第一电极相较于所述发光层及所述第二电极邻近所述基板设置,所述发光层设置在所述第一电极背离所述基板的一侧,所述第二电极设置在所述发光层背离所述第一电极的一侧,所述第一电极用于加载第一电压,所述第二电极用于加载第二电压,所述发光层用于在所述第一电压及所述第二电压的作用下发光,所述透波结构包括第一透波层及第二透波层,所述第一透波层与所述第一电极同层设置,所述第二透波结构与所述第二电极同层设置。
结合第一方面的第十种实施方式或者第十一种实施方式,在第十二种实施方式中,所述第一电极为阳极,所述第二电极为阴极;或者,所述第一电极为阴极,所述第二电极为阳极。
结合第一方面的第三种实施方式或者第五种实施方式或者第八种实施方式或者第十一种实施方式,在第十三种实施方式中,所述第一透波结构具有通孔,所述第二透波结构在所述第一透波结构上的正投影落入所述通孔内。
在第一方面的第十四种实施方式中,所述显示屏本体包括相对设置的内表面及外表面,所述透波结构设置于所述内表面上。
在第一方面的第十五种实施方式中,所述显示屏本体包括屏幕主体及自所述屏幕主体周缘弯折延伸的延伸部,所述透波结构对应所述屏幕主体设置,或者,所述透波结构对应所述延伸部设置。
第二方面,本申请提供一种天线组件,其特征在于,所述天线组件包括天线模组及如第一方面、第一方面的第一种实施方式至第十五种实施方式中的任意一种实施方式所述的显示屏组件,所述天线模组用于在预设范围内收发预设频段的射频信号,所述显示屏组件中的透波结构至少部分位于所述预设范围内。
第三方面,本申请提供一种电子设备,所述电子设备包括如第二方面提供的天线组件。
第四方面,本申请提供一种电子设备,所述电子设备包括:
第一天线模组,所述第一天线模组用于在第一预设方向范围内收发第一频段的第一射频信号;
显示屏本体,所述显示屏本体与所述第一天线模组间隔设置,且至少部分所述显示屏本体位于所述第一预设方向范围内,对预设频段的射频信号具有第一透过率;
第一透波结构,所述第一透波结构承载于所述显示屏本体,并至少覆盖所述显示屏本体的部分区域,且所述第一透波结构的至少部分位于所述第一预设范围内,所述电子设备在所述第一透波结构对应的区域内,对所述第一频段的第一射频信号具有第二透过率,其中,所述第二透过率大于所述第一透过率。
在第四方面的第一种实施方式中所述电子设备还包括:
第二天线模组,所述第二天线模组与所述第一天线模组间隔设置且所述第二天线模组位于所述第一预设方向范围之外,所述第二天线模组用于在第二预设方向范围内收发第二频段的第二射频信号;
所述显示屏本体还与所述第二天线模组间隔设置,至少部分所述显示屏本体位于所述第二预设方向范围内,所述显示屏本体位于所述第二预设方向范围内的部分对于所述第二频段的第二射频信号具有第三透过率;
第二透波结构,所述第二透波结构被承载与所述显示屏本体,且所述第二透波结构的至少部分位于所述第二预设方向范围内,所述电子设备在所述第二透波结构对应的区域内,对所述第一频段的第二射频信号具有第四透过率,其中,所述第四透过率大于所述第三透过率。
结合第四方面的第一种实施方式,第二种实施方式中所述显示屏本体包括屏幕主体和自所述屏幕主体周缘弯曲延伸的延伸部,其中,所述第一天线模组及所述第二天线模组均对应所述屏幕主体设置;或者,所述第一天线模组及所述第二天线模组均对应所述延伸部设置;或者,所述第一天线模组对应所述屏幕主体设置,所述第二天线模组对应所述延伸部设置。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请一并参阅图1,图1为本申请第一实施方式提供的显示屏组件的结构示意图。所述显示屏组件100包括:显示屏本体110及透波结构120。所述显示屏本体110对预设频段的射频信号具有第一透过率。所述透波结构120承载于所述显示屏本体110,并至少覆盖所述显示屏本体110的部分区域。所述显示屏组件100在所述透波结构120对应的区域内,对所述预设频段的射频信号具有第二透过率,所述第二透过率大于所述第一透过率。
所述透波结构120可直接设置在所述显示屏本体110上,也可通过承载膜设置在所述显示屏本体110上,或者内嵌在所述显示屏本体110内。当所述透波结构120通过承载膜设置在所述显示屏本体110上时,所述承载膜可以为但不仅限于为塑料(Polyethylene terephthalate,PET)薄膜、柔性电路板、印刷电路板等。所述PET薄膜可以为但不仅限于为彩色膜、防爆膜等。所述透波结构120可以覆盖所述显示屏本体110的部分区域,所述透波结构120也可覆盖所述显示屏本体110的全部区域。所述显示屏本体110包括相对设置的内表面及外表面,所述透波结构120可设置在所述显示屏本体110的内表面上,或者,设置在所述显示屏本体110的外表面上。
所谓显示屏本体110是指电子设备中执行显示功能的部件。所述显示屏本体110通常包括显示屏100a及与所述显示屏100a层叠设置的盖板100b。所述显示屏100a可以为液晶显示屏也可以为有机二极管发光显示屏。所述盖板100b设置在所述显示屏100a上,用于对所述显示屏100a进行保护。在本实施方式中,所述透波结构120设置于所述盖板100b上。所述透波结构120可设置在所述盖板100b靠近所述显示屏100a的表面;或者,所述透波结构120也可设置在所述盖板100b背离所述显示屏100a的表面;或者,所述透波结构120内嵌在所述盖板100b中。由于所述盖板100b为独立的部件,当所述透波结构120设置于所述盖板100b上且所述透波结构120设置在所述盖板100b靠近所述显示屏100的表面或者设置在所述盖板100b背离所述显示屏100a的表面时,可降低所述透波结构120与显示屏本体110结合的难度。在图1中以所述透波结构120覆盖于所述显示屏本体110的全部区域且以所述透波结构120直接设置在所述盖板100b靠近所述显示屏100a的表面为例进行示意。
所述透波结构120可以具有单频单极化、单频双极化、双频双极化、双频单极化、宽频单极化、宽频双极化等特性中的任意一种特性。相应地,所述透波结构120可以具有双频谐振响应,或者单频谐振响应,或者宽频谐振响应,或者多频谐振响应中的任意一种。所述透波结构120的材质可以为金属材质,也可以为非金属导电材质。
一方面,所述显示屏本体110上的透波结构120被所述预设频段的射频信号的激励,所述透波结构120根据所述预设频段的射频信号产生与所述预设频段同频段的射频信号,且穿透所述显示屏本体110并辐射至自由空间中。由于所述透波结构120被激励且产生与所述预设频段同频段的射频信号,因此,透过所述显示屏本体110并辐射至自由空间中的预设频段的射频信号的量增加,即通过设置所述透波结构120,提升了所述显示屏组件100对所述预设频段的射频信号的透过率。
另一方面,所述显示屏组件100包括了透波结构120及显示屏本体110,因此,所述显示屏组件100的介电常数可以等效为预设材料的介电常数,而所述预设材料的介电常数对所述预设频段的射频信号的透过率较高,且所述预设材料的等效波阻抗等于或者近似等于自由空间的等效波阻抗。
所述射频信号可以为但不仅限于为毫米波频段的射频信号或者太赫兹频段的射频信号。目前,在第 五代移动通信技术(5th generation wireless systems,5G)中,根据3GPP TS 38.101协议的规定,5G新空口(new radio,NR)主要使用两段频率:FR1频段和FR2频段。其中,FR1频段的频率范围是450MHz~6GHz,又叫sub-6GHz频段;FR2频段的频率范围是24.25GHz~52.6GHz,属于毫米波(mm Wave)频段。3GPP Release 15版本规范了目前5G毫米波频段包括:n257(26.5~29.5GHz),n258(24.25~27.5GHz),n261(27.5~28.35GHz)和n260(37~40GHz)。
本申请提供的显示屏组件100通过将所述透波结构120承载于所述显示屏本体110上,通过所述透波结构120的作用使得对预设频段的射频信号的透过率提升,当所述显示屏组件100应用于电子设备1中时,可降低显示屏组件100对设置于所述电子设备内部的天线模组的辐射性能的影响,从而提升所述电子设备1的通信性能。
进一步地,所述透波结构120的光透过率大于预设透过率,以使得所述显示屏本体110正常显示。所述预设透过率可以为但不仅限于为80%,由于所述透波结构120应用于所述显示屏本体110,所述透波结构120的光透过率大于预设透过率,从而使得设置了所述透波组件的显示屏组件100的透过率较高,对所述显示屏组件100的正常显示不会造成较大影响。
进一步地,请一并参阅图2及图3,图2为本申请第二实施方式提供的显示屏组件的结构示意图;图3为图2中的阵列基板的剖面结构示意图。为了方便示意,图中仅仅示意出来了其中的一个薄膜晶体管111b。所述显示屏本体110包括阵列基板111,所述阵列基板111包括基板111a以及设置在所述基板111a上阵列分布的多个薄膜晶体管111b。所述薄膜晶体管111b包括栅极510、栅极绝缘层520、沟道层530、源极540、及漏极550。所述栅极510设置在所述基板111a的一侧,所述栅极绝缘层520覆盖所述栅极510,所述沟道层530设置在栅极绝缘层520上且对应所述栅极510设置,所述源极540及所述漏极550间隔设置在所述沟道层530相对的两端且均与所述沟道层530相连。所述透波结构120为单层结构,且所述透波结构120与所述栅极510同层设置。
进一步地,所述薄膜晶体管111b还包括平坦层580。所述平坦层580覆盖所述源极540、及所述漏极550。
本申请的显示屏组件100通过设置透波结构120承载于所述显示屏本体110上,通过所述透波结构120的作用使得对预设频段的射频信号的透过率提升,当所述显示屏组件100应用于电子设备1中时,可降低显示屏组件100对设置于所述电子设备内部的天线模组的辐射性能的影响,从而提升所述电子设备1的通信性能。进一步地,本申请的显示屏组件100通过将透波结构120与所述栅极510同层设置,因此,在制备的时候,所述透波结构120可和所述栅极510同道工序制备而成,从而减少了制备工序。
请参阅图4,图4为本申请第三所述方式提供的显示屏组件中的阵列基板的剖面结构示意图。本实施方式提供的显示屏组件100与本申请第二实施方式提供的显示屏组件100的结构基本相同,不同之处在于,在本实施方式中,所述透波结构120与所述源极540及所述漏极550同层设置。
进一步地,所述薄膜晶体管111b还包括平坦层580。所述平坦层580覆盖所述源极540、所述漏极550、及所述透波结构120。
本申请的显示屏组件100通过设置透波结构120承载于所述显示屏本体110上,通过所述透波结构120的作用使得对预设频段的射频信号的透过率提升,当所述显示屏组件100应用于电子设备1中时,可降低显示屏组件100对设置于所述电子设备内部的天线模组的辐射性能的影响,从而提升所述电子设备1的通信性能。进一步地,本申请的显示屏组件100通过将透波结构120与所述栅极510同层设置,因此,在制备的时候,所述透波结构120可和所述源极540、漏极550同道工序制备而成,从而减少了制备工序。
请参阅图5,图5为本申请第四所述方式提供的显示屏组件中的阵列基板的剖面结构示意图。所述显示屏本体110包括阵列基板111,所述阵列基板111包括基板111a以及设置在所述基板111a上阵列分布的多个薄膜晶体管111b。所述薄膜晶体管111b包括栅极510、栅极绝缘层520、沟道层530、源极540、及漏极550。所述栅极510设置在所述基板111a的一侧,所述栅极绝缘层520覆盖所述栅极510,所述沟道层530设置在栅极绝缘层520上且对应所述栅极510设置。所述源极540及所述漏极550间隔设置在所述沟道层530相对的两端且均与所述沟道层530相连。所述透波结构120包括间隔层叠设置的 第一透波层121及第二透波层122,所述第一透波层121与所述栅极510同层设置,且所述第二透波层122与所述源极540及所述漏极550同层设置。
本申请的显示屏组件100通过设置透波结构120承载于所述显示屏本体110上,通过所述透波结构120的作用使得对预设频段的射频信号的透过率提升,当所述显示屏组件100应用于电子设备1中时,可降低显示屏组件100对设置于所述电子设备内部的天线模组的辐射性能的影响,从而提升所述电子设备1的通信性能。进一步地,本申请的显示屏组件100通过将透波结构120与所述栅极510同层设置,因此,在制备的时候,所述第一透波层121可和所述栅极510同道工序制备,所述第二透波层122可和所述源极540、漏极550同道工序制备而成,从而减少了制备工序。
请参阅图6,图6为本申请第五所述方式提供的显示屏组件中的阵列基板的剖面结构示意图。所述显示屏本体110包括阵列基板111,所述阵列基板111包括基板111a以及设置在所述基板111a上阵列分布的多个薄膜晶体管111b。所述薄膜晶体管111b包括遮光层590、第一绝缘层560、沟道层530、源极540、漏极550、第二绝缘层570、栅极510、及平坦层580。所述遮光层590设置在所述基板111a的一侧,所述第一绝缘层560覆盖所述遮光层590,所述沟道层530设置在所述第一绝缘层560上且对应所述遮光层590设置,所述源极540及所述漏极550间隔设置在所述沟道层530相对的两端且均与所述沟道层530相连,所述第二绝缘层570覆盖所述源极540及所述漏极550,所述栅极510设置在所述第二绝缘层570上。所述透波结构120为单层结构:所述透波结构120与所述遮光层590同层设置。可以理解地,在其他实施方式中,所述透波结构120与所述栅极510同层设置。或者,在其他实施方式中,所述透波结构120与所述源极540及所述漏极550同层设置。进一步地,所述薄膜晶体管111b还包括平坦层580。所述平坦层580覆盖所述栅极510。在图中示意出来的是所述透波结构120与所述源极540及所述漏极550同层设置。
本申请的显示屏组件100通过设置透波结构120承载于所述显示屏本体110上,通过所述透波结构120的作用使得对预设频段的射频信号的透过率提升,当所述显示屏组件100应用于电子设备1中时,可降低显示屏组件100对设置于所述电子设备内部的天线模组的辐射性能的影响,从而提升所述电子设备1的通信性能。所述透波结构120与所述栅极510同层设置,或者,所述透波结构120与所述源极540及所述漏极550同层设置以进一步减少制备工序。
请参阅图7,图7为本申请第五所述方式提供的显示屏组件中的阵列基板的剖面结构示意图。所述显示屏本体110包括阵列基板111,所述阵列基板111包括基板111a以及设置在所述基板111a上阵列分布的多个薄膜晶体管111b。所述薄膜晶体管111b包括遮光层590、第一绝缘层560、沟道层530、源极540、漏极550、第二绝缘层570、栅极510、及平坦层580。所述遮光层590设置在所述基板111a的一侧,所述第一绝缘层560覆盖所述遮光层590,所述沟道层530设置在所述第一绝缘层560上且对应所述遮光层590设置。所述源极540及所述漏极550间隔设置在所述沟道层530相对的两端且均与所述沟道层530相连,所述第二绝缘层570覆盖所述源极540及所述漏极550,所述栅极510设置在所述第二绝缘层570上。所述透波结构120包括间隔层叠设置的第一透波层121及第二透波层122,所述第一透波层121及所述第二透波层122与所述遮光层590、所述栅极510、所述源极540中的任何两层同层设置。在图中以所述第一透波层121与所述遮光层590同层设置、所述第二透波层122与所述源极540及所述漏极550同层设置为例进行示意。
本申请的显示屏组件100通过设置透波结构120承载于所述显示屏本体110上,通过所述透波结构120的作用使得对预设频段的射频信号的透过率提升,当所述显示屏组件100应用于电子设备1中时,可降低显示屏组件100对设置于所述电子设备内部的天线模组的辐射性能的影响,从而提升所述电子设备1的通信性能。进一步地,所述第一透波层121及所述第二透波层122与所述遮光层590、所述栅极510、所述源极540中的任何两层同层设置可减小制备工序。
进一步地,在其他实施方式中,当所述透波结构120包括相互间隔设置的第一透波层121及所述第二透波层122时,所述第一透波层121可以作为所述显示屏组件100的遮光层590。所述遮光层590用于防止自所述基板111a背离所述遮光层590表面的光线进入到所述沟道层530造成薄膜晶体管111b性能失常。
请参阅图8,图8为本申请第六所述方式提供的显示屏组件中的阵列基板的剖面结构示意图。所述显示屏本体110包括阵列基板111,所述阵列基板111包括基板111a以及设置在所述基板111a上阵列分布的多个薄膜晶体管111b。所述薄膜晶体管111b包括遮光层590、第一绝缘层560、沟道层530、源极540、漏极550、第二绝缘层570、栅极510、及平坦层580。所述遮光层590设置在所述基板111a的一侧,所述第一绝缘层560覆盖所述遮光层590,所述沟道层530设置在所述第一绝缘层560上且对应所述遮光层590设置,所述源极540及所述漏极550间隔设置在所述沟道层530相对的两端且均与所述沟道层530相连,所述第二绝缘层570覆盖所述源极540及所述漏极550,所述栅极510设置在所述第二绝缘层570上,所述透波结构120包括间隔层叠设置的第一透波层121、第二透波层122、及第三透波层123,所述第一透波层121与所述遮光层590同层设置,所述第二透波层122与所述源极540及所述漏极550同层设置,所述第三透波层123与所述栅极510同层设置。
请参阅图9,图9为本申请第七实施方式提供的显示屏组件的结构示意图。所述显示屏组件100包括阵列基板111、彩膜基板112、及液晶层113。所述阵列基板111与所述彩膜基板112相对且间隔设置,所述液晶层113设置在所述阵列基板111及所述彩膜基板112之间。所述阵列基板111包括像素电极610。所述像素电极610的材质为透明的金属氧化物半导体,所述透波结构120的至少部分和所述像素电极610同层设置且与所述像素电极610的材料相同。所述像素电极610电连接所述薄膜晶体管111b中的漏极550。所述像素电极610可结合到前面任意实施方式所述的薄膜晶体管111b中。在图14中以所述像素电极610结合到其中的一种薄膜晶体管111b中为例进行示意。
请参阅图10,图10为本申请第八实施方式所述的显示屏组件的结构示意图。所述显示面板包括阵列基板111及彩膜基板112,所述阵列基板111与所述彩膜基板112相对且间隔设置。所述透波结构120包括第一透波层121及第二透波层122,所述第一透层设置于所述阵列基板111,所述第二透波层122设置于所述彩膜基板112。进一步地,所述显示屏组件100还包括液晶层113。所述阵列基板111与所述彩膜基板112相对且间隔设置,所述液晶层113设置在所述阵列基板111及所述彩膜基板112之间。
进一步地,所述彩膜基板112包括像素电极610,所述阵列基板111包括公共电极1121,所述第一透波层121与所述像素电极610同层设置,所述第二透波层122与所述公共电极1121同层设置。所述像素电极610和所述公共电极1121配合以控制所述液晶层113中的液晶分子的转向。
请一并参阅图11及图12,图11为本申请第九实施方式所述的显示屏组件的结构示意图;图12为图11中的显示屏组件的剖面结构示意图。所述显示屏本体110包括基板111a以及设置在所述基板111a上阵列分布的700。所述发光单元700包括第一电极710、发光层730、及第二电极720。所述第一电极710相较于所述发光层730及所述第二电极720邻近所述基板111a设置。所述发光层730设置在所述第一电极710背离所述基板111a的一侧,所述第二电极720设置在所述发光层730背离所述第一电极710的一侧。所述第一电极710用于加载第一电压,所述第二电极720用于加载第二电压,所述发光层730用于在所述第一电压及所述第二电压的作用下发光。所述透波结构120为单层结构,所述透波结构120与所述第一电极710或者第二电极720同层设置。在图中以所述透波结构120与所述第一电极710同层设置为例进行示意。
下面对所述发光单元700的工作原理进行介绍。在一实施方式中,所述第一电极710为阳极,所述第二电极720为阴极,此时,所述第一电极710用于产生空穴,所述第二电极720用于产生电子,所述第一电极710产生的空穴以及所述第二电极720产生的电子在所述发光层730中复合以产生光线。在另一实施方式中,所述第一电极710为阴极,所述第二电极720为阳极。进一步地,所述发光单元700还包括空穴注入及传输层740,及电子注入及传输层750。当所述第一电极710为阳极且所述第二电极720为阴极时,所述空穴注入及传输层740设置在所述第一电极710与所述发光层730之间,以将所述第一电极710产生的空穴传输至所述发光层730。所述电子注入及传输层750设置在所述第二电极720与所述发光层730之间,以将所述第二电极720产生的电子传输至所述发光层730。
请一并参阅图13及图14,图13为本申请第十实施方式所述的显示屏组件的结构示意图;图14为图13中的显示屏组件的剖面结构示意图。所述显示屏本体110包括基板111a以及设置在所述基板111a上阵列分布的发光单元700。所述发光单元700包括第一电极710、发光层730、及第二电极720。所述 第一电极710相较于所述发光层730及所述第二电极720邻近所述基板111a设置。所述发光层730设置在所述第一电极710背离所述基板111a的一侧,所述第二电极720设置在所述发光层730背离所述第一电极710的一侧。所述第一电极710用于加载第一电压,所述第二电极720用于加载第二电压,所述发光层730用于在所述第一电压及所述第二电压的作用下发光。所述透波结构120包括第一透波层121及第二透波层122,所述第一透波层121与所述第一电极710同层设置,所述第二透波层122与所述第二电极720同层设置。
在一实施方式中,所述第一电极710为阳极,所述第二电极720为阴极。在另一实施方式中,所述第一电极710为阴极,所述第二电极720为阳极。进一步地,所述发光单元700还包括空穴注入及传输层740,及电子注入及传输层750。当所述第一电极710为阳极且所述第二电极720为阴极时,所述空穴注入及传输层740设置在所述第一电极710与所述发光层730之间,以将所述第一电极710产生的空穴传输至所述发光层730。所述电子注入及传输层750设置在所述第二电极720与所述发光层730之间,以将所述第二电极720产生的电子传输至所述发光层730。可以理解地,所述第一透波层121与所述第二透波层122之间设置有绝缘层761。
请参阅图15,图15为本申请第十一实施方式所述的显示屏组件的结构示意图。所述显示屏本体110包括屏幕主体410及自所述屏幕主体410周缘弯折延伸的延伸部420,所述透波结构120对应所述屏幕主体410设置。在本实施方式中,以所述显示屏本体110包括层叠设置的显示屏100a及盖板100b,且所述透波结构120设置在所述盖板100b面对所述显示屏100a的表面为例进行示意。
请参阅16,图16为本申请第十二实施方式所述的显示屏组件的结构示意图。本实施方式提供的显示屏组件100与本申请第十一方式提供的显示屏组件100的结构基本相同,不同之处在于,所述透波结构120对应所述延伸部420设置。
请一并参阅图17,图17为本申请第一实施方式提供的透波结构的示意图。在本实施方式中,所述透波结构120包括间隔设置且相互耦合的第一透波层121及第二透波层122。所述第一透波结构125具有通孔1251,所述第二透波结构126在所述第一透波结构125上的正投影落入所述通孔1251内。
可以理解地,当所述透波结构120包括间隔设置的第一透波层121及第二透波层122时,所述第一透波层121及所述第二透波层122相互耦合,以使得所述显示屏组件100在所述透波结构120对应的区域内对所述预设频段的射频信号的透过率相较于未设置透波结构120时有所提升。
请参阅图18,图18为本申请第二实施方式提供的透波结构的示意图。所述透波结构120可结合到前述任意实施方式提供的显示屏组件中所述透波结构120包括多个谐振单元120b,所述谐振单元120b周期性排布。
请参阅图19,图19为本申请第三实施方式提供的透波结构的示意图。所述透波结构120可结合到前述任意实施方式提供的显示屏组件中,所述透波结构120包括多个谐振单元120b,所述谐振单元120b非周期性排布。
请一并参阅20、图21及图22,图20为本申请第四实施方式提供的透波结构剖面结构示意图;图21为本申请第四实施方式中提供的透波结构中第一透波层的结构示意图;图22为本申请第四实施方式中提供的透波结构中第二透波层的结构示意图。所述透波结构120可以结合到前述任意实施方式提供的显示屏组件中。所述透波结构120包括间隔设置的第一透波层121、第二透波层122、及第三透波层123,所述第一透波层121与所述第二透波层122之间设置第一介质层111,所述第二透波层122与所述第三透波层123之间设置有第二介质层112,所述第一透波层121、所述第一介质层111、所述第二透波层122、所述第二介质层112、及所述第三透波层123依次层叠设置。所述第一透波层121包括阵列排布的多个第一贴片1211,所述第二透波层122包括周期性排布的网格结构1221,所述第三透波层123包括阵列排布的多个第二贴片1231。第一贴片1211或第二贴片1231的尺寸L1越小,所述预设频段往低频偏移,且带宽减小。所述第二透波层122中网格结构1221的宽度W1越小,所述预设频段往低频偏移,且带宽增大;所述透波结构120的周期P越大,所述预设频段往高频偏移,且带宽增大;所述透波结构120的厚度越大,所述预设频段往低频偏移,带宽减小;所述介质基板110的介电常数越大,所述预设频段往低频偏移,且带宽减小。在本实施方式中,一个网格结构1221对应四个第一贴片1211, 且一个网格接1221对应四个第三贴片1231,并作为透波结构1221的一个周期。
请一并参阅图23,图23为本申请第四实施方式提供的透波结构的等效电路图。在此等效电路图中忽略了对预设频段影响较小的因素,比如,第一透波层121层的电感量,所述第三透波层123的电感量,以及第二透波层122的电容量。其中,第一透波层121等效为电容C1,第二透波层122等效为电容C2,所述第一透波层121与所述第二透波层122的耦合电容等效为电容C3,第三透波层123等效为电感L。另外Z0表示自由空间的阻抗,Z1表示介质基板110的阻抗,其中,Z1=Z0/(Dk) 1/2,那么,所述预设频段的中心频率f0为:f0=1/[2π/(LC) 1/2],带宽Δf/f0正比于(L/C) 1/2。由此可见,所述第一贴片1211或第二贴片1231的尺寸越小,所述预设频段往低频偏移,且带宽减小。所述第二透波层122中网格结构1221的宽度越小,所述预设频段往低频偏移,且带宽增大;所述透波层120a的周期越大,所述预设频段往高频偏移,且带宽增大;所述透波层120a的厚度越大,所述预设频段往低频偏移,带宽减小;所述介质基板110的介电常数越大,所述预设频段往低频偏移,且带宽减小。
当所述第一介质层111及所述第二介质层112的材质为玻璃时,所述玻璃的介电常数通常为6~7.6之间,当所述预设频段为20~35GHz范围的情况下,第一贴片1211的尺寸范围通常选择为0.5~0.8mm之间,第二透波结构128中网格中实体部分的宽度通常选择为0.1~0.5mm之间,一个周期通常为1.5~3.0mm,当所述透波结构120应用于电子设备的显示屏组件时,天线模组200的上表面到显示屏组件的内表面之间的间隙通常选择大于等于零即可,通常选择为0.5~1.2mm。
请参阅图24,图24为本申请第五实施方式提供的透波结构中的第一透波层的示意图。本实施方式提供的透波结构120与第四实施方式提供的透波结构120基本相同,不同之处在于,在第四实施方式中,第一贴片1211为矩形贴片,在本实施方式中,所述第一透波层121包括阵列排布的多个第一贴片1211,所述第一贴片1211为圆形。可选地,圆形的所述第一贴片1211的直径D的范围为0.5~0.8mm。
在本实施方式中,所述第三透波层123包括阵列排布的多个第二贴片1231,所述第二贴片1231为圆形。可选地,所述圆形的所述第二贴片1231的直径D的范围为0.5~0.8mm。可以理解地,所述第三透波层123的结构可与所述第一透波层121的结构相同。
请参阅图25,图25为本申请第六实施方式提供的透波结构中第一透波层的结构示意图。本实施方式提供的透波结构120与第四实施方式提供的透波结构120基本相同,不同之处在于,在第四实施方式中,所述第一贴片1211为矩形贴片,在本实施方式中,所述第一透波层121包括阵列排布的多个第一贴片1211,所述第一贴片1211为圆环形。当所述第一贴片1211的材质为金属时,所述第一贴片1211为圆环形从而可以提升所述透波结构120的透明度。所述圆环形的第一贴片1211的尺寸的直径Do通常为0.5~0.8mm,圆环形的所述第一贴片1211的内径Di,通常而言,Do-Di的值越小,所述透波结构120的透明度越高,但是插入损耗越大。为了兼顾所述透波结构120的透明度及插入损耗,所述Do-Di的取值通常为:Do-Di≥0.5mm。可以理解地,所述第三透波层123的结构可与所述第一透波层121的结构相同。
请参阅图26,图26为本申请第七实施方式提供的透波结构中第一透波层的结构示意图。本实施方式提供的透波结构120与第四实施方式提供的透波结构120基本相同,不同之处在于,在第四实施方式中,所述第一贴片1211为矩形贴片,在本实施方式中,所述第一透波层121包括阵列排布的多个第一贴片1211,所述第一贴片1211为正方形环状贴片。所述正方形的第一贴片1211的边长为Lo通常为0.5~0.8mm,正方形环状贴片的内变成为Li,通常而言,Lo-Li的值越小,透明度越高,但是插入损耗越大。为了兼顾所述透波结构120的透明度及插入损耗,所述Do-Di的取值通常为:Lo-Li≥0.5mm。可以理解地,所述第三透波层123的结构可与所述第一透波层121的结构相同。
请参阅图27,图27为本申请第八实施方式提供的透波结构中第一透波层的结构示意图。本实施方式提供的透波结构120包括阵列排布的多个第一贴片1211,每个第一贴片1211均为正方形的金属网格贴片(mesh grid)。具体地,所述第一贴片1211包括多个第一分支1212以及多个第二分支1213,所述多个第一分支1212间隔排布,所述多个第二分支1213间隔排布,且所述第二分支1213与所述第一分支1212交叉设置且连接。可选地,所述第一分支1212沿着第一方向延伸且所述多个第一分支1212沿所述第二方向间隔排布。可选地,所述第二分支1213与所述第一分支1212垂直交叉。可选地,所述 第一贴片1211的边长为:0.5~0.8mm。
请参阅图28,图28为本申请提供的天线组件的结构示意图。所述天线组件10包括天线模组200及前述任意实施方式中的显示屏组件100。所述天线模组200用于在预设范围内收发预设频段的射频信号,所述显示屏组件100中的透波结构120至少部分位于所述预设范围内。本实施方式所述的天线组件10中所包括的显示屏组件100以本申请第一实施方式提供的显示屏组件100为例进行示意。
请参阅图29,图29为本申请第一实施方式提供的电子设备的结构示意图。所述电子设备1包括所述天线组件10。所述天线组件10请参阅前面描述,在此不再赘述。
请一并参阅图30及图31,图30为本申请第二实施方式提供的电子设备的结构示意图;图31为图30中沿III-III线的剖面结构示意图。所述电子设备1包括天线组件10,所述天线组件10请参前面描述,在此不再赘述。所述显示屏本体110包括屏幕主体410及自所述屏幕主体410周缘弯曲延伸的延伸部420,所述透波结构120对应所述屏幕主体410设置。
请一并参阅图32及图33,图32为本申请第三实施方式提供的电子设备的结构示意图;图33为图32中沿IV-IV线的剖面结构示意图。所述电子设备1包括天线组件10,所述天线组件10请参前面描述,在此不再赘述。所述显示屏本体110包括屏幕主体410及自所述屏幕主体410周缘弯曲延伸的延伸部420,所述透波结构120对应所述延伸部420设置。
请参阅图34,图34为本申请一实施方式中的天线模组的剖面结构示意图。所述天线模组200包括射频芯片230、绝缘基板240、及一个或多个第一天线辐射体250。所述射频芯片230用于产生激励信号(也称为射频信号)。所述射频芯片230相较于所述一个或多个第一天线辐射体250背离所述带透波结构120设置,所述绝缘基板240用于承载所述一个或多个第一天线辐射体250,所述射频芯片230通过内嵌于所述绝缘基板240中的传输线与所述一个或多个第一天线辐射体250电连接。具体地,所述绝缘基板240包括相背的第一表面240a和第二表面240b,所述绝缘基板240用于承载所述一个或多个第一天线辐射体250包括所述绝缘基板240设置在所述第一表面240a,或者,所述一个或多个第一天线辐射体250内嵌于所述绝缘基板240内。在图34中以所述一个或多个第一天线辐射体250设置于所述第一表面240a,所述射频芯片230设置于所述第二表面240b为例进行示意。所述射频芯片230产生的所述激励信号通过内嵌于所述绝缘基板240中的传输线传输与所述一个或多个第一天线辐射体250电连接。所述射频芯片230可焊接在所述绝缘基板240上,以将所述激励信号经由内嵌于绝缘基板240中的传输线传输至第一天线辐射体250。所述第一天线辐射体250接收所述激励信号,并根据所述激励信号产生毫米波信号。所述第一天线辐射体250可以为但不仅限于为贴片天线。
进一步地,所述射频芯片230相较于所述第一天线辐射体250背离所述透波结构120,且所述射频芯片230输出所述激励信号的输出端位于所述绝缘基板240背离所述透波结构120的一侧。即,所述射频芯片230邻近所述绝缘基板240的第二表面240b而远离所述绝缘基板240的第一表面240a设置。
进一步地,每一个所述第一天线辐射体250包括至少一个馈电点251,每一个所述馈电点251均通过所述传输线与所述射频芯片230电连接,每一个所述馈电点251与所述馈电点251对应的第一天线辐射体250的中心之间的距离大于预设距离。调整所述馈电点251的位置可以改变所述第一天线辐射体250的输入阻抗,本实施方式中通过设置每一个所述馈电点251与对应的第一天线辐射体250的中心之间的距离大于预设距离,从而调整所述第一天线辐射体250的输入阻抗。调整所述第一天线辐射体250的输入阻抗以使得所述第一天线辐射体250的输入阻抗与所述射频芯片230的输出阻抗匹配,当所述第一天线辐射体250与所述射频芯片230的输出阻抗匹配时,所述射频信号产生的激励信号的反射量最小。
请参阅图35,图35为本申请另一实施方式中的天线模组的剖面结构示意图。本实施方式提供的天线模组200与第一实施方式中的天线模组200描述中提供的天线模组200基本相同。不同之处在于,在本实施方式中,所述天线模组200还包括第二天线辐射体260。即,在本实施方式中,所述天线模组200包括射频芯片230、绝缘基板240、一个或多个第一天线辐射体250、及第二天线辐射体260。所述射频芯片230用于产生激励信号。所述绝缘基板240包括相背设置的第一表面240a和第二表面240b,所述一个或多个第一天线辐射体250设置于所述第一表面240a,所述射频芯片230设置于所述第二表面240b。所述射频芯片230产生的所述激励信号经由内嵌于所述绝缘基板240中的传输线与所述一个或多 个第一天线辐射体250电连接。所述射频芯片230可焊接在所述绝缘基板240上,以将所述激励信号经由内嵌于绝缘基板240中的传输线传输至第一天线辐射体250。所述第一天线辐射体250接收所述激励信号,并根据所述激励信号产生毫米波信号。
进一步地,所述射频芯片230相较于所述第一天线辐射体250背离所述透波结构120,且所述射频芯片230输出所述激励信号的输出端位于所述绝缘基板240背离所述透波结构120的一侧。
进一步地,每一个所述第一天线辐射体250包括至少一个馈电点251,每一个所述馈电点251均通过所述传输线与所述射频芯片230电连接,每一个所述馈电点251与所述馈电点251对应的第一天线辐射体250的中心之间的距离大于预设距离。
在本实施方式中,所述第二天线辐射体260内嵌在所述绝缘基板240内,所述第二天线辐射体260与所述第一天线辐射体250间隔设置,且所述第二天线辐射体260及所述第一天线辐射体250通过耦合作用而形成叠层天线。当所述第二天线辐射体260与所述第一天线辐射体250通过耦合作用而形成叠层天线时,所述第一天线辐射体250与所述射频芯片230电连接且所述第二天线辐射体260未与所述射频芯片230电连接,第二天线辐射体260耦合所述第一天线辐射体250辐射的毫米波信号,并且所述第二天线辐射体260根据耦合到的所述第一天线辐射体250辐射的毫米波信号而产生新的毫米波信号。
具体地,下面以所述天线模组200采用高密度互联工艺制备而成为例进行说明。所述绝缘基板240包括核心层241、以及多个层叠设置在所述核心层241相对两侧的布线层242。所述核心层241为绝缘层,各个布线层242之间通常设置绝缘层243。位于所述核心层241邻近所述透波结构120一侧且距离所述核心层241最远的布线层242的外表面构成所述绝缘基板240的第一表面240a。位于在所述核心层241背离所述透波结构120一侧且距离所述核心层241最远的布线层242的外表面构成所述绝缘基板240的第二表面240b。所述第一天线辐射体250设置于所述第一表面240a。所述第二天线辐射体260内嵌在所述绝缘基板240内,即,所述第二天线辐射体260可设置在其他的用于布局天线辐射体的布线层242上,且所述第二天线辐射体260未设置在所述绝缘基板240的表面。
在本实施方式中,以所述绝缘基板240为8层结构为例进行示意,可以理解地,在其他实施方式中,所述绝缘基板240也可以为其他层数。所述绝缘基板240包括核心层241以及第一布线层TM1、第二布线层TM2、第三布线层TM3、第四布线层TM4、第五布线层TM5、第六布线层TM6、第七布线层TM7、及第八布线层TM8。所述第一布线层TM1、所述第二布线层TM2、所述第三布线层TM3、及所述第四布线层TM4依次层叠设置在所述核心层241的同一表面,且所述第一布线层TM1相对于所述第四布线层TM4背离所述核心层241设置,所述第一布线层TM1背离所述核心层241的表面为所述绝缘基板240的第一表面240a。所述第五布线层TM5、所述第六布线层TM6、所述第七布线层TM7、及所述第八布线层TM8依次层叠在所述核心层241的同一表面,且所述第八布线层TM8相对于所述第五布线层TM5背离所述核心层241设置,所述第八布线层TM8背离所述核心层241的表面为所述绝缘基板240的第二表面240b。通常情况下,所述第一布线层TM1、所述第二布线层TM2、所述第三布线层TM3、及第四布线层TM4为可设置天线辐射体的布线层;所述第五布线层TM5为设置地极的地层;所述第六布线层TM6、所述第七布线层TM7、及所述第八布线层TM8为天线模组200中的馈电网络及控制线布线层。在本实施方式中,所述第一天线辐射体250设置在所述第一布线层TM1背离所述核心层241的表面,所述第二天线辐射体260设置在可设置在所述第三布线层TM3。在图中以第一天线辐射体250设置在所述第一布线层TM1的表面、所述第二天线辐射体260设置在所述第三布线层TM3为例进行示意。可以理解地,在其他实施方式中,所述第一天线辐射体250可设置在所述第一布线层TM1背离所述核心层241的表面,所述第二天线辐射体260可设置在所述第二布线层TM2,或者所述第二天线辐射体260可设置在所述第四布线层TM4。
进一步地,所述绝缘基板240中的第一布线层TM1、第二布线层TM2、第三布线层TM3、第四布线层TM4、所述第六布线层TM6、所述第七布线层TM7、及所述第八布线层TM8均电连接至所述第五布线层TM5中的地层。具体地,所述绝缘基板240中的第一布线层TM1、第二布线层TM2、第三布线层TM3、第四布线层TM4、所述第六布线层TM6、所述第七布线层TM7、及所述第八布线层TM8均开设通孔,通孔里设置金属材料以电连接所述第五布线层TM5中的地层,以将各个布线层242中设 置的器件接地。
进一步地,所述第七布线层TM7及所述第八布线层TM8还设置有电源线271、及控制线272,所述电源线271及所述控制线272分别与所述射频芯片230电连接。所述电源线271用于为所述射频芯片230提供所述射频芯片230所需要的电能,所述控制线272用于传输控制信号至所述射频芯片230,以控制所述射频芯片230工作。
进一步地,请参阅图36,图36为本申请一实施方式中为M×N射频天线阵列示意图。所述电子设备1包括M×N个天线组件10构成的射频天线阵列,其中,M为正整数,N为正整数。在图中示意出来的是4×1个天线组件10构成的天线阵列。在在所述天线组件10中的所述天线模组200中,所述绝缘基板240还包括多个金属化过孔栅格244,所述金属化过孔栅格244围绕每一个所述第一天线辐射体250设置,以提升相邻的两个所述第一天线辐射体250之间的隔离度。请继续参阅图37,图37为本申请一实施方式中的天线模组组成射频天线阵列时的封装结构示意图。当所述金属化过孔栅格244用于在多个天线模组200形成射频天线阵列时,所述金属化过孔栅格244用于提升相邻天线模组200之间的隔离度,以减少甚至避免各个天线模组200产生的毫米波信号的干扰。
前面描述的天线模组200中以天线模组200为贴片天线、叠层天线为例进行描述,可以理解地,所述天线模组200还可以包括偶极子天线、磁电偶极子天线、准八木天线等。所述天线组件10可包括贴片天线、叠层天线、偶极子天线、磁电偶极子天线、准八木天线中的至少一种或者多种的组合。进一步地,所述M×N个天线组件10中的介质基板可相互连接为一体结构。
本申请还提供了一种电子设备1,请参阅图38,图38为本申请第四实施方式提供的电子设备的结构示意图。所述电子设备1包括第一天线模组210、显示屏本体110、及第一透波结构125。所述第一天线模组210用于在第一预设方向范围内收发第一频段的第一射频信号。所述显示屏本体110与所述第一天线模组210间隔设置,且至少部分所述显示屏本体110位于所述第一预设方向范围内,对预设频段的射频信号具有第一透过率。所述第一透波结构125承载于所述显示屏本体110,并至少覆盖所述显示屏本体110的部分区域,且所述第一透波结构125的至少部分位于所述第一预设范围内。所述电子设备1在所述第一透波结构125对应的区域内,对所述第一频段的第一射频信号具有第二透过率,其中,所述第二透过率大于所述第一透过率。
所述第一透波结构125可以为前述任意实施方式所述的透波结构。进一步地,所述电子设备1还包括中框80及电池盖90。所述中框80用于承载所述显示屏本体110,所述电池盖90与所述显示屏本体110相互配合以形成收容空间,以收容所述中框80及其他电子器件。
在图中,以所述显示屏本体110包括层叠设置的显示屏100a及盖板100b,且所述第一透波结构125设置在所述显示屏100a背离所述盖板100b的一侧为例进行示意。
请参阅图39,图39为本申请第五实施方式提供的电子设备的结构示意图。本实施方式提供的电子设备1与本申请第四实施方式提供的电子设备1基本相同,不同之处在于,在本实施方式中,所述电子设备1还包括第二天线模组220及第二透波结构126。所述第二天线模组220与所述第一天线模组210间隔设置且所述第二天线模组220位于所述第一预设方向范围之外,所述第二天线模组220用于在第二预设方向范围内收发第二频段的第二射频信号。所述显示屏本体110还与所述第二天线模组220间隔设置,至少部分所述显示屏本体110位于所述第二预设方向范围内,所述显示屏本体110位于所述第二预设方向范围内的部分对于所述第二频段的第二射频信号具有第三透过率。所述第二透波结构126被承载与所述显示屏本体110,且所述第二透波结构126的至少部分位于所述第二预设方向范围内,所述电子设备1在所述第二透波结构126对应的区域内,对所述第一频段的第二射频信号具有第四透过率,其中,所述第四透过率大于所述第三透过率。
所述第一透波结构125及所述第二透波结构126均可以为前述任意实施方式所述的透波结构。进一步地,所述显示屏本体110包括屏幕主体410和自所述屏幕主体410周缘弯曲延伸的延伸部420,其中,所述第一天线模组210及所述第二天线模组220均对应所述屏幕主体410设置。
请参阅图40,图40为本申请第六实施方式提供的电子设备的结构示意图。本实施方式中提供的电子设备1与本申请第五实施方式提供的电子设备1基本相同,不同之处在于,在本实施方式中,所述第 一天线模组210及所述第二天线模组220均对应所述延伸部420设置。
请参阅图41,图41为本申请第七实施方式提供的电子设备的结构示意图。本实施方式中提供的电子设备1与本申请第五实施方式提供的电子设备1基本相同,不同之处在于,在本实施方式中,所述第一天线模组210对应所述屏幕主体410设置,所述第二天线模组220对应所述延伸部420设置。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型,这些改进和润饰也视为本申请的保护范围。

Claims (21)

  1. 一种显示屏组件,其特征在于,包括:
    显示屏本体,所述显示屏本体对预设频段的射频信号具有第一透过率;
    透波结构,所述透波结构承载于所述显示屏本体,并至少覆盖所述显示屏本体的部分区域;
    所述显示屏组件在所述透波结构对应的区域内,对所述预设频段的射频信号具有第二透过率,所述第二透过率大于所述第一透过率。
  2. 如权利要求1所述的显示屏组件,其特征在于,所述显示屏本体包括层叠设置的显示屏及盖板,所述透波结构设置于所述盖板上。
  3. 如权利要求1所述的显示屏组件,其特征在于,所述显示屏本体包括阵列基板,所述阵列基板包括基板以及设置在所述基板上阵列分布的多个薄膜晶体管,所述薄膜晶体管包括栅极、栅极绝缘层、沟道层、源极、及漏极,所述栅极设置在所述基板的一侧,所述栅极绝缘层覆盖所述栅极,所述沟道层设置在栅极绝缘层上且对应所述栅极设置,所述源极及所述漏极间隔设置在所述沟道层相对的两端且均与所述沟道层相连,所述透波结构为单层结构:所述透波结构与所述栅极同层设置;或者,所述透波结构与所述源极及所述漏极同层设置。
  4. 如权利要求1所述的显示屏组件,其特征在于,所述显示屏本体包括阵列基板,所述阵列基板包括基板以及设置在所述基板上阵列分布的多个薄膜晶体管,所述薄膜晶体管包括栅极、栅极绝缘层、沟道层、源极、及漏极,所述栅极设置在所述基板的一侧,所述栅极绝缘层覆盖所述栅极,所述沟道层设置在栅极绝缘层上且对应所述栅极设置,所述源极及所述漏极间隔设置在所述沟道层相对的两端且均与所述沟道层相连,所述透波结构包括间隔层叠设置的第一透波层及第二透波层,所述第一透波层与所述栅极同层设置,所述第二透波层与所述源极及所述漏极同层设置。
  5. 如权利要求1所述的显示屏组件,其特征在于,所述显示屏本体包括阵列基板,所述阵列基板包括基板以及设置在所述基板上阵列分布的多个薄膜晶体管,所述薄膜晶体管包括遮光层、第一绝缘层、沟道层、源极、漏极、第二绝缘层、栅极、及平坦层,所述遮光层设置在所述基板的一侧,所述第一绝缘层覆盖所述遮光层,所述沟道层设置在所述第一绝缘层上且对应所述遮光层设置,所述源极及所述漏极间隔设置在所述沟道层相对的两端且均与所述沟道层相连,所述第二绝缘覆盖所述源极及所述漏极,所述栅极设置在所述第二绝缘层上,所述透波结构为单层结构:所述透波结构与所述遮光层同层设置;或者,所述透波结构与所述栅极同层设置;或者,所述透波结构与所述源极及所述漏极同层设置。
  6. 如权利要求1所述的显示屏组件,其特征在于,所述显示屏本体包括阵列基板,所述阵列基板包括基板以及设置在所述基板上阵列分布的多个薄膜晶体管,所述薄膜晶体管包括遮光层、第一绝缘层、沟道层、源极、漏极、第二绝缘层、栅极、及平坦层,所述遮光层设置在所述基板的一侧,所述第一绝缘层覆盖所述遮光层,所述沟道层设置在所述第一绝缘层上且对应所述遮光层设置,所述源极及所述漏极间隔设置在所述沟道层相对的两端且均与所述沟道层相连,所述第二绝缘覆盖所述源极及所述漏极,所述栅极设置在所述第二绝缘层上,所述透波结构包括间隔层叠设置的第一透波层及第二透波层,所述第一透波层及所述第二透波层与所述遮光层、所述栅极、所述源极中的任何两层同层设置。
  7. 如权利要求1所述的显示屏组件,其特征在于,所述显示屏本体包括阵列基板,所述阵列基板包括基板以及设置在所述基板上阵列分布的多个薄膜晶体管,所述薄膜晶体管包括遮光层、第一绝缘层、沟道层、源极、漏极、第二绝缘层、栅极、及平坦层,所述遮光层设置在所述基板的一侧,所述第一绝缘层覆盖所述遮光层,所述沟道层设置在所述第一绝缘层上且对应所述遮光层设置,所述源极及所述漏极间隔设置在所述沟道层相对的两端且均与所述沟道层相连,所述第二绝缘覆盖所述源极及所述漏极,所述栅极设置在所述第二绝缘层上,所述透波结构包括间隔层叠设置的第一透波层、第二透波层、及第三透波层,所述第一透波层与所述遮光层同层设置,所述第二透波层与所述栅极同层设置,所述第三透波层与所述源极同层设置。
  8. 如权利要求1所述的显示屏组件,其特征在于,所述显示面板包括阵列基板,所述阵列基板包括像素电极,所述像素电极的材质为透明的金属氧化物半导体,所述透波结构的至少部分和所述像素电极同层设置且与所述像素电极的材料相同。
  9. 如权利要求1所述的显示屏组件,其特征在于,所述显示面板包括阵列基板及彩膜基板,所述阵列基板与所述彩膜基板相对且间隔设置,所述透波结构包括第一透波层及第二透波层,所述第一透层设置于所述阵列基板,所述第二透波层设置于所述彩膜基板。
  10. 如权利要求9所述的显示屏组件,其特征在于,所述彩膜基板包括像素电极,所述阵列基板包括公共电极,所述第一透波层与所述像素电极同层设置,所述第二透波层与所述公共电极同层设置。
  11. 如权利要求1所述的显示屏组件,其特征在于,所述显示屏本体包括基板以及设置在所述基板上阵列分布的发光单元,所述发光单元包括第一电极、发光层、及第二电极,所述第一电极相较于所述发光层及所述第二电极邻近所述基板设置,所述发光层设置在所述第一电极背离所述基板的一侧,所述第二电极设置在所述发光层背离所述第一电极的一侧,所述第一电极用于加载第一电压,所述第二电极用于加载第二电压,所述发光层用于在所述第一电压及所述第二电压的作用下发光,所述透波结构为单层结构,所述透波结构与所述第一电极或者第二电极同层设置。
  12. 如权利要求1所述的显示屏组件,其特征在于,所述显示屏本体包括基板以及设置在所述基板上阵列分布的发光单元,所述发光单元包括第一电极、发光层、及第二电极,所述第一电极相较于所述发光层及所述第二电极邻近所述基板设置,所述发光层设置在所述第一电极背离所述基板的一侧,所述第二电极设置在所述发光层背离所述第一电极的一侧,所述第一电极用于加载第一电压,所述第二电极用于加载第二电压,所述发光层用于在所述第一电压及所述第二电压的作用下发光,所述透波结构包括第一透波层及第二透波层,所述第一透波层与所述第一电极同层设置,所述第二透波结构与所述第二电极同层设置。
  13. 如权利要求11或12所述的显示屏组件,其特征在于,所述第一电极为阳极,所述第二电极为阴极;或者,所述第一电极为阴极,所述第二电极为阳极。
  14. 如权利要求4或6或9或12所述的显示屏组件,其特征在于,所述第一透波结构具有通孔,所述第二透波结构在所述第一透波结构上的正投影落入所述通孔内。
  15. 如权利要求1所述的显示屏组件,其特征在于,所述显示屏本体包括相对设置的内表面及外表面,所述透波结构设置于所述内表面上。
  16. 如权利要求1所述的显示屏组件,其特征在于,所述显示屏本体包括屏幕主体及自所述屏幕主体周缘弯折延伸的延伸部,所述透波结构对应所述屏幕主体设置,或者,所述透波结构对应所述延伸部设置。
  17. 一种天线组件,其特征在于,所述天线组件包括天线模组及如权利要求1-16任意一项所述的显示屏组件,所述天线模组用于在预设范围内收发预设频段的射频信号,所述显示屏组件中的透波结构至少部分位于所述预设范围内。
  18. 一种电子设备,其特征在于,所述电子设备包括如权利要求17所述的天线组件。
  19. 一种电子设备,其特征在于,所述电子设备包括:
    第一天线模组,所述第一天线模组用于在第一预设方向范围内收发第一频段的第一射频信号;
    显示屏本体,所述显示屏本体与所述第一天线模组间隔设置,且至少部分所述显示屏本体位于所述第一预设方向范围内,对预设频段的射频信号具有第一透过率;
    第一透波结构,所述第一透波结构承载于所述显示屏本体,并至少覆盖所述显示屏本体的部分区域,且所述第一透波结构的至少部分位于所述第一预设范围内,所述电子设备在所述第一透波结构对应的区域内,对所述第一频段的第一射频信号具有第二透过率,其中,所述第二透过率大于所述第一透过率。
  20. 如权利要求19所述的电子设备,其特征在于,所述电子设备还包括:
    第二天线模组,所述第二天线模组与所述第一天线模组间隔设置且所述第二天线模组位于所述第一预设方向范围之外,所述第二天线模组用于在第二预设方向范围内收发第二频段的第二射频信号;
    所述显示屏本体还与所述第二天线模组间隔设置,至少部分所述显示屏本体位于所述第二预设方向 范围内,所述显示屏本体位于所述第二预设方向范围内的部分对于所述第二频段的第二射频信号具有第三透过率;
    第二透波结构,所述第二透波结构被承载与所述显示屏本体,且所述第二透波结构的至少部分位于所述第二预设方向范围内,所述电子设备在所述第二透波结构对应的区域内,对所述第一频段的第二射频信号具有第四透过率,其中,所述第四透过率大于所述第三透过率。
  21. 如权利要求20所述的电子设备,其特征在于,所述显示屏本体包括屏幕主体和自所述屏幕主体周缘弯曲延伸的延伸部,其中,所述第一天线模组及所述第二天线模组均对应所述屏幕主体设置;或者,所述第一天线模组及所述第二天线模组均对应所述延伸部设置;或者,所述第一天线模组对应所述屏幕主体设置,所述第二天线模组对应所述延伸部设置。
PCT/CN2020/096942 2019-06-30 2020-06-19 显示屏组件、天线组件及电子设备 WO2021000746A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021576354A JP2022537219A (ja) 2019-06-30 2020-06-19 表示画面アセンブリ、アンテナアセンブリ、及び電子デバイス
KR1020217043337A KR20220015472A (ko) 2019-06-30 2020-06-19 디스플레이 스크린 어셈블리, 안테나 어셈블리 및 전자 기기
EP20834584.3A EP3979508A4 (en) 2019-06-30 2020-06-19 DISPLAY SCREEN ASSEMBLY, ANTENNA AND ELECTRONIC DEVICE ASSEMBLY
US17/535,322 US20220085078A1 (en) 2019-06-30 2021-11-24 Display screen assembly, antenna assembly, and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910588888.8 2019-06-30
CN201910588888.8A CN112235005B (zh) 2019-06-30 2019-06-30 显示屏组件、天线组件及电子设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/535,322 Continuation US20220085078A1 (en) 2019-06-30 2021-11-24 Display screen assembly, antenna assembly, and electronic device

Publications (1)

Publication Number Publication Date
WO2021000746A1 true WO2021000746A1 (zh) 2021-01-07

Family

ID=74101053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/096942 WO2021000746A1 (zh) 2019-06-30 2020-06-19 显示屏组件、天线组件及电子设备

Country Status (6)

Country Link
US (1) US20220085078A1 (zh)
EP (1) EP3979508A4 (zh)
JP (1) JP2022537219A (zh)
KR (1) KR20220015472A (zh)
CN (1) CN112235005B (zh)
WO (1) WO2021000746A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2444878A (en) * 2004-07-06 2008-06-18 Catcher Inc Portable handheld security device
JP2009180801A (ja) * 2008-01-29 2009-08-13 Nippon Telegr & Teleph Corp <Ntt> 光マルチキャリア発生装置およびそれを用いた光マルチキャリア送信装置
CN108365122A (zh) * 2017-09-30 2018-08-03 云谷(固安)科技有限公司 显示屏以及电子设备
CN108494925A (zh) * 2018-01-25 2018-09-04 瑞声科技(南京)有限公司 天线组件及移动终端

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2798066B2 (ja) * 1996-08-05 1998-09-17 日本電気株式会社 薄膜トランジスター、その製造方法および表示装置
US7583335B2 (en) * 2000-06-27 2009-09-01 Citizen Holdings Co., Ltd. Liquid crystal display device
CN101398580B (zh) * 2007-09-26 2010-08-11 北京京东方光电科技有限公司 液晶显示装置及制造方法
CN101546733B (zh) * 2008-03-28 2011-07-27 北京京东方光电科技有限公司 Tft-lcd阵列基板和彩膜基板的制造方法
JP4770928B2 (ja) * 2009-01-13 2011-09-14 ソニー株式会社 光学素子および固体撮像素子
JP5515540B2 (ja) * 2009-09-10 2014-06-11 富士通株式会社 表示装置
US8824140B2 (en) * 2010-09-17 2014-09-02 Apple Inc. Glass enclosure
JP2012093381A (ja) * 2010-10-22 2012-05-17 Yamaha Corp 電子機器及び表示装置
CN102637926B (zh) * 2012-04-13 2015-02-04 深圳光启创新技术有限公司 一种无线通信装置
GB2513089B (en) * 2013-01-07 2019-12-11 Nokia Technologies Oy A speaker apparatus for a mobile device
CN104103877A (zh) * 2014-06-24 2014-10-15 中国电子科技集团公司第十研究所 阻抗型频率选择表面
CN105186132B (zh) * 2015-10-13 2016-07-06 中国舰船研究设计中心 低损耗微单元低通频率选择表面天线罩及制作方法
WO2017090417A1 (ja) * 2015-11-25 2017-06-01 東レエンジニアリング株式会社 アンテナ付き筐体及びそれを用いた電子機器並びにアンテナ付き筐体の製造方法
WO2019103966A1 (en) * 2017-11-27 2019-05-31 Intel Corporation Display integratable hybrid transparent antenna

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2444878A (en) * 2004-07-06 2008-06-18 Catcher Inc Portable handheld security device
JP2009180801A (ja) * 2008-01-29 2009-08-13 Nippon Telegr & Teleph Corp <Ntt> 光マルチキャリア発生装置およびそれを用いた光マルチキャリア送信装置
CN108365122A (zh) * 2017-09-30 2018-08-03 云谷(固安)科技有限公司 显示屏以及电子设备
CN108494925A (zh) * 2018-01-25 2018-09-04 瑞声科技(南京)有限公司 天线组件及移动终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
3GPP 38.101

Also Published As

Publication number Publication date
CN112235005A (zh) 2021-01-15
JP2022537219A (ja) 2022-08-24
EP3979508A4 (en) 2022-08-03
EP3979508A1 (en) 2022-04-06
US20220085078A1 (en) 2022-03-17
CN112235005B (zh) 2022-01-04
KR20220015472A (ko) 2022-02-08

Similar Documents

Publication Publication Date Title
EP4044368A1 (en) Antenna module and electronic device
US11205850B2 (en) Housing assembly, antenna assembly, and electronic device
WO2021082967A1 (zh) 天线模组及电子设备
US11532870B2 (en) Housing assembly and electronic devices
CN210897636U (zh) 壳体组件、天线组件及电子设备
WO2021000732A1 (zh) 壳体组件、天线组件及电子设备
WO2021000733A1 (zh) 壳体组件、天线组件及电子设备
US20220085493A1 (en) Housing assembly, antenna device, and electronic device
US20210036415A1 (en) Antenna device and electronic device
WO2020259281A1 (zh) 天线模组、电子设备及电子设备的天线频段调节方法
US20220094041A1 (en) Housing assembly, antenna device, and electronic device
WO2021000746A1 (zh) 显示屏组件、天线组件及电子设备
CN112310604B (zh) 电子设备
CN112312690B (zh) 壳体组件、天线组件及电子设备
KR20230101675A (ko) 전자 장치
KR20230101678A (ko) 전자 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20834584

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021576354

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217043337

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020834584

Country of ref document: EP

Effective date: 20211229