WO2021083214A1 - 天线单元及电子设备 - Google Patents

天线单元及电子设备 Download PDF

Info

Publication number
WO2021083214A1
WO2021083214A1 PCT/CN2020/124409 CN2020124409W WO2021083214A1 WO 2021083214 A1 WO2021083214 A1 WO 2021083214A1 CN 2020124409 W CN2020124409 W CN 2020124409W WO 2021083214 A1 WO2021083214 A1 WO 2021083214A1
Authority
WO
WIPO (PCT)
Prior art keywords
feeding
antenna unit
arm
present
metal groove
Prior art date
Application number
PCT/CN2020/124409
Other languages
English (en)
French (fr)
Inventor
邾志民
黄奂衢
王义金
马荣杰
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2021083214A1 publication Critical patent/WO2021083214A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors

Definitions

  • the embodiments of the present invention relate to the field of communication technology, and in particular to an antenna unit and electronic equipment.
  • millimeter-wave antennas are gradually being used in various electronic devices to meet the increasing use demands of users.
  • millimeter wave antennas in electronic devices are mainly implemented through antenna in package (AiP) technology.
  • AiP technology can be used to integrate the array antenna 11, the radio frequency integrated circuit (RFIC) 12, and the power management integrated circuit (PMIC) 13 with a working wavelength of millimeter wave.
  • the connector 14 are packaged into a module 10, and the module 10 may be called a millimeter wave antenna module.
  • the antenna in the above-mentioned array antenna may be a patch antenna, a Yagi-Uda antenna, or a dipole antenna.
  • the antennas in the above-mentioned array antennas are usually narrowband antennas (such as the patch antennas listed above), the coverage frequency band of each antenna is limited, but the millimeter wave frequency bands planned in the 5G system are usually more, for example, 28GHz The main n257 (26.5-29.5GHz) frequency band and the 39GHz main n260 (37.0-40.0GHz) frequency band, etc. Therefore, the traditional millimeter wave antenna module may not be able to cover the mainstream millimeter wave frequency band planned in the 5G system. As a result, the antenna performance of the electronic device is poor.
  • the embodiments of the present invention provide an antenna unit and an electronic device to solve the problem that the millimeter wave antenna of the existing electronic device covers less frequency bands, resulting in poor antenna performance of the electronic device.
  • an embodiment of the present invention provides an antenna unit.
  • the antenna unit includes: a metal groove, M feeders arranged at the bottom of the metal groove, M feed arms arranged in the metal groove, and A first insulator, and a target radiator carried by the first insulator; wherein, each of the M power feeders is electrically connected to the first end of a power feeder arm and insulated from the metal groove, the M feeding arms are located between the bottom of the metal groove and the first insulator, and the M feeding arms are arranged in the metal groove in a first order, and each of the M feeding arms Both are coupled with the target radiator, and M is an integer greater than 1.
  • an embodiment of the present invention provides an electronic device, which includes the antenna unit in the above-mentioned first aspect.
  • the antenna unit may include: a metal groove, M power feeding portions arranged at the bottom of the metal groove, M feeding arms and a first insulator arranged in the metal groove, and a first insulator Carried target radiator; wherein, each of the M feeders is electrically connected to the first end of a feeder arm and insulated from the metal groove, and the M feeder arms are located in the metal recess Between the bottom of the groove and the first insulator, and the M feeding arms are arranged in the metal groove in a first order, and each feeding arm of the M feeding arms is coupled with the target radiator, M Is an integer greater than 1.
  • the feeding arm can be coupled with the target radiator, when the feeding arm receives an AC signal, the feeding arm can be coupled with the target radiator to cause the target radiator to generate an induced current, thereby feeding power
  • Both the arm and the target radiator can radiate electromagnetic waves of a certain frequency; and there can be multiple current paths for the induced current generated by the coupling between the feeding arm and the target radiator (for example, from the feeding arm to the target radiator and then to the feeding arm)
  • the current path, the current path formed on the target radiator, etc.) so the current on the feed arm can also have multiple frequencies of electromagnetic waves generated by the target radiator, so that the antenna unit can obtain a wider bandwidth, Thereby, the frequency band covered by the antenna unit can be increased.
  • the M feeding arms are arranged in the metal groove in the first order, the distance between the respective feeding arms of the M feeding arms can be made larger, so that the M feeding arms can be reduced.
  • the interference between the arms can improve the isolation of the antenna port, and further improve the performance of the antenna unit.
  • FIG. 1 is a schematic structural diagram of a traditional millimeter wave package antenna provided by an embodiment of the present invention
  • FIG. 2 is one of the exploded views of the antenna unit provided by the embodiment of the present invention.
  • Fig. 3 is a reflection coefficient diagram of an antenna unit provided by an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the structure of a feed arm provided by an embodiment of the present invention.
  • FIG. 5 is a top view of an antenna unit provided by an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of isolation of an antenna unit provided by an embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of an antenna unit provided by an embodiment of the present invention.
  • FIG. 8 is the second exploded view of the antenna unit provided by the embodiment of the present invention.
  • FIG. 9 is one of the schematic diagrams of the hardware structure of an electronic device provided by an embodiment of the present invention.
  • FIG. 10 is a second schematic diagram of the hardware structure of an electronic device provided by an embodiment of the present invention.
  • FIG. 11 is one of the radiation pattern diagrams of the antenna unit provided by the embodiment of the present invention.
  • FIG. 12 is the second radiation pattern diagram of the antenna unit provided by the embodiment of the present invention.
  • Fig. 13 is a bottom view of an electronic device provided by an embodiment of the present invention.
  • first and second in the specification and claims of this application are used to distinguish different objects, rather than to describe a specific order of objects.
  • first insulator and the second insulator are used to distinguish different insulators, rather than to describe a specific order of the insulators.
  • words such as “exemplary” or “for example” are used as examples, illustrations, or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiment of the present invention should not be construed as being more preferable or advantageous than other embodiments or design solutions. To be precise, words such as “exemplary” or “for example” are used to present related concepts in a specific manner.
  • multiple refers to two or more than two, for example, multiple antenna elements refers to two or more antenna elements, etc.
  • Coupling refers to the close coordination and mutual influence between the input and output of two or more circuit elements or electrical networks, and energy can be transmitted from one side to the other through the interaction.
  • the “coupling” in the embodiment of the present invention can be used to indicate that the components that are coupled (for example, the M feed arms and the target radiator in the embodiment) are coupled when the antenna unit is working; Under working conditions, these parts are insulated from each other.
  • AC signal A signal that changes the direction of current.
  • MIMO Multiple-input multiple-output
  • transmitting end that is, the transmitting end and the receiving end
  • signals can be sent or received through multiple antennas at the transmitting end.
  • Relative permittivity A physical parameter used to characterize the dielectric properties or polarization properties of dielectric materials.
  • PCB printed circuit board
  • Embodiments of the present invention provide an antenna unit and electronic equipment.
  • the antenna unit may include: a metal groove, M power feeding portions arranged at the bottom of the metal groove, M feeding arms and a first metal groove arranged in the metal groove.
  • the feeding arm can be coupled with the target radiator, when the feeding arm receives an AC signal, the feeding arm can be coupled with the target radiator to cause the target radiator to generate an induced current, thereby feeding power
  • Both the arm and the target radiator can radiate electromagnetic waves of a certain frequency; and there can be multiple current paths for the induced current generated by the coupling between the feeding arm and the target radiator (for example, from the feeding arm to the target radiator and then to the feeding arm)
  • the current path, the current path formed on the target radiator, etc.) so the current on the feed arm can also have multiple frequencies of electromagnetic waves generated by the target radiator, so that the antenna unit can obtain a wider bandwidth, Thereby, the frequency band covered by the antenna unit can be increased.
  • the M feeding arms are arranged in the metal groove in the first order, the distance between the respective feeding arms of the M feeding arms can be made larger, so that the M feeding arms can be reduced.
  • the interference between the arms can improve the isolation of the antenna port, and further improve the performance of the antenna unit.
  • the antenna unit provided in the embodiment of the present invention can be applied to electronic equipment, and can also be applied to other equipment that needs to use the antenna unit, and can be specifically determined according to actual use requirements, which is not limited in the embodiment of the present invention.
  • the antenna unit provided in the embodiment of the present invention will be exemplarily described below by taking the antenna unit applied to an electronic device as an example.
  • the antenna unit provided by the embodiment of the present invention will be exemplarily described below with reference to the various drawings.
  • the antenna unit 20 may include a metal groove 201, M power feeding portions 202 arranged at the bottom of the metal groove 201, and M feeding arms 203 and a first insulator arranged in the metal groove 201 204, and a target radiator 205 carried by the first insulator 204.
  • each of the above-mentioned M feeders 202 can be electrically connected to the first end 203a of one feeder arm, and can be insulated from the metal groove 201, and the M feeder arms 203 can be located in the metal recess. Between the bottom of the groove 201 and the first insulator 204, and the M feeding arms 203 can be arranged in the metal groove 201 in a first order, and each feeding arm 203 of the M feeding arms can be connected to the target The radiator 205 is coupled, and M is an integer greater than one.
  • the first end of the feeding arm may be the feeding point in the antenna unit provided in the embodiment of the present invention.
  • FIG. 2 is an exploded view of the antenna unit, that is, the component parts of the antenna unit are all in a separated state.
  • the above-mentioned M power feeders, M power feed arms, first insulator and target radiator are all arranged in the metal groove, namely, the metal groove, M power feeders, and M power feed arms.
  • the first insulator and the target radiator form a whole to form an antenna unit provided by an embodiment of the present invention.
  • the feeder 202 and the first end 203a of the feeder arm in FIG. 2 are not shown in an electrically connected state. In actual implementation, the feeder 202 may be electrically connected to the first end 203a of the feeder arm.
  • the above-mentioned first order may be a clockwise order or a counterclockwise order. Specifically, it can be determined according to actual use requirements, and the embodiment of the present invention does not limit it.
  • the foregoing M feeding arms are four feeding arms (the structure of the four feeding arms is (May be the same), the four feeding arms can follow from the first end of the first feeding arm to the second end of the first feeding arm, and then from the first end to the second end of the second feeding arm.
  • the order of the second end of the electric arm is arranged in the metal groove in a clockwise order.
  • the following specifically takes an antenna unit as an example to exemplarily describe the working principle of the antenna unit provided in the embodiment of the present invention for transmitting and receiving signals.
  • the signal source in the electronic device sends out an AC signal, and the AC signal can be transmitted to the feeding arm through the feeding part.
  • the feeding arm can be coupled with the target radiator so that the target radiator generates an induced current.
  • the target radiator can radiate electromagnetic waves of multiple frequencies outward (due to the feeding arm There can be multiple current paths for the induced current generated by coupling with the target radiator, such as the current path from the feed arm to the target radiator and then to the feed arm, the current path formed on the target radiator, etc.
  • the frequency of the electromagnetic wave radiated by the current on the feeding arm via the target radiator can also be multiple). In this way, the electronic device can transmit signals of different frequencies through the antenna unit provided in the embodiment of the present invention, that is, the antenna unit can generate a wider bandwidth.
  • the electronic device when the electronic device receives a 5G millimeter wave signal, electromagnetic waves in the space where the electronic device is located can excite the target radiator, so that the target radiator can generate an induced current. After the target radiator generates an induced current, the target radiator can be coupled with the feeding arm, so that the feeding arm generates an induced current (ie, an induced AC signal). Then, the power feeding arm can input the AC signal to the receiver in the electronic device through the power feeding part, so that the electronic device can receive the 5G millimeter wave signal sent by other devices. That is, the electronic device can receive signals through the antenna unit provided in the embodiment of the present invention.
  • the frequency range covered by the antenna unit can be 25.4GHz-41.2GHz, which can include multiple millimeter wave frequency bands (such as n257, n260, and n261); when the return loss is less than At -10dB, the frequency range covered by the antenna unit can be 26GHz-29.5GHz and 37.2GHz-40.1GHz, and this frequency range can also include multiple main millimeter wave frequency bands (for example, n257, n260, and n261).
  • the antenna unit provided by the embodiment of the present invention can cover most of the 5G millimeter wave frequency band, thereby improving the antenna performance of the electronic device.
  • the antenna unit can meet actual use requirements; when the return loss of an antenna unit is less than -10dB, the performance of the antenna unit is better. That is, the antenna unit provided by the embodiment of the present invention can ensure better performance on the basis of meeting actual use requirements.
  • the embodiment of the present invention provides an antenna unit. Since the feeding arm can be coupled with the target radiator, when the feeding arm receives an AC signal, the feeding arm can be coupled with the target radiator to cause the target radiator to generate Induced current, so that both the feeding arm and the target radiator can radiate electromagnetic waves of a certain frequency; and, due to the coupling of the feeding arm and the target radiator, there can be multiple current paths for the induced current (for example, from the feeding arm to the target radiator). The current path from the body to the feeding arm, the current path formed on the target radiator, etc.), so the current on the feeding arm through the target radiator can generate electromagnetic waves with multiple frequencies, which can make the antenna unit Obtain a wider bandwidth, which can increase the frequency band covered by the antenna unit.
  • the M feeding arms are arranged in the metal groove in the first order, the distance between the respective feeding arms of the M feeding arms can be made larger, so that the M feeding arms can be reduced.
  • the interference between the arms can improve the isolation of the antenna port, and further improve the performance of the antenna unit.
  • the above-mentioned metal groove may be a rectangular groove or a circular groove.
  • the metal grooves may also be metal grooves of any possible shape, which can be specifically determined according to actual usage requirements, which is not limited in the embodiment of the present invention.
  • the shape of the aforementioned metal groove may be used to indicate the shape of the opening of the metal groove. That is, when the metal groove is a rectangular groove, the opening shape of the metal groove may be a rectangle; when the metal groove is a circular groove, the opening shape of the metal groove may be a circle.
  • a groove of a suitable shape can be selected as the metal in the antenna unit provided by the embodiment of the present invention according to the actual use requirements of the antenna unit. Notch, so that the antenna unit can work in the 5G millimeter wave frequency band.
  • the implementation of the present invention can be achieved by setting the metal grooves as regular-shaped grooves (for example, rectangular grooves or circular grooves, etc.).
  • the performance of the antenna unit provided in the example is relatively stable, so that the performance of the antenna unit can be improved.
  • the above-mentioned M power feeding portions may penetrate the bottom of the metal groove.
  • the first end 202a of the power feeder may be electrically connected to the first end 203a of the feeder arm, and the second end of the power feeder (not shown in FIG. 2) It can be electrically connected to a signal source in an electronic device (for example, a 5G signal source in an electronic device).
  • a signal source in an electronic device for example, a 5G signal source in an electronic device.
  • the current of the signal source in the electronic device can be transmitted to the feeding arm through the feeding part, and then coupled to the target radiator through the feeding arm, so that the target radiator can generate an induced current, thereby enabling the feeding
  • the arm and the target radiator radiate electromagnetic waves of a certain frequency.
  • the antenna unit provided in the embodiment of the present invention can radiate the 5G millimeter wave signal in the electronic device.
  • each of the foregoing M power feeders may form an "L-shaped" power feed structure with the power feed arm connected to it.
  • one feed arm may be a feed arm with a symmetrical structure.
  • the feeding arm can be symmetrical in the horizontal direction, or symmetrical in the vertical direction. Specifically, it can be determined according to actual use requirements, and the embodiment of the present invention does not limit it.
  • one feed arm (any one of the above M feed arms) can be any of the following feed arms: rectangular feed arm, "T” shaped feed arm, " Y” shaped feeder arm.
  • the feeding arm in the embodiment of the present invention may also be any other possible feeding arms. Specifically, it can be determined according to actual use requirements, and the embodiment of the present invention does not limit it.
  • the above-mentioned M feeding arms may be the same kind of feeding arms (for example, the M feeding arms are all "Y”-shaped feeding arms), or different feeding arms ( For example, some of the M feed arms are “T”-shaped feed arms, and the other part of the feed arms is “Y”-shaped feed arms).
  • the embodiment of the present invention does not limit it.
  • the foregoing M feed arms may all be “T”-shaped feed arms 203 as shown in FIG. 2, and may also be all “Y”-shaped feed arms 203 as shown in FIG. 4.
  • the coupling amount of the feed arm of different forms (such as shape, material, structure, etc.) and the target radiator may be different, and the impedance requirements of the feed arm of different forms may also be different, that is, different Different types of feed arms may have different effects on the working performance of the antenna unit. Therefore, a suitable feed arm can be selected according to the actual use requirements of the antenna unit, so that the antenna unit can work in a suitable frequency range.
  • the above-mentioned M feeding arms may be arranged in the order from the first end of the feeding arm to the second end of the feeding arm along the inner side wall of the metal groove according to the above-mentioned first sequence. In the metal groove.
  • the second end of one of the above-mentioned M feeding arms may be adjacent to the first end of the next feeding arm adjacent to the one feeding arm.
  • FIG. 5 it is a top view of the antenna unit provided by an embodiment of the present invention on the reverse Z axis (for example, the coordinate system shown in FIG. 2).
  • the foregoing M feed arms are four feed arms, namely the first feed arm 2030, the second feed arm 2032, the third feed arm 2031, and the fourth feed arm. Electric arm 2033.
  • the four feeding arms can follow from the first end of the first feeding arm 2030 to the second end of the first feeding arm 2030, and then to the first end of the second feeding arm 2032, and then from the second feeding arm 2032.
  • the order of the first end of the 2030 is arranged in the metal groove in a clockwise order. It can be seen from FIG. 5 that the first feeding arm, the second feeding arm, the third feeding arm, and the fourth feeding arm may form a ring-like shape. That is to say, the first power feed arm, the second power feed arm, the third power feed arm and the fourth power feed arm are circumferentially arranged in the metal groove.
  • the first ends of different feed arms can be added by arranging the M feed arms in the first order. (That is, the distance between the first end of one feeding arm and the first end of other feeding arms is relatively large), so that the interference between different feeding arms can be reduced, and the antenna unit can be improved
  • the isolation of the port that is, the feed port of the antenna unit.
  • the feeding arms are arranged along the inner side wall of the metal groove, the feeding arms can be distributed discretely in the metal groove, thereby further reducing the mutual interference between the feeding arms, and further improving the antenna unit The isolation of the port.
  • the metal groove is a rectangular groove
  • the aforementioned M feeding arms may include a first feeding arm, a second feeding arm, a third feeding arm, and a fourth feeding arm.
  • the first feeding arm, the second feeding arm, the third feeding arm and the fourth feeding arm are sequentially arranged in the metal groove along the inner side wall of the metal groove.
  • both the first feeding arm and the third feeding arm may be parallel to the first inner side wall of the metal groove, and both the second feeding arm and the fourth feeding arm may be parallel to the second inner side wall of the metal groove,
  • the first inner side wall may be perpendicular to the second inner side wall.
  • first feeding arm, second feeding arm, third feeding arm, and fourth feeding arm may also be arranged around in the metal groove in any other possible manner.
  • first feeding arm and the third feeding arm may be parallel to the second inner side wall of the metal groove
  • second feeding arm and the fourth feeding arm may be parallel to the first inner side wall of the metal groove.
  • both the first feeding arm 2030 and the third feeding arm 2031 may be parallel to the inner side wall S1 of the metal groove (that is, the above-mentioned first inner side wall), and the second feeding arm 2032 and The fourth feeding arms 2033 can all be parallel to the inner side wall S2 of the metal groove (that is, the above-mentioned second inner side wall). And it can be seen from FIG. 5 that the inner side wall S1 is perpendicular to the inner side wall S2.
  • FIG. 5 is a top view of the antenna unit provided by the embodiment of the present invention in the reverse direction of the Z axis, the first inner side wall and the second inner side wall of the metal groove are both indicated by horizontal lines in FIG. 5.
  • the first feeding arm and the third feeding arm may form a feeding arm group (hereinafter referred to as the first feeding arm group), and the second feeding arm may be combined with the first feeding arm.
  • the four feeding arms form a feeding arm group (hereinafter referred to as the second feeding arm group).
  • the first, second, third, and fourth feed arms are arranged in the metal groove in sequence along the inner side wall of the metal groove.
  • the feeding arms are arranged in such a manner that the distance between the first feeding arm 2030 and the third feeding arm 2031 is relatively large, and the distance between the second feeding arm 2032 and the fourth feeding arm 2033 is relatively large.
  • the above-mentioned first feeding arm can be ,
  • the second feeding arm, the third feeding arm and the fourth feeding arm are arranged in the metal groove in sequence along the inner side wall of the metal groove, increasing the above two feeding arm groups (first feeding arm The distance between the feeder arms in the second feeder arm group and the second feeder arm group, so that during the operation of the antenna unit, the mutual influence between these feeder arm groups can be reduced, thereby improving the The port isolation of the antenna unit.
  • the first feed arm group and the second feed arm group may be two feed arm groups with different polarizations.
  • the first feed arm group may be a first polarized feed arm group
  • the second feed arm group may be a second polarized feed arm group.
  • the foregoing first polarization and second polarization may be polarizations in different directions.
  • the first polarization may be +45° polarization or horizontal polarization;
  • the second polarization may be -45° polarization or vertical polarization, and so on.
  • the first feeding arm group composed of the first feeding arm 2030 and the third feeding arm 2031 may be a horizontally polarized (that is, the aforementioned first polarized) feeding arm group;
  • the second feeding arm group composed of the second feeding arm 2032 and the fourth feeding arm 2033 may be a feeding arm group of vertical polarization (that is, the aforementioned second polarization).
  • the polarization direction of the first polarization and the polarization direction of the second polarization may also be any other possible directions. Specifically, it can be determined according to actual use requirements, and the embodiment of the present invention does not limit it.
  • the antenna unit provided by the embodiment of the invention can form a dual-polarized antenna unit, which can improve the wireless connection capability of the antenna unit, thereby reducing the probability of communication disconnection of the antenna unit, and thereby improving the communication capability of the antenna unit.
  • the other feeding arm in the first feeding arm group when one feeding arm in the first feeding arm group is in the working state, the other feeding arm in the first feeding arm group may also be in the working state.
  • the other feeding arm in the second feeding arm group when one feeding arm in the second feeding arm group is in the working state, the other feeding arm in the second feeding arm group may also be in the working state. That is, the feeding arms in the same feeding arm group can work at the same time.
  • the feeding arms in the first feeding arm group when the feeding arms in the first feeding arm group are in a working state, the feeding arms in the second feeding arm group may or may not be in a working state.
  • the embodiment of the present invention does not limit it.
  • the antenna unit may include two feeder arm groups
  • the electronic device can transmit and receive signals through the two feeder arm groups in the antenna unit, that is, it can be provided by the embodiment of the present invention.
  • the antenna unit implements MIMO technology, so that the communication capacity and communication rate of the antenna unit can be increased, that is, the data transmission rate of the antenna unit can be increased.
  • all the above M feed arms may be located on the same plane.
  • the coupling parameters when the M feeding arms are coupled to the target radiator may be different, for example, the M feeding arms may be different from the target radiator.
  • the induced current generated by the coupling of the radiator may be different, so the distance between the M feed arms and the target radiator can be flexibly set according to the actual use requirements of the antenna unit (for example, the frequency range covered by the antenna unit).
  • the distances between the M feeding arms and the target radiator are all equal, it is convenient to control the coupling parameters of the M feeding arms and the target radiator, such as the induced current generated by the coupling, etc.
  • the M feeding arms can be arranged on the same plane so that the distances between the different feeding arms and the target radiator are equal, which can facilitate the control of the working state of the antenna unit provided by the embodiment of the present invention.
  • the metal groove is a rectangular groove
  • the above M power feeders may be four power feeders
  • two of the four power feeders may be located in the metal groove
  • the other two of the four power feeders may be located on the other diagonal line of the metal groove.
  • the two feeders electrically connected to the first feeder arm and the third feeder arm may be located on a diagonal line of the metal groove and are connected to the second feeder arm.
  • the two feeding parts electrically connected to the fourth feeding arm may be located on the other diagonal line of the metal groove.
  • the feeder 2020 electrically connected to the first feeder arm 2030 (specifically may be the first end of the first feeder arm) and the third feeder arm 2031 (specifically may be The feeding portion 2021 electrically connected to the first end of the third feeding arm may be located on the first diagonal line L1 of the metal groove; and the second feeding arm 2032 (specifically may be the first feeding arm of the second feeding arm). End) the feeding portion 2022 electrically connected to the fourth feeding arm 2033 (specifically the first end of the fourth feeding arm) may be located on the second diagonal line L2 of the metal groove on. In this way, the distance between the first feeding arm and the third feeding arm and the distance between the second feeding arm and the fourth feeding arm can be further increased, so that the port isolation of the antenna unit can be further improved.
  • the feeding part in FIG. 5 is indicated by a dotted line.
  • FIG. 6 it is a schematic diagram of the polarization isolation of the antenna unit when the antenna unit provided by the embodiment of the present invention works.
  • the metal groove is a rectangular groove; and the feeding arm group composed of the first feeding arm and the third feeding arm (that is, the above-mentioned first feeding arm group) is a horizontally polarized feeding arm group, and the second feeding arm group
  • the feed arm group composed of the electric arm and the fourth feed arm (that is, the above-mentioned second feed arm group) is a vertically polarized feed arm group, and is electrically connected to the first and third feed arms.
  • the feeding part is arranged on a diagonal line of the metal groove, and the feeding part electrically connected with the second feeding arm and the fourth feeding arm is arranged on the other diagonal line of the metal groove.
  • the signal sources electrically connected to the two feeders located on the same diagonal have the same amplitude and a phase difference of 180 degrees.
  • the first feeding arm group and the second feeding arm group may be two feeding arm groups that are orthogonally distributed, and are similar to the feeding arms in the first feeding arm group.
  • the first feeding arm and the third feeding arm The amplitudes of the signal sources that are electrically connected to the two feeding parts are the same, and the phase difference is 180 degrees, which is the same as the feeding arm in the second feeding arm group.
  • the above-mentioned second feeder arm and fourth feeder arm The amplitudes of the signal sources electrically connected to the two feeders that are electrically connected are equal, and the phase difference is 180 degrees.
  • the cross-sectional shape of the first insulator may be the same as the opening shape of the metal groove, for example, any possible shape such as a rectangle or a circle.
  • the shape of the above-mentioned first insulator may also be any shape that can meet actual use requirements. Specifically, it can be determined according to actual use requirements, and the embodiment of the present invention does not limit it.
  • the material of the above-mentioned first insulator may be any possible material such as plastic or foam. Specifically, it can be determined according to actual use requirements, and the embodiment of the present invention does not limit it.
  • the material of the above-mentioned first insulator may be an insulating material with relatively small relative permittivity and loss tangent.
  • the relative dielectric constant of the material of the first insulator may be 2.53, and the loss tangent value may be 0.003.
  • the first insulator can not only carry the target radiator, but also isolate the target radiator and the M feed arms, thereby preventing mutual interference between the target radiator and the M feed arms.
  • the smaller the loss tangent value of the material of the first insulator the smaller the influence of the first insulator on the radiation effect of the antenna unit.
  • the smaller the loss tangent value of the material of the first insulator is, the less the first insulator affects the working performance of the antenna unit, and the better the radiation effect of the antenna unit.
  • the antenna unit 20 may further include a second insulator 206 disposed between the bottom of the metal groove 201 and the first insulator 204. 206 can carry the M feed arms 203 described above.
  • the power feeder passing through the second insulator may be electrically connected to one power feeder arm, respectively.
  • the feeder arm of the foregoing M feeder arms may be carried on the second insulator, or may be carried in the second insulator. Specifically, it can be determined according to actual use requirements, and the embodiment of the present invention does not limit it.
  • the feeding arms of the foregoing M feeding arms when carried on the second insulator, the feeding arms may be embedded in the foregoing first insulator.
  • the antenna unit 20 may further include a second insulator 206 disposed between the bottom of the metal groove 201 and the first insulator 204.
  • the M feeder arms 203 can be carried in the second insulator 206, and the first end of the feeder 202 can pass through the second insulator 206 to be electrically connected to the feeder arm 203.
  • the above-mentioned second insulator can not only carry the above-mentioned M feeder arms, but also can isolate the M feeder arms and the metal groove, thereby preventing the occurrence between the M feeder arms and the metal groove. interference.
  • the cross-sectional shape of the second insulator may be the same as the opening shape of the metal groove. Any possible shape such as rectangle or circle.
  • the shape of the above-mentioned second insulator may also be any shape that can meet actual use requirements. Specifically, it can be determined according to actual use requirements, and the embodiment of the present invention does not limit it.
  • the material of the second insulator may be the same material as the material of the first insulator, or may be a different material from the material of the first insulator. Specifically, it can be determined according to actual use requirements, and the embodiment of the present invention does not limit it.
  • the material of the above-mentioned first insulator may be any possible material such as plastic or foam. Specifically, it can be determined according to actual use requirements, and the embodiment of the present invention does not limit it.
  • the material of the above-mentioned first insulator may be an insulating material with relatively small relative permittivity and loss tangent.
  • the relative dielectric constant of the material of the first insulator may be 2.5, and the loss tangent value may be 0.0001.
  • the above-mentioned target radiator may be a polygonal radiator or a circular radiator.
  • the above-mentioned target radiator may be any possible polygonal radiator, such as a rectangular radiator, a hexagonal radiator, or a square radiator. Specifically, it can be determined according to actual use requirements, and the embodiment of the present invention does not limit it.
  • the shape of the above-mentioned target radiator may also be any other possible shape, which may be specifically determined according to actual use requirements, and is not limited in the embodiment of the present invention.
  • the frequency of the electromagnetic wave generated by the coupling between the target radiator and the M feed arms is related to the parameters of the target radiator (for example, the shape and area of the target radiator, etc.). Specifically, the frequency of the target radiator The smaller the area, the higher the frequency of the electromagnetic wave generated by the coupling between the target radiator and the aforementioned M feed arms. Therefore, the target radiator with appropriate parameters can be selected according to actual use requirements (for example, a target radiator with a suitable shape and/or a suitable area). Target radiator, etc.). In this way, the antenna unit provided by the embodiment of the present invention can be made to work in the 5G millimeter wave frequency band.
  • the surface of the target radiator 205 may be flush with the surface where the opening of the metal groove 201 is located.
  • the above-mentioned target radiator can also be located at any possible position in the metal groove, which can be specifically determined according to actual use requirements, which is not limited in the embodiment of the present invention.
  • the performance of the antenna unit may also be different. Therefore, the location of the target radiator can be flexibly set according to actual use requirements, thereby making the design of the antenna unit more flexible.
  • the bottom of the metal groove 201 may also be provided with M through holes 207 passing through the bottom of the metal groove 201, and each of the above M power feeders is fed
  • the parts 202 may be respectively disposed in one through hole 207.
  • the above-mentioned M through holes may be through holes with the same diameter.
  • the above-mentioned M through holes may be distributed on the diagonal of the metal groove.
  • the distribution mode of the M through holes in the metal groove can be specifically determined according to the distribution positions of the M power feeding parts in the metal groove.
  • a third insulator may be provided in each of the above-mentioned M through holes, and the third insulator may wrap the feeder provided in the through hole.
  • the third insulator, the power feeding portion, and the through hole provided at the bottom of the metal groove jointly constitute a coaxial transmission structure with a characteristic impedance of 50 ohms.
  • the above-mentioned third insulator wraps the power feeding part provided in the through hole, so that the power feeding part can be fixed in the through hole.
  • the bottom of the metal groove 201 is provided with a plurality of through holes 207, and each through hole 207 is provided with a third insulator 208, and the power feeder 202 can pass through the first through hole 207.
  • the three insulators 208 and the second insulator 206 are electrically connected to the feeding arm 203.
  • the signal source 30 electrically connected to one end of the power feeder 202 (for example, the second end of the power feeder) in FIG. 7 may be a millimeter wave signal source in an electronic device.
  • the material of the third insulator may be an insulating material with a relatively small relative permittivity.
  • the material of the aforementioned third insulator may be any possible material such as foam material or plastic material.
  • the material of the third insulator and the first insulator may be the same insulating material, or may be different insulating materials. Specifically, it can be determined according to actual use requirements, and the embodiment of the present invention does not limit it.
  • the diameter of the through hole may be larger than the diameter of the power feeding part
  • the power feeding part when the power feeding part is provided in the through hole, the power feeding part may not be fixed in the through hole, so the through hole may not be fixed in the through hole.
  • the above-mentioned third insulator is arranged in the hole, and the way in which the third insulator is arranged to wrap the power feeding part can make the power feeding part be fixed in the through hole.
  • the metal groove and the feeding part are made of metal material, during the operation of the antenna unit, there may be contact between the two and cause a short circuit. Therefore, a third insulator can be provided in the through hole. Isolate the power feeding part and the metal groove so that the power feeding part is insulated from the metal groove, thereby making the antenna performance of the electronic device more stable.
  • the antenna units shown in each of the foregoing drawings are all exemplified in conjunction with a drawing in the embodiment of the present invention.
  • the antenna units shown in each of the above figures can also be implemented in combination with any other figures illustrated in the above embodiments that can be combined, and will not be repeated here.
  • An embodiment of the present invention provides an electronic device, and the electronic device may include the antenna unit provided in any one of the above-mentioned embodiments shown in FIG. 2 to FIG. 8.
  • the antenna unit provided in any one of the above-mentioned embodiments shown in FIG. 2 to FIG. 8.
  • the antenna unit reference may be made to the relevant description of the antenna unit in the foregoing embodiment, which will not be repeated here.
  • the electronic device in the embodiment of the present invention may be a mobile electronic device or a non-mobile electronic device.
  • the mobile electronic device may be a mobile phone, a tablet computer, a notebook computer, a handheld computer, a vehicle terminal, a wearable device, an ultra-mobile personal computer (UMPC), a netbook, or a personal digital assistant (personal digital assistant).
  • the non-mobile electronic device may be a personal computer (PC), a television (television, TV), a server, or a teller machine, etc., which is not specifically limited in the embodiment of the present invention.
  • the housing of the electronic device may be provided with at least one first groove, and each of the at least one first groove may be provided with at least one first groove provided in the embodiment of the present invention.
  • the antenna unit may be provided with at least one first groove, and each of the at least one first groove may be provided with at least one first groove provided in the embodiment of the present invention.
  • the above-mentioned at least one first groove may be provided in the housing of the electronic device, and at least one antenna unit provided in the embodiment of the present invention may be arranged in each first groove, so that the electronic device At least one antenna unit provided in the embodiment of the present invention is integrated, so that the electronic device can include an antenna array composed of the antenna unit provided in the embodiment of the present invention.
  • the above-mentioned first groove may be provided in the frame of the housing of the electronic device.
  • the electronic device 4 may include a housing 40.
  • the housing 40 may include a first metal frame 41, a second metal frame 42 connected to the first metal frame 41, a third metal frame 43 connected to the second metal frame 42, and the third metal frame 43 and the first metal frame. 41 are connected to the fourth metal frame 44.
  • the electronic device 4 may further include a floor 45 connected to both the second metal frame 42 and the fourth metal frame 44, and a floor 45 which is arranged in the third metal frame 43, a part of the second metal frame 42, and a part of the fourth metal frame 44.
  • the first antenna 46 of the area (specifically, these metal frames may also be a part of the first antenna). Wherein, a first groove 47 is provided on the second metal frame 42.
  • the antenna unit provided in the embodiment of the present invention can be disposed in the first groove, so that the electronic device can include the array antenna module formed by the antenna unit provided in the embodiment of the present invention, and the integration of the device in the electronic device can be realized.
  • the above-mentioned floor can be a PCB or a metal middle frame in an electronic device, or a display screen of an electronic device, etc., which can be used as a virtual ground.
  • the above-mentioned first antenna may be a second-generation mobile communication system (ie 2G system), a third-generation mobile communication system (ie 3G system), and a fourth-generation mobile communication system of an electronic device.
  • the communication antenna of the system ie 4G system and other systems.
  • the antenna unit integrated in the electronic device in the embodiment of the present invention can be the electronic device Antenna for 5G system.
  • the first metal frame, the second metal frame, the third metal frame, and the fourth metal frame may be connected end to end in sequence to form a closed frame; or, the first metal frame, the second metal frame Part of the frame, the third metal frame, and the fourth metal frame may be connected to form a semi-closed frame; or, the first metal frame, the second metal frame, the third metal frame, and the fourth metal frame may not be connected to each other to form a semi-closed frame; Open border. Specifically, it can be determined according to actual use requirements, and the embodiment of the present invention does not limit it.
  • the frame 40 included in the housing 40 shown in FIG. 9 is a closed frame formed by connecting the first metal frame 41, the second metal frame 42, the third metal frame 43, and the fourth metal frame 44 sequentially. It is taken as an example for illustrative description, which does not impose any limitation on the embodiment of the present invention.
  • the frame formed by other connection methods partial frame connection or non-connection of each frame
  • the implementation manner is the same as that of the embodiment of the present invention.
  • the implementations provided are similar, and to avoid repetition, I won’t repeat them here.
  • the above-mentioned at least one first groove may be arranged in the same frame of the housing, or may be arranged in different frames. Specifically, it can be determined according to actual use requirements, and the embodiment of the present invention does not limit it.
  • multiple first grooves may be provided on the housing of the electronic device, so that multiple antenna units provided in the embodiment of the present invention may be provided in the electronic device, so that the electronic device Including multiple antenna units to improve the antenna performance of the electronic device.
  • the distance between two adjacent first grooves can be reduced, that is, the distance between two adjacent antenna units can be reduced
  • the scanning angle of the electromagnetic wave beam generated by the M feed arms and the target radiator in the antenna unit can be increased, thereby increasing the millimeter wave antenna of the electronic device Coverage of communications.
  • the metal groove in the antenna unit may be a part of the housing of the electronic device. It can be understood that the metal groove may be a groove provided on the housing of the electronic device.
  • the housing of the electronic device may be a radiator of a non-millimeter wave antenna in the electronic device.
  • the housing of the electronic device can also be used as the radiator of the non-millimeter wave antenna in the electronic device, so that the antenna (millimeter wave antenna and non-millimeter wave antenna) in the electronic device can be integrated into one, so that Significantly reduce the space occupied by the antenna in the electronic device.
  • the metal groove in the antenna unit may be provided on the metal frame of the housing of the electronic device.
  • the housing 40 of the electronic device 4 provided by the embodiment of the present invention may be provided with at least one metal groove 201, M feeding arms, M feeding parts,
  • the first insulator, the target radiator and other components can be arranged in the metal groove 201 (in practice, the metal groove is not visible at the angle of the electronic device shown in FIG. 10).
  • a metal groove may be provided in any one of the first metal frame, the second metal frame, the third metal frame, and the fourth metal frame of the housing. Specifically, it can be determined according to actual use requirements, and the embodiment of the present invention does not limit it.
  • the sidewalls of the metal groove, the bottom of the metal groove, etc. may all be a part of the electronic device, and specifically may be The embodiment of the present invention provides a part of the frame of the housing.
  • FIG. 10 is based on the above-mentioned metal groove 201 is provided on the first metal frame 41 of the housing 40, and the opening direction of the metal groove is the coordinate shown in FIG.
  • the positive direction of the Z-axis of the system is taken as an example.
  • the opening direction of the metal groove when the metal groove is arranged in the second metal frame of the housing, the opening direction of the metal groove may be the positive direction of the X axis; when the metal groove is arranged in the When the metal groove is on the third metal frame of the housing, the opening direction of the metal groove can be reverse to the Z axis; when the metal groove is provided on the fourth metal frame of the housing, the opening direction of the metal groove can be reverse to the X axis. to.
  • multiple metal grooves may be provided in the housing of the electronic device, and M power feeding arms and M power feeding parts in the embodiment of the present invention are provided in each metal groove.
  • the first insulator, the target radiator and other components so that multiple antenna units provided in the embodiments of the present invention can be integrated in the electronic device, so that these antenna units can form an antenna array, thereby improving the antenna performance of the electronic device.
  • the radiation pattern of the antenna unit provided by the embodiment of the present invention when a signal with a frequency of 28 GHz is radiated; as shown in FIG. 12, it is the antenna provided by the embodiment of the present invention.
  • the unit radiates a signal with a frequency of 39 GHz, the radiation pattern of the antenna unit.
  • the maximum radiation direction of the antenna unit at 28 GHz is the same as the maximum radiation direction of the antenna unit at 39 GHz. Therefore, the antenna unit provided by the embodiment of the present invention is suitable for forming a broadband antenna array.
  • the electronic device can be provided with at least two metal grooves, and each of the metal grooves is provided with the aforementioned M power feeding arms, M power feeding parts, first insulators, target radiators and other components, so that the electronic device A plurality of antenna elements provided by the embodiments of the present invention are included in the electronic device, so that an antenna array composed of the antenna elements can be included in the electronic device, thereby improving the antenna performance of the electronic device.
  • the distance between two adjacent antenna units (that is, the distance between two adjacent metal grooves)
  • the distance between the separations can be determined according to the isolation of the antenna units and the scanning angle of the antenna array formed by the multiple antenna units. Specifically, it can be determined according to actual use requirements, and the embodiment of the present invention does not limit it.
  • the number of metal grooves provided in the housing of the electronic device may be determined according to the size of the metal groove and the size of the housing of the electronic device, which is not limited in the embodiment of the present invention.
  • FIG. 13 it is a bottom view of a plurality of antenna units provided on a housing provided in an embodiment of the present invention in the positive direction of the Z axis (coordinate system as shown in FIG. 10).
  • the metal groove is a rectangular groove
  • the target radiator is a rectangular radiator
  • the third metal frame 43 is provided with a plurality of antenna units provided by the embodiment of the present invention (each antenna unit consists of a housing The upper metal groove and the M power feed arms and other components located in the metal groove are formed).
  • M feed arms 203 and the first insulator 204 are arranged in a metal groove (not shown in FIG. 13), and the target radiator 205 is carried on the first insulator 204, and the feed arm in FIG. 13 It is a "T"-shaped feed arm.
  • Fig. 13 exemplifies the four antenna units provided on the third metal frame as an example, which does not limit the embodiment of the present invention in any way. It can be understood that, during specific implementation, the number of antenna units provided on the third metal frame may be determined according to actual use requirements, and the embodiment of the present invention does not make any limitation.
  • An embodiment of the present invention provides an electronic device, which may include an antenna unit.
  • the antenna unit may include: a metal groove, M power feeding portions arranged at the bottom of the metal groove, M feeding arms and a first insulator arranged in the metal groove, and a target radiator carried by the first insulator;
  • each of the M feeders is electrically connected to the first end of a feeder arm and insulated from the metal groove, and the M feeder arms are located at the bottom of the metal groove and the first insulator
  • the M feeding arms are circumferentially arranged in the metal groove in a first order, and each feeding arm of the M feeding arms is coupled with the target radiator, and M is an integer greater than 1.
  • the feeding arm can be coupled with the target radiator, when the feeding arm receives an AC signal, the feeding arm can be coupled with the target radiator to cause the target radiator to generate an induced current, thereby feeding power
  • Both the arm and the target radiator can radiate electromagnetic waves of a certain frequency; and there can be multiple current paths for the induced current generated by the coupling between the feeding arm and the target radiator (for example, from the feeding arm to the target radiator and then to the feeding arm)
  • the current path, the current path formed on the target radiator, etc.) so the current on the feed arm can also have multiple frequencies of electromagnetic waves generated by the target radiator, so that the antenna unit can obtain a wider bandwidth, Thereby, the frequency band covered by the antenna unit can be increased.
  • the M feeding arms are arranged in the metal groove in the first order, the distance between the respective feeding arms of the M feeding arms can be made larger, so that the M feeding arms can be reduced.
  • the interference between the arms can improve the isolation of the antenna port, and further improve the performance of the antenna unit.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明实施例提供一种天线单元及电子设备。该天线单元包括:金属凹槽,设置在金属凹槽底部的M个馈电部,设置在金属凹槽内的M个馈电臂和第一绝缘体,以及第一绝缘体承载的目标辐射体;其中,M个馈电部中的每个馈电部分别与一个馈电臂的第一端电连接、且与金属凹槽绝缘,M个馈电臂位于金属凹槽底部和第一绝缘体之间,且M个馈电臂按照第一顺序环绕设置在金属凹槽内,以及M个馈电臂中的每个馈电臂均与目标辐射体耦合,M为大于1的整数。

Description

天线单元及电子设备
相关申请的交叉引用
本申请要求于2019年10月31日提交中国国家知识产权局、申请号为201911049734.8、申请名称为“一种天线单元及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及通信技术领域,尤其涉及一种天线单元及电子设备。
背景技术
随着第五代移动通信(5th-Generation,5G)系统的发展,以及电子设备的广泛应用,毫米波天线逐渐被应用在各种电子设备中,以满足用户日益增长的使用需求。
目前,电子设备中的毫米波天线主要通过封装天线(antenna in package,AiP)技术实现。例如,如图1所示,可以通过AiP技术,将工作波长为毫米波的阵列天线11、射频集成电路(radio frequency integrated circuit,RFIC)12、电源管理集成电路(power management integrated circuit,PMIC)13和连接器14封装成一个模块10,该模块10可以称为毫米波天线模组。其中,上述阵列天线中的天线可以为贴片天线、八木-宇田天线,或者偶极子天线等。
然而,由于上述阵列天线中的天线通常为窄带天线(例如上述列举的贴片天线等),因此每个天线的覆盖频段有限,但是在5G系统中规划的毫米波频段通常比较多,例如以28GHz为主的n257(26.5-29.5GHz)频段和以39GHz为主的n260(37.0-40.0GHz)频段等,因此传统的毫米波天线模组可能无法覆盖5G系统中规划的主流的毫米波频段,从而导致电子设备的天线性能较差。
发明内容
本发明实施例提供一种天线单元及电子设备,以解决现有的电子设备的毫米波天线覆盖的频段较少,导致电子设备的天线性能较差的问题。
为了解决上述技术问题,本申请是这样实现的:
第一方面,本发明实施例提供了一种天线单元,该天线单元包括:金属凹槽,设置在金属凹槽底部的M个馈电部,设置在金属凹槽内的M个馈电臂和第一绝缘体,以及第一绝缘体承载的目标辐射体;其中,该M个馈电部中的每个馈电部分别与一个馈电臂的第一端电连接、且与金属凹槽绝缘,该M个馈电臂位于金属凹槽底部和第一绝缘体之间,且该M个馈电臂按照第一顺序环绕设置在金属凹槽内,以及该M个馈电臂中的每个馈电臂均与目标辐射体耦合,M为大于1的整数。
第二方面,本发明实施例提供了一种电子设备,该电子设备包括上述第一方面中的天线单元。
在本发明实施例中,天线单元可以包括:金属凹槽,设置在金属凹槽底部的M个馈电部,设置在金属凹槽内的M个馈电臂和第一绝缘体,以及第一绝缘体承载的目标辐射体; 其中,该M个馈电部中的每个馈电部分别与一个馈电臂的第一端电连接、且与金属凹槽绝缘,该M个馈电臂位于金属凹槽底部和第一绝缘体之间,且该M个馈电臂按照第一顺序环绕设置在金属凹槽内,以及该M个馈电臂中的每个馈电臂均与目标辐射体耦合,M为大于1的整数。通过该方案,由于馈电臂可以与目标辐射体耦合,因此在馈电臂接收到交流信号的情况下,馈电臂可以通过与目标辐射体耦合,使得目标辐射体产生感应电流,从而馈电臂和目标辐射体均可以辐射一定频率的电磁波;并且,由于馈电臂与目标辐射体耦合产生的感应电流的电流路径可以有多个(例如从馈电臂到目标辐射体再到馈电臂的电流路径,目标辐射体上形成的电流路径等电流路径),因此馈电臂上的电流经由目标辐射体产生的电磁波的频率也可以有多个,如此可以使得天线单元获得更宽的带宽,从而可以增加天线单元覆盖的频段。以及由于M个馈电臂按照第一顺序环绕设置在金属凹槽内,因此可以使得该M个馈电臂中的各个馈电臂之间的距离较大,如此可以减小该M个馈电臂之间的干扰,从而可以提高天线端口的隔离度,进而可以进一步提高天线单元的性能。
附图说明
图1为本发明实施例提供的一种传统毫米波封装天线的结构示意图;
图2为本发明实施例提供的天线单元的爆炸图之一;
图3为本发明实施例提供的天线单元的反射系数图;
图4为本发明实施例提供的馈电臂的结构示意图;
图5为本发明实施例提供的天线单元的俯视图;
图6为本发明实施例提供的天线单元的隔离度示意图;
图7为本发明实施例提供的天线单元的剖视图;
图8为本发明实施例提供的天线单元的爆炸图之二;
图9为本发明实施例提供的电子设备的硬件结构示意图之一;
图10为本发明实施例提供的电子设备的硬件结构示意图之二;
图11为本发明实施例提供的天线单元的辐射方向图之一;
图12为本发明实施例提供的天线单元的辐射方向图之二;
图13为本发明实施例提供的电子设备的仰视图。
附图标记说明:10—毫米波天线模组;11—工作波长为毫米波的阵列天线;12—RFIC;13—PMIC;14—连接器;20—天线单元;201—金属凹槽;202—馈电部;202a—馈电部的第一端;203—馈电臂;203a—馈电臂的第一端;204—第一绝缘体;205—目标辐射体;206—第二绝缘体;207—通孔;208—第三绝缘体;S1—第一内侧壁;S2—第二内侧壁;L1—第一对角线;L2—第二对角线;30—5G毫米波信号;4—电子设备;40—壳体;41—第一金属边框;42—第二金属边框;43—第三金属边框;44—第四金属边框;45—地板;46—第一天线;47—第一凹槽。
需要说明的是,本发明实施例中,附图所示的坐标系中的坐标轴相互正交。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本文中术语“和/或”,是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。本文中符号“/”表示关联对象是或者的关系,例如A/B表示A或者B。
本申请的说明书和权利要求书中的术语“第一”和“第二”等是用于区别不同的对象,而不是用于描述对象的特定顺序。例如,第一绝缘体和第二绝缘体等是用于区别不同的绝缘体,而不是用于描述绝缘体的特定顺序。
在本发明实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本发明实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
在本发明实施例的描述中,除非另有说明,“多个”的含义是指两个或者两个以上,例如,多个天线单元是指两个或者两个以上的天线单元等。
下面对本发明实施例中涉及的一些术语/名词进行解释说明。
耦合:是指两个或两个以上的电路元件或电网络的输入与输出之间存在紧密配合与相互影响,并可以通过相互作用从一侧向另一侧传输能量。
本发明实施例中的“耦合”可以用于指示发生耦合的部件(例如实施例中的M个馈电臂和目标辐射体)在天线单元工作的情况下,这些部件进行耦合;在天线单元未工作的情况下,这些部件相互绝缘。
交流信号:是指电流的方向会发生变化的信号。
多输入多输出(multiple-input multiple-output,MIMO)技术:是指一种在传输端(即发送端和接收端)使用多个天线发送信号或接收信号,以改善通信质量的技术。在该技术中,信号可以通过传输端的多个天线发送或者接收。
相对介电常数:用于表征介质材料的介电性质或极化性质的物理参数。
地板:是指电子设备中可以作为虚拟地的部分。例如电子设备中的印制电路板(printed circuit board,PCB)、金属中框或电子设备的显示屏等。
本发明实施例提供一种天线单元及电子设备,该天线单元可以包括:金属凹槽,设置在金属凹槽底部的M个馈电部,设置在金属凹槽内的M个馈电臂和第一绝缘体,以及第一绝缘体承载的目标辐射体;其中,该M个馈电部中的每个馈电部分别与一个馈电臂的第一端电连接、且与金属凹槽绝缘,该M个馈电臂位于金属凹槽底部和第一绝缘体之间,且该M个馈电臂按照第一顺序环绕设置在金属凹槽内,以及该M个馈电臂中的每个馈电臂均与目标辐射体耦合,M为大于1的整数。通过该方案,由于馈电臂可以与目标辐射体耦合,因此在馈电臂接收到交流信号的情况下,馈电臂可以通过与目标辐射体耦合,使得目标辐射体产生感应电流,从而馈电臂和目标辐射体均可以辐射一定频率的电磁波;并且,由于馈电臂与目标辐射体耦合产生的感应电流的电流路径可以有多个(例如从馈电臂到目标辐射体再到馈电臂的电流路径,目标辐射体上形成的电流路径等电流路径),因此馈电臂上的电流经由目标辐射体产生的电磁波的频率也可以有多个,如此可以使得天线单元获得更宽的带宽,从而可以增加天线单元覆盖的频段。以及由于M个馈电臂按照第一顺序环绕设置在金属凹槽内,因此可以使得该M个馈电臂中的各个馈电臂之间的距离较大,如此可以减小该M个馈电臂之间的干扰,从而可以提高天线端口的隔离度,进而可以进一步提 高天线单元的性能。
本发明实施例提供的天线单元可以应用于电子设备,也可以应用于需要使用该天线单元的其它设备,具体可以根据实际使用需求确定,本发明实施例不作限定。下面以天线单元应用于电子设备为例,对本发明实施例提供的天线单元进行示例性的说明。
下面结合各个附图对本发明实施例提供的天线单元进行示例性的说明。
如图2所示,天线单元20可以包括金属凹槽201,设置在金属凹槽201底部的M个馈电部202,以及设置在金属凹槽201内的M个馈电臂203和第一绝缘体204,以及第一绝缘体204承载的目标辐射体205。
其中,上述M个馈电部中的每个馈电部202可以分别与一个馈电臂的第一端203a电连接、且可以与金属凹槽201绝缘,M个馈电臂203可以位于金属凹槽201底部和第一绝缘体204之间,且M个馈电臂203可以按照第一顺序环绕设置在金属凹槽201内,以及M个馈电臂中的每个馈电臂203均可以与目标辐射体205耦合,M为大于1的整数。
可以理解,本发明实施例中,馈电臂的第一端可以为本发明实施例提供的天线单元中的馈电点。
需要说明的是,本发明实施例中,为了更加清楚地示意天线单元的结构,图2是以天线单元的爆炸图示意的,即是以天线单元的组成部分均处于分离状态示意的。实际实现时,上述M个馈电部、M个馈电臂、第一绝缘体和目标辐射体均是设置在金属凹槽内的,即金属凹槽、M个馈电部、M个馈电臂、第一绝缘体和目标辐射体组成一个整体,以形成一个本发明实施例提供的天线单元。
另外,图2中的馈电部202与馈电臂的第一端203a未以电连接状态示出,实际实现时,馈电部202可以与馈电臂的第一端203a电连接。
可选的,本发明实施例中,上述第一顺序可以为顺时针的顺序,也可以为逆时针的顺序。具体可以根据实际使用需求确定,本发明实施例不作限定。
本发明实施例中,以上述M个馈电臂按照顺时针的顺序环绕设置在金属凹槽内为例,假设上述M个馈电臂为四个馈电臂(该四个馈电臂的结构可以相同),该四个馈电臂可以按照从第一个馈电臂的第一端到第一个馈电臂的第二端、再从第二个馈电臂的第一端到第二个馈电臂的第二端、接着从第三个馈电臂的第一端到第三个馈电臂的第二端,最后从第四个馈电臂的第一端到第四个馈电臂的第二端的次序,按照顺时针的顺序依次设置在金属凹槽内。
需要说明的是,本发明实施例中,当上述M个馈电臂按照上述第一顺序环绕设置在金属凹槽内时,该M个馈电臂中的每个馈电臂的第一端之间的距离均比较大,如此可以减小各个馈电臂之间的相互干扰。
为了更加清楚地描述本发明实施例提供的天线单元及其工作原理,下面具体以一个天线单元为例,对本发明实施例提供的天线单元发送信号和接收信号的工作原理进行示例性的说明。
当电子设备发送5G毫米波信号时,电子设备中的信号源会发出交流信号,交流信号可以通过馈电部传输到馈电臂。然后,在馈电臂接收到该交流信号之后,馈电臂可以与目标辐射体耦合,使得目标辐射体产生感应电流,然后,目标辐射体可以向外辐射多个频率的电磁波(由于馈电臂与目标辐射体耦合产生的感应电流的电流路径有可以有多个,例如 从馈电臂到目标辐射体再到馈电臂的电流路径、目标辐射体上形成的电流路径等电流路径等,因此馈电臂上的电流经由目标辐射体辐射的电磁波的频率也可以有多个)。如此,电子设备可以通过本发明实施例提供的天线单元发送不同频率的信号,即可以使得天线单元产生更宽的带宽。
又示例性的,本发明实施例中,当电子设备接收5G毫米波信号时,电子设备所处的空间中的电磁波可以激励目标辐射体,如此可以使得目标辐射体产生感应电流。在目标辐射体产生感应电流之后,目标辐射体可以与馈电臂耦合,使得馈电臂产生感应电流(即感应的交流信号)。然后,馈电臂可以通过馈电部向电子设备中的接收机输入该交流信号,如此可以使得电子设备接收到其它设备发送的5G毫米波信号。即电子设备可以通过本发明实施例提供的天线单元接收信号。
下面再结合图3,对本发明实施例提供的天线单元的性能进行示例性的说明。
示例性的,如图3所示,为本发明实施例提供的天线单元工作时,天线单元的反射系数图。当回波损耗小于-6dB(分贝)时,天线单元覆盖的频率范围可以为25.4GHz-41.2GHz,该频率范围可以包括多个毫米波频段(例如n257、n260和n261);当回波损耗小于-10dB时,天线单元覆盖的频率范围可以为26GHz-29.5GHz和37.2GHz-40.1GHz,该频率范围也可以包括多个主要的毫米波频段(例如n257、n260和n261)。如此,本发明实施例提供的天线单元可以覆盖大多数5G毫米波频段,从而可以提高电子设备的天线性能。
需要说明的是,当一个天线单元的回波损耗小于-6dB时,该天线单元可以满足实际使用需求;当一个天线单元的回波损耗小于-10dB时,该天线单元的性能更加优良。即本发明实施例提供的天线单元可以在满足实际使用需求的基础上,保证更加优良的性能。
本发明实施例提供一种天线单元,由于馈电臂可以与目标辐射体耦合,因此在馈电臂接收到交流信号的情况下,馈电臂可以通过与目标辐射体耦合,使得目标辐射体产生感应电流,从而馈电臂和目标辐射体均可以辐射一定频率的电磁波;并且,由于馈电臂与目标辐射体耦合产生的感应电流的电流路径可以有多个(例如从馈电臂到目标辐射体再到馈电臂的电流路径,目标辐射体上形成的电流路径等电流路径),因此馈电臂上的电流经由目标辐射体产生的电磁波的频率也可以有多个,如此可以使得天线单元获得更宽的带宽,从而可以增加天线单元覆盖的频段。以及由于M个馈电臂按照第一顺序环绕设置在金属凹槽内,因此可以使得该M个馈电臂中的各个馈电臂之间的距离较大,如此可以减小该M个馈电臂之间的干扰,从而可以提高天线端口的隔离度,进而可以进一步提高天线单元的性能。
可选的,本发明实施例中,上述金属凹槽可以为矩形凹槽或圆形凹槽。
当然,实际实现时,金属凹槽还可以为其它任意可能形状的金属凹槽,具体可以根据实际使用需求确定,本发明实施例不作限定。
需要说明的是,本发明实施例中,上述金属凹槽的形状可以用于表示金属凹槽的开口形状。即当金属凹槽为矩形凹槽时,金属凹槽的开口形状可以为矩形;当金属凹槽为圆形凹槽时,金属凹槽的开口形状可以为圆形。
本发明实施例中,由于不同形状的金属凹槽组成的天线单元的性能可能不同,因此可以根据天线单元的实际使用需求,选择合适形状的凹槽作为本发明实施例提供的天线单元中的金属凹槽,从而可以使得天线单元可以工作在5G毫米波频段内。
进一步的,由于规则形状的金属凹槽组成的天线单元的形状比较稳定,因此通过将金属凹槽设置为规则形状的凹槽(例如矩形凹槽或圆形凹槽等),可以使得本发明实施例提供的天线单元的性能比较稳定,从而可以提高天线单元的性能。
可选的,本发明实施例中,上述M个馈电部可以贯穿金属凹槽底部。
具体的,实际实现时,如图2所示,馈电部的第一端202a可以与馈电臂的第一端203a电连接,馈电部的第二端(未在图2中示出)可以与电子设备中的一个信号源(例如电子设备中的5G信号源)电连接。如此,电子设备中的信号源的电流可以通过该馈电部传输到馈电臂上,然后通过馈电臂耦合到目标辐射体上,如此可以使得目标辐射体产生感应电流,从而可以使得馈电臂和目标辐射体辐射一定频率的电磁波,如此,本发明实施例提供的天线单元可以将电子设备中的5G毫米波信号辐射出去。
可选的,本发明实施例中,上述M个馈电部中的每个馈电部可以和与其连接的馈电臂形成一个“L型”的馈电结构。
可选的,本发明实施例中,一个馈电臂(上述M个馈电臂中的任意一个)可以为对称结构的馈电臂。例如该馈电臂可以沿水平方向对称,也可以沿垂直方向对称等。具体可以根据实际使用需求确定,本发明实施例不作限定。
可选的,本发明实施例中,一个馈电臂(上述M个馈电臂中的任意一个)可以为以下任意一种馈电臂:矩形馈电臂、“T”形馈电臂、“Y”形馈电臂。
当然,实际实现时,本发明实施例中的馈电臂还可以为其它任意可能的馈电臂。具体可以根据实际使用需求确定,本发明实施例不作限定。
可选的,本发明实施例中,上述M个馈电臂可以为同一种馈电臂(例如该M个馈电臂均为“Y”形馈电臂),也可以不同的馈电臂(例如该M个馈电臂中的部分馈电臂为“T”形馈电臂,另一部分馈电臂为“Y”形馈电臂)。具体可以根据实际使用需求确定,本发明实施例不作限定。
示例性的,上述M个馈电臂可以均为如图2所示的“T”形馈电臂203,也可以均为如图4所示的“Y”形馈电臂203。
本发明实施例中,由于不同形式(例如形状、材质和结构等)的馈电臂与目标辐射体耦合时的耦合量可能不同,且不同形式的馈电臂的阻抗需求也可能不同,即不同形式的馈电臂对天线单元的工作性能的影响可能不同,因此可以根据天线单元的实际使用需求,选择合适的馈电臂,从而可以使得天线单元工作在合适的频率范围内。
可选的,本发明实施例中,上述M个馈电臂可以按照上述第一顺序,沿金属凹槽的内侧壁,以从馈电臂的第一端到馈电臂的第二端的次序设置在金属凹槽内。
也就是说,按照上述第一顺序,上述M个馈电臂中的一个馈电臂的第二端可以与该一个馈电臂相邻的下一个馈电臂的第一端相邻。
示例性的,如图5所示,为本发明实施例提供的天线单元在Z轴反向(例如图2所示的坐标系)上的俯视图。假设上述第一顺序为顺时针的顺序,上述M个馈电臂为四个馈电臂,分别为第一馈电臂2030、第二馈电臂2032、第三馈电臂2031和第四馈电臂2033。其中该四个馈电臂可以按照从第一馈电臂2030的第一端到第一馈电臂2030的第二端、再到第二馈电臂2032的第一端,然后从第二馈电臂2032的第一端到第二馈电臂2032的第二端、再到第三馈电臂2031的第一端,接着从第三馈电臂2031的第一端到第三馈电臂2031 的第二端、再到第四馈电臂2033的第一端,最后从第四馈电臂2033的第一端到第四馈电臂2033的第二端、再到第一馈电臂2030的第一端的次序,按照顺时针的顺序依次设置在金属凹槽内。由图5可见,第一馈电臂、第二馈电臂、第三馈电臂和第四馈电臂可以形成一个类环状。也就是说,第一馈电臂、第二馈电臂、第三馈电臂和第四馈电臂环绕设置在金属凹槽内。
本发明实施例中,由于在天线单元在工作时,在馈电臂上流过的电流具有方向性,因此将上述M个馈电臂按照上述第一顺序设置可以增加不同馈电臂的第一端之间的距离(即一个馈电臂的第一端与其它馈电臂的第一端之间的距离均比较大),如此可以减小不同馈电臂之间的干扰,从而可以提高天线单元的端口(即天线单元的馈电端口)的隔离度。并且由于沿金属凹槽的内侧壁设置馈电臂,可以使得这些馈电臂在金属凹槽内离散的分布,从而可以进一步减小这些馈电臂之间的相互干扰,进而可以进一步提高天线单元的端口的隔离度。
可选的,本发明实施例中,金属凹槽为矩形凹槽,上述M个馈电臂可以包括第一馈电臂、第二馈电臂、第三馈电臂和第四馈电臂,第一馈电臂、第二馈电臂、第三馈电臂和第四馈电臂沿金属凹槽的内侧壁顺序设置在金属凹槽内。
其中,第一馈电臂和第三馈电臂均可以与金属凹槽的第一内侧壁平行,第二馈电臂和第四馈电臂均可以与金属凹槽的第二内侧壁平行,该第一内侧壁可以与该第二内侧壁垂直。
需要说明的是,本发明实施例中,上述第一馈电臂、第二馈电臂、第三馈电臂和第四馈电臂还可以按照其它任意可能的方式环绕设置在金属凹槽内,例如第一馈电臂和第三馈电臂均可以与金属凹槽的第二内侧壁平行,第二馈电臂和第四馈电臂均可以与金属凹槽的第一内侧壁平行。具体可以根据实际使用需求确定,本发明实施例不作限定。
示例性的,如图5所示,第一馈电臂2030和第三馈电臂2031均可以与金属凹槽的内侧壁S1(即上述第一内侧壁)平行,第二馈电臂2032和第四馈电臂2033均可以与金属凹槽的内侧壁S2(即上述第二内侧壁)平行。且由图5可见,内侧壁S1与内侧壁S2垂直。
需要说明的是,由于图5为本发明实施例提供的天线单元在Z轴反向上的俯视图,因此金属凹槽的第一内侧壁和第二内侧壁均用如图5中横线示意。
可选的,本发明实施例中,上述第一馈电臂可以与第三馈电臂组成一个馈电臂组(以下称为第一馈电臂组),上述第二馈电臂可以与第四馈电臂组成一个馈电臂组(以下称为第二馈电臂组)。
本发明实施例中,由图5可见,按照第一馈电臂、第二馈电臂、第三馈电臂和第四馈电臂沿金属凹槽的内侧壁顺序设置在金属凹槽内的方式设置馈电臂,可以使得第一馈电臂2030与第三馈电臂2031之间的距离比较大,且第二馈电臂2032与第四馈电臂2033之间的距离比较大。
本发明实施例中,由于一个馈电臂组中的馈电臂之间的距离越大,该馈电臂组对其它馈电臂组的影响越小,因此可以通过将上述第一馈电臂、第二馈电臂、第三馈电臂和第四馈电臂沿金属凹槽的内侧壁顺序设置在金属凹槽内的方式,增大上述两个馈电臂组(第一馈电臂组和第二馈电臂组)中的馈电臂之间的距离,从而在天线单元工作过程中,可以减小这些馈电臂组之间的相互影响,进而可以提高本发明实施例提供的天线单元的端口隔离度。
可选的,本发明实施例中,上述第一馈电臂组和上述第二馈电臂组可以为两个不同极化的馈电臂组。具体的,第一馈电臂组可以为一个第一极化的馈电臂组,第二馈电臂组可以为一个第二极化的馈电臂组。
可选的,本发明实施例中,上述第一极化和第二极化可以为不同方向的极化。具体的,上述第一极化可以为+45°极化或水平极化;上述第二极化可以为-45°极化或垂直极化,等等。
示例性的,如图5所示,第一馈电臂2030和第三馈电臂2031组成的第一馈电臂组可以为水平极化(即上述第一极化)的馈电臂组;第二馈电臂2032和第四馈电臂2033组成的第二馈电臂组可以为垂直极化(即上述第二极化)的馈电臂组。
当然,实际实现时,上述第一极化的极化方向和第二极化的极化方向还可以为其它任意可能的方向。具体可以根据实际使用需求确定,本发明实施例不作限定。
本发明实施例中,由于上述第一馈电臂组和第二馈电臂组可以为两个不同方向极化(第一极化和第二极化)的馈电臂组,因此可以使得本发明实施例提供的天线单元可以形成一个双极化的天线单元,如此可以提高天线单元的无线连接能力,从而可以减小天线单元通信断线的概率,从而可以提高天线单元的通信能力。
可选的,本发明实施例中,当第一馈电臂组中的一个馈电臂处于工作状态时,第一馈电臂组中的另一个馈电臂也可以处于工作状态。相应的,当第二馈电臂组中的一个馈电臂处于工作状态时,第二馈电臂组中的另一个馈电臂也可以处于工作状态。即同一馈电臂组中的馈电臂可以是同时工作的。
可选的,本发明实施例中,当第一馈电臂组中的馈电臂处于工作状态时,第二馈电臂组中的馈电臂可能处于工作状态,也可能不处于工作状态。具体可以根据实际使用需求确定,本发明实施例不作限定。
本发明实施例中,由于天线单元中可以包括两个馈电臂组,因此电子设备可以通过天线单元中的该两个馈电臂组发送信号和接收信号,即可以通过本发明实施例提供的天线单元实现MIMO技术,如此可以提高天线单元的通信容量和通信速率,即可以提高天线单元的数据传输速率。
可选的,本发明实施例中,上述M个馈电臂均可以位于同一平面上。
可以理解,本发明实施例中,在上述M个馈电臂均位于同一平面上的情况下,该M个馈电臂与上述目标辐射体之间的距离均相等。
本发明实施例中,由于上述M个馈电臂与目标辐射体之间的距离不同,上述M个馈电臂与目标辐射体耦合时的耦合参数可能不同,例如上述M个馈电臂与目标辐射体耦合产生的感应电流可能不同,因此可以根据天线单元的实际使用需求(例如天线单元覆盖的频率范围),灵活的设置上述M个馈电臂与目标辐射体之间的距离。
另外,由于在上述M个馈电臂与目标辐射体之间的距离均相等的情况下,可以便于控制该M个馈电臂与目标辐射体耦合的参数,例如耦合产生的感应电流等,因此可以通过将该M个馈电臂均设置在同一平面上的方式,使得不同馈电臂与目标辐射体之间的距离均相等,如此可以便于控制本发明实施例提供的天线单元的工作状态。
可选的,本发明实施例中,金属凹槽为矩形凹槽,上述M个馈电部可以为四个馈电部,该四个馈电部中的两个馈电部可以位于金属凹槽的一条对角线上,该四个馈电部中的另外 两个馈电部可以位于金属凹槽的另一条对角线上。
可选的,本发明实施例中,与上述第一馈电臂和第三馈电臂电连接的两个馈电部可以位于金属凹槽的一条对角线上,与上述第二馈电臂和第四馈电臂电连接的两个馈电部可以位于金属凹槽的另一条对角线上。
示例性的,如图5所示,与第一馈电臂2030(具体可以为第一馈电臂的第一端)电连接的馈电部2020和与第三馈电臂2031(具体可以为第三馈电臂的第一端)电连接的馈电部2021可以位于金属凹槽的第一对角线L1上;与第二馈电臂2032(具体可以为第二馈电臂的第一端)电连接的馈电部2022和与第四馈电臂2033(具体可以为第四馈电臂的第一端)电连接的馈电部2023可以位于金属凹槽的第二对角线L2上。如此可以进一步增大第一馈电臂与第三馈电臂之间的距离和第二馈电臂与第四馈电臂之间的距离,从而可以进一步提高天线单元的端口隔离度。
需要说明的是,本发明实施例中,当从Z轴反向俯视本发明实施例提供的天线单元时,馈电部是不可见的,因此图5中的馈电部用虚线示意。
下面再结合图6,对本发明实施例提供的天线单元的隔离度进行示例性的说明。
示例性的,如图6所示,为本发明实施例提供的天线单元工作时,天线单元的极化隔离度示意图。假设金属凹槽为矩形凹槽;且第一馈电臂与第三馈电臂组成的馈电臂组(即上述第一馈电臂组)为水平极化的馈电臂组,第二馈电臂和第四馈电臂组成的馈电臂组(即上述第二馈电臂组)为垂直极化的馈电臂组,以及与第一馈电臂和第三馈电臂电连接的馈电部分布在金属凹槽的一条对角线上,与第二馈电臂和第四馈电臂电连接的馈电部分布在金属凹槽的另一条对角线上。那么,如图6所示,在天线单元工作的全频段(即天线单元能够覆盖的所有频段)内,天线单元的端口隔离度均小于-20dB。然而,通常天线单元的端口隔离度为-10dB即可满足实际使用需求,且天线单元的隔离度越好(隔离度越小越好),天线单元的极化隔离度越好,从而可以进一步优化天线单元的极化性能。
可选的,本发明实施例中,与位于同一条对角线上的两个馈电部电连接的信号源的幅值相等,相位相差180度。
可选的,本发明实施例中,第一馈电臂组和第二馈电臂组可以为正交分布的两个馈电臂组,且与上述第一馈电臂组中的馈电臂(上述第一馈电臂和第三馈电臂)电连接的两个馈电部电连接的信号源的幅值相等,相位相差180度,与上述第二馈电臂组中的馈电臂(上述第二馈电臂和第四馈电臂)电连接的两个馈电部电连接的信号源的幅值相等,相位相差180度。
可选的,本发明实施例中,上述第一绝缘体的截面形状可以与金属凹槽的开口形状相同,例如矩形或圆形等任意可能的形状。
需要说明的是,本发明实施例中,上述第一绝缘体的形状还可以为任意能够满足实际使用需求的形状。具体可以根据实际使用需求确定,本发明实施例不作限定。
可选的,本发明实施例中,上述第一绝缘体的材料可以为塑胶或者泡沫等任意可能的材料。具体可以根据实际使用需求确定,本发明实施例不作限定。
可选的,本发明实施例中,上述第一绝缘体的材料可以为相对介电常数和损耗角正切值均比较小的绝缘材料。
示例性的,本发明实施例中,上述第一绝缘体的材料的相对介电常数可以为2.53,损 耗角正切值可以为0.003。
本发明实施例中,上述第一绝缘体不仅可以承载上述目标辐射体,还可以隔离目标辐射体和上述M个馈电臂,从而可以防止目标辐射体和M个馈电臂之间互相干扰。
需要说明的是,本发明实施例,在承载上述目标辐射体的前提下,第一绝缘体的材料的损耗角正切值越小,该第一绝缘体对天线单元的辐射效果的影响越小。也就是说,上述第一绝缘体的材料的损耗角正切值越小,第一绝缘体对天线单元的工作性能影响越小,天线单元的辐射效果越好。
可选的,本发明实施例中,结合图2,如图8所示,天线单元20还可以包括设置在金属凹槽201底部与第一绝缘体204之间的第二绝缘体206,该第二绝缘体206可以承载上述M个馈电臂203。
其中,对于上述M个馈电部中的每个馈电部,穿过第二绝缘体的馈电部分别可以与一个馈电臂电连接。
可选的,本发明实施例中,上述M个馈电臂中的馈电臂可以承载在上述第二绝缘体上,也可以承载在第二绝缘体内。具体可以根据实际使用需求确定,本发明实施例不作限定。
需要说明的是,本发明实施例中,当上述M个馈电臂中的馈电臂承载在第二绝缘体上时,馈电臂可以嵌入上述第一绝缘体内。
示例性的,如图7所示,为本发明实施例提供的天线单元的剖视图。在图7中,天线单元20还可以包括设置在金属凹槽201底部和第一绝缘体204之间的第二绝缘体206。其中,M个馈电臂203可以承载在第二绝缘体206内,且馈电部202的第一端可以穿过第二绝缘体206与馈电臂203电连接。
本发明实施例中,上述第二绝缘体不仅可以承载上述M个馈电臂,还可以隔离该M个馈电臂和金属凹槽,从而可以防止该M个馈电臂与金属凹槽之间产生干扰。
可选的,本发明实施例中,上述第二绝缘体的截面形状可以与金属凹槽的开口形状相同。例如矩形或圆形等任意可能的形状。
需要说明的是,本发明实施例中,上述第二绝缘体的形状还可以为任意可以满足实际使用需求的形状。具体可以根据实际使用需求确定,本发明实施例不作限定。
可选的,本发明实施例中,上述第二绝缘体的材料可以与上述第一绝缘体的材料为相同的材料,也可以与上述第一绝缘体的材料为不同的材料。具体可以根据实际使用需求确定,本发明实施例不作限定。
可选的,本发明实施例中,上述第一绝缘体的材料可以为塑胶或者泡沫等任意可能的材料。具体可以根据实际使用需求确定,本发明实施例不作限定。
可选的,本发明实施例中,上述第一绝缘体的材料可以为相对介电常数和损耗角正切值均比较小的绝缘材料。
示例性的,本发明实施例中,上述第一绝缘体的材料的相对介电常数可以为2.5,损耗角正切值可以为0.0001。
需要说明的是,本发明实施例,在承载上述M个馈电臂的前提下,第二绝缘体的材料的损耗角正切值越小,第二绝缘体对天线单元的辐射效果的影响越小。也就是说,第二绝缘体的材料的损耗角正切值越小,第二绝缘体对天线单元的工作性能影响越小,天线单元的辐射效果越好。
可选的,本发明实施例中,上述目标辐射体可以为多边形辐射体或圆形辐射体。
可选的,本发明实施例中,上述目标辐射体可以为矩形辐射体、六边形辐射体或正方形辐射体等任意可能的多边形辐射体。具体可以根据实际使用需求确定,本发明实施例不作限定。
当然,实际实现时,上述目标辐射体的形状还可以为其它任意可能的形状,具体可以根据实际使用需求确定,本发明实施例不作限定。
本发明实施例中,由于上述目标辐射体与上述M个馈电臂耦合产生的电磁波的频率与目标辐射体的参数(例如目标辐射体的形状和面积等)有关,具体的,目标辐射体的面积越小,目标辐射体与上述M个馈电臂耦合产生的电磁波的频率越高,因此可以根据实际使用需求,选择参数合适的目标辐射体(例如形状合适的目标辐射体和/或面积合适的目标辐射体等)。如此,可以使得本发明实施例提供的天线单元工作在5G毫米波频段内。
可选的,本发明实施例中,如图7所示,目标辐射体205的表面可以与金属凹槽201的开口所在表面齐平。
当然,实际实现时,上述目标辐射体还可以位于金属凹槽内的任意可能的位置,具体可以根据实际使用需求确定,本发明实施例不作限定。
本发明实施例中,由于目标辐射体所在的位置不同,天线单元的性能也可能不同,因此可以根据实际使用需求,灵活的设置上述目标辐射体的位置,从而可以使得天线单元的设计更加灵活。
可选的,本发明实施例中,如图7所示,金属凹槽201底部还可以设置有贯穿金属凹槽201底部的M个通孔207,上述M个馈电部中的每个馈电部202可以分别设置在一个通孔207中。
可选的,本发明实施例中,上述M个通孔可以为直径相同的通孔。
可选的,本发明实施例中,上述M个通孔可以分布在金属凹槽的对角线上。
具体的,该M个通孔的在金属凹槽中的分布方式,具体可以根据上述M个馈电部在金属凹槽中的分布位置确定。
本发明实施例中,由于在金属凹槽中设置通孔比较简单,容易实现,因此可以通过在金属凹槽底部设置贯穿金属凹槽底部的通孔,并将上述M个馈电部分别设置在这些通孔中的方式,简化馈电部贯穿金属凹槽的工艺。
可选的,本发明实施例中,上述M个通孔中的每个通孔内可以设置有第三绝缘体,该第三绝缘体可以包裹设置在通孔中的馈电部。
本发明实施例中,第三绝缘体、馈电部以及金属凹槽底部设置的通孔共同构成了特征阻抗为50欧的同轴传输结构。
本发明实施例中,上述第三绝缘体包裹设置在通孔中的馈电部,可以使得馈电部固定在通孔中。
示例性的,如图7所示,金属凹槽201底部设置有多个通孔207,每个通孔207中设置有第三绝缘体208,馈电部202可以穿过通孔207中设置的第三绝缘体208和第二绝缘体206,与馈电臂203电连接。
需要说明的是,图7中与馈电部202的一端(例如馈电部的第二端)电连接的信号源30可以为电子设备中的毫米波信号源。
本发明实施例中,上述第三绝缘体的材料可以为相对介电常数比较小的绝缘材料。
示例性的,上述第三绝缘体的材料可以为泡沫材料或者塑胶材料等任意可能的材料。
可选的,本发明实施例中,上述第三绝缘体可以与上述第一绝缘体的材料为同一种绝缘材料,也可以为不同的绝缘材料。具体可以根据实际使用需求确定,本发明实施例不作限定。
本发明实施例中,一方面,由于通孔的直径可能大于馈电部的直径,因此当馈电部设置在通孔中时,馈电部可能无法固定在该通孔中,因此通过在通孔中设置上述第三绝缘体,且该第三绝缘体包裹馈电部设置的方式,可以使得馈电部固定在通孔中。另一方面,由于金属凹槽和馈电部均为金属材质,在天线单元工作的过程中,这两者之间可能会产生接触而造成短路,因此可以通过在通孔中设置第三绝缘体,隔离馈电部和金属凹槽,使得馈电部与金属凹槽绝缘,从而可以使得电子设备的天线性能更加稳定。
需要说明的是,本发明实施例中,上述各个附图所示的天线单元均是以结合本发明实施例中的一个附图为例示例性的说明的。具体实现时,上述各个附图所示的天线单元还可以结合上述实施例中示意的其它可以结合的任意附图实现,此处不再赘述。
本发明实施例提供一种电子设备,该电子设备可以包括上述如图2至图8中任一实施例提供的天线单元。对于天线单元的描述具体可以参见上述实施例中对天线单元的相关描述,此处不再赘述。
本发明实施例中的电子设备可以为移动电子设备,也可以为非移动电子设备。示例性的,移动电子设备可以为手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本或者个人数字助理(personal digital assistant,PDA)等,非移动电子设备可以为个人计算机(personal computer,PC)、电视机(television,TV)、服务器或柜员机等,本发明实施例不作具体限定。
可选的,本发明实施例中,电子设备的壳体中可以设置有至少一个第一凹槽,该至少一个第一凹槽中的每个第一凹槽可以设置至少一个本发明实施例提供的天线单元。
本发明实施例中,可以通过在电子设备的壳体中设置上述至少一个第一凹槽,并在每个第一凹槽内设置至少一个本发明实施例提供的天线单元,实现在电子设备中集成至少一个本发明实施例提供的天线单元,从而可以使得电子设备中包括本发明实施例提供的天线单元组成的天线阵列。
可选的,本发明实施例中,上述第一凹槽可以设置在电子设备的壳体的边框中。
本发明实施例中,如图9所示,电子设备4可以包括壳体40。壳体40可以包括第一金属边框41,与第一金属边框41连接的第二金属边框42,与第二金属边框42连接的第三金属边框43,与第三金属边框43和第一金属边框41均连接的第四金属边框44。电子设备4还可以包括与第二金属边框42和第四金属边框44均连接的地板45,以及设置在第三金属边框43、部分第二金属边框42和部分第四金属边框44所围成的区域的第一天线46(具体的,这些金属边框也可以为第一天线中的一部分)。其中,第二金属边框42上设置有第一凹槽47。如此,本发明实施例提供的天线单元可以设置该第一凹槽内,从而可以使得电子设备中包括本发明实施例提供的天线单元形成的阵列天线模组,进而可以实现在电子设备中集成本发明实施例提供的天线单元的设计。
本发明实施例中,上述地板可以为电子设备中的PCB或金属中框,或者为电子设备的显示屏等任意可以作为虚拟地的部分。
需要说明的是,本发明实施例中,上述第一天线可以为电子设备的第二代移动通信系统(即2G系统)、第三代移动通信系统(即3G系统),以及第四代移动通信系统(即4G系统)等系统的通信天线。本发明实施例中的集成在电子设备中的天线单元(金属凹槽、M个馈电部、M个馈电臂、第一绝缘体和目标辐射体等部件形成的天线单元)可以为电子设备的5G系统的天线。
可选的,本发明实施例中,上述第一金属边框、第二金属边框、第三金属边框和第四金属边框可以依次首尾连接形成封闭式边框;或者,上述第一金属边框、第二金属边框、第三金属边框和第四金属边框中的部分边框可以连接形成半封闭式边框;或者,上述第一金属边框、第二金属边框、第三金属边框和第四金属边框可以互不连接形成开放式边框。具体可以根据实际使用需求确定,本发明实施例不作限定。
需要说明的是,上述图9所示的壳体40包括的边框是以第一金属边框41、第二金属边框42、第三金属边框43和第四金属边框44依次首尾连接形成的封闭式边框为例进行示例性的说明的,其并不对本发明实施例造成任何限定。对于上述第一金属边框、第二金属边框、第三金属边框和第四金属边框之间以其它连接方式(部分边框连接或各个边框互不连接)形成的边框,其实现方式与本发明实施例提供的实现方式类似,为避免重复,此处不再赘述。
可选的,本发明实施例中,上述至少一个第一凹槽可以设置在壳体的同一边框中,也可以设置在不同的边框中。具体可以根据实际使用需求确定,本发明实施例不作限定。
可选的,本发明实施例中,电子设备的壳体上可以设置有多个第一凹槽,从而可以在电子设备中设置多个本发明实施例提供的天线单元,从而可以使得电子设备中包括多个天线单元,以提升电子设备的天线性能。
本发明实施例中,当电子设备中设置有多个天线单元时,根据天线单元的结构,可以缩小相邻两个第一凹槽之间的距离,即缩小相邻两个天线单元间隔的距离,如此可以在电子设备包括较少数量的天线单元情况下,增大天线单元中的M个馈电臂和目标辐射体产生的电磁波的波束的扫描角度,从而可以增大电子设备的毫米波天线通信的覆盖范围。
可选的,本发明实施例中,天线单元中的金属凹槽可以为电子设备的壳体的一部分。可以理解,金属凹槽可以为电子设备的壳体上设置的凹槽。
可选的,本发明实施例中,电子设备的壳体可以为电子设备中的非毫米波天线的辐射体。
本发明实施例中,电子设备的壳体还可以作为电子设备中非毫米波天线(的辐射体,如此可以使得电子设备中的天线(毫米波天线和非毫米波天线)整合为一体,从而可以大幅缩小电子设备中的天线所占用的空间。
可选的,本发明实施例中,天线单元中的金属凹槽可以设置在电子设备的壳体的金属边框上。
示例性的,如图10所示,本发明实施例提供的电子设备4的壳体40中可以设置有至少一个金属凹槽201,天线单元中的M个馈电臂、M个馈电部、第一绝缘体,以及目标辐射体等部件可以设置在金属凹槽201内(实际中,在图10示意的电子设备的角度,金属 凹槽是不可见的)。
可选的,本发明实施例中,一个金属凹槽可以设置在壳体的第一金属边框、第二金属边框、第三金属边框,以及第四金属边框中的任意一个金属边框中。具体可以根据实际使用需求确定,本发明实施例不作限定。
可以理解,在金属凹槽设置在壳体的边框(例如上述第一金属边框等)的情况下,金属凹槽的侧壁、金属凹槽底部等部分均可以为电子设备的一部分,具体可以为本发明实施例提供的壳体的边框的一部分。
需要说明的是,本发明实施例中,上述图10均是以上述金属凹槽201设置在壳体40的第一金属边框41上,且金属凹槽的开口方向为如图10所示的坐标系的Z轴正向为例进行示例性说明的。
可以理解,本发明实施例中,如图10所示,当金属凹槽设置在壳体的第二金属边框中时,金属凹槽的开口方向可以为X轴正向;当金属凹槽设置在壳体的第三金属边框上时,金属凹槽的开口方向可以为Z轴反向;当金属凹槽设置在壳体的第四金属边框上时,金属凹槽的开口方向可以为X轴反向。
可选的,本发明实施例中,电子设备的壳体中可以设置多个金属凹槽,并在每个金属凹槽内设置本发明实施例中的M个馈电臂、M个馈电部、第一绝缘体和目标辐射体等部件,以使得电子设备中可以集成多个本发明实施例提供的天线单元,如此这些天线单元可以形成天线阵列,从而可以提高电子设备的天线性能。
本发明实施例中,如图11所示,为本发明实施例提供的天线单元辐射频率为28GHz的信号时,天线单元辐射的方向图;如图12所示,为本发明实施例提供的天线单元辐射频率为39GHz的信号时,天线单元辐射的方向图。由图11和图12可见,天线单元在28GHz时的最大辐射方向,与天线单元在39GHz时的最大辐射方向相同,因此本发明实施例提供的天线单元适合组成宽带的天线阵列。如此,电子设备可以设置至少两个金属凹槽,并在每个金属凹槽中均设置上述M个馈电臂、M个馈电部、第一绝缘体和目标辐射体等部件,以使得电子设备中包括多个本发明实施例提供的天线单元,从而可以使得电子设备中包括该天线单元组成的天线阵列,进而可以提高电子设备的天线性能。
可选的,本发明实施例中,在电子设备中集成多个本发明实施例提供的天线单元的情况下,相邻两个天线单元之间间隔的距离(即相邻两个金属凹槽之间间隔的距离)可以根据天线单元的隔离度和该多个天线单元形成的天线阵列的扫描角度确定。具体可以根据实际使用需求确定,本发明实施例不作限定。
可选的,本发明实施例中,电子设备的壳体中设置的金属凹槽的数量可以根据金属凹槽的尺寸和电子设备的壳体的尺寸确定,本发明实施例对此不作限定。
示例性的,如图13所示,为本发明实施例提供的壳体上设置的多个天线单元在Z轴正向(如图10所示的坐标系)上的仰视图。假设金属凹槽为矩形凹槽,且目标辐射体为矩形辐射体,如图13所示,第三金属边框43上设置有本发明实施例提供的多个天线单元(每个天线单元由壳体上的金属凹槽和位于金属凹槽内的M个馈电臂等部件形成)。其中,M个馈电臂203和第一绝缘体204设置在金属凹槽(未在图13中示出)内,且目标辐射体205承载在第一绝缘体204上,以及图13中的馈电臂为“T”形馈电臂。
需要说明的是,本发明实施例中,上述图13是以第三金属边框上设置的4个天线单 元为例进行示例性说明的,其并不对本发明实施例形成任何限定。可以理解,具体实现时,第三金属边框上设置的天线单元的数量可以根据实际使用需求确定,本发明实施例不做任何限定。
本发明实施例提供一种电子设备,该电子设备可以包括天线单元。该天线单元可以包括:金属凹槽,设置在金属凹槽底部的M个馈电部,设置在金属凹槽内的M个馈电臂和第一绝缘体,以及第一绝缘体承载的目标辐射体;其中,该M个馈电部中的每个馈电部分别与一个馈电臂的第一端电连接、且与金属凹槽绝缘,该M个馈电臂位于金属凹槽底部和第一绝缘体之间,且该M个馈电臂按照第一顺序环绕设置在金属凹槽内,以及该M个馈电臂中的每个馈电臂均与目标辐射体耦合,M为大于1的整数。通过该方案,由于馈电臂可以与目标辐射体耦合,因此在馈电臂接收到交流信号的情况下,馈电臂可以通过与目标辐射体耦合,使得目标辐射体产生感应电流,从而馈电臂和目标辐射体均可以辐射一定频率的电磁波;并且,由于馈电臂与目标辐射体耦合产生的感应电流的电流路径可以有多个(例如从馈电臂到目标辐射体再到馈电臂的电流路径,目标辐射体上形成的电流路径等电流路径),因此馈电臂上的电流经由目标辐射体产生的电磁波的频率也可以有多个,如此可以使得天线单元获得更宽的带宽,从而可以增加天线单元覆盖的频段。以及由于M个馈电臂按照第一顺序环绕设置在金属凹槽内,因此可以使得该M个馈电臂中的各个馈电臂之间的距离较大,如此可以减小该M个馈电臂之间的干扰,从而可以提高天线端口的隔离度,进而可以进一步提高天线单元的性能。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (13)

  1. 一种天线单元,其特征在于,所述天线单元包括:金属凹槽,设置在所述金属凹槽底部的M个馈电部,设置在所述金属凹槽内的M个馈电臂和第一绝缘体,以及所述第一绝缘体承载的目标辐射体;
    其中,所述M个馈电部中的每个馈电部分别与一个馈电臂的第一端电连接、且与所述金属凹槽绝缘,所述M个馈电臂位于所述金属凹槽底部和所述第一绝缘体之间,且所述M个馈电臂按照第一顺序环绕设置在所述金属凹槽内,以及所述M个馈电臂中的每个馈电臂均与所述目标辐射体耦合,M为大于1的整数。
  2. 根据权利要求1所述的天线单元,其特征在于,所述M个馈电臂按照第一顺序,沿所述金属凹槽的内侧壁,以从馈电臂的第一端到馈电臂的第二端的次序设置在所述金属凹槽内。
  3. 根据权利要求1所述的天线单元,其特征在于,所述金属凹槽为矩形凹槽,所述M个馈电臂包括第一馈电臂、第二馈电臂、第三馈电臂和第四馈电臂,所述第一馈电臂、所述第二馈电臂、所述第三馈电臂和所述第四馈电臂沿所述金属凹槽的内侧壁顺序设置在所述金属凹槽内;
    其中,所述第一馈电臂和第三馈电臂均与所述金属凹槽的第一内侧壁平行,所述第二馈电臂和第四馈电臂均与所述金属凹槽的第二内侧壁平行,所述第一内侧壁与所述第二内侧壁垂直。
  4. 根据权利要求3所述的天线单元,其特征在于,所述M个馈电臂位于同一平面上。
  5. 根据权利要求1至4中任一项所述的天线单元,其特征在于,所述M个馈电部贯穿所述金属凹槽底部。
  6. 根据权利要求1至4中任一项所述的天线单元,其特征在于,所述金属凹槽为矩形凹槽,所述M个馈电部为四个馈电部,所述四个馈电部中的两个馈电部位于所述金属凹槽的一条对角线上,所述四个馈电部中的另外两个馈电部位于所述金属凹槽的另一条对角线上。
  7. 根据权利要求6所述的天线单元,其特征在于,与位于同一条对角线上的两个馈电部电连接的信号源的幅值相等,相位相差180度。
  8. 根据权利要求1至4中任一项所述的天线单元,其特征在于,所述天线单元还包括设置在所述金属凹槽底部与所述第一绝缘体之间的第二绝缘体,所述第二绝缘体承载所述M个馈电臂;
    其中,对于所述每个馈电部,穿过所述第二绝缘体的馈电部分别与一个馈电臂电连接。
  9. 根据权利要求8所述的天线单元,其特征在于,所述目标辐射体为多边形辐射体或圆形辐射体。
  10. 根据权利要求1至4中任一项所述的天线单元,其特征在于,所述目标辐射体的表面与所述金属凹槽的开口所在表面齐平。
  11. 一种电子设备,其特征在于,所述电子设备包括至少一个如权利要求1至10中任一项所述的天线单元。
  12. 根据权利要求11所述的电子设备,其特征在于,所述电子设备的壳体中设置有至少一个第一凹槽,所述至少一个第一凹槽中的每个第一凹槽内设置至少一个所述天线单元。
  13. 根据权利要求11所述的电子设备,其特征在于,所述天线单元中的金属凹槽为所述电子设备的壳体的一部分。
PCT/CN2020/124409 2019-10-31 2020-10-28 天线单元及电子设备 WO2021083214A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911049734.8A CN110828985A (zh) 2019-10-31 2019-10-31 一种天线单元及电子设备
CN201911049734.8 2019-10-31

Publications (1)

Publication Number Publication Date
WO2021083214A1 true WO2021083214A1 (zh) 2021-05-06

Family

ID=69551483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/124409 WO2021083214A1 (zh) 2019-10-31 2020-10-28 天线单元及电子设备

Country Status (2)

Country Link
CN (1) CN110828985A (zh)
WO (1) WO2021083214A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110828985A (zh) * 2019-10-31 2020-02-21 维沃移动通信有限公司 一种天线单元及电子设备
CN113540808B (zh) * 2020-04-22 2022-11-22 华为技术有限公司 一种电子设备及天线装置
CN111740219A (zh) * 2020-07-03 2020-10-02 维沃移动通信有限公司 电子设备
CN112216958B (zh) * 2020-09-30 2022-11-18 维沃移动通信有限公司 电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140327582A1 (en) * 2010-03-16 2014-11-06 Raytheon Company Multi polarization conformal channel monopole antenna
CN110137675A (zh) * 2019-05-22 2019-08-16 维沃移动通信有限公司 一种天线单元及终端设备
CN110190386A (zh) * 2019-03-25 2019-08-30 西安电子科技大学 一种宽带宽角轴比圆极化贴片天线
CN110828985A (zh) * 2019-10-31 2020-02-21 维沃移动通信有限公司 一种天线单元及电子设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204189960U (zh) * 2014-11-21 2015-03-04 中国电子科技集团公司第十四研究所 一种微带贴片天线

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140327582A1 (en) * 2010-03-16 2014-11-06 Raytheon Company Multi polarization conformal channel monopole antenna
CN110190386A (zh) * 2019-03-25 2019-08-30 西安电子科技大学 一种宽带宽角轴比圆极化贴片天线
CN110137675A (zh) * 2019-05-22 2019-08-16 维沃移动通信有限公司 一种天线单元及终端设备
CN110828985A (zh) * 2019-10-31 2020-02-21 维沃移动通信有限公司 一种天线单元及电子设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PARYANI RAJESH C, WAHID PARVEEN F, BEHDAD NADER: "A Wideband, Dual-Polarized, Differentially-Fed Cavity-Backed Slot Antenna", 1 January 2010 (2010-01-01), XP055808587, Retrieved from the Internet <URL:https://ursi.org/proceedings/procGA08/papers/BP7p1.pdf> *

Also Published As

Publication number Publication date
CN110828985A (zh) 2020-02-21

Similar Documents

Publication Publication Date Title
WO2020233477A1 (zh) 天线单元及终端设备
WO2020233478A1 (zh) 天线单元及终端设备
WO2021104191A1 (zh) 天线单元及电子设备
WO2021083214A1 (zh) 天线单元及电子设备
WO2020233476A1 (zh) 天线单元及终端设备
WO2021083223A1 (zh) 天线单元及电子设备
WO2018028162A1 (zh) 一种去耦组件、多天线系统及终端
CN112290193B (zh) 毫米波模组、电子设备及毫米波模组的调节方法
WO2021104200A1 (zh) 天线单元及电子设备
CN111864362A (zh) 天线模组及电子设备
WO2021083217A1 (zh) 天线单元及电子设备
WO2021083222A1 (zh) 天线单元及电子设备
WO2021083213A1 (zh) 天线单元及电子设备
WO2021083212A1 (zh) 天线单元及电子设备
CN110518340B (zh) 一种天线单元及终端设备
WO2021083220A1 (zh) 天线单元及电子设备
WO2021083218A1 (zh) 天线单元及电子设备
WO2023138324A1 (zh) 一种天线结构、电子设备及无线网络系统
WO2021083219A1 (zh) 天线单元及电子设备
WO2021147438A1 (zh) 具有高隔离度和低交叉极化电平的天线、基站和终端
CN110600858A (zh) 一种天线单元及终端设备
CN210576433U (zh) 一种天线单元及电子设备
CN110600866A (zh) 一种天线单元及终端设备
CN110600867A (zh) 一种天线单元及终端设备
WO2020133390A1 (zh) 一种天线系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20881817

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20881817

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 15.11.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20881817

Country of ref document: EP

Kind code of ref document: A1