WO2020233476A1 - 天线单元及终端设备 - Google Patents

天线单元及终端设备 Download PDF

Info

Publication number
WO2020233476A1
WO2020233476A1 PCT/CN2020/090100 CN2020090100W WO2020233476A1 WO 2020233476 A1 WO2020233476 A1 WO 2020233476A1 CN 2020090100 W CN2020090100 W CN 2020090100W WO 2020233476 A1 WO2020233476 A1 WO 2020233476A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna unit
radiator
present disclosure
insulator
frequency
Prior art date
Application number
PCT/CN2020/090100
Other languages
English (en)
French (fr)
Inventor
简宪静
黄奂衢
王义金
马荣杰
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to JP2021569383A priority Critical patent/JP7239743B2/ja
Priority to EP20809127.2A priority patent/EP3975335B1/en
Priority to KR1020217041893A priority patent/KR102614892B1/ko
Priority to ES20809127T priority patent/ES2968608T3/es
Publication of WO2020233476A1 publication Critical patent/WO2020233476A1/zh
Priority to US17/530,847 priority patent/US12142853B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/50Feeding or matching arrangements for broad-band or multi-band operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means
    • H01Q9/0457Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means electromagnetically coupled to the feed line

Definitions

  • the embodiments of the present disclosure relate to the field of communication technologies, and in particular, to an antenna unit and terminal equipment.
  • millimeter wave antennas are gradually being applied to various terminal devices to meet the increasing use demands of users.
  • millimeter wave antennas in terminal equipment are mainly implemented through antenna in package (AIP) technology.
  • AIP technology can be used to integrate the array antenna 11, radio frequency integrated circuit (RFIC) 12, and power management integrated circuit (PMIC) 13 with a working wavelength of millimeter wave.
  • RFIC radio frequency integrated circuit
  • PMIC power management integrated circuit
  • the connector 14 are packaged into a module 10, which may be called a millimeter wave antenna module.
  • the antenna in the above-mentioned array antenna may be a patch antenna, a Yagi-Uda antenna, or a dipole antenna.
  • the antennas in the above-mentioned array antennas are usually narrow-band antennas (such as the patch antennas listed above), the coverage frequency band of each antenna is limited, but there are usually more millimeter wave frequency bands planned in the 5G system, such as 28GHz The main n257 (26.5-29.5GHz) frequency band and the 39GHz main n260 (37.0-40.0GHz) frequency band, etc. Therefore, traditional millimeter wave antenna modules may not fully cover the mainstream millimeter wave frequency band planned in the 5G system. As a result, the antenna performance of the terminal device is poor.
  • the embodiments of the present disclosure provide an antenna unit and a terminal device to solve the problem that the millimeter wave antenna of the existing terminal device covers less frequency bands, which results in poor antenna performance of the terminal device.
  • an embodiment of the present invention provides an antenna unit.
  • the antenna unit includes an insulating groove, M power feeders arranged in the insulating groove, M coupling bodies, and a first insulator. At least two radiators carried by the first insulator are arranged at the bottom of the insulating groove.
  • an embodiment of the present invention provides a terminal device, and the terminal device includes the antenna unit in the foregoing first aspect.
  • the antenna unit may include an insulating groove, M power feeders arranged in the insulating groove, M coupling bodies, a first insulator, at least two radiators carried by the first insulator, and The first radiator at the bottom of the insulating groove and the isolator arranged around the M coupling bodies; wherein, the M power feeders are all insulated from the first radiator and the isolator, and the M coupling bodies are located in the first radiator.
  • Body and the first insulator, and each of the M power feeders is electrically connected to a coupling body, and each of the M coupling bodies is connected to the at least two radiators Coupled with the first radiator, different radiators have different resonant frequencies, and M is a positive integer.
  • the coupling body is coupled with the at least two radiators and the first radiator
  • the coupling body when the coupling body receives an AC signal, the coupling body can interact with the at least two radiators and the first radiator.
  • the body is coupled, so that the at least two radiators and the first radiator can generate induced AC signals, so that the at least two radiators and the first radiator can generate electromagnetic waves of a certain frequency; and, due to different radiators
  • the resonant frequencies of the at least two radiators and the first radiator are also different in frequency, so that the antenna unit can cover different frequency bands, that is, the frequency band covered by the antenna unit can be increased.
  • the isolator can isolate the at least two radiators and the electromagnetic waves radiated from the first radiator toward the isolator, so that the at least two radiators
  • the maximum radiation direction of the electromagnetic wave generated by the body and the first radiator faces the opening direction of the insulating groove, so that the radiation intensity of the antenna unit in its radiation direction can be improved on the premise of ensuring the directivity of the antenna unit.
  • the performance of the antenna unit can be improved.
  • FIG. 1 is a schematic structural diagram of a traditional millimeter wave antenna provided by an embodiment of the disclosure
  • FIG. 2 is one of the exploded views of the antenna unit provided by an embodiment of the disclosure
  • FIG. 3 is the second exploded view of the antenna unit provided by an embodiment of the disclosure.
  • FIG. 4 is a cross-sectional view of an antenna unit provided by an embodiment of the disclosure.
  • FIG. 5 is the third exploded view of the antenna unit provided by an embodiment of the disclosure.
  • FIG. 6 is a reflection coefficient diagram of an antenna unit provided by an embodiment of the disclosure.
  • FIG. 7 is the fourth exploded view of the antenna unit provided by an embodiment of the disclosure.
  • FIG. 8 is the fifth exploded view of the antenna unit provided by an embodiment of the disclosure.
  • FIG. 9 is a top view of an antenna unit provided by an embodiment of the disclosure.
  • FIG. 10 is a schematic diagram of the hardware structure of a terminal device provided by an embodiment of the disclosure.
  • FIG. 11 is one of the radiation patterns of the antenna unit provided by the embodiments of the disclosure.
  • FIG. 12 is the second radiation pattern of the antenna unit provided by an embodiment of the disclosure.
  • FIG. 13 is a left view of a terminal device provided by an embodiment of the disclosure.
  • first and second in the specification and claims of the present disclosure are used to distinguish different objects, rather than to describe a specific order of objects.
  • first metal pillar and the second metal pillar are used to distinguish different metal pillars, rather than to describe a specific order of the metal pillars.
  • words such as “exemplary” or “for example” are used as examples, illustrations, or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiments of the present disclosure should not be construed as being more preferable or advantageous than other embodiments or design solutions. To be precise, words such as “exemplary” or “for example” are used to present related concepts in a specific manner.
  • multiple means two or more than two, for example, multiple antennas refer to two or more than two antennas.
  • Coupling refers to the close coordination and mutual influence between the input and output of two or more circuit elements or electrical networks, and energy can be transmitted from one side to the other through the interaction.
  • AC signal A signal that changes the direction of current.
  • Low temperature co-fired ceramic refers to a kind of low temperature sintered ceramic powder into a precise and dense green ceramic tape, and the use of laser drilling, micro-hole injection on the green ceramic tape Processes such as printing paste and precise conductor paste to produce the required circuit patterns, and embed multiple components (such as capacitors, resistors, couplers, etc.) in a multilayer ceramic substrate, and then stack them together and sinter at 900°C ,
  • Beamforming refers to a technology that adjusts the weighting coefficient of each antenna element in the antenna array so that the antenna array generates a directional beam, so that the antenna array obtains a significant array gain.
  • Vertical polarization refers to the direction of the electric field intensity formed when the antenna radiates perpendicular to the ground plane.
  • Horizontal polarization refers to the direction of the electric field intensity formed when the antenna radiates parallel to the ground plane.
  • MIMO Multiple-input multiple-output
  • transmitting end ie, the transmitting end and the receiving end
  • signals can be sent or received through multiple antennas at the transmitting end.
  • Relative permittivity A physical parameter used to characterize the dielectric properties or polarization properties of dielectric materials.
  • Floor refers to the part of the terminal device that can be used as a virtual ground.
  • the embodiments of the present disclosure provide an antenna unit and a terminal device.
  • the antenna unit may include an insulating groove, M feeders arranged in the insulating groove, M coupling bodies, a first insulator, and at least Two radiators, a first radiator arranged at the bottom of the insulating groove, and an isolator arranged around the M coupling bodies; wherein, the M power feeders are all insulated from the first radiator and the isolator, and the M
  • the coupling body is located between the first radiator and the first insulator, and each of the M power feeders is electrically connected to a coupling body, and each of the M coupling bodies is electrically connected to
  • the at least two radiators are coupled with the first radiator, the resonance frequencies of different radiators are different, and M is a positive integer.
  • the coupling body is coupled with the at least two radiators and the first radiator
  • the coupling body when the coupling body receives an AC signal, the coupling body can interact with the at least two radiators and the first radiator.
  • the body is coupled, so that the at least two radiators and the first radiator can generate induced AC signals, so that the at least two radiators and the first radiator can generate electromagnetic waves of a certain frequency; and, due to different radiators
  • the resonant frequencies of the at least two radiators and the first radiator are also different in frequency, so that the antenna unit can cover different frequency bands, that is, the frequency band covered by the antenna unit can be increased.
  • the isolator can isolate the at least two radiators and the electromagnetic waves radiated from the first radiator toward the isolator, so that the at least two radiators
  • the maximum radiation direction of the electromagnetic wave generated by the body and the first radiator faces the opening direction of the insulating groove, so that the radiation intensity of the antenna unit in its radiation direction can be improved on the premise of ensuring the directivity of the antenna unit.
  • the performance of the antenna unit can be improved.
  • the antenna unit provided by the embodiment of the present disclosure may be applied to a terminal device, and may also be applied to other electronic devices that need to use the antenna unit, and may be specifically determined according to actual use requirements, which is not limited in the embodiment of the present disclosure.
  • the antenna unit provided in the embodiment of the present disclosure will be exemplarily described below by taking the antenna unit applied to the terminal device as an example.
  • the antenna unit 20 may include an insulating groove 201, M power feeders 202 arranged in the insulating groove 201, M coupling bodies 203, a first insulator 204, and at least two insulators carried by the first insulator
  • the M power feeders 202 described above may be insulated from the first radiator 206 and the isolator 207, the M coupling bodies 203 may be located between the first radiator 206 and the first insulator 204, and the M power feeders
  • Each of the feeding parts 202 in the part may be electrically connected to a coupling body 202, and each of the M coupling bodies may be coupled to the at least two radiators 205 and the first radiator 206, Different radiators have different resonant frequencies, and M is a positive integer.
  • FIG. 2 is an exploded view of the structure of the antenna unit, that is, it is shown that the components of the antenna unit are in a separated state.
  • the insulating groove, the power feeder, the coupling body, the first insulator, at least two radiators, the first radiator, and the isolator form a whole to form an antenna unit provided by an embodiment of the present disclosure.
  • the power feeder 202 and the coupling body 203 in FIG. 2 are not shown in an electrically connected state. In actual implementation, the power feeder 202 and the coupling body 203 may be electrically connected.
  • the antenna unit provided in the embodiment of the present disclosure may be manufactured through LTCC technology.
  • the above-mentioned insulating groove can be made by LTCC technology.
  • the antenna unit provided in the embodiment of the present disclosure may also be manufactured by any other possible technology, which may be specifically determined according to actual use requirements, and the embodiment of the present disclosure is not limited.
  • the relative dielectric constant of the material of the above-mentioned insulating groove may be less than or equal to 5.
  • the relative dielectric constant of the material of the insulating groove may be greater than or equal to 2 and less than or equal to 5.
  • the material of the aforementioned insulating groove may be any possible material such as ceramics and plastics. Specifically, it can be determined according to actual usage requirements, and the embodiment of the present disclosure does not limit it.
  • the above-mentioned insulating groove may be a rectangular groove.
  • the insulating groove may be a square groove.
  • the opening shape of the aforementioned insulating groove may be a square.
  • the opening shape of the insulating groove may also be any possible shape, which may be determined according to actual usage requirements, and the embodiment of the present disclosure does not limit it.
  • the above-mentioned first radiator may be a metal sheet arranged at the bottom of the insulation groove, or may be a metal material sprayed on the bottom of the insulation groove.
  • the above-mentioned first radiator may also be arranged in the insulating groove in any other possible form, which may be specifically determined according to actual usage requirements, which is not limited in the embodiment of the present disclosure.
  • the following specifically takes an antenna unit as an example to illustrate the working principle of the antenna unit sending and receiving signals.
  • the signal source in the terminal device when the terminal device sends a 5G millimeter wave signal, the signal source in the terminal device will send out an AC signal, which can be transmitted to the coupling body through the feeder. Then, after the coupling body receives the AC signal, on the one hand, the coupling body can couple with at least two radiators located above, so that the at least two radiators generate an induced AC signal, and then, the at least two radiators
  • the body can radiate electromagnetic waves of a certain frequency to the outside (for example, the direction of the opening of the insulating groove, etc.); on the other hand, the coupling body can also be coupled with the first radiator so that the first radiator generates an induced AC signal.
  • a radiator can radiate electromagnetic waves of a certain frequency (because the resonance of the first radiator is different from the at least two radiators, the frequency of the electromagnetic waves radiated by the first radiator is different from that of the at least two radiators. The frequency of electromagnetic waves is different).
  • the terminal device can transmit a signal through the antenna unit provided in the embodiment of the present disclosure.
  • the electromagnetic waves in the space where the terminal device is located can excite the at least two radiators and the first radiator, so that the at least two The radiator and the first radiator generate induced AC signals.
  • the at least two radiators and the first radiator may be coupled with the coupling body respectively, so that the coupling body generates the induced AC signals.
  • the coupling body can input the AC signal to the receiver in the terminal device through the power feeder, so that the terminal device can receive the 5G millimeter wave signal sent by other devices. That is, the terminal device can receive a signal through the antenna unit provided in the embodiment of the present disclosure.
  • the embodiments of the present disclosure provide an antenna unit.
  • the coupling body is coupled with at least two radiators and the first radiator, when the coupling body receives an AC signal, the coupling body can communicate with the at least two radiators.
  • the radiator and the first radiator are coupled, so that the at least two radiators and the first radiator can generate induced AC signals, so that the at least two radiators and the first radiator can generate electromagnetic waves of a certain frequency;
  • different radiators have different resonant frequencies, the frequencies of electromagnetic waves generated by the at least two radiators and the first radiator are also different, so that the antenna unit can cover different frequency bands, that is, the frequency band covered by the antenna unit can be increased.
  • the isolator can isolate the at least two radiators and the electromagnetic waves radiated from the first radiator toward the isolator, so that the at least two radiators
  • the maximum radiation direction of the electromagnetic wave generated by the body and the first radiator faces the opening direction of the insulating groove, so that the radiation intensity of the antenna unit in its radiation direction can be improved on the premise of ensuring the directivity of the antenna unit.
  • the performance of the antenna unit can be improved.
  • the power feeder 202 may be provided at the edge of the opening of the insulating groove 201 and penetrate the insulating groove 201.
  • the first end 2020 of the power feeder 202 can be electrically connected to the coupling body 203, and the second end 2021 of the power feeder 202 can be connected to the terminal device.
  • a signal source (such as a 5G signal source in a terminal device) is connected.
  • the current of the signal source in the terminal device can be transmitted to the coupling body through the power feeder, and then coupled to the at least two radiators and the first radiator through the coupling body, that is, the at least two radiators and An induced current is generated on the first radiator, so that the at least two radiators and the first radiator can generate electromagnetic waves to radiate 5G millimeter wave signals in the terminal device.
  • the grooves in the antenna unit are insulating grooves (the insulating material cannot isolate the electromagnetic waves emitted by the antenna unit), in order to ensure the directivity of the antenna unit, the above-mentioned M couplings
  • the insulator is arranged around the body so that the antenna unit has directivity.
  • the above-mentioned isolator may be any component with isolation function such as metal sheets or metal posts arranged around the above-mentioned M coupling bodies, which can be specifically determined according to actual use requirements, and the embodiment of the present disclosure does not limit it. .
  • the above-mentioned isolator may be arranged outside the insulating groove, for example, surrounding the insulating groove, M coupling bodies, and the first insulator; the isolator may also be embedded in the insulating groove and The first insulator is arranged around the M coupling bodies, so that these components form a whole, that is, the antenna unit provided by the embodiment of the present disclosure. Specifically, it can be determined according to actual usage requirements, and the embodiment of the present disclosure does not limit it.
  • the above-mentioned isolator may also be provided in any other possible form, which may be specifically determined according to actual use requirements, which is not limited in the embodiment of the present disclosure.
  • the above-mentioned isolator may include N first metal pillars, and N is a positive integer.
  • the N first metal pillars can not only be used to isolate the electromagnetic waves radiated by the at least two radiators in the direction of the first metal pillar, but also can be used to isolate the first radiator from the first metal pillar.
  • the length of the first metal pillar can be greater than or equal to the maximum distance between the at least two radiators and the outer surface of the bottom of the insulating groove (hereinafter referred to as the first length), so that the target radiator and the The maximum radiation direction of the electromagnetic wave generated by the first radiator faces the opening direction of the insulating groove, so that the radiation effect of the antenna unit can be improved under the premise of ensuring the directivity of the antenna unit.
  • N first metal pillars 2070 may be arranged on the opening edge of the insulating groove 201 and embedded in the insulating groove 201 and the first insulator 204.
  • the circular filling part on the first insulator 204 in FIG. 3 is used to indicate that the first metal pillar 2070 is embedded in the first insulator 204.
  • the first metal pillar may also be embedded in the insulating groove 201, and the part of the first metal pillar 2070 embedded in the insulating groove 201 is not shown in FIG. 3.
  • the N first metal pillars may be located outside the M power feeding portions, that is, the opening of each first metal pillar of the N first metal pillars to the insulating groove
  • the distance (hereinafter referred to as the first distance) is greater than the distance from each of the M power feeding portions to the opening of the insulating groove (hereinafter referred to as the second distance).
  • the aforementioned N first metal pillars may be uniformly arranged on the edge of the opening of the insulating groove. That is, the distance between any two adjacent metal pillars in the N first metal pillars is equal.
  • N first metal pillars 2070 may be provided on the opening edge of the insulating groove 201.
  • the opening edge of the insulating groove 201 may include 4 sides, and the N first metal pillars 2070 may be evenly distributed on these 4 sides.
  • the diameter of the above-mentioned first metal pillar may be determined according to the size of the insulating groove. Specifically, the diameter of the first metal pillar may be determined according to the width of the opening edge of the insulating groove.
  • the N first metal pillars isolate the at least two radiators and the first metal pillars.
  • the effect of the electromagnetic wave radiated by the radiator toward the direction of the N first metal pillars is better.
  • the denser the first metal pillars arranged in the antenna unit the better the radiation effect of the antenna unit.
  • the distance between two adjacent metal pillars among the N first metal pillars may be less than or equal to the first target value.
  • the first target value may be a quarter of the minimum wavelength of the electromagnetic waves generated by coupling the at least two radiators and the first radiator and the M coupling bodies.
  • the aforementioned isolator may further include P second metal pillars, and the P second metal pillars may be disposed inside the N first metal pillars. That is, the N first metal pillars can surround the P second metal pillars.
  • each second metal pillar in the P second metal pillars may be less than the length of the N first metal pillars, and P is a positive integer.
  • the above-mentioned P second metal pillars may also be arranged at the edge of the opening of the insulating groove and located inside the N first metal pillars, that is, each second metal pillar of the P second metal pillars
  • the distance to the opening of the insulating groove (hereinafter referred to as the third distance) is greater than the above-mentioned second distance (that is, the distance from each of the M power feeders to the opening of the insulating groove), and is smaller than the first The distance (that is, the distance from each of the N first metal pillars to the opening of the insulating groove).
  • the second metal pillar since the distance between the second metal pillar and the M coupling bodies is relatively small, during the operation of the antenna unit provided in the embodiment of the present disclosure, the second metal pillar may couple the M coupling bodies.
  • the body produces interference, which may affect the working performance of the antenna unit. Therefore, the length of the second metal post can be less than the distance between the M coupling bodies and the outer surface of the bottom of the insulating groove (hereinafter referred to as the second length), so that The second metal column is kept at a certain distance from the M coupling bodies, so that the antenna performance provided by the embodiment of the present disclosure can be relatively stable.
  • the P second metal pillars may be uniformly arranged on the opening edge of the insulation groove. That is, the distance between any two adjacent metal pillars in the P second metal pillars is equal.
  • the diameter of the second metal pillar may be determined according to the size of the insulating groove. Specifically, the diameter of the second metal pillar may be determined according to the width of the opening edge of the insulating groove.
  • the P second metal pillars isolate the first radiator from the P
  • the effect of electromagnetic waves radiated in the direction of the second metal pillar is better.
  • the denser the second metal pillars arranged in the antenna unit the better the radiation effect of the antenna unit.
  • the distance between two adjacent metal pillars in the P second metal pillars may be less than or equal to the second target value.
  • the second target value may be a quarter wavelength of the electromagnetic wave generated by the coupling between the first radiator and the M coupling bodies.
  • N first metal pillars 2070 and P second metal pillars 2071 may be provided on the opening edge of the insulating groove 201.
  • the length of the first metal pillar 2070 is equal to the distance between the at least two radiators 205 and the outer surface of the bottom of the insulating groove 201 (that is, the aforementioned first length); the length of the second metal pillar 2071 is less than the length of the M coupling bodies 203 to the insulation
  • the distance from the outer surface of the bottom of the groove 201 (that is, the above-mentioned second length), and the distance from the second metal pillar 2071 to the opening of the insulating groove 201 (that is, the above-mentioned third distance) is greater than the distance between the power feeding portion 202 and the insulating groove 201
  • the distance of the opening (that is, the aforementioned second distance) is smaller than the distance of the first metal pillar 2070 to the opening of the insulating groove 201 (the aforementioned first distance).
  • the distance between the P second metal pillars and the sidewall of the insulating groove is shorter than that of the N first metal pillars.
  • the distance from the side wall of the insulating groove is small, so that the P second metal pillars can better isolate the electromagnetic waves generated by the coupling of the first radiator and the M coupling bodies, so that the electromagnetic waves generated by the first radiator can be reduced.
  • the maximum radiation direction is toward the opening direction of the insulating groove, thereby increasing the concentration of electromagnetic waves radiated by the antenna unit and further improving the radiation effect of the antenna unit.
  • each of the foregoing M coupling bodies may be a metal sheet.
  • each of the M coupling bodies may be a copper sheet.
  • the shape of the foregoing M coupling bodies may be any possible shape such as a rectangle.
  • the above-mentioned M coupling bodies may also be of any other possible materials and shapes, which may be specifically determined according to actual use requirements, which are not limited in the embodiment of the present disclosure.
  • the signal source connected to the first power feeder and the signal source connected to the second power feeder have the same amplitude and a phase difference of 180 degrees.
  • the first power feeder and the second power feeder are in the same coupling body group
  • the two coupling bodies are electrically connected to the power feeder.
  • the terminal device can send or receive signals through the two coupling body groups in the antenna unit respectively, that is, the antenna provided by the embodiment of the present disclosure
  • the unit implements MIMO technology, which can increase the communication capacity and communication rate of the antenna unit.
  • the above two coupling body groups are divided into a first coupling body group and a second coupling body group.
  • the first coupling body group and the second coupling body group respectively include two symmetrically arranged two coupling bodies, and the symmetry axis of the first coupling body group is orthogonal to the symmetry axis of the second coupling body group.
  • the first coupling body group and the second coupling body group may be two coupling body groups with different polarizations.
  • the first coupling body group may be a first polarization coupling body group
  • the second coupling body group may be a second polarization coupling body group.
  • the first coupling body group may include a coupling body 2030 and a coupling body 2031
  • the second coupling body group may include a coupling body 2032 and a coupling body 2033.
  • the first coupling body group formed by the coupling body 2030 and the coupling body 2031 may be a first polarization coupling body group (for example, a vertically polarized coupling body group); the second coupling body formed by the coupling body 2032 and the coupling body 2033
  • the body group may be a second-polarized coupling body group (for example, a horizontally polarized coupling body group).
  • the two coupling body groups may be two coupling body groups with different polarizations, that is, the first polarization and the second polarization may be polarizations in different directions.
  • the polarization form of the above two coupling body groups may be any possible polarization form. Specifically, it can be determined according to actual usage requirements, and the embodiment of the present disclosure does not limit it.
  • the antenna unit provided in the embodiments of the present disclosure may form a dual-polarization
  • the antenna unit can reduce the probability of communication disconnection of the antenna unit, that is, can improve the communication capability of the antenna unit.
  • the amplitudes of the signal sources electrically connected to the two coupling bodies and the two feeders may be equal, and may be equal to the two coupling bodies.
  • the phases of the signal sources connected to the two feeders electrically connected to the two coupling bodies may be 180 degrees out of phase.
  • the amplitudes of the signal sources connected to the two feeders electrically connected to the two coupling bodies may be equal, and the signal sources electrically connected to the two coupling bodies
  • the phases of the signal sources connected to the two feeders can be 180 degrees different.
  • the other coupling body in the first coupling body group when one coupling body in the first coupling body group is in the working state, the other coupling body in the first coupling body group may also be in the working state.
  • the other coupling body in the second coupling body group when one coupling body in the working state, the other coupling body in the second coupling body group may also be in the working state. That is, the coupling bodies in the same coupling body group can work at the same time.
  • the coupling bodies in the first coupling body group when the coupling bodies in the first coupling body group are in a working state, the coupling bodies in the second coupling body group may or may not be in a working state.
  • it can be determined according to actual usage requirements, and the embodiment of the present disclosure does not limit it.
  • the amplitude of the signal source connected to the two feeders is It is equal, and the phase difference is 180 degrees, that is, the feeding mode adopted by the antenna unit provided by the embodiment of the present disclosure is a differential orthogonal feeding mode, so the communication capacity and communication rate of the antenna unit can be further improved.
  • the above two coupling body groups may be located on the same plane, and the coupling bodies in any coupling body group may be distributed on the symmetry axis of the other coupling body group.
  • the first coupling body group and the second coupling body group are both located on the first plane S1, that is, the coupling body 2030 and the coupling body 2031 in the first coupling body group are located on the first plane S1 , The coupling body 2032 and the coupling body 2033 in the second coupling body group are located on the first plane S1. And as shown in FIG. 5, the first coupling body group and the second coupling body group are both located on the first plane S1, that is, the coupling body 2030 and the coupling body 2031 in the first coupling body group are located on the first plane S1 , The coupling body 2032 and the coupling body 2033 in the second coupling body group are located on the first plane S1. And as shown in FIG.
  • the coupling body 2030 and the coupling body 2031 in the first coupling body group are located on the symmetry axis (ie, the first symmetry axis) L1 of the second coupling body group, and the coupling body 2032 in the second coupling body group
  • the coupling body 2033 is located on the symmetry axis (ie, the second symmetry axis) L2 of the first coupling body group.
  • each of the above-mentioned M coupling bodies is at the same distance from the radiator (for example, the above-mentioned at least two radiators or the first radiator), it is convenient to control the M coupling bodies.
  • the coupling parameters of the coupling body and the radiator such as the induced current generated during the coupling process, etc. Therefore, the above two coupling body groups can be set on the same plane, and the coupling body in any coupling body group can be set on the other On the symmetry axis of a coupling body group, the distances between different coupling bodies and the radiator can be made equal, which can facilitate the control of the working state of the antenna unit.
  • the shape of the first insulator may be the same as the opening shape of the insulating groove, for example, any possible shape such as a rectangular parallelepiped or a cylinder.
  • the shape of the first insulator may be any shape that can meet actual use requirements.
  • the embodiments of the present disclosure do not specifically limit this, and can be specifically determined according to actual use requirements.
  • the material of the first insulator may be an insulating material with relatively small relative permittivity and loss tangent.
  • the material of the first insulator may be any possible material such as plastic or foam. Specifically, it can be determined according to actual usage requirements, and the embodiment of the present disclosure does not limit it.
  • the relative dielectric constant of the material of the first insulator may be 2.2, and the loss tangent value may be 0.0009.
  • the first insulator can not only carry the at least two radiators, but also isolate the at least two radiators and the M coupling bodies, thereby preventing the at least two radiators and the M coupling bodies. Interference occurs between.
  • the above-mentioned at least two radiators may include a second radiator and a third radiator.
  • the second radiator and the third radiator are different radiators, and the resonant frequency of the second radiator is different from the resonant frequency of the third radiator.
  • the second radiator may be a ring-shaped radiator
  • the third radiator may be a polygonal radiator
  • the aforementioned ring-shaped radiator may be a rectangular ring-shaped radiator or a square-shaped ring-shaped radiator with any possible shape.
  • the aforementioned polygonal radiator may be any possible polygonal radiator, such as a rectangular radiator, a square radiator, or a hexagonal radiator. Specifically, it can be determined according to actual usage requirements, and the embodiment of the present disclosure does not limit it.
  • the above-mentioned annular radiator may be a closed annular radiator, that is, each side of the annular radiator is continuous; the above-mentioned annular radiator may also be a semi-closed annular radiator
  • the body that is, the side portion of the ring-shaped radiator is continuous. Specifically, it can be determined according to actual usage requirements, and the embodiment of the present disclosure does not limit it.
  • the area of the second radiator may be larger than the area of the third radiator.
  • the third radiator ie, polygonal radiator
  • the second radiator ie, ring-shaped radiator
  • the shape of the second radiator and the shape of the third radiator can also be any possible shapes, which can be specifically determined according to actual usage requirements, and the embodiments of the present disclosure are not limited.
  • the first radiator, the second radiator, and the third radiator are different radiators, and the first radiator, the second radiator and the When the third radiator is located at different positions in the antenna unit, the first radiator, the second radiator, and the third radiator can be coupled with the M coupling bodies to generate electromagnetic waves of different frequencies, so that the antenna unit can cover different Frequency band, that is, the frequency band covered by the antenna unit can be increased, thereby improving the performance of the antenna unit.
  • the resonance frequency of the first radiator may be the first frequency
  • the resonance frequency of the second radiator may be the second frequency
  • the resonance frequency of the third radiator may be the third frequency. frequency.
  • the first frequency may be smaller than the second frequency, and the second frequency may be smaller than the third frequency.
  • the resonant frequencies of the first radiator, the second radiator, and the third radiator may be different frequencies.
  • the first frequency may belong to a first frequency range
  • the second frequency may belong to a second frequency range
  • the third frequency may belong to a third frequency range
  • the first frequency range may be 24 GHz-27 GHz
  • the second frequency range may be 27 GHz-30 GHz
  • the third frequency range may be 37 GHz-43 GHz.
  • the frequency of the electromagnetic waves generated by coupling the M coupling bodies and the first radiator may belong to the frequency range indicated by 61 in FIG. 6, that is, the resonance frequency of the first radiator belongs to the frequency range indicated by 61 in FIG.
  • the frequency of the electromagnetic waves generated by the coupling between the M coupling bodies and the ring radiator can belong to the frequency range indicated by 62 in Figure 6, that is, the resonance frequency of the ring radiator belongs to the frequency range in Figure 6
  • the frequency range indicated by 62; the frequency of the electromagnetic wave generated by the coupling of the above-mentioned M coupling bodies and the polygonal radiator can belong to the frequency range indicated by 63 in Figure 6, that is, the resonance frequency of the polygonal radiator belongs to The frequency range indicated by 63 in Figure 6.
  • the coupling of the coupling body and the first radiator can generate low-frequency electromagnetic waves, and the coupling of the coupling body and the second radiator can generate electromagnetic waves of adjacent low-frequency, so the antenna unit provided by the embodiment of the present disclosure can cover 24.25GHz-29.5
  • the frequency range of GHz (such as n257, n258, n261, etc.) can broaden the low-frequency bandwidth of the antenna unit; the coupling of the coupling body and the third radiator can generate high-frequency electromagnetic waves, so the antenna unit provided by the embodiment of the present disclosure can cover 37GHz-43GHz (such as n259 and n260, etc.) frequency range.
  • the antenna unit provided by the embodiments of the present disclosure can cover most 5G millimeter wave frequency bands (for example, n257, n258, n259, n260, n261 and other planned 5G millimeter wave frequency bands), thereby improving the antenna performance of the terminal device.
  • 5G millimeter wave frequency bands for example, n257, n258, n259, n260, n261 and other planned 5G millimeter wave frequency bands
  • the points a, b, c, d, and e in the above Figure 6 are used to mark the return loss value. It can be seen from Figure 6 that the points a, b, c, d and The return loss values marked by point e are all less than -6dB. That is, the antenna unit provided in the embodiment of the present disclosure can meet actual use requirements.
  • the antenna unit may further include a second insulator disposed between the first radiator and the first insulator, and the M coupling bodies may be carried on the second insulator.
  • the antenna unit 20 may further include a second insulator 208 disposed between the first radiator 206 and the first insulator 204.
  • M coupling bodies 203 are carried on the second insulator 208.
  • the circular filling part on the second insulator 208 in FIG. 7 is used to indicate that the first metal pillar 2070 passes through the second insulator 208 and is embedded in the first insulator 204.
  • the shape of the second insulator may be the same as the opening shape of the insulating groove, for example, any possible shape such as a rectangular parallelepiped or a cylinder.
  • the material of the above-mentioned second insulator may be an insulating material with relatively small relative permittivity and loss tangent.
  • the material of the second insulator may be the same as the material of the first insulator.
  • the material of the second insulator may be any possible material such as plastic or foam. Specifically, it can be determined according to actual usage requirements, and the embodiment of the present disclosure does not limit it.
  • the relative dielectric constant of the material of the second insulator may be 2.5, and the loss tangent value may be 0.001.
  • the shape of the above-mentioned second insulator may also be any shape that meets actual use requirements, which is not specifically limited in the embodiments of the present disclosure, and can be specifically determined according to actual use requirements.
  • At least one of the above-mentioned at least two radiators may be located on the surface of the above-mentioned first insulator.
  • both of the above-mentioned at least two radiators may be located on the surface of the first insulator; alternatively, part of the above-mentioned at least two radiators may be located on the surface of the first insulator, or One of the radiators may be located on the surface of the first insulator.
  • the details can be determined according to actual use requirements.
  • both the second radiator 2050 and the third radiator 2051 may be located on the surface of the first insulator.
  • the second radiator 2050 and the third radiator 2051 are carried on the first insulator 204, the M coupling bodies are carried on the second insulator 208, and the second insulator 208 is located on the first insulator. 204 and the first radiator (not shown in FIG. 4); the power feeding portion 202 is provided at the edge of the opening of the insulating groove 201 and passes through the insulating groove 201, and the power feeding portion 202 passes through the second insulator 208 and The coupling body 203 is electrically connected.
  • the above-mentioned at least two radiators may also be located at any possible positions in the above-mentioned first insulator, which can be specifically determined according to actual use requirements, which is not limited in the embodiment of the present disclosure.
  • the performance of the antenna units may also be different. Therefore, the positions of the above-mentioned at least two radiators can be set according to actual use requirements, thereby making the design of the antenna unit more flexible.
  • the antenna unit 20 may further include K third metal pillars 209, and the K third metal pillars 209 may protrude from the insulating groove 201 The inner surface of the bottom.
  • each third metal pillar 209 in the K third metal pillars may be less than or equal to the depth of the insulating groove, and K is a positive integer.
  • the K third metal pillars are arranged at the bottom of the insulating groove.
  • the third metal pillar 209 is disposed at the bottom of the insulating groove 201, and the third metal pillar 209 protrudes from the inner surface of the insulating groove 201.
  • the length of the aforementioned third metal pillar may be less than the height of the insulating groove.
  • the diameter of the third metal pillar may be determined according to the size of the insulating groove. Specifically, the diameter of the third metal pillar may be determined according to the area of the inner surface of the bottom of the insulating groove.
  • the K third metal pillars may be evenly distributed at the bottom of the groove.
  • the K third metal pillars may be evenly distributed at the center position of the bottom of the insulating groove.
  • the antenna unit may further include K third metal pillars, and the K third metal pillars may be used to adjust the impedance of the antenna unit, thereby adjusting the first frequency.
  • the first frequency may be the frequency of electromagnetic waves generated by coupling the M coupling bodies with at least two radiators and the first radiator.
  • the K third metal pillars may be arranged in an array.
  • the K third metal pillars may be arranged in an array at the center of the bottom of the insulating groove.
  • 9 third metal pillars are provided at the bottom of the insulating groove 201, and the 9 third metal pillars are arranged in a 3 ⁇ 3 array (ie, square matrix). At the center of the bottom of the insulating groove 201.
  • the antenna unit may further include a third insulator disposed in the insulating groove, and the third insulator may surround the third metal pillar.
  • the difference between the relative dielectric constant of the third insulator and the relative dielectric constant of air may be within a preset range.
  • a third insulator can be arranged in the insulating groove to isolate the third metal pillar from the above-mentioned isolator (for example, the first metal pillar, the second Two metal pillars, etc.), so as to avoid mutual interference between the third metal pillar and the spacer.
  • the above-mentioned third insulator may be a foam material or a plastic material with a relative dielectric constant of 1 or close to 1 (that is, the relative dielectric constant of air). Specifically, it can be determined according to actual usage requirements, and the embodiment of the present disclosure does not limit it.
  • the foregoing preset range may be determined according to the antenna performance, which is not limited in the embodiment of the present disclosure.
  • any insulator may not be filled in the aforementioned insulating groove. It can be understood that when no insulator is filled in the insulating groove, the medium filled in the insulating groove is air (the relative dielectric constant is 1C 2 ).
  • the third insulator can isolate the third metal pillar and the isolator, so that the two do not interfere with each other, and thus the performance of the antenna unit can be more stable.
  • the antenna unit provided by the embodiment of the present disclosure will be further exemplified below in conjunction with FIG. 9.
  • FIG. 9 it is a top view of the antenna unit provided by an embodiment of the present disclosure on the reverse Z axis (coordinate system shown in FIG. 3 ).
  • the first insulator 204 is provided with a second radiator 2050 and a third radiator 2051, and there are four more between the first insulator 204 and the insulating groove 201 (only the opening of the insulating groove is shown in FIG. 9).
  • the coupling body (including the coupling body 2030, the coupling body 2031, the coupling body 2032 and the coupling body 2033); the opening edges of the insulating groove 201 are respectively provided with N first metal pillars 2070 (and the N first metal pillars are embedded in the first Insulator 204) and P second metal pillars 2071, and K third metal pillars 209 are provided at the bottom of the insulating groove.
  • the four coupling bodies overlap with the second radiator 2050 and the third radiator 2051 in the Z-axis direction, the four coupling bodies can overlap with the second radiator 2050 and the third radiator 2051.
  • the K third metal pillars 209 can be prevented from coupling with the four coupling bodies, so that the K third metal pillars
  • the three metal pillars 209 adjust the impedance of the antenna unit, thereby adjusting the frequency range covered by the antenna unit.
  • the above-mentioned insulation groove, coupling body, P second metal pillars, and K third metal pillars are all invisible.
  • the insulating groove and the coupling body (including the coupling body 2030, the coupling body 2031, the coupling body 2032 and the coupling body 2033) in the above-mentioned FIG. 9 are indicated by dashed lines;
  • P second metal The columns are filled with vertical lines and enclosed by dashed lines;
  • K third metal columns are filled with black and enclosed by dashed lines.
  • the antenna unit since the impedance of the antenna unit at the frequency of the electromagnetic wave generated by the coupling between the at least two radiators and the first radiator and the M coupling bodies is related, the antenna unit can be adjusted by setting the third metal pillar. In this way, the frequencies of the electromagnetic waves generated by the coupling between at least two radiators and the first radiator and the M coupling bodies can be adjusted, so that the frequency band covered by the antenna unit can be in the 5G millimeter wave frequency band.
  • the antenna units shown in each of the above figures are all exemplified in conjunction with one of the figures in the embodiment of the present disclosure.
  • the antenna units shown in each of the foregoing drawings can also be implemented in combination with any other accompanying drawings illustrated in the foregoing embodiments, and details are not described herein again.
  • An embodiment of the present disclosure provides a terminal device, which may include the antenna unit provided in any one of the foregoing embodiments in FIGS. 2 to 9.
  • a terminal device which may include the antenna unit provided in any one of the foregoing embodiments in FIGS. 2 to 9.
  • the antenna unit provided in any one of the foregoing embodiments in FIGS. 2 to 9.
  • the terminal device in the embodiment of the present disclosure may be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may be a mobile phone, a tablet computer, a notebook computer, a palmtop computer, a vehicle-mounted terminal, a wearable device, an ultra-mobile personal computer (UMPC), a netbook, or a personal digital assistant (personal digital assistant
  • the non-mobile terminal may be a personal computer (PC), a television (television, TV), etc., which are not specifically limited in the embodiment of the present disclosure.
  • At least one first groove may be arranged in the housing of the terminal device, and each antenna unit may be arranged in one first groove.
  • the above-mentioned first groove may be provided in the housing of the terminal device, and the antenna unit provided in the embodiment of the present disclosure may be arranged in the first groove, so as to realize the integration of at least one notebook in the terminal device.
  • the antenna unit provided by the embodiment is disclosed.
  • the above-mentioned first groove may be provided in the frame of the housing of the terminal device.
  • the terminal device 4 may include a housing 40.
  • the housing 40 may include a first frame 41, a second frame 42 connected to the first frame 41, a third frame 43 connected to the second frame 42, and a fourth frame connected to both the third frame 43 and the first frame 41 44.
  • the terminal device 4 may further include a floor 45 connected to both the second frame 42 and the fourth frame 44, and a first antenna 46 composed of the third frame 43, part of the second frame 42 and part of the fourth frame 44.
  • a first groove 47 is provided on the second frame 42.
  • the antenna unit provided by the embodiment of the present disclosure can be arranged in the first groove, so that the terminal device can include the array antenna module formed by the antenna unit provided by the embodiment of the present disclosure, and the integration of the device in the terminal device can be realized.
  • the design of the antenna unit provided by the embodiment is disclosed.
  • the above-mentioned floor can be a PCB or a metal middle frame in a terminal device, or a display screen of a terminal device, etc., which can be any part that can be used as a virtual ground.
  • the above-mentioned first antenna may be a second-generation mobile communication system (ie 2G system), a third-generation mobile communication system (ie 3G system), and a fourth-generation mobile communication system of the terminal device.
  • the communication antenna of the system ie 4G system and other systems.
  • the antenna unit provided by the embodiment of the present disclosure may be an antenna of a 5G system of a terminal device.
  • the first frame, the second frame, the third frame, and the fourth frame may be connected end to end in sequence to form a closed frame; or, the first frame, the second frame, the third frame, and the Part of the frame in the fourth frame may be connected to form a semi-closed frame; or, the above-mentioned first frame, second frame, third frame, and fourth frame may not be connected to each other to form an open frame.
  • it can be determined according to actual usage requirements, and the embodiment of the present disclosure does not limit it.
  • the frame included in the housing 40 shown in FIG. 10 is an example of a closed frame formed by connecting the first frame 41, the second frame 42, the third frame 43, and the fourth frame 44 in turn.
  • the frame formed by other connection methods partial frame connection or non-connection of each frame
  • the implementation manner is the same as that provided by the embodiment of the present disclosure Similar, in order to avoid repetition, I will not repeat them here.
  • the above-mentioned at least one first groove may be arranged in the same frame of the housing, or may be arranged in different frames. Specifically, it can be determined according to actual usage requirements, and the embodiment of the present disclosure does not limit it.
  • a first groove may be provided in the first frame, the second frame, the third frame, or the fourth frame of the housing. Specifically, it can be determined according to actual usage requirements, and the embodiment of the present disclosure does not limit it.
  • the first groove 47 is provided on the second frame 42 of the housing 40, and the opening direction of the first groove 47 is the coordinate shown in FIG.
  • the positive Z-axis of the system is taken as an example.
  • the opening direction of the first groove when the first groove is provided on the first frame 41 of the housing, the opening direction of the first groove may be the positive X axis;
  • the opening direction of the first groove when a groove is arranged on the third frame of the housing, the opening direction of the first groove can be the reverse of the X axis;
  • the first groove when the first groove is arranged on the fourth frame of the housing, the direction of the first groove The opening direction can be the reverse of the Z axis.
  • multiple first grooves may be provided in the housing of the terminal device, and each first groove may be provided with an antenna unit provided in the embodiment of the present disclosure.
  • the multiple antenna elements can form an antenna array in the terminal device, so that the antenna performance of the terminal device can be improved.
  • the antenna unit provided by the embodiment of the present disclosure when the antenna unit provided by the embodiment of the present disclosure radiates a signal with a frequency of 28 GHz (that is, the antenna unit radiates a low-frequency signal), the radiation pattern of the antenna unit; as shown in FIG. 12, When the antenna unit provided in the embodiment of the present disclosure radiates a signal with a frequency of 39 GHz (that is, the antenna unit radiates a high-frequency signal), the radiation pattern of the antenna unit. It can be seen from FIGS. 11 and 12 that the maximum radiation direction when radiating high-frequency signals is the same as the maximum radiation direction when radiating low-frequency signals. Therefore, the antenna unit provided by the embodiment of the present disclosure is suitable for forming an antenna array. In this way, the terminal device can be provided with at least two first grooves, and an antenna unit provided by an embodiment of the present disclosure is arranged in each first groove, so that the terminal device can include the antenna array, thereby improving the terminal device Antenna performance.
  • the distance between each antenna unit may be based on the isolation of the antenna units and the multiple antenna units.
  • the scanning angle of the formed antenna array is determined. Specifically, it can be determined according to actual usage requirements, and the embodiment of the present disclosure does not limit it.
  • the number of first grooves provided on the housing of the terminal device may be determined according to the size of the first groove and the size of the housing of the terminal device.
  • the embodiment of the present disclosure does not limit this.
  • first metal pillar 2070 is disposed on the edge of the opening of the insulating groove and embedded in the first insulator 204, and at least two radiators 205 are located on the surface of the first insulator 204.
  • the three first grooves (with three antenna units) provided on the second frame are taken as an example for illustration in the above-mentioned FIG.
  • the embodiment forms any limitation. It can be understood that, in specific implementation, the number of first grooves provided on the second frame can be determined according to actual use requirements, and the embodiment of the present disclosure does not make any limitation.
  • the embodiment of the present disclosure provides a terminal device, which includes an antenna unit.
  • the antenna unit may include an insulation groove, M power feeders arranged in the insulation groove, M coupling bodies, a first insulator, and at least two radiators carried by the first insulator are arranged at the bottom of the insulation groove.
  • the body is coupled, so that the at least two radiators and the first radiator can generate induced AC signals, so that the at least two radiators and the first radiator can generate electromagnetic waves of a certain frequency; and, due to different radiators
  • the resonant frequencies of the at least two radiators and the first radiator are also different in frequency, so that the antenna unit can cover different frequency bands, that is, the frequency band covered by the antenna unit can be increased.
  • the isolator can isolate the at least two radiators and the electromagnetic waves radiated from the first radiator toward the isolator, so that the at least two radiators
  • the maximum radiation direction of the electromagnetic wave generated by the body and the first radiator faces the opening direction of the insulating groove, so that the radiation intensity of the antenna unit in its radiation direction can be improved on the premise of ensuring the directivity of the antenna unit.
  • the performance of the antenna unit can be improved.
  • the technical solution of the present disclosure essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, The optical disc) includes a number of instructions to enable a terminal device (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) to execute the method described in each embodiment of the present disclosure.
  • a terminal device which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)

Abstract

本公开实施例提供一种天线单元及终端设备。该天线单元包括绝缘凹槽,设置在绝缘凹槽中的M个馈电部,M个耦合体,第一绝缘体,该第一绝缘体承载的至少两个辐射体,设置在绝缘凹槽底部的第一辐射体,以及围绕该M个耦合体设置的隔离体;其中,该M个馈电部均与第一辐射体和隔离体绝缘,该M个耦合体位于第一辐射体和第一绝缘体之间,且该M个馈电部中的每个馈电部分别与一个耦合体电连接,以及该M个耦合体中的每个耦合体均与该至少两个辐射体和第一辐射体耦合,不同辐射体的谐振频率不同,M为正整数。

Description

天线单元及终端设备
相关申请的交叉引用
本申请要求于2019年05月22日提交国家知识产权局、申请号为201910430958.7、申请名称为“一种天线单元及终端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开实施例涉及通信技术领域,尤其涉及一种天线单元及终端设备。
背景技术
随着第五代移动通信(5-generation,5G)系统的发展,以及终端设备的广泛应用,毫米波天线逐渐被应用在各种终端设备中,以满足用户日益增长的使用需求。
目前,终端设备中的毫米波天线主要通过天线封装(antenna in package,AIP)技术实现。例如,如图1所示,可以通过AIP技术,将工作波长为毫米波的阵列天线11、射频集成电路(radio frequency integrated circuit,RFIC)12、电源管理集成电路(power management integrated circuit,PMIC)13和连接器14封装成一个模块10,该模块10可以称为毫米波天线模组。其中,上述阵列天线中的天线可以为贴片天线、八木-宇田天线,或者偶极子天线等。
然而,由于上述阵列天线中的天线通常为窄带天线(例如上述列举的贴片天线等),因此每个天线的覆盖频段有限,但是在5G系统中规划的毫米波频段通常比较多,例如以28GHz为主的n257(26.5-29.5GHz)频段和以39GHz为主的n260(37.0-40.0GHz)频段等,因此传统的毫米波天线模组可能无法全部覆盖5G系统中规划的主流的毫米波频段,从而导致终端设备的天线性能较差。
发明内容
本公开实施例提供一种天线单元及终端设备,以解决现有的终端设备的毫米波天线覆盖的频段较少,导致终端设备的天线性能较差的问题。
为了解决上述技术问题,本发明实施例是这样实现的:
第一方面,本发明实施例提供了一种天线单元。该天线单元包括绝缘凹槽,设置在绝缘凹槽中的M个馈电部,M个耦合体,第一绝缘体,该第一绝缘体承载的至少两个辐射体,设置在绝缘凹槽底部的第一辐射体,以及围绕该M个耦合体设置的隔离体;其中,M个馈电部均与第一辐射体和隔离体绝缘,该M个耦合体位于第一辐射体和第一绝缘体之间,且该M个馈电部中的每个馈电部分别与一个耦合体电连接,以及该M个耦合体中的每个耦合体均与该至少两个辐射体和第一辐射体耦合,不同辐射体的谐振频率不同,M为正整数。
第二方面,本发明实施例提供了一种终端设备,该终端设备包括上述第一方面中的天线单元。
在本发明实施例中,天线单元可以包括绝缘凹槽,设置在绝缘凹槽中的M个馈电部,M个耦合体,第一绝缘体,该第一绝缘体承载的至少两个辐射体,设置在绝缘凹槽底部的第一辐射体,以及围绕该M个耦合体设置的隔离体;其中,M个馈电部均与第一辐射体和隔离体绝缘,该M个耦合体位于第一辐射体和第一绝缘体之间,且该M个馈电部中的每个馈电部分别与一个耦合体电连接,以及该M个耦合体中的每个耦合体均与该至少两个辐射体和第一辐射体耦合,不同辐射体的谐振频率不同,M为正整数。通过该方案,一方面,由于耦合体与至少两个辐射体和第一辐射体均耦合,因此在耦合体接收到交流信号的情况下,耦合体可以与该至少两个辐射体和第一辐射体进行耦合,从而可以使得该至少两个辐射体和第一辐射体产生感应的交流信号,从而可以使得该至少两个辐射体和第一辐射体产生一定频率的电磁波;并且,由于不同辐射体的谐振频率不同,因此该至少两个辐射体和第一辐射体产生的电磁波的频率也不同,从而可以使得天线单元覆盖不同的频段,即可以增加天线单元覆盖的频段。另一方面,由于天线单元中围绕M个耦合体设置有隔离体,因此该隔离体可以隔离该至少两个辐射体和第一辐射体向隔离体在方向辐射的电磁波,使得该至少两个辐射体和第一辐射体产生的电磁波的最大辐射方向朝向绝缘凹槽的开口方向,如此可以在保证天线单元的方向性的前提下,提升天线单元在其辐射方向上的辐射强度。如此,由于可以增加天线单元覆盖的频段,并且可以提高天线单元在其辐射方向上的辐射强度,因此可以提高天线单元的性能。
附图说明
图1为本公开实施例提供的一种传统毫米波天线的结构示意图;
图2为本公开实施例提供的天线单元的爆炸图之一;
图3为本公开实施例提供的天线单元的爆炸图之二;
图4为本公开实施例提供的天线单元的剖视图;
图5为本公开实施例提供的天线单元的爆炸图之三;
图6为本公开实施例提供的天线单元的反射系数图;
图7为本公开实施例提供的天线单元的爆炸图之四;
图8为本公开实施例提供的天线单元的爆炸图之五;
图9为本公开实施例提供的天线单元的俯视图;
图10为本公开实施例提供的终端设备的硬件结构示意图;
图11为本公开实施例提供的天线单元的辐射方向图之一;
图12为本公开实施例提供的天线单元的辐射方向图之二;
图13为本公开实施例提供的终端设备的左视图。
附图标记说明:10—毫米波天线模组;11—工作波长为毫米波的阵列天线;12—RFIC;13—PMIC;14—连接器;20—天线单元;201—绝缘凹槽;202—馈电部;2020—馈电部的第一端;2021—馈电部的第二端;203—耦合体;204—第一绝缘体;205—至少两个辐射体;2050—第二辐射体;2051—第三辐射体;206—第一辐射体;207—隔离体;2070—第一金属柱;2071—第二金属柱;208—第二绝缘体;209—第三金属柱;L1—第一对称轴;L2—第二对称轴;4—终端设备;40—壳体;41—第一边框;42—第二边框;43—第三边框;44—第四边框;45—地板;46—第一天线;47—第一凹槽。
需要说明的是,本公开实施例中,附图所示的坐标系中的坐标轴相互正交。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本文中术语“和/或”,是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。本文中符号“/”表示关联对象是或者的关系,例如A/B表示A或者B。
本公开的说明书和权利要求书中的术语“第一”和“第二”等是用于区别不同的对象,而不是用于描述对象的特定顺序。例如,第一金属柱和第二金属柱等是用于区别不同的金属柱,而不是用于描述金属柱的特定顺序。
在本公开实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本公开实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
在本公开实施例的描述中,除非另有说明,“多个”的含义是指两个或者两个以上,例如,多个天线是指两个或者两个以上的天线等。
下面对本公开实施例中涉及的一些术语/名词进行解释说明。
耦合:是指两个或两个以上的电路元件或电网络的输入与输出之间存在紧密配合与相互影响,并可以通过相互作用从一侧向另一侧传输能量。
交流信号:是指电流的方向会发生变化的信号。
低温共烧陶瓷(low temperature co-fired ceramic,LTCC)技术:是指一种将低温烧结陶瓷粉制成厚度精确而且致密的生瓷带,且在生瓷带上利用激光打孔、微孔注浆和精密导体浆料印刷等工艺制出所需要的电路图形,并将多个组件(例如电容、电阻、耦合器等)埋入多层陶瓷基板中,然后叠压在一起,在900℃下烧结,制成互不干扰的高密度电路或电路基板等的技术。该技术可以将电路小型化和高密度化,特别适用于高频通讯用组件。
波束赋形:是指一种通过调整天线阵列中每个天线单元的加权系数,以使得天线阵列产生具有指向性的波束,从而使得天线阵列获得明显的阵列增益的技术。
垂直极化:是指天线辐射时形成的电场强度方向垂直于地平面。
水平极化:是指天线辐射时形成的电场强度方向平行于地平面。
多输入多输出(multiple-input multiple-output,MIMO)技术:是指一种在传输端(即发送端和接收端)使用多个天线发送信号或接收信号,以改善通信质量的技术。在该技术中,信号可以通过传输端的多个天线发送或者接收。
相对介电常数:用于表征介质材料的介电性质或极化性质的物理参数。
地板:是指终端设备中可以作为虚拟地的部分。例如终端设备中的印制电路板(printed circuit board,PCB)或终端设备的显示屏等。
本公开实施例提供一种天线单元及终端设备,天线单元可以包括绝缘凹槽,设置在绝缘凹槽中的M个馈电部,M个耦合体,第一绝缘体,该第一绝缘体承载的至少两个辐射 体,设置在绝缘凹槽底部的第一辐射体,以及围绕该M个耦合体设置的隔离体;其中,M个馈电部均与第一辐射体和隔离体绝缘,该M个耦合体位于第一辐射体和第一绝缘体之间,且该M个馈电部中的每个馈电部分别与一个耦合体电连接,以及该M个耦合体中的每个耦合体均与该至少两个辐射体和第一辐射体耦合,不同辐射体的谐振频率不同,M为正整数。通过该方案,一方面,由于耦合体与至少两个辐射体和第一辐射体均耦合,因此在耦合体接收到交流信号的情况下,耦合体可以与该至少两个辐射体和第一辐射体进行耦合,从而可以使得该至少两个辐射体和第一辐射体产生感应的交流信号,从而可以使得该至少两个辐射体和第一辐射体产生一定频率的电磁波;并且,由于不同辐射体的谐振频率不同,因此该至少两个辐射体和第一辐射体产生的电磁波的频率也不同,从而可以使得天线单元覆盖不同的频段,即可以增加天线单元覆盖的频段。另一方面,由于天线单元中围绕M个耦合体设置有隔离体,因此该隔离体可以隔离该至少两个辐射体和第一辐射体向隔离体在方向辐射的电磁波,使得该至少两个辐射体和第一辐射体产生的电磁波的最大辐射方向朝向绝缘凹槽的开口方向,如此可以在保证天线单元的方向性的前提下,提升天线单元在其辐射方向上的辐射强度。如此,由于可以增加天线单元覆盖的频段,并且可以提高天线单元在其辐射方向上的辐射强度,因此可以提高天线单元的性能。
本公开实施例提供的天线单元可以应用于终端设备,也可以应用于需要使用该天线单元的其它电子设备,具体可以根据实际使用需求确定,本公开实施例不作限定。下面以天线单元应用于终端设备为例,对本公开实施例提供的天线单元进行示例性的说明。
下面具体结合各个附图对本公开实施例提供的天线单元进行示例性的说明。
如图2所示,为本公开实施例提供的天线单元的结构的爆炸示意图。在图2中,天线单元20可以包括绝缘凹槽201,设置在绝缘凹槽201中的M个馈电部202,M个耦合体203,第一绝缘体204,该第一绝缘体承载的至少两个辐射体205,设置在绝缘凹槽201底部的第一辐射体206,以及围绕该M个耦合体203设置的隔离体207。
其中,上述M个馈电部202均可以与第一辐射体206和隔离体207绝缘,该M个耦合体203可以位于第一辐射体206和第一绝缘体204之间,且该M个馈电部中的每个馈电部202可以分别与一个耦合体202电连接,以及该M个耦合体中的每个耦合体202均可以与该至少两个辐射体205和第一辐射体206耦合,不同辐射体的谐振频率不同,M为正整数。
需要说明的是,本公开实施例中,为了更加清楚地示意天线单元的结构,图2是以天线单元的结构的爆炸图示意的,即是以天线单元的组成部分均处于分离状态示意的。实际实现时,绝缘凹槽、馈电部、耦合体、第一绝缘体、至少两个辐射体、第一辐射体,以及隔离体组成一个整体,以形成一个本公开实施例提供的天线单元。
另外,图2中的馈电部202与耦合体203未以电连接状态示出,实际实现时,馈电部202可以与耦合体203电连接。
可选的,本公开实施例中,本公开实施例提供的天线单元可以通过LTCC技术制成。具体的,上述绝缘凹槽可以采用LTCC技术制成。
需要说明的是,实际实现时,本公开实施例提供的天线单元也可以通过其它任意可能的技术制成,具体可以根据实际使用需求确定,本公开实施例不作限定。
可选的,本公开实施例中,上述绝缘凹槽的材料的相对介电常数可以小于或等于5。
具体的,本公开实施例中,上述绝缘凹槽的材料的相对介电常数可以大于或等于2、且小于或等于5。
可选的,本公开实施例中,上述绝缘凹槽的材料可以为陶瓷、塑料等任意可能的材料。具体可以根据实际使用需求确定,本公开实施例不作限定。
需要说明的是,本公开实施例中,上述绝缘凹槽的材料的相对介电常数越小,绝缘凹槽对天线单元中的其它部件的干扰越小,天线单元的性能越稳定。
可选的,本公开实施例中,上述绝缘凹槽可以为矩形凹槽。具体的,绝缘凹槽可以为正方形凹槽。
可选的,本公开实施例中,上述绝缘凹槽的开口形状可以为正方形。当然,实际实现时,绝缘凹槽的开口形状还可以为任意可能的形状,可以根据实际使用需求确定,本公开实施例不作限定。
可选的,本公开实施例中,上述第一辐射体可以为设置在绝缘凹槽底部的金属片,也可以为喷涂在绝缘凹槽底部的金属材料等。当然,上述第一辐射体还可以以其它任意可能的形式设置在绝缘凹槽中,具体可以根据实际使用需求确定,本公开实施例不作限定。
本公开实施例中,为了更加清楚地描述本公开实施例提供的天线单元及其工作原理,下面具体以一个天线单元为例,对天线单元发送信号和接收信号的工作原理进行示例性的说明。
示例性的,结合上述图2,本公开实施例中,当终端设备发送5G毫米波信号时,终端设备中的信号源会发出交流信号,该交流信号可以通过馈电部传输到耦合体。然后,在耦合体接收到该交流信号之后,一方面,耦合体可以通过与位于上述至少两个辐射体进行耦合,使得该至少两个辐射体产生感应的交流信号,然后,该至少两个辐射体可以向外(例如绝缘凹槽的开口方向等)辐射一定频率的电磁波;另一方面,耦合体还可以通过与第一辐射体耦合,使得第一辐射体产生感应的交流信号,然后,第一辐射体可以向外辐射一定频率的电磁波(由于第一辐射体与该至少两个辐射体的谐振不同,因此第一辐射体向外辐射的电磁波的频率与该至少两个辐射体向外辐射的电磁波的频率不同)。如此,终端设备可以通过本公开实施例提供的天线单元发送信号。
又示例性的,本公开实施例中,当终端设备接收5G毫米波信号时,终端设备所处的空间中的电磁波可以通过激励上述至少两个辐射体和第一辐射体,使得该至少两个辐射体和第一辐射体产生感应的交流信号。在该至少两个辐射体和第一辐射体产生感应的交流信号之后,该至少两个辐射体和第一辐射体可以分别与耦合体进行耦合,使得耦合体产生感应的交流信号。然后,耦合体可以通过馈电部向终端设备中的接收机输入该交流信号,从而可以使得终端设备接收到其它设备发送的5G毫米波信号。即终端设备可以通过本公开实施例提供的天线单元接收信号。
本公开实施例提供一种天线单元,一方面,由于耦合体与至少两个辐射体和第一辐射体均耦合,因此在耦合体接收到交流信号的情况下,耦合体可以与该至少两个辐射体和第一辐射体进行耦合,从而可以使得该至少两个辐射体和第一辐射体产生感应的交流信号,从而可以使得该至少两个辐射体和第一辐射体产生一定频率的电磁波;并且,由于不同辐射体的谐振频率不同,因此该至少两个辐射体和第一辐射体产生的电磁波的频率也不同,从而可以使得天线单元覆盖不同的频段,即可以增加天线单元覆盖的频段。另一方面,由 于天线单元中围绕M个耦合体设置有隔离体,因此该隔离体可以隔离该至少两个辐射体和第一辐射体向隔离体在方向辐射的电磁波,使得该至少两个辐射体和第一辐射体产生的电磁波的最大辐射方向朝向绝缘凹槽的开口方向,如此可以在保证天线单元的方向性的前提下,提升天线单元在其辐射方向上的辐射强度。如此,由于可以增加天线单元覆盖的频段,并且可以提高天线单元在其辐射方向上的辐射强度,因此可以提高天线单元的性能。
可选的,本公开实施例中,结合图2,如图3所示,馈电部202可以设置在绝缘凹槽201的开口边缘、且贯穿绝缘凹槽201。
需要说明的时,由于馈电部贯穿绝缘凹槽,因此图3中的馈电部202在绝缘凹槽201中的部分是以虚线示意的。
具体的,实际实现时,如图3所示,本公开实施例中,馈电部202的第一端2020可以与耦合体203电连接,馈电部202的第二端2021可以与终端设备中的一个信号源(例如终端设备中的5G信号源)连接。如此,终端设备中的信号源的电流可以通过馈电部传输到耦合体上,然后通过耦合体耦合到上述至少两个辐射体和第一辐射体上,即可以使得该至少两个辐射体和第一辐射体上产生感应电流,从而可以使得该至少两个辐射体和第一辐射体产生电磁波,以将终端设备中的5G毫米波信号辐射出去。
需要说明的是,本公开实施例中,由于天线单元中的凹槽为绝缘凹槽(绝缘材料无法隔离天线单元发出的电磁波),因此为了保证天线单元的方向性,可以通过在上述M个耦合体周围设置隔离体的方式,使得天线单元具有方向性。
可选的,本公开实施例中,上述隔离体可以为围绕上述M个耦合体设置的金属片或者金属柱等任意具有隔离功能的部件,具体可以根据实际使用需求确定,本公开实施例不作限定。
可选的,本公开实施例中,上述隔离体可以设置在绝缘凹槽的外侧,例如包围绝缘凹槽、M个耦合体,以及第一绝缘体等部件;该隔离体还可以嵌入绝缘凹槽和第一绝缘体中,并围绕该M个耦合体设置,以使得这些部件组成一个整体,即本公开实施例提供的天线单元。具体可以根据实际使用需求确定,本公开实施例不作限定。
当然,实际实现时,上述隔离体还可以以其它任意可能的形式设置,具体可以根据实际使用需求确定,本公开实施例不作限定。
可选的,本公开实施例中,上述隔离体可以包括N个第一金属柱,N为正整数。
本公开实施例中,由于上述N个第一金属柱不仅可以用于隔离上述至少两个辐射体向第一金属柱所在方向辐射的电磁波,还可以用于隔离第一辐射体向第一金属柱所在方向辐射的电磁波,因此第一金属柱的长度可以大于或等于上述至少两个辐射体到绝缘凹槽底部的外表面的最大距离(以下简称为第一长度),如此可以使得目标辐射体和第一辐射体产生的电磁波的最大辐射方向朝向绝缘凹槽的开口方向,进而可以在保证天线单元的方向性的前提下,提升天线单元的辐射效果。
可选的,本公开实施例中,如图3所示,N个第一金属柱2070可以设置在绝缘凹槽201的开口边缘,且嵌入绝缘凹槽201和第一绝缘体204中。
需要说明的是,图3中的第一绝缘体204上的圆形填充部分用于表示第一金属柱2070嵌入第一绝缘体204中。当然,实际实现时,第一金属柱还可以嵌入绝缘凹槽201中,图3中未示出第一金属柱2070嵌入绝缘凹槽201的部分。
可选的,本公开实施例中,上述N个第一金属柱可以位于上述M个馈电部的外侧,即该N个第一金属柱中的每个第一金属柱到绝缘凹槽的开口的距离(以下简称为第一距离)大于M个馈电部中的每个馈电部到绝缘凹槽的开口的距离(以下简称为第二距离)。
可选的,本公开实施例中,上述N个第一金属柱可以均匀设置在绝缘凹槽的开口边缘。也就是说,该N个第一金属柱中任意两个相邻的金属柱之间的距离相等。
示例性的,如图3所示,绝缘凹槽201的开口边缘上可以设置有N个第一金属柱2070。其中,绝缘凹槽201的开口边缘可以包括4个边,该N个第一金属柱2070可以均匀分布在这4个边上。
可选的,本公开实施例中,上述第一金属柱的直径可以根据绝缘凹槽的尺寸确定。具体的,该第一金属柱的直径可以根据绝缘凹槽的开口边缘的宽度确定。
需要说明的是,本公开实施例中,上述N个第一金属柱中两个相邻的金属柱之间的距离越小,该N个第一金属柱隔离上述至少两个辐射体和第一辐射体向该N个第一金属柱所在方向辐射的电磁波的效果越好。也就是说,天线单元中设置的第一金属柱越密,天线单元的辐射效果越好。
可选的,本公开实施例中,上述N个第一金属柱中两个相邻的金属柱之间的距离可以小于或等于第一目标数值。该第一目标数值可以为上述至少两个辐射体和第一辐射体与上述M个耦合体耦合产生的电磁波的最小波长的四分之一。
可选的,本公开实施例中,上述隔离体还可以包括P个第二金属柱,该P个第二金属柱可以设置在上述N个第一金属柱的内侧。即该N个第一金属柱可以包围该P个第二金属柱。
其中,上述P个第二金属柱中的每个第二金属柱的长度可以小于上述N个第一金属柱的长度,P为正整数。
本公开实施例中,上述P个第二金属柱也可以设置在绝缘凹槽的开口边缘,且位于N个第一金属柱的内侧,即P个第二金属柱中的每个第二金属柱到绝缘凹槽的开口的距离(以下简称为第三距离)大于上述第二距离(即M个馈电部中的每个馈电部到绝缘凹槽的开口的距离),且小于上述第一距离(即N个第一金属柱中的每个第一金属柱到绝缘凹槽的开口的距离)。
本公开实施例中,由于当第二金属柱与上述M个耦合体之间的距离比较小时,在本公开实施例提供的天线单元工作的过程中,第二金属柱可能会对该M个耦合体产生干扰,从而可能会影响天线单元的工作性能,因此在第二金属柱的长度可以小于M个耦合体到绝缘凹槽底部的外表面的距离(以下简称为第二长度),如此可以使得第二金属柱与该M个耦合体保持一定的距离,从而可以使得本公开实施例提供的天线性能比较稳定。
可选的,本公开实施例中,上述P个第二金属柱可以均匀设置在上述绝缘凹槽的开口边缘。也就是说,该P个第二金属柱中任意两个相邻的金属柱之间的距离相等。
可选的,本公开实施例中,上述第二金属柱的直径可以根据绝缘凹槽的尺寸确定。具体的,该第二金属柱的直径可以根据绝缘凹槽的开口边缘的宽度确定。
需要说明的是,本公开实施例中,上述P个第二金属柱中两个相邻的金属柱之间的距离越小,该P个第二金属柱隔离上述第一辐射体向该P个第二金属柱所在方向辐射的电磁波的效果越好。也就是说,天线单元中设置的第二金属柱越密,天线单元的辐射效果越好。
具体的,本公开实施例中,上述P个第二金属柱中两个相邻的金属柱之间的距离可以小于或等于第二目标数值。该第二目标数值可以为上述第一辐射体与上述M个耦合体耦合所产生的电磁波的四分之一波长。
示例性的,如图4所示,为本公开实施例提供的天线单元在Z轴方向上的剖视图。在图4中,绝缘凹槽201的开口边缘上可以设置有N个第一金属柱2070和P个第二金属柱2071。其中,第一金属柱2070的长度等于至少两个辐射体205到绝缘凹槽201底部的外表面的距离(即上述第一长度);第二金属柱2071的长度小于M个耦合体203到绝缘凹槽201底部的外表面的距离(即上述第二长度),并且第二金属柱2071到绝缘凹槽201的开口的距离(即上述第三距离)大于馈电部202到绝缘凹槽201的开口的距离(即上述第二距离),且小于第一金属柱2070到绝缘凹槽201的开口的距离(上述第一距离)。
本公开实施例中,由于上述P个第二金属柱设置在上述N个第一金属柱的内侧,因此该P个第二金属柱距离绝缘凹槽侧壁的距离比上述N个第一金属柱距离绝缘凹槽侧壁的距离小,如此该P个第二金属柱可以更好的隔离由第一辐射体与上述M个耦合体耦合产生的电磁波,从而可以使得第一辐射体产生的电磁波的最大辐射方向朝向绝缘凹槽的开口方向,进而可以提升天线单元辐射的电磁波的集中程度,可以进一步提升天线单元的辐射效果。
可选的,本公开实施例中,上述M个耦合体中的每个耦合体可以为金属片。示例性的,该M个耦合体中的每个耦合体可以为铜片。
可选的,本公开实施例中,上述M个耦合体中的形状可以为矩形等任意可能的形状。
当然,实际实现时,上述M个耦合体还可以为其它任意可能的材质和形状,具体可以根据实际使用需求确定,本公开实施例不作限定。
可选的,本公开实施例中,M个耦合体可以为四个耦合体(即M=4),该四个耦合体可以组成两个耦合体组,每个耦合体组可以包括对称设置的两个耦合体,且一个耦合体组的对称轴与另一个耦合体组的对称轴正交。
其中,与第一馈电部连接的信号源和与第二馈电部连接的信号源的幅值相等,相位相差180度,第一馈电部和第二馈电部为与同一耦合体组中的两个耦合体分别电连接的馈电部。
本公开实施例中,由于天线单元中可以包括两个耦合体组,因此终端设备可以通过天线单元中的该两个耦合体组分别发送信号或接收信号,即可以通过本公开实施例提供的天线单元实现MIMO技术,如此可以提高天线单元的通信容量和通信速率。
需要说明的是,为了便于描述和理解,下述实施例中将上述两个耦合体组分为第一耦合体组和第二耦合体组。其中,第一耦合体组和第二耦合体组中分别包括两对称设置的两个耦合体,且第一耦合体组的对称轴与第二耦合体组的对称轴正交。
可选的,本公开实施例中,上述第一耦合体组和上述第二耦合体组可以为两个不同极化的耦合体组。具体的,第一耦合体组可以为一个第一极化的耦合体组,第二耦合体组可以为一个第二极化的耦合体组。
示例性的,结合图3,如图5所示,上述第一耦合体组可以包括耦合体2030和耦合体2031,上述第二耦合体组可以包括耦合体2032和耦合体2033。其中,耦合体2030和耦合体2031形成的第一耦合体组可以为一个第一极化的耦合体组(例如垂直极化的耦合体组); 耦合体2032和耦合体2033形成的第二耦合体组可以为一个第二极化的耦合体组(例如水平极化的耦合体组)。
可选的,本公开实施例中,上述两个耦合体组可以为两个不同极化的耦合体组,即上述第一极化和第二极化可以为不同方向的极化。
需要说明的是,本公开实施例中,上述两个耦合体组的极化形式可以为任意可能极化形式。具体可以根据实际使用需求确定,本公开实施例不作限定。
本公开实施例中,由于上述第一耦合体组和上述第二耦合体组可以为两个不同极化的耦合体组,因此可以使得本公开实施例提供的天线单元可以形成一个双极化的天线单元,如此可以减小天线单元通信断线的概率,即可以提高天线单元的通信能力。
可选的,本公开实施例中,对于第一耦合体组中的两个耦合体,与该两个耦合体电连接两个馈电部连接的信号源的幅值可以相等,且与该两个耦合体电连接的两个馈电部连接的信号源的相位可以相差180度。
相应的,对于第二耦合体组中的两个耦合体,与该两个耦合体电连接的两个馈电部连接的信号源的幅值可以相等,且与该两个耦合体电连接的两个馈电部连接的信号源的相位可以相差180度。
本公开实施例中,当第一耦合体组中的一个耦合体处于工作状态时,第一耦合体组中的另一个耦合体也可以处于工作状态。相应的,当第二耦合体组中的一个耦合体处于工作状态时,第二耦合体组中的另一个耦合体也可以处于工作状态。即同一耦合体组中的耦合体可以是同时工作的。
可选的,本公开实施例中,当第一耦合体组中的耦合体处于工作状态时,第二耦合体组中的耦合体可能处于工作状态,也可能不处于工作状态。具体可以根据实际使用需求确定,本公开实施例不作限定。
本公开实施例中,由于上述第一耦合体组与第二耦合体组正交分布,且与同一个耦合体组中的两个耦合体电连接两个馈电部连接的信号源的幅值相等,相位相差180度,即本公开实施例提供的天线单元采用的馈电方式为差分正交馈电方式,因此可以进一步提高天线单元的通信容量和通信速率。
可选的,本公开实施例中,上述两个耦合体组可以位于同一平面上,且任意一个耦合体组中的耦合体可以分布在另一个耦合体组的对称轴上。
示例性的,如图5所示,第一耦合体组与第二耦合体组均位于第一平面S1上,即第一耦合体组中的耦合体2030和耦合体2031位于第一平面S1上,第二耦合体组中的耦合体2032和耦合体2033位于第一平面S1上。且如图5所示,第一耦合体组中的耦合体2030和耦合体2031位于第二耦合体组的对称轴(即第一对称轴)L1上,第二耦合体组中的耦合体2032和耦合体2033位于第一耦合体组的对称轴(即第二对称轴)L2上。
本公开实施例中,由于在上述M个耦合体中的每个耦合体均与辐射体(例如上述至少两个辐射体或第一辐射体)的距离均相等的情况下,可以便于控制该M个耦合体与辐射体耦合的参数,例如耦合过程中产生的感应电流等,因此可以将上述两个耦合体组均设置在同一平面上,且将任意一个耦合体组中的耦合体设置在另一个耦合体组的对称轴上,可以使得不同耦合体与辐射体之间的距离均相等,如此可以便于控制天线单元的工作状态。
可选的,本公开实施例中,上述第一绝缘体的形状可以与绝缘凹槽的开口形状相同, 例如长方体或圆柱体等任意可能的形状。
需要说明的是,本公开实施例中,上述第一绝缘体的形状可以为任意可以满足实际使用需求的形状,本公开实施例对此不作具体限定,具体可以根据实际使用需求确定。
可选的,本公开实施例中,上述第一绝缘体的材料可以为相对介电常数和损耗角正切值均比较小的绝缘材料。
可选的,本公开实施例中,上述第一绝缘体的材料可以塑胶或者泡沫等任意可能的材料。具体可以根据实际使用需求确定,本公开实施例不作限定。
示例性的,本公开实施例中,上述第一绝缘体的材料的相对介电常数可以为2.2,损耗角正切值可以为0.0009。
本公开实施例中,上述第一绝缘体不仅可以承载上述至少两个辐射体,还可以隔离该至少两个辐射体和M个耦合体,从而可以防止该至少两个辐射体和M个耦合体之间产生干扰。
需要说明的是,本公开实施例,在承载上述至少两个辐射体的前提下,第一绝缘体的材料的相对介电常数和损耗角正切值越小,该第一绝缘体对天线单元的辐射效果的影响越小。也就是说,上述第一绝缘体的材料的相对介电常数和损耗角正切值越小,第一绝缘体对天线单元的工作性能影响越小,天线单元的辐射效果越好。
可选的,本公开实施例中,上述至少两个辐射体可以包括第二辐射体和第三辐射体。
可以理解,上述第二辐射体与上述第三辐射体为不同的辐射体,第二辐射体的谐振频率与第三辐射体的谐振频率不同。
可选的,本公开实施例中,上述第二辐射体可以为环状辐射体,上述第三辐射体可以为多边形辐射体。
可选的,本公开实施例中,上述环状辐射体可以为矩形环状辐射体或正方形环状辐射体等任意可能形状的环状辐射体。上述多边形辐射体可以为矩形辐射体、正方形辐射体或六边形辐射体等任意可能的多边形辐射体。具体可以根据实际使用需求确定,本公开实施例不作限定。
可选的,本公开实施例中,上述环状辐射体可以为封闭的环状辐射体,即该环状辐射体的各个边依次连续;上述环状辐射体也可以为半封闭的环状辐射体,即该环状辐射体的边部分连续。具体可以根据实际使用需求确定,本公开实施例不作限定。
可选的,本公开实施例中,上述第二辐射体的面积可以大于上述第三辐射体的面积。
可选的,本公开实施例中,上述第三辐射体(即多边形辐射体)可以位于上述第二辐射体(即环状辐射体)的中间。
当然,实际实现时,上述第二辐射体的形状和第三辐射体的形状还可以为任意可能的形状,具体可以根据实际使用需求确定,本公开实施例不作限定。
本公开实施例中,由于不同的辐射体的谐振频率不同,因此当上述第一辐射体、第二辐射体和第三辐射体为不同的辐射体,且第一辐射体、第二辐射体和第三辐射体位于天线单元中的不同位置时,上述第一辐射体、第二辐射体和第三辐射体可以与上述M个耦合体耦合产生不同频率的电磁波,如此可以使得天线单元覆盖不同的频段,即可以增加天线单元覆盖的频段,从而可以提高天线单元的性能。
可选的,本公开实施例中,上述第一辐射体的谐振频率可以为第一频率,上述第二辐 射体的谐振频率可以为第二频率,上述第三辐射体的谐振频率可以为第三频率。
其中,上述第一频率可以小于上述第二频率,上述第二频率可以小于上述第三频率。
本公开实施例中,由于不同辐射体的谐振频率不同,因此上述第一辐射体、第二辐射体和第三辐射体的谐振频率可以为不同的频率。
可选的,本公开实施例中,上述第一频率可以属于第一频率范围,上述第二频率可以属于第二频率范围,上述第三频率可以属于第三频率范围。
其中,上述第一频率范围可以为24GHz-27GHz,上述第二频率范围可以为27GHz-30GHz,上述第三频率范围可以为37GHz-43GHz。
示例性的,假设上述第二辐射体为环状辐射体,第三辐射体为多边形辐射体,如图6所示,为本公开实施例提供的天线单元工作时,天线单元的反射系数图。其中,上述M个耦合体与第一辐射体耦合产生的电磁波的频率可以属于图6中的61所指示的频率范围,即第一辐射体的谐振频率属于图6中的61所指示的频率范围;上述M个耦合体与环状辐射体(即第二辐射体)耦合产生的电磁波的频率可以属于图6中的62所指示的频率范围,即环状辐射体的谐振频率属于图6中的62所指示的频率范围;上述M个耦合体与多边形辐射体(即第三辐射体)耦合产生的电磁波的频率可以属于图6中的63所指示的频率范围,即多边形辐射体的谐振频率属于图6中的63所指示的频率范围。并且由图6可见,耦合体与第一辐射体耦合可以产生低频的电磁波,耦合体与第二辐射体耦合可以产生临近低频的电磁波,如此本公开实施例提供的天线单元可以覆盖24.25GHz-29.5GHz(例如n257、n258和n261等)的频率范围,从而可以扩宽天线单元的低频带宽;耦合体与第三辐射体耦合可以产生高频的电磁波,如此本公开实施例提供的天线单元可以覆盖37GHz-43GHz(例如n259和n260等)的频率范围。综上,本公开实施例提供的天线单元可以覆盖大多数5G毫米波频段(例如n257、n258、n259、n260、n261等已经规划的5G毫米波频段),从而可以提高终端设备的天线性能。
需要说明的是,上述图6中的点a、点b、点c、点d和点e用于标记回波损耗的数值,由图6可见,点a、点b、点c、点d和点e标记的回波损耗的数值,均小于-6dB。即本公开实施例提供的天线单元可以满足实际使用需求。
可选的,本公开实施例中,天线单元还可以包括设置在该上述第一辐射体与第一绝缘体之间的第二绝缘体,上述M个耦合体可以承载在该第二绝缘体上。
示例性的,结合图3,如图7所示,天线单元20还可以包括设置在第一辐射体206和第一绝缘体204之间的第二绝缘体208。其中,M个耦合体203承载在第二绝缘体208上。
需要说明的是,上述图7中的第二绝缘体208上的圆形填充部分用于表示第一金属柱2070穿过第二绝缘体208,嵌入第一绝缘体204中。
可选的,本公开实施例中,上述第二绝缘体的形状可以与绝缘凹槽的开口形状相同,例如长方体或圆柱体等任意可能的形状。
可选的,本公开实施例中,上述第二绝缘体的材料可以为相对介电常数和损耗角正切值均比较小的绝缘材料。
可选的,本公开实施例中,上述第二绝缘体的材料可以与上述第一绝缘体的材料相同。
可选的,本公开实施例中,上述第二绝缘体的材料可以塑胶或者泡沫等任意可能的材料。具体可以根据实际使用需求确定,本公开实施例不作限定。
示例性的,本公开实施例中,上述第二绝缘体的材料的相对介电常数可以为2.5,损耗角正切值可以为0.001。
当然,实际实现时,上述第二绝缘体的形状还可以为任意满足实际使用需求的形状,本公开实施例对此不作具体限定,具体可以根据实际使用需求确定。
需要说明的是,本公开实施例,在承载上述M个耦合体的前提下,第二绝缘体的材料的相对介电常数和损耗角正切值越小,该第二绝缘体对天线单元的辐射效果的影响越小。也就是说,上述第二绝缘体的材料的相对介电常数和损耗角正切值越小,第二绝缘体对天线单元的工作性能影响越小,天线单元的辐射效果越好。
可选的,本公开实施例中,上述至少两个辐射体中的至少一个辐射体可以位于上述第一绝缘体的表面。
可以理解,本公开实施例中,上述至少两个辐射体均可以位于第一绝缘体的表面;或者,上述至少两个辐射体中的部分辐射体可以位于第一绝缘体的表面,或者,上述至少两个辐射体中的一个辐射体可以位于第一绝缘体的表面。具体可以根据实际使用需求确定。
示例性的,假设上述至少两个辐射体为两个辐射体,分别为第二辐射体和第三辐射体。如图4所示,第二辐射体2050与第三辐射体2051均可以位于第一绝缘体的表面。
需要说明的是,如图4所示,第二辐射体2050和第三辐射体2051承载在第一绝缘体204上,M个耦合体承载在第二绝缘体208上,第二绝缘体208位于第一绝缘体204与第一辐射体(图4中未示出)之间;馈电部202设置在绝缘凹槽201的开口边缘,且贯穿绝缘凹槽201,以及馈电部202穿过第二绝缘体208与耦合体203电连接。
当然,实际实现时,上述至少两个辐射体还可以位于上述第一绝缘体中任意可能的位置,具体可以根据实际使用需求确定,本公开实施例不作限定。
本公开实施例中,由于辐射体所在的位置不同,天线单元的性能也可能不同,因此可以根据实际使用需求设置上述至少两个辐射体的位置,从而可以使得天线单元的设计更加灵活。
可选的,本公开实施例中,结合图3,如图8所示,天线单元20还可以包括K个第三金属柱209,该K个第三金属柱209可以凸出于绝缘凹槽201底部的内表面。
其中,上述K个第三金属柱中的每个第三金属柱209的长度可以小于或等于绝缘凹槽的深度,K为正整数。
可以理解,本公开实施例中,上述K个第三金属柱设置在绝缘凹槽底部。
示例性的,如图4所示,第三金属柱209设置在绝缘凹槽201底部,且第三金属柱209凸出于绝缘凹槽201的内表面。
本公开实施例中,上述第三金属柱的长度可以小于绝缘凹槽的高度。
可选的,本公开实施例中,上述第三金属柱的直径可以根据绝缘凹槽的尺寸确定。具体的,该第三金属柱的直径可以根据绝缘凹槽的底部的内表面的面积确定。
可选的,本公开实施例中,上述K个第三金属柱可以均匀分布在凹槽底部。具体的,该K个第三金属柱可以均匀分布在绝缘凹槽底部的中心位置。
本公开实施例中,天线单元还可以包括K个第三金属柱,该K个第三金属柱可以用于调节天线单元的阻抗,从而调节调节第一频率。该第一频率可以为上述M个耦合体与至少两个辐射体和第一辐射体耦合产生的电磁波的频率。
可选的,本公开实施例中,上述K个第三金属柱可以以阵列形式排布。具体的,该K个第三金属柱可以以阵列形式排布在绝缘凹槽底部的中心位置。
示例性的,如图8所示,绝缘凹槽201底部设置有9个第三金属柱(即K=9),该9个第三金属柱以3×3的阵列(即方阵)形式排列在绝缘凹槽201底部的中心位置。
可选的,本公开实施例中,天线单元还可以包括设置在绝缘凹槽内的第三绝缘体,该第三绝缘体可以围绕在上述第三金属柱周围。
其中,上述第三绝缘体的相对介电常数与空气的相对介电常数的差值可以在预设范围内。
本公开实施例中,由于上述第三金属柱设置在绝缘凹槽底部,因此可以通过在绝缘凹槽内设置第三绝缘体,隔离该第三金属柱和上述隔离体(例如第一金属柱、第二金属柱等),从而可以避免第三金属柱和隔离体之间互相干扰。
可选的,本公开实施例中,上述第三绝缘体可以为相对介电常数为1或接近于1(即空气的相对介电常数)的泡沫材料或者塑胶材料。具体可以根据实际使用需求确定,本公开实施例不作限定。
本公开实施例中,上述预设范围可以根据天线性能确定,本公开实施例不作限定。
可选的,本公开实施例中,上述绝缘凹槽中也可以不填充任何绝缘体。可以理解,在绝缘凹槽中不填充任何绝缘体的情况下,该绝缘凹槽中填充的介质即为空气(相对介电常数为1C 2)。
本公开实施例中,上述第三绝缘体可以隔离上述第三金属柱和隔离体,从而可以使得这两者互不干扰,进而可以使得天线单元的性能更加稳定。
下面再结合图9,对本公开实施例提供的天线单元进行进一步示例性的说明。
示例性的,如图9所示,为本公开实施例提供的天线单元在Z轴反向(如图3所示的坐标系)上的俯视图。其中,第一绝缘体204中设置有第二辐射体2050和第三辐射体2051,第一绝缘体204和绝缘凹槽201(图9中仅示出绝缘凹槽的开口)之间还设置有4个耦合体(包括耦合体2030、耦合体2031、耦合体2032和耦合体2033);绝缘凹槽201的开口边缘分别设置有N个第一金属柱2070(且该N个第一金属柱嵌入第一绝缘体204)和P个第二金属柱2071,绝缘凹槽底部设置有K个第三金属柱209。具体的,由于该4个耦合体在Z轴方向上与第二辐射体2050和第三辐射体2051有重叠的部分,因此该4个耦合体可以与第二辐射体2050和第三辐射体2051耦合;由于该4个耦合体在Z轴方向上与K个第三金属柱209无重叠部分,可以避免该K个第三金属柱209与该4个耦合体耦合,从而可以使得该K个第三金属柱209调节天线单元的阻抗,进而可以调节天线单元覆盖的频率范围。
需要说明的是,由于在Z轴方向俯视本公开实施例提供的天线单元时,上述绝缘凹槽、耦合体、P个第二金属柱和K个第三金属柱均是不可见的,因此为了准确地示意各个部件之间的关系,上述图9中的绝缘凹槽和耦合体(包括耦合体2030、耦合体2031、耦合体2032和耦合体2033)是以虚线示意的;P个第二金属柱是以竖线填充、并用虚线框包围示意的;K个第三金属柱是以黑色填充,并用虚线包围示意的。
本公开实施例中,由于上述至少两个辐射体和第一辐射体与M个耦合体耦合所产生的电磁波的频率天线单元的阻抗有关,因此可以通过在设置上述第三金属柱,调节天线单元 的阻抗,如此可以调节至少两个辐射体和第一辐射体与该M个耦合体耦合产生的电磁波的频率,从而可以使得天线单元覆盖的频段处于5G毫米波频段。
需要说明的是,本公开实施例中,上述各个附图所示的天线单元均是以结合本公开实施例中的一个附图为例示例性的说明的。具体实现时,上述各个附图所示的天线单元还可以结合上述实施例中示意的其它可以结合的任意附图实现,此处不再赘述。
本公开实施例提供一种终端设备,该终端设备可以包括上述如图2至图9中任一实施例提供的天线单元。对于天线单元的描述具体可以参见上述实施例中对天线单元的相关描述,此处不再赘述。
本公开实施例中的终端设备可以为移动终端,也可以为非移动终端。示例性的,移动终端可以为手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本或者个人数字助理(personal digital assistant,PDA)等,非移动终端可以为个人计算机(personal computer,PC)、电视机(television,TV)等,本公开实施例不作具体限定。
可选的,本公开实施例中,终端设备的壳体中可以设置有至少一个第一凹槽,每个天线单元可以设置在一个第一凹槽内。
本公开实施例中,可以通过在终端设备的壳体中设置上述第一凹槽,并将本公开实施例提供的天线单元设置在该第一凹槽内,实现在终端设备中集成至少一个本公开实施例提供的天线单元。
可选的,本公开实施例中,上述第一凹槽可以设置在终端设备的壳体的边框中。
本公开实施例中,如图10所示,终端设备4可以包括壳体40。壳体40可以包括第一边框41,与第一边框41连接的第二边框42,与第二边框42连接的第三边框43,与第三边框43和第一边框41均连接的第四边框44。终端设备4还可以包括与第二边框42和第四边框44均连接的地板45,以及由第三边框43、部分第二边框42和部分第四边框44组成的第一天线46。其中,第二边框42上设置有第一凹槽47。如此,本公开实施例提供的天线单元可以设置该第一凹槽内,从而可以使得终端设备中包括本公开实施例提供的天线单元形成的阵列天线模组,进而可以实现在终端设备中集成本公开实施例提供的天线单元的设计。
其中,上述地板可以为终端设备中的PCB或金属中框,或者为终端设备的显示屏等任意可以作为虚拟地的部分。
需要说明的是,本公开实施例中,上述第一天线可以为终端设备的第二代移动通信系统(即2G系统)、第三代移动通信系统(即3G系统),以及第四代移动通信系统(即4G系统)等系统的通信天线。本公开实施例提供的天线单元可以为终端设备的5G系统的天线。
可选的,本公开实施例中,上述第一边框、第二边框、第三边框和第四边框可以依次首尾连接形成封闭式边框;或者,上述第一边框、第二边框、第三边框和第四边框中的部分边框可以连接形成半封闭式边框;或者,上述第一边框、第二边框、第三边框和第四边框可以互不连接形成的开放式边框。具体可以根据实际使用需求确定,本公开实施例不作限定。
需要说明的是,上述图10所示的壳体40包括的边框是以第一边框41、第二边框42、 第三边框43和第四边框44依次首尾连接形成的封闭式边框为例进行示例性的说明的,其并不对本公开实施例造成任何限定。对于上述第一边框、第二边框、第三边框和第四边框之间以其它连接方式(部分边框连接或各个边框互不连接)形成的边框,其实现方式与本公开实施例提供的实现方式类似,为避免重复,此处不再赘述。
可选的,本公开实施例中,上述至少一个第一凹槽可以设置壳体的同一边框中,也可以设置在不同的边框中。具体可以根据实际使用需求确定,本公开实施例不作限定。
可选的,本公开实施例中,一个第一凹槽可以设置在壳体的第一边框、第二边框、第三边框或第四边框中。具体可以根据实际使用需求确定,本公开实施例不作限定。
需要说明的是,本公开实施例中,上述图10是以第一凹槽47设置在壳体40的第二边框42上,且第一凹槽47的开口方向为如图10所示的坐标系的Z轴正向为例进行示例性说明的。
可以理解,本公开实施例中,如图10所示,当上述第一凹槽设置在壳体的第一边框41上时,第一凹槽的开口方向可以为X轴正向;当上述第一凹槽设置在壳体的第三边框上时,第一凹槽的开口方向可以为X轴反向;当上述第一凹槽设置在壳体的第四边框上时,第一凹槽的开口方向可以为Z轴反向。
可选的,本公开实施例中,终端设备的壳体中可以设置有多个第一凹槽,且每个第一凹槽内可以设置有一个本公开实施例提供的天线单元。如此,这多个天线单元可以在终端设备中形成天线阵列,从而可以提高终端设备的天线性能。
本公开实施例中,如图11所示,为本公开实施例提供的天线单元辐射频率为28GHz的信号(即天线单元辐射低频信号)时,天线单元辐射的方向图;如图12所示,为本公开实施例提供的天线单元辐射频率为39GHz的信号(即天线单元辐射高频信号)时,天线单元辐射的方向图。由图11和图12可见,辐射高频信号时的最大辐射方向,与辐射低频信号时的最大辐射方向相同,因此本公开实施例提供的天线单元适合组成天线阵列。如此,终端设备可以设置至少两个第一凹槽,并在每个第一凹槽中设置一个本公开实施例提供的天线单元,从而可以使得终端设备中包括该天线阵列,进而可以提高终端设备的天线性能。
可选的,本公开实施例中,在终端设备中集成多个本公开实施例提供的天线单元的情况下,每个天线单元之间的距离可以根据天线单元的隔离度和该多个天线单元形成的天线阵列的扫描角度确定。具体可以根据实际使用需求确定,本公开实施例不作限定。
可选的,本公开实施例中,终端设备的壳体上设置的第一凹槽的数量可以根据第一凹槽的尺寸和终端设备的壳体的尺寸确定。本公开实施例对此不作限定。
示例性的,假设壳体的第二边框上设置有多个第一凹槽(未在图13中示出),且每个第一凹槽中设置有一个天线单元,那么,如图13所示,第一金属柱2070设置在绝缘凹槽的开口边缘、且嵌入第一绝缘体204,至少两个辐射体205位于第一绝缘体204的表面。
需要说明的是,本公开实施例中,上述图13中是以第二边框上设置的3个第一凹槽(设置有3个天线单元)为例进行示例性说明的,其并不对本公开实施例形成任何限定。可以理解,具体实现时,第二边框上设置的第一凹槽的数量可以根据实际使用需求确定,本公开实施例不做任何限定。
本公开实施例提供一种终端设备,该终端设备包括天线单元。天线单元可以包括绝缘凹槽,设置在绝缘凹槽中的M个馈电部,M个耦合体,第一绝缘体,该第一绝缘体承载 的至少两个辐射体,设置在绝缘凹槽底部的第一辐射体,以及围绕该M个耦合体设置的隔离体;其中,M个馈电部均与第一辐射体和隔离体绝缘,该M个耦合体位于第一辐射体和第一绝缘体之间,且该M个馈电部中的每个馈电部分别与一个耦合体电连接,以及该M个耦合体中的每个耦合体均与该至少两个辐射体和第一辐射体耦合,不同辐射体的谐振频率不同,M为正整数。通过该方案,一方面,由于耦合体与至少两个辐射体和第一辐射体均耦合,因此在耦合体接收到交流信号的情况下,耦合体可以与该至少两个辐射体和第一辐射体进行耦合,从而可以使得该至少两个辐射体和第一辐射体产生感应的交流信号,从而可以使得该至少两个辐射体和第一辐射体产生一定频率的电磁波;并且,由于不同辐射体的谐振频率不同,因此该至少两个辐射体和第一辐射体产生的电磁波的频率也不同,从而可以使得天线单元覆盖不同的频段,即可以增加天线单元覆盖的频段。另一方面,由于天线单元中围绕M个耦合体设置有隔离体,因此该隔离体可以隔离该至少两个辐射体和第一辐射体向隔离体在方向辐射的电磁波,使得该至少两个辐射体和第一辐射体产生的电磁波的最大辐射方向朝向绝缘凹槽的开口方向,如此可以在保证天线单元的方向性的前提下,提升天线单元在其辐射方向上的辐射强度。如此,由于可以增加天线单元覆盖的频段,并且可以提高天线单元在其辐射方向上的辐射强度,因此可以提高天线单元的性能。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本公开各个实施例所述的方法。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本公开的保护之内。

Claims (15)

  1. 一种天线单元,所述天线单元包括绝缘凹槽,设置在所述绝缘凹槽中的M个馈电部,M个耦合体,第一绝缘体,所述第一绝缘体承载的至少两个辐射体,设置在所述绝缘凹槽底部的第一辐射体,以及围绕所述M个耦合体设置的隔离体;
    其中,所述M个馈电部均与所述第一辐射体和所述隔离体绝缘,所述M个耦合体位于所述第一辐射体和所述第一绝缘体之间,且所述M个馈电部中的每个馈电部分别与一个耦合体电连接,以及所述M个耦合体中的每个耦合体均与所述至少两个辐射体和所述第一辐射体耦合,不同辐射体的谐振频率不同,M为正整数。
  2. 根据权利要求1所述的天线单元,其中,所述隔离体包括N个第一金属柱,N为正整数。
  3. 根据权利要求2所述的天线单元,其中,所述隔离体还包括P个第二金属柱,所述P个第二金属柱设置在所述N个第一金属柱的内侧;
    其中,所述第二金属柱的长度小于所述第一金属柱的长度,P为正整数。
  4. 根据权利要求1至3中任一项所述的天线单元,其中,所述M个耦合体为四个耦合体,所述四个耦合体组成两个耦合体组,每个耦合体组包括对称设置的两个耦合体,且一个耦合体组的对称轴与另一个耦合体组的对称轴正交;
    其中,与第一馈电部连接的信号源和与第二馈电部连接的信号源的幅值相等,相位相差180度,所述第一馈电部和所述第二馈电部为与同一耦合体组中的两个耦合体分别电连接的馈电部。
  5. 根据权利要求4所述的天线单元,其中,所述两个耦合体位于同一平面上,且任意一个耦合体组中的耦合体分布在另一个耦合体组的对称轴上。
  6. 根据权利要求1所述的天线单元,其中,所述至少两个辐射体包括第二辐射体和第三辐射体。
  7. 根据权利要求6所述的天线单元,其中,所述第二辐射体为环状辐射体,所述第三辐射体为多边形辐射体。
  8. 根据权利要求6或7所述的天线单元,其中,所述第一辐射体的谐振频率为第一频率,所述第二辐射体的谐振频率为第二频率,所述第三辐射体的谐振频率为第三频率;
    其中,所述第一频率小于所述第二频率,所述第二频率小于所述第三频率。
  9. 根据权利要求8所述的天线单元,其中,所述第一频率属于第一频率范围,所述第二频率属于第二频率范围,所述第三频率属于第三频率范围;
    其中,所述第一频率范围为24GHz-27GHz,所述第二频率范围为27GHz-30GHz,所述第三频率范围为37GHz-43GHz。
  10. 根据权利要求1所述的天线单元,其中,所述天线单元还包括设置在所述第一辐射体与所述第一绝缘体之间的第二绝缘体,所述M个耦合体承载在所述第二绝缘体上。
  11. 根据权利要求1所述的天线单元,其中,所述至少两个辐射体中的至少一个辐射体位于所述第一绝缘体的表面。
  12. 根据权利要求1至3中任一项所述的天线单元,其中,所述天线单元还包括 K个第三金属柱,所述K个第三金属柱凸出于所述绝缘凹槽底部的内表面,每个第三金属柱的长度小于或等于所述绝缘凹槽的深度,K为正整数。
  13. 根据权利要求12所述的天线单元,其中,所述天线单元还包括设置在所述绝缘凹槽内的第三绝缘体,所述第三绝缘体围绕在所述K个第三金属柱的周围;
    其中,所述绝缘体的相对介电常数与空气的相对介电常数的差值在预设范围内。
  14. 一种终端设备,所述终端设备包括如权利要求1至13中任一项所述的天线单元。
  15. 根据权利要求14所述的终端设备,其中,所述终端设备的壳体中设置有至少一个第一凹槽,每个天线单元设置在一个第一凹槽内。
PCT/CN2020/090100 2019-05-22 2020-05-13 天线单元及终端设备 WO2020233476A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021569383A JP7239743B2 (ja) 2019-05-22 2020-05-13 アンテナユニット及び端末機器
EP20809127.2A EP3975335B1 (en) 2019-05-22 2020-05-13 Antenna unit and terminal device
KR1020217041893A KR102614892B1 (ko) 2019-05-22 2020-05-13 안테나 유닛 및 단말 장비
ES20809127T ES2968608T3 (es) 2019-05-22 2020-05-13 Unidad de antena y dispositivo terminal
US17/530,847 US12142853B2 (en) 2019-05-22 2021-11-19 Antenna unit and terminal device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910430958.7A CN110212300B (zh) 2019-05-22 2019-05-22 一种天线单元及终端设备
CN201910430958.7 2019-05-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/530,847 Continuation US12142853B2 (en) 2019-05-22 2021-11-19 Antenna unit and terminal device

Publications (1)

Publication Number Publication Date
WO2020233476A1 true WO2020233476A1 (zh) 2020-11-26

Family

ID=67788214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/090100 WO2020233476A1 (zh) 2019-05-22 2020-05-13 天线单元及终端设备

Country Status (6)

Country Link
EP (1) EP3975335B1 (zh)
JP (1) JP7239743B2 (zh)
KR (1) KR102614892B1 (zh)
CN (1) CN110212300B (zh)
ES (1) ES2968608T3 (zh)
WO (1) WO2020233476A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114976607A (zh) * 2021-02-24 2022-08-30 北京京东方技术开发有限公司 天线和通信设备
CN117117476A (zh) * 2023-10-24 2023-11-24 深圳市鑫龙通信技术有限公司 低频辐射单元及可分离的多频基站天线

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110212300B (zh) * 2019-05-22 2021-05-11 维沃移动通信有限公司 一种天线单元及终端设备
CN110828986A (zh) * 2019-10-31 2020-02-21 维沃移动通信有限公司 一种天线单元及电子设备
CN110808455B (zh) * 2019-10-31 2022-09-23 维沃移动通信有限公司 一种天线单元及电子设备
CN110828987A (zh) * 2019-10-31 2020-02-21 维沃移动通信有限公司 一种天线单元及电子设备
CN111129704B (zh) * 2019-12-26 2021-10-29 维沃移动通信有限公司 一种天线单元和电子设备
CN110943284A (zh) * 2019-12-26 2020-03-31 西安易朴通讯技术有限公司 天线组件以及终端设备
CN111740219A (zh) * 2020-07-03 2020-10-02 维沃移动通信有限公司 电子设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040150575A1 (en) * 2003-02-03 2004-08-05 Silver Spring Networks, Inc. Flush-mounted antenna and transmission system
US20070052587A1 (en) * 2005-08-23 2007-03-08 Intel Corporation Compact multi-band, multi-port antenna
CN101740870A (zh) * 2009-12-28 2010-06-16 中国电子科技集团公司第二十六研究所 小型化单馈电点双频双极化微带天线
CN203983480U (zh) * 2014-07-30 2014-12-03 中国电子科技集团公司第五十四研究所 一种宽带宽波束圆极化天线
US8912970B1 (en) * 2011-03-18 2014-12-16 The Boeing Company Antenna element with integral faraday cage
WO2018074377A1 (ja) * 2016-10-19 2018-04-26 株式会社村田製作所 アンテナ素子、アンテナモジュールおよび通信装置
WO2019076928A1 (en) * 2017-10-17 2019-04-25 Sony Mobile Communications Inc. PATCH ANTENNA SUPPORTED BY CAVITY
CN110212300A (zh) * 2019-05-22 2019-09-06 维沃移动通信有限公司 一种天线单元及终端设备

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004007559A (ja) 2002-04-25 2004-01-08 Matsushita Electric Ind Co Ltd 多共振アンテナ、アンテナモジュールおよび多共振アンテナを用いた無線装置
JP4891698B2 (ja) * 2006-08-14 2012-03-07 株式会社エヌ・ティ・ティ・ドコモ パッチアンテナ
JP2010220047A (ja) 2009-03-18 2010-09-30 Mitsubishi Electric Corp アンテナ装置及びアレーアンテナ装置
US8773323B1 (en) * 2011-03-18 2014-07-08 The Boeing Company Multi-band antenna element with integral faraday cage for phased arrays
CN102780075B (zh) * 2012-07-05 2015-09-02 摩比天线技术(深圳)有限公司 微基站天线
JP2016127481A (ja) * 2015-01-06 2016-07-11 株式会社東芝 偏波共用アンテナ
TWM527621U (zh) * 2015-10-28 2016-08-21 正文科技股份有限公司 多極化天線元件
TWI628860B (zh) * 2016-07-06 2018-07-01 新加坡商雲網科技新加坡有限公司 三極化的mimo天線系統
CN106299664B (zh) * 2016-09-21 2019-09-27 深圳大学 一种极化可重构磁电偶极子天线
CN206250377U (zh) * 2016-11-15 2017-06-13 镇江中安通信科技有限公司 一种多频点宽波束圆极化环天线
CN107611600A (zh) * 2017-08-08 2018-01-19 西安电子科技大学 一种产生双模oam涡旋电磁波的siw环形缝隙天线
CN109672023B (zh) * 2018-12-22 2024-02-27 中国电波传播研究所(中国电子科技集团公司第二十二研究所) 一种基于开口谐振环的差分双极化贴片天线

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040150575A1 (en) * 2003-02-03 2004-08-05 Silver Spring Networks, Inc. Flush-mounted antenna and transmission system
US20070052587A1 (en) * 2005-08-23 2007-03-08 Intel Corporation Compact multi-band, multi-port antenna
CN101740870A (zh) * 2009-12-28 2010-06-16 中国电子科技集团公司第二十六研究所 小型化单馈电点双频双极化微带天线
US8912970B1 (en) * 2011-03-18 2014-12-16 The Boeing Company Antenna element with integral faraday cage
CN203983480U (zh) * 2014-07-30 2014-12-03 中国电子科技集团公司第五十四研究所 一种宽带宽波束圆极化天线
WO2018074377A1 (ja) * 2016-10-19 2018-04-26 株式会社村田製作所 アンテナ素子、アンテナモジュールおよび通信装置
WO2019076928A1 (en) * 2017-10-17 2019-04-25 Sony Mobile Communications Inc. PATCH ANTENNA SUPPORTED BY CAVITY
CN110212300A (zh) * 2019-05-22 2019-09-06 维沃移动通信有限公司 一种天线单元及终端设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SETLEM SAI SRUTHI ET AL.: "Design of a Dual-Polarized Antenna Using Square Backed Cavity", 2017 INTERNATIONAL CONFERENCE ON INNOVATIONS IN INFORMATION, EMBEDDED AND COMMUNICATION SYSTEMS (ICIIECS), 17 March 2017 (2017-03-17), pages 1 - 4, XP033311172 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114976607A (zh) * 2021-02-24 2022-08-30 北京京东方技术开发有限公司 天线和通信设备
CN114976607B (zh) * 2021-02-24 2024-03-12 北京京东方技术开发有限公司 天线和通信设备
US11990690B2 (en) 2021-02-24 2024-05-21 Beijing Boe Technology Development Co., Ltd. Antenna and communication device
CN117117476A (zh) * 2023-10-24 2023-11-24 深圳市鑫龙通信技术有限公司 低频辐射单元及可分离的多频基站天线
CN117117476B (zh) * 2023-10-24 2024-01-16 深圳市鑫龙通信技术有限公司 低频辐射单元及可分离的多频基站天线

Also Published As

Publication number Publication date
KR102614892B1 (ko) 2023-12-15
US20220077583A1 (en) 2022-03-10
EP3975335A4 (en) 2022-07-20
JP7239743B2 (ja) 2023-03-14
EP3975335B1 (en) 2023-12-20
CN110212300B (zh) 2021-05-11
CN110212300A (zh) 2019-09-06
ES2968608T3 (es) 2024-05-13
KR20220002694A (ko) 2022-01-06
JP2022533763A (ja) 2022-07-25
EP3975335A1 (en) 2022-03-30

Similar Documents

Publication Publication Date Title
WO2020233476A1 (zh) 天线单元及终端设备
WO2020233477A1 (zh) 天线单元及终端设备
WO2020233478A1 (zh) 天线单元及终端设备
US11387568B2 (en) Millimeter-wave antenna array element, array antenna, and communications product
WO2021104191A1 (zh) 天线单元及电子设备
WO2021083214A1 (zh) 天线单元及电子设备
WO2021083223A1 (zh) 天线单元及电子设备
WO2021104200A1 (zh) 天线单元及电子设备
CN110518340B (zh) 一种天线单元及终端设备
WO2021083217A1 (zh) 天线单元及电子设备
WO2021083222A1 (zh) 天线单元及电子设备
WO2021083219A1 (zh) 天线单元及电子设备
WO2021083220A1 (zh) 天线单元及电子设备
WO2021083213A1 (zh) 天线单元及电子设备
WO2021083218A1 (zh) 天线单元及电子设备
WO2021083212A1 (zh) 天线单元及电子设备
CN210576433U (zh) 一种天线单元及电子设备
US12142853B2 (en) Antenna unit and terminal device
CN110600858A (zh) 一种天线单元及终端设备
CN110600866A (zh) 一种天线单元及终端设备
CN110600867A (zh) 一种天线单元及终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20809127

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021569383

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217041893

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020809127

Country of ref document: EP

Effective date: 20211222