WO2023138324A1 - 一种天线结构、电子设备及无线网络系统 - Google Patents

一种天线结构、电子设备及无线网络系统 Download PDF

Info

Publication number
WO2023138324A1
WO2023138324A1 PCT/CN2022/142628 CN2022142628W WO2023138324A1 WO 2023138324 A1 WO2023138324 A1 WO 2023138324A1 CN 2022142628 W CN2022142628 W CN 2022142628W WO 2023138324 A1 WO2023138324 A1 WO 2023138324A1
Authority
WO
WIPO (PCT)
Prior art keywords
feed
antenna
feeder
patch
feeding
Prior art date
Application number
PCT/CN2022/142628
Other languages
English (en)
French (fr)
Inventor
张晓鹏
张志军
周大为
Original Assignee
荣耀终端有限公司
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司, 清华大学 filed Critical 荣耀终端有限公司
Priority to US18/274,465 priority Critical patent/US20240097348A1/en
Priority to EP22919282.8A priority patent/EP4266502A1/en
Publication of WO2023138324A1 publication Critical patent/WO2023138324A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/002Protection against seismic waves, thermal radiation or other disturbances, e.g. nuclear explosion; Arrangements for improving the power handling capability of an antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means
    • H01Q9/0457Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means electromagnetically coupled to the feed line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2291Supports; Mounting means by structural association with other equipment or articles used in bluetooth or WI-FI devices of Wireless Local Area Networks [WLAN]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0075Stripline fed arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/60Router architectures

Definitions

  • the present application relates to the technical field of antennas, in particular to an antenna structure, electronic equipment and a wireless network system.
  • antennas can be classified into omnidirectional antennas and directional antennas according to different signal radiation directions.
  • the omnidirectional antenna radiates uniformly around, without directionality.
  • directional antennas can radiate within a certain range of angles, so they have higher gain in a specific direction.
  • a directional antenna can be applied to a router, and the directional antenna has a characteristic of higher gain in a specific direction, which can overcome the problem of poor signal caused by signal attenuation through walls.
  • Common directional antenna designs are dipole antennas with reflectors, patch antennas or electromagnetic dipole antennas.
  • a dipole antenna with a reflector is often used in a base station antenna, and the gain is generally about 8 dB, which is relatively low.
  • Electromagnetic dipole antennas usually require multilayer printed circuit boards (Printed Circuit Board, PCB) or three-dimensional metal structures, which are costly and difficult to process. Compared with the electromagnetic dipole antenna, the structure of the patch antenna is simple, but the current patch antenna has limited gain and low practicability.
  • the present application provides an antenna structure, an electronic device and a wireless network system, which have a simple structure and high directional gain.
  • the present application provides an antenna structure, which includes a dielectric plate, a metal base plate, a patch antenna array, a first feed port, a second feed port, and four feed structures.
  • the patch antenna array includes four patch antennas, the four patch antennas are arranged in two rows and two columns, a feeding structure is included between the two patch antennas in each row, and a feeding structure is included between the two patch antennas in each column.
  • the feeding structure between the two patch antennas in each column is connected to the first feeding port, so that the four patch antennas all generate polarization in the first direction.
  • the feeding structure between the two patch antennas in each row is connected to the second feeding port, so that the four patch antennas all generate polarization in the second direction.
  • a patch antenna array is used to increase the gain, and the antenna structure only uses two feed ports to realize the excitation of four patch antennas.
  • the structure of the feed circuit is simple, and the design complexity of the feed circuit is low.
  • the feeding structure can be directly designed on the dielectric board where the patch antenna is located, so that all feeding circuits and the patch antenna can be implemented on the same dielectric board, which can effectively reduce the complexity of the antenna structure and reduce the cost of the antenna structure.
  • the first direction is orthogonal to the second direction.
  • the four patch antennas realize the orthogonal polarization, so the directivity of the antenna structure is good.
  • the antenna structure further includes a metal base plate
  • the first preset distance may be determined according to the operating bandwidth of the antenna structure, which is not specifically limited in this application.
  • each of the four feed structures includes a connected dipole and a set of parallel feed lines.
  • the first feed line included in the parallel feed line is located on the first surface, and the second feed line included is located on the second surface.
  • the feeding structure between the two patch antennas in each column includes a second feeding line connected to the first surface through a corresponding through structure.
  • the feed structure between the two patch antennas in each row includes a first feed line connected to the second surface through a corresponding through structure.
  • the through structure includes one or more through holes, and each of the one or more through holes is filled or plated with a conductive medium.
  • the four feed structures specifically include a first feed structure, a second feed structure, a third feed structure, and a fourth feed structure;
  • the first feeding structure is located between the two patch antennas in the first column, the second feeding structure is located between the two patch antennas in the first row, the third feeding structure is located between the two patch antennas in the second column, and the fourth feeding structure is located between the two patch antennas in the second row.
  • the first feeder of the first feeder structure is connected to the first feeder of the third feeder structure.
  • the second feeding line of the first feeding structure is connected to the first surface through the first through structure
  • the second feeding line of the third feeding structure is connected to the first surface through the third through structure
  • the first through structure and the third through structure are connected on the first surface.
  • the second feeder of the second feeder structure is connected to the second feeder of the fourth feeder structure.
  • the first feeding line of the second feeding structure is connected to the second surface through the second through structure
  • the first feeding line of the fourth feeding structure is connected to the second surface through the fourth through structure
  • the second through structure and the fourth through structure are connected on the second surface.
  • the dipole of each feed structure includes: a first part and a second part.
  • the first part is located on the first surface, the first end of the first part is connected to the first feeder, the first end of the first part is the first input end of the dipole, the second end of the first part includes a first branch, and the distance between the first branch and the nearest patch antenna is a second preset distance;
  • the second part is located on the second surface, the first end of the second part is connected to the second feeder, the first end of the second part is the second input end of the dipole, and the second end of the second part includes a second branch, and the distance between the second branch and the nearest patch antenna is a second preset distance.
  • the size of the second preset distance By adjusting the size of the second preset distance, the size of the series capacitor between the patch antenna and the dipole can be adjusted. During actual adjustment, the shorter the second preset distance is, the higher the capacitance value of the equivalent series capacitor is.
  • Adjusting the width of the first branch and the second branch can also adjust the size of the series capacitance between the patch antenna and the dipole. In actual adjustment, the longer the width of the first branch and the second branch is, the higher the capacitance value of the equivalent series capacitance is.
  • the dipole input impedance is the first impedance value
  • the dipole input impedance is the impedance between the first input end and the second input end
  • the impedance value between the first feeder line and the second feeder line in each group of parallel feeder lines is the first impedance value, so as to achieve impedance matching.
  • each of the four feed structures includes a connected dipole and a set of parallel slot lines.
  • the feed structure between the two patch antennas in each column includes parallel slot lines all located on the first surface, and the feed structure between the two patch antennas in each row includes parallel slot lines all located on the second surface.
  • the four feed structures specifically include a first feed structure, a second feed structure, a third feed structure, and a fourth feed structure.
  • the first feeding structure is located between the two patch antennas in the first column
  • the second feeding structure is located between the two patch antennas in the first row
  • the third feeding structure is located between the two patch antennas in the second column
  • the fourth feeding structure is located between the two patch antennas in the second row
  • the first slot line of the first feeding structure is connected to the first slot line of the third feeding structure
  • the second slot line of the first feeding structure is connected to the second slot line of the third feeding structure
  • the first slot line of the second feeding structure is connected to the first slot line of the fourth feeding structure
  • the second slot line of the second feeding structure It is connected with the second slot line of the fourth feed structure.
  • the dipole of each feed structure includes: a first part and a second part; the first part and the second part are located on the same surface.
  • the first end of the first part is connected to the first slot line, the first end of the first part is the first input end of the dipole, the second end of the first part includes a first branch, and the first branch is separated from the nearest patch antenna by a second preset distance.
  • the first end of the second part is connected to the second slot line, the first end of the second part is the second input end of the dipole, the second end of the second part includes a second branch, and the second branch is separated from the nearest patch antenna by a second preset distance.
  • the input impedance of the dipole is the first impedance value
  • the input impedance of the dipole is the impedance between the first input terminal and the second input terminal
  • the impedance value between the first slot line and the second slot line in each group of parallel feeders is the first impedance value, so as to achieve impedance matching.
  • the first branch and the second branch are T-shaped branches; or the first branch and the second branch are triangular branches; or, the first branch and the second branch are semicircular branches.
  • each patch antenna included in the patch antenna array is a square patch antenna; or, each patch antenna included in the patch antenna array is a circular patch antenna; or, each patch antenna included in the patch antenna array is a rhombic patch antenna.
  • the first surface and the second surface of the dielectric plate are square, and side lengths of the first surface and the second surface are both a first preset length.
  • the distance between the geometric centers of the two patch antennas in the same column is the second preset length, and the distance between the geometric centers of the two patch antennas in the same row is the second preset length; the second preset length is half of the first preset length.
  • the present application further provides an electronic device, where the electronic device includes one or more antenna structures provided in the above implementation manners, and further includes a first radio frequency circuit, and the antenna structure is connected to the first radio frequency circuit.
  • the electronic device applies the antenna structure provided in the above implementation manner, and the antenna structure excites four patch antennas by means of dipole coupling and feeding.
  • the traditional excitation method requires four ports.
  • the feed circuit is divided into four structures.
  • the feed circuit is divided into two structures, thus reducing the complexity of the design of the feed circuit.
  • the dipole is connected to two parallel feeders, and the two parallel feeders can be directly designed on the dielectric board where the patch antenna is located, so that all the feeder circuits and the patch antenna can be implemented on the same dielectric board, which can effectively reduce the complexity of the antenna structure, reduce the cost of the antenna structure, that is, reduce the cost of electronic equipment.
  • the antenna structure is directional, has high directional gain, high isolation between the two feeding ports, and can also cover a wide range of frequency bands, such as covering both the 5GHz frequency band and the 6GHz frequency band of Wi-Fi 6 and Wi-Fi 6E. Therefore, it has high practicability and can reduce the number of antennas installed on electronic equipment to further reduce the cost of electronic equipment.
  • the electronic device includes multiple antenna structures, and at least two of the multiple antenna structures have different working frequency bands.
  • the electronic device is a router.
  • the present application also provides a wireless network system, where the wireless network system includes one or more electronic devices provided in the above embodiments.
  • the antenna structure provided by this application is applied to the electronic equipment in the wireless network system.
  • the cost of the electronic equipment is saved, and on the other hand, the gain of the electronic equipment in a specific direction is increased, thereby improving the signal quality of the wireless network system and the stability of the network.
  • the wireless network system further includes one or more second electronic devices, where the second electronic devices include an omnidirectional antenna.
  • FIG. 1A is a schematic diagram of a scene provided by an embodiment of the present application.
  • FIG. 1B is a schematic diagram of the second scene provided by the embodiment of the present application.
  • FIG. 2 is a schematic diagram of an antenna structure provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a feed structure provided in an embodiment of the present application.
  • Fig. 4 is an enlarged view of area A in Fig. 2 provided by the embodiment of the present application;
  • Figure 5 is an enlarged view of area B in Figure 2 provided by the embodiment of the present application.
  • Figure 6A is an enlarged view of area C in Figure 5 provided by the embodiment of the present application.
  • FIG. 6B is an equivalent circuit diagram 1 provided by the embodiment of the present application.
  • FIG. 7A is a schematic diagram of the distribution of the patch antenna array provided by the embodiment of the present application.
  • FIG. 7B is a schematic diagram of the front of the antenna structure provided by the embodiment of the present application.
  • FIG. 7C is a schematic diagram of the back side of the antenna structure provided by the embodiment of the present application.
  • FIG. 8 is a schematic diagram of simulation of S parameters of the antenna structure provided by the embodiment of the present application.
  • FIG. 9 is a schematic diagram of the electric field amplitude distribution of the antenna structure provided by the embodiment of the present application.
  • FIG. 10 is a radiation pattern diagram of the xz plane provided by the embodiment of the present application.
  • Fig. 11 is the radiation pattern of the yz plane provided by the embodiment of the present application.
  • FIG. 12 is a schematic diagram of another antenna structure provided by an embodiment of the present application.
  • FIG. 13 is a schematic diagram of another antenna structure provided by the embodiment of the present application.
  • FIG. 14 is a schematic diagram of another antenna structure provided by the embodiment of the present application.
  • FIG. 15 is a schematic diagram of another antenna structure provided by an embodiment of the present application.
  • FIG. 16 is a schematic diagram of another antenna structure provided by the embodiment of the present application.
  • FIG. 17 is a schematic diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 18 is a schematic diagram of another electronic device provided by the embodiment of the present application.
  • FIG. 19 is a schematic diagram of another electronic device provided by the embodiment of the present application.
  • FIG. 20 is a schematic diagram of a wireless network system provided by an embodiment of the present application.
  • the solution provided by this application is applied to an electronic device provided with an antenna.
  • the electronic device may be a mobile phone, a notebook computer, a wearable electronic device (such as a smart watch), a tablet computer, an augmented reality (augmented reality, AR) device, a virtual reality (virtual reality, VR) device, a router device, and a vehicle-mounted device.
  • the following takes the electronic device as a router as an example for description.
  • FIG. 1A is a first schematic diagram of a scene provided by an embodiment of the present application.
  • the router 10 in FIG. 1A uses an omnidirectional antenna and is located on the left side of the wall, and the terminal device 20 is located on the right side of the wall. Since the omnidirectional antenna radiates uniformly around, the gain in a specific direction is not high, so after the signal passes through the wall and attenuates, the signal received by the terminal device 20 on the right side of the wall is relatively weak.
  • the router 20 in FIG. 1A uses a directional antenna and is located on the right side of the wall, and the terminal device 21 is located on the right side of the wall. Since the omnidirectional antenna has higher gain in a specific direction, even if the signal passes through the wall and attenuates, the terminal device 20 on the right side of the wall can still receive a relatively strong signal.
  • FIG. 1B is a second schematic diagram of the scene provided by the embodiment of the present application.
  • router 11 uses a directional antenna to send signals to router 12, and router 12 can use an omnidirectional antenna to communicate with surrounding terminal devices 20 and 21 .
  • the omnidirectional antenna has a higher gain in a specific direction, the stability of sending signals from the router 11 to the router 12 is ensured, and the layout position of the router 11 can be more free, even a partition wall arrangement can be realized.
  • FIG. 1A and FIG. 1B is only a possible implementation manner, and does not constitute a limitation to the technical solution of the present application.
  • directional antennas are dipole antennas with reflectors, patch antennas or electromagnetic dipole antennas.
  • a dipole antenna with a reflector is often used in a base station antenna, and the gain is generally about 8 dB, which is relatively low.
  • Electromagnetic dipole antennas usually require multi-layer PCBs or three-dimensional metal structures, which are costly and difficult to process.
  • the structure of the patch antenna is simple, but the gain of the current patch antenna is limited, and the patch antenna array needs to be used to increase the gain, but the patch antenna array needs multiple feed ports to feed each patch antenna at the same position in the same phase to generate directional radiation, so an additional feed circuit needs to be designed, which is less practical.
  • the present application provides an antenna structure, electronic equipment and a wireless network system.
  • the antenna structure is simple in structure and has high directional gain, which will be described in detail below with reference to the accompanying drawings.
  • connection should be understood in a broad sense.
  • connection can be a fixed connection, a detachable connection, or an integral body; it can be a direct connection or an indirect connection through an intermediary.
  • the radio frequency antenna in the following embodiments of the present application is referred to as the antenna for short
  • the printed circuit board Printed Circuit Board, PBC
  • PBC printed Circuit Board
  • FIG. 2 the figure is a schematic diagram of an antenna structure provided by an embodiment of the present application.
  • the antenna structure includes: a dielectric plate 100, a metal base plate 200, a patch antenna array, a first feed port 50, a second feed port 60 and four feed structures.
  • first predetermined distance h between the dielectric board 100 and the metal base 200 , the relative position between the dielectric board 100 and the metal base 200 is fixed, and the metal base 200 serves as the ground end of the antenna structure.
  • the patch antenna array includes patch antennas 01 to 04, four patch antennas are arranged in two rows and two columns, a feeding structure is included between two patch antennas in each row, and a feeding structure is included between two patch antennas in each column.
  • the first feeding port 50 and the patch antenna array are located on the first surface of the dielectric board 100
  • the second feeding port 60 is located on the second surface of the dielectric board
  • the second surface is opposite to the first surface.
  • the first surface shown in FIG. 2 is the upper surface of the dielectric plate 100
  • the second surface is the lower surface of the dielectric plate 100
  • the second surface faces the metal base plate 200 .
  • the feeding structure between the two patch antennas in each column is connected to the first feeding port 50 so that the four patch antennas are all polarized in the first direction, and the first direction corresponds to the x direction shown in the figure.
  • the feeding structure between the two patch antennas in each row is connected to the second feeding port, so that the four patch antennas all generate polarization in the second direction, the second direction corresponds to the y direction shown in the figure, and the first direction is orthogonal to the second direction.
  • the first feeding structure is located between the patch antenna 01 and the patch antenna 04 in the first row, and the first feeding structure includes a first dipole 10 , a first feeding line 11 and a second feeding line 12 .
  • the first feeder 11 and the second feeder 12 of the first feeder structure are connected to the first feeder port 50 .
  • the second feeding structure is located between the patch antenna 01 and the patch antenna 02 in the first row, and the second feeding structure includes a second dipole 20 , a first feeding line 21 and a second feeding line 22 . Wherein, the first feeder 21 and the second feeder 22 of the second feeder structure are connected to the second feeder port 60 .
  • the third feeding structure is located between the patch antenna 02 and the patch antenna 03 in the second column, and the third feeding structure includes a third dipole 30 , a first feeding line 31 and a second feeding line 32 . Wherein, the first feeder 31 and the second feeder 32 of the third feeder structure are connected to the first feeder port 50 .
  • the fourth feed structure is located between the patch antenna 03 and the patch antenna 04 in the second row, and the fourth feed structure includes a fourth dipole 40 , a first feed line 41 and a second feed line 42 . Wherein, the first feeder 41 and the second feeder 42 of the fourth feeder structure are connected to the second feeder port 60 .
  • the first feed structure and the third feed structure are used to make the patch antennas 01 to 04 generate polarization in a first direction, and the first direction corresponds to the x direction shown in the figure.
  • the second feeding structure and the fourth feeding structure are used to make the patch antennas 01 to 04 generate polarization in a second direction, and the second direction corresponds to the y direction shown in the figure.
  • the illustrated x direction is perpendicular to the y direction.
  • a patch antenna array is used to increase the gain, and the antenna structure only uses two feeding ports, the structure of the feeding circuit is simple, and the design complexity of the feeding circuit is low.
  • the feeding structure can be directly designed on the dielectric board where the patch antenna is located, so that all feeding circuits and the patch antenna can be implemented on the same dielectric board, which can effectively reduce the complexity of the antenna structure and reduce the cost of the antenna structure.
  • the antenna structure shown in FIG. 2 specifically includes a dielectric plate 100, a metal base plate 200, a patch antenna array, a first feeding structure, a second feeding structure, a third feeding structure, a fourth feeding structure, a first feeding port 50 and a second feeding port 60.
  • the embodiment of the present application does not limit the specific material of the dielectric board 100, which may be determined according to actual conditions.
  • the thickness d of the dielectric board 100 may be determined according to actual conditions, which is not specifically limited in this embodiment of the present application.
  • the first preset distance h between the dielectric plate 100 and the metal base plate 200 may be determined according to the bandwidth of the antenna structure during operation, which is not specifically limited in this embodiment of the present application.
  • the patch antenna array is located on the first surface of the dielectric board 100 .
  • the patch antenna array includes patch antennas 01 to 04, and the above four patch antennas are arranged in a 2 ⁇ 2 arrangement, that is, the patch antenna array includes two rows, each row includes two patch antennas, and the patch antenna array includes two columns, each row includes two patch antennas.
  • the first row in the patch antenna array shown in FIG. 2 includes the patch antenna 01 and the patch antenna 02, the second row includes the patch antenna 03 and the patch antenna 04, the first row includes the patch antenna 01 and the patch antenna 04, and the second row includes the patch antenna 02 and the patch antenna 03.
  • this figure is a schematic diagram of a feed structure provided by an embodiment of the present application.
  • the first feed structure includes a first dipole 10 , a first feed line 11 and a second feed line 12 .
  • the first dipole includes a first part 101 and a second part 102
  • the first part 101 and the first feeder 11 are located on the first surface of the dielectric plate 100
  • the second part 102 and the second feeder 12 are located on the second surface of the dielectric plate 100 .
  • the input end of the first part 101 is connected to the first feeder 11 , and the end of the first part 101 is separated from the patch antenna 01 in FIG. 2 by a second preset distance.
  • the input end of the second part 102 is connected to the second feeder 12 , and the end of the second part 102 is separated from the patch antenna 04 in FIG. 2 by a second preset distance.
  • the first feeder line 11 and the second feeder line 12 are a set of parallel lines.
  • the input impedance of the input terminal of the first dipole 10 is the impedance between the first part 101 and the second part 102 .
  • FIG. 4 is an enlarged view of area A in FIG. 2 provided by the embodiment of the present application.
  • the first feed structure includes a first dipole 10 , a first feed line 11 and a second feed line 12 .
  • the first feeder 11 is located on the first surface of the dielectric board 100
  • the first end of the first feeder 11 is connected to the first feed port 50
  • the second end of the first feeder 11 is connected to the first part of the first dipole 10 .
  • the second feeder 12 is located on the second surface of the dielectric board 100 .
  • the first end of the second feeder 12 is connected to the first surface of the dielectric board 100 through the first through structure 13 , and then connected to the first feeder port 50 on the first surface.
  • the first through structure 13 includes one or more through holes, and the through holes are filled or plated with a conductive medium.
  • FIG. 4 illustrates that the first through structure 13 includes two through holes as an example for illustration.
  • the second end of the second feeder 12 is connected to the second part of the first dipole 10 .
  • the second feed structure includes a second dipole 20 , a first feed line 21 and a second feed line 22 .
  • the first feeder 21 is located on the first surface of the dielectric board 100
  • the first end of the first feeder 21 is connected to the second surface of the dielectric board 100 through the second through structure 23 , and then connected to the second feeder port 60 on the second surface.
  • the second through structure 23 includes one or more through holes, and the through holes are filled or plated with a conductive medium.
  • the embodiment of the present application does not specifically limit the number of through holes included in the second through structure 23.
  • the example in FIG. 4 uses the second through structure 23 to include two through holes as an example for illustration.
  • the second end of the first feeder 21 is connected to the first part of the second dipole 20 .
  • the second feeder 22 is located on the second surface of the dielectric board 100 , and the first end of the second feeder 22 is connected to the second feeder port 60 on the second surface of the dielectric board 100 .
  • the second end of the second feeder 22 is connected to the second part of the second dipole 20 .
  • the third feed structure includes a third dipole 30 , a first feed line 31 and a second feed line 32 .
  • the first feeder 31 is located on the first surface of the dielectric board 100
  • the first end of the first feeder 31 is connected to the first feeder port 50
  • the second end of the first feeder 31 is connected to the first part of the third dipole 30 .
  • the second feeder 32 is located on the second surface of the dielectric board 100 .
  • the first end of the second feeder 32 is connected to the first surface of the dielectric board 100 through the third through structure 33 , and then connected to the first feeder port 50 on the first surface.
  • the third through structure 33 includes one or more through holes, and the through holes are filled or plated with a conductive medium.
  • the embodiment of the present application does not specifically limit the number of through holes in the third through structure 33.
  • the example in FIG. 4 uses the third through structure 33 to include two through holes as an example for illustration.
  • the second end of the second feeder 32 is connected to the second part of the third dipole 30 .
  • the fourth feed structure includes a fourth dipole 40 , a first feed line 41 and a second feed line 42 .
  • the first feeder 41 is located on the first surface of the dielectric board 100 , and the first end of the first feeder 41 is connected to the second surface of the dielectric board 100 through the fourth through structure 43 , and then connected to the second feeder port 60 on the second surface.
  • the fourth through structure 43 includes one or more through holes, and the through holes are filled or plated with a conductive medium.
  • the embodiment of the present application does not specifically limit the number of through holes included in the fourth through structure 43.
  • the example in FIG. 4 uses the fourth through structure 43 to include two through holes as an example for illustration.
  • the second end of the first feeder 41 is connected to the first part of the fourth dipole 40 .
  • the second feeder 42 is located on the second surface of the dielectric board 100 , the first end of the second feeder 42 is connected to the second feeding port 60 on the second surface of the dielectric board 100 , and the second end of the second feeder 42 is connected to the second part of the fourth dipole 40 .
  • each feed structure includes two parallel feed lines, and the two feed lines are connected to the same output port located at the geometric center of the patch antenna array.
  • the two feeder bodies of the same polarization are located on different sides of the dielectric board, only near the geometric center of the array, and one of the feeder lines is connected to the other side of the dielectric board through a through-through structure, so that the two feeder lines are converted from different planes to the same plane.
  • This design allows the feed ports of the two polarizations to be designed on different planes of the dielectric board, avoiding positional conflicts between them.
  • the first end of the first feeder 11 of the first feeder structure can be connected to the first end of the first feeder 31 of the third feeder structure on the first surface, the length of the connecting line between the two is l1, and the first feeder port is connected to the connecting line, which is equivalent to connecting the first feeder 11 of the first feeder structure and the first feeder 31 of the third feeder structure at the same time;
  • the first end of the second feeder 22 of the second feeder structure and the first end of the second feeder 42 of the fourth feeder structure can be connected on the second surface , the length of the connecting line can be l1;
  • the first through structure 13 can be connected with the third through structure 33 on the first surface, and the length of the connecting line can be l1;
  • the second through structure 23 can be connected with the fourth through structure 43 on the second surface, and the length of the connecting line can be l1.
  • the first feeder 11 of the first feed structure and the first feeder 21 of the second feed structure feed the patch antenna 01, that is, the patch antenna 01 is excited; the second feed 22 of the second feed structure and the first feed 31 of the third feed structure feed the patch antenna 02; the second feed 32 of the third feed structure and the second feed 42 of the fourth feed structure feed the patch antenna 03; The feeder 12 feeds the fourth patch antenna 04 .
  • the feed circuit is divided into four structures, but using the technical solution of the embodiment of the application, for a single polarization, only two dipoles are needed to excite four patch antennas.
  • the feed circuit is divided into two structures, that is, the complexity of the design of the feed circuit is reduced by using the dipole feed method.
  • the dipole is connected to two parallel feeders, and the two parallel feeders can be directly designed on the dielectric board where the patch antenna is located, so that all feed circuits and the patch antenna can be implemented on the same dielectric board, which can effectively reduce the complexity of the antenna structure and reduce the cost of the antenna structure.
  • FIG. 5 is an enlarged view of area B in FIG. 2 provided by the embodiment of the present application
  • FIG. 6A is an enlarged view of area C in FIG. 5 provided by the embodiment of the present application
  • FIG. 6B provides an equivalent circuit diagram 1 corresponding to FIG. 6A provided by the embodiment of the present application.
  • the third dipole is selected for specific description below, and the specific implementation manners of other dipoles are similar, and the embodiments of the present application will not repeat them one by one.
  • the dipoles used are T-shaped dipoles, that is, the four patch antennas are all coupled and fed by T-shaped dipoles, and the T-shaped dipoles play a role in adjusting and matching.
  • the second preset distance which is marked as g2
  • the capacitance generated by g2 can be equivalent to the series capacitor C2 in FIG. 6B.
  • the size of the series capacitor C2 can be adjusted. In actual adjustment, the shorter g2 is, the higher the capacitance value of the equivalent series capacitor C2 is.
  • the equivalent series capacitor C2 can also be adjusted by adjusting the length l4 of the T-shaped stub. The longer l4 is during actual adjustment, the higher the capacitance value of the equivalent series capacitor C2 will be.
  • the dipole length of the T-shaped dipole in Figure 5 is l3, and the inductance of the T-shaped dipole can be equivalent to the series inductance L2 in Figure 6B, and the size of the equivalent inductance L2 can be adjusted by changing the dipole length l3. In actual adjustment, the larger l3 is, the larger the equivalent inductance L2 will be.
  • the equivalent capacitance and inductance of the dipole can be adjusted to achieve impedance matching.
  • the patch antenna 02 or 03 in FIG. 5 can be equivalent to the equivalent electronics R1 , equivalent inductance L1 and equivalent capacitance C1 connected in parallel in FIG. 6B .
  • the impedance between the two parallel feed lines can be adjusted.
  • the characteristic impedance between the first feeder and the second feeder included in each feeder structure is the first impedance value.
  • the through structure is used to convert the two feeders from different planes to the same plane.
  • Two sets of parallel double wires with the same polarization are connected in parallel, so that the equivalent input impedance is half of the first impedance value, that is, the input impedance of the feed port is half of the first impedance value.
  • FIG. 6B shows an equivalent circuit when the first part of the dipole of the third feeding structure excites the patch antenna 02 , and the input impedance Z in the figure is half of the first impedance value.
  • the two parallel feeders of the first feed structure are connected in parallel with the two parallel feed lines of the third feed structure. Since the characteristic impedance values between the parallel feed lines are the first impedance value, the equivalent impedance value after parallel connection is half of the first impedance value; similarly, when the two parallel feed lines of the second feed structure are connected in parallel with the two parallel feed lines of the fourth feed structure, the equivalent impedance value is half of the first impedance value. half of the first impedance value, thereby realizing impedance matching.
  • the embodiment of the present application does not limit the specific size of the first impedance value.
  • the first impedance value is 100 ⁇
  • the characteristic impedance between the two parallel feeders is 100 ⁇
  • the input impedances of the ports are both 50 ⁇ . That is, the input impedance Z of the feed port in FIG. 6B is 50 ⁇ at this time.
  • this figure is a schematic diagram of the distribution of the patch antenna array provided by the embodiment of the present application.
  • the antenna structure is divided into four identical square areas in FIG. 7A , namely area I, area II, area III and area IV.
  • Each patch antenna is located at the center of a square area, the first surface and the second surface of the dielectric plate are squares with equal areas, and the side length is a first preset length l g , at this time, the length between the geometric centers of two patch antennas in the same row or column is a second preset length l dis , and l dis is l g /2.
  • the antenna gain will also increase, but because the number of units is always 4, the gain that can be achieved is limited, so that the surface-to-face efficiency may decrease.
  • ⁇ 0 represents the working wavelength of the antenna, and it is necessary to comprehensively consider the antenna gain and surface-to-face efficiency to determine the specific proportional relationship between l g and ⁇ 0 .
  • the value of l g may be a smaller value within a reasonable range, for example, l g may be selected as 1.12 ⁇ 0 .
  • the surface-to-face efficiency is less affected by the relative position of the patch antenna. According to the 2 ⁇ 2 arrangement in Figure 7A, even if l dis ⁇ l g /2, the surface-to-face efficiency is relatively high.
  • FIG. 7B is a schematic view of the front of the antenna structure provided by the embodiment of the present application
  • FIG. 7C is a schematic view of the back of the antenna structure provided by the embodiment of the present application.
  • FIG. 8 is a schematic diagram of simulation of S parameters of the antenna structure provided by the embodiment of the present application.
  • S-parameter is a network parameter based on the relationship between incident wave and reflected wave. It is suitable for microwave circuit analysis.
  • the circuit network is described by the reflected signal of the device port and the signal transmitted from the port to another port.
  • S11 means: when port 2 is matched, the reflection coefficient of port 1;
  • S22 means: when port 1 is matched, the reflection coefficient of port 2;
  • S12 indicates: when port 1 matches, the reverse transmission coefficient from port 2 to port 1;
  • S21 means: when port 2 matches, the forward transmission coefficient from port 1 to port 2;
  • S11 can be used to indicate the size of the gain
  • S21 can be used to indicate the isolation between two ports.
  • the new protocol has the advantages of high bandwidth, high concurrency, and low latency, and the addition of the 6GHz frequency band effectively alleviates the problem of shortage of spectrum resources in the 2.4GHz and 5GHz frequency bands.
  • the 5GHz (eg 5.15GHz to 5.825GHz) frequency band and the 6GHz (eg 5.925GHz to 7.125GHz) frequency band are very close. If the antenna can cover both frequency bands at the same time, it can effectively reduce the number of antennas in electronic devices.
  • the matching bandwidth range of the antenna structure provided by the embodiment of the present application is roughly 4.90 GHz to 7.43 GHz, covering the 5 GHz and 6 GHz frequency bands of Wi-Fi 6 and Wi-Fi 6E. Due to symmetry, the S22 curve is the same as the S11. Therefore, the antenna structure provided by the present application has high practicability and can effectively reduce the number of antennas in electronic equipment. Among them, the smaller the reflection coefficient, the more energy entering the antenna.
  • the isolation between the first feed port and the second feed port is greater than 40dB, that is, the degree of mutual interference between the two feed ports of the antenna structure is low, and the performance of the antenna structure is better.
  • this figure is a schematic diagram of the electric field amplitude distribution of the antenna structure provided by the embodiment of the present application.
  • each patch antenna in the patch antenna array is close to working in TM 10 mode, the synthesized beam points to the +Z direction, and the polarization direction is orthogonal.
  • TM10 refers to electromagnetic waves in a standard rectangular waveguide with an electric field component but no magnetic field component along the direction of propagation. 1 means that the electromagnetic field has a half-wave variation in the direction of the broad side of the rectangular waveguide, and 0 means that it is evenly distributed on the narrow side.
  • FIG. 10 is a radiation pattern of the xz plane provided by the embodiment of the present application
  • FIG. 11 is a radiation pattern of the yz plane provided by the embodiment of the present application.
  • the radiation pattern marks the curve when the operating frequency is 5.2GHz with triangles, the curve when the operating frequency is 6.0GHz is marked with squares, and the curve when the operating frequency is 7.0GHz is marked with circles. It can be seen from the figure that the maximum gain in each matching bandwidth exceeds 10dB, and the synthesized beam points to the +Z direction.
  • the patch antenna is described as a square as an example. In practical applications, the patch antenna may also have other shapes, which will be described in detail below with reference to the accompanying drawings.
  • this figure is a schematic diagram of another antenna structure provided by an embodiment of the present application.
  • the patch antennas 01 to 04 in the figure are rhombic patch antennas.
  • the first feeding structure is located between the patch antenna 01 and the patch antenna 04 in the first column, and the first feeding structure includes a first dipole 10 , a first feeding line 11 and a second feeding line 12 .
  • the first feeder 11 and the second feeder 12 of the first feeder structure are connected to the first feeder port 50 .
  • the number 11 (12) in the figure indicates that the first feeder 11 and the second feeder 12 are parallel and located on different surfaces of the dielectric plate, and overlapped in the top view of the dielectric plate.
  • the reference number 50 (60) in the figure indicates that the first feed port 50 and the second feed port 60 are located on different surfaces of the dielectric plate, that is, the first feed port 50 is located on the upper surface of the dielectric plate, and the second feed port 60 is located on the lower surface of the dielectric plate, and the position overlaps on the top view of the dielectric plate.
  • the second feeding structure is located between the patch antenna 01 and the patch antenna 02 in the first row, and the second feeding structure includes a second dipole 20 , a first feeding line 21 and a second feeding line 22 .
  • the first feeder 21 and the second feeder 22 of the second feeder structure are connected to the second feeder port 60 .
  • the number 21 ( 22 ) in the figure indicates that the first feeder 21 and the second feeder 22 are parallel and located on different surfaces of the dielectric board, and overlapped in the top view of the dielectric board.
  • the third feed structure is located between the patch antenna 02 and the patch antenna 03 in the second row, and the third feed structure includes a third dipole 30, a first feed line 31 and a second feed line 32.
  • the first feeder 31 and the second feeder 32 of the third feeder structure are connected to the first feeder port 50 .
  • the number 31 (32) in the figure indicates that the first feeder 31 and the second feeder 32 are parallel and located on different surfaces of the dielectric plate, and overlapped in the top view of the dielectric plate.
  • the fourth feed structure is located between the patch antenna 03 and the patch antenna 04 in the second row, and the fourth feed structure includes a fourth dipole 40 , a first feed line 41 and a second feed line 42 .
  • the first feeder 41 and the second feeder 42 of the fourth feeder structure are connected to the second feeder port 60 .
  • the number 41 (42) in the figure indicates that the first feeder 41 and the second feeder 42 are parallel and located on different surfaces of the dielectric plate, and overlapped in the top view of the dielectric plate.
  • each of the above feeding structures is similar to that described above in FIG. 3 to FIG. 6B , and will not be repeated here.
  • this figure is a schematic diagram of another antenna structure provided by an embodiment of the present application.
  • the patch antennas 01 to 04 in the figure are circular patch antennas.
  • the first feeding structure is located between the patch antenna 01 and the patch antenna 04 in the first column, and the first feeding structure includes a first dipole 10 , a first feeding line 11 and a second feeding line 12 .
  • the first feeder 11 and the second feeder 12 of the first feeder structure are connected to the first feeder port 50 .
  • the number 11 (12) in the figure indicates that the first feeder 11 and the second feeder 12 are parallel and located on different surfaces of the dielectric plate, and overlapped in the top view of the dielectric plate.
  • the reference number 50 (60) in the figure indicates that the first feed port 50 and the second feed port 60 are located on different surfaces of the dielectric plate, that is, the first feed port 50 is located on the upper surface of the dielectric plate, and the second feed port 60 is located on the lower surface of the dielectric plate, and the position overlaps on the top view of the dielectric plate.
  • the second feeding structure is located between the patch antenna 01 and the patch antenna 02 in the first row, and the second feeding structure includes a second dipole 20 , a first feeding line 21 and a second feeding line 22 .
  • the first feeder 21 and the second feeder 22 of the second feeder structure are connected to the second feeder port 60 .
  • the number 21 ( 22 ) in the figure indicates that the first feeder 21 and the second feeder 22 are parallel and located on different surfaces of the dielectric board, and overlapped in the top view of the dielectric board.
  • the third feeding structure is located between the patch antenna 02 and the patch antenna 03 in the second column, and the third feeding structure includes a third dipole 30 , a first feeding line 31 and a second feeding line 32 .
  • the first feeder 31 and the second feeder 32 of the third feeder structure are connected to the first feeder port 50 .
  • the number 31 (32) in the figure indicates that the first feeder 31 and the second feeder 32 are parallel and located on different surfaces of the dielectric plate, and overlapped in the top view of the dielectric plate.
  • the fourth feed structure is located between the patch antenna 03 and the patch antenna 04 in the second row, and the fourth feed structure includes a fourth dipole 40 , a first feed line 41 and a second feed line 42 .
  • the first feeder 41 and the second feeder 42 of the fourth feeder structure are connected to the second feeder port 60 .
  • the number 41 (42) in the figure indicates that the first feeder 41 and the second feeder 42 are parallel and located on different surfaces of the dielectric plate, and overlapped in the top view of the dielectric plate.
  • each feed structure is similar to that described above in FIG. 3 to FIG. 6B , and will not be repeated here.
  • dipoles of other shapes may also be used for the dipoles, which will be described in detail below with reference to the accompanying drawings.
  • this figure is a schematic diagram of another antenna structure provided by an embodiment of the present application.
  • the patch antennas 01 to 04 are square patch antennas as an example.
  • the first feeding structure is located between the patch antenna 01 and the patch antenna 04 in the first column, and the first feeding structure includes a first dipole 10 , a first feeding line 11 and a second feeding line 12 .
  • the first feeder 11 and the second feeder 12 of the first feeder structure are connected to the first feeder port 50 .
  • the number 11 (12) in the figure indicates that the first feeder 11 and the second feeder 12 are parallel and located on different surfaces of the dielectric plate, and overlapped in the top view of the dielectric plate.
  • the reference number 50 (60) in the figure indicates that the first feed port 50 and the second feed port 60 are located on different surfaces of the dielectric plate, that is, the first feed port 50 is located on the upper surface of the dielectric plate, and the second feed port 60 is located on the lower surface of the dielectric plate, and the position overlaps on the top view of the dielectric plate.
  • the second feeding structure is located between the patch antenna 01 and the patch antenna 02 in the first row, and the second feeding structure includes a second dipole 20 , a first feeding line 21 and a second feeding line 22 .
  • the first feeder 21 and the second feeder 22 of the second feeder structure are connected to the second feeder port 60 .
  • the number 21 ( 22 ) in the figure indicates that the first feeder 21 and the second feeder 22 are parallel and located on different surfaces of the dielectric board, and overlapped in the top view of the dielectric board.
  • the third feeding structure is located between the patch antenna 02 and the patch antenna 03 in the second column, and the third feeding structure includes a third dipole 30 , a first feeding line 31 and a second feeding line 32 .
  • the first feeder 31 and the second feeder 32 of the third feeder structure are connected to the first feeder port 50 .
  • the number 31 (32) in the figure indicates that the first feeder 31 and the second feeder 32 are parallel and located on different surfaces of the dielectric plate, and overlapped in the top view of the dielectric plate.
  • the fourth feed structure is located between the patch antenna 03 and the patch antenna 04 in the second row, and the fourth feed structure includes a fourth dipole 40 , a first feed line 41 and a second feed line 42 .
  • the first feeder 41 and the second feeder 42 of the fourth feeder structure are connected to the second feeder port 60 .
  • the number 41 (42) in the figure indicates that the first feeder 41 and the second feeder 42 are parallel and located on different surfaces of the dielectric plate, and overlapped in the top view of the dielectric plate.
  • the first dipole 10 , the second dipole 20 , the third dipole 30 and the fourth dipole 40 in the figure are bow-tie dipoles. That is, the branches of the first part and the second part of each dipole are triangular branches.
  • the patch antenna can also be a rhombic patch antenna as shown in FIG. 12 or a circular patch antenna as shown in FIG. 13 .
  • this figure is a schematic diagram of another antenna structure provided by an embodiment of the present application.
  • the first dipole 10 , the second dipole 20 , the third dipole 30 and the fourth dipole 40 in FIG. 15 are circular dipoles. That is, the branches of the first part and the second part of each dipole are semicircular branches. It can be understood that, when a bow-tie dipole is used, the patch antenna can also be a rhombic patch antenna as shown in FIG. 12 or a circular patch antenna as shown in FIG. 13 .
  • the first feed interface and the second feed interface are connected to the radio frequency circuit of the electronic device through a cable.
  • T-shaped dipoles are used for in-phase feeding, so that the four patch antennas can ensure the same polarization, and the polarization of each patch antenna is orthogonal.
  • the traditional excitation method requires four ports.
  • the feed circuit is divided into four structures, but using the technical solution of the embodiment of the present application, for a single polarization, only two dipoles are needed to excite four patch antennas.
  • the feed circuit is divided into two structures, that is, the complexity of the design of the feed circuit is reduced by using the dipole feed method.
  • the dipole is connected with two parallel feed lines, and the two parallel feed lines can be directly designed on the dielectric board where the patch antenna is located, so that all feed circuits and patch antennas can be realized on the same dielectric board, which reduces the complexity of the feed circuit, that is, reduces the complexity of the antenna structure, and reduces the cost of the antenna structure.
  • the antenna structure is directional, has high directional gain, high isolation between the two feeding ports, and can cover a wide range of frequency bands, such as covering both the 5GHz and 6GHz frequency bands of Wi-Fi 6 and Wi-Fi 6E, so it is more practical.
  • the antenna structure covering the 5GHz frequency band and 6GHz frequency band of Wi-Fi 6 and Wi-Fi 6E in the above description is only an example. In practical applications, the antenna structure can also be designed and applied to other frequency bands. In some embodiments, the thickness of the dielectric plate of the antenna structure can be determined according to the working frequency band, and other design parameters of the antenna structure can be adjusted accordingly.
  • the feeder may not adopt the implementation of parallel double wires as described in the above embodiments, but the feeder of the slot line.
  • the dipoles and the feeder included in the same feed structure are located on the same surface of the dielectric plate and connected to the same feed interface.
  • this figure is a schematic diagram of another antenna structure provided by the embodiment of the present application.
  • the antenna structure shown in FIG. 2 includes a dielectric board 100 , a patch antenna array, a first feed structure, a second feed structure, a third feed structure, a fourth feed structure, a first feed port 50 and a second feed port 60 .
  • the patch antenna array is located on the first surface of the dielectric board 100 .
  • the first feed structure and the third feed structure are located on the first surface of the dielectric board 100
  • the second feed structure and the fourth feed structure are located on the second surface of the dielectric board 100 .
  • the first feed structure includes a first dipole 10 , a first slot line 11 and a second slot line 12 .
  • a first end of the first slot line 11 is connected to the first feed port 50 , and a second end of the first slot line 11 is connected to the first part of the first dipole 10 .
  • a first end of the second slot line 12 is connected to the first feeding port 50 , and a second end of the second slot line 12 is connected to the second part of the first dipole 10 .
  • the second feed structure includes a second dipole 20 , a first slot line 21 and a second slot line 22 .
  • the first end of the first slot line 21 is connected to the second feed port 60
  • the second end of the first slot line 21 is connected to the first part of the second dipole 20 .
  • the first end of the second slot line 22 is connected to the second feed port 60
  • the second end of the second slot line 22 is connected to the second part of the second dipole 20 .
  • the third feed structure includes a third dipole 30 , a first slot line 31 and a second slot line 32 .
  • a first end of the first slot line 31 is connected to the first feeding port 50
  • a second end of the first slot line 31 is connected to the first part of the third dipole 30 .
  • a first end of the second slot line 32 is connected to the first feeding port 50
  • a second end of the second slot line 32 is connected to the second portion of the third dipole 30 .
  • the fourth feed structure includes a fourth dipole 10 , a first slot line 41 and a second slot line 42 .
  • a first end of the first slot line 41 is connected to the second feed port 60 , and a second end of the first slot line 41 is connected to the first part of the fourth dipole 40 .
  • a first end of the second slot line 42 is connected to the second feed port 60 , and a second end of the second slot line 42 is connected to the second portion of the fourth dipole 40 .
  • the first end of the first slot line 11 of the first feed structure can be connected with the first end of the first slot line 31 of the third feed structure on the first surface; the first end of the second slot line 12 of the first feed structure can be connected with the first end of the second slot line 32 of the third feed structure on the first surface; the first end of the first slot line 21 of the second feed structure can be connected with the first end of the first slot line 41 of the fourth feed structure on the second surface; The first end, and the first end of the second slotline 42 of the fourth feed structure may be connected on the second surface.
  • the first slot line 11 of the first feed structure and the first slot line 21 of the second feed structure feed the patch antenna 01, that is, the patch antenna 01 is excited; the second slot line 22 of the second feed structure and the first slot line 31 of the third feed structure feed the patch antenna 02; the second slot line 32 of the third feed structure and the second slot line 42 of the fourth feed structure feed the patch antenna 03; The slot line 12 feeds the fourth patch antenna 04 .
  • the patch antenna can also use the diamond-shaped patch antenna or the circular patch antenna shown in the above embodiments, and the dipole can also use the bow-tie dipole or circular dipole shown in the above embodiments.
  • the solution provided by the embodiment of the present application adopts the slot line feeding method. Compared with the traditional feeding method, only two dipoles are required to excite four patch antennas for a single polarization, which reduces the complexity of the feeding circuit design. Two parallel slot lines can be directly designed on the dielectric board where the patch antenna is located, so that all feed circuits and patch antennas can be implemented on the same dielectric board, which can effectively reduce the complexity of the antenna structure and reduce the cost of the antenna structure.
  • the embodiment of the present application also provides an electronic device using the antenna structure, which will be described in detail below with reference to the accompanying drawings.
  • FIG. 17 this figure is a schematic diagram of an electronic device provided by an embodiment of the present application.
  • the electronic device 170 includes one or more antenna structures provided in the embodiments of the present application, and also includes a radio frequency circuit 171 .
  • the electronic device 170 includes two antenna structures, that is, a first antenna structure 172 and a second antenna structure 173 as an example for illustration.
  • the first antenna structure 172 and the second antenna structure 173 are connected to the same radio frequency circuit 171 .
  • the radio frequency circuit 171 is used to filter and amplify the electromagnetic waves received by the first antenna structure 172 and the second antenna structure 173, and transmit them to the modem processor for demodulation, and can also amplify the signals modulated by the modem processor, and convert them into electromagnetic waves and radiate them through the first antenna structure 172 and the second antenna structure 173.
  • a modem processor may include a modulator and a demodulator. Wherein, the modulator is used for modulating the low-frequency baseband signal to be transmitted into a medium-high frequency signal. The demodulator is used to demodulate the received electromagnetic wave signal into a low frequency baseband signal.
  • the ranges of frequency bands that can be covered by each antenna structure may be the same or different, which is not specifically limited in this embodiment of the present application.
  • the frequency range covered by the first antenna structure 172 is the first frequency range
  • the frequency range covered by the second antenna structure 173 is the second frequency range.
  • the first frequency range and the second frequency range may be the same or different.
  • FIG. 18 is a schematic diagram of another electronic device provided by an embodiment of the present application.
  • the difference between the electronic device shown in FIG. 18 and that in FIG. 17 is that the electronic device includes two radio frequency circuits, that is, a first radio frequency circuit 171a and a second radio frequency circuit 171b.
  • the first radio frequency circuit 171 a is connected to the first antenna structure 172
  • the second radio frequency circuit 171 b is connected to the second antenna structure 173 .
  • the frequency ranges that the first antenna structure 172 and the second antenna structure 173 can cover are different.
  • the first radio frequency circuit 171a and the second radio frequency circuit 171b above may be disposed on different circuit boards, or may be disposed on the same circuit board, which is not specifically limited in this embodiment of the present application.
  • FIG. 19 is a schematic diagram of another electronic device provided by an embodiment of the present application.
  • the electronic device includes a first antenna structure 172, a second antenna structure 173, a third antenna structure 174, a first radio frequency circuit 171a and a second radio frequency circuit 171b.
  • the first radio frequency circuit 171 a is connected to the first antenna structure 172 and the second antenna structure 173 .
  • the second radio frequency circuit 171b is connected to the third antenna structure 174 .
  • the first antenna structure 172 and the second antenna structure 173 adopt the technical solution provided by the embodiment of the present application to realize the function of a directional antenna.
  • the third antenna structure 174 is used to implement the function of an omnidirectional antenna, and the embodiment of the present application does not limit the specific implementation manner of the third antenna structure 174 .
  • the frequency range covered by the third antenna structure 174 may be the same as or different from that of the first antenna structure 172 .
  • the frequency range that the third antenna structure 174 can cover can be the same as that of the second antenna structure 173, or it can be different
  • the application does not specifically limit the types of electronic devices, which may be mobile phones, laptop computers, wearable electronic devices (such as smart watches), tablet computers, AR devices, VR devices, routers, and vehicle-mounted devices.
  • the electronic device is a router.
  • the frequency range that the antenna structure can cover can be changed by changing the first preset distance between the dielectric plate of the antenna structure and the metal floor.
  • the electronic device applies the antenna structure provided in the above embodiments, and the antenna structure excites four patch antennas by means of dipole coupling feeding.
  • the dipoles are fed in the same phase.
  • the four patch antennas can ensure the same polarization.
  • the traditional excitation method requires four ports.
  • the feed circuit is divided into four structures.
  • the feed circuit is divided into two structures, thus reducing the complexity of the design of the feed circuit.
  • the dipole is connected to two parallel feeders, and the two parallel feeders can be directly designed on the dielectric board where the patch antenna is located, so that all the feeder circuits and the patch antenna can be implemented on the same dielectric board, which can effectively reduce the complexity of the antenna structure, reduce the cost of the antenna structure, that is, reduce the cost of electronic equipment.
  • the antenna structure is directional, has high directional gain, high isolation between the two feeding ports, and can also cover a wide range of frequency bands. For example, it covers both the 5GHz frequency band and the 6GHz frequency band of Wi-Fi 6 and Wi-Fi 6E. Therefore, it has high practicability and can reduce the number of antennas installed on electronic devices to further reduce the hardware cost of electronic devices.
  • the embodiments of the present application also provide a wireless network system, which will be described in detail below with reference to the accompanying drawings.
  • FIG. 20 the figure is a schematic diagram of a wireless network system provided by an embodiment of the present application.
  • the wireless network system 300 includes multiple electronic devices, and at least one of the multiple electronic devices applies the antenna structure provided by the embodiment of the present application.
  • the illustrated wireless network system 300 includes a first electronic device 170 and a second electronic device 301 .
  • the first electronic device 170 includes one or more antenna structures provided by the embodiments of the present application, and also includes a radio frequency circuit.
  • the first electronic device 170 has high directional gain, and is used for data transmission with the second electronic device 301 in a specific direction.
  • the first electronic device 170 is a directional router.
  • An omnidirectional antenna is applied to the second electronic device 301, and in a typical implementation manner, the second electronic device 201 is an omnidirectional router.
  • the above wireless network system 300 is only a schematic illustration. In practical applications, when the wireless network system 300 is built according to specific environmental conditions, the number of the first electronic device 170 and the second electronic device 301 can be further increased, and the second electronic device 301 can also perform data transmission with multiple first electronic devices 170 at the same time.
  • the antenna structure provided by this application is applied to the electronic equipment in the above wireless network system.
  • the cost of the electronic equipment is saved, and on the other hand, the gain of the electronic equipment in a specific direction is increased, thereby improving the signal quality of the wireless network system and the stability of the network.
  • At least one (item) means one or more, and “multiple” means two or more.
  • “And/or” is used to describe the association relationship of associated objects, indicating that there can be three types of relationships, for example, “A and/or B” can mean: there are only A, only B, and both A and B, where A and B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an “or” relationship.
  • “At least one of the following” or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • At least one item (piece) of a, b or c can represent: a, b, c, "a and b", “a and c", “b and c", or "a and b and c", wherein a, b, c can be single or multiple.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

一种天线结构、电子设备及无线网络系统,涉及天线技术领域。天线结构的介质板和金属底板之间间隔第一预设距离;第一馈电端口和贴片天线阵列位于介质板的第一表面,第二馈电端口位于介质板的第二表面,第二表面与第一表面相对;贴片天线阵列包括四个贴片天线,四个贴片天线排列成两行两列,每行的两个贴片天线之间包括一个馈电结构,每列的两个贴片天线之间包括一个馈电结构;位于每列的两个贴片天线之间的馈电结构连接第一馈电端口,以使四个贴片天线均产生第一方向的极化;位于每行的两个贴片天线之间的馈电结构连接第二馈电端口,以使四个贴片天线均产生第二方向的极化,第一方向与第二方向正交。该天线结构的结构简单且具有较高的定向增益。

Description

一种天线结构、电子设备及无线网络系统
本申请要求于2022年01月18日提交中国国家知识产权局、申请号为202210056873.9、发明名称为“一种天线结构、电子设备及无线网络系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及天线技术领域,尤其涉及一种天线结构、电子设备及无线网络系统。
背景技术
目前,天线按照信号辐射方向的不同可以分为全向天线和定向天线。其中,全向天线向四周进行均匀辐射,无方向性。定向天线相较于全向天线,能够在一定的角度范围内进行辐射,因此在特定方向上具有更高的增益。
在一种典型的应用场景中,定向天线可以应用于路由器,利用定向天线在特定方向具有更高增益的特点,能够克服由于信号穿墙衰减导致信号差的问题。常见的定向天线的设计方案是带反射板的偶极子天线、贴片天线或电磁偶极子天线。其中,带反射板的偶极子天线常用于基站天线中,并且增益一般在8dB左右,增益相对较低。电磁偶极子天线通常需要多层印制电路板(Printed Circuit Board,PCB)或三维立体金属结构,成本高且加工难度大。相较于电磁偶极子天线,贴片天线的结构简单,但是目前的贴片天线增益有限,实用性较低。
发明内容
为了解决上述问题,本申请提供了一种天线结构、电子设备及无线网络系统,结构简单且具有较高的定向增益。
第一方面,本申请提供了一种天线结构,该天线结构包括介质板、金属底板、贴片天线阵列、第一馈电端口、第二馈电端口和四个馈电结构。介质板和金属底板之间间隔第一预设距离,第一馈电端口和贴片天线阵列位于介质板的第一表面,第二馈电端口位于介质板的第二表面,第二表面与第一表面相对。贴片天线阵列包括四个贴片天线,四个贴片天线排列成两行两列,每行的两个贴片天线之间包括一个馈电结构,每列的两个贴片天线之间包括一个馈电结构。位于每列的两个贴片天线之间的馈电结构,连接第一馈电端口,以使四个贴片天线均产生第一方向的极化。位于每行的两个贴片天线之间的馈电结构,连接第二馈电端口,以使四个贴片天线均产生第二方向的极化。
在本申请提供的方案,采用了贴片天线阵列来提升增益,并且该天线结构仅使用了两个馈电端口即实现了对四个贴片天线的激励,馈电电路的结构简单,馈电电路的设计复杂度低。此外,馈电结构可以直接设计在贴片天线所在的介质板上,以使所有的馈电电路以及贴片天线都可以在同一块介质板上实现,能够有效地降低天线结构的复杂度,降低天线结构的成本。
在一种可能的实现方式中,第一方向与第二方向正交。
此时四个贴片天线实现了正交极化,因此天线结构的定向性好。
在一种可能的实现方式中,天线结构还包括金属底板;
介质板和金属底板之间间隔第一预设距离。该第一预设距离可以根据天线结构工作时的带宽确定,本申请不作具体限定。
在一种可能的实现方式中,四个馈电结构中的每个馈电结构均包括连接的一个偶极子和一组平行馈线。平行馈线包括的第一馈线位于第一表面,包括的第二馈线位于第二表面。位于每列的两个贴片天线之间的馈电结构,包括的第二馈线通过一个对应的贯通结构连接至第一表面。位于每行的两个贴片天线之间的馈电结构,包括的第一馈线通过一个对应的贯通结构连接至第二表面。
在一种可能的实现方式中,贯通结构包括一个或多个通孔,一个或多个通孔中的每个通孔,填充或镀有导电介质。
在一种可能的实现方式中,四个馈电结构具体包括第一馈电结构、第二馈电结构、第三馈电结构和第四馈电结构;
第一馈电结构位于第一列的两个贴片天线之间,第二馈电结构位于第一行的两个贴片天线之间,第三馈电结构位于第二列的两个贴片天线之间,第四馈电结构位于第二行的两个贴片天线之间。第一馈电结构的第一馈线与第三馈电结构的第一馈线连接。第一馈电结构的第二馈线通过第一贯通结构连接至第一表面,第三馈电结构的第二馈线通过第三贯通结构连接至第一表面,第一贯通结构和第三贯通结构在第一表面连接。第二馈电结构的第二馈线与第四馈电结构的第二馈线连接。第二馈电结构的第一馈线通过第二贯通结构连接至第二表面,第四馈电结构的第一馈线通过第四贯通结构连接至第二表面,第二贯通结构和第四贯通结构在第二表面连接。
在一种可能的实现方式中,每个馈电结构的偶极子包括:第一部分和第二部分。其中,第一部分位于第一表面,第一部分的第一端连接第一馈线,第一部分的第一端为偶极子的第一输入端,第一部分的第二端包括第一枝节,第一枝节与最近的贴片天线之间间隔第二预设距离;第二部分位于第二表面,第二部分的第一端连接第二馈线,第二部分的第一端为偶极子的第二输入端,第二部分的第二端包括第二枝节,第二枝节与最近的贴片天线之间间隔第二预设距离。
调整第二预设距离的大小,即可调节贴片天线与偶极子之间的串联电容的大小。实际调节时第二预设距离越短,等效的串联电容的电容值越高。
调节第一枝节与第二枝节的宽度,同样可以调整贴片天线与偶极子之间的串联电容的大小,实际调节时第一枝节与第二枝节的宽度越长,等效的串联电容的电容值越高。
在一种可能的实现方式中,偶极子输入阻抗为第一阻抗值,偶极子输入阻抗为第一输入端和第二输入端之间的阻抗,每组平行馈线中的第一馈线与第二馈线间的阻抗值为第一阻抗值,以实现阻抗匹配。
在一种可能的实现方式中,四个馈电结构中的每个馈电结构均包括连接的一个偶极子和一组平行槽线。位于每列的两个贴片天线之间的馈电结构,包括的平行槽线均位于第一表面,位于每行的两个贴片天线之间的馈电结构,包括的平行槽线均位于第二表面。
在一种可能的实现方式中,四个馈电结构具体包括第一馈电结构、第二馈电结构、第三馈电结构和第四馈电结构。第一馈电结构位于第一列的两个贴片天线之间,第二馈电结构位于第一行的两个贴片天线之间,第三馈电结构位于第二列的两个贴片天线之间,第四 馈电结构位于第二行的两个贴片天线之间;第一馈电结构的第一槽线与第三馈电结构的第一槽线连接;第一馈电结构的第二槽线与第三馈电结构的第二槽线连接;第二馈电结构的第一槽线与第四馈电结构的第一槽线连接;第二馈电结构的第二槽线与第四馈电结构的第二槽线连接。
在一种可能的实现方式中,每个馈电结构的偶极子包括:第一部分和第二部分;第一部分和第二部分位于同一表面。第一部分的第一端连接第一槽线,第一部分的第一端为偶极子的第一输入端,第一部分的第二端包括第一枝节,第一枝节与最近的贴片天线之间间隔第二预设距离。第二部分的第一端连接第二槽线,第二部分的第一端为偶极子的第二输入端,第二部分的第二端包括第二枝节,第二枝节与最近的贴片天线之间间隔第二预设距离。
在一种可能的实现方式中,偶极子的输入阻抗为第一阻抗值,偶极子输入阻抗为第一输入端和第二输入端之间的阻抗,每组平行馈线中的第一槽线与第二槽线间的阻抗值为第一阻抗值,以实现阻抗匹配。在一种可能的实现方式中,第一枝节与第二枝节为T型枝节;或第一枝节与第二枝节为三角形枝节;或,第一枝节与第二枝节为半圆形枝节。
在一种可能的实现方式中,贴片天线阵列包括的各贴片天线为正方形贴片天线;或,贴片天线阵列包括的各贴片天线为圆形贴片天线;或,贴片天线阵列包括的各贴片天线为菱形贴片天线。
在一种可能的实现方式中,介质板的第一表面和第二表面为正方形,且第一表面和第二表面的边长均为第一预设长度。位于同一列的两个贴片天线的几何中心之间的距离均为第二预设长度,位于同一行的两个贴片天线的几何中心之间的距离均为第二预设长度;第二预设长度为第一预设长度的一半。
第二方面,本申请还提供了一种电子设备,该电子设备包括一个或多个以上实现方式提供的天线结构,还包括第一射频电路,天线结构与第一射频电路连接。
该电子设备应用了以上实现方式中提供的天线结构,天线结构采用偶极子耦合馈电的方式激励四个贴片天线。对于单个极化而言,激励四个贴片天线,传统的激励方式需要四个端口,相应的,馈电电路为一分四的结构,而采用本申请的技术方案,对于单个极化而言,激励四个贴片天线仅需要两个馈电结构,相应的,馈电电路为一分二的结构,因此减小了馈电电路设计的复杂度。并且,偶极子与平行的两条馈线连接,平行的两条馈线可以直接设计在贴片天线所在的介质板上,以使所有的馈电电路以及贴片天线都可以在同一块介质板上实现,能够有效地降低天线结构的复杂度,降低天线结构的成本,也即降低了电子设备的成本。此外,该天线结构具备定向性,并且定向增益高,两个馈电端口之间的隔离度高,还能覆盖较宽的频段范围,例如同时覆盖了Wi-Fi 6和Wi-Fi 6E的5GHz频段和6GHz频段,因此实用性较高,能够减少电子设备上设置的天线的数量,以进一步降低电子设备的成本。
在一种可能的实现方式中,电子设备包括多个天线结构,多个天线结构中至少存在两个天线结构的工作频段不同。
在一种可能的实现方式中,电子设备为路由器。
第三方面,本申请还提供了一种无线网络系统,该无线网络系统包括一个或多个以上 实施例提供的电子设备。
无线网络系统中的电子设备应用了本申请提供的天线结构,一方面节省了电子设备的成本,另一方面还增加了电子设备在特定方向的增益,因此提升了无线网络系统的信号质量与网络的稳定性。
在一种可能的实现方式中,无线网络系统还包括一个或多个第二电子设备,第二电子设备包括全向天线。
附图说明
图1A为本申请实施例提供的场景示意图一;
图1B为本申请实施例提供的场景示意图二;
图2为本申请实施例提供的一种天线结构的示意图;
图3为本申请实施例提供的馈电结构的示意图;
图4为本申请实施例提供的图2中A区域的放大图;
图5为本申请实施例提供的图2中B区域的放大图;
图6A为本申请实施例提供的图5中的C区域的放大图;
图6B为本申请实施例提供的等效电路图一;
图7A为本申请实施例提供的贴片天线阵列的分布示意图;
图7B为本申请实施例提供的天线结构的正面的示意图;
图7C为本申请实施例提供的天线结构的背面的示意图;
图8为本申请实施例提供的天线结构的S参数的仿真示意图;
图9为本申请实施例提供的天线结构的电场幅值分布的示意图;
图10为本申请实施例提供的xz平面的辐射方向图;
图11为本申请实施例提供的yz平面的辐射方向图;
图12为本申请实施例提供的另一种天线结构的示意图;
图13为本申请实施例提供的又一种天线结构的示意图;
图14为本申请实施例提供的再一种天线结构的示意图;
图15为本申请实施例提供的另一种天线结构的示意图;
图16为本申请实施例提供的再一种天线结构的示意图;
图17为本申请实施例提供的一种电子设备的示意图;
图18为本申请实施例提供的另一种电子设备的示意图;
图19为本申请实施例提供的又一种电子设备的示意图;
图20为本申请实施例提供的一种无线网络系统的示意图。
具体实施方式
本申请说明书和权利要求书及附图说明中的术语“第一”、“第二”和“第三”等是用于区别不同对象,而不是用于限定特定顺序。
为了使本技术领域的人员更清楚地理解本申请的方案,下面首先说明本申请技术方案的应用场景。
本申请提供的方案应用于设置有天线的电子设备,本申请对电子设备的类型不作具体限定,电子设备可以为手机、笔记本电脑、可穿戴电子设备(例如智能手表)、平板电脑、增强现实(augmented reality,AR)设备、虚拟现实(virtual reality,VR)设备、路由器设备以及车载设备等。下面以电子设备为路由器为例进行说明。
参见图1A,该图为本申请实施例提供的场景示意图一。
图1A中的路由器10应用了全向天线,位于墙体的左侧,终端设备20位于墙体的右侧。由于全向天线向四周进行均匀辐射,在特定方向上的增益并不高,因此信号穿墙衰减后,墙体右侧的终端设备20接收到的信号相对较弱。
图1A中的路由器20应用了定向天线,位于墙体的右侧,终端设备21位于墙体的右侧。由于全向天线在特定方向上具有更高的增益,因此及时信号穿墙后衰减,墙体右侧的终端设备20仍然可以接收到相对较强的信号。
参见图1B,该图为本申请实施例提供的场景示意图二。
当路由器11与路由器12组成无线网络系统时,路由器11采用定向天线向路由器12发送信号,路由器12可以采用全向天线与周围的终端设备20和21通信。此时由于全向天线在特定方向上具有更高的增益,确保了路由器11向路由器12发送信号的稳定性,并且路由器11的布局位置可以更加自由,甚至可以实现隔墙布置。
可以理解的是,图1A与图1B中的路由器形态仅是一种可能的实现方式,并不构成对于本申请技术方案的限定。
综上所述,在以上的场景中采用定向天线可以显著提升用户的使用体验。目前,定向天线的设计方案是带反射板的偶极子天线、贴片天线或电磁偶极子天线。其中,带反射板的偶极子天线常用于基站天线中,并且增益一般在8dB左右,增益相对较低。电磁偶极子天线通常需要多层PCB或三维立体金属结构,成本高且加工难度大。相较于电磁偶极子天线,贴片天线的结构简单,但是目前的贴片天线增益有限,需要使用贴片天线阵列提升增益,但是贴片天线阵列需要多个馈电口分别对各贴片天线在相同位置进行同相馈电,以产生定向辐射,因此还需要额外设计馈电电路,实用性较低。
为了解决以上技术问题,本申请提供了一种天线结构、电子设备及无线网络系统,该天线结构的结构简单且具有较高的定向增益,下面结合附图具体说明。
本申请说明中的“第一”、“第二”等用词仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量
可以理解的是,本申请以下实施例中的“上”、“下”、“左”、“右”等方位名称仅为了方便说明,需要参考附图中的方向,并不构成对于本申请技术方案的限定。
在本申请中,除非另有明确的规定和限定,术语“连接”应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接连接,也可以通过中间媒介间接连接。
为了方便说明,本申请以下实施例中的射频天线简称为天线,印制电路板(Printed Circuit Board,PBC)简称为电路板,下面不再赘述。
参见图2,该图为本申请实施例提供的一种天线结构的示意图。
该天线结构包括:介质板100、金属底板200、贴片天线阵列、第一馈电端口50、第 二馈电端口60和四个馈电结构。
介质板100与金属底板200之间间隔第一预设距离h,介质板与金属底板200之间的相对位置固定,金属底板200作为天线结构的地端。
贴片天线阵列包括贴片天线01至04,四个贴片天线排列成两行两列,每行的两个贴片天线之间包括一个馈电结构,每列的两个贴片天线之间包括一个馈电结构。
其中,第一馈电端口50和贴片天线阵列位于介质板100的第一表面,第二馈电端口60位于介质板的第二表面,第二表面与第一表面相对。
图2所示的第一表面为介质板100的上表面,第二表面为介质板100的下表面,第二表面朝向金属底板200。
位于每列的两个贴片天线之间的馈电结构,连接第一馈电端口50,以使四个贴片天线均产生第一方向的极化,第一方向对应于图示的x方向。
位于每行的两个贴片天线之间的馈电结构,连接第二馈电端口,以使四个贴片天线均产生第二方向的极化,第二方向对应于图示的y方向,第一方向与第二方向正交。
具体的,第一馈电结构位于第一列的贴片天线01与贴片天线04之间,第一馈电结构包括第一偶极子10、第一馈线11和第二馈线12。其中,第一馈电结构的第一馈线11和第二馈线12连接第一馈电端口50。
第二馈电结构位于第一行的贴片天线01与贴片天线02之间,第二馈电结构包括第二偶极子20、第一馈线21和第二馈线22。其中,第二馈电结构的第一馈线21和第二馈线22连接第二馈电端口60。
第三馈电结构位于第二列的贴片天线02与贴片天线03之间,第三馈电结构包括第三偶极子30、第一馈线31和第二馈线32。其中,第三馈电结构的第一馈线31和第二馈线32连接第一馈电端口50。
第四馈电结构位于第二行的贴片天线03与贴片天线04之间,第四馈电结构包括第四偶极子40、第一馈线41和第二馈线42。其中,第四馈电结构的第一馈线41和第二馈线42连接第二馈电端口60。
第一馈电结构和第三馈电结构用于使贴片天线均01至04产生第一方向的极化,第一方向对应于图示的x方向。第二馈电结构和第四馈电结构用于使贴片天线均01至04产生第二方向的极化,第二方向对应于图示的y方向。图示的x方向与y方向正交。
利用本申请实施例提供的方案,采用了贴片天线阵列来提升增益,并且该天线结构仅使用了两个馈电端口,馈电电路的结构简单,馈电电路的设计复杂度低。此外,馈电结构可以直接设计在贴片天线所在的介质板上,以使所有的馈电电路以及贴片天线都可以在同一块介质板上实现,能够有效地降低天线结构的复杂度,降低天线结构的成本。
下面具体说明天线结构的实现方式。
继续参见图2所示的天线结构。
图2所示天线结构具体包括介质板100、金属底板200、贴片天线阵列、第一馈电结构、第二馈电结构、第三馈电结构、第四馈电结构、第一馈电端口50和第二馈电端口60。
本申请实施例对介质板100的具体材质不作限定,可以根据实际情况确定。
在一些实施例中,介质板100可以采用耐燃材料等级为FR-4的环氧玻璃纤维板(环氧 板),介质板的介电常数为ε r=4.4。
介质板100的厚度d可以根据实际情况确定,本申请实施例对此不作具体限定。
介质板100与金属底板200之间的第一预设距离h,可以根据天线结构工作时的带宽确定,本申请实施例对此不作具体限定。
贴片天线阵列位于介质板100的第一表面。
贴片天线阵列包括贴片天线01至04,以上四个贴片天线呈现2×2的排列方式,也即贴片天线阵列包括两排,每排包括两个贴片天线,并且贴片天线阵列包括两列,每列包括两个贴片天线。图2所示贴片天线阵列中的第一排包括贴片天线01和贴片天线02,第二排包括贴片天线03和贴片天线04,第一列包括贴片天线01和贴片天线04,第二列包括贴片天线02和贴片天线03。
下面首先说明馈电结构的实现方式,以下说明以第一馈电结构为例进行说明,其它馈电结构的实现方式类似,再次不再赘述。
参见图3,该图为本申请实施例提供的馈电结构的示意图。
第一馈电结构包括第一偶极子10、第一馈线11和第二馈线12。其中,第一偶极子包括第一部分101和第二部分102,第一部分101和第一馈线11位于介质板100的第一表面,第二部分102和第二馈线12位于介质板100的第二表面。第一部分101的输入端连接第一馈线11,第一部分101的末端与图2中的贴片天线01之间间隔第二预设距离。第二部分102的输入端连接第二馈线12,第二部分102的末端与图2中的贴片天线04之间间隔第二预设距离。
第一馈线11与第二馈线12为一组平行线。
第一偶极子10输入端的输入阻抗,也即第一部分101与第二部分102之间的阻抗。
下面结合附图具体说明天线结构的实现方式。
一并参见图2和图4。其中,图4为本申请实施例提供的图2中A区域的放大图。
第一馈电结构包括第一偶极子10、第一馈线11和第二馈线12。其中,第一馈线11位于介质板100的第一表面,第一馈线11的第一端连接第一馈电端口50,第一馈线11的第二端连接第一偶极子10的第一部分。第二馈线12位于介质板100的第二表面。第二馈线12的第一端通过第一贯通结构13连接至介质板100的第一表面,然后连接第一表面上的第一馈电端口50。第一贯通结构13包括一个或者多个通孔,通孔内填充或镀有导电介质,本申请实施例对第一贯通结构13包括的通孔数量不作具体限定,图4示例以第一贯通结构13包括两个通孔为例进行说明。第二馈线12的第二端连接第一偶极子10的第二部分。
第二馈电结构包括第二偶极子20、第一馈线21和第二馈线22。其中,第一馈线21位于介质板100的第一表面,第一馈线21的第一端通过第二贯通结构23连接至介质板100的第二表面,然后连接第二表面上的第二馈电端口60。第二贯通结构23包括一个或者多个通孔,通孔内填充或镀有导电介质,本申请实施例对第二贯通结构23包括的通孔数量不作具体限定,图4示例以第二贯通结构23包括两个通孔为例进行说明。第一馈线21的第二端连接第二偶极子20的第一部分。第二馈线22位于介质板100的第二表面,第二馈线22的第一端在介质板100第二表面上连接第二馈电端口60。第二馈线22的第二端连接第二偶极子20的第二部分。
第三馈电结构包括第三偶极子30、第一馈线31和第二馈线32。其中,第一馈线31位于介质板100的第一表面,第一馈线31的第一端连接第一馈电端口50,第一馈线31的第二端连接第三偶极子30的第一部分。第二馈线32位于介质板100的第二表面。第二馈线32的第一端通过第三贯通结构33连接至介质板100的第一表面,然后连接第一表面上的第一馈电端口50。其中,第三贯通结构33包括一个或者多个通孔,通孔内填充或镀有导电介质,本申请实施例对第三贯通结构33中的通孔数量不作具体限定,图4示例以第三贯通结构33包括两个通孔为例进行说明。第二馈线32的第二端连接第三偶极子30的第二部分。
第四馈电结构包括第四偶极子40、第一馈线41和第二馈线42。其中,第一馈线41位于介质板100的第一表面,第一馈线41的第一端通过第四贯通结构43连接至介质板100的第二表面,然后连接第二表面上的第二馈电端口60。其中,第四贯通结构43包括一个或者多个通孔,通孔内填充或镀有导电介质,本申请实施例对第四贯通结构43包括的通孔数量不作具体限定,图4示例以第四贯通结构43包括两个通孔为例进行说明。第一馈线41的第二端连接第四偶极子40的第一部分。第二馈线42位于介质板100的第二表面,第二馈线42的第一端在介质板100第二表面上连接第二馈电端口60,第二馈线42的第二端连接第四偶极子40的第二部分。
也即每个馈电结构包括两条平行的馈线,两条馈线连接位于贴片天线阵列几何中心的同一个输出端口。同一极化的两条馈线主体位于介质板的不同面,仅是在阵列几何中心附近,其中的一条馈线通过贯通结构连接到介质板的另一面,进而使得两条馈线由异面转换至同面,这种设计使得两个极化的馈电端口可以设计在介质板的不同面上,避免了相互之间的位置冲突。
在一些实施例中,第一馈电结构的第一馈线11的第一端,与第三馈电结构的第一馈线31的第一端可以在第一表面上连接,两者之间的连接线的长度为l1,第一馈电端口与该连接线连接,相当于同时连接了第一馈电结构的第一馈线11与第三馈电结构的第一馈线31;第二馈电结构的第二馈线22的第一端,与第四馈电结构的第二馈线42的第一端可以在第二表面上连接,连接线的长度可以为l1;第一贯通结构13可以与第三贯通结构33在第一表面上连接,连接线的长度可以为l1;第二贯通结构23可以与第四贯通结构43在第二表面上连接,连接线的长度可以为l1。
采用以上实现方式时,第一馈电结构的第一馈线11与第二馈电结构的第一馈线21为贴片天线01馈电,也即激励贴片天线01;第二馈电结构的第二馈线22与第三馈电结构的第一馈线31为贴片天线02馈电;第三馈电结构的第二馈线32与第四馈电结构的第二馈线42为贴片天线03馈电;第四馈电结构的第一馈线41与第一馈电结构的第二馈线12为第四贴片天线04馈电。
在本申请实施例提供的方案中,采用偶极子耦合馈电的方式激励四个贴片天线。并且实现了偶极子同相馈电,根据相对位置关系,四个贴片天线能够保证极化一致。对于单个极化而言,激励四个贴片天线时,传统的激励方式需要四个端口,相应的,馈电电路为一分四的结构,而采用本申请实施例的技术方案,对于单个极化而言,激励四个贴片天线仅需要两个偶极子,相应的,馈电电路为一分二的结构,也即采用偶极子馈电的方式减小了 馈电电路设计的复杂度。并且,偶极子与平行的两条馈线连接,平行的两条馈线可以直接设计在贴片天线所在的介质板上,以使所有的馈电电路以及贴片天线都可以在同一块介质板上实现,能够有效地降低天线结构的复杂度,降低天线结构的成本。
下面结合具体的实现方式进行说明。
一并参见图5、图6A和图6B。其中,图5为本申请实施例提供的图2中B区域的放大图;图6A为本申请实施例提供的图5中的C区域的放大图;图6B为本申请实施例提供图6A对应的等效电路图一。
下面选择第三偶极子具体进行说明,其它的偶极子的具体实现方式类似,本申请实施例不再一一赘述。
本申请实施例提供的方案中,采用的偶极子为T型偶极子,也即四个贴片天线均由T型偶极子实现耦合馈电,T型偶极子起到调节匹配的作用。
具体的,图5中的T型偶极子末端与贴片天线留有一定距离,也即第二预设距离,标识为g2,由g2产生的电容可以等效为图6B中的串联电容C2,根据实际需求调整g2的大小,即可调节串联电容C2的大小。实际调节时g2越短,等效的串联电容C2的电容值越高。此外,也可以通过调节T型枝节长度l4以调节等效的串联电容C2,实际调节时l4越长,等效的串联电容C2的电容值越高。
图5中T型偶极子的偶极子长度为l3,T型偶极子的电感可以等效为图6B中的串联电感L2,通过改变偶极子长度l3可以调节等效电感L2的大小。实际调节时,l3越大,等效电感L2越大。
也即通过调整间距g 2,T型枝节长度l 4以及偶极子长度l 3三个参数,可以调节偶极子的等效的电容和电感的大小,进而实现阻抗匹配。
图5中的贴片天线02或03,可以等效为图6B中并联连接的等效电子R1、等效电感L1和等效电容C1。
此外,通过调节两条平行的馈线的宽度w1,可以调节两条平行的馈线之间的阻抗大小。
下面举例具体说明实现阻抗匹配的原理。
以偶极子输入端的输入阻抗调节为第一阻抗值为例进行说明。
此时每个馈电结构包括的第一馈线和第二馈线之间的特性阻抗为第一阻抗值。
在贴片天线阵列的几何中心处,利用贯通结构将两条馈线由异面转换到同一面。同一极化的两组平行双线并联,使得等效输入阻抗均为第一阻抗值的一半,也即馈电端口的输入阻抗为第一阻抗值的一半。
图6B示出了第三馈电结构的偶极子的第一部分对贴片天线02进行激励时的等效电路,此时图中的输入阻抗Z为第一阻抗值的一半。
例如,参见图2,第一馈电结构的两条平行馈线与第三馈电结构的两条平行馈线并联,由于平行馈线之间的特性阻抗值均为第一阻抗值,则并联后的等效阻抗值为第一阻抗值的一半;同理,当第二馈电结构的两条平行馈线与第四馈电结构的两条平行馈线并联时,等效阻抗值为第一阻抗值的一半,此时对于第一表面的第一馈电端口50,以及第二表面的第二馈电端口60,端口的输入阻抗均为第一阻抗值的一半,进而实现了阻抗匹配。
本申请实施例对第一阻抗值的具体大小不作限定,例如当第一阻抗值为100Ω时,则 两条平行馈线之间的特性阻抗为100Ω,端口的输入阻抗均为50Ω,也即此时图6B中的馈电端口输入阻抗Z为50Ω。
参见图7A,该图为本申请实施例提供的贴片天线阵列的分布示意图。
为了方便说明,图7A中将天线结构分为四个相同的正方形区域,分别为区域I、区域II、区域III和区域IV。每个贴片天线位于正方形区域的中心处,介质板的第一表面和第二表面为面积相等的正方形,且边长为第一预设长度l g,此时同一行或同一列的两个贴片天线的几何中心之间的长度为第二预设长度l dis,l dis为l g/2。
各贴片天线按图7A所示情况排列时,通过增大天线结构的边长l g,天线增益也会提高,但是因为单元个数始终为4个,所能实现的增益有限,使得口面效率可能下降。实际应用中,以λ 0表示天线的工作波长,需要综合考虑天线增益和口面效率,来确定l g和λ 0的具体比例关系。
下面结合具体示例分析说明本申请技术方案的有益效果。
以λ 0表示天线的工作波长,经研究实验发现,在l g=为1.0λ 0至1.4λ 0时,天线能够获得较高的增益和口面效率。
实际应用中,为尽量减小天线结构的尺寸,l g的取值可以为合理范围内的较小值,例如l g可以选择为1.12λ 0。在满足上述天线尺寸选取范围条件下,口面效率受贴片天线的相对位置影响较小,照图7A的2×2排列方式,即使l dis≠l g/2,口面效率也较高。
一并参见图7B和图7C。其中,图7B为本申请实施例提供的天线结构的正面的示意图;图7C为本申请实施例提供的天线结构的背面的示意图。
以天线结构的工作波长λ 0=50mm为例,天线结构的正面(也即top面)以及天线结构的背面(也即bot面)的各规格参数采用以下表1的具体参数值进行仿真测试。
表1:天线结构的具体尺寸(单位:mm)
参数 l g l 0 l 1 l 2 l 3 l 4 d
参数值 56 12 3 10.5 4 6.4 0.6
参数 h w 1 w 2 w 3 g 0 g 1 g 2
参数值 7 0.5 0.5 1 8 0.5 2.5
参见图8,该图为本申请实施例提供的天线结构的S参数的仿真示意图。
S参数(Scattering-Parameter,S-Parameter)就是建立在入射波、反射波关系基础上的网络参数,适于微波电路分析,以器件端口的反射信号以及从该端口传向另一端口的信号来描述电路网络。
S11表示:端口2匹配时,端口1的反射系数;
S22表示:端口1匹配时,端口2的反射系数;
S12表示:端口1匹配时,端口2到端口1的反向传输系数;
S21表示:端口2匹配时,端口1到端口2的正向传输系数;
对于对称网络,有:S11=S22。
S11可以用于表示增益的大小,S21可以用于表示两个端口之间的隔离度。
随着Wi-Fi 6E标准的应用,相较于先前的协议,新的协议具有高宽带、高并发、低延 时等优势,并且6GHz频段的加入有效缓解了2.4GHz和5GHz频段频谱资源紧张的问题。在频谱上,5GHz(例如5.15GHz至5.825GHz)频段和6GHz(例如5.925GHz至7.125GHz)频段非常临近,如果天线能够同时覆盖两个频段,则能够有效减少电子设备中的天线数量。
而参见图8可以发现,当以反射系数小于-10dB为匹配目标时,本申请实施例提供的天线结构的匹配带宽范围大致为4.90GHz至7.43GHz,覆盖了Wi-Fi 6和Wi-Fi 6E的5GHz频段和6GHz频段,由于对称性,S22曲线与S11相同。因此本申请提供的天线结构的实用性高,能够有效减少电子设备中的天线数量。其中,反射系数越小,表征进入天线的能量越多。
另一方面,由于天线结构的极化方向正交,在匹配带宽内,第一馈电端口与第二馈电端口之间的隔离度大于40dB,也即天线结构的两个馈电端口之间相互干扰的程度较低,天线结构的性能较佳。
参见图9,该图为本申请实施例提供的天线结构的电场幅值分布的示意图。
从图9中可以看出,贴片天线阵列中的各贴片天线均接近工作在TM 10模式,合成波束指向+Z方向,且极化方向正交。
TM10指的是沿传播方向有电场分量而没有磁场分量的标准矩形波导管中的电磁波。1指的是电磁场在矩形波导管宽边方向上有半波变化,0指的是在窄边上均匀分布。
一并参见图10和图11。其中,图10为本申请实施例提供的xz平面的辐射方向图;图11为本申请实施例提供的yz平面的辐射方向图。
为了方便区分线条,辐射方向图(radiation pattern)中以三角形标识了工作频率为5.2GHz时的曲线,以正方形标识了工作频率为6.0GHz时的曲线,以圆形标识了工作频率为7.0GHz时的曲线。由该图可以看出,各匹配带宽内最大增益均超过10dB,且合成波束指向+Z方向。
以上实施例中以贴片天线为正方形为例进行说明,实际应用中,贴片天线还可以为其它形状,下面集合附图具体说明。
参见图12,该图为本申请实施例提供的另一种天线结构的示意图。
图中的贴片天线01至04为菱形贴片天线。
其中,第一馈电结构位于第一列的贴片天线01与贴片天线04之间,第一馈电结构包括第一偶极子10、第一馈线11和第二馈线12。第一馈电结构的第一馈线11和第二馈线12连接第一馈电端口50。图中标号11(12)表示第一馈线11与第二馈线12平行且位于介质板的不同表面,且在介质板的俯视图上位置重叠。
图中的标号50(60)表示第一馈电端口50和第二馈电端口60位于介质板的不同表面,也即第一馈电端口50位于介质板的上表面,第二馈电端口60位于介质板的下表面,且在介质板的俯视图上位置重叠。
第二馈电结构位于第一行的贴片天线01与贴片天线02之间,第二馈电结构包括第二偶极子20、第一馈线21和第二馈线22。其中,第二馈电结构的第一馈线21和第二馈线22连接第二馈电端口60。图中标号21(22)表示第一馈线21与第二馈线22平行且位于介质板的不同表面,且在介质板的俯视图上位置重叠。
第三馈电结构位于第二列的贴片天线02与贴片天线03之间,第三馈电结构包括第三 偶极子30、第一馈线31和第二馈线32。其中,第三馈电结构的第一馈线31和第二馈线32连接第一馈电端口50。图中标号31(32)表示第一馈线31与第二馈线32平行且位于介质板的不同表面,且在介质板的俯视图上位置重叠。
第四馈电结构位于第二行的贴片天线03与贴片天线04之间,第四馈电结构包括第四偶极子40、第一馈线41和第二馈线42。其中,第四馈电结构的第一馈线41和第二馈线42连接第二馈电端口60。图中标号41(42)表示第一馈线41与第二馈线42平行且位于介质板的不同表面,且在介质板的俯视图上位置重叠。
以上各个馈电结构的实现方式与以上图3至图6B中说明中的类似,在此不再赘述。
参见图13,该图为本申请实施例提供的又一种天线结构的示意图。
图中的贴片天线01至04为圆形贴片天线。
其中,第一馈电结构位于第一列的贴片天线01与贴片天线04之间,第一馈电结构包括第一偶极子10、第一馈线11和第二馈线12。第一馈电结构的第一馈线11和第二馈线12连接第一馈电端口50。图中标号11(12)表示第一馈线11与第二馈线12平行且位于介质板的不同表面,且在介质板的俯视图上位置重叠。
图中的标号50(60)表示第一馈电端口50和第二馈电端口60位于介质板的不同表面,也即第一馈电端口50位于介质板的上表面,第二馈电端口60位于介质板的下表面,且在介质板的俯视图上位置重叠。
第二馈电结构位于第一行的贴片天线01与贴片天线02之间,第二馈电结构包括第二偶极子20、第一馈线21和第二馈线22。其中,第二馈电结构的第一馈线21和第二馈线22连接第二馈电端口60。图中标号21(22)表示第一馈线21与第二馈线22平行且位于介质板的不同表面,且在介质板的俯视图上位置重叠。
第三馈电结构位于第二列的贴片天线02与贴片天线03之间,第三馈电结构包括第三偶极子30、第一馈线31和第二馈线32。其中,第三馈电结构的第一馈线31和第二馈线32连接第一馈电端口50。图中标号31(32)表示第一馈线31与第二馈线32平行且位于介质板的不同表面,且在介质板的俯视图上位置重叠。
第四馈电结构位于第二行的贴片天线03与贴片天线04之间,第四馈电结构包括第四偶极子40、第一馈线41和第二馈线42。其中,第四馈电结构的第一馈线41和第二馈线42连接第二馈电端口60。图中标号41(42)表示第一馈线41与第二馈线42平行且位于介质板的不同表面,且在介质板的俯视图上位置重叠。
各个馈电结构的实现方式与以上图3至图6B中说明中的类似,在此不再赘述。
此外,偶极子也可以采用其它形状的偶极子,下面结合附图具体说明。
参见图14,该图为本申请实施例提供的再一种天线结构的示意图。
图14中以贴片天线01至04为正方形贴片天线为例。
其中,第一馈电结构位于第一列的贴片天线01与贴片天线04之间,第一馈电结构包括第一偶极子10、第一馈线11和第二馈线12。第一馈电结构的第一馈线11和第二馈线12连接第一馈电端口50。图中标号11(12)表示第一馈线11与第二馈线12平行且位于介质板的不同表面,且在介质板的俯视图上位置重叠。
图中的标号50(60)表示第一馈电端口50和第二馈电端口60位于介质板的不同表面, 也即第一馈电端口50位于介质板的上表面,第二馈电端口60位于介质板的下表面,且在介质板的俯视图上位置重叠。
第二馈电结构位于第一行的贴片天线01与贴片天线02之间,第二馈电结构包括第二偶极子20、第一馈线21和第二馈线22。其中,第二馈电结构的第一馈线21和第二馈线22连接第二馈电端口60。图中标号21(22)表示第一馈线21与第二馈线22平行且位于介质板的不同表面,且在介质板的俯视图上位置重叠。
第三馈电结构位于第二列的贴片天线02与贴片天线03之间,第三馈电结构包括第三偶极子30、第一馈线31和第二馈线32。其中,第三馈电结构的第一馈线31和第二馈线32连接第一馈电端口50。图中标号31(32)表示第一馈线31与第二馈线32平行且位于介质板的不同表面,且在介质板的俯视图上位置重叠。
第四馈电结构位于第二行的贴片天线03与贴片天线04之间,第四馈电结构包括第四偶极子40、第一馈线41和第二馈线42。其中,第四馈电结构的第一馈线41和第二馈线42连接第二馈电端口60。图中标号41(42)表示第一馈线41与第二馈线42平行且位于介质板的不同表面,且在介质板的俯视图上位置重叠。
图中的第一偶极子10、第二偶极子20、第三偶极子30以及第四偶极子40为领结型偶极子。也即各偶极子的第一部分和第二部分的枝节为三角形枝节。
可以理解的是,当采用领结型偶极子,贴片天线也可以采用图12中所示的菱形贴片天线或图13中所示的圆形贴片天线。
参见图15,该图为本申请实施例提供的另一种天线结构的示意图。
图15与图14的区别在于,图15中的第一偶极子10、第二偶极子20、第三偶极子30以及第四偶极子40为圆形偶极子。也即各偶极子的第一部分和第二部分的枝节为半圆形枝节。可以理解的是,当采用领结型偶极子,贴片天线也可以采用图12中所示的菱形贴片天线或图13中所示的圆形贴片天线。
在一些实施例中,以上天线结构应用于电子设备时,第一馈电接口和第二馈电接口通过线缆连接电子设备的射频电路。
综上所述,在本申请实施例提供的方案中,采用T型偶极子进行同相馈电,以使四个贴片天线能够保证极化一致,且每个贴片天线的极化正交。对于单个极化而言,激励四个贴片天线时,传统的激励方式需要四个端口,相应的,馈电电路为一分四的结构,而采用本申请实施例的技术方案,对于单个极化而言,激励四个贴片天线仅需要两个偶极子,相应的,馈电电路为一分二的结构,也即采用偶极子馈电的方式减小了馈电电路设计的复杂度。偶极子与平行的两条馈线连接,平行的两条馈线可以直接设计在贴片天线所在的介质板上,以使所有的馈电电路以及贴片天线都可以在同一块介质板上实现,降低了馈电电路的复杂度,也即降低天线结构的复杂度,并且降低天线结构的成本。此外,该天线结构具备定向性,并且定向增益高,两个馈电端口之间的隔离度高,还能覆盖较宽的频段范围,例如同时覆盖了Wi-Fi 6和Wi-Fi 6E的5GHz频段和6GHz频段,因此实用性较高。
可以理解的是,以上说明中天线结构覆盖Wi-Fi 6和Wi-Fi 6E的5GHz频段和6GHz频段仅是举例说明,实际应用中,天线结构还可以设计应用于其它的频段,在一些实施例中,可以根据工作的频段,确定天线结构的介质板的厚度,并相应调整天线结构的其它设 计参数。
实际应用中,当介质板100的厚度d较低时,馈线也可以不采用以上实施例中所述的平行双线的实现方式,而采用槽线馈电的方式,该实现方式下,同一个馈电结构包括的偶极子和馈线位于介质板的同一表面,并且连接同一个馈电接口,下面结合附图具体说明。
参见图16,该图为本申请实施例提供的再一种天线结构的示意图。
图2所示天线结构包括介质板100、贴片天线阵列、第一馈电结构、第二馈电结构、第三馈电结构、第四馈电结构、第一馈电端口50和第二馈电端口60。
贴片天线阵列位于介质板100的第一表面。
第一馈电结构和第三馈电结构位于介质板100的第一表面,第二馈电结构和第四馈电结构位于介质板100的第二表面。
第一馈电结构包括第一偶极子10、第一槽线11和第二槽线12。第一槽线11的第一端连接第一馈电端口50,第一槽线11的第二端连接第一偶极子10的第一部分。第二槽线12的第一端连接第一馈电端口50,第二槽线12的第二端连接第一偶极子10的第二部分。
第二馈电结构包括第二偶极子20、第一槽线21和第二槽线22。第一槽线21的第一端连接第二馈电端口60,第一槽线21的第二端连接第二偶极子20的第一部分。第二槽线22的第一端连接第二馈电端口60,第二槽线22的第二端连接第二偶极子20的第二部分。
第三馈电结构包括第三偶极子30、第一槽线31和第二槽线32。第一槽线31的第一端连接第一馈电端口50,第一槽线31的第二端连接第三偶极子30的第一部分。第二槽线32的第一端连接第一馈电端口50,第二槽线32的第二端连接第三偶极子30的第二部分。
第四馈电结构包括第四偶极子10、第一槽线41和第二槽线42。第一槽线41的第一端连接第二馈电端口60,第一槽线41的第二端连接第四偶极子40的第一部分。第二槽线42的第一端连接第二馈电端口60,第二槽线42的第二端连接第四偶极子40的第二部分。
在一些实施例中,第一馈电结构的第一槽线11的第一端,与第三馈电结构的第一槽线31的第一端可以在第一表面上连接;第一馈电结构的第二槽线12的第一端,与第三馈电结构的第二槽线32的第一端可以在第一表面上连接;第二馈电结构的第一槽线21的第一端,与第四馈电结构的第一槽线41的第一端可以在第二表面上连接;第二馈电结构的第二槽线22的第一端,与第四馈电结构的第二槽线42的第一端可以在第二表面上连接。
采用以上实现方式时,第一馈电结构的第一槽线11与第二馈电结构的第一槽线21为贴片天线01馈电,也即激励贴片天线01;第二馈电结构的第二槽线22与第三馈电结构的第一槽线31为贴片天线02馈电;第三馈电结构的第二槽线32与第四馈电结构的第二槽线42为贴片天线03馈电;第四馈电结构的第一槽线41与第一馈电结构的第二槽线12为第四贴片天线04馈电。
以上的各槽线为槽线,采用槽线馈电的实现方式时,贴片天线还可以采用以上实施例中所示的菱形贴片天线或圆形贴片天线,偶极子还可以采用以上实施例中所示的领结型偶极子或者圆形偶极子。
本申请实施例提供的方案采用了槽线馈电的方式,相较于传统的馈电方式,单个极化仅需要两个偶极子激励四个贴片天线,减小了馈电电路设计的复杂度。平行的两条槽线可以直接设计在贴片天线所在的介质板上,以使所有的馈电电路以及贴片天线都可以在同一 块介质板上实现,能够有效地降低天线结构的复杂度,降低天线结构的成本。
基于以上实施例提供的天线结构,本申请实施例还提供了一种应用该天线结构的电子设备,下面结合附图具体说明。
参见图17,该图为本申请实施例提供的一种电子设备的示意图。
电子设备170上包括一个或多个本申请实施例提供的天线结构,还包括射频电路171。图17中以电子设备170包括两个天线结构,即第一天线结构172和第二天线结构173为例进行说明。
图中第一天线结构172和第二天线结构173连接同一射频电路171。
射频电路171用于对第一天线结构172和第二天线结构173接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调,还可以对经调制解调处理器调制后的信号放大,经第一天线结构172和第二天线结构173转为电磁波辐射出去。在一些实施例中,调制解调处理器可以包括调制器和解调器。其中,调制器用于将待发送的低频基带信号调制成中高频信号。解调器用于将接收的电磁波信号解调为低频基带信号。
各个天线结构能够覆盖的频段范围可以相同,也可以不同,本申请实施例对此不作具体限定。例如其中的第一天线结构172能够覆盖的频段范围为第一频段范围,第二天线结构173能够覆盖的频段范围为第二频段范围,第一频段范围和第二频段范围可以相同,也可以不同,当第一频段范围和第二频段范围不同时,第一频段范围和第二频段范围之间可以存在部分重叠的频段,或者第一频段范围和第二频段范围完全不重叠。
关于天线结构的具体说明可以参见以上实施例,在此不再赘述。
参见图18,该图为本申请实施例提供的另一种电子设备的示意图。
图18所示的电子设备与图17的区别在于,电子设备包括了两个射频电路,即第一射频电路171a和第二射频电路171b。
其中,第一射频电路171a连接第一天线结构172,第二射频电路171b连接第二天线结构173。
此时第一天线结构172和第二天线结构173能够覆盖的频段范围不同。
以上的第一射频电路171a和第二射频电路171b可以设置在不同的电路板上,也可以设置在同一块电路板上,本申请实施例对此不作具体限定。
参见图19,该图为本申请实施例提供的又一种电子设备的示意图。
该电子设备包括第一天线结构172、第二天线结构173、第三天线结构174、第一射频电路171a和第二射频电路171b。
其中,第一射频电路171a连接第一天线结构172和第二天线结构173。
第二射频电路171b连接第三天线结构174。
第一天线结构172和第二天线结构173采用本申请实施例提供的技术方案,用于实现定向天线的功能。
第三天线结构174用于实现全向天线的功能,本申请实施例对第三天线结构174的具体实现方式不作限定。
第三天线结构174能够覆盖的频段范围与第一天线结构172可以相同,也可以不同。第三天线结构174能够覆盖的频段范围与第二天线结构173可以相同,也可以不同
本申请对电子设备的类型不作具体限定,电子设备可以为手机、笔记本电脑、可穿戴电子设备(例如智能手表)、平板电脑、AR设备、VR设备、路由器以及车载设备等。在一种典型的应用场景中,该电子设备为路由器。
当采用本申请实施例提供的天线结构时,通过改变天线结构的介质板与金属地板之间的第一预设距离可以改变天线结构的能够覆盖的频段范围。
综上所述,该电子设备应用了以上实施例中提供的天线结构,天线结构采用偶极子耦合馈电的方式激励四个贴片天线。并且实现了偶极子同相馈电,根据相对位置关系,四个贴片天线能够保证极化一致。对于单个极化而言,激励四个贴片天线,传统的激励方式需要四个端口,相应的,馈电电路为一分四的结构,而采用本申请的技术方案,对于单个极化而言,激励四个贴片天线仅需要两个馈电结构,相应的,馈电电路为一分二的结构,因此减小了馈电电路设计的复杂度。并且,偶极子与平行的两条馈线连接,平行的两条馈线可以直接设计在贴片天线所在的介质板上,以使所有的馈电电路以及贴片天线都可以在同一块介质板上实现,能够有效地降低天线结构的复杂度,降低天线结构的成本,也即降低了电子设备的成本。
此外,该天线结构具备定向性,并且定向增益高,两个馈电端口之间的隔离度高,还能覆盖较宽的频段范围,例如同时覆盖了Wi-Fi 6和Wi-Fi 6E的5GHz频段和6GHz频段,因此实用性较高,能够减少电子设备上设置的天线的数量,以进一步降低电子设备的硬件成本。
基于以上实施例提供的天线结构和电子设备,本申请实施例还提供了一种无线网络系统,下面结合附图具体说明。
参见图20,该图为本申请实施例提供的一种无线网络系统的示意图。
该无线网络系统300中包括多个电子设备,多个电子设备的中至少一个电子设备上应用了本申请实施例提供的天线结构。
图示无线网络系统300包括第一电子设备170以及第二电子设备301。
其中,第一电子设备170上包括一个或多个本申请实施例提供的天线结构,还包括射频电路,第一电子设备170的定向增益较高,用于沿特定方向和第二电子设备301进行数据传输。在一种典型的实现方式中,第一电子设备170为定向路由器。
关于第一电子设备170,以及第一电子设备170中包括的天线结构的具体实现方式可以参见以上实施例中的相关说明,再次不再赘述。
第二电子设备301中应用了全向天线,在一种典型的实现方式中,第二电子设备201为全向路由器。
可以理解的是,以上无线网络系统300仅为示意性的说明,实际应用中,根据具体的环境条件搭建无线网络系统300时,第一电子设备170和第二电子设备301的数量可以进一步增加,第二电子设备301也可以同时与多个第一电子设备170进行数据传输。
综上所述,以上无线网络系统中的电子设备应用了本申请提供的天线结构,一方面节省了电子设备的成本,另一方面还增加了电子设备在特定方向的增益,因此提升了无线网络系统的信号质量与网络的稳定性。
应当理解,在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两 个以上。“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (35)

  1. 一种天线结构,其特征在于,所述天线结构包括:介质板、贴片天线阵列、第一馈电端口、第二馈电端口和四个馈电结构;
    所述介质板和所述金属底板之间间隔第一预设距离;
    所述第一馈电端口和所述贴片天线阵列位于所述介质板的第一表面,所述第二馈电端口位于所述介质板的第二表面,所述第二表面与所述第一表面相对;
    所述贴片天线阵列包括四个贴片天线,四个所述贴片天线排列成两行两列,每行的两个所述贴片天线之间包括一个所述馈电结构,每列的两个所述贴片天线之间包括一个所述馈电结构;
    位于每列的两个所述贴片天线之间的馈电结构,连接所述第一馈电端口,以使四个所述贴片天线均产生第一方向的极化;
    位于每行的两个所述贴片天线之间的馈电结构,连接所述第二馈电端口,以使四个所述贴片天线均产生第二方向的极化。
  2. 根据权利要求1所述的天线结构,其特征在于,所述第一方向与所述第二方向正交。
  3. 根据权利要求1所述的天线结构,其特征在于,所述天线结构还包括金属底板;
    所述介质板和所述金属底板之间间隔第一预设距离。
  4. 根据权利要求1至3中任一项所述的天线结构,其特征在于,所述四个馈电结构中的每个馈电结构均包括连接的一个偶极子和一组平行馈线;
    所述平行馈线包括的第一馈线位于所述第一表面,包括的第二馈线位于所述第二表面;
    位于每列的两个所述贴片天线之间的馈电结构,包括的第二馈线通过一个对应的贯通结构连接至所述第一表面;
    位于每行的两个所述贴片天线之间的馈电结构,包括的第一馈线通过一个对应的贯通结构连接至所述第二表面。
  5. 根据权利要求4所述的天线结构,其特征在于,所述贯通结构包括一个或多个通孔,所述一个或多个通孔中的每个通孔,填充或镀有导电介质。
  6. 根据权利要求4或5所述的天线结构,其特征在于,所述四个馈电结构具体包括第一馈电结构、第二馈电结构、第三馈电结构和第四馈电结构;
    所述第一馈电结构位于第一列的两个所述贴片天线之间,所述第二馈电结构位于第一行的两个所述贴片天线之间,所述第三馈电结构位于第二列的两个所述贴片天线之间,所述第四馈电结构位于第二行的两个所述贴片天线之间;
    所述第一馈电结构的第一馈线与所述第三馈电结构的第一馈线连接;
    所述第一馈电结构的第二馈线通过第一贯通结构连接至所述第一表面;
    所述第三馈电结构的第二馈线通过第三贯通结构连接至所述第一表面,所述第一贯通结构和所述第三贯通结构在所述第一表面连接;
    所述第二馈电结构的第二馈线与所述第四馈电结构的第二馈线连接;
    所述第二馈电结构的第一馈线通过第二贯通结构连接至所述第二表面;
    所述第四馈电结构的第一馈线通过第四贯通结构连接至所述第二表面,所述第二贯通结构和所述第四贯通结构在所述第二表面连接。
  7. 根据权利要求4至6中任一项所述的天线结构,其特征在于,每个所述馈电结构的偶极子包括:第一部分和第二部分;
    所述第一部分位于所述第一表面,所述第一部分的第一端连接所述第一馈线,所述第一部分的第一端为所述偶极子的第一输入端,所述第一部分的第二端包括第一枝节,所述第一枝节与最近的贴片天线之间间隔第二预设距离;
    所述第二部分位于所述第二表面,所述第二部分的第一端连接所述第二馈线,所述第二部分的第一端为所述偶极子的第二输入端,所述第二部分的第二端包括第二枝节,所述第二枝节与最近的贴片天线之间间隔所述第二预设距离。
  8. 根据权利要求7所述的天线结构,其特征在于,所述偶极子输入阻抗为第一阻抗值,所述偶极子输入阻抗为所述第一输入端和所述第二输入端之间的阻抗;
    每组所述平行馈线中的所述第一馈线与所述第二馈线间的阻抗值为所述第一阻抗值。
  9. 根据权利要求1至3中任一项所述的天线结构,其特征在于,所述四个馈电结构中的每个馈电结构均包括连接的一个偶极子和一组平行槽线;
    位于每列的两个所述贴片天线之间的馈电结构,包括的平行槽线均位于所述第一表面;
    位于每行的两个所述贴片天线之间的馈电结构,包括的平行槽线均位于所述第二表面。
  10. 根据权利要求9所述的天线结构,其特征在于,所述四个馈电结构具体包括第一馈电结构、第二馈电结构、第三馈电结构和第四馈电结构;
    所述第一馈电结构位于第一列的两个所述贴片天线之间,所述第二馈电结构位于第一行的两个所述贴片天线之间,所述第三馈电结构位于第二列的两个所述贴片天线之间,所述第四馈电结构位于第二行的两个所述贴片天线之间;
    所述第一馈电结构的第一槽线与所述第三馈电结构的第一槽线连接;
    所述第一馈电结构的第二槽线与所述第三馈电结构的第二槽线连接;
    所述第二馈电结构的第一槽线与所述第四馈电结构的第一槽线连接;
    所述第二馈电结构的第二槽线与所述第四馈电结构的第二槽线连接。
  11. 根据权利要求9至10中任一项所述的天线结构,其特征在于,每个所述馈电结构的偶极子包括:第一部分和第二部分;所述第一部分和所述第二部分位于同一表面;
    所述第一部分的第一端连接所述第一槽线,所述第一部分的第一端为所述偶极子的第一输入端,所述第一部分的第二端包括第一枝节,所述第一枝节与最近的贴片天线之间间隔第二预设距离;
    所述第二部分的第一端连接所述第二槽线,所述第二部分的第一端为所述偶极子的第二输入端,所述第二部分的第二端包括第二枝节,所述第二枝节与最近的贴片天线之间间隔所述第二预设距离。
  12. 根据权利要求11所述的天线结构,其特征在于,所述偶极子的输入阻抗为第一阻抗值,所述偶极子输入阻抗为所述第一输入端和所述第二输入端之间的阻抗;
    每组所述平行馈线中的所述第一槽线与所述第二槽线间的阻抗值为所述第一阻抗值。
  13. 根据权利要求5、6、11或12中任一项所述的天线结构,其特征在于,所述第一枝节与所述第二枝节为T型枝节;或所述第一枝节与所述第二枝节为三角形枝节;或,所述第一枝节与所述第二枝节为半圆形枝节。
  14. 根据权利要求1至13中任一项所述的天线结构,其特征在于,所述贴片天线阵列包括的各所述贴片天线为正方形贴片天线;或,所述贴片天线阵列包括的各所述贴片天线为圆形贴片天线;或,所述贴片天线阵列包括的各所述贴片天线为菱形贴片天线。
  15. 根据权利要求1至14中任一项所述的天线结构,其特征在于,所述介质板的第一表面和第二表面为正方形,且第一表面和第二表面的边长均为第一预设长度;
    位于同一列的两个所述贴片天线的几何中心之间的距离均为第二预设长度,位于同一行的两个所述贴片天线的几何中心之间的距离均为所述第二预设长度;
    所述第二预设长度为所述第一预设长度的一半。
  16. 一种电子设备,其特征在于,所述电子设备包括一个或多个权利要求1至15中任一项所述的天线结构,还包括第一射频电路;
    所述天线结构与所述第一射频电路连接。
  17. 根据权利要求16所述的电子设备,其特征在于,所述电子设备包括多个所述天线结构,多个所述天线结构中至少存在两个所述天线结构的工作频段不同。
  18. 根据权利要求16或17中任一项所述的电子设备,其特征在于,所述电子设备为路由器。
  19. 一种无线网络系统,其特征在于,所述无线网络系统包括一个或多个权利要求16至17中任一项所述的电子设备。
  20. 根据权利要求19中所述的无线网络系统,其特征在于,所述无线网络系统还包括一个或多个第二电子设备,所述第二电子设备包括全向天线。
  21. 一种天线结构,其特征在于,所述天线结构包括:介质板、贴片天线阵列、第一馈电端口、第二馈电端口和四个馈电结构;
    所述第一馈电端口和所述贴片天线阵列位于所述介质板的第一表面,所述第二馈电端口位于所述介质板的第二表面,所述第二表面与所述第一表面相对;
    所述贴片天线阵列包括四个贴片天线,四个所述贴片天线排列成两行两列,每行的两个所述贴片天线之间包括一个所述馈电结构,每列的两个所述贴片天线之间包括一个所述馈电结构;
    位于每列的两个所述贴片天线之间的馈电结构,连接所述第一馈电端口,以使四个所述贴片天线均产生第一方向的极化;
    位于每行的两个所述贴片天线之间的馈电结构,连接所述第二馈电端口,以使四个所述贴片天线均产生第二方向的极化。
  22. 根据权利要求21所述的天线结构,其特征在于,所述第一方向与所述第二方向正交。
  23. 根据权利要求21所述的天线结构,其特征在于,所述天线结构还包括金属底板;
    所述介质板和所述金属底板之间间隔第一预设距离。
  24. 根据权利要求21至23中任一项所述的天线结构,其特征在于,所述四个馈电结构中的每个馈电结构均包括连接的一个偶极子和一组平行馈线;
    所述平行馈线包括的第一馈线位于所述第一表面,包括的第二馈线位于所述第二表面;
    位于每列的两个所述贴片天线之间的馈电结构,包括的第二馈线通过一个对应的贯通 结构连接至所述第一表面;
    位于每行的两个所述贴片天线之间的馈电结构,包括的第一馈线通过一个对应的贯通结构连接至所述第二表面。
  25. 根据权利要求24所述的天线结构,其特征在于,所述贯通结构包括一个或多个通孔,所述一个或多个通孔中的每个通孔,填充或镀有导电介质。
  26. 根据权利要求24或25所述的天线结构,其特征在于,所述四个馈电结构具体包括第一馈电结构、第二馈电结构、第三馈电结构和第四馈电结构;
    所述第一馈电结构位于第一列的两个所述贴片天线之间,所述第二馈电结构位于第一行的两个所述贴片天线之间,所述第三馈电结构位于第二列的两个所述贴片天线之间,所述第四馈电结构位于第二行的两个所述贴片天线之间;
    所述第一馈电结构的第一馈线与所述第三馈电结构的第一馈线连接;
    所述第一馈电结构的第二馈线通过第一贯通结构连接至所述第一表面;
    所述第三馈电结构的第二馈线通过第三贯通结构连接至所述第一表面,所述第一贯通结构和所述第三贯通结构在所述第一表面连接;
    所述第二馈电结构的第二馈线与所述第四馈电结构的第二馈线连接;
    所述第二馈电结构的第一馈线通过第二贯通结构连接至所述第二表面;
    所述第四馈电结构的第一馈线通过第四贯通结构连接至所述第二表面,所述第二贯通结构和所述第四贯通结构在所述第二表面连接。
  27. 根据权利要求24至26中任一项所述的天线结构,其特征在于,每个所述馈电结构的偶极子包括:第一部分和第二部分;
    所述第一部分位于所述第一表面,所述第一部分的第一端连接所述第一馈线,所述第一部分的第一端为所述偶极子的第一输入端,所述第一部分的第二端包括第一枝节,所述第一枝节与最近的贴片天线之间间隔第二预设距离;
    所述第二部分位于所述第二表面,所述第二部分的第一端连接所述第二馈线,所述第二部分的第一端为所述偶极子的第二输入端,所述第二部分的第二端包括第二枝节,所述第二枝节与最近的贴片天线之间间隔所述第二预设距离。
  28. 根据权利要求27所述的天线结构,其特征在于,所述偶极子输入阻抗为第一阻抗值,所述偶极子输入阻抗为所述第一输入端和所述第二输入端之间的阻抗;
    每组所述平行馈线中的所述第一馈线与所述第二馈线间的阻抗值为所述第一阻抗值。
  29. 根据权利要求21至23中任一项所述的天线结构,其特征在于,所述四个馈电结构中的每个馈电结构均包括连接的一个偶极子和一组平行槽线;
    位于每列的两个所述贴片天线之间的馈电结构,包括的平行槽线均位于所述第一表面;
    位于每行的两个所述贴片天线之间的馈电结构,包括的平行槽线均位于所述第二表面。
  30. 根据权利要求29所述的天线结构,其特征在于,所述四个馈电结构具体包括第一馈电结构、第二馈电结构、第三馈电结构和第四馈电结构;
    所述第一馈电结构位于第一列的两个所述贴片天线之间,所述第二馈电结构位于第一行的两个所述贴片天线之间,所述第三馈电结构位于第二列的两个所述贴片天线之间,所述第四馈电结构位于第二行的两个所述贴片天线之间;
    所述第一馈电结构的第一槽线与所述第三馈电结构的第一槽线连接;
    所述第一馈电结构的第二槽线与所述第三馈电结构的第二槽线连接;
    所述第二馈电结构的第一槽线与所述第四馈电结构的第一槽线连接;
    所述第二馈电结构的第二槽线与所述第四馈电结构的第二槽线连接。
  31. 根据权利要求29至30中任一项所述的天线结构,其特征在于,每个所述馈电结构的偶极子包括:第一部分和第二部分;所述第一部分和所述第二部分位于同一表面;
    所述第一部分的第一端连接所述第一槽线,所述第一部分的第一端为所述偶极子的第一输入端,所述第一部分的第二端包括第一枝节,所述第一枝节与最近的贴片天线之间间隔第二预设距离;
    所述第二部分的第一端连接所述第二槽线,所述第二部分的第一端为所述偶极子的第二输入端,所述第二部分的第二端包括第二枝节,所述第二枝节与最近的贴片天线之间间隔所述第二预设距离。
  32. 根据权利要求31所述的天线结构,其特征在于,所述偶极子的输入阻抗为第一阻抗值,所述偶极子输入阻抗为所述第一输入端和所述第二输入端之间的阻抗;
    每组所述平行馈线中的所述第一槽线与所述第二槽线间的阻抗值为所述第一阻抗值。
  33. 根据权利要求25、26、31或32中任一项所述的天线结构,其特征在于,所述第一枝节与所述第二枝节为T型枝节;或所述第一枝节与所述第二枝节为三角形枝节;或,所述第一枝节与所述第二枝节为半圆形枝节。
  34. 根据权利要求21至33中任一项所述的天线结构,其特征在于,所述贴片天线阵列包括的各所述贴片天线为正方形贴片天线;或,所述贴片天线阵列包括的各所述贴片天线为圆形贴片天线;或,所述贴片天线阵列包括的各所述贴片天线为菱形贴片天线。
  35. 根据权利要求21至34中任一项所述的天线结构,其特征在于,所述介质板的第一表面和第二表面为正方形,且第一表面和第二表面的边长均为第一预设长度;
    位于同一列的两个所述贴片天线的几何中心之间的距离均为第二预设长度,位于同一行的两个所述贴片天线的几何中心之间的距离均为所述第二预设长度;
    所述第二预设长度为所述第一预设长度的一半。
PCT/CN2022/142628 2022-01-18 2022-12-28 一种天线结构、电子设备及无线网络系统 WO2023138324A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/274,465 US20240097348A1 (en) 2022-01-18 2022-12-28 Antenna structure, electronic device, and wireless network system
EP22919282.8A EP4266502A1 (en) 2022-01-18 2022-12-28 Antenna structure, electronic device and wireless network system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210056873.9 2022-01-18
CN202210056873.9A CN114883773A (zh) 2022-01-18 2022-01-18 一种天线结构、电子设备及无线网络系统

Publications (1)

Publication Number Publication Date
WO2023138324A1 true WO2023138324A1 (zh) 2023-07-27

Family

ID=82668440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/142628 WO2023138324A1 (zh) 2022-01-18 2022-12-28 一种天线结构、电子设备及无线网络系统

Country Status (4)

Country Link
US (1) US20240097348A1 (zh)
EP (1) EP4266502A1 (zh)
CN (1) CN114883773A (zh)
WO (1) WO2023138324A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114883773A (zh) * 2022-01-18 2022-08-09 荣耀终端有限公司 一种天线结构、电子设备及无线网络系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5661494A (en) * 1995-03-24 1997-08-26 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration High performance circularly polarized microstrip antenna
CN106356644A (zh) * 2016-10-27 2017-01-25 南京理工大学 双端口双频双圆极化微带阵列天线
CN112688059A (zh) * 2020-12-14 2021-04-20 中国科学院国家空间科学中心 一种宽带圆极化微带阵列天线
CN113328255A (zh) * 2021-05-10 2021-08-31 电子科技大学 一种低剖面双端口高隔离的双圆极化天线阵列
CN113506982A (zh) * 2021-09-09 2021-10-15 南京天朗防务科技有限公司 一种双频段双极化共口径天线
CN114883773A (zh) * 2022-01-18 2022-08-09 荣耀终端有限公司 一种天线结构、电子设备及无线网络系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5661494A (en) * 1995-03-24 1997-08-26 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration High performance circularly polarized microstrip antenna
CN106356644A (zh) * 2016-10-27 2017-01-25 南京理工大学 双端口双频双圆极化微带阵列天线
CN112688059A (zh) * 2020-12-14 2021-04-20 中国科学院国家空间科学中心 一种宽带圆极化微带阵列天线
CN113328255A (zh) * 2021-05-10 2021-08-31 电子科技大学 一种低剖面双端口高隔离的双圆极化天线阵列
CN113506982A (zh) * 2021-09-09 2021-10-15 南京天朗防务科技有限公司 一种双频段双极化共口径天线
CN114883773A (zh) * 2022-01-18 2022-08-09 荣耀终端有限公司 一种天线结构、电子设备及无线网络系统

Also Published As

Publication number Publication date
EP4266502A1 (en) 2023-10-25
US20240097348A1 (en) 2024-03-21
CN114883773A (zh) 2022-08-09

Similar Documents

Publication Publication Date Title
WO2020233477A1 (zh) 天线单元及终端设备
US11552385B2 (en) Feed network of base station antenna, base station antenna, and base station
US10854994B2 (en) Broadband phased array antenna system with hybrid radiating elements
CN211428346U (zh) 天线模组及电子设备
US9972918B2 (en) Dual-frequency dual-polarized base station antenna for parallel dual feeding
US8854270B2 (en) Hybrid multi-antenna system and wireless communication apparatus using the same
WO2020233478A1 (zh) 天线单元及终端设备
WO2021104191A1 (zh) 天线单元及电子设备
CN112234344B (zh) 天线装置及电子设备
CN107809008B (zh) 基于180度混合环的带内全双工天线
CN109830802B (zh) 一种毫米波双极化贴片天线
WO2021083214A1 (zh) 天线单元及电子设备
WO2021083223A1 (zh) 天线单元及电子设备
CN112290193A (zh) 毫米波模组、电子设备及毫米波模组的调节方法
CN114976665A (zh) 一种加载频率选择表面辐射稳定的宽带双极化偶极子天线
WO2023138324A1 (zh) 一种天线结构、电子设备及无线网络系统
CN114256614B (zh) 一种应用于毫米波通信系统的超宽带平面天线阵列
CN110444875A (zh) 一种平行倒置的共面波导超宽带mimo天线
WO2021212277A1 (zh) 双频双极化天线
CN115207613B (zh) 一种宽带双极化天线单元及天线阵列
WO2021083220A1 (zh) 天线单元及电子设备
WO2021083213A1 (zh) 天线单元及电子设备
WO2021083212A1 (zh) 天线单元及电子设备
WO2021083218A1 (zh) 天线单元及电子设备
WO2021083219A1 (zh) 天线单元及电子设备

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 18274465

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022919282

Country of ref document: EP

Effective date: 20230719

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22919282

Country of ref document: EP

Kind code of ref document: A1