WO2021109769A1 - 壳体组件、天线装置及电子设备 - Google Patents

壳体组件、天线装置及电子设备 Download PDF

Info

Publication number
WO2021109769A1
WO2021109769A1 PCT/CN2020/125641 CN2020125641W WO2021109769A1 WO 2021109769 A1 WO2021109769 A1 WO 2021109769A1 CN 2020125641 W CN2020125641 W CN 2020125641W WO 2021109769 A1 WO2021109769 A1 WO 2021109769A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio frequency
polarization
preset
wave
frequency signal
Prior art date
Application number
PCT/CN2020/125641
Other languages
English (en)
French (fr)
Inventor
贾玉虎
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2021109769A1 publication Critical patent/WO2021109769A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/24Polarising devices; Polarisation filters 
    • H01Q15/242Polarisation converters

Definitions

  • This application relates to the field of antenna technology, and in particular to a housing assembly, an antenna device and an electronic device.
  • Millimeter wave has the characteristics of high carrier frequency and large bandwidth, and it is the main means to realize 5G ultra-high data transmission rate. Since the millimeter wave antenna is sensitive to the environment, for the whole millimeter wave antenna array, it is necessary to optimize the covering structure above the antenna array to achieve better system radiation performance.
  • the embodiments of the present application provide a housing assembly, an antenna device, and electronic equipment.
  • the polarization characteristics of a preset radio frequency signal incident on the housing assembly can be adjusted through a wave-transmitting structure.
  • the housing assembly When the housing assembly is applied to the antenna device It helps to improve the radiation performance of the antenna device.
  • an embodiment of the present application provides a housing assembly, the housing assembly including:
  • a dielectric substrate carries a wave-transmitting structure
  • the wave-transmitting structure includes one or more resonant unit array layers, and the resonant unit array layers have different phase responses to radio frequency signals in different polarization directions;
  • the wave-transmitting structure is used for converting the polarization characteristic of the preset radio frequency signal incident on the housing assembly from the preset polarization characteristic to the target polarization characteristic.
  • an embodiment of the present application also provides an antenna device.
  • the antenna device includes an antenna module and the housing assembly provided in any of the above embodiments.
  • the antenna module and the wave-transmitting structure are spaced apart from each other.
  • the main axis direction of the wave-transmitting structure is a first predetermined direction, the antenna module and the first predetermined direction are at a predetermined included angle, and the wave-transmitting structure is at least partially located at the pre-determined position of the antenna module for transmitting and receiving radio frequency signals.
  • the wave-transmitting structure is used to adjust the polarization characteristics of the preset radio frequency signal received by the antenna module, so that the polarization of the preset radio frequency signal incident on the housing assembly is The characteristics are converted from the preset polarization characteristics to the target polarization characteristics.
  • an embodiment of the present application also provides an electronic device that includes a main board, an antenna module, and the housing assembly provided in any of the above embodiments.
  • the main board is assembled on the housing assembly and is installed in the housing assembly.
  • the housing assembly forms a receiving space on a side facing the wave-transmitting structure, the antenna module is disposed in the receiving space and is electrically connected to the main board, and the main axis of the wave-transmitting structure is the first A preset direction, the antenna module and the first preset direction are at a preset angle, the wave-transmitting structure is at least partially located within the preset direction range of the antenna module for receiving and transmitting radio frequency signals, and the transparent
  • the wave structure is used to adjust the polarization characteristic of the preset radio frequency signal received by the antenna module, so that the polarization characteristic of the preset radio frequency signal incident on the housing component is converted from the preset polarization characteristic It is the target polarization characteristic.
  • FIG. 1 is a schematic structural diagram of a housing assembly provided by an embodiment of the present application
  • Fig. 2 is a schematic structural diagram of the wave-transmitting structure of the housing assembly provided in Fig. 1;
  • Fig. 3 is a schematic structural diagram of the patch unit in the wave-transmitting structure provided in Fig. 2;
  • FIG. 4 is another structural schematic diagram of the wave-transmitting structure of the housing assembly provided in FIG. 1;
  • FIG. 5 is a schematic structural diagram of the patch unit in the wave-transmitting structure provided in FIG. 4;
  • FIG. 6 is a schematic structural diagram of a housing assembly in one direction according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a housing assembly in another direction according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a top view of the first array unit and the second array unit in the housing assembly provided by the embodiment of the present application after being laminated;
  • FIG. 9 is a schematic diagram of polarization generated by the wave-transmitting structure provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of an antenna device provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a top view of the antenna module in the antenna device provided in FIG. 10;
  • FIG. 12 is a schematic structural diagram of a cross-sectional view of the antenna module in the antenna device provided in FIG. 10;
  • FIG. 13 is a schematic diagram of another top view structure of the antenna module in the antenna device provided in FIG. 10; FIG.
  • FIG. 14 is a schematic structural diagram of another cross-sectional view of the antenna module in the antenna device provided in FIG. 10;
  • FIG. 15 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of another electronic device provided by an embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of another electronic device provided by an embodiment of the present application.
  • the embodiment of the present application provides a housing assembly, including:
  • a dielectric substrate carries a wave-transmitting structure
  • the wave-transmitting structure includes one or more resonant unit array layers, and the resonant unit array layers have different phase responses to radio frequency signals in different polarization directions;
  • the wave-transmitting structure is used for converting the polarization characteristic of the preset radio frequency signal incident on the housing assembly from the preset polarization characteristic to the target polarization characteristic.
  • the polarization characteristic of the preset radio frequency signal is X polarization
  • the target polarization characteristic is Y polarization
  • the polarization characteristics of the preset radio frequency signal are X polarization and Y polarization, and the target polarization characteristics are circular polarization.
  • the wave-transmitting structure includes at least one resonant unit array layer, the resonant unit array layer includes a plurality of patch units arranged in an array, and the patch units have different radio frequency signals in different polarization directions. Phase response.
  • the transmittance of the plurality of patch units to the preset radio frequency signal is consistent.
  • the patch unit is one or more of a square shape, a circular shape, a circular ring shape, and a polygon shape.
  • the patch unit is rectangular, the patch unit has a long side and a short side, the length of the long side is P1, and the length of the short side is P2, which satisfies the condition Wherein, the ⁇ is the wavelength of the preset radio frequency signal.
  • the patch unit has a rectangular through hole, and the axial direction of the through hole is kept orthogonal to the main axis direction of the patch unit.
  • the adjacent patch units share a part of the structure.
  • the wave-transmitting structure includes a first resonant unit array layer and a second resonant unit array layer that are stacked, and the first resonant unit array layer includes a plurality of first array units arranged in an array, and the second The resonant unit array layer includes a plurality of second array units arranged in an array, and the first array unit is four L-shaped corner structures arranged at intervals, wherein the openings of the four corner structures all face the first array In the center of the unit, the gap between two adjacent corner structures is different, the second array unit has a strip structure, and the second array unit is arranged corresponding to the gap of the first array unit.
  • the first array unit and the second array unit at least partially overlap in the thickness direction of the dielectric substrate.
  • the main axis direction of the wave-transmitting structure is a first preset direction
  • a direction perpendicular to the main axis direction in the plane of the wave-transmitting structure is a second preset direction
  • the polarization is along the first preset direction
  • the phase difference between the radio frequency signal and the radio frequency signal polarized in the second predetermined direction satisfies ⁇
  • the predetermined polarization characteristic is linear polarization
  • the target polarization characteristic is also linear polarization
  • the angle formed between the first preset direction and the polarization direction of the radio frequency signal with the preset polarization characteristic is ⁇ , where ⁇ 0, the polarization of the radio frequency signal with the preset polarization characteristic
  • the angle formed between the direction and the polarization direction of the radio frequency signal of the target polarization characteristic is 2 ⁇ .
  • the angle formed between the polarization direction of the radio frequency signal with the preset polarization characteristic and the polarization direction of the radio frequency signal with the target polarization characteristic is
  • the main axis direction of the wave-transmitting structure is a first preset direction
  • a direction perpendicular to the main axis direction in the plane of the wave-transmitting structure is a second preset direction
  • the polarization is along the first preset direction
  • the phase difference between the radio frequency signal and the radio frequency signal polarized along the second preset direction satisfies
  • the polarization characteristic of the radio frequency signal with the preset polarization characteristic is linear polarization
  • the target polarization characteristic is circular polarization
  • the first predetermined direction and the radio frequency signal with the preset polarization characteristic are The angle formed between the polarization directions of is ⁇ , and the ⁇ 0.
  • An embodiment of the present application also provides an antenna device.
  • the antenna device includes an antenna module and a housing assembly as in the foregoing embodiment of the present application.
  • the antenna module and the wave-transmitting structure are spaced apart from each other.
  • the main axis direction of the structure is a first predetermined direction
  • the antenna module and the first predetermined direction are at a predetermined angle
  • the wave-transmitting structure is at least partially located in the predetermined direction of the antenna module for receiving and transmitting radio frequency signals
  • the wave-transmitting structure is used to adjust the polarization characteristic of the preset radio frequency signal received by the antenna module, so that the polarization characteristic of the preset radio frequency signal incident on the housing assembly is changed from The preset polarization characteristic is converted to the target polarization characteristic.
  • the antenna module includes a plurality of antenna radiators arranged in an array
  • the antenna device further includes a support plate and a radio frequency chip
  • the antenna radiator is located on the surface of the support plate adjacent to the wave-transmitting structure, so
  • the radio frequency chip is located on the surface of the support plate away from the wave-transmitting structure
  • the antenna device further includes a radio frequency wire for electrically connecting the radio frequency chip and the antenna radiator.
  • the support plate has a limiting hole, and the radio frequency line is located in the limiting hole.
  • the support plate has a plurality of metallized vias, and the vias are arranged around the antenna radiator to isolate two adjacent antenna radiators.
  • the antenna module includes a plurality of antenna radiators arranged in an array
  • the antenna device further includes a support plate, a radio frequency chip, and a feed layer
  • the antenna radiator is located on the support plate adjacent to the wave-transmitting structure.
  • the radio frequency chip is located on the surface of the support plate away from the wave-transmitting structure
  • the feed ground layer is located between the support plate and the radio frequency chip
  • the feed ground layer constitutes the ground pole of the antenna radiator
  • the feeding ground layer has a gap
  • a feeding wire is provided between the radio frequency chip and the feeding ground layer, the feeding wire is electrically connected to the radio frequency chip, and the feeding wire is connected to the feeding wire.
  • the projection on the ground layer is at least partially located in the gap, and the feeder wire couples and feeds the antenna radiator through the gap.
  • An embodiment of the present application also provides an electronic device.
  • the electronic device includes a motherboard, an antenna module, and a housing assembly as provided in the above-mentioned embodiments of the application.
  • the motherboard is assembled on the housing assembly and is installed in the housing assembly.
  • the side of the housing assembly facing the wave-transmitting structure forms an accommodating space, the antenna module is disposed in the accommodating space, and is electrically connected to the main board, and the main axis direction of the wave-transmitting structure is the first A preset direction, the antenna module and the first preset direction are at a preset angle, the wave-transmitting structure is at least partly located within the preset direction range of the antenna module for receiving and transmitting radio frequency signals, and the wave-transmitting structure
  • the structure is used to adjust the polarization characteristic of the preset radio frequency signal received by the antenna module, so that the polarization characteristic of the preset radio frequency signal incident on the housing assembly is converted from the preset polarization characteristic to Target polarization characteristics.
  • the electronic device further includes a battery cover
  • the battery cover constitutes the dielectric substrate
  • the material of the battery cover is any one or more of plastic, glass, sapphire, and ceramic.
  • the battery cover includes a back plate and a side plate surrounding the back plate, the side plate is located within a preset direction range of the antenna radiator for transmitting and receiving radio frequency signals, and the wave-transmitting structure is located on the side plate surface
  • the side plate constitutes the dielectric substrate
  • the back plate is located within the preset direction range of the antenna radiator for receiving and transmitting radio frequency signals, and the wave-transmitting structure is located at the The back plate faces the side of the antenna radiator, and the back plate constitutes the dielectric substrate.
  • the housing assembly 10 provided by the embodiment of the present application includes a dielectric substrate 100 on which a wave-transmitting structure 200 is carried.
  • the wave-transmitting structure 200 includes one or more resonant unit array layers 210
  • the resonant unit array layer 210 has different phase responses to radio frequency signals with different polarization directions.
  • the wave-transmitting structure 200 is used to convert the polarization characteristic of the preset radio frequency signal incident on the housing assembly 10 from the preset polarization characteristic to the target polarization characteristic.
  • the resonant unit array layer 210 has different phase responses to radio frequency signals in different polarization directions, which means that the resonant unit array layer 210 has a phase difference in the phase responses of the radio frequency signals in different polarization directions.
  • the polarization characteristic of the preset radio frequency signal is X polarization, and in this case, the target polarization characteristic may be Y polarization. That is, the preset radio frequency signal includes a radio frequency signal polarized in the X direction, and the target polarization characteristic is the polarization in the Y direction.
  • the wave-transmitting structure has a first phase response to the radio frequency signal in the first predetermined polarization direction, so as to convert the radio frequency signal in the first predetermined polarization direction (for example, the X direction) into the first target pole.
  • the radio frequency signal in the polarization direction (for example, the Y direction) can convert the radio frequency signal from linear polarization in one direction to linear polarization in the other direction.
  • the polarization characteristics of the preset radio frequency signal are X polarization and Y polarization.
  • the target polarization characteristics may be circular polarization. That is, the preset radio frequency signal includes a radio frequency signal polarized in the X direction and a radio frequency signal polarized in the Y direction, and the target polarization characteristic is circular polarization.
  • the wave-transmitting structure has a second phase response to the radio frequency signal in the second predetermined polarization direction (for example, the Y direction), so as to combine the radio frequency signal in the first predetermined polarization direction with the second predetermined polarization direction.
  • the radio frequency signal in the polarization direction is converted into a circularly polarized radio frequency signal
  • the radio frequency signal can be converted from linear polarization in one direction to circular polarization.
  • the radio frequency signal can penetrate the dielectric substrate 100, and the radio frequency signal can be a millimeter wave signal.
  • the frequency band of the preset radio frequency signal includes at least the 3GPP millimeter wave full frequency band.
  • 5G mainly uses two frequency bands: FR1 frequency band and FR2 frequency band.
  • the frequency range of FR1 band is 450MHz ⁇ 6GHz, also called sub-6GHz band; the frequency range of FR2 band is 24.25GHz ⁇ 52.6GHz, usually called millimeter wave (mm Wave).
  • the 3GPP version 15 specifies the current 5G millimeter wave frequency bands as follows: n257 (26.5-29.5GHz), n258 (24.25-27.5GHz), n261 (27.5-28.35GHz) and n260 (37-40GHz). Therefore, the frequency band of the preset radio frequency signal at least covers the n257, n258, n261, and n260 frequency bands.
  • the wave-transmitting structure 200 is used to perform spatial impedance matching on a preset radio frequency signal.
  • the resonant unit array layer 210 has different phase responses to radio frequency signals in different polarization directions.
  • the preset radio frequency signal is transmitted to the housing assembly 10, it is located in the housing.
  • the wave-transmitting structure 200 in the preset area of the body assembly 10 can change the polarization characteristic of the preset radio frequency signal, so that the radiation direction of the preset radio frequency signal can be improved, and the radiation effect can be improved.
  • the polarization direction is defined by the spatial orientation of the electric field intensity vector of the electromagnetic wave radiated by the antenna in the maximum radiation direction, and is a parameter describing the spatial direction of the electromagnetic wave radiated by the antenna. Since the electric field and the magnetic field have a constant relationship, the spatial direction of the electric field vector is generally used as the polarization direction of the electromagnetic wave radiated by the antenna.
  • the wave-transmitting structure 200 has a different phase response to the preset radio frequency signal for the preset radio frequency signal polarized in the first direction and the preset radio frequency signal polarized in the second direction , Wherein the second direction is different from the first direction.
  • the polarization characteristics of the preset radio frequency signal are changed.
  • the wave-transmitting structure 200 is located within the radiation direction range of the antenna, it helps to improve the radiation effect of the antenna.
  • the housing assembly 10 provided by the embodiment of the present application includes a dielectric substrate 100 and a wave-transmitting structure 200.
  • the wave-transmitting structure 200 includes one or more resonant unit array layers 210.
  • the resonant unit array layers 210 respond to radio frequency signals in different polarization directions. Have different phase response.
  • the wave-transmitting structure 200 can adjust the polarization characteristics of the preset radio frequency signal incident on the housing assembly 10. When the housing assembly 10 is applied to an antenna device, it helps to improve the radiation performance of the antenna device.
  • the wave-transmitting structure 200 includes at least one resonant unit array layer 210, and the resonant unit array layer 210 includes a plurality of patch units 211 arranged in an array.
  • 211 has different phase responses to radio frequency signals in different polarization directions, that is, the patch unit 211 has phase differences in phase responses to radio frequency signals in different polarization directions.
  • the patch unit 211 is a metal sub-wavelength structure. Since the metal sub-wavelength structure supports resonance in the millimeter wave frequency band, it can greatly control the characteristics of the radio frequency signal (intensity, phase, etc.).
  • the patch unit 211 may be one or more of a square shape, a circle shape, a circular ring shape, and a polygon shape.
  • the patch unit 211 is rectangular, the patch unit 211 has a long side and a short side, the length of the long side is P1, and the length of the short side is P2, which satisfies the condition Wherein, the ⁇ is the wavelength of the preset radio frequency signal.
  • the range of the long side length P1 and the short side length P2 of the patch unit 211 can be determined according to the wavelength of the preset radio frequency signal.
  • the patch unit 211 has a small volume, which can make the arrangement of several patch units 211 possible. More dense, can better control the characteristics of the radio frequency signal.
  • the patch unit 211 has a rectangular through hole 211 a.
  • the size of the through hole 211a is L1 ⁇ L2, where L1 ⁇ L2.
  • a number of patch units 211 are arranged to form a grid-like structure.
  • the asymmetrical structure of the wave-transmitting structure 200 is designed so that the polarization direction of the preset radio frequency signal changes after passing through the housing assembly 10, which helps to improve the prediction. Set the radiation effect of the radio frequency signal.
  • the axial direction of the through hole 211a is kept orthogonal to the main axis direction of the patch unit 211.
  • the axial direction of the through hole 211a refers to the normal direction of the through hole 211a, that is, the direction perpendicular to the patch unit 211, and the main axis direction of the patch unit 211 refers to the length of the patch unit 211. Side direction.
  • the mesh grid can be linear or broken.
  • the preset radio frequency signal can penetrate through the through hole 211a for transmission, and the transmittance of the preset radio frequency signal can be enhanced, thereby increasing the radiation intensity.
  • the through hole 211a is a rectangular hole, so that the patch unit 211 is not a completely axisymmetric structure.
  • the preset radio frequency signal passes through the housing assembly 10, the preset radio frequency signal can be changed. Polarization direction.
  • the plurality of patch units 211 respond to the preset radio frequency signal
  • the transmittance of the antenna can be kept consistent, so that the intensity of the preset radio frequency signal passing through the housing assembly 10 can be kept uniform, which helps to improve the stability of the antenna radiation.
  • the adjacent patch units 211 share a part of the structure. Specifically, adjacent patch units 211 can share a part of the side length, which can make the arrangement of several patch units 211 more dense, and several patch units 211 can be arranged to form a honeycomb structure.
  • the wave-transmitting structure 200 includes a first resonant unit array layer 220 and a second resonant unit array layer 230 that are stacked, and the first resonant unit array layer 220 includes several The first array units 221 arranged in an array, the second resonant unit array layer 230 includes a plurality of second array units 231 arranged in an array, and the first array units 221 are four L-shaped corners arranged at intervals Structure 222, wherein the openings of the four corner structures 222 all face the center of the first array unit 221, the gap between two adjacent corner structures 222 is different, and the second array unit 231 is strip-shaped Structure, the second array unit 231 is arranged corresponding to the gap of the first array unit 221.
  • the gap sizes between adjacent corner structures 222 are gap1 and gap2 respectively, gap1 ⁇ gap2, so that the first array unit 221 presents an asymmetric structure.
  • the asymmetrical structure of the wave-transmitting structure unit is designed to pass through the housing After the assembly, the polarization of the radio frequency signal along the main axis of the wave-transmitting structure unit and the polarization of the radio frequency signal perpendicular to the main axis of the wave-transmitting structure unit produce a phase difference, thereby realizing the adjustment of the polarization direction of the preset radio frequency signal.
  • the first resonant unit array layer 220 and the second resonant unit array layer 230 are stacked along the thickness direction of the dielectric substrate 100, and the first resonant unit array layer 220 includes a plurality of first resonant unit arrays arranged in an array.
  • the second resonant unit array layer 230 includes a plurality of second array units 231 arranged in an array.
  • the first array unit 221 is composed of four L-shaped corner structures 222, and the openings of the four L-shaped corner structures 222 All face the center of the first array unit 221.
  • Two adjacent corner structures 222 are arranged at intervals, and the gap between two adjacent corner structures 222 is different in size.
  • the second array unit 231 is arranged corresponding to the gap of the first array unit 221.
  • the first array unit 221 and the second array unit 231 at least partially overlap in the thickness direction of the dielectric substrate 100.
  • the preset radio frequency signal can sequentially penetrate the first array unit 221 and the second array unit 231 and radiate to the outside of the housing assembly 10. After the resonance effect of the first array unit 221 and the second array unit 231, the preset radio frequency signal has Stronger penetrating ability.
  • the main axis direction of the wave-transmitting structure 200 is a first preset direction u
  • a direction perpendicular to the main axis direction in the plane of the wave-transmitting structure 200 is a second The predetermined direction v
  • the phase difference between the radio frequency signal polarized along the first predetermined direction u and the radio frequency signal polarized along the second predetermined direction v satisfies ⁇
  • the predetermined polarization characteristic is linear Polarization
  • the target polarization characteristic is also linear polarization, wherein the angle formed between the first preset direction u and the polarization direction Eui of the radio frequency signal with the preset polarization characteristic is ⁇ , If ⁇ 0, the angle formed between the polarization direction Eui of the radio frequency signal with the preset polarization characteristic and the polarization direction Evi of the radio frequency signal with the target polarization characteristic is 2 ⁇ .
  • the main axis direction of the wave-transmitting structure 200 is the long-side direction of the patch unit 211, that is, the long-side direction of the patch unit 211 is determined as the first preset direction u, and in the plane of the wave-transmitting structure 200,
  • the direction perpendicular to the main axis direction is determined as the second preset direction v, that is, the short side direction of the patch unit 211 is determined as the second preset direction v, and the first preset direction u is determined to be the same as the preset polarization.
  • the polarization direction Eui of the characteristic radio frequency signal forms an angle ⁇ .
  • the length of the patch unit 211 is formed between the long side direction and the x direction.
  • the angle is ⁇ , and ⁇ 0.
  • the polarization direction of the radio frequency signal can be converted from the x direction to the y direction, thereby realizing the adjustment of the polarization direction and helping to improve the radiation quality of the preset radio frequency signal.
  • the main axis direction of the wave-transmitting structure 200 can be regarded as the main axis direction of the patch unit 211, that is, the long side direction of the patch unit 211.
  • the The angle formed between the polarization direction Eui of the radio frequency signal with the preset polarization characteristic and the polarization direction Evi of the radio frequency signal with the target polarization characteristic is In other words, when the angle formed between the long side direction of the patch unit 211 and the x direction is At this time, the polarization direction of the radio frequency signal can be converted from the polarization in the x direction to the polarization in the y direction. By adjusting the polarization direction of the antenna, it helps to improve the radiation quality of the preset radio frequency signal.
  • the main axis direction of the wave-transmitting structure 200 is a first preset direction u
  • a direction perpendicular to the main axis direction in the plane of the wave-transmitting structure 200 is a second preset direction v
  • the phase difference between the radio frequency signal in the first preset direction u and the radio frequency signal in the second preset direction v satisfies
  • the polarization direction Eui of the radio frequency signal with the predetermined polarization characteristic is linear polarization
  • the polarization direction Evi of the radio frequency signal with the target polarization characteristic is circular polarization
  • the first predetermined direction u is equal to
  • the angle formed between the polarization directions Eui of the radio frequency signal with the preset polarization characteristic is ⁇ , and the ⁇ 0.
  • the main axis direction of the wave-transmitting structure 200 is the long-side direction of the patch unit 211, that is, the long-side direction of the patch unit 211 is determined as the first preset direction u, and in the plane of the wave-transmitting structure 200,
  • the direction perpendicular to the main axis direction is determined as the second preset direction v, that is, the short side direction of the patch unit 211 is determined as the second preset direction v, and the first preset direction u is determined to be the same as the preset polarization.
  • the polarization direction Eui of the characteristic radio frequency signal forms an angle ⁇ .
  • the length of the patch unit 211 is formed between the long side direction and the x direction.
  • the angle is ⁇ and ⁇ 0.
  • the polarization direction of the radio frequency signal can be converted from the x direction to the circular polarization direction, thereby realizing the adjustment of the linear polarization to the circular polarization, which helps to improve the preset The radiation quality of the radio frequency signal.
  • an embodiment of the present application also provides an antenna device 1.
  • the antenna device 1 includes an antenna module 20 and a housing assembly 10 provided in any of the above embodiments.
  • the antenna module 20 is connected to
  • the wave-transmitting structure 200 is arranged at intervals, the main axis direction of the wave-transmitting structure 100 is a first predetermined direction u, the antenna module 20 and the first predetermined direction u are at a predetermined angle, and the transparent
  • the wave structure 200 is at least partially located within the preset direction range of the antenna module 20 for transmitting and receiving radio frequency signals.
  • the wave structure 200 is used to perform the polarization characteristics of the preset radio frequency signal received by the antenna module 20.
  • the preset included angle may be 45°.
  • the dotted arrow in the figure indicates the polarization direction of the antenna module 20.
  • the antenna module 20 and the wave-transmitting structure 200 are spaced apart.
  • the antenna module 20 may include one antenna radiator 20a, or may be an antenna array formed by multiple antenna radiators 20a.
  • the antenna module 20 may be a 2 ⁇ 2 antenna array, a 1 ⁇ 4 antenna, a 2 ⁇ 4 antenna array, or a 4 ⁇ 4 antenna array.
  • the multiple antenna radiators 20a can work in the same frequency band.
  • the multiple antenna radiators 20a can also work in different frequency bands, which helps to expand the frequency range of the antenna module 20.
  • the wave-transmitting structure 200 is at least partially located within the preset direction range of the antenna radiator 20a for receiving and transmitting preset radio frequency signals, and the wave-transmitting structure 200 can polarize the preset radio frequency signals transmitted to the housing assembly 10
  • the characteristics are adjusted to change the radiation direction of the preset radio frequency signal sent and received by the antenna radiator 20a, that is, the existence of the wave-transmitting structure 200 improves the radiation efficiency of the antenna radiator 20a in the corresponding frequency band.
  • the antenna radiator 20a is located on the side of the wave-transmitting structure 200 away from the dielectric substrate 100, and a preset radio frequency signal matched by the wave-transmitting structure 200 penetrates the dielectric substrate 100 and faces away from it.
  • the antenna radiator 20a radiates in the direction.
  • the polarization characteristics of the preset radio frequency signal transmitted to the housing assembly 10 can be changed.
  • the antenna module 20 includes a plurality of antenna radiators 20a arranged in an array, the antenna device 1 further includes a support plate 30 and a radio frequency chip 40, the antenna radiator 20a is located The supporting plate 30 is adjacent to the surface of the wave-transmitting structure 200, and the radio frequency chip 40 is located on the surface of the supporting plate 30 away from the wave-transmitting structure 200.
  • the antenna device 1 further includes a radio frequency wire 50. 50 is used to electrically connect the radio frequency chip 40 and the antenna radiator 20a.
  • the support board 30 may be a multi-layer PCB board prepared by a high density interconnect (High Density Inverter, HDI) process.
  • the radio frequency chip 40 is located on a side of the support plate 30 away from the antenna radiator 20 a.
  • the antenna radiator 20a has at least one feeding point, and the feeding point is used to receive radio frequency signals from the radio frequency chip 40, so as to generate radio frequency signals of different frequency bands.
  • locating the antenna radiator 20a on the surface of the supporting plate 30 adjacent to the wave-transmitting structure 200 can facilitate the transmission of the radio frequency signal generated by the antenna radiator 20a toward the direction of the wave-transmitting structure 200.
  • the structure 200 has different phase responses to radio frequency signals with different polarization directions. After the adjustment effect of the wave-transmitting structure 200, the polarization direction of the radio frequency signals can be changed, thereby changing the radiation direction of the antenna radiator 20a.
  • the radio frequency chip 40 is located on the surface of the support plate 30 away from the wave-transmitting structure 200, which can reduce unnecessary interference of the radio-frequency chip 40 on the wave-transmitting structure 200, and help ensure the resonance characteristics of the wave-transmitting structure 200 It is relatively stable, thereby ensuring that the radiation characteristics of the antenna radiator 20a are relatively stable.
  • the support plate 30 has a limiting hole 30a, and the radio frequency cable 50 is located in the limiting hole 30a.
  • One end of the radio frequency line 50 is electrically connected to the antenna radiator 20a, and the other end is electrically connected to the radio frequency chip 40.
  • the radio frequency signal generated by the radio frequency chip 40 is transmitted to the antenna radiator through the radio frequency line 50 20a.
  • a limit hole 30a needs to be opened on the support plate 30, and the radio frequency line 50 is arranged in the limit hole 30a to connect the antenna radiator 20a and the radio frequency chip 40 is electrically connected to transmit the radio frequency signal on the radio frequency chip 40 to the antenna radiator 20a, and then the antenna radiator 20a generates a radio frequency signal according to the radio frequency signal.
  • the support plate 30 has a plurality of metallized vias 30b, and the vias 30b are arranged around the antenna radiator 20a to isolate two adjacent antenna radiators 20a.
  • the support plate 30 has a plurality of metalized vias 30b uniformly arranged, and the metalized vias 30b surround the antenna radiator 20a.
  • the function of the metalized via 30 b is to realize isolation and decoupling in the antenna module 20. That is, due to the existence of the metalized via 30b, the radiation interference between the two adjacent antenna radiators 20a due to mutual coupling can be prevented, and the antenna radiator 20a is ensured to be in a stable working state.
  • the antenna module 20 includes a plurality of antenna radiators 20a arranged in an array
  • the antenna device 1 further includes a support plate 30, a radio frequency chip 40 and a feed layer 50
  • the antenna radiator 20a is located
  • the support plate 30 is adjacent to the surface of the wave-transmitting structure 200
  • the radio frequency chip 40 is located on the surface of the support plate 30 that faces away from the wave-transmitting structure 200
  • the feed layer 50 is located on the support plate 30 and the surface of the wave-transmitting structure 200.
  • the feed ground layer 50 constitutes the ground pole of the antenna radiator 20a
  • the feed ground layer 50 has a gap 501
  • a feed line is provided between the radio frequency chip 40 and the feed ground layer 50 60.
  • the feeding wire 60 is electrically connected to the radio frequency chip 40, the projection of the feeding wire 60 on the feeding ground 50 is at least partially located in the gap 501, and the feeding wire 60
  • the antenna radiator 20a is coupled and fed through the slot 501.
  • the radio frequency chip 40 has an output terminal 401, and the output terminal 401 is used to generate a current signal.
  • the current signal generated by the radio frequency chip 40 is transmitted to the feeder trace 60. Since the feeder trace 60 is set corresponding to the gap 501 on the feeder layer 50, Therefore, the feeder trace 60 can transmit the received current signal through the slot 501 to the feed point on the antenna radiator 20a in a coupling manner, and the antenna radiator 20a is coupled to the current signal from the feeder trace 60 to generate Preset RF signal.
  • the feed ground layer 50 constitutes the ground pole of the antenna radiator 20a, and the antenna radiator 20a and the feed ground layer 50 need not be directly electrically connected, but the antenna radiator 20a is grounded by coupling.
  • the projection of the feeding wire 60 on the feeding ground layer 50 is at least partially located in the slot 501, so that the feeding wire 60 can couple and feed the antenna radiator 20 a through the slot 501.
  • An embodiment of the present application also provides an electronic device 2.
  • the electronic device 2 includes a main board 70, an antenna module 20, and the housing assembly 10 provided in any of the above embodiments, and the main board 70 is mounted on the main board 70.
  • the housing assembly 10 forms a housing space A on the side of the housing assembly 10 facing the wave-transmitting structure 200, and the antenna module 20 is disposed in the housing space A and is connected to the main board.
  • the wave-transmitting structure 200 is at least Part of it is located within the preset direction range of the antenna module 20 for receiving and sending radio frequency signals, and the wave-transmitting structure 200 is used to adjust the polarization characteristics of the preset radio frequency signals received by the antenna module 20, so that The polarization characteristic of the preset radio frequency signal incident on the housing assembly 10 is converted from the preset polarization characteristic to the target polarization characteristic.
  • the preset included angle may be 45°.
  • the electronic device 2 may be any device with communication and storage functions.
  • tablet computers mobile phones, e-readers, remote controls, personal computers (Personal Computer, PC), notebook computers, in-vehicle devices, Internet TVs, wearable devices and other smart devices with network functions.
  • PC Personal Computer
  • the main board 70 may be a PCB board of the electronic device 2.
  • a receiving space A is formed between the main board 70 and the housing assembly 10, the antenna module 20 is located in the receiving space A, and the antenna module 20 is electrically connected to the main board 70.
  • the antenna module 20 may include one antenna radiator 20a, or may include multiple antenna radiators 20a, and the antenna module 20 may be formed by an array of multiple antenna radiators 20a.
  • the antenna radiator 20 a can transmit and receive radio frequency signals through the housing assembly 10.
  • the wave-transmitting structure 200 since the wave-transmitting structure 200 has different phase responses to radio frequency signals polarized in different directions, the polarization characteristics of the radio frequency signals, including the direction and intensity, can be changed.
  • the electronic device 2 further includes a battery cover 80 that constitutes the dielectric substrate 100, and the material of the battery cover 80 is any one or more of plastic, glass, sapphire and ceramic.
  • the battery cover 80 is used as the dielectric substrate 100, so that the antenna radiator 20a has a stable radiation performance in the structural arrangement of the electronic device 2.
  • the battery cover 80 is made of a wave-transmitting material, and the material of the battery cover 80 can be plastic, glass, sapphire, ceramic, etc., or a combination of the above materials.
  • the battery cover 80 includes a back plate 81 and a side plate 82 surrounding the back plate 81.
  • the side plate 82 is located within the preset direction range of the antenna radiator 20a for receiving and transmitting radio frequency signals.
  • the wave-transmitting structure 200 is located on the side of the side plate 82 facing the antenna radiator 20 a, and the side plate 82 constitutes the dielectric substrate 100.
  • the side plate 82 may be used to perform spatial impedance matching on the radio frequency signals transmitted and received by the antenna radiator 20a.
  • the side plate 82 is used as a medium.
  • the side of the side plate 82 facing the antenna radiator 20a is provided with a wave-transmitting structure 200.
  • the wave-transmitting structure 200 has different phase responses to preset radio frequency signals with different polarization directions, which can generate the polarization characteristics of the preset radio frequency signals. Variety. In this way, the strength and direction of the preset radio frequency signal sent and received by the antenna radiator 20a can be changed.
  • the side plate 82 is used as the dielectric substrate 100 to perform spatial impedance matching on the antenna radiator 20a, and the structural arrangement of the antenna radiator 20a in the overall environment of the electronic device 2 is fully considered, so as to ensure that the antenna radiator 20a is in the overall environment. Radiation effects in the environment.
  • the battery cover 80 includes a back plate 81 and a side plate 82 surrounding the back plate 81.
  • the back plate 81 is located within the preset direction range of the antenna radiator 20a for receiving and transmitting radio frequency signals.
  • the wave-transmitting structure 200 is located on the side of the back plate 81 facing the antenna radiator 20 a, and the back plate 81 constitutes the dielectric substrate 100.
  • the back plate 81 may be used to perform spatial impedance matching on the radio frequency signals transmitted and received by the antenna radiator 20a.
  • the back plate 81 is used as a medium.
  • the back plate 81 is provided with a wave-transmitting structure 200 on the side facing the antenna radiator 20a.
  • the wave-transmitting structure 200 has different phase responses to preset radio frequency signals with different polarization directions, which can generate the polarization characteristics of the preset radio frequency signals. Variety. In this way, the strength and direction of the preset radio frequency signal sent and received by the antenna radiator 20a can be changed.
  • the backplane 81 is used as the dielectric substrate 100 to perform spatial impedance matching on the antenna radiator 20a, and the structural arrangement of the antenna radiator 20a in the overall environment of the electronic device 2 is fully considered, so as to ensure that the antenna radiator 20a is in the overall environment. Radiation effects in the environment.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

本申请实施例提供一种壳体组件、天线装置及电子设备。所述壳体组件包括介质基板,所述介质基板上承载有透波结构,所述透波结构包括一层或多层谐振单元阵列层,所述谐振单元阵列层对不同极化方向的射频信号具有不同的相位响应;所述透波结构用于将入射至所述壳体组件的预设射频信号的极化特性由预设极化特性转换为目标极化特性。本申请实施例通过透波结构可以对入射至所述壳体组件的预设射频信号的极化特性进行调节,当壳体组件应用于天线装置时,有助于提升天线装置的辐射性能。

Description

壳体组件、天线装置及电子设备 技术领域
本申请涉及天线技术领域,尤其涉及一种壳体组件、天线装置及电子设备。
背景技术
毫米波具有高载频、大带宽的特性,是实现5G超高数据传输速率的主要手段。由于毫米波天线对于环境较敏感,因此对于整机毫米波天线阵列,需要对天线阵列上方的覆盖结构进行优化,以达到更佳的系统辐射性能。
发明内容
本申请实施例提供一种壳体组件、天线装置及电子设备,通过透波结构可以对入射至所述壳体组件的预设射频信号的极化特性进行调节,当壳体组件应用于天线装置时,有助于提升天线装置的辐射性能。
第一方面,本申请实施例提供一种壳体组件,所述壳体组件包括:
介质基板,所述介质基板上承载有透波结构,所述透波结构包括一层或多层谐振单元阵列层,所述谐振单元阵列层对不同极化方向的射频信号具有不同的相位响应;
所述透波结构用于将入射至所述壳体组件的预设射频信号的极化特性由预设极化特性转换为目标极化特性。
第二方面,本申请实施例还提供一种天线装置,所述天线装置包括天线模组和如上任意实施例提供的壳体组件,所述天线模组与所述透波结构间隔设置,所述透波结构的主轴方向为第一预设方向,所述天线模组与所述第一预设方向呈预设夹角,所述透波结构至少部分位于所述天线模组收发射频信号的预设方向范围内,所述透波结构用于对所述天线模组接收的所述预设射频信号的极化特性进行调节,以使得入射至所述壳体组件的预设射频信号的极化特性由预设极化特性转换为目标极化特性。
第三方面,本申请实施例还提供一种电子设备,所述电子设备包括主板、天线模组和如上任意实施例提供的壳体组件,所述主板装配于所述壳体组件,并在所述壳体组件面对所述透波结构的一侧形成收容空间,所述天线模组设置于所述收容空间内,并与所述主板电性连接,所述透波结构的主轴方向为第一预设方向,所述天线模组与所述第一预设方向呈预设夹角,所述透波结构至少部分位于所述天线模组收发射频信号的预设方向范围内,所述透波结构用于对所述天线模组接收的所述预设射频信号的极化特性进行调节,以使得入射至所述壳体组件的预设射频信号的极化特性由预设极化特性转换为目标极化特性。
附图说明
为了更清楚地说明本申请实施方式的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种壳体组件的结构示意图;
图2是图1提供的壳体组件的透波结构的一种结构示意图;
图3是图2提供的透波结构中贴片单元的结构示意图;
图4是图1提供的壳体组件的透波结构的另一种结构示意图;
图5是图4提供的透波结构中贴片单元的结构示意图;
图6是本申请实施例提供的一种壳体组件在一个方向的结构示意图;
图7是本申请实施例提供的一种壳体组件在另一个方向的结构示意图;
图8是本申请实施例提供的壳体组件中第一阵列单元和第二阵列单元层叠后的俯视图的结构示意图;
图9是本申请实施例提供的透波结构产生极化的示意图;
图10是本申请实施例提供的一种天线装置的结构示意图;
图11是图10提供的天线装置中天线模组的一种俯视图结构示意图;
图12是图10提供的天线装置中天线模组的一种剖视图的结构示意图;
图13是图10提供的天线装置中天线模组的另一种俯视图结构示意图;
图14是图10提供的天线装置中天线模组的另一种剖视图的结构示意图;
图15是本申请实施例提供的一种电子设备的结构示意图;
图16是本申请实施例提供的另一种电子设备的结构示意图;
图17是本申请实施例提供的又一种电子设备的结构示意图。
具体实施方式
下面将结合本申请实施方式中的附图,对本申请实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式仅仅是本申请一部分实施方式,而不是全部的实施方式。基于本申请中的实施方式,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施方式,都属于本申请保护的范围。
本申请实施例提供了一种壳体组件,包括:
介质基板,所述介质基板上承载有透波结构,所述透波结构包括一层或多层谐振单元阵列层,所述谐振单元阵列层对不同极化方向的射频信号具有不同的相位响应;
所述透波结构用于将入射至所述壳体组件的预设射频信号的极化特性由预设极化特性转换为目标极化特性。
其中,所述预设射频信号的极化特性为X极化,所述目标极化特性为Y极化。
其中,所述预设射频信号的极化特性为X极化和Y极化,所述目标极化特性为圆极化。
其中,所述透波结构包括至少一层谐振单元阵列层,所述谐振单元阵列层包括呈阵列排布的若干个贴片单元,所述贴片单元对不同极化方向的射频信号具有不同的相位响应。
其中,所述若干个贴片单元对所述预设射频信号的透过率保持一致。
其中,所述贴片单元为方形、圆形、圆环形、多边形中的一种或多种。
其中,所述贴片单元呈长方形,所述贴片单元具有长边和短边,所述长边的长度为P1,所述短边的长度为P2,满足条件
Figure PCTCN2020125641-appb-000001
其中,所述λ为所述预设射频信号的波长。
其中,所述贴片单元具有长方形的通孔,所述通孔的轴线方向与所述贴片单元的主轴方向保持正交。
其中,相邻的所述贴片单元共用部分结构。
其中,所述透波结构包括层叠设置的第一谐振单元阵列层和第二谐振单元阵列层,所述第一谐振单元阵列层包括若干个呈阵列排布的第一阵列单元,所述第二谐振单元阵列层包括若干个呈阵列排布的第二阵列单元,所述第一阵列单元为四个间隔设置的L形转角结构,其中四个所述转角结构的开口均朝向所述第一阵列单元的中心,相邻两个所述转角结构之间的间隙不同,所述第二阵列单元呈条状结构,所述第二阵列单元对应所述第一阵列单元的间隙设置。
其中,所述第一阵列单元和所述第二阵列单元在所述介质基板的厚度方向上至少部分 重叠。
其中,所述透波结构的主轴方向为第一预设方向,在所述透波结构平面内垂直于所述主轴方向的方向为第二预设方向,沿所述第一预设方向极化的射频信号与沿所述第二预设方向极化的射频信号的相位差满足±π,所述预设极化特性为线极化,所述目标极化特性也为线极化,其中,所述第一预设方向与所述预设极化特性的射频信号的极化方向之间形成的夹角为θ,所述θ≠0,所述预设极化特性的射频信号的极化方向与所述目标极化特性的射频信号的极化方向之间形成的夹角大小为2θ。
其中,所述
Figure PCTCN2020125641-appb-000002
所述预设极化特性的射频信号的极化方向与所述目标极化特性的射频信号的极化方向之间形成的夹角大小为
Figure PCTCN2020125641-appb-000003
其中,所述透波结构的主轴方向为第一预设方向,在所述透波结构平面内垂直于所述主轴方向的方向为第二预设方向,沿所述第一预设方向极化的射频信号与沿所述第二预设方向极化的射频信号的相位差满足
Figure PCTCN2020125641-appb-000004
所述预设极化特性的射频信号的极化特性为线极化,所述目标极化特性为圆极化,其中,所述第一预设方向与所述预设极化特性的射频信号的极化方向之间形成的夹角为θ,所述θ≠0。
本申请实施例还提供了一种天线装置,所述天线装置包括天线模组和如本申请上述实施例的壳体组件,所述天线模组与所述透波结构间隔设置,所述透波结构的主轴方向为第一预设方向,所述天线模组与所述第一预设方向呈预设夹角,所述透波结构至少部分位于所述天线模组收发射频信号的预设方向范围内,所述透波结构用于对所述天线模组接收的所述预设射频信号的极化特性进行调节,以使得入射至所述壳体组件的预设射频信号的极化特性由预设极化特性转换为目标极化特性。
其中,所述天线模组包括多个阵列排布的天线辐射体,所述天线装置还包括支撑板和射频芯片,所述天线辐射体位于所述支撑板邻近所述透波结构的表面,所述射频芯片位于所述支撑板背离所述透波结构的表面,所述天线装置还包括射频线,所述射频线用于将所述射频芯片和所述天线辐射体电连接。
其中,所述支撑板具有限位孔,所述射频线位于所述限位孔内。
其中,所述支撑板上具有多个金属化过孔,所述过孔环绕所述天线辐射体设置,以对相邻两个所述天线辐射体进行隔离。
其中,所述天线模组包括多个阵列排布的天线辐射体,所述天线装置还包括支撑板、射频芯片和馈地层,所述天线辐射体位于所述支撑板邻近所述透波结构的表面,所述射频芯片位于所述支撑板背离所述透波结构的表面,所述馈地层位于所述支撑板和所述射频芯片之间,所述馈地层构成所述天线辐射体的地极,所述馈地层具有缝隙,所述射频芯片和所述馈地层之间设置有馈电走线,所述馈电走线与所述射频芯片电连接,所述馈电走线在所述馈地层上的投影至少部分位于所述缝隙内,所述馈电走线通过所述缝隙对所述天线辐射体进行耦合馈电。
本申请实施例还提供了一种电子设备,所述电子设备包括主板、天线模组和如本申请上述实施例提供的壳体组件,所述主板装配于所述壳体组件,并在所述壳体组件面对所述透波结构的一侧形成收容空间,所述天线模组设置于所述收容空间内,并与所述主板电性连接,所述透波结构的主轴方向为第一预设方向,所述天线模组与所述第一预设方向呈预设夹角,所述透波结构至少部分位于所述天线模组收发射频信号的预设方向范围内,所述透波结构用于对所述天线模组接收的所述预设射频信号的极化特性进行调节,以使得入射 至所述壳体组件的预设射频信号的极化特性由预设极化特性转换为目标极化特性。
其中,所述电子设备还包括电池盖,所述电池盖构成所述介质基板,所述电池盖的材质为塑料、玻璃、蓝宝石和陶瓷中的任意一种或者多种。
其中,所述电池盖包括背板和环绕所述背板的侧板,所述侧板位于所述天线辐射体收发射频信号的预设方向范围内,所述透波结构位于所述侧板面对所述天线辐射体的一侧,所述侧板构成所述介质基板;或者,所述背板位于所述天线辐射体收发射频信号的预设方向范围内,所述透波结构位于所述背板面对所述天线辐射体的一侧,所述背板构成所述介质基板。
请参阅图1,本申请实施例提供的壳体组件10包括介质基板100,所述介质基板100上承载有透波结构200,所述透波结构200包括一层或多层谐振单元阵列层210,所述谐振单元阵列层210对不同极化方向的射频信号具有不同的相位响应。所述透波结构200用于将入射至所述壳体组件10的预设射频信号的极化特性由预设极化特性转换为目标极化特性。
其中,谐振单元阵列层210对不同极化方向的射频信号具有不同的相位响应是指谐振单元阵列层210对不同极化方向的射频信号的相位响应存在相位差。
在一种实施方式中,所述预设射频信号的极化特性为X极化,此时,所述目标极化特性可以为Y极化。即所述预设射频信号包括沿X方向极化的射频信号,目标极化特性为Y方向的极化。
具体的,所述透波结构对第一预设极化方向的射频信号具有第一相位响应,以将所述第一预设极化方向(例如X方向)的射频信号转换为第一目标极化方向(例如Y方向)的射频信号,即可实现将射频信号从一个方向的线极化转换为另一个方向的线极化。
在另一种实施方式中,所述预设射频信号的极化特性为X极化和Y极化,此时,所述目标极化特性可以为圆极化。即所述预设射频信号包括沿X方向极化的射频信号和沿Y方向极化的射频信号,目标极化特性为圆极化。
进一步的,所述透波结构对第二预设极化方向(例如Y方向)的射频信号具有第二相位响应,以将所述第一预设极化方向的射频信号和所述第二预设极化方向的射频信号转换为圆极化的射频信号,即可实现将射频信号从一个方向的线极化转换为圆极化。
其中,射频信号可以穿透介质基板100,射频信号可以为毫米波信号。所述预设射频信号的频段至少包括3GPP毫米波全频段。根据3GPP TS 38.101协议的规定,5G主要使用两段频率:FR1频段和FR2频段。FR1频段的频率范围是450MHz~6GHz,又叫sub-6GHz频段;FR2频段的频率范围是24.25GHz~52.6GHz,通常叫它毫米波(mm Wave)。3GPP 15版本规范了目前5G毫米波频段如下:n257(26.5~29.5GHz),n258(24.25~27.5GHz),n261(27.5~28.35GHz)和n260(37~40GHz)。因此,预设射频信号的频段至少覆盖n257、n258、n261和n260频段。
透波结构200用于对预设射频信号进行空间阻抗匹配,谐振单元阵列层210对不同极化方向的射频信号具有不同的相位响应,当预设射频信号传输至壳体组件10时,位于壳体组件10预设区域的透波结构200可以改变预设射频信号的极化特性,从而可以改善预设射频信号的辐射方向,进而可以提升辐射效果。
其中,极化方向是以天线辐射的电磁波在最大辐射方向上电场强度矢量的空间取向来定义的,是描述天线辐射电磁波矢量空间指向的参数。由于电场与磁场有恒定的关系,故一般都以电场矢量的空间指向作为天线辐射电磁波的极化方向。在介质基板100设置有透波结构200的区域,针对第一方向极化的预设射频信号和第二方向极化的预设射频信号,透波结构200对预设射频信号具有不同的相位响应,其中,第二方向不同于第一方向。如 此,由于透波结构200的存在,使得预设射频信号的极化特性产生变化,当透波结构200位于天线的辐射方向范围内时,有助于改善天线的辐射效果。
本申请实施例提供的壳体组件10,包括介质基板100和透波结构200,透波结构200包括一层或多层谐振单元阵列层210,谐振单元阵列层210对不同极化方向的射频信号具有不同的相位响应。通过透波结构200可以对入射至所述壳体组件10的预设射频信号的极化特性进行调节,当壳体组件10应用于天线装置时,有助于提升天线装置的辐射性能。
请继续参阅图2和图3,所述透波结构200包括至少一层谐振单元阵列层210,所述谐振单元阵列层210包括呈阵列排布的若干个贴片单元211,所述贴片单元211对不同极化方向的射频信号具有不同的相位响应,即所述贴片单元211对不同极化方向的射频信号的相位响应存在相位差。所述贴片单元211为金属亚波长结构。由于金属亚波长结构支持毫米波频段的谐振,能极大的调控射频信号的特性(强度、相位等)。其中,所述贴片单元211可以为方形、圆形、圆环形、多边形中的一种或多种。
在一种实施方式中,所述贴片单元211呈长方形,所述贴片单元211具有长边和短边,所述长边的长度为P1,所述短边的长度为P2,满足条件
Figure PCTCN2020125641-appb-000005
其中,所述λ为所述预设射频信号的波长。根据预设射频信号的波长就可以确定贴片单元211长边的长度P1和短边的长度P2的范围,此时,贴片单元211体积较小,可以使得若干个贴片单元211的排布较为密集,可以较好的调控射频信号的特性。
请继续参阅图4和图5,在另一种实施方式中,所述贴片单元211具有长方形的通孔211a。所述通孔211a的尺寸为L1×L2,其中,L1≠L2。若干个贴片单元211排布构成网栅状结构,通过结构不对称的透波结构200设计,使得透过壳体组件10后,预设射频信号的极化方向产生变化,有助于改善预设射频信号的辐射效果。且所述通孔211a的轴线方向与所述贴片单元211的主轴方向保持正交。其中,所述通孔211a的轴线方向是指所述通孔211a的法线方向,也就是垂直于贴片单元211的方向,所述贴片单元211的主轴方向是指贴片单元211的长边方向。
其中,网栅可以采用线状,或者断线状。通过在贴片单元211上开设通孔211a,使得预设射频信号可以穿透所述通孔211a进行传输,可以增强预设射频信号的透过率,进而提高辐射强度。当L1≠L2时,所述通孔211a为长方形的孔,使得所述贴片单元211不是完全的轴对称结构,当预设射频信号透过壳体组件10后,可以改变预设射频信号的极化方向。
当所述预设射频信号包括X极化的射频信号和Y极化的射频信号,所述目标极化特性可以为圆极化时,所述若干个贴片单元211对所述预设射频信号的透过率保持一致,可以使得透过壳体组件10的预设射频信号的强度保持均匀一致,有助于提升天线辐射的稳定性。进一步的,相邻的所述贴片单元211共用部分结构。具体的,相邻的贴片单元211可以共用部分边长,可以使得若干个贴片单元211的排布更加密集,若干个贴片单元211可以排布形成蜂窝状的结构。
请继续参阅图6、图7和图8,所述透波结构200包括层叠设置的第一谐振单元阵列层220和第二谐振单元阵列层230,所述第一谐振单元阵列层220包括若干个呈阵列排布的第一阵列单元221,所述第二谐振单元阵列层230包括若干个呈阵列排布的第二阵列单元231,所述第一阵列单元221为四个间隔设置的L形转角结构222,其中四个所述转角结构222的开口均朝向所述第一阵列单元221的中心,相邻两个所述转角结构222之间的间隙不同,所述第二阵列单元231呈条状结构,所述第二阵列单元231对应所述第一阵列单元221的间隙设置。
其中,相邻的转角结构222之间的间隙大小分别为gap1和gap2,gap1≠gap2,使得第 一阵列单元221呈现非对称结构,通过结构不对称的透波结构单元设计,使得透过壳体组件后,沿着透波结构单元主轴方向的射频信号的极化与垂直于透波结构单元主轴方向的射频信号的极化产生相位差,从而实现对预设射频信号的极化方向进行调节。
具体的,所述第一谐振单元阵列层220和所述第二谐振单元阵列层230沿所述介质基板100的厚度方向上层叠设置,第一谐振单元阵列层220包括多个阵列排布的第一阵列单元221,第二谐振单元阵列层230包括多个阵列排布的第二阵列单元231,第一阵列单元221由四个L形转角结构222构成,且四个L形转角结构222的开口均朝向第一阵列单元221的中心。相邻两个转角结构222之间间隔设置,且相邻两个转角结构222之间的间隙大小不同,第二阵列单元231对应第一阵列单元221的间隙设置。
进一步的,所述第一阵列单元221和所述第二阵列单元231在所述介质基板100的厚度方向上至少部分重叠。预设射频信号可依次穿透第一阵列单元221和第二阵列单元231辐射至壳体组件10的外部,经过第一阵列单元221和第二阵列单元231的谐振作用后,预设射频信号具有更强的穿透能力。
请继续参阅图9,在一种实施方式中,所述透波结构200的主轴方向为第一预设方向u,在所述透波结构200平面内垂直于所述主轴方向的方向为第二预设方向v,沿所述第一预设方向u极化的射频信号与沿所述第二预设方向v极化的射频信号的相位差满足±π,所述预设极化特性为线极化,所述目标极化特性也为线极化,其中,所述第一预设方向u与所述预设极化特性的射频信号的极化方向Eui之间形成的夹角为θ,所述θ≠0,所述预设极化特性的射频信号的极化方向Eui与所述目标极化特性的射频信号的极化方向Evi之间形成的夹角大小为2θ。其中,透波结构200的主轴方向为贴片单元211的长边方向,也就是说,将贴片单元211的长边方向确定为第一预设方向u,在透波结构200平面内,将垂直于主轴方向的方向确定为第二预设方向v,也就是说,将贴片单元211的短边方向确定为第二预设方向v,且使得第一预设方向u与预设极化特性的射频信号的极化方向Eui之间形成夹角θ,假设预设极化特性的射频信号的极化方向Eui为x方向,那么贴片单元211的长边方向与x方向之间形成的角度即为θ,且θ≠0,此时,可以将射频信号的极化方向由x方向转化为y方向,从而实现了极化方向的调节,有助于提升预设射频信号的辐射质量。其中,所述透波结构200的主轴方向可以看作是贴片单元211的主轴方向,也就是指的贴片单元211的长边方向。
在一种具体的实施方式中,所述
Figure PCTCN2020125641-appb-000006
所述预设极化特性的射频信号的极化方向Eui与所述目标极化特性的射频信号的极化方向Evi之间形成的夹角大小为
Figure PCTCN2020125641-appb-000007
也就是说,当贴片单元211的长边方向与x方向之间形成的角度为
Figure PCTCN2020125641-appb-000008
时,可以将射频信号的极化方向从x方向的极化转化为y方向的极化。通过调整天线的极化方向,有助于提升预设射频信号的辐射质量。
在另一种实施方式中,所述透波结构200的主轴方向为第一预设方向u,在所述透波结构200平面内垂直于所述主轴方向的方向为第二预设方向v,所述第一预设方向u的射频信号与所述第二预设方向v的射频信号的相位差满足
Figure PCTCN2020125641-appb-000009
所述预设极化特性的射频信号的极化方向Eui为线极化,所述目标极化特性的射频信号的极化方向Evi为圆极化,其中,所述第一预设方向u与所述预设极化特性的射频信号的极化方向Eui之间形成的夹角为θ,所述θ≠0。其中,透波结构200的主轴方向为贴片单元211的长边方向,也就是说, 将贴片单元211的长边方向确定为第一预设方向u,在透波结构200平面内,将垂直于主轴方向的方向确定为第二预设方向v,也就是说,将贴片单元211的短边方向确定为第二预设方向v,且使得第一预设方向u与预设极化特性的射频信号的极化方向Eui之间形成夹角θ,假设预设极化特性的射频信号的极化方向Eui为x方向,那么贴片单元211的长边方向与x方向之间形成的角度即为θ,且θ≠0,此时,可以将射频信号的极化方向由x方向转化为圆极化方向,从而实现了将线极化调节为圆极化,有助于提升预设射频信号的辐射质量。
请继续参阅图10和图11,本申请实施例还提供一种天线装置1,所述天线装置1包括天线模组20和如上任意实施例提供的壳体组件10,所述天线模组20与所述透波结构200间隔设置,所述透波结构100的主轴方向为第一预设方向u,所述天线模组20与所述第一预设方向u呈预设夹角,所述透波结构200至少部分位于所述天线模组20收发射频信号的预设方向范围内,所述透波结构200用于对所述天线模组20接收的所述预设射频信号的极化特性进行调节,以使得入射至所述壳体组件10的预设射频信号的极化特性由预设极化特性转换为目标极化特性。其中,所述预设夹角可以为45°。图中虚线箭头表示天线模组20的极化方向。
在本实施方式中,所述天线模组20与透波结构200间隔设置。所述天线模组20可以包括一个天线辐射体20a,也可以是多个天线辐射体20a形成的天线阵列。所述天线模组20可以为2×2的天线阵列,也可以为1×4的天线,也可以为2×4的天线阵列,也可以为4×4的天线阵列。当天线模组20包括多个天线辐射体20a时,多个天线辐射体20a可以工作于同一频段。多个天线辐射体20a也可以工作于不同的频段,有助于扩大天线模组20的频段范围。
进一步的,所述透波结构200至少部分位于所述天线辐射体20a收发预设射频信号的预设方向范围内,透波结构200可以对传输至壳体组件10的预设射频信号的极化特性进行调节,进而改变天线辐射体20a收发的预设射频信号的辐射方向,即透波结构200的存在使得天线辐射体20a的对应频段的辐射效率得以提高。
更进一步的,所述天线辐射体20a位于所述透波结构200背离所述介质基板100的一侧,经由所述透波结构200匹配后的预设射频信号穿透所述介质基板100朝向背离所述天线辐射体20a的方向辐射。且由于透波结构200的存在,可以改变传输至壳体组件10的预设射频信号的极化特性。
请继续参阅图12和图13,所述天线模组20包括多个阵列排布的天线辐射体20a,所述天线装置1还包括支撑板30和射频芯片40,所述天线辐射体20a位于所述支撑板30邻近所述透波结构200的表面,所述射频芯片40位于所述支撑板30背离所述透波结构200的表面,所述天线装置1还包括射频线50,所述射频线50用于将所述射频芯片40和所述天线辐射体20a电连接。
其中,所述支撑板30可以为多层PCB板采用高密度互联(High Density Inverter,HDI)工艺制备而成。所述射频芯片40位于所述支撑板30背离所述天线辐射体20a的一侧。所述天线辐射体20a具有至少一个馈电点,所述馈电点用于接收来自射频芯片40的射频信号,从而可以产生不同频段的射频信号。
进一步的,将所述天线辐射体20a位于所述支撑板30邻近所述透波结构200的表面,可以便于天线辐射体20a产生的射频信号朝向所述透波结构200的方向传输,由于透波结构200对不同极化方向的射频信号具有不同的相位响应,经过透波结构200的调节作用之后,射频信号的极化方向可以产生变化,进而可以改变天线辐射体20a的辐射方向。且所述射频芯片40位于所述支撑板30背离所述透波结构200的表面,可以减小射频芯片40对透波结构200产生不必要的干扰,有助于确保透波结构200的谐振特征较为稳定,进而保 证天线辐射体20a的辐射特征较为稳定。
所述支撑板30具有限位孔30a,所述射频线50位于所述限位孔30a内。所述射频线50的一端电连接于所述天线辐射体20a,另一端电连接于所述射频芯片40,所述射频芯片40产生的射频信号通过所述射频线50传输至所述天线辐射体20a。
具体的,为了将射频芯片40与天线辐射体20a进行电连接,需要在支撑板30上开设限位孔30a,通过在限位孔30a内设置射频线50,以将天线辐射体20a和射频芯片40进行电连接,从而将射频芯片40上的射频信号传输至天线辐射体20a,然后再由天线辐射体20a根据射频信号产生射频信号。
所述支撑板30上具有多个金属化过孔30b,所述过孔30b环绕所述天线辐射体20a设置,以对相邻两个所述天线辐射体20a进行隔离。其中,支撑板30上具有若干个均匀排布的金属化的过孔30b,金属化的过孔30b环绕在天线辐射体20a的周围。其中,金属化的过孔30b的作用是在天线模组20中实现隔离去耦。即由于金属化的过孔30b的存在,可以阻止相邻两个天线辐射体20a之间因相互耦合而产生辐射干扰,确保天线辐射体20a处于稳定的工作状态。
请继续参阅图14,所述天线模组20包括多个阵列排布的天线辐射体20a,所述天线装置1还包括支撑板30、射频芯片40和馈地层50,所述天线辐射体20a位于所述支撑板30邻近所述透波结构200的表面,所述射频芯片40位于所述支撑板30背离所述透波结构200的表面,所述馈地层50位于所述支撑板30和所述射频芯片40之间,所述馈地层50构成所述天线辐射体20a的地极,所述馈地层50具有缝隙501,所述射频芯片40和所述馈地层50之间设置有馈电走线60,所述馈电走线60与所述射频芯片40电连接,所述馈电走线60在所述馈地层50上的投影至少部分位于所述缝隙501内,所述馈电走线60通过所述缝隙501对所述天线辐射体20a进行耦合馈电。
射频芯片40具有输出端401,所述输出端401用于产生电流信号,射频芯片40产生的电流信号传输至馈电走线60,由于馈电走线60对应馈地层50上的缝隙501设置,因此,馈电走线60可将接收到的电流信号通过缝隙501以耦合的方式传输至天线辐射体20a上的馈电点,天线辐射体20a耦合到来自馈电走线60的电流信号可产生预设射频信号。
进一步的,馈地层50构成天线辐射体20a的地极,天线辐射体20a与馈地层50不用直接电连接,而是通过耦合的方式将天线辐射体20a接地。馈电走线60在所述馈地层50上的投影至少部分位于缝隙501内,以便于馈电走线60通过缝隙501对天线辐射体20a进行耦合馈电。
请继续参阅图15,本申请实施例还提供一种电子设备2,所述电子设备2包括主板70、天线模组20和如上任意实施例提供的壳体组件10,所述主板70装配于所述壳体组件10,并在所述壳体组件10面对所述透波结构200的一侧形成收容空间A,所述天线模组20设置于所述收容空间A内,并与所述主板70电性连接,所述透波结构100的主轴方向为第一预设方向u,所述天线模组20与所述第一预设方向u呈预设夹角,所述透波结构200至少部分位于所述天线模组20收发射频信号的预设方向范围内,所述透波结构200用于对所述天线模组20接收的所述预设射频信号的极化特性进行调节,以使得入射至所述壳体组件10的预设射频信号的极化特性由预设极化特性转换为目标极化特性。其中,所述预设夹角可以为45°。
其中,所述电子设备2可以是任何具备通信和存储功能的设备。例如:平板电脑、手机、电子阅读器、遥控器、个人计算机(Personal Computer,PC)、笔记本电脑、车载设备、网络电视、可穿戴设备等具有网络功能的智能设备。
其中,所述主板70可以为电子设备2的PCB板。所述主板70和所述壳体组件10之 间形成收容空间A,所述天线模组20位于所述收容空间A内,且所述天线模组20电连接于所述主板70。所述天线模组20可以包括一个天线辐射体20a,也可以包括多个天线辐射体20a,所述天线模组20可以为多个天线辐射体20a阵列形成。在所述主板70的控制下,所述天线辐射体20a可以透过所述壳体组件10收发射频信号。且由于透波结构200针对不同方向极化的射频信号具有不同的相位响应,从而可以改变射频信号的极化特性,包括方向和强度等。
所述电子设备2还包括电池盖80,所述电池盖80构成所述介质基板100,所述电池盖80的材质为塑料、玻璃、蓝宝石和陶瓷中的任意一种或者多种。具体的,在电子设备2的结构排布中,电池盖80至少部分结构位于天线辐射体20a收发射频信号的预设方向范围内,因此,电池盖80也会对天线辐射体20a的辐射特性产生影响。为此,本实施方式中,将电池盖80作为介质基板100,可以使得天线辐射体20a在电子设备2的结构排布中具有稳定的辐射性能。同时,电池盖80采用透波材质制成,电池盖80的材质可以为塑料、玻璃、蓝宝石和陶瓷等,还可以为上述材质的相互组合。
请继续参阅图16,所述电池盖80包括背板81和环绕所述背板81的侧板82,所述侧板82位于所述天线辐射体20a收发射频信号的预设方向范围内,所述透波结构200位于所述侧板82面对所述天线辐射体20a的一侧,所述侧板82构成所述介质基板100。
具体的,当所述天线辐射体20a朝向所述电池盖80的侧板82时,可以采用侧板82对天线辐射体20a收发的射频信号进行空间阻抗匹配,此时,将侧板82作为介质基板100。侧板82面对天线辐射体20a的一侧设置有透波结构200,透波结构200对不同极化方向的预设射频信号具有不同的相位响应,可以使得预设射频信号的极化特性产生变化。如此,可以改变天线辐射体20a收发的预设射频信号的强度和方向。将侧板82作为介质基板100对天线辐射体20a进行空间阻抗匹配,充分考虑了天线辐射体20a在电子设备2的整机环境中的结构排布,如此便可以保证天线辐射体20a在整机环境中的辐射效果。
请继续参阅图17,所述电池盖80包括背板81和环绕所述背板81的侧板82,所述背板81位于所述天线辐射体20a收发射频信号的预设方向范围内,所述透波结构200位于所述背板81面对所述天线辐射体20a的一侧,所述背板81构成所述介质基板100。
具体的,当所述天线辐射体20a朝向所述电池盖80的背板81时,可以采用背板81对天线辐射体20a收发的射频信号进行空间阻抗匹配,此时,将背板81作为介质基板100。背板81面对天线辐射体20a的一侧设置有透波结构200,透波结构200对不同极化方向的预设射频信号具有不同的相位响应,可以使得预设射频信号的极化特性产生变化。如此,可以改变天线辐射体20a收发的预设射频信号的强度和方向。将背板81作为介质基板100对天线辐射体20a进行空间阻抗匹配,充分考虑了天线辐射体20a在电子设备2的整机环境中的结构排布,如此便可以保证天线辐射体20a在整机环境中的辐射效果。
以上对本申请实施例进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (22)

  1. 一种壳体组件,其特征在于,包括:
    介质基板,所述介质基板上承载有透波结构,所述透波结构包括一层或多层谐振单元阵列层,所述谐振单元阵列层对不同极化方向的射频信号具有不同的相位响应;
    所述透波结构用于将入射至所述壳体组件的预设射频信号的极化特性由预设极化特性转换为目标极化特性。
  2. 如权利要求1所述的壳体组件,其特征在于,所述预设射频信号的极化特性为X极化,所述目标极化特性为Y极化。
  3. 如权利要求1所述的壳体组件,其特征在于,所述预设射频信号的极化特性为X极化和Y极化,所述目标极化特性为圆极化。
  4. 如权利要求3所述的壳体组件,其特征在于,所述透波结构包括至少一层谐振单元阵列层,所述谐振单元阵列层包括呈阵列排布的若干个贴片单元,所述贴片单元对不同极化方向的射频信号具有不同的相位响应。
  5. 如权利要求4所述的壳体组件,其特征在于,所述若干个贴片单元对所述预设射频信号的透过率保持一致。
  6. 如权利要求4所述的壳体组件,其特征在于,所述贴片单元为方形、圆形、圆环形、多边形中的一种或多种。
  7. 如权利要求4所述的壳体组件,其特征在于,所述贴片单元呈长方形,所述贴片单元具有长边和短边,所述长边的长度为P1,所述短边的长度为P2,满足条件
    Figure PCTCN2020125641-appb-100001
    Figure PCTCN2020125641-appb-100002
    其中,所述λ为所述预设射频信号的波长。
  8. 如权利要求7所述的壳体组件,其特征在于,所述贴片单元具有长方形的通孔,所述通孔的轴线方向与所述贴片单元的主轴方向保持正交。
  9. 如权利要求4所述的壳体组件,其特征在于,相邻的所述贴片单元共用部分结构。
  10. 如权利要求1所述的壳体组件,其特征在于,所述透波结构包括层叠设置的第一谐振单元阵列层和第二谐振单元阵列层,所述第一谐振单元阵列层包括若干个呈阵列排布的第一阵列单元,所述第二谐振单元阵列层包括若干个呈阵列排布的第二阵列单元,所述第一阵列单元为四个间隔设置的L形转角结构,其中四个所述转角结构的开口均朝向所述第一阵列单元的中心,相邻两个所述转角结构之间的间隙不同,所述第二阵列单元呈条状结构,所述第二阵列单元对应所述第一阵列单元的间隙设置。
  11. 如权利要求10所述的壳体组件,其特征在于,所述第一阵列单元和所述第二阵列单元在所述介质基板的厚度方向上至少部分重叠。
  12. 如权利要求1-11任意一项所述的壳体组件,其特征在于,所述透波结构的主轴方向为第一预设方向,在所述透波结构平面内垂直于所述主轴方向的方向为第二预设方向,沿所述第一预设方向极化的射频信号与沿所述第二预设方向极化的射频信号的相位差满足±π,所述预设极化特性为线极化,所述目标极化特性也为线极化,其中,所述第一预设方向与所述预设极化特性的射频信号的极化方向之间形成的夹角为θ,所述θ≠0,所述预设极化特性的射频信号的极化方向与所述目标极化特性的射频信号的极化方向之间形成的夹角大小为2θ。
  13. 如权利要求12所述的壳体组件,其特征在于,所述
    Figure PCTCN2020125641-appb-100003
    所述预设极化特性的射频信号的极化方向与所述目标极化特性的射频信号的极化方向之间形成的夹角大小为
    Figure PCTCN2020125641-appb-100004
  14. 如权利要求1-11任意一项所述的壳体组件,其特征在于,所述透波结构的主轴方向为第一预设方向,在所述透波结构平面内垂直于所述主轴方向的方向为第二预设方向,沿所述第一预设方向极化的射频信号与沿所述第二预设方向极化的射频信号的相位差满足
    Figure PCTCN2020125641-appb-100005
    所述预设极化特性的射频信号的极化特性为线极化,所述目标极化特性为圆极化,其中,所述第一预设方向与所述预设极化特性的射频信号的极化方向之间形成的夹角为θ,所述θ≠0。
  15. 一种天线装置,其特征在于,所述天线装置包括天线模组和如权利要求1-14任意一项所述的壳体组件,所述天线模组与所述透波结构间隔设置,所述透波结构的主轴方向为第一预设方向,所述天线模组与所述第一预设方向呈预设夹角,所述透波结构至少部分位于所述天线模组收发射频信号的预设方向范围内,所述透波结构用于对所述天线模组接收的所述预设射频信号的极化特性进行调节,以使得入射至所述壳体组件的预设射频信号的极化特性由预设极化特性转换为目标极化特性。
  16. 如权利要求15所述的天线装置,其特征在于,所述天线模组包括多个阵列排布的天线辐射体,所述天线装置还包括支撑板和射频芯片,所述天线辐射体位于所述支撑板邻近所述透波结构的表面,所述射频芯片位于所述支撑板背离所述透波结构的表面,所述天线装置还包括射频线,所述射频线用于将所述射频芯片和所述天线辐射体电连接。
  17. 如权利要求16所述的天线装置,其特征在于,所述支撑板具有限位孔,所述射频线位于所述限位孔内。
  18. 如权利要求16所述的天线装置,其特征在于,所述支撑板上具有多个金属化过孔,所述过孔环绕所述天线辐射体设置,以对相邻两个所述天线辐射体进行隔离。
  19. 如权利要求15所述的天线装置,其特征在于,所述天线模组包括多个阵列排布的天线辐射体,所述天线装置还包括支撑板、射频芯片和馈地层,所述天线辐射体位于所述支撑板邻近所述透波结构的表面,所述射频芯片位于所述支撑板背离所述透波结构的表面, 所述馈地层位于所述支撑板和所述射频芯片之间,所述馈地层构成所述天线辐射体的地极,所述馈地层具有缝隙,所述射频芯片和所述馈地层之间设置有馈电走线,所述馈电走线与所述射频芯片电连接,所述馈电走线在所述馈地层上的投影至少部分位于所述缝隙内,所述馈电走线通过所述缝隙对所述天线辐射体进行耦合馈电。
  20. 一种电子设备,其特征在于,所述电子设备包括主板、天线模组和如权利要求1-14任意一项所述的壳体组件,所述主板装配于所述壳体组件,并在所述壳体组件面对所述透波结构的一侧形成收容空间,所述天线模组设置于所述收容空间内,并与所述主板电性连接,所述透波结构的主轴方向为第一预设方向,所述天线模组与所述第一预设方向呈预设夹角,所述透波结构至少部分位于所述天线模组收发射频信号的预设方向范围内,所述透波结构用于对所述天线模组接收的所述预设射频信号的极化特性进行调节,以使得入射至所述壳体组件的预设射频信号的极化特性由预设极化特性转换为目标极化特性。
  21. 如权利要求20所述的电子设备,其特征在于,所述电子设备还包括电池盖,所述电池盖构成所述介质基板,所述电池盖的材质为塑料、玻璃、蓝宝石和陶瓷中的任意一种或者多种。
  22. 如权利要求21所述的电子设备,其特征在于,所述电池盖包括背板和环绕所述背板的侧板,所述侧板位于所述天线辐射体收发射频信号的预设方向范围内,所述透波结构位于所述侧板面对所述天线辐射体的一侧,所述侧板构成所述介质基板;或者,所述背板位于所述天线辐射体收发射频信号的预设方向范围内,所述透波结构位于所述背板面对所述天线辐射体的一侧,所述背板构成所述介质基板。
PCT/CN2020/125641 2019-12-05 2020-10-31 壳体组件、天线装置及电子设备 WO2021109769A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911234985.3 2019-12-05
CN201911234985.3A CN111313152B (zh) 2019-12-05 2019-12-05 壳体组件、天线装置及电子设备

Publications (1)

Publication Number Publication Date
WO2021109769A1 true WO2021109769A1 (zh) 2021-06-10

Family

ID=71148175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/125641 WO2021109769A1 (zh) 2019-12-05 2020-10-31 壳体组件、天线装置及电子设备

Country Status (2)

Country Link
CN (2) CN114792879A (zh)
WO (1) WO2021109769A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114069249A (zh) * 2021-11-17 2022-02-18 电子科技大学长三角研究院(湖州) 超宽带透射式太赫兹极化转换器
CN117978260A (zh) * 2024-03-29 2024-05-03 浙江中星光电子科技有限公司 一种卫星通信终端及安装方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114792879A (zh) * 2019-12-05 2022-07-26 Oppo广东移动通信有限公司 壳体组件、天线装置及电子设备
CN111740218B (zh) * 2020-06-29 2021-08-06 维沃移动通信有限公司 电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102983407A (zh) * 2012-11-20 2013-03-20 深圳光启创新技术有限公司 三维结构超材料
CN103001002A (zh) * 2012-11-20 2013-03-27 深圳光启创新技术有限公司 一种超材料及超材料设计方法
CN109638459A (zh) * 2018-12-29 2019-04-16 瑞声科技(南京)有限公司 一种封装天线模组及电子设备
US20190348768A1 (en) * 2018-05-11 2019-11-14 Wisconsin Alumni Research Foundation Polarization rotating phased array element
CN111313152A (zh) * 2019-12-05 2020-06-19 Oppo广东移动通信有限公司 壳体组件、天线装置及电子设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9821340B2 (en) * 2014-07-28 2017-11-21 Kolo Medical Ltd. High displacement ultrasonic transducer
CN207719402U (zh) * 2017-10-19 2018-08-10 西南交通大学 高功率埋入式极化转换天线罩
CN110021812B (zh) * 2019-04-08 2021-04-13 Oppo广东移动通信有限公司 天线组件及电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102983407A (zh) * 2012-11-20 2013-03-20 深圳光启创新技术有限公司 三维结构超材料
CN103001002A (zh) * 2012-11-20 2013-03-27 深圳光启创新技术有限公司 一种超材料及超材料设计方法
US20190348768A1 (en) * 2018-05-11 2019-11-14 Wisconsin Alumni Research Foundation Polarization rotating phased array element
CN109638459A (zh) * 2018-12-29 2019-04-16 瑞声科技(南京)有限公司 一种封装天线模组及电子设备
CN111313152A (zh) * 2019-12-05 2020-06-19 Oppo广东移动通信有限公司 壳体组件、天线装置及电子设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114069249A (zh) * 2021-11-17 2022-02-18 电子科技大学长三角研究院(湖州) 超宽带透射式太赫兹极化转换器
CN114069249B (zh) * 2021-11-17 2022-12-06 电子科技大学长三角研究院(湖州) 超宽带透射式太赫兹极化转换器
CN117978260A (zh) * 2024-03-29 2024-05-03 浙江中星光电子科技有限公司 一种卫星通信终端及安装方法

Also Published As

Publication number Publication date
CN114792879A (zh) 2022-07-26
CN111313152B (zh) 2022-05-13
CN111313152A (zh) 2020-06-19

Similar Documents

Publication Publication Date Title
WO2021109769A1 (zh) 壳体组件、天线装置及电子设备
WO2020233477A1 (zh) 天线单元及终端设备
WO2021082968A1 (zh) 天线模组及电子设备
JP7239743B2 (ja) アンテナユニット及び端末機器
TWI482360B (zh) 行動裝置
WO2020233478A1 (zh) 天线单元及终端设备
CN112234344B (zh) 天线装置及电子设备
CN112290193B (zh) 毫米波模组、电子设备及毫米波模组的调节方法
WO2021104191A1 (zh) 天线单元及电子设备
CN112310633B (zh) 天线装置及电子设备
JP7228720B2 (ja) ハウジングアセンブリ、アンテナデバイス及び電子機器
WO2021169709A1 (zh) 吸波结构、天线组件及电子设备
CN111864362A (zh) 天线模组及电子设备
US20220173525A1 (en) Antenna module and electronic device
WO2020259281A1 (zh) 天线模组、电子设备及电子设备的天线频段调节方法
CN111162371B (zh) 电子设备
US20220094041A1 (en) Housing assembly, antenna device, and electronic device
US11962092B2 (en) Antenna module and electronic device
WO2023016184A1 (zh) 天线装置、壳体及电子设备
WO2021083219A1 (zh) 天线单元及电子设备
WO2024017164A1 (zh) 天线及通讯设备
CN114336016A (zh) 一种天线结构及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20896904

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20896904

Country of ref document: EP

Kind code of ref document: A1