WO2023016184A1 - 天线装置、壳体及电子设备 - Google Patents

天线装置、壳体及电子设备 Download PDF

Info

Publication number
WO2023016184A1
WO2023016184A1 PCT/CN2022/105688 CN2022105688W WO2023016184A1 WO 2023016184 A1 WO2023016184 A1 WO 2023016184A1 CN 2022105688 W CN2022105688 W CN 2022105688W WO 2023016184 A1 WO2023016184 A1 WO 2023016184A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
branch
antenna device
radiating
frequency band
Prior art date
Application number
PCT/CN2022/105688
Other languages
English (en)
French (fr)
Inventor
张昌顺
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2023016184A1 publication Critical patent/WO2023016184A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors

Definitions

  • the present application relates to the technical field of communications, and in particular to an antenna device, a casing and electronic equipment.
  • 5G (5th Generation Wireless Systems, fifth-generation mobile communication technology) electronic equipment needs to support a very wide range of frequency bands, and such electronic equipment also has high requirements for the environment and efficiency of the antennas used.
  • the internal space of electronic equipment is occupied by more peripheral modules, resulting in less and less internal space for antennas. How to improve the antenna structure under such unfavorable conditions to better meet the bandwidth and efficiency of the antenna has become a technical problem to be solved.
  • the embodiment of the present application discloses an antenna device, a casing, and an electronic device, which not only can meet the antenna bandwidth required to be supported by a 5G antenna, but also have relatively high efficiency.
  • the present application discloses an antenna device, the antenna device includes:
  • Radiating bodies respectively have a first end and a second end;
  • the second radiating branch is connected to the second end of the radiating body, the length of the first radiating branch is greater than the length of the second radiating branch, the second radiating branch has a second diameter end, and the first radiating branch has a second diameter end.
  • the two caliber ends are spaced apart from the first caliber end and are coupled to each other, and the second radiation branch and the first radiation branch are jointly used to realize the radiation of the third frequency band, and the frequency range of the third frequency band is greater than frequency ranges of the first frequency band and the second frequency band;
  • a feed point electrically connected to the feed area of the radiation body
  • the ground point is electrically connected to the ground area of the radiation body.
  • the embodiment of the present application discloses a casing, which includes a casing body and the antenna device according to the first aspect, and the antenna device is disposed on the casing body.
  • the embodiment of the present application discloses an electronic device, the electronic device includes a casing, the casing includes a casing body and the antenna device as described in the first aspect, and the antenna device is arranged on the casing body body.
  • FIG. 1 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • FIG. 2 is a schematic structural view of a housing provided with an antenna device in an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of an antenna device in an embodiment of the present application.
  • Fig. 4 is a return loss diagram of the antenna device in the embodiment of the present application.
  • Fig. 5 is a Smith chart of the antenna device in the embodiment of the present application.
  • Fig. 6 is an electric field distribution diagram of the antenna device in the second frequency band in the embodiment of the present application.
  • Fig. 7 is a surface current distribution diagram of the antenna device in the second frequency band in the embodiment of the present application.
  • Fig. 8 is a far-field directional radiation pattern of the antenna device in the second frequency band in the embodiment of the present application.
  • FIG. 9 is a far-field distribution diagram of the antenna device in the second frequency band in the embodiment of the present application.
  • Fig. 10 is an antenna radiation efficiency diagram of the antenna device in the first frequency band and the second frequency band in the embodiment of the present application;
  • Fig. 11 is an electric field distribution diagram of the antenna device in the third frequency band in the embodiment of the present application.
  • Fig. 12 is a surface current distribution diagram of the antenna device in the third frequency band in the embodiment of the present application.
  • Fig. 13 is a far-field directional radiation pattern of the antenna device in the third frequency band in the embodiment of the present application.
  • FIG. 14 is a far-field distribution diagram of the antenna device in the third frequency band in the embodiment of the present application.
  • Fig. 15 is a diagram of the antenna radiation efficiency of the antenna device in the third frequency band in the embodiment of the present application.
  • Icons 1. Antenna device; 11. Radiating body; 111. First end; 112. Second end; 12. First radiating branch; 121. First caliber end; 13. Second radiating branch; 131. Second caliber 14, the first gap; 15, the second gap; 2, the shell; 21, the shell body; 10, the electronic device.
  • orientation or positional relationship indicated by the terms “upper”, “lower”, “outer”, etc. is based on the orientation or positional relationship shown in the drawings. These terms are mainly used to better describe the present application and its embodiments, and are not used to limit that the indicated device, element or component must have a specific orientation, or be constructed and operated in a specific orientation.
  • installed disposed
  • provided a connection to be interpreted broadly.
  • it may be a fixed connection, a detachable connection, or an integral structure; it may be a mechanical connection or an electrical connection; it may be a direct connection or an indirect connection through an intermediary; internal connectivity.
  • installed disposed
  • provided a connection to be a fixed connection
  • detachable connection or an integral structure
  • it may be a mechanical connection or an electrical connection
  • it may be a direct connection or an indirect connection through an intermediary
  • internal connectivity internal connectivity
  • first means two or more.
  • words such as “about”, “approximately” or “approximately” appearing in this case not only cover the explicitly stated numerical value and numerical range, but also cover the allowable range of deviation.
  • the deviation range can be determined by the error generated during measurement, and the error is caused by the limitation of the measurement system or process conditions, for example. Words such as “about”, “approximately” or “approximately” appearing in this case can choose an acceptable deviation range or standard deviation according to optical properties, etching properties, mechanical properties or other properties.
  • 5G electronic equipment In electronic equipment using 5G mobile communication technology, the requirements for antenna design are very high.
  • 5G electronic equipment needs to support SUB-6G NR frequency bands N77 (3300MHz ⁇ 4200MHz), 78 (3300MHz ⁇ 3800MHz) and N79 (4800MHz ⁇ 5000MHz). These three frequency bands cover a very wide frequency range, that is, the bandwidth of the antenna
  • the requirements are relatively high; on the other hand, in order to reduce the impact of the components around the antenna on the performance of the antenna, the requirements for the clearance environment around the antenna are also high.
  • the embodiment of the present application proposes an antenna device, a housing, and electronic equipment.
  • the antenna device By improving the structure of the antenna device, it can still meet the requirements of 5G when there are many electronic components around the antenna device and the clearance environment is poor.
  • the bandwidth requirements of the antenna can also be improved, making it suitable for 5G electronic devices.
  • the electronic devices to which the antenna device of the present application is applied include but are not limited to smart phones, smart wearable devices, desktop computers, notebook computers, tablet computers, cameras, and vehicle-mounted devices.
  • the electronic device is a smart phone as an example for explanation.
  • the present application discloses an antenna device, and the antenna device includes:
  • a radiating body having a first end and a second end
  • the second radiating branch is connected to the second end of the radiating body, the length of the first radiating branch is greater than the length of the second radiating branch, the second radiating branch has a second diameter end, and the first radiating branch has a second diameter end.
  • the two caliber ends are spaced apart from the first caliber end and are coupled to each other, and the second radiation branch and the first radiation branch are jointly used to realize the radiation of the third frequency band, and the frequency range of the third frequency band is greater than frequency ranges of the first frequency band and the second frequency band;
  • a feed point electrically connected to the feed area of the radiation body
  • the ground point is electrically connected to the ground area of the radiation body.
  • the working mode of the second frequency band is 1/4 wavelength of the first radiation branch
  • the working mode of the third frequency band is 1/4 wavelength of the second radiation branch. 4 wavelengths are co-loaded with 1/2 wavelength of the first radiation stub.
  • a first gap is formed between a side of the first radiating branch close to the first end and the radiating main body.
  • the width direction of the first slit is perpendicular to the length direction of the first slit.
  • the width of the first slit along the length direction perpendicular to the first radiating branch is d, where 0.1mm ⁇ d ⁇ 0.3mm.
  • the length direction of the first slit is parallel to the length extension direction of the first radiating branch.
  • the second radiating branch is bent from the connection with the second end.
  • a second gap is formed between a side of the second radiating branch close to the second end and the radiating main body.
  • the second slit extends to the second diameter end of the second radiating stub.
  • the antenna device is dual-resonant within a bandwidth range of 3.3 GHz-4.2 GHz, and the antenna device is dual-resonant within a bandwidth range of 4.4 GHz-5 GHz.
  • the present application also discloses a casing, the casing includes a casing body and the antenna device as described in the first aspect above, and the antenna device is disposed on the casing body.
  • the antenna device includes an FPC antenna or an LDS antenna.
  • the present application also discloses an electronic device, the electronic device includes a casing, the casing includes a casing body and the antenna device as described in the first aspect above, and the antenna device is arranged on the Shell body.
  • the first caliber end of the first radiating branch is located on the top of the casing body and in the clearance area of the casing body, and the second caliber end of the second radiating branch is The end is located on the back of the housing body and in the clearance area of the housing body.
  • the electronic device further includes a PCB board, and there is a first angle ⁇ between the plane where the second radiating branch is located and the plane of the PCB board, 0° ⁇ 30°, There is a second included angle ⁇ between the plane where the second radiating branch is located and the plane where the first radiating branch is located, and 0° ⁇ 180°.
  • the plane where the first radiating branch is located is parallel to the plane of the PCB board, and the plane where the first radiating branch is located is perpendicular to the plane of the PCB board.
  • Fig. 1 is a schematic structural diagram of an electronic device provided by an embodiment of the present application
  • Fig. 2 is a schematic structural diagram of a casing provided with an antenna device in an embodiment of the present application, that is, Fig. 2 shows 1 is a structural schematic diagram of the casing of the electronic device and the antenna device disposed on the casing in FIG. 1 .
  • the electronic device 10 of the embodiment of the present application includes a casing 2 , the casing 2 includes a casing body 21 and an antenna device 1 , and the antenna device 1 is disposed on the casing body 21 .
  • the casing 2 can be the back cover casing 2 of the electronic device 10, and the electronic device 10 can also include a display screen that is closed and connected to the back cover casing 2, and a receiving space is formed between the display screen and the back cover casing 2.
  • the antenna device 1 is disposed on the housing body 21 of the housing 2 and located in the receiving space.
  • the antenna device 1 is disposed on the housing body 21 in various ways, for example, the antenna device 1 can be manufactured by using the process of making FPC, and then the antenna device 1 is fixed on the housing body 21 by pasting or screwing, etc.
  • the disassembly and assembly of the antenna device 1 is more convenient and the processing is easier when this method is adopted; the antenna device 1 can also be formed on the housing body 21 by using LDS technology, and the stability of the antenna device 1 is high when this method is adopted.
  • the electronic device 10 may also include devices such as a light sensor, a receiver, and a microphone disposed in the receiving space or on the casing 2 .
  • the antenna device 1 in the embodiment of the present application can be set in a poor antenna environment with many other devices around. The two sides are respectively adjacent to the receiver and the microphone. Even in such a poor antenna environment, the antenna device 1 of the embodiment of the present application can still meet the requirements of antenna bandwidth and efficiency.
  • the electronic device 10 may also include a PCB board. The positional relationship between the antenna device 1 and the PCB board will be explained in more detail later when introducing the structural design of the antenna device 1 .
  • FIG. 3 is a schematic structural diagram of the antenna device 1 in the embodiment of the present application.
  • the antenna device 1 includes:
  • the radiation body 11 has a first end 111 and a second end 112;
  • the first radiating branch 12 is connected to the first end 111 of the radiating body 11, the first radiating branch 12 has a first diameter end 121, and the first radiating branch 12 is used to realize the radiation of the first frequency band and the second frequency band;
  • the second radiating branch 13 is connected to the second end 112 of the radiating body 11, the second radiating branch 13 has a second aperture end 131, the second aperture end 131 is spaced apart from the first aperture end 121 and is coupled to each other, the second The radiation branch 13 and the first radiation branch 12 are jointly used to realize the radiation of the third frequency band, and the frequency range of the third frequency band is respectively greater than the frequency range of the first frequency band and the frequency range of the second frequency band; wherein, the first The length of the radial branch 12 is greater than the length of the second radial branch 13;
  • a feed point (not shown in the figure), electrically connected to the feed area of the radiation body 11;
  • the ground point (not shown in the figure) is electrically connected to the ground area of the radiation body 11 .
  • the feed point can be electrically connected to the feed area of the radiation body 11 through a feeder line, so as to feed excitation current to the radiation body 11, so that the radiation body 11 can send and receive signals of a specified frequency band.
  • the antenna device 1 by improving the structure of the antenna device 1, includes a first radiating branch 12 and a second radiating branch 12 with different lengths in addition to the radiating body 11, the feeding point and the grounding point.
  • the branches 13 can respectively realize the radiation of different frequency bands and wavelengths through the difference of the two lengths.
  • the first aperture end 121 of the first radiating stub 12 and the second aperture end 131 of the second radiating stub 13 are spaced apart and coupled with each other to achieve the purpose of increasing the bandwidth to meet the requirements of the antenna.
  • the second radiating branch 13 can also be used to transmit and receive electromagnetic wave signals.
  • the bandwidth of the frequency band that the first radiation stub 12 can satisfy is increased.
  • the second radiation branch 13 also satisfies a wider frequency bandwidth through a similar function.
  • the first frequency band is N77 frequency band, and the frequency range of this frequency band is 3300MHz ⁇ 4200MHz; the second frequency band is N78 frequency band, and the frequency range of this frequency band is 3300MHz ⁇ 3800MHz; the third frequency band is N79 frequency band , the frequency range of this frequency band is 4400MHz ⁇ 5000MHz.
  • the above three frequency bands are the main frequency bands that need to be met in 5G mobile communication technology.
  • the antenna device 1 of the embodiment of the present application realizes the radiation of the N77 and N78 frequency bands through the first radiation branch 12 (that is, realizes the transmission and reception of electromagnetic wave signals in these two frequency bands), and through the joint action of the first radiation branch 12 and the second radiation branch 13 Realize the radiation of the N79 frequency band (that is, realize the electromagnetic wave signal transmission and reception of this frequency band).
  • the antenna device 1 has a variety of different working modes, the working mode of the second frequency band is 1/4 wavelength of the first radiation stub 12, and the working mode of the third frequency band is the first
  • the 1/4 wavelength of the second radiating branch 13 and the 1/2 wavelength of the first radiating branch 12 are jointly loaded.
  • the frequencies of different frequency bands are closely related to the radiation branch wavelength of the antenna, the lower the frequency, the longer the required wavelength, and the higher the frequency, the shorter the required wavelength.
  • the operating frequency range required by the N78 frequency band is within 3300 ⁇ 3800MHz, which requires a longer wavelength to meet, so in the embodiment of the present application, the frequency band is satisfied by the 1/4 wavelength of the first radiation branch 12 (that is, the second frequency band) working mode.
  • the operating frequency range required by the N79 frequency band is within 4400-5000MHz, which is higher than the operating frequency of the N78 frequency band, and it needs a shorter wavelength to meet it. Therefore, in the embodiment of the present application, on the one hand, 1/ 4 wavelengths to meet the partial frequency range of the frequency band (that is, the third frequency band), and on the other hand, use the coupling of the first radiation branch 12 and the second radiation branch 13 to meet the requirement through the 1/2 wavelength of the first radiation branch 12. Another part of the frequency range of the band. Therefore, the antenna device 1 is guaranteed to have a variety of different working modes through the above-mentioned wavelength limitation of the radiation stub.
  • a first gap 14 is formed between a side of the first radiating branch 12 close to the first end 111 and the radiating body 11 .
  • the first end 111 of the radiation body 11 is approximately located at the upper end of the right half of the entire radiation body 11
  • the first radiation branch 12 is connected to the first end 111
  • the first radiation branch 12 starts from the first end.
  • 111 is formed by bending and extending to the left.
  • a long and narrow first gap 14 is formed between the side of the first radiating branch 12 close to the first end 111 (ie, the left half of the first radiating branch 12 ) and the radiating main body 11 .
  • the current passing through the first radiating stub 12 can form a differential mode, thereby increasing the resonance of the first radiating stub 12 . That is to say, for the working mode of the second frequency band and the third frequency band, since the first slit 14 is opened on the first radiating branch 12, the resonance of the first radiating branch 12 can be increased, which is beneficial to widen the antenna device. 1 working bandwidth, to better meet the working mode requirements of the above frequency bands.
  • the length direction of the first slit 14 is parallel to the length extension direction of the first radiating branch 12 (that is, the left-right direction in FIG. 3 ), and the width direction of the first slit 14 is perpendicular to the length direction of the first slit 14 .
  • the width of the first slit 14 along the length direction perpendicular to the first radiating branch 12 is d, 0.1mm ⁇ d ⁇ 0.3mm.
  • a second slit 15 is formed between the side of the second radiating branch 13 close to the second end 112 and the radiating body 11 .
  • the second end 112 of the radiation body 11 is approximately located at the lower end of the left half of the entire radiation body 11
  • the second radiation branch 13 is connected to the second end 112
  • the second radiation branch 13 starts from the second end. 112 is formed by bending and extending to the left, then upward, and then to the right.
  • a second slit 15 is formed between the side of the second radiating branch 13 close to the second end 112 (that is, at the right and lower position of the second radiating branch 13 ) and the radiating body 11, and the second slit 15 extends to The second diameter end 131 of the second radiating stub 13 (ie, the end of the second radiating stub 13 ).
  • the embodiment of the present application opens the second slit 15 at a specific position, which can effectively increase the space of the second radiating branch 13 while ensuring that the antenna device 1 occupies a small space. length.
  • the resonant frequency of the antenna is inversely proportional to the wavelength, the higher the resonant frequency, the shorter the wavelength when the propagation speed is constant; on the contrary, the lower the resonant frequency, the longer the wavelength.
  • the second slit 15 is formed between the second radiating branch 13 and the radiating body 11, it is equivalent to increasing the length of the second radiating branch 13 by opening the slit, which is beneficial to make the resonance frequency of the second radiating branch 13 in the N79 frequency band . That is to say, by bending and setting the second radiating branch 13 and providing the second slit 15, the occupied area of the entire antenna device 1 can be reduced, and at the same time, it is easier to pass the 1/4 wavelength of the second radiating branch 13 and the second slit.
  • the 1/2 wavelength of a radiation branch 12 works together to meet the working mode requirements of the third frequency band, which does not occupy too much internal space of the electronic device, and more easily meets the working frequency required by the third frequency band.
  • the antenna device 1 of the embodiment of the present application is dual-resonant in the bandwidth range of 3.3G-4.2G, and the antenna device 1 is dual-resonant in the bandwidth range of 4.8G-5G. It can be seen that the antenna device 1 of the embodiment of the present application can not only meet the bandwidth requirements of the antenna for the working frequency band, but also improve the working efficiency of the antenna.
  • the antenna device 1 of the embodiment of the present application can meet the bandwidth requirement and antenna working efficiency of the corresponding frequency band.
  • the position of the antenna device 1 in the electronic device 10 will be further described below with reference to FIG. 1 and FIG. 2 .
  • the first caliber end 121 of the first radiating branch 12 is located on the top of the housing body 21 and in the clearance area of the housing body 21, and the second caliber end 131 of the second radiating branch 13 Located on the back of the housing body 21 and in the clearance area of the housing body 10 .
  • the head space of the housing body 21 has better signal transceiving capability, and the first caliber end 121 of the first radiating stub 12 is arranged in the clearance area at the top of the housing body 10, which can make full use of the head space of the electronic device 10. Signal sending and receiving capabilities, further improving the working efficiency of the N77 and N78 frequency bands.
  • Setting the second caliber end 131 of the second radiating branch 13 in the clearance area on the back of the housing body 21 can not only avoid interference between the second radiating branch 13 and the first radiating branch 12, but also prevent the electronic device 10 from Other components of the second radiation branch 13 cause problems such as signal shielding.
  • the second caliber end 131 of the second radiating branch 13 is arranged on the back of the housing body 21, it is possible to avoid the situation that the second radiating branch 13 and the first radiating branch 12 are both arranged on the top of the housing body 21, and also It avoids the problem of mutual interference signals that may occur when two radiating branches are arranged in a limited headspace; in addition, it can also avoid that when the second radiating branch 13 is arranged on the side of the housing body 21, it is also located on the side of the housing body 21 other electronic components may cause shielding problems.
  • the installation position of the antenna device 1 in the electronic device 10 can not only make full use of the limited internal space of the electronic device, but also ensure good antenna performance, and reduce the radiation between different antenna devices themselves or between the antenna device and other antenna devices. Interference between components.
  • first angle ⁇ between the plane where the second radiation branch 13 is located and the plane of the PCB board 0° ⁇ 30°, the plane where the second radiation branch 13 is located and the plane of the first radiation
  • second included angle ⁇ between the planes where the branches 12 are located 0° ⁇ 180°. That is to say, the second radiating branch 13 and the PCB board can be arranged in parallel, or arranged at a small inclined angle between them; set at an angle.
  • the first included angle ⁇ is 0°, that is, the plane where the second radiating branch 13 is located is parallel to the plane of the PCB board; the second included angle ⁇ is 90°, that is, where the first radiating branch 12 is located
  • the plane is perpendicular to the plane of the PCB board.
  • the second radiating branch 13 when the user holds the electronic device vertically, at least the second radiating branch 13 will not be blocked, and signals can be sent and received smoothly; when the user holds the electronic device horizontally, at least the first radiating branch 12 will not be blocked, and can smoothly Send and receive signals.
  • the performance indicators of the first radiating stub 12 and the second radiating stub 13 in the antenna device 1 of the embodiment of the present application are further explained below.
  • FIG. 4 is a return loss diagram of the antenna device 1 in the embodiment of the present application. It can be seen from the figure that the antenna device 1 has multiple working modes, and it is a double resonance in the bandwidth of 3.3GHz to 4.2GHz, which meets the bandwidth requirements of the N77 frequency band and the N78 frequency band, and also works in the bandwidth of 4.4GHz to 5GHz. It is a double resonance and meets the bandwidth requirements of the N79 frequency band.
  • FIG. 5 is a Smith chart of the antenna device 1 in the embodiment of the present application. It can be seen from the figure that the impedance matching of the antenna device 1 at four resonant frequency points is good.
  • FIG. 6 is an electric field distribution diagram of the antenna device 1 in the second frequency band in the embodiment of the present application
  • FIG. 7 is a surface current distribution diagram of the antenna device 1 in the second frequency band in the embodiment of the present application.
  • FIG. 8 is the far-field radiation diagram of the antenna device 1 in the second frequency band in the embodiment of the present application
  • FIG. 9 is the far-field distribution diagram of the antenna device 1 in the second frequency band in the embodiment of the present application
  • FIG. 10 is the Antenna radiation efficiency diagrams of the antenna device 1 in the first frequency band and the second frequency band in the embodiment of the application.
  • the area inside the dotted box in Figure 6 is the area with a strong electric field.
  • the solid line represents the far-field pattern of the E-plane in the direction parallel to the electric field
  • the dotted line represents the far-field pattern of the H-plane in the direction parallel to the magnetic field.
  • Figure 10 shows the efficiency of the antenna device 1 at different resonance points when working in the second frequency band. It can be seen that the antenna efficiency at each resonance point in the figure is relatively high, about -4.6dB (that is, the corresponding antenna Efficiency is 35%), meeting the requirements for antenna efficiency.
  • Fig. 11 is an electric field distribution diagram of the antenna device 1 in the third frequency band in the embodiment of the present application
  • Fig. 12 is a surface current distribution diagram of the antenna device 1 in the third frequency band in the embodiment of the present application
  • FIG. 13 is the far-field radiation diagram of the antenna device 1 in the third frequency band in the embodiment of the present application
  • FIG. 14 is the far-field distribution diagram of the antenna device 1 in the third frequency band in the embodiment of the present application
  • FIG. 15 is the The antenna radiation efficiency diagram of the antenna device 1 in the third frequency band in the embodiment of the application.
  • the area within the dotted box in Figure 11 is the area with a strong electric field.
  • the solid line represents the far-field pattern of the E-plane in the direction parallel to the electric field
  • the dotted line represents the far-field pattern of the H-plane in the direction parallel to the magnetic field.
  • Figure 15 shows the efficiencies of the antenna device 1 at different resonance points when working in the third frequency band. It can be seen that the antenna efficiency at each resonance point in the figure is relatively high, about -3.0dB (that is, the corresponding antenna Efficiency is 49.4%), meeting the requirements for antenna efficiency.
  • the second frequency band is the N78 frequency band
  • the third frequency band is the N79 frequency band. It is understandable that since the frequency ranges of the N77 frequency band and the N78 frequency band partly overlap, the N77 frequency band and the N78 frequency band can also be understood as one frequency band. In other words, the characteristics of the antenna device 1 in the N78 frequency band can also reflect the antenna device in the N77 frequency band 1, so the embodiment of the present application does not further provide performance test results of the antenna device 1 in the N77 frequency band.
  • the embodiment of the present application improves the structure of the antenna device so that even if it is installed in electronic equipment with many surrounding devices, it can still meet the bandwidth of the frequency bands supported by 5G mobile communications such as N77, N78, and N79. Not only that, the antenna device It can also meet higher antenna working efficiency and has stronger practicability.

Landscapes

  • Support Of Aerials (AREA)

Abstract

本申请公开了一种天线装置、壳体及电子设备,天线装置(1)包括辐射主体(11)、第一辐射枝节(12)、第二辐射枝节(13)、馈电点及接地点,辐射主体(11)具有第一端(111)和第二端(112);第一辐射枝节(12)与第一端(111)相连接,第一辐射枝节(12)具有第一口径端(121),第一辐射枝节(12)用于实现第一频段和第二频段的辐射;第二辐射枝节(13)与第二端(112)相连接,第二辐射枝节(13)具有第二口径端(131),第二口径端(131)与第一口径端(121)相对间隔设置且相互耦合,第二辐射枝节(13)与第一辐射枝节(12)共同用于实现第三频段的辐射;第一辐射枝节(12)的长度大于第二辐射枝节(13)的长度;馈电点、接地点分别与辐射主体(11)的馈电区域、接地区域电连接。本申请的天线装置(1)、壳体(2)及电子设备(10),既能满足天线各频段的带宽要求,又能够提高天线的辐射效率。

Description

天线装置、壳体及电子设备
本申请要求于2021年8月11日提交、申请号为2021109187920、发明名称为“天线装置、壳体及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种天线装置、壳体及电子设备。
背景技术
5G(5th Generation Wireless Systems,第五代移动通信技术)电子设备需要支持的频段其覆盖频率范围非常宽,此类电子设备对于所使用的天线的环境和效率要求也很高。但是随着电子产品的轻薄化、功能多样化,电子设备内部空间被更多的外设模组占用,导致留给天线的内部空间越来越少。如何在这种不利条件下改进天线结构,以更好地满足天线的带宽和效率,成为需要解决的技术问题。
发明内容
本申请实施例公开了一种天线装置、壳体及电子设备,其不仅能够满足5G天线所需支持的天线带宽,而且具有较高的效率。
为了实现上述目的,第一方面,本申请公开了一种天线装置,所述天线装置包括:
辐射主体,分别具有第一端和第二端;
第一辐射枝节,与所述辐射主体的第一端相连接,所述第一辐射枝节具有第一口径端,所述第一辐射枝节用于实现第一频段和第二频段的辐射;
第二辐射枝节,与所述辐射主体的第二端相连接,所述第一辐射枝节的长度大于所述第二辐射枝节的长度,所述第二辐射枝节具有第二口径端,所述第二口径端与所述第一口径端相对间隔设置且相互耦合,所述第二辐射枝节与所述第一辐射枝节共同用于实现第三频段的辐射,且所述第三频段的频率范围大于所述第一频段、所述第二频段的频率范围;
馈电点,与所述辐射主体的馈电区域电连接;
接地点,与所述辐射主体的接地区域电连接。
第二方面,本申请实施例公开了一种壳体,包括壳体本体以及如第一方面所述的天线装置,所述天线装置设置于所述壳体本体。
第三方面,本申请实施例公开一种电子设备,所述电子设备包括壳体,所述壳体包括壳体本体以及如第一方面所述的天线装置,所述天线装置设置于所述壳体本体。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例电子设备的结构示意图;
图2是本申请实施例中设有天线装置的壳体的结构示意图;
图3是本申请实施例中天线装置的结构示意图;
图4是本申请实施例中天线装置的回波损耗图;
图5是本申请实施例中天线装置的史密斯圆图;
图6是是本申请实施例中天线装置在第二频段下的电场分布图;
图7是本申请实施例中天线装置在第二频段下的表面电流分布图;
图8是本申请实施例中天线装置在第二频段下的远场方向辐射图;
图9是本申请实施例中天线装置在第二频段下的远场分布图;
图10是本申请实施例中天线装置在第一频段和第二频段下的天线辐射效率图;
图11是是本申请实施例中天线装置在第三频段下的电场分布图;
图12是本申请实施例中天线装置在第三频段下的表面电流分布图;
图13是本申请实施例中天线装置在第三频段下的远场方向辐射图;
图14是本申请实施例中天线装置在第三频段下的远场分布图;
图15是本申请实施例中天线装置在第三频段下的天线辐射效率图。
图标:1、天线装置;11、辐射主体;111、第一端;112、第二端;12、第一辐射枝节;121、第一口径端;13、第二辐射枝节;131、第二口径端;14、第一缝隙;15、第二缝隙;2、壳体;21、壳体本体;10、电子设备。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请中,术语“上”、“下”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系。这些术语主要是为了更好地描述本申请及其实施例,并非用于限定所指示的装置、元件或组成部分必须具有特定方位,或以特定方位进行构造及操作。
并且,上述部分术语除了可以用于表示方位或位置关系以外,还可能用于表示其他含义,例如术语“上”在某些情况下也可能用于表示某种依附关系或连接关系。对于本领域普通技术人员而言,可以根据具体情况理解这些术语在本申请中的具体含义。
此外,术语“安装”、“设置”、“设有”、“连接”应做广义理解。例如,可以是固定连接,可拆卸连接,或整体式构造;可以是机械连接,或电连接;可以是直接相连,或者是通过中间媒介间接相连,又或者是两个装置、元件或组成部分之间内部的连通。对于本领域普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
此外,术语“第一”、“第二”等主要是用于区分不同的装置、元件或组成部分(具体的种类及构造可能相同也可能不同),并非用于表明或暗示所指示装置、元件或组成部分的相对重要性及数量。除非 另有说明,“多个”的含义为两个或两个以上。
此外,为了清楚呈现本申请的技术特征,附图中的元件(例如层、膜、基板以及区域等)的尺寸(例如长度、宽度、厚度与深度)会以不等比例的方式放大。因此,本申请实施例的说明与解释,不受限于附图中的元件所呈现的尺寸与形状,而应涵盖如实际制程及/或公差所导致的尺寸、形状以及两者的偏差。例如附图所示的平坦层可以具有粗糙及/或非线性的特征,又如附图所示的锐角可以是圆的。所以,本申请附图所呈现的元件主要是用于示意,并非旨在精准地描绘元件的实际形状,也非限制本案的专利申请范围。
此外,本案中出现的“约”、“近似”或“近似”等这类用字不仅涵盖明确记载的数值及数值范围,而且也涵盖申请所属技术领域中具有通常知识者所能理解的可允许偏差范围。其中,此偏差范围可由测量时产生的误差决定,而此误差例如起因于测量系统或制程条件两者的限制。本案中出现的“约”、“近似”或“近似”等这类用字可依光学性质、蚀刻性质、机械性质或其他性质来选择可以接受的偏差范围或标准偏差。
下面将结合实施例和附图对本申请的技术方案作进一步的说明。
在使用5G移动通信技术的电子设备中,对于天线设计的要求很高。一方面,5G电子设备需要支持SUB-6G NR频段N77(3300MHz~4200MHz)、78(3300MHz~3800MHz)和N79(4800MHz~5000MHz),这个三个频段覆盖频率范围非常宽,也即对天线的带宽要求较高;另一方面,为减少天线周围器件对于天线性能的影响,对天线周边的净空环境要求也较高。然而随着电子设备(如智能电话、智能穿戴设备等)朝向轻薄化、全面屏化、多功能化的趋势发展,电子设备内部能够留给天线的空间已经越来越少,难以满足相关技术中天线设计及布局的要求。
对此,本申请实施例提出一种天线装置、壳体及电子设备,通过对天线装置进行结构改进,在天线装置周围的电子元器件较多、净空环境较差的情况下,仍然可满足5G天线的带宽要求,同时还可以提高天线效率,从而适用于5G电子设备。需要说明的是,本申请的天线装置所应用的电子设备包括但不限于智能手机、智能穿戴设备、台式电脑、笔记本电脑、平板电脑、照相机、车载设备。在本申请实施例中,以电子设备为智能手机为例进行解释说明。
具体地,第一方面中,本申请公开了一种天线装置,所述天线装置包括:
辐射主体,具有第一端和第二端;
第一辐射枝节,与所述辐射主体的第一端相连接,所述第一辐射枝节具有第一口径端,所述第一辐射枝节用于实现第一频段和第二频段的辐射;
第二辐射枝节,与所述辐射主体的第二端相连接,所述第一辐射枝节的长度大于所述第二辐射枝节的长度,所述第二辐射枝节具有第二口径端,所述第二口径端与所述第一口径端相对间隔设置且相互耦合,所述第二辐射枝节与所述第一辐射枝节共同用于实现第三频段的辐射,且所述第三频段的频率范围大于所述第一频段、所述第二频段的频率范围;
馈电点,与所述辐射主体的馈电区域电连接;
接地点,与所述辐射主体的接地区域电连接。
一种可选的实施方式中,所述第二频段的工作模态为所述第一辐射枝节的1/4波长,所述第三频段的工作模态由所述第二辐射枝节的1/4波长与所述第一辐射枝节的1/2波长的共同加载。
一种可选的实施方式中,所述第一辐射枝节靠近所述第一端的一侧与所述辐射主体之间形成有第一缝隙。
一种可选的实施方式中,所述第一缝隙的宽度方向垂直于所述第一缝隙的长度方向。
一种可选的实施方式中,所述第一缝隙沿垂直于所述第一辐射枝节的长度方向的宽度为d,0.1mm≤d≤0.3mm。
一种可选的实施方式中,所述第一缝隙的长度方向平行于所述第一辐射枝节的长度延伸方向。
一种可选的实施方式中,所述第二辐射枝节自与所述第二端的连接处弯折设置。
一种可选的实施方式中,所述第二辐射枝节靠近所述第二端的一侧与所述辐射主体之间形成有第二缝隙。
一种可选的实施方式中,所述第二缝隙延伸至所述第二辐射枝节的第二口径端。
一种可选的实施方式中,所述天线装置在3.3GHz~4.2GHz的带宽范围内为双谐振,所述天线装置在4.4GHz~5GHz的带宽范围内为双谐振。
第二方面,本申请还公开了一种壳体,所述壳体包括壳体本体以及如上述第一方面所述的天线装置,所述天线装置设置于所述壳体本体。
一种可选的实施方式中,所述天线装置包括FPC天线或LDS天线。
第三方面,本申请还公开了一种电子设备,所述电子设备包括壳体,所述壳体包括壳体本体以及如上述第一方面所述的天线装置,所述天线装置设置于所述壳体本体。
一种可选的实施方式中,所述第一辐射枝节的第一口径端位于所述壳体本体的顶部且位于所述壳体本体的净空区域内,所述第二辐射枝节的第二口径端位于所述壳体本体的背面且位于所述壳体本体的净空区域中。
一种可选的实施方式中,所述电子设备还包括PCB板,所述第二辐射枝节所在平面与所述PCB板的平面之间具有第一夹角α,0°≤α≤30°,所述第二辐射枝节所在平面与所述第一辐射枝节所在平面之间具有第二夹角β,0°<β<180°。
一种可选的实施方式中,所述第一辐射枝节所在平面平行于所述PCB板的平面,所述第一辐射枝节所在平面垂直于所述PCB板的平面。
请参阅图1和图2,图1为本申请实施例提供的一种电子设备的结构示意图,图2是本申请实施例中设有天线装置的壳体的结构示意图,也即图2示出的是图1中电子设备的壳体以及设于该壳体上的天线装置的结构示意图。
本申请实施例的电子设备10包括壳体2,该壳体2包括壳体本体21以及天线装置1,天线装置1设于壳体本体21上。该壳体2可以为电子设备10的后盖壳体2,电子设备10还可以包括与该后盖壳体2相互盖合连接的显示屏,显示屏与后盖壳体2之间形成收容空间,天线装置1设于壳体2的壳体本体21上且位于收容空间中。
其中,天线装置1设于壳体本体21可以通过多种方式实现,例如可以采用制作FPC的工艺制作天线装置1,然后以粘贴或螺接等方式将天线装置1固定于壳体本体21上,采用这种方式时天线装置1的拆装较方便、加工也较容易;还可以采用LDS技术将天线装置1成型到壳体本体21上,采用这种方式时天线装置1的稳定性高。
电子设备10还可以包括设置在收容空间中或者壳体2上的光线传感器、受话器、麦克风等器件。本申请实施例中的天线装置1可以设置在周围其他器件较多的较差天线环境中,例如天线装置1在沿垂直于显示屏所在平面的方向上与光线传感器位置相对,天线装置1的左右两侧分别与受话器、麦克风相邻。即便在这种较差的天线环境中,本申请实施例的天线装置1仍然可以满足天线带宽和效率的需求。进一步地,电子设备10还可以包括PCB板,后文将在介绍天线装置1的结构设计时,对天线装置1与PCB板之间的位置关系做更详细的解释说明。
请参阅图3,图3是本申请实施例中天线装置1的结构示意图,该天线装置1包括:
辐射主体11,具有第一端111和第二端112;
第一辐射枝节12,与辐射主体11的第一端111相连接,第一辐射枝节12具有第一口径端121,第一辐射枝节12用于实现第一频段和第二频段的辐射;
第二辐射枝节13,与辐射主体11的第二端112相连接,第二辐射枝节13具有第二口径端131,第二口径端131与第一口径端121相对间隔设置且相互耦合,第二辐射枝节13与第一辐射枝节12共同用于实现第三频段的辐射,且第三频段的频率范围分别大于所述第一频段的频率范围、所述第二频段的频率范围;其中,第一辐射枝节12的长度大于第二辐射枝节13的长度;
馈电点(图未示出),与辐射主体11的馈电区域电连接;
接地点(图未示出),与辐射主体11的接地区域电连接。
其中,馈电点可以通过馈线与辐射主体11的馈电区域电连接,从而向辐射主体11馈入激励电流,使辐射主体11能够收发指定频段的信号。
在本申请实施例中,通过对天线装置1的结构进行改进,使天线装置1除了辐射主体11、馈电点和接地点之外,还包括具有不同长度的第一辐射枝节12和第二辐射枝节13,通过二者具有不同长度的差异可分别实现不同频段波长的辐射。同时,通过将第一辐射枝节12的第一口径端121与第二辐射枝节13的第二口径端131进行间隔设置且相互耦合,来达到提高频宽带宽至满足天线使用要求的目的。具体是,由于第一口径端121与第二口径端131相互耦合,故第一辐射枝节12进行收发电磁波信号的同时,还可以利用第二辐射枝节13进行收发电磁波信号,通过这样的耦合作用来提高第一辐射枝节12可满足的频段带宽。同理,第二辐射枝节13也通过类似的作用来满足较宽的频段带宽。
进一步地,在本申请实施例中,第一频段为N77频段,该频段的频率范围是3300MHz~4200MHz;第二频段为N78频段,该频段的频率范围是3300MHz~3800MHz;第三频段为N79频段,该频段的频率范围是4400MHz~5000MHz。上述三个频段是5G移动通信技术中需要满足的几个主要频段。本申请实施例的天线装置1通过第一辐射枝节12实现N77和N78频段的辐射(即实现这两个频段的电磁波信号收发)、通过第一辐射枝节12和第二辐射枝节13的共同作用来实现N79频段的辐射(即实 现该频段的电磁波信号收发)。
进一步地,在本申请实施例中,天线装置1具有多种不同的工作模态,第二频段的工作模态是第一辐射枝节12的1/4波长,第三频段的工作模态是第二辐射枝节13的1/4波长与第一辐射枝节12的1/2波长的共同加载。对于天线装置1而言,不同频段的频率与天线的辐射枝节波长密切相关,频率越低、需要的波长越长,频率越高、需要的波长越短。N78频段所需要的工作频率范围在3300~3800MHz内,其需要较长的波长才能满足,故在本申请实施例中通过第一辐射枝节12的1/4波长来满足该频段(也即第二频段)的工作模态。N79频段所需要的工作频率范围在4400~5000MHz内,比N78频段的工作频率更高,其需要较短的波长来满足,故在本申请实施例中一方面通过第二辐射枝节13的1/4波长来满足该频段(也即第三频段)的部分频率范围,另一方面利用第一辐射枝节12与第二辐射枝节13的耦合、通过第一辐射枝节12的1/2波长来满足该频段的另一部分频率范围。由此,通过上述辐射枝节的波长限定,保证天线装置1具有多种不同的工作模态。
进一步地,第一辐射枝节12靠近第一端111的一侧与辐射主体11之间形成有第一缝隙14。结合图3所示,辐射主体11的第一端111大致位于整个辐射主体11的右半部分的上端,第一辐射枝节12与第一端111相连接、并且第一辐射枝节12从第一端111向左弯折延伸形成。在第一辐射枝节12靠近第一端111的一侧(即第一辐射枝节12的左半部分)与辐射主体11之间形成狭长的第一缝隙14。通过开设这条缝隙,能够使经过第一辐射枝节12的电流形成差模,从而增加第一辐射枝节12的谐振。也就是说,对于第二频段和第三频段的工作模态而言,由于在第一辐射枝节12上开设有第一缝隙14,从而使第一辐射枝节12可以增加谐振,有利于拓宽天线装置1的工作带宽,更好地满足上述频段的工作模态要求。
进一步地,该第一缝隙14的长度方向平行于第一辐射枝节12的长度延伸方向(也即图3中的左右方向)、第一缝隙14的宽度方向垂直于第一缝隙14的长度方向。该第一缝隙14沿垂直于第一辐射枝节12的长度方向的宽度为d,0.1mm≤d≤0.3mm。当第一缝隙14的开缝宽度在此范围内时,能够更好地满足所需要增加的谐振,进而满足所需要拓宽的工作带宽。尤其是d=0.25mm,效果更佳。
进一步地,除了第一辐射枝节12上形成有第一缝隙14,在第二辐射枝节13靠近第二端112的一侧与辐射主体11之间形成有第二缝隙15。结合图3所示,辐射主体11的第二端112大致位于整个辐射主体11的左半部分的下端,第二辐射枝节13与第二端112相连接、并且第二辐射枝节13从第二端112依次向左、再向上、再向右弯折延伸形成。在第二辐射枝节13靠近第二端112的一侧(即第二辐射枝节13靠右、靠下的位置处)与辐射主体11之间形成第二缝隙15,并且该第二缝隙15延伸到第二辐射枝节13的第二口径端131(即第二辐射枝节13的末端)。比起直接在辐射主体11的左端开缝的方式,本申请实施例通过在特定位置开设第二缝隙15,能够在保证天线装置1占用空间较小的情况下,有效增长第二辐射枝节13的长度。由于天线的谐振频率与波长成反比,在传播速度一定的情况下,谐振频率越高,则波长越短;反之,谐振频率越低,则波长越长。当在第二辐射枝节13与辐射主体11之间形成第二缝隙15时,相当于通过开缝来增加第二辐射枝节13的长度,有利于使第二辐射枝节13的谐振频率处于N79频段上。也就是说,通过将第二辐射枝节13弯折设置且设有第二缝隙15,能 够使整个天线装置1占用面积较小的同时,更容易通过第二辐射枝节13的1/4波长与第一辐射枝节12的1/2波长共同作用来满足第三频段的工作模态要求,既不过多占用电子设备的内部空间、又更容易满足第三频段所需工作频率。
另外,本申请实施例的天线装置1在3.3G~4.2G的带宽范围内为双谐振,天线装置1在4.8G~5G的带宽范围内为双谐振。可见,本申请实施例的天线装置1不仅可以满足天线对工作频段的带宽要求,而且还能够提高天线工作效率。
如前文所述,本申请实施例的天线装置1即便安装在具有较差天线环境的电子设备10中也能够满足相应频段的带宽要求和天线工作效率。下面结合回图1和图2对天线装置1在电子设备10中的位置进行进一步说明。
本申请实施例的天线装置1中,第一辐射枝节12的第一口径端121位于壳体本体21的顶部且位于壳体本体21的净空区域内,第二辐射枝节13的第二口径端131位于壳体本体21的背面且壳体本体10的净空区域中。壳体本体21的顶部空间具有较好的信号收发能力,将第一辐射枝节12的第一口径端121设置在壳体本体10顶部的净空区域中,可以充分利用电子设备10的顶部空间较好的信号收发能力,进一步提高N77频段和N78频段的工作效率。将第二辐射枝节13的第二口径端131设置在壳体本体21的背面的净空区域中,不仅能够避免第二辐射枝节13与第一辐射枝节12之间发生干扰,还能够避免电子设备10的其他元器件对第二辐射枝节13造成信号屏蔽等问题。具体是,第二辐射枝节13的第二口径端131设置在壳体本体21的背面时,能够避免第二辐射枝节13与第一辐射枝节12都设置在壳体本体21的顶部的情况,也就避免了在有限的顶部空间设置两个辐射枝节可能会出现的相互干扰信号的问题;此外,还能够避免第二辐射枝节13设置在壳体本体21的侧面时,同样位于壳体本体21侧面的其他电子元器件可能对其造成屏蔽的问题。由此可见,天线装置1在电子设备10中的设置位置,既能够充分利用有限的电子设备内部空间,又能够保证良好的天线性能,减少不同天线装置自身的辐射枝节之间或者天线装置与其他元器件之间的相互干扰。
进一步地,在本申请实施例中,第二辐射枝节13所在平面与PCB板的平面之间具有第一夹角α,0°≤α≤30°,第二辐射枝节13所在平面与第一辐射枝节12所在平面之间具有第二夹角β,0°<β<180°。也就是说,第二辐射枝节13与PCB板可以平行设置、或者二者之间以较小的倾斜夹角设置;第二辐射枝节13与第一辐射枝节12非平行设置,而是相互倾斜呈一定角度设置。作为一种优选的实施方式,第一夹角α为0°,也就是第二辐射枝节13所在平面平行于PCB板的平面;第二夹角β为90°,也就是第一辐射枝节12所在平面垂直于PCB板的平面。通过这样的设置方式,可以充分利用电子设备10的接地部(即PCB板)的横向波和纵向波,确保用户无论以怎样的方向使用电子设备,都可以保证天线装置1顺利收发信号。例如,当用户竖向握持电子设备时,至少第二辐射枝节13不会被遮挡,能够顺利收发信号;当用户横向握持电子设备时,至少第一辐射枝节12不会被遮挡,能够顺利收发信号。
下面对本申请实施例的天线装置1中第一辐射枝节12与第二辐射枝节13的性能指标进行进一步 解释说明。
请参阅图4,图4是本申请实施例中天线装置1的回波损耗图。从该图可以看出,天线装置1具有多个工作模态,在3.3GHz~4.2GHz的带宽内为双谐振,其满足N77频段和N78频段的带宽要求,在4.4GHz~5GHz的带宽内也为双谐振,满足N79频段的带宽要求。
请参阅图5,图5是本申请实施例中天线装置1的史密斯圆图,从该图可以看出天线装置1在四个谐振频点的阻抗匹配良好。
请参阅图6至图10,图6是本申请实施例中天线装置1在第二频段下的电场分布图,图7是本申请实施例中天线装置1在第二频段下的表面电流分布图,图8是本申请实施例中天线装置1在第二频段下的远场方向辐射图,图9是本申请实施例中天线装置1在第二频段下的远场分布图,图10是本申请实施例中天线装置1在第一频段和第二频段下的天线辐射效率图。图6中虚线方框内的区域为电场较强的区域,由图6可知,天线装置1谐振于第二频段时,电场主要分布在第一辐射枝节12上,说明在该频段下,第一辐射枝节12具有向空间辐射电磁波信号的能力。同时进一步结合图7,由图7中的曲线箭头可知,天线装置1工作于第二频段时,电流主要分布在第一辐射枝节12。另外,由图8和图9可知,天线装置1在第二频段下的方向性较好。在图8中,实线表示为与电场平行方向的E面的远场方向图,虚线表示为与磁场平行方向的H面的远场方向图。图10示出了在第二频段下工作时,不同谐振点的天线装置1的效率,可以看出该图中各谐振点上的天线效率均比较高,约为-4.6dB(即对应的天线效率为35%),满足对天线效率的要求。
请参阅图11至图15,图11是本申请实施例中天线装置1在第三频段下的电场分布图,图12是本申请实施例中天线装置1在第三频段下的表面电流分布图,图13是本申请实施例中天线装置1在第三频段下的远场方向辐射图,图14是本申请实施例中天线装置1在第三频段下的远场分布图,图15是本申请实施例中天线装置1在第三频段下的天线辐射效率图。图11中虚线方框内的区域为电场较强的区域,由图11可知,天线装置1谐振于第三频段时,电场主要分布在第二辐射枝节13上,尤其是第二辐射枝节13的第二口径端131,说明在该频段下,第二辐射枝节13具有向空间辐射电磁波信号的能力。同时进一步结合图12,由图7中的曲线箭头可知,天线装置1工作于第三频段时,电流主要分布在第二辐射枝节13以及第一辐射枝节12上。另外,由图13和图14可知,天线装置1在第三频段下的方向性较好。在图1中,实线表示为与电场平行方向的E面的远场方向图,虚线表示为与磁场平行方向的H面的远场方向图。图15示出了在第三频段下工作时,不同谐振点的天线装置1的效率,可以看出该图中各谐振点上的天线效率均比较高,约为-3.0dB(即对应的天线效率为49.4%),满足对天线效率的要求。
其中,第二频段为N78频段,第三频段为N79频段。可以理解的是,由于N77频段与N78频段的部分频率范围重合,故也可以将N77频段与N78频段理解一个频段,或者说,N78频段下天线装置1的特性也能够反映出N77频段下天线装置1的特性,故本申请实施例未进一步提供N77频段下天线装置1的性能测试结果。
本申请实施例通过对天线装置进行结构改进,使其即便安装在周围器件较多的电子设备中,仍然 可以满足N77、N78、N79这些5G移动通信支持的频段的带宽,不仅如此,该天线装置还能够满足较高的天线工作效率,实用性更强。
以上对本申请实施例公开的天线装置及电子设备进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的天线装置及电子设备及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上,本说明书内容不应理解为对本申请的限制。

Claims (16)

  1. 一种天线装置,其特征在于,所述天线装置包括:
    辐射主体,具有第一端和第二端;
    第一辐射枝节,与所述辐射主体的第一端相连接,所述第一辐射枝节具有第一口径端,所述第一辐射枝节用于实现第一频段和第二频段的辐射;
    第二辐射枝节,与所述辐射主体的第二端相连接,所述第一辐射枝节的长度大于所述第二辐射枝节的长度,所述第二辐射枝节具有第二口径端,所述第二口径端与所述第一口径端相对间隔设置且相互耦合,所述第二辐射枝节与所述第一辐射枝节共同用于实现第三频段的辐射,且所述第三频段的频率范围大于所述第一频段、所述第二频段的频率范围;
    馈电点,与所述辐射主体的馈电区域电连接;
    接地点,与所述辐射主体的接地区域电连接。
  2. 根据权利要求1所述的天线装置,其特征在于,所述第二频段的工作模态为所述第一辐射枝节的1/4波长,所述第三频段的工作模态由所述第二辐射枝节的1/4波长与所述第一辐射枝节的1/2波长的共同加载。
  3. 根据权利要求2所述的天线装置,其特征在于,所述第一辐射枝节靠近所述第一端的一侧与所述辐射主体之间形成有第一缝隙。
  4. 根据权利要求3所述的天线装置,其特征在于,所述第一缝隙的宽度方向垂直于所述第一缝隙的长度方向。
  5. 根据权利要求3所述的天线装置,其特征在于,所述第一缝隙沿垂直于所述第一辐射枝节的长度方向的宽度为d,0.1mm≤d≤0.3mm。
  6. 根据权利要求3所述的天线装置,其特征在于,所述第一缝隙的长度方向平行于所述第一辐射枝节的长度延伸方向。
  7. 根据权利要求2所述的天线装置,其特征在于,所述第二辐射枝节自与所述第二端的连接处弯折设置。
  8. 根据权利要求2所述的天线装置,其特征在于,所述第二辐射枝节靠近所述第二端的一侧与所述辐射主体之间形成有第二缝隙。
  9. 根据权利要求8所述的天线装置,其特征在于,所述第二缝隙延伸至所述第二辐射枝节的第二口径端。
  10. 根据权利要求1-9任一项所述的天线装置,其特征在于,所述天线装置在3.3GHz~4.2GHz的带宽范围内为双谐振,所述天线装置在4.4GHz~5GHz的带宽范围内为双谐振。
  11. 一种壳体,其特征在于,包括壳体本体以及如权利要求1至10任一项所述的天线装置,所述天线装置设置于所述壳体本体。
  12. 根据权利要求11所述的壳体,其特征在于,所述天线装置包括FPC天线或LDS天线。
  13. 一种电子设备,其特征在于,所述电子设备包括壳体,所述壳体包括壳体本体以及如权利要求1至10任一项所述的天线装置,所述天线装置设置于所述壳体本体。
  14. 根据权利要求13所述的电子设备,其特征在于,所述第一辐射枝节的第一口径端位于所述壳体本体的顶部且位于所述壳体本体的净空区域内,所述第二辐射枝节的第二口径端位于所述壳体本体的背面且位 于所述壳体本体的净空区域中。
  15. 根据权利要求13所述的电子设备,其特征在于,所述电子设备还包括PCB板,所述第二辐射枝节所在平面与所述PCB板的平面之间具有第一夹角α,0°≤α≤30°,所述第二辐射枝节所在平面与所述第一辐射枝节所在平面之间具有第二夹角β,0°<β<180°。
  16. 根据权利要求15所述的电子设备,其特征在于,所述第一辐射枝节所在平面平行于所述PCB板的平面,所述第一辐射枝节所在平面垂直于所述PCB板的平面。
PCT/CN2022/105688 2021-08-11 2022-07-14 天线装置、壳体及电子设备 WO2023016184A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110918792.0A CN113690585B (zh) 2021-08-11 2021-08-11 天线装置、壳体及电子设备
CN202110918792.0 2021-08-11

Publications (1)

Publication Number Publication Date
WO2023016184A1 true WO2023016184A1 (zh) 2023-02-16

Family

ID=78579613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/105688 WO2023016184A1 (zh) 2021-08-11 2022-07-14 天线装置、壳体及电子设备

Country Status (2)

Country Link
CN (1) CN113690585B (zh)
WO (1) WO2023016184A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113690585B (zh) * 2021-08-11 2023-09-22 Oppo广东移动通信有限公司 天线装置、壳体及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100289700A1 (en) * 2009-05-15 2010-11-18 Chung-Wen Yang Multi-band antenna
CN203617418U (zh) * 2013-11-22 2014-05-28 上海斐讯数据通信技术有限公司 一种手机天线
CN212303895U (zh) * 2020-05-30 2021-01-05 昆山丰景拓电子有限公司 一种具有宽频天线的手机
CN112751204A (zh) * 2020-12-29 2021-05-04 Oppo广东移动通信有限公司 天线组件及电子设备
CN113690585A (zh) * 2021-08-11 2021-11-23 Oppo广东移动通信有限公司 天线装置、壳体及电子设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112928456B (zh) * 2021-03-30 2023-05-26 Oppo广东移动通信有限公司 天线组件及电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100289700A1 (en) * 2009-05-15 2010-11-18 Chung-Wen Yang Multi-band antenna
CN203617418U (zh) * 2013-11-22 2014-05-28 上海斐讯数据通信技术有限公司 一种手机天线
CN212303895U (zh) * 2020-05-30 2021-01-05 昆山丰景拓电子有限公司 一种具有宽频天线的手机
CN112751204A (zh) * 2020-12-29 2021-05-04 Oppo广东移动通信有限公司 天线组件及电子设备
CN113690585A (zh) * 2021-08-11 2021-11-23 Oppo广东移动通信有限公司 天线装置、壳体及电子设备

Also Published As

Publication number Publication date
CN113690585B (zh) 2023-09-22
CN113690585A (zh) 2021-11-23

Similar Documents

Publication Publication Date Title
US10854994B2 (en) Broadband phased array antenna system with hybrid radiating elements
US11387568B2 (en) Millimeter-wave antenna array element, array antenna, and communications product
US20120062437A1 (en) Antenna system with planar dipole antennas and electronic apparatus having the same
WO2021022941A1 (zh) 天线阵列及终端
US20130113671A1 (en) Slot antenna
WO2021104191A1 (zh) 天线单元及电子设备
WO2022083276A1 (zh) 天线阵列组件及电子设备
US8648762B2 (en) Loop array antenna system and electronic apparatus having the same
US20220085493A1 (en) Housing assembly, antenna device, and electronic device
WO2019223318A1 (zh) 室内基站及其pifa天线
WO2023016184A1 (zh) 天线装置、壳体及电子设备
JP5213039B2 (ja) 片面放射アンテナ
US7598912B2 (en) Planar antenna structure
WO2022133922A1 (zh) 一种多频天线及通信设备
TWI381588B (zh) 電波接收用之天線、內置有此天線之電子裝置、以及此天線之製造方法
TWM463913U (zh) 天線結構
EP3425731B1 (en) Antenna assembly and remote control having same
WO2022068548A1 (zh) 后盖及终端
WO2022134785A1 (zh) 一种天线和通信设备
WO2022017220A1 (zh) 一种电子设备
US11973278B2 (en) Antenna structure and electronic device
CN108400436B (zh) 天线模块
JP7407487B1 (ja) 伝送装置及びアンテナ
WO2021184157A1 (zh) 天线和天线阵列
WO2024046199A1 (zh) 一种电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22855167

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE