WO2022068548A1 - 后盖及终端 - Google Patents

后盖及终端 Download PDF

Info

Publication number
WO2022068548A1
WO2022068548A1 PCT/CN2021/117377 CN2021117377W WO2022068548A1 WO 2022068548 A1 WO2022068548 A1 WO 2022068548A1 CN 2021117377 W CN2021117377 W CN 2021117377W WO 2022068548 A1 WO2022068548 A1 WO 2022068548A1
Authority
WO
WIPO (PCT)
Prior art keywords
amc
patch
frequency
structural unit
back cover
Prior art date
Application number
PCT/CN2021/117377
Other languages
English (en)
French (fr)
Inventor
岳翰林
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21874209.6A priority Critical patent/EP4210304A4/en
Priority to CN202180062206.5A priority patent/CN116114237A/zh
Priority to US18/029,332 priority patent/US20230370536A1/en
Publication of WO2022068548A1 publication Critical patent/WO2022068548A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/526Electromagnetic shields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0013Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective

Definitions

  • the present application relates to the field of communication equipment, and in particular, to a back cover and a terminal.
  • the antenna In traditional terminal products, the antenna is placed under the back cover. When the radiation field of the antenna encounters the back cover, surface waves will be generated on the back cover, resulting in large energy loss of the radiation field and damage to the radiation pattern, especially For antennas operating in the millimeter-wave frequency band, this energy loss is even more pronounced, resulting in impaired transmit and receive performance of the antenna.
  • the purpose of this application is to provide a back cover and a terminal.
  • the inner side of the back cover is provided with a multi-frequency AMC (artificial magnetic conductor, artificial magnetic conductor) structure, which is used to block the propagation of electromagnetic waves on the back cover, so as to improve the radiation pattern of the antenna and improve its transceiving performance.
  • AMC artificial magnetic conductor, artificial magnetic conductor
  • the present application provides a back cover, which is applied to a terminal.
  • the terminal includes a back cover and an antenna.
  • the back cover includes a non-metallic plate body and a multi-frequency AMC structure.
  • the multi-frequency AMC structure is fixed on the inner surface of the non-metallic plate body.
  • the middle of the multi-frequency AMC structure has an opening. The direction perpendicular to the non-metallic plate body passes through the back cover, and the multi-frequency AMC structure is used to block the propagation of electromagnetic waves on the non-metallic plate body.
  • the multi-frequency AMC structure is fixedly connected to the non-metallic plate body, because the antenna radiation field will induce surface waves on the non-metallic plate body during the propagation process. Propagation on the non-metallic plate body; on this basis, an opening is further arranged in the middle of the multi-frequency AMC structure, so as not to limit the propagation of the antenna radiation field in the direction perpendicular to the non-metallic plate body, but also obstruct the surface
  • the wave propagation on the non-metallic plate body reduces the energy loss of the radiation field, improves the radiation field pattern, and improves the transceiver performance of the antenna.
  • the high-impedance surface formed by the multi-frequency AMC structure has the characteristic of a positive reflection phase coefficient. It can improve the concentration ability of the antenna radiation pattern.
  • the multi-frequency AMC structure has at least two resonance frequencies, and the resonance frequency of the multi-frequency AMC structure at least partially overlaps with the working frequency band of the antenna.
  • the multi-frequency AMC structure has at least two resonant frequencies, which can meet diverse usage requirements.
  • the multi-frequency AMC structure includes a plurality of structural units, the structural units include a first AMC structural unit and a second AMC structural unit, the resonant frequency of the first AMC structural unit is the first resonant frequency, and the second AMC structural unit The resonant frequency of the structural unit is the second resonant frequency, and the first resonant frequency is smaller than the second resonant frequency.
  • the multi-frequency AMC structure includes two kinds of structural units, so the resonant frequency range of the multi-frequency AMC structure can be adjusted by adjusting the resonant frequency of the first AMC structural unit and/or the second AMC structural unit.
  • the different operating frequencies of the antenna meet the increasingly diverse needs of consumers, and it is easy to integrate with the antenna and import it into the end product.
  • a plurality of structural units are arranged periodically, each structural unit is a center-symmetric structure, and the symmetrical centers of the plurality of structural units are aligned along the first direction and aligned along the second direction, and the The second direction is perpendicular to the first direction.
  • the alignment of multiple structural units can reduce the difficulty of manufacturing the multi-frequency AMC structure and improve the production efficiency.
  • the first AMC structural unit and the second AMC structural unit have a distance in the first direction, and also have a distance in the second direction, and the distance in the second direction is equal to the distance in the first direction. spacing.
  • the first AMC structural unit and the second AMC structural unit are staggered, and in the first direction and the second direction, the adjacent structural units of each first AMC structural unit are the second AMC structure. unit, the adjacent structural units of each second AMC structural unit are the first AMC structural unit. Multiple structural units are staggered one by one with the same spacing. Further, this uniform arrangement makes the influence of the multi-frequency AMC structure on the antenna radiation field consistent within its range, avoiding the generation of electromagnetic waves in specific radiation directions. adverse effects, and then affect the radiation pattern of the antenna.
  • the first AMC structural unit includes an inner patch and an outer frame-shaped patch, the outer frame-shaped patch is arranged around the inner patch, and there is a gap between the inner patch and the outer frame-shaped patch. Since the resonant frequency of the first AMC structural unit is determined by the coupling amount between the inner patch and the outer frame-shaped patch, and the coupling amount is related to the gap between the inner patch and the outer frame-shaped patch, and the smaller the gap S, the lower the resonance frequency. Therefore, the resonant frequency of the first AMC structural unit can be adjusted by controlling the size of the gap between the inner patch and the outer frame patch.
  • the gap is in the range of 0.005 times to 0.04 times the first wavelength
  • the first wavelength is the equivalent medium wavelength corresponding to the first resonant frequency, so that the resonant frequency of the first AMC structural unit is located in millimeters. the frequency range of the wave.
  • the side size of the outer frame-shaped patch is in the range of 0.15 times to 0.4 times the first wavelength
  • the first wavelength is the equivalent medium wavelength corresponding to the first resonance frequency
  • the inner patch The side dimension of is in the range of 0.1 times to 0.3 times the first wavelength.
  • the frequency of the first AMC structural unit is related to the size of the outer frame patch and the inner patch, and different resonance frequencies can be obtained by adjusting the size.
  • the inner patch of the first AMC structural unit is a square patch
  • the outer frame-shaped patch is a square-shaped patch.
  • the second AMC structural unit includes a first linear patch and a second linear patch, and the first linear patch and the second linear patch are arranged crosswise and are perpendicular to each other.
  • the first linear patch and the second linear patch are perpendicular to each other to form cross polarization and reduce the amount of coupling with the first AMC structural unit.
  • the first linear patch is linear
  • the second linear patch is linear.
  • the first linear patch and the second linear patch are straight, which is easy to process and manufacture, and improves production efficiency.
  • the first linear patch includes one or more protrusions
  • the second linear patch includes one or more protrusions.
  • the resonance frequency of the second AMC structural unit can be adjusted by controlling the actual lengths of the first linear patch and the second linear patch of the second AMC structural unit.
  • the actual length of the first linear patch and the second linear patch can be changed by increasing or decreasing the number of protrusions and/or the shape and size of the protrusions, thereby achieving adjustment
  • the actual lengths of the first linear patch and the second linear patch are in the range of 0.3 times to 1 times the equivalent medium wavelength corresponding to the first resonant frequency, so that the second AMC structure
  • the resonant frequency of the unit is in the millimeter wave frequency range.
  • the first AMC structural unit includes a first inner patch and a first outer frame patch, the first outer frame patch is arranged around the first inner patch, and the first inner patch is connected to the first inner patch.
  • a first gap exists between an outer frame-shaped patch
  • the second AMC structural unit includes a second inner patch and a second outer frame-shaped patch, the second outer frame-shaped patch is arranged around the second inner patch, and the second A second gap exists between the inner patch and the second outer frame patch, and the first gap is smaller than the second gap.
  • Both the first AMC structural unit and the second AMC structural unit adopt a DSR structure.
  • the resonance of the first AMC structural unit of this multi-frequency AMC structure is easily affected by the second AMC structural unit, so that the response bandwidth of the first AMC structural unit is affected by compression.
  • the first AMC structural unit includes an inner patch and an outer frame patch, the outer frame patch is arranged around the inner patch, and there is a gap between the inner patch and the outer frame patch, and the inner patch
  • Each side edge of the patch is arranged in parallel with the corresponding side edge of the outer frame-shaped patch, and an included angle is formed between each side edge of the inner positive patch and the first direction, and the included angle is in the range of 0 to 90° .
  • the second AMC structural unit includes a first linear patch and a second linear patch, and the first linear patch and the second linear patch are arranged crosswise and are perpendicular to each other, and the first linear patch An included angle is formed between the extending direction of the shaped patch and the first direction, and the included angle is in the range of 0 to 90°.
  • the first AMC structural unit is to form a Jerusalem cross-shaped void on the square patch; or, the first AMC structural unit is to form a swastika-shaped void on the square patch; or, the second AMC The structural unit is a Jerusalem cross-shaped patch.
  • the first AMC structural unit includes an inner patch and an outer frame-shaped patch, the outer frame-shaped patch is arranged around the inner patch, and there is a gap between the inner patch and the outer frame-shaped patch.
  • the two AMC structural units are composed of a plurality of Jerusalem cross-shaped patches, and the first AMC structural unit and the second AMC structural unit are coupled to generate a third resonance frequency.
  • the above-mentioned various multi-frequency AMC structures can be used to prevent the surface wave from propagating on the back cover and improve the radiation pattern of the antenna.
  • the dielectric constant of the non-metallic plate body is in the range of 2 to 10
  • the dielectric loss parameter is less than 0.03
  • the thickness is in the range of 0.3 mm to 1.4 mm.
  • the main structure of the back cover of the terminal is a non-metallic plate body, which can effectively reduce the weakening of the radiation energy of the antenna. It is understandable that for antennas operating in the millimeter wave frequency range, due to their wavelengths in the range of 1 to 10 mm, their diffraction ability is weak, their ability to bypass objects is poor, and they are more likely to be hindered by components such as the back cover, which will damage their antennas.
  • the present application provides a terminal, including an antenna and a back cover, the antenna is located inside the back cover, and the antenna is disposed facing the opening of the multi-frequency AMC structure of the back cover.
  • the projection of the antenna on the back cover falls within the range of the opening, and the antenna is located just below the opening.
  • the multi-frequency AMC structure is fixedly connected to the non-metallic plate body. Since the antenna radiation field will induce surface waves on the non-metallic plate body during the propagation process, the multi-frequency AMC structure is arranged on the inner surface of the non-metallic plate body.
  • the high-impedance surface formed by the multi-frequency AMC structure has a reflection phase. The characteristic that the coefficient is positive can improve the concentration ability of the antenna radiation pattern.
  • the terminal further includes a grounding member, the grounding member is located on the inner side of the back cover, and the antenna is fixed on a side of the grounding member facing the back cover.
  • the grounding piece is used to reflect the electromagnetic waves emitted by the antenna toward the grounding piece, so as to avoid electromagnetic interference to the electronic devices or modules disposed on the side of the grounding piece facing away from the antenna.
  • the first wavelength is the equivalent medium wavelength corresponding to the first resonance frequency.
  • the multi-frequency AMC structure and the antenna can not only effectively prevent the propagation of surface waves on the back cover, but also reserve a certain space for the propagation of the antenna radiation field in the direction perpendicular to the non-metallic plate, avoiding It affects the transmit and receive performance of the antenna.
  • the working frequency range of the antenna is n257+n258, n257+n260, n258+n260, or n257+n258+n260. That is, the antenna works in the frequency range of millimeter waves and can meet the technical requirements of the rapidly developing communication field.
  • FIG. 1 is a schematic structural diagram of a terminal provided by the present application in some embodiments.
  • FIG. 2 is a schematic cross-sectional view of a part of the structure of the terminal shown in FIG. 1 cut along the line A-A.
  • FIG. 3 is a schematic structural diagram of the rear cover shown in FIG. 1 .
  • FIG. 4 is a schematic diagram of an embodiment of the multi-frequency AMC structure shown in FIG. 3 .
  • FIG. 5 is a schematic structural diagram of the first AMC structural unit and the second AMC structural unit shown in FIG. 4 .
  • FIG. 6A is a reflection coefficient phase curve of the multi-frequency AMC structure shown in FIG. 4 in one possible implementation.
  • FIG. 6B is a surface impedance curve of the multi-frequency AMC structure shown in FIG. 4 in one possible implementation.
  • FIG. 7A is an electric field distribution diagram of a possible implementation of the multi-frequency AMC structure shown in FIG. 4 when the frequency is 25 GHz.
  • FIG. 7B is an electric field distribution diagram of a possible implementation of the multi-frequency AMC structure shown in FIG. 4 when the frequency is 27 GHz.
  • FIG. 7C is an electric field distribution diagram of a possible implementation of the multi-frequency AMC structure shown in FIG. 4 when the frequency is 30 GHz.
  • FIG. 8A is a general view of a comparison diagram of a radiation field propagation waveform at a frequency of 24.25 GHz between a possible implementation of the antenna shown in FIG. 1 and a conventional solution.
  • FIG. 8B is a general view of a comparison diagram of the radiation field propagation waveform of a possible implementation of the antenna shown in FIG. 1 and the conventional solution at a frequency of 25 GHz.
  • FIG. 8C is a general view of a comparison diagram of the radiation field propagation waveform of a possible implementation of the antenna shown in FIG. 1 and the conventional scheme when the frequency is 27 GHz.
  • FIG. 8D is a general view of a comparison diagram of the radiation field propagation waveforms of a possible implementation of the antenna shown in FIG. 1 and the conventional scheme when the frequency is 29.5 GHz.
  • FIG. 9A is an XZ plane cross-sectional view of the general view shown in FIG. 8A .
  • FIG. 9B is an XZ plane cross-sectional view of the full view shown in FIG. 8B .
  • FIG. 9C is an XZ plane cross-sectional view of the full view shown in FIG. 8C .
  • Fig. 9D is an XZ plane cross-sectional view of the full view shown in Fig. 8D.
  • FIG. 10A is a YZ plane cross-sectional view of the general view shown in FIG. 8A .
  • FIG. 10B is a YZ plane cross-sectional view of the general view shown in FIG. 8B .
  • Fig. 10C is a YZ plane cross-sectional view of the full view shown in Fig. 8C.
  • Fig. 10D is a YZ plane cross-sectional view of the full view shown in Fig. 8D.
  • FIG. 11A is a comparison of the synthesis results of vertical polarization (V-pol) radiation patterns in the XZ plane between a possible implementation of the antenna shown in FIG. 1 and the traditional scheme at frequencies of 24.25GHz, 25GHz, 27GHz and 29.5GHz picture.
  • V-pol vertical polarization
  • FIG. 11B is a possible implementation of the antenna shown in FIG. 1 and the improvement of the ripple in the YZ plane of the vertical polarization (V-pol) radiation pattern at frequencies of 24.25GHz, 25GHz, 27GHz and 29.5GHz with the conventional scheme Effect comparison chart.
  • V-pol vertical polarization
  • Fig. 11C is a comparison of the synthesis results of the horizontally polarized (H-pol) radiation patterns in the XZ plane between a possible implementation of the antenna shown in Fig. 1 and the conventional scheme at frequencies of 24.25GHz, 25GHz, 27GHz and 29.5GHz picture.
  • Fig. 11D shows the ripple improvement of the horizontally polarized (H-pol) radiation pattern in the YZ plane at frequencies of 24.25GHz, 25GHz, 27GHz and 29.5GHz between a possible implementation of the antenna shown in Fig. 1 and the conventional scheme. Effect comparison chart.
  • FIG. 12 is a reflection coefficient phase curve of a possible implementation manner of the first AMC structural unit shown in FIG. 5 when the gaps are 0.1 mm, 0.2 mm and 0.3 mm.
  • FIG. 13A is an electric field distribution diagram of a possible implementation manner of the first AMC structural unit shown in FIG. 5 when the gap is 0.1 mm.
  • FIG. 13B is an electric field distribution diagram of a possible implementation manner of the first AMC structural unit shown in FIG. 5 when the gap is 0.2 mm.
  • FIG. 13C is an electric field distribution diagram of a possible implementation manner of the first AMC structural unit shown in FIG. 5 when the gap is 0.3 mm.
  • FIG. 14 is a reflection coefficient phase curve when the actual lengths of the second AMC structural unit shown in FIG. 5 are 2.7 mm, 3.25 mm and 3.75 mm.
  • FIG. 15A is an electric field distribution diagram of the multi-frequency AMC structure shown in FIG. 4 .
  • FIG. 15B is an electric field distribution diagram of another possible implementation manner of the multi-frequency AMC structure provided by the embodiment of the present application.
  • FIG. 16A is the reflection coefficient phase curve of the multi-frequency AMC structure using the DRS+Cross structure shown in FIG. 15A .
  • FIG. 16B is a reflection coefficient phase curve of the multi-frequency AMC structure using the dual DSR structure shown in FIG. 15B .
  • FIG. 17 is a schematic structural diagram of a possible arrangement of the first AMC structural unit and the second AMC structural unit shown in FIG. 4 .
  • FIG. 18 is a schematic structural diagram of a possible arrangement of the first AMC structural unit and the second AMC structural unit shown in FIG. 4 .
  • FIG. 19 is a schematic structural diagram of a possible arrangement of the first AMC structural unit and the second AMC structural unit shown in FIG. 4 .
  • FIG. 20 is a schematic structural diagram of another possible implementation manner of the first AMC structural unit shown in FIG. 4 .
  • FIG. 21 is a schematic structural diagram of another possible implementation manner of the first AMC structural unit shown in FIG. 4 .
  • FIG. 22 is a schematic structural diagram of another possible implementation manner of the first AMC structural unit shown in FIG. 4 .
  • FIG. 23 is a schematic structural diagram of another possible implementation manner of the second AMC structural unit shown in FIG. 4 .
  • FIG. 24 is a schematic structural diagram of another possible implementation manner of the second AMC structural unit shown in FIG. 4 .
  • FIG. 25 is a reflection coefficient phase curve of the multi-frequency AMC structure composed of the first AMC structural unit and the second AMC structural unit shown in FIG. 24 .
  • FIG. 1 is a schematic structural diagram of a terminal 100 provided by the present application in some embodiments.
  • the terminal 100 may be an electronic product such as a mobile phone, a tablet, a notebook computer, a wearable device, a point of sales terminal (point of sales terminal, referred to as a POS machine for short), a router, and the like.
  • the embodiments of the present application are described by taking the terminal 100 being a mobile phone as an example.
  • the terminal 100 includes a back cover 1 , an antenna 2 , a grounding member 3 , a camera module 4 , a frame 5 and a display screen (not shown in the figure).
  • the display screen and the back cover 1 are fixed on both sides of the frame 5 opposite to each other, and the display screen, the back cover 1 and the frame 5 together define the entire inner cavity of the terminal 100 .
  • the display is used to display images, and the display can also integrate touch functions. Both the antenna 2 and the grounding member 3 are accommodated in the inner cavity of the whole machine, the antenna 2 is fixed on the grounding member 3, and the antenna 2 is electrically connected to the grounding member 3 to realize grounding.
  • the antenna 2 is located between the back cover 1 and the grounding member 3 , and the antenna 2 is arranged close to the back cover 1 .
  • the antenna 2 is used for receiving and transmitting electromagnetic waves to realize signal transmission.
  • the electromagnetic waves are emitted by the antenna 2 and radiate outward through the back cover 1 .
  • the electromagnetic waves from the outside of the terminal 100 pass through the back cover 1 and can be received by the antenna 2 .
  • the grounding member 3 is used to reflect the electromagnetic waves emitted by the antenna 2 toward the grounding member 3 to avoid electromagnetic interference to the electronic devices or modules disposed on the side of the grounding member 3 facing away from the antenna 2 .
  • the grounding member 3 may be a circuit board structure.
  • the camera module 4 is accommodated in the inner cavity of the whole machine, and the camera module 4 can collect external light through the camera on the back cover 1 to realize shooting.
  • the antenna 2 is disposed on the top of the terminal 100 and will not be interfered by other electronic components in the terminal, such as a battery, so as to prevent the performance of the antenna 2 from receiving and transmitting electromagnetic waves from being damaged.
  • the antenna 2 may also be disposed at the bottom of the terminal 100 , that is, at one end away from the camera module 4 .
  • the antenna 2 may also be arranged in the middle of the terminal. It is understandable that the position of the antenna 2 in the terminal may be adjusted according to the positions of other components inside the terminal, which is not strictly limited in this embodiment of the present application.
  • the long side direction of the back cover 1 is defined as the first direction X
  • the short side direction of the back cover 1 is defined as the second direction Y
  • the direction perpendicular to the XY plane is defined as the third direction direction Z.
  • the first direction, the second direction, and the third direction may also have other orientations, as long as the positional relationship between them is satisfied.
  • the size of the back cover 1 in the first direction X is 150 mm
  • the size in the second direction Y is 70 mm
  • the size in the third direction Z is 0.5 mm
  • the grounding member 3 is in the first direction X.
  • the size of 150mm, the size in the second direction Y is 70mm.
  • the size of the back cover 1 and the size of the grounding member 3 may be changed according to the design requirements of the terminal 100 , which are not strictly limited in the embodiment of the present application.
  • FIG. 2 is a schematic cross-sectional view of a partial structure of the terminal 100 shown in FIG. 1 cut along the line A-A.
  • FIG. 2 illustrates the back cover 1 , the antenna 2 and the grounding member 3 of the terminal 100 .
  • the antenna 2 and the grounding member 3 are located under the back cover 1 .
  • the back cover 1 includes a non-metallic plate body 12 and a multi-frequency AMC (artificial magnetic conductor, artificial magnetic conductor) structure 11 , and the multi-frequency AMC structure 11 is fixed on the inner surface 122 of the non-metallic plate body 12 .
  • the non-metallic plate body 12 further includes an appearance surface 121 disposed opposite to the inner surface 122 , and the appearance surface 121 is a surface facing the outside of the terminal 100 .
  • An opening 13 is provided in the middle of the multi-frequency AMC structure 11 , and the antenna 2 is located directly below the opening 13 .
  • the opening 13 is used to allow electromagnetic wave signals to pass through the rear cover 1 in a direction perpendicular to the non-metallic plate body 12 .
  • the multi-frequency AMC structure 11 is used to hinder the propagation of electromagnetic waves on the non-metallic plate body 12 , that is, to prevent the surface waves from spreading and propagating on the back cover 1 .
  • the dielectric constant of the non-metallic plate body 12 is in the range of 2 to 10, the dielectric loss parameter is less than 0.03, and the thickness is in the range of 0.3 mm to 1.4 mm.
  • the main structure of the back cover 1 of the terminal 100 is a non-metallic plate body 12 , which can avoid the weakening of the radiation field energy of the antenna 2 . Understandably, for the antenna 2 operating in the millimeter wave frequency range, because its wavelength is in the range of 1 to 10 mm, the diffraction ability of the millimeter wave is weak, the ability to bypass objects is poor, and it is more susceptible to components such as the back cover 1.
  • the shielding effect of metal on the radiation field of the millimeter-wave antenna 2 is more obvious, and the use of metal will significantly reduce the energy of the radiation field of the millimeter-wave antenna 2. Therefore, using the non-metallic plate body 12 of non-metallic material as the main structure of the back cover 1 can effectively avoid the weakening of the radiation field energy of the antenna 2 and improve the transceiver performance of the antenna 2 .
  • the multi-frequency AMC structure 11 is attached to the inner surface 122 of the non-metallic plate body 12 , or embedded in the non-metallic plate body 12 from the inner surface 122 of the non-metallic plate body 12 .
  • the multi-frequency AMC structure 11 can be realized by a flexible circuit board patch structure, and the multi-frequency AMC structure 11 is bonded to the inner surface 122 of the non-metallic plate body 12, or directly formed on the non-metallic plate body 12 by paste coating, screen printing, etc.
  • the inner surface 122 of the metal plate body 12 .
  • the material of the multi-frequency AMC structure 11 may be a metal and/or a non-metal conductive material, which is not strictly limited in this embodiment of the present application.
  • the multi-frequency AMC structure 11 is fixed on the inner surface 122 of the non-metallic plate body 12 , which can improve the adverse effect of the surface wave on the radiation pattern without occupying additional circuit board space, and has a high degree of integration with the antenna 2 . , which frees up more internal space of the terminal 100, makes the entire terminal 100 more compact, and also provides space for the arrangement of other components, so that the performance of the terminal 100 can be improved by adding components.
  • the antenna 2 can operate in the frequency bands of n257 (26.5GHz to 29.5GHz) and n258 (24.25GHz to 27.5GHz), that is, 24.25GHz to 29.5GHz, which belong to the millimeter wave frequency band.
  • the working frequency range of the antenna 2 may also be n257+n260 (37GHz to 40GHz), n258+n260, n257+n258+n260 or other frequency bands, which are not strictly limited in the embodiments of the present application.
  • the antenna 2 may be an antenna array composed of antennas using complementary radiation beams, for example, an antenna array composed of a broadside radiation (broadside radiation) antenna and an end-fire (end-fire radiation) antenna.
  • a broadside radiation antenna is placed under the central opening 13 of the multi-frequency AMC structure 11 . It is understandable that in order to achieve wider spatial coverage, the millimeter-wave antenna array will use complementary antenna types with radiation beams, and based on the design of the antenna feed point, to achieve dual-polarization (vertical and horizontal polarization) coverage, thereby greatly increasing the coverage. Improve the range and coverage of mmWave signals.
  • the antenna 2 may also be designed with other types of antennas, or use one type of antenna, which is not strictly limited in this embodiment of the present application.
  • the broadside radiating antenna and the end-firing antenna of the antenna 2 may all be located below the central opening 13 of the multi-frequency AMC structure 11 .
  • the antenna 2 may be a packaged antenna.
  • the antenna 2 works in the millimeter-wave frequency band, and the size falls in the millimeter level.
  • the manufacturing technology of AiP (antenna in package, that is, the antenna array is packaged in a chip) is often used to realize the antenna design.
  • AoB (antenna on board, that is, the antenna array is arranged on the substrate)
  • AiM (antenna in module, that is, the antenna array and the radio frequency integrated circuits (radio frequency integrated circuits, RFICs) form a module)
  • the antenna 2 may also be a planar antenna, and the antenna 2 is used to receive and transmit electromagnetic wave signals, which is not strictly limited in the embodiment of the present application.
  • a distance H 1 is set between the non-metallic plate body 12 and the antenna 2 in the third direction Z.
  • the distance H 1 is 0.25 mm.
  • the size of the distance H 1 is 0.25 mm. in the range of 0.2mm to 1mm.
  • the distance H 2 is 0.9 mm.
  • the size of the distance H 2 is H 1 and the antenna 2 The sum of heights in the third direction Z.
  • the embodiments of the present application use the AMC structure as a reflector that hinders the propagation of surface waves. Using its in-phase reflection characteristics, the distance between the multi-frequency AMC structure 11 and the antenna 2 can be effectively reduced, and the internal space of the terminal 100 can be further saved.
  • FIG. 3 is a schematic structural diagram of the rear cover 1 shown in FIG. 1 .
  • the antenna 2 can form a projection area 21 on the back cover 1 .
  • the multi-frequency AMC structure 11 and the projection area 21 are provided with gaps H 3 and H 4 in the first direction X and the second direction Y, respectively.
  • a certain space is reserved to avoid affecting the transceiver performance of the antenna 2 .
  • the antenna In the traditional terminal, the antenna is placed under the back cover.
  • the radiation field of the antenna encounters the back cover, surface waves will be generated on the back cover, resulting in large energy loss of the radiation field and damage to the radiation pattern, especially For antennas operating in the millimeter wave frequency range, this energy loss is more obvious, resulting in damage to the antenna's transceiver performance.
  • the multi-frequency AMC structure 11 is fixedly connected to the non-metallic plate body 12 , because the radiated field of the antenna 2 will induce a surface wave on the non-metallic plate body 12 during the propagation process.
  • the multi-frequency AMC structure 11 is arranged on the surface 122, which can hinder the propagation of the surface wave on the non-metallic plate body 12; on this basis, an opening 13 is further arranged in the middle of the multi-frequency AMC structure 11, so as not to restrict the radiation of the antenna 2
  • the propagation of the field in the direction perpendicular to the non-metallic plate body 12 can also hinder the propagation of the surface wave on the non-metallic plate body 12, reduce the energy loss of the radiation field, improve the radiation field pattern, and improve the transceiver performance of the antenna 2.
  • the high-impedance surface formed by the multi-frequency AMC structure 11 has the characteristic that the reflection phase coefficient is positive, which can improve the concentration ability of the radiation pattern of the antenna 2 .
  • FIG. 4 is a schematic diagram of an implementation manner of the multi-frequency AMC structure 11 shown in FIG. 3 .
  • the multi-frequency AMC structure 11 includes a plurality of structural units, the plurality of structural units are arranged periodically, each structural unit is a center-symmetric structure, and the symmetry centers of the plurality of structural units are aligned along the first direction X and the second direction Y Alignment and arrangement of multiple structural units can reduce the manufacturing difficulty of the multi-frequency AMC structure 11 and improve production efficiency.
  • the structural unit includes a first AMC structural unit 111 and a second AMC structural unit 112 .
  • the resonant frequency of the first AMC structural unit 111 is the first resonant frequency
  • the resonant frequency of the second AMC structural unit 112 is the second resonant frequency
  • the first resonant frequency is lower than the second resonant frequency
  • the structural elements of the multi-frequency AMC structure 11 have a first resonant frequency and a second resonant frequency.
  • the multi-frequency AMC structure 11 has at least two resonant frequencies, and the multiple resonant frequencies at least partially overlap with the working frequency band of the antenna, so that the arrangement can meet diverse usage requirements and has a wider application range.
  • the multi-frequency AMC structure 11 and the projection area 21 of the antenna 2 are respectively provided with gaps H 3 and H 4 in the first direction X and the second direction Y, and the sizes of H 3 and H 4 are In the range of 0 to 0.7 times the equivalent medium wavelength corresponding to the first resonance frequency.
  • the equivalent medium wavelength ⁇ eq is related to the equivalent medium coefficient ⁇ eq .
  • the equivalent medium coefficient ⁇ eq is a corresponding relationship between the two as follows:
  • ⁇ 0 is the wavelength of the electromagnetic wave in vacuum.
  • the plurality of first AMC structural units 111 and the plurality of second AMC structural units 112 are staggered one by one, that is, in the first direction X and the second direction Y, the The adjacent structural units are the second AMC structural units 112 , and the adjacent structural units of each second AMC structural unit 112 are the first AMC structural units 111 .
  • the plurality of first AMC structural units 111 and the plurality of second AMC structural units 112 may also have other staggered arrangements.
  • a plurality of first AMC structural units 111 and a plurality of second AMC structural units 112 are arranged in a staggered manner. This uniform arrangement makes the influence of the multi-frequency AMC structure 11 on the antenna radiation field uniform, and avoids the influence of the radiation field in a specific radiation direction.
  • the electromagnetic waves have adverse effects, thereby affecting the radiation pattern of the antenna 2 .
  • the equivalent dielectric coefficient ⁇ eq is related to the dielectric thickness t n of each layer and the dielectric constant ⁇ n of each layer, and the corresponding relationship is as follows:
  • the non-metallic plate body 12 when the thickness of the non-metallic plate body 12 is 0.5 mm, its dielectric coefficient ⁇ Glass is 6.6, and when the distance H2 between the non-metallic plate body 12 and the grounding member 3 in the third direction Z is 0.9 mm, the non-metallic plate body 12 The thickness of the air between 12 and the grounding member 3 is 0.9 mm, and the dielectric coefficient ⁇ 0 of the air is 1. Substituting the above specific values into the formula of the equivalent medium coefficient ⁇ eq , the value of the equivalent medium coefficient ⁇ eq can be obtained as 1.36.
  • the multi-frequency AMC structure 11 includes two kinds of structural units, so the resonant frequency range of the multi-frequency AMC structure 11 can be adjusted by adjusting the resonant frequency of the first AMC structural unit 111 and/or the second AMC structural unit 112 , it is easier to control the resonant frequency, so that it can match the different operating frequencies of the antenna to meet the increasingly diverse needs of consumers.
  • the first AMC structural unit 111 includes an inner patch 1112 and an outer frame-shaped patch 1111, and the outer frame-shaped patch 1111 is arranged around the inner patch 1112, that is, the first AMC structural unit 111 is a double ring (dual square ring, DSR) structure for realizing the first resonant frequency lower than the second resonant frequency.
  • the outer frame patch 1111 in the DSR structure lengthens the current path so that its resonant frequency is relatively low.
  • the second AMC structural unit 112 includes a first linear patch 1121 and a second linear patch 1122 , and the first linear patch 1121 and the second linear patch 1122 are arranged in a cross and perpendicular to each other.
  • the second AMC structure unit 112 is a cross structure for realizing the second resonance frequency.
  • the four sides of the outer frame-shaped patch 1111 of the first AMC structural unit 111 and one of the linear patches of the second AMC structural unit 112 (The first linear patch 1121 or the second linear patch 1122) is adjacent, and the four sides of the outer frame patch 1111 are perpendicular to the extending direction of the adjacent four linear patches.
  • the extension direction is the direction of the straight line where the linear patch is located.
  • the extension direction is from the midpoint of the short side of one end of the linear patch to the other end The direction of the midpoint of the short side.
  • the cross-polarization direction has the characteristics of low energy, which can reduce the energy between the first AMC structural unit 111 and the adjacent second AMC structural unit 112 .
  • the coupling effect between the two AMC structural units 112 improves the isolation between the two. Therefore, the first resonant frequency is close to the second resonant frequency, that is, the ratio between the second resonant frequency and the first resonant frequency is low, The ratio can be between 1.2 and 1.3.
  • the degree of isolation between the first AMC structural unit 111 and the adjacent second AMC structural unit 112 is high, and the resonant frequency of one is less affected when the resonant frequency of one is adjusted, so the first AMC can be adjusted
  • the resonant frequency of the structural unit 111 or the second AMC structural unit 112 is individually adjusted, thereby reducing the difficulty of adjusting the resonant frequency of the multi-frequency AMC structure 11 .
  • the inner patch 1112 of the first AMC structural unit 111 may be a square patch
  • the outer frame-shaped patch 1111 may be a square-shaped patch, so that the multi-frequency AMC structure 11 matches the outer shape of the casing, Easy to design and manufacture. It can be understood that the dimensions in the first direction X and the second direction Y of the inner patch 1112 may be different, and the dimensions in the first direction X and the second direction Y of the outer frame patch 1111 may also be different. This is not strictly limited in the application examples.
  • the first linear patch 1121 is linear
  • the second linear patch 1122 is linear
  • the first linear patch 1121 and the second linear patch 1122 are linear, which is easy to process and manufacture, and improves production efficiency.
  • one protrusion may be provided on the linear patches 1121 and 1122 .
  • a plurality of protrusions may be provided on the linear patch, and different protrusions may be provided on the linear patch, which are not strictly limited in this embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of the first AMC structural unit 111 and the second AMC structural unit 112 shown in FIG. 4 .
  • the size of the outer frame-shaped patch 1111 in the first direction X is l 1
  • the size in the second direction Y is equal to l 1
  • the outer frame-shaped patch 1111 is arranged around the inner patch 1112
  • the inner The size of the patch 1112 in the first direction X is l 11
  • the size in the second direction Y is equal to l 11
  • the gap between the inner patch 1112 and the outer frame-shaped patch 1111 in the first direction X is S
  • the The gap in the second direction Y is equal to S.
  • the dimension of the second AMC structure unit 112 in the first direction X is l 2
  • the dimension in the second direction Y is equal to l 2
  • the actual length of the first linear patch 1121 of the second AMC structural unit 112 is L, where L is the length extending from the midpoint of one short side of the linear patch to the midpoint of the other short side, and the actual length of the second linear patch 1122 The length is equal to L.
  • the first AMC structural unit 111 and the second AMC structural unit 112 have a distance in the first direction X, the distance is h, and there is also a distance in the second direction Y, and the distance in the second direction Y is equal to h.
  • the multiple first AMC structural units 111 have the same structure and the same size, and the multiple second AMC structural units 111 have the same structure and the same size.
  • the dimension l 1 is in the range of 0.15 times to 0.4 times the first wavelength
  • the first wavelength is the equivalent medium wavelength corresponding to the first resonant frequency, for example, the dimension l 1 is 0.23 times the first wavelength wavelength.
  • the dimension l 11 is in the range of 0.1 to 0.3 times the first wavelength, eg, the dimension l 11 is 0.17 times the first wavelength.
  • h is 0.1 mm.
  • dimension 12 may be equal to dimension 11 .
  • dimension l 1 and dimension l 2 are 2.3mm.
  • FIG. 6A is the reflection coefficient phase curve of the multi-frequency AMC structure 11 shown in FIG. 4 in a possible implementation manner
  • FIG. 6B is the multi-frequency AMC structure 11 shown in FIG. 4 in a Surface impedance curve in one possible implementation.
  • Fig. 6A there are three intersection points between the reflection coefficient phase curve and the horizontal axis where the reflection coefficient phase is 0°, representing the first resonant frequency of 25 GHz, the junction point of the two modes, 27 GHz, and the second resonant frequency of 30 GHz; as shown in Fig. 6B It is shown that on the surface impedance curve, the surface impedance at the frequency of 25GHz and 30GHz is the peak value, and the surface impedance at the frequency of 27GHz is 0.
  • the reflection phase curve of the multi-frequency AMC structure 11 has two resonant frequencies, wherein the first resonant frequency is 25 GHz and the second resonant frequency is 30 GHz, at the first resonant frequency and the second resonant frequency At the frequency, the multi-frequency AMC structure 11 exhibits ideal magnetic conductor characteristics, that is, the reflection coefficient phase is 0°, the impedance is high (above 1000 ⁇ ), and the magnetic field of the reflected wave and the incident wave is opposite.
  • the surface wave induced by the radiation field of the antenna 2 at the non-metallic plate body 12 is an incident wave, and the incident wave is acted by the multi-frequency AMC structure 11 to generate a reflected wave opposite to the propagation direction of the incident wave.
  • the reflection coefficient phase refers to the reflected wave.
  • the phase difference between the wave electric field and the incident wave electric field, the reflection coefficient phase is 0°, indicating that the electric field propagation direction of the reflected wave and the incident wave is the same, and because the propagation direction of the reflected wave and the incident wave are opposite, according to the electric field, the magnetic field and the right hand of the propagation direction. It can be known that the magnetic field of the reflected wave and the incident wave is opposite, which cancels the incident wave and limits the propagation of the incident wave on the non-metallic plate body 12 .
  • the AMC structure 11 exhibits the characteristics of an ideal electrical conductor, that is, the impedance is 0, and the reflection coefficient phase is 180°, which can also play a role in suppressing the propagation of surface waves.
  • FIGS. 7A , 7B and 7C are the electric fields of a possible implementation of the multi-frequency AMC structure 11 shown in FIG. 4 at frequencies of 25 GHz, 27 GHz and 30 GHz, respectively. Distribution.
  • the light-colored position in the figure is the position where resonance occurs
  • the circled 7A-1 in FIG. 7A indicates that the first AMC structural unit 111 is resonating at 25 GHz
  • the circled 7C-1 in FIG. 7C indicates 30 GHz.
  • the multi-frequency AMC structure 11 can suppress the propagation of surface waves in the operating frequency band (24.25GHz to 29.5GHz) of the antenna 2 .
  • FIGS. 8A , 8B, 8C and 8D are respectively a possible implementation of the antenna 2 shown in FIG. 1 and the conventional solution at frequencies of 24.25GHz, 25GHz, 27GHz and 29.5GHz.
  • FIG. 8A is a full view of the conventional scheme at a frequency of 24.25 GHz
  • b 2 of FIG. 8B is a full view of the conventional scheme at a frequency of 25 GHz
  • c 2 of FIG. 8C is a conventional scheme at a frequency of 25 GHz
  • d 2 in FIG. 8D is a full view of the conventional solution at a frequency of 29.5 GHz
  • the figure illustrates the antenna 2 ′ and the back cover 12 ′ of the conventional solution, and the antenna 2 ′ is located on the back cover 12 ′ Below, the electromagnetic waves of the antenna 2' form obvious surface waves on the back cover 12'.
  • FIG. 8A is a full view of a possible implementation of the antenna 2 shown in FIG. 1 when the frequency is 24.25 GHz
  • b 1 in FIG. 8B is a possible implementation of the antenna 2 shown in FIG. 1
  • c 1 of FIG. 8C is a full view of a possible implementation of the antenna 2 shown in FIG. 1 at a frequency of 27 GHz
  • d 1 of FIG. A full view of a possible implementation of the antenna 2 at a frequency of 29.5 GHz is shown.
  • the dashed box represents the location of the multi-frequency AMC structure 11. It can be seen from the comparison with Fig. a 2 , Fig. b 2 , Fig. c 2 and Fig. d 2 , after the multi-frequency AMC structure 11 is installed, the range of electromagnetic waves spreading around the antenna 2 becomes smaller. Therefore, the multi-frequency AMC structure 11 has a good ability to suppress surface waves within the working frequency band of the antenna 2 .
  • FIGS. 9A, 9B, 9C, 9D, 10A, 10B, 10C, and 10D are XZ plane cross-sectional views of the full views shown in FIGS. 8A to 8D, respectively.
  • 10A to 10D are YZ plane cross-sectional views of the full views shown in FIGS. 8A to 8D , respectively.
  • Fig. 11A shows the vertical polarization (V-pol of a possible implementation of the antenna 2 shown in Fig. 1 and the conventional solution at frequencies of 24.25GHz, 25GHz, 27GHz and 29.5GHz ) radiation pattern in the XZ plane synthesis results comparison chart
  • Table 1.1 is the vertical polarization radiation pattern benefit comparison table. Define the effective 3dB bandwidth (beamwidth) when the combined field pattern gain reaches 6dB.
  • FIG. 11B shows the vertical polarization radiation pattern of a possible implementation of the antenna 2 shown in FIG. Comparison chart of ripple improvement effect in YZ plane. Among them, the synthetic field-type ripple in the YZ plane is improved by 1.5-2dB in the frequency band.
  • FIG. 11C shows the horizontal polarization (H-pol) of a possible implementation of the antenna 2 shown in FIG. ) radiation pattern in the XZ plane synthesis results comparison chart
  • Table 1.2 is the horizontal polarization radiation pattern benefit comparison table.
  • the effective 3dB bandwidths of 24.25GHz, 25GHz, 27GHz and 29.5GHz are increased from 49°, 46.4°, 53.7°, 61° to 91.6°, 86°, 58.1°, 98°.
  • Fig. 11D shows the horizontally polarized radiation pattern at frequencies of 24.25GHz, 25GHz, 27GHz, and 29.5GHz between a possible implementation of the antenna 2 shown in Fig. 1 and the conventional solution.
  • Table 1.3 shows the vertical and horizontal polarization radiation patterns in the XY plane of a possible implementation of the antenna 2 shown in Figure 1 and the traditional scheme at frequencies of 24.25GHz, 25GHz, 27GHz and 29.5GHz.
  • Income comparison table Since the high-resistance surface formed by the multi-frequency AMC structure 11 has in-phase reflection characteristics, compared with the conventional solution, the arrangement of the multi-frequency AMC structure 11 increases the peak gain of the radiation pattern by about 1.5 to 2.5 dB.
  • FIG. 12 is a reflection coefficient phase curve when the gap S is 0.1 mm, 0.2 mm and 0.3 mm for a possible implementation of the first AMC structural unit 111 shown in FIG. 5 .
  • the resonant frequency of the first AMC structural unit 111 is determined by the coupling amount between the inner patch 1112 and the outer frame-shaped patch 1111, and the coupling amount is related to the gap S between the inner patch 1112 and the outer frame-shaped patch 1111, as shown in Fig. It can be seen in 12 that the smaller the gap S, the lower the resonant frequency. Therefore, the resonance frequency of the first AMC structural unit 111 can be adjusted by controlling the size of the gap between the inner patch 1112 and the outer frame patch 1111 .
  • FIGS. 13A , 13B and 13C are respectively a possible implementation of the first AMC structural unit 111 shown in FIG. 5 when the gap S is 0.1 mm, 0.2 mm and 0.3 mm. electric field distribution diagram. As can be seen from FIGS. 13A to 13C , as the gap S increases, the coupling amount also increases.
  • the size of the gap is in the range of 0.005 times to 0.04 times the first wavelength, eg, the gap S is 0.01 times the first wavelength.
  • FIG. 14 is a reflection coefficient phase curve when the actual length L is 2.7 mm, 3.25 mm and 3.75 mm for a possible implementation of the second AMC structural unit 112 shown in FIG. 5 . It can be seen from FIG. 14 that the longer the actual length L is, the lower the resonant frequency of the second AMC structural unit 112 is.
  • the resonant frequency of the second AMC structural unit 112 can be adjusted by controlling the actual length L of the linear patches 1121 and 1122 of the second AMC structural unit 112 .
  • the actual length L of the linear patches 1121 and 1122 can be changed by increasing or decreasing the number of protrusions and/or the shape and size of the protrusions.
  • the size of the actual length L is in the range of 0.3 times to 0.6 times the first wavelength, eg, the actual length L is 0.45 times the first wavelength.
  • the resonant frequency range of the multi-frequency AMC structure 11 can be adjusted by adjusting the resonant frequency of the first AMC structural unit 111 and/or the second AMC structural unit 112 , and it is easier to adjust the resonant frequency, so that it can be matched with the antenna 2 different working frequencies to meet the increasingly diverse needs of consumers.
  • FIG. 15A is an electric field distribution diagram of the multi-frequency AMC structure 11 shown in FIG. 4 .
  • the multi-frequency AMC structure 11 shown in FIG. 4 is composed of DRS+Cross structural units.
  • the part circled by 15A-1 in FIG. 15A represents the electric field coupling amount between the first AMC structure unit 111 and the second AMC structure unit 112 in the second direction Y, and the part circled by 15A-2 represents the first direction
  • the electric field coupling amount between the first AMC structural unit 111 and the second AMC structural unit 112 on X, the brighter area represents the larger coupling amount. It can be seen from FIG. 15A that the electric field coupling amount in the second direction Y circled by 15A-1 is greater than the electric field coupling amount in the first direction X circled by 15A-2.
  • FIG. 15B is an electric field distribution diagram of a possible implementation manner of the multi-frequency AMC structure 11 provided by the embodiment of the present application.
  • the multi-frequency AMC structure 11 in this embodiment may include some features of the multi-frequency AMC structure 11 in the foregoing embodiment, and the same parts will not be repeated, and the differences between the two will be mainly described below.
  • the first AMC structural unit 111 and the second AMC structural unit 112 both adopt a DSR structure, that is, the multi-frequency AMC structure 11 is composed of dual DSR structural units, and the first AMC structure
  • the gap S between the outer frame-shaped patch 1111 and the inner patch 1112 of the unit 111 is smaller than that of the second AMC structure unit 112 .
  • the part circled by 15B-1 in FIG. 15B represents the electric field coupling amount between the first AMC structure unit 111 and the second AMC structure unit 112 in the second direction Y
  • the part circled by 15B-2 represents the first direction X
  • the broadside radiation antenna of the antenna 2 is placed under the opening 13 in the middle of the multi-frequency AMC structure 11 , and the electric field direction of the electromagnetic wave emitted by the antenna 2 is the second direction Y, and the second direction Y is required The amount of electric field coupling in the first direction X, while avoiding the electric field coupling in the first direction X.
  • the multi-frequency AMC structure 11 composed of DRS+Cross structural units has small electric field coupling in the first direction X, and it is easy to adjust the resonant frequency range of the multi-frequency AMC structure 11 by adjusting the resonant frequencies of the two structural units respectively. It is easy to integrate with the antenna 2 into the terminal 100 .
  • FIG. 16A is the reflection coefficient phase curve of the multi-frequency AMC structure 11 of the DRS+Cross structure shown in FIG. 15A
  • the part framed by 16A is the first AMC structure unit 111 shown in FIG. 15A
  • 16B is the reflection coefficient phase curve of the multi-frequency AMC structure 11 of the dual DSR structure shown in FIG. 15B
  • the part framed by 16B is the response bandwidth of the first AMC structure unit 111 shown in FIG. 15B . Comparing the parts framed by 6A and 16A, it can be seen that the response bandwidth of the multi-frequency AMC structure 11 of the DRS+Cross structure is 0.8 GHz less than that of the multi-frequency AMC structure 11 of the dual DSR structure.
  • the resonance of the first AMC structural unit 111 of the multi-frequency AMC structure 11 of the dual DSR structure is easily affected by the second AMC structural unit 112 , so that the response bandwidth of the first AMC structural unit 111 is compressed. That is, if the required first resonant frequency is close to the second resonant frequency, when the resonant frequency of the second AMC structural unit 112 is adjusted, the resonant frequency of the first AMC structural unit 111 will also be affected, which is difficult to achieve. The range of the desired second resonant frequency.
  • the multi-frequency AMC structure 11 of the DRS+Cross structure has high isolation between the first AMC structure unit 111 and the second AMC structure unit 112 in the first direction X. When adjusting the resonant frequency of the second AMC structure unit 112, the The influence caused by the resonant frequency of the first AMC structural unit 111 is small, and a similar resonant frequency can be obtained.
  • FIG. 17 is a schematic structural diagram of a possible arrangement of the first AMC structural unit 111 and the second AMC structural unit 112 shown in FIG. 4 .
  • the multi-frequency AMC structure 11 in this embodiment may include some features of the multi-frequency AMC structure 11 in the embodiment shown in FIG. 5 , and the same parts will not be repeated, and the differences between the two will be mainly described below.
  • each side of the inner patch 1112 of the first AMC structural unit 111 is arranged in parallel with the corresponding side of the outer frame-shaped patch 1111 , and the distance between each side of the outer frame-shaped patch 1111 and the first direction X form an angle.
  • the included angle is in the range of 0 to 90°.
  • FIG. 18 is a schematic structural diagram of a possible arrangement of the first AMC structural unit 111 and the second AMC structural unit 112 shown in FIG. 4 .
  • the multi-frequency AMC structure 11 in this embodiment may include some features of the multi-frequency AMC structure 11 in the embodiment shown in FIG. 5 , and the same parts will not be repeated, and the differences between the two will be mainly described below.
  • An included angle is formed between the extending direction of the linear patches 1121 and 1122 of the second AMC structural unit 112 and the first direction X. In some embodiments, the included angle is in the range of 0 to 90°.
  • FIG. 19 is a schematic structural diagram of a possible arrangement of the first AMC structural unit 111 and the second AMC structural unit 112 shown in FIG. 4 .
  • the multi-frequency AMC structure 11 in this embodiment may include some features of the multi-frequency AMC structure 11 in the embodiment shown in FIG. 5 , and the same parts will not be repeated, and the differences between the two will be mainly described below.
  • each side of the inner patch 1112 of the first AMC structural unit 111 is arranged in parallel with the corresponding side of the outer frame-shaped patch 1111 , and each side of the outer frame-shaped patch 1111 is arranged in the first direction X with a An included angle is formed between the extending direction of the linear patches 1121 and 1122 of the second AMC structural unit 112 and the first direction X.
  • the included angle is in the range of 0 to 90°.
  • FIG. 20 is a schematic structural diagram of a possible implementation manner of the first AMC structural unit 111 shown in FIG. 4 .
  • the multi-frequency AMC structure 11 in this embodiment may include some features of the multi-frequency AMC structure 11 in the embodiment shown in FIG. 5 , and the same parts will not be repeated, and the differences between the two will be mainly described below.
  • the inner patch 1112 of the first AMC structural unit 111 may be a square patch.
  • FIG. 21 is a schematic structural diagram of a possible implementation manner of the first AMC structural unit 111 shown in FIG. 4 .
  • the multi-frequency AMC structure 11 in the present embodiment may include some features of the multi-frequency AMC structure 11 in the embodiment shown in FIG.
  • the first AMC structural unit 111 is a square patch, and the square patch has a Jerusalem cross-shaped gap.
  • the void in the shape of the Jerusalem cross is a centrally symmetrical figure.
  • the "cross"-shaped space in the space of the cross in Jerusalem is a straight edge.
  • the "cross"-shaped gap in the Jerusalem cross-shaped gap can also be a curved edge.
  • FIG. 22 is a schematic structural diagram of a possible implementation manner of the first AMC structural unit 111 shown in FIG. 4 .
  • the multi-frequency AMC structure 11 in the present embodiment may include some features of the multi-frequency AMC structure 11 in the embodiment shown in FIG.
  • the first AMC structural unit 111 is a square patch, and the square patch has a swastika-shaped gap. In some other embodiments, the first AMC structural unit 111 is a square patch, and the square patch has gaps in an inverse swastika-shaped structure.
  • FIG. 23 is a schematic structural diagram of a possible implementation manner of the second AMC structural unit 112 shown in FIG. 4 .
  • the multi-frequency AMC structure 11 in the present embodiment may include some features of the multi-frequency AMC structure 11 in the embodiment shown in FIG.
  • the second AMC structural unit 112 is a Jerusalem cross-shaped patch.
  • the void in the shape of the Jerusalem cross is a centrally symmetrical figure.
  • the "cross"-shaped space in the space of the cross in Jerusalem is a straight edge.
  • the "cross"-shaped gap in the Jerusalem cross-shaped gap can also be a curved edge.
  • FIG. 24 is a schematic structural diagram of a possible implementation manner of the second AMC structural unit shown in FIG. 4 .
  • the multi-frequency AMC structure 11 in the present embodiment may include some features of the multi-frequency AMC structure 11 in the embodiment shown in FIG.
  • the second AMC structural unit 112 is composed of a plurality of patches, each patch has a cross structure, and the multiple patches are arranged in a center-symmetric manner.
  • the second AMC structural unit 112 is composed of four patches, each patch is shaped like a Jerusalem cross.
  • the "cross"-shaped space in the space of the cross in Jerusalem is a curved edge.
  • the "cross"-shaped space in the space of the Jerusalem cross may also be a straight edge.
  • FIG. 25 is the reflection coefficient phase curve of the multi-frequency AMC structure 11 composed of the first AMC structure unit 111 and the second AMC structure unit 112 shown in FIG. 24.
  • the corresponding resonant frequencies are 26.6GHz, 30.8GHz and 39.3GHz.
  • the first resonant frequency of the first AMC structural unit 111 is 26.6 GHz
  • the coupling of the first AMC structural unit 111 and the second AMC structural unit 112 generates a third resonant frequency of 30.8 GHz
  • the second resonant frequency of the second AMC structural unit 112 is 39.3GHz.
  • This multi-frequency AMC structure 11 has three resonant frequencies, which can be used in a variety of usage scenarios and meet the usage requirements of consumers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Aerials With Secondary Devices (AREA)
  • Telephone Set Structure (AREA)
  • Support Of Aerials (AREA)

Abstract

本申请公开一种基于多频AMC结构的后盖及终端。终端包括后盖和天线,后盖包括非金属板体和多频AMC结构,多频AMC结构固定于非金属板体的内表面,多频AMC结构的中部具有对应天线尺寸的开口,天线位于后盖的内侧且正对开口设置。上述多频AMC结构能够阻碍表面波在后盖上的传播,以改善天线的辐射场型并提高其收发性能。

Description

后盖及终端
本申请要求于2020年09月30日提交中国专利局、申请号为202022224032.3、申请名称为“后盖及终端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通讯设备领域,尤其涉及一种后盖及终端。
背景技术
在传统的终端产品中,天线置于后盖下方,天线的辐射场在遇到后盖时,会在后盖上产生表面波,导致辐射场能量损耗较大以及辐射场型受损,特别是对于工作在毫米波频段范围内的天线,这种能量损耗更加明显,导致天线的收发性能受损。
发明内容
本申请的目的在于提供了一种后盖及终端。后盖的内侧面设有多频AMC(artificial magnetic conductor,人工磁导体)结构,用于阻碍电磁波在后盖上的传播,以改善天线的辐射场型并提高其收发性能。
第一方面,本申请提供一种后盖,应用于终端。终端包括后盖和天线,后盖包括非金属板体和多频AMC结构,多频AMC结构固定于非金属板体的内表面,多频AMC结构的中部具有开口,开口用于允许电磁波信号沿垂直于非金属板体的方向穿过后盖,多频AMC结构用于阻碍电磁波在非金属板体上的传播。
多频AMC结构与非金属板体固定连接,因天线辐射场在传播的过程中会在非金属板体上感应产生表面波,在非金属板体内表面设置多频AMC结构,能够阻碍表面波在非金属板体上的传播;在此基础上,进一步地在多频AMC结构的中部设置开口,这样既不会限制天线辐射场沿垂直于非金属板体的方向上的传播,又能够阻碍表面波在非金属板体上的传播,减少辐射场的能量损耗,并改善了辐射场型,提高天线的收发性能,此外,多频AMC结构形成的高阻抗表面具有反射相位系数为正的特性,能够提升天线辐射场型的集中能力。
一种可能的实现方式中,多频AMC结构具有至少两个谐振频率,多频AMC结构的谐振频率与天线的工作频带至少部分重叠。多频AMC结构具有至少两个谐振频率,能够满足多样化的使用需求。
一种可能的实现方式中,多频AMC结构包括多个结构单元,结构单元包括第一AMC结构单元和第二AMC结构单元,第一AMC结构单元的谐振频率为第一谐振频率,第二AMC结构单元的谐振频率为第二谐振频率,第一谐振频率小于第二谐振频率。多频AMC结构包括两种结构单元,因此多频AMC结构的谐振频率范围可以通过调整第一AMC结构单元和/或第二AMC结构单元的谐振频率来调整,调控谐振频率更加容易,从而可以配合天线的不同工作频率,满足消费者越来越多样化的使用需求,并易于与天线整合导入终端产品中。
一种可能的实现方式中,多个结构单元呈周期性排布,每个结构单元均为中心对称结构,多个结构单元的对称中心沿第一方向对齐排列且沿第二方向对齐排列,第二方向垂直于第一方向。多个结构单元对齐排列可以降低多频AMC结构的制作难度,提高生产效率。
一种可能的实现方式中,第一AMC结构单元和第二AMC结构单元在第一方向上存在间距,在第二方向上也存在间距,在第二方向上的间距等于在第一方向上的间距。这种均匀的排布方式使得多频AMC结构对天线辐射场的影响均匀,避免对特定辐射方向上的电磁波产生不良影响,进而影响天线的辐射场型。
一种可能的实现方式中,第一AMC结构单元与第二AMC结构单元交错排列,在第一方向和第二方向上,每个第一AMC结构单元的相邻结构单元均为第二AMC结构单元,每个第二AMC结构单元的相邻结构单元均为第一AMC结构单元。多个结构单元以相同的间距一一交错排列,进一步的,这种均匀的排布方式使得多频AMC结构在其所在范围内对天线辐射场的影响一致,避免对特定辐射方向上的电磁波产生不良影响,进而影响天线的辐射场型。
一种可能的实现方式中,第一AMC结构单元包括内部贴片和外部框形贴片,外部框形贴片环绕内部贴片设置,内部贴片与外部框形贴片之间存在间隙。由于第一AMC结构单元的谐振频率由内部贴片与外部框形贴片的耦合量决定,而耦合量与内部贴片与外部框形间隙有关,并且间隙S越小,谐振频率越低。因此,第一AMC结构单元的谐振频率可以通过控制内部贴片与外部框形贴片之间的间隙尺寸进行调整。
一种可能的实现方式中,间隙在0.005倍至0.04倍的第一波长的范围内,第一波长为第一谐振频率所对应的等效介质波长,使得第一AMC结构单元的谐振频率位于毫米波的频率范围内。
一种可能的实现方式中,外部框形贴片的侧边尺寸在0.15倍至0.4倍的第一波长的范围内,第一波长为第一谐振频率所对应的等效介质波长,内部贴片的侧边尺寸在0.1倍至0.3倍的所述第一波长的范围内。第一AMC结构单元的频率与外部框形贴片和内部贴片尺寸有关,通过调整尺寸可以获得不同的谐振频率。
一种可能的实现方式中,第一AMC结构单元的内部贴片为正方形贴片,外部框形贴片为方框形贴片。这样设置,使得多频AMC结构与壳体外形相匹配,易于设计和加工制作。
一种可能的实现方式中,第二AMC结构单元包括第一线形贴片和第二线形贴片,第一线形贴片和第二线形贴片交叉排布,且互相垂直。第一线形贴片和第二线形贴片互相垂直,形成交叉极化,降低与第一AMC结构单元之间的耦合量。
一种可能的实现方式中,第一线形贴片呈直线形,第二线形贴片呈直线形。第一线形贴片和第二线形贴片呈直线形,易于加工制作,提高生产效率。
一种可能的实现方式中,第一线形贴片包括一个或多个凸起,第二线形贴片包括一个或多个凸起。第二AMC结构单元的谐振频率可以通过控制第二AMC结构单元的第一线形贴片和第二线形贴片的实际长度进行调整。通过增减第一线形贴片和第二线形贴片的凸起个数和/或凸起的形状和尺寸可以改变第一线形贴片和第二线形贴片的实际长度,进而达到调整第二AMC结构单元的谐振频率的目的。
一种可能的实现方式中,第一线形贴片和第二线形贴片的实际长度在0.3倍至1倍的第一谐振频率所对应的等效介质波长的范围内,使得第二AMC结构单元的谐振频率位于毫米波的频率范围。
一种可能的实现方式中,第一AMC结构单元包括第一内部贴片和第一外部框形贴片,第一外部框形贴片环绕第一内部贴片设置,第一内部贴片与第一外部框形贴片之间存在第一间隙,第二AMC结构单元包括第二内部贴片和第二外部框形贴片,第二外部框形贴片环绕第二内部贴片设置,第二内部贴片与第二外部框形贴片之间存在第二间隙,第一间隙小于第二间隙。第一AMC结构单元和第二AMC结构单元均采用DSR结构,这种多频AMC结构 的第一AMC结构单元的共振容易受第二AMC结构单元影响,使得第一AMC结构单元的响应频宽受到压缩。
一种可能的实现方式中,第一AMC结构单元包括内部贴片和外部框形贴片,外部框形贴片环绕内部贴片设置,内部贴片与外部框形贴片之间存在间隙,内部贴片的每条侧边与外部框形贴片的对应的侧边平行设置,内部正贴片的每条侧边与第一方向之间形成夹角,夹角在0至90°的范围内。
一种可能的实现方式中,第二AMC结构单元包括第一线形贴片和第二线形贴片,第一线形贴片和第二线形贴片交叉排布,且互相垂直,第一线形贴片的延伸方向与第一方向之间形成夹角,夹角在0至90°的范围内。
一种可能的实现方式中,第一AMC结构单元为在方形贴片上形成耶路撒冷十字架形的空隙;或者,第一AMC结构单元为在方形贴片上形成卍字形的空隙;或者,第二AMC结构单元为耶路撒冷十字架形的贴片。
一种可能的实现方式中,第一AMC结构单元包括内部贴片和外部框形贴片,外部框形贴片环绕内部贴片设置,内部贴片与外部框形贴片之间存在间隙,第二AMC结构单元由多个耶路撒冷十字架形的贴片组成,第一AMC结构单元和第二AMC结构单元耦合产成第三谐振频率。上述多种多频AMC结构均可以用于阻碍表面波在后盖上传播,改善天线辐射场型。
一种可能的实现方式中,非金属板体的介电常数在2至10的范围内,介质损耗参数小于0.03,厚度在0.3mm至1.4mm的范围内。终端的后盖的主体结构为非金属板体,能够有效降低对天线辐射能量的减弱。可以理解地,对于工作在毫米波频段范围内的天线来说,因其波长在1至10mm的范围内,衍射能力弱,绕过物体的能力差,更易受到后盖等构件的阻碍,损害其辐射场型;又因毫米波天线辐射场频率高,金属对毫米波天线辐射场的屏蔽作用更加明显,使用金属会显著降低毫米波天线辐射场的能量。因此,采用非金属材料的非金属板体作为后盖的主体结构,能够有效避免对天线辐射场能量的减弱,提高天线的收发性能。
第二方面,本申请提供一种终端,包括天线和后盖,天线位于后盖的内侧,天线正对后盖的多频AMC结构的开口设置。换言之,天线于后盖上的投影落入开口的范围内,天线位于开口的正下方。在本实施例中,多频AMC结构与非金属板体固定连接,因天线辐射场在传播的过程中会在非金属板体上感应产生表面波,在非金属板体内表面设置多频AMC结构,能够阻碍表面波在非金属板体上的传播;在此基础上,进一步地在多频AMC结构的中部设置开口,这样既不会限制天线辐射场沿垂直于非金属板体的方向上的传播,又能够阻碍表面波在非金属板体上的传播,减少辐射场的能量损耗,并改善了辐射场型,提高天线的收发性能,此外,多频AMC结构形成的高阻抗表面具有反射相位系数为正的特性,能够提升天线辐射场型的集中能力。
一种可能的实现方式中,终端还包括接地件,接地件位于后盖的内侧,天线固定于接地件朝向后盖的一侧。接地件用于反射天线发射的朝向接地件方向的电磁波,避免对设置在接地件背向天线一侧的电子器件或模组造成电磁干扰。
一种可能的实现方式中,在平行于多频AMC结构内表面的平面内,天线在第一方向和第二方向上与多频AMC结构之间存在距离,距离在0至0.7倍的第一波长的范围内,第一波长为第一谐振频率所对应的等效介质波长。多频AMC结构与天线之间存在一定距离,既能够有效阻止表面波在后盖上的传播,又为天线辐射场在沿垂直于非金属板体的方向上的传播保留了一定的空间,避免对天线的收发性能造成影响。
一种可能的实现方式中,天线的工作频段范围为n257+n258、n257+n260、n258+n260或 n257+n258+n260。也即,天线工作在毫米波的频段范围内,能够满足快速发展的通信领域的技术要求。
附图说明
图1是本申请提供的一种终端在一些实施例中的结构示意图。
图2是图1所示终端沿A-A线处剖开的部分结构的截面示意图。
图3是图1所示后盖的结构示意图。
图4是图3所示多频AMC结构的一种实施方式的示意图。
图5是图4所示第一AMC结构单元和第二AMC结构单元的结构示意图。
图6A是图4所示多频AMC结构在一种可能的实现方式中的反射系数相位曲线。
图6B是图4所示多频AMC结构在一种可能的实现方式中的面阻抗曲线。
图7A是图4所示多频AMC结构的一种可能的实现方式在频率为25GHz时的电场分布图。
图7B是图4所示多频AMC结构的一种可能的实现方式在频率为27GHz时的电场分布图。
图7C是图4所示多频AMC结构的一种可能的实现方式在频率为30GHz时的电场分布图。
图8A是图1所示天线的一种可能的实现方式与传统方案在频率为24.25GHz时的辐射场传播波形的比对图的全视图。
图8B是图1所示天线的一种可能的实现方式与传统方案在频率为25GHz时的辐射场传播波形的比对图的全视图。
图8C是图1所示天线的一种可能的实现方式与传统方案在频率是27GHz时的辐射场传播波形的比对图的全视图。
图8D是图1所示天线的一种可能的实现方式与传统方案在频率是29.5GHz时的辐射场传播波形的比对图的全视图。
图9A是图8A所示全视图的XZ平面剖视图。
图9B是图8B所示全视图的XZ平面剖视图。
图9C是图8C所示全视图的XZ平面剖视图。
图9D是图8D所示全视图的XZ平面剖视图。
图10A是图8A所示全视图的YZ平面剖视图。
图10B是图8B所示全视图的YZ平面剖视图。
图10C是图8C所示全视图的YZ平面剖视图。
图10D是图8D所示全视图的YZ平面剖视图。
图11A是图1所示天线的一种可能的实现方式与传统方案在频率为24.25GHz、25GHz、27GHz和29.5GHz时的垂直极化(V-pol)辐射场型在XZ平面的合成结果比较图。
图11B是图1所示天线的一种可能的实现方式与传统方案在频率为24.25GHz、25GHz、27GHz和29.5GHz时的垂直极化(V-pol)辐射场型在YZ平面的涟波改善效果比较图。
图11C是图1所示天线的一种可能的实现方式与传统方案在频率为24.25GHz、25GHz、27GHz和29.5GHz时的水平极化(H-pol)辐射场型在XZ平面的合成结果比较图。
图11D是图1所示天线的一种可能的实现方式与传统方案在频率为24.25GHz、25GHz、27GHz和29.5GHz时的水平极化(H-pol)辐射场型在YZ平面的涟波改善效果比较图。
图12是图5所示第一AMC结构单元的一种可能的实现方式在间隙为0.1mm、0.2mm和0.3mm时的反射系数相位曲线。
图13A是图5所示第一AMC结构单元的一种可能的实现方式在间隙为0.1mm时的电场分布图。
图13B是图5所示第一AMC结构单元的一种可能的实现方式在间隙为0.2mm时的电场分布图。
图13C是图5所示第一AMC结构单元的一种可能的实现方式在间隙为0.3mm时的电场分布图。
图14是图5所示第二AMC结构单元的一种可能的实现方式在实际长度为2.7mm、3.25mm和3.75mm时的反射系数相位曲线。
图15A是图4所示多频AMC结构的电场分布图。
图15B是本申请实施例提供的多频AMC结构的另一种可能的实现方式的电场分布图。
图16A是图15A所示采用DRS+Cross结构的多频AMC结构的反射系数相位曲线。
图16B是图15B所示采用双DSR结构的多频AMC结构的反射系数相位曲线。
图17是图4所示第一AMC结构单元和第二AMC结构单元的一种可能的排布方式的结构示意图。
图18是图4所示第一AMC结构单元和第二AMC结构单元的一种可能的排布方式的结构示意图。
图19是图4所示第一AMC结构单元和第二AMC结构单元的一种可能的排布方式的结构示意图。
图20是图4所示第一AMC结构单元的另一种可能的实现方式的结构示意图。
图21是图4所示第一AMC结构单元的另一种可能的实现方式的结构示意图。
图22是图4所示第一AMC结构单元的另一种可能的实现方式的结构示意图。
图23是图4所示第二AMC结构单元的另一种可能的实现方式的结构示意图。
图24是图4所示第二AMC结构单元的另一种可能的实现方式的结构示意图。
图25是图24所示第一AMC结构单元和第二AMC结构单元组成的多频AMC结构的反射系数相位曲线。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。
请参阅图1,图1是本申请提供的一种终端100在一些实施例中的结构示意图。终端100可以是手机、平板、笔记本电脑、可穿戴设备、销售点终端(point of sales terminal,简称为POS机)、路由器等电子产品。本申请实施例以终端100是手机为例进行说明。
一些实施例中,终端100包括后盖1、天线2、接地件3、摄像头模组4、边框5和显示屏(图中未示出)。显示屏与后盖1相背地固定于边框5的两侧,显示屏、后盖1及边框5共同围设出终端100的整机内腔。显示屏用于显示图像,显示屏还可以集成触控功能。天线2和接地件3均收容于整机内腔,天线2固定于接地件3,且天线2电连接接地件3、以实现接地。天线2位于后盖1与接地件3之间,天线2靠近后盖1设置。天线2用于接收和发射电磁波,实现信号的传输。电磁波由天线2发出,穿过后盖1向外辐射,此外,来自终端100外部的电磁波穿过后盖1、能够被天线2接收。接地件3用于反射天线2发射的朝向接地件3方向的电磁波,避免对设置在接地件3背向天线2一侧的电子器件或模组造成电磁干扰。其 中,接地件3可以为电路板结构。摄像头模组4均收容于整机内腔,摄像头模组4可以通过后盖1上的摄像头采集外部光线,以实现拍摄。
一些实施例中,天线2设置在终端100的顶部,不会受到终端中其他电子元件,例如电池的干扰,避免天线2接收和发射电磁波的性能受损。在其他一些实施例中,天线2也可以设置在终端100的底部,即远离摄像头模组4的一端。在其他一些实施例中,天线2也可以设置在终端的中部。可以理解地,天线2在终端中的位置可以根据终端内部其他元件的位置进行调整,本申请实施例对此不做严格限定。
其中,为方便后文说明,图1中将后盖1的长边方向定义为第一方向X,后盖1的短边方向定义为第二方向Y,垂直于XY平面的方向定义为第三方向Z。可以理解的是,在其他一些实施例中,第一方向、第二方向及第三方向也可以有其他方位,满足彼此之间的位置关系即可。示例性的,后盖1在第一方向X上的尺寸为150mm,在第二方向Y上的尺寸为70mm,在第三方向Z上的尺寸为0.5mm,接地件3在第一方向X上的尺寸为150mm,在第二方向Y上的尺寸为70mm。可以理解地,后盖1的尺寸及接地件3的尺寸可以根据终端100的设计要求而改变,本申请实施例对此不作严格限定。
一些实施例中,请参阅图2,图2是图1所示终端100沿A-A线处剖开的部分结构的截面示意图。其中,图2中示意出终端100的后盖1、天线2以及接地件3。天线2和接地件3位于后盖1的下方。
后盖1包括非金属板体12和多频AMC(artificial magnetic conductor,人工磁导体)结构11,多频AMC结构11固定于非金属板体12的内表面122。其中,非金属板体12还包括与内表面122相背设置的外观面121,外观面121为朝向终端100外部的表面。其中,多频AMC结构11的中部设有开口13,天线2位于开口13的正下方。开口13用于允许电磁波信号沿垂直于非金属板体12的方向穿过后盖1。多频AMC结构11用于阻碍电磁波在非金属板体12上的传播,也即防止表面波在后盖1上扩散、传播。
一些实施例中,非金属板体12的介电常数在2至10的范围内,介质损耗参数小于0.03,厚度在0.3mm至1.4mm的范围内。终端100的后盖1的主体结构为非金属板体12,能够避免对天线2辐射场能量的减弱。可以理解地,对于工作在毫米波频段范围内的天线2来说,因其波长在1至10mm的范围内,毫米波的衍射能力弱,绕过物体的能力差,更易受到后盖1等构件的阻碍,损害其辐射场型;又因毫米波天线2辐射场频率高,金属对毫米波天线2辐射场的屏蔽作用更加明显,使用金属会显著降低毫米波天线2辐射场的能量。因此,采用非金属材料的非金属板体12作为后盖1的主体结构,能够有效避免对天线2辐射场能量的减弱,提高天线2的收发性能。
一些实施例中,多频AMC结构11贴合非金属板体12的内表面122,或者从非金属板体12的内表面122嵌入非金属板体12。例如,多频AMC结构11可以通过柔性电路板贴片结构实现,多频AMC结构11粘接非金属板体12的内表面122,或者通过浆料涂布、丝网印刷等方式直接成型于非金属板体12的内表面122。多频AMC结构11的材料可以是金属和/或非金属导电材料,本申请实施例对此不作严格限定。可以理解地,多频AMC结构11固定在非金属板体12的内表面122,不需占用到额外的电路板空间即可改善表面波对辐射场型的不良影响,与天线2的整合度高,释放了终端100的更多内部空间,使得整个终端100结构更加紧凑,也为其他元件的排布提供了空间,从而可以通过增加元件来提高终端100的性能。
示例性的,天线2可以工作在n257(26.5GHz至29.5GHz)和n258(24.25GHz至27.5GHz)频段范围内,也即24.25GHz至29.5GHz,属于毫米波频段。在其他一些实施例中, 天线2的工作频段范围也可以是n257+n260(37GHz至40GHz)、n258+n260、n257+n258+n260或其他频段,本申请实施例对此不作严格限定。
在一些实施例中,天线2可以为使用辐射波束互补的天线组成的天线阵列,例如使用宽边辐射(broadside radiation)天线和端射(end-fire radiation)天线组成天线阵列,天线2的宽边辐射(broadside radiation)天线放置于多频AMC结构11的中心的开口13下方。可以理解地,毫米波天线阵列为了实现更广的空间覆盖,会以辐射波束互补的天线种类,并基于天线馈点的设计,以达到双极化(垂直与水平极化)的覆盖,从而大幅改善毫米波信号的范围和覆盖率。在其他一些实施例中,天线2也可以使用其他类型的天线进行搭配设计,或者采用一种类型的天线,本申请实施例对此不做严格限定。在其他一些实施例中,天线2的宽边辐射天线和端射天线也可以全部位于多频AMC结构11的中部开口13的下方。
示例性的,天线2可以为封装天线。天线2工作在毫米波频段下,且尺寸落在毫米等级,常使用AiP(antenna in package,即将天线阵列封装于芯片中)这种制造技术实现天线设计。在其他一些实施例中,也可以采用AoB(antenna on board,即将天线阵列设置在基板上)、AiM(antenna in module,即将天线阵列与射频集成电路(radio frequency integrated circuits,RFICs)组成模组)等制造方式,天线2还可以是平面天线,天线2用于接收和发射电磁波信号,本申请实施例对此不作严格限定。
如图2所示,非金属板体12与天线2在第三方向Z上设有距离H 1,示例性的,距离H 1为0.25mm,在其他一些实施例中,距离H 1的尺寸在0.2mm至1mm的范围内。非金属板体12与接地件3在第三方向Z上设有距离H 2,示例性的,距离H 2为0.9mm,在其他一些实施例中,距离H 2的尺寸为H 1和天线2在第三方向Z上的高度之和。本申请实施例采用AMC结构作为阻碍表面波传播的反射板,利用其同相反射特性,可以有效降低多频AMC结构11与天线2之间的距离,进一步节省终端100的内部空间。
请参阅图3,图3是图1所示后盖1的结构示意图。结合参阅图1,天线2能够在后盖1上形成投影区域21。其中多频AMC结构11与投影区域21分别在第一方向X和第二方向Y上设有间隙H 3和H 4。多频AMC结构11与天线2之间存在一定距离,既能够有效阻止表面波在非金属板体12上的传播,又为天线2辐射场在远离非金属板体12的传播方向上的传播保留了一定的空间,避免对天线2的收发性能造成影响。
在传统的终端中,其天线置于后盖的下方,天线的辐射场在遇到后盖时,会在后盖上产生表面波,导致辐射场能量损耗较大以及辐射场型受损,特别是对于工作在毫米波频段范围内的天线,这种能量损耗更加明显,导致天线的收发性能受损。
在本实施例中,多频AMC结构11与非金属板体12固定连接,因天线2辐射场在传播的过程中会在非金属板体12上感应产生表面波,在非金属板体12内表面122设置多频AMC结构11,能够阻碍表面波在非金属板体12上的传播;在此基础上,进一步地在多频AMC结构11的中部设置开口13,这样既不会限制天线2辐射场沿垂直于非金属板体12方向上的传播,又能够阻碍表面波在非金属板体12上的传播,减少辐射场的能量损耗,并改善了辐射场型,提高天线2的收发性能,此外,多频AMC结构11形成的高阻抗表面具有反射相位系数为正的特性,能够提升天线2辐射场型的集中能力。
请一并参阅图3和图4,图4是图3所示多频AMC结构11的一种实施方式的示意图。其中多频AMC结构11包括多个结构单元,多个结构单元呈周期性排布,每个结构单元均为中心对称结构,多个结构单元的对称中心沿第一方向X和第二方向Y对齐排列,多个结构单元对齐排列可以降低多频AMC结构11的制作难度,提高生产效率。结构单元包括第一AMC 结构单元111和第二AMC结构单元112。第一AMC结构单元111的谐振频率为第一谐振频率,第二AMC结构单元112的谐振频率为第二谐振频率,第一谐振频率小于第二谐振频率。
示例性的,多频AMC结构11的结构单元具有第一谐振频率和第二谐振频率。在其他一些实施例中,多频AMC结构11具有至少两个谐振频率,多个谐振频率与天线的工作频带至少部分重叠,这样设置可以满足多样化的使用需求,适用范围更广。
一些实施例中,请参阅图3,多频AMC结构11与天线2的投影区域21分别在第一方向X和第二方向Y上设有间隙H 3和H 4,H 3和H 4的尺寸在0至0.7倍第一谐振频率所对应的等效介质波长的范围内。
其中,等效介质波长λ eq与等效介质系数ε eq有关。两者存在对应关系如下:
Figure PCTCN2021117377-appb-000001
其中,λ 0是电磁波在真空中的波长。
一些实施例中,多个第一AMC结构单元111与多个第二AMC结构单元112一一交错排列,也即在第一方向X和第二方向Y上,每个第一AMC结构单元111的相邻结构单元均为第二AMC结构单元112,每个第二AMC结构单元112的相邻结构单元均为第一AMC结构单元111。在其他一些实施例中,多个第一AMC结构单元111与多个第二AMC结构单元112也可以有其他交错排列方式。多个第一AMC结构单元111与多个第二AMC结构单元112一一交错排列,这种均匀的排布方式使得多频AMC结构11对天线辐射场的影响均匀,避免对特定辐射方向上的电磁波产生不良影响,进而影响天线2的辐射场型。
等效介质系数ε eq与各层介质厚度t n和各层介电常数ε n有关,对应关系如下:
Figure PCTCN2021117377-appb-000002
例如,非金属板体12的厚度为0.5mm时,其介电系数ε Glass为6.6,非金属板体12与接地件3在第三方向Z上的距离H2为0.9mm时,非金属板体12与接地件3之间的空气厚度为0.9mm,空气的介电系数ε 0为1。将上述具体数值代入等效介质系数ε eq的公式中,可以得到等效介质系数ε eq的值为1.36。
具体计算过程如下:
Figure PCTCN2021117377-appb-000003
在本实施例中,多频AMC结构11包括两种结构单元,因此多频AMC结构11的谐振频率范围可以通过调整第一AMC结构单元111和/或第二AMC结构单元112的谐振频率来调整,调控谐振频率更加容易,从而可以配合天线的不同工作频率,满足消费者越来越多样化的使用需求。
一些实施例中,第一AMC结构单元111包括内部贴片1112和外部框形贴片1111,外部框形贴片1111环绕内部贴片1112设置,也即,第一AMC结构单元111为一种双环(dual square ring,DSR)结构,用于实现相对第二谐振频率低的第一谐振频率。DSR结构中的外部框形贴片1111延长了电流路径,使得其谐振频率相对较低。第二AMC结构单元112包括第一线形贴片1121和第二线形贴片1122,第一线形贴片1121和第二线形贴片1122交叉排布且相互垂直。第二AMC结构单元112是一种十字形(cross)结构,cross结构用于实现第二谐振频 率。
在一些实施例中,请参阅图4的4-1中圈出的部分,第一AMC结构单元111的外部框形贴片1111的四个边与第二AMC结构单元112的其中一个线形贴片(第一线形贴片1121或第二线形贴片1122)相邻,外部框形贴片1111的四个边与相邻的四个线形贴片的延伸方向垂直。当线型贴片的形状为直线时,延伸方向为线型贴片所在直线的方向,当线型贴片的形状为曲线时,延伸方向是从线型贴片一端短边中点指向另一端短边中点的方向。这样设置,第一AMC结构单元111与相邻的第二AMC结构单元112之间形成交叉极化,而交叉极化方向具有能量低的特点,可以降低第一AMC结构单元111与相邻的第二AMC结构单元112之间的耦合作用,提高两者之间的隔离度,因此,第一谐振频率与第二谐振频率相近,也即第二谐振频率与第一谐振频率之间的比值低,比值可以在1.2到1.3之间。此外,第一AMC结构单元111与相邻的第二AMC结构单元112之间的隔离度高,调整其中一者的谐振频率时对另一者的谐振频率影响较小,因此可对第一AMC结构单元111或第二AMC结构单元112的谐振频率进行单独调整,从而降低多频AMC结构11的谐振频率的调整难度。
示例性的,第一AMC结构单元111的内部贴片1112可为正方形贴片,外部框形贴片1111可为方框形贴片,这样设置,使得多频AMC结构11与壳体外形相匹配,易于设计和加工制作。可以理解地,内部贴片1112的第一方向X上和第二方向Y上的尺寸可以不同,外部框形贴片1111的第一方向X上和第二方向Y上的尺寸也可以不同,本申请实施例对此不作严格限定。
示例性的,第一线形贴片1121呈直线形,第二线形贴片1122呈直线形。第一线形贴片1121和第二线形贴片1122呈直线形,易于加工制作,提高生产效率。
示例性的,线形贴片1121和1122上可以设置1个凸起。在其他一些实施例中,线形贴片上可设置多个凸起,线形贴片上可设置不同个凸起,本申请实施例对此不作严格限定。
请参阅图5,图5是图4所示第一AMC结构单元111和第二AMC结构单元112的结构示意图。如图5所示,外部框形贴片1111在第一方向X上的尺寸为l 1,在第二方向Y上的尺寸等于l 1,外部框形贴片1111环绕内部贴片1112设置,内部贴片1112在第一方向X上的尺寸为l 11,在第二方向Y上的尺寸等于l 11,内部贴片1112与外部框形贴片1111在第一方向X上的间隙为S,在第二方向Y上的间隙等于S。第二AMC结构单元112在第一方向X上的尺寸为l 2,在第二方向Y上的尺寸等于l 2。第二AMC结构单元112的第一线形贴片1121的实际长度为L,L为从线形贴片一端短边中点延伸至另一端短边中点的长度,第二线形贴片1122的实际长度等于L。第一AMC结构单元111和第二AMC结构单元112在第一方向X上存在间距,间距为h,在第二方向Y上也存在间距,在第二方向Y上的间距等于h。
在一些实施例中,多个第一AMC结构单元111的结构相同、尺寸相同,多个第二AMC结构单元111的结构相同、尺寸相同。
在一些实施例中,尺寸l 1在0.15倍至0.4倍的第一波长的范围内,第一波长为第一谐振频率所对应的等效介质波长,例如,尺寸l 1为0.23倍的第一波长。尺寸l 11在0.1倍至0.3倍的第一波长的范围内,例如,尺寸l 11为0.17倍的第一波长。在一些实施例中,h为0.1mm。
在一些实施例中,尺寸l 2可以与尺寸l 1相等。例如,尺寸l 1和尺寸l 2为2.3mm。
请一并参阅图6A和图6B,图6A是图4所示多频AMC结构11在一种可能的实现方式中的反射系数相位曲线,图6B是图4所示多频AMC结构11在一种可能的实现方式中的面阻抗曲线。其中如图6A所示,反射系数相位曲线与反射系数相位为0°的横轴有三个交点,分别代表第一谐振频率25GHz、两模态相接点27GHz和第二谐振频率30GHz;如图6B所 示,在面阻抗曲线上,频率25GHz和30GHz处的面阻抗为峰值,频率27GHz处面阻抗为0。
在一些实施例中,多频AMC结构11的反射相位曲线多频AMC结构11具有两个谐振频率,其中第一谐振频率为25GHz,第二谐振频率为30GHz,在第一谐振频率和第二谐振频率处,多频AMC结构11呈现理想磁导体特性,即反射系数相位为0°,阻抗较高(1000Ω以上),反射波与入射波的磁场反向。可以理解地,天线2辐射场在非金属板体12处感应产生的表面波为入射波,入射波经多频AMC结构11作用产生与入射波传播方向相反的反射波,反射系数相位是指反射波电场与入射波电场的相位差,反射系数相位为0°说明反射波和入射波的电场传播方向相同,又因反射波和入射波的传播方向相反,根据电场、磁场以及传播方向的右手定则可知反射波与入射波的磁场反向,抵消了入射波,限制了入射波在非金属板体12上的传播。
第一谐振频率和第二谐振频率之间存在两模态相接点,此处频率为27GHz。从图6A中所示的反射系数相位曲线可以看出,在天线2的辐射场的频率处在低频范围内(20GHz至25GHz)时,由第一AMC结构单元111对辐射场产生作用,之后随着频率的增加,对辐射场产生作用的结构单元会由第一AMC结构单元111突变为第二AMC结构单元112,突变点所对应的频率即为两模态相接点的频率,此时多频AMC结构11呈现理想电导体的特性,即阻抗为0,反射系数相位为180°,也可以起到抑制表面波传播的作用。
请一并参阅图7A、图7B和图7C,图7A、图7B和图7C分别是图4所示多频AMC结构11的一种可能的实现方式在频率为25GHz、27GHz和30GHz时的电场分布图。图中颜色较浅的位置为发生谐振的位置,图7A中圈出的7A-1处表示25GHz时是第一AMC结构单元111在发生谐振,图7C中圈出的7C-1处表示30GHz时是第二AMC结构单元112在发生谐振。
在一些实施例中,多频AMC结构11在天线2的工作频段(24.25GHz至29.5GHz)内均可抑制表面波的传播。请一并参阅图8A、图8B、图8C以及图8D,图8A至图8D分别是图1所示天线2的一种可能的实现方式与传统方案在频率为24.25GHz、25GHz、27GHz和29.5GHz时的辐射场传播波形的比对图的全视图。其中,24.25GHz和29.5GHz为天线2工作频段的两个端点,25GHz和27GHz为多频AMC结构11对应的两个谐振频率。
其中,图8A的a 2图为传统方案在频率为24.25GHz时的全视图、图8B的b 2图为传统方案在频率为25GHz时的全视图、图8C的c 2图为传统方案在频率为27GHz时的全视图、图8D的d 2图为传统方案在频率为29.5GHz时的全视图,图中示意出传统方案的天线2`和后盖12`,天线2`位于后盖12`的下方,天线2`的电磁波在后盖12`上形成明显的表面波。
其中,图8A的a 1图为图1所示天线2的一种可能的实现方式在频率为24.25GHz时的全视图、图8B的b 1图为图1所示天线2的一种可能的实现方式在频率为25GHz时的全视图、图8C的c 1图为图1所示天线2的一种可能的实现方式在频率为27GHz时的全视图、图8D的d 1图为图1所示天线2的一种可能的实现方式在频率为29.5GHz时的全视图,虚线框表示多频AMC结构11所在位置,与a 2图、b 2图、c 2图和d 2图比对可知,设置多频AMC结构11后,电磁波以天线2为中心向四周扩散的范围变小。因此,多频AMC结构11在天线2的工作频段内对表面波具有良好的抑制能力。
请一并参阅图9A、图9B、图9C、图9D、图10A、图10B、图10C以及图10D,图9A至图9D分别是图8A至图8D所示全视图的XZ平面剖视图,图10A至图10D分别为图8A至图8D所示全视图的YZ平面剖视图。与传统方案相比,电磁波以天线2为中心向四周扩散 的范围减小,说明通过设置多频AMC结构11,可以降低电磁波在非金属板体12与系统接地面之间的传播,並且达到抑制表面波在非金属板体12上传播的作用。
请一并参阅图11A和表1.1,图11A是图1所示天线2的一种可能的实现方式与传统方案在频率为24.25GHz、25GHz、27GHz和29.5GHz时的垂直极化(V-pol)辐射场型在XZ平面的合成结果比较图,表1.1为垂直极化辐射场型收益比较表。定义合成场型增益达6dB时为有效3dB带宽(beamwidth)。
表1.1垂直极化辐射场型收益比较表
Figure PCTCN2021117377-appb-000004
从图11A和表1.1中可以看出,通过设置多频AMC结构11,24.25GHz、25GHz、27GHz和29.5GHz的有效3dB带宽分别从19°、35.7°、18°+18°、46.9°增加至60.8°、86.2°、98.4°、46.8°,有效改善了辐射场型的合成效果。
请一并参阅图11B和表1.1,图11B是图1所示天线2的一种可能的实现方式与传统方案在频率为24.25GHz、25GHz、27GHz和29.5GHz时的垂直极化辐射场型在YZ平面的涟波(ripple)改善效果比较图。其中,在YZ平面内的合成场型涟波在频带内改善1.5-2dB。
请一并参阅图11C和表1.2,图11C是图1所示天线2的一种可能的实现方式与传统方案在频率为24.25GHz、25GHz、27GHz和29.5GHz时的水平极化(H-pol)辐射场型在XZ平面的合成结果比较图,表1.2为水平极化辐射场型收益比较表。
表1.2水平极化辐射场型收益比较表
Figure PCTCN2021117377-appb-000005
从图11C和表1.2中可以看出,通过设置多频AMC结构11,24.25GHz、25GHz、27GHz和29.5GHz的有效3dB带宽分别从49°、46.4°、53.7°、61°增加至91.6°、86°、58.1°、98°。
请一并参阅图11D和表1.2,图11D是图1所示天线2的一种可能的实现方式与传统方案在频率为24.25GHz、25GHz、27GHz和29.5GHz时的水平极化辐射场型在YZ平面的涟 波改善效果比较图。其中在YZ平面内的合成场型涟波在频带内改善0.5dB;25GHz时合成场型涟波增值最大,可达3dB;29.5GHz时,通过设置多频AMC结构11解决了合成场型在第三方向Z上的零点(null)问题。
表1.3垂直、水平极化辐射场型在XY平面的收益比较表
Figure PCTCN2021117377-appb-000006
请参阅表1.3,表1.3为图1所示天线2的一种可能的实现方式与传统方案在频率为24.25GHz、25GHz、27GHz和29.5GHz时的垂直、水平极化辐射场型在XY平面的收益比较表。由于多频AMC结构11形成的高阻表面具备同相反射特性,与传统方案相比,设置多频AMC结构11使得辐射场型的峰值增益提升约1.5至2.5dB。
请参阅图12,图12是图5所示第一AMC结构单元111的一种可能的实现方式在间隙S为0.1mm、0.2mm和0.3mm时的反射系数相位曲线。第一AMC结构单元111的谐振频率由内部贴片1112与外部框形贴片1111的耦合量决定,而耦合量与内部贴片1112与外部框形贴片1111之间的间隙S有关,从图12中可以看出间隙S越小,谐振频率越低。因此,第一AMC结构单元111的谐振频率可以通过控制内部贴片1112与外部框形贴片1111之间的间隙尺寸进行调整。
请一并参阅图13A、图13B以及图13C,图13A至图13C分别为图5所示第一AMC结构单元111的一种可能的实现方式在间隙S为0.1mm、0.2mm和0.3mm时的电场分布图。从图13A至图13C中可以看出,随着间隙S的增大,耦合量也增大。
在一些实施例中,间隙的尺寸在0.005倍至0.04倍的第一波长的范围内,例如,间隙S为0.01倍的第一波长。
请参阅图14,图14为图5所示第二AMC结构单元112的一种可能的实现方式在实际长度L为2.7mm、3.25mm和3.75mm时的反射系数相位曲线。从图14中可以看出实际长度L越长,第二AMC结构单元112的谐振频率越低。
在一些实施例中,第二AMC结构单元112的谐振频率可以通过控制第二AMC结构单元112的线形贴片1121和1122的实际长度L进行调整。通过增减线形贴片1121和1122的凸起个数和/或凸起的形状和尺寸可以改变线形贴片1121和1122的实际长度L。
在一些实施例中,实际长度L的尺寸在0.3倍至0.6倍的第一波长的范围内,例如,实际长度L为0.45倍的第一波长。
在一些实施例中,多频AMC结构11的谐振频率范围可以通过调整第一AMC结构单元111和/或第二AMC结构单元112的谐振频率来调整,调控谐振频率更加容易,从而可以配合天线2的不同工作频率,满足消费者越来越多样化的使用需求。
请一并参阅图15A和图15B,图15A是图4所示多频AMC结构11的电场分布图,图4 所示多频AMC结构11为DRS+Cross结构单元构成的。图15A中的15A-1圈出的部分代表第二方向Y上的第一AMC结构单元111和第二AMC结构单元112之间的电场耦合量,和15A-2圈出的部分代表第一方向X上的第一AMC结构单元111和第二AMC结构单元112之间的电场耦合量,较亮的区域代表耦合量大。从图15A中可以看出,15A-1圈出的第二方向Y上的电场耦合量大于15A-2圈出的第一方向X上的电场耦合量。
图15B是本申请实施例提供的多频AMC结构11的一种可能的实现方式的电场分布图。本实施例中的多频AMC结构11可以包括前文实施例多频AMC结构11的部分特征,两者相同的部分不再赘述,以下主要说明两者的区别。如图15B所示,在另一种实施方式中,第一AMC结构单元111和第二AMC结构单元112均采用DSR结构,也即多频AMC结构11由双DSR结构单元构成,第一AMC结构单元111的外部框形贴片1111与内部贴片1112之间的间隙S比第二AMC结构单元112小。图15B中的15B-1圈出的部分代表第二方向Y上的第一AMC结构单元111和第二AMC结构单元112之间的电场耦合量,15B-2圈出的部分代表第一方向X上的第一AMC结构单元111和第二AMC结构单元112之间的电场耦合量。从图15B中可以看出,15B-1圈出的第二方向Y上的电场耦合量大于15B-2圈出的第一方向X上的电场耦合量。
对比15A-2和15B-2圈出的部分,可以看出两种DSR结构单元之间在第一方向X上的耦合量大于DSR结构单元和Cross结构单元之间的耦合量。
在一些实施例中,天线2的宽边辐射(broadside radiation)天线放置于多频AMC结构11的中部的开口13下方,天线2发射的电磁波的电场方向为第二方向Y,需要第二方向Y上的电场耦合量,同时避免第一方向X上的电场耦合。采用DRS+Cross结构单元构成的多频AMC结构11在第一方向X上的电场耦合小,易于通过分别调整两个结构单元的谐振频率来达到调整多频AMC结构11谐振频率范围的目的,并易于与天线2整合导入终端100。
请一并参阅图16A和图16B,图16A是图15A所示DRS+Cross结构的多频AMC结构11的反射系数相位曲线,其中16A框出的部分为图15A所示第一AMC结构单元111的响应频宽,图16B是图15B所示双DSR结构的多频AMC结构11的反射系数相位曲线,其中16B框出的部分为图15B所示第一AMC结构单元111的响应频宽。对比6A和16A框出的部分,可以看出DRS+Cross结构的多频AMC结构11的响应频宽比双DSR结构的多频AMC结构11的响应频宽减少了0.8GHz。
双DSR结构的多频AMC结构11的第一AMC结构单元111的共振容易受第二AMC结构单元112影响,使得第一AMC结构单元111的响应频宽受到压缩。也即,如果所需的第一谐振频率与第二谐振频率相距较近,当调整第二AMC结构单元112的谐振频率时,也会对第一AMC结构单元111的谐振频率造成影响,难以达到所需要的第二谐振频率的范围。而DRS+Cross结构的多频AMC结构11的第一AMC结构单元111与第二AMC结构单元112在第一方向X上的隔离度高,当调整第二AMC结构单元112的谐振频率时,对第一AMC结构单元111的谐振频率造成的影响小,可以获得相近的谐振频率。
请参阅图17,图17是图4所示第一AMC结构单元111和第二AMC结构单元112的一种可能的排布方式的结构示意图。本实施例中的多频AMC结构11可以包括图5所示实施例中多频AMC结构11的部分特征,两者相同的部分不再赘述,以下主要说明两者的区别。其中第一AMC结构单元111的内部贴片1112的每条侧边与外部框形贴片1111的对应的侧边平行设置,外部框形贴片1111的每条侧边与第一方向X之间形成夹角。在一些实施例中,夹角在0至90°的范围内。
请参阅图18,图18是图4所示第一AMC结构单元111和第二AMC结构单元112的一种可能的排布方式的结构示意图。本实施例中的多频AMC结构11可以包括图5所示实施例中多频AMC结构11的部分特征,两者相同的部分不再赘述,以下主要说明两者的区别。其中第二AMC结构单元112的线形贴片1121和1122的延伸方向与第一方向X之间形成夹角。在一些实施例中,夹角在0至90°的范围内。
请参阅图19,图19是图4所示第一AMC结构单元111和第二AMC结构单元112的一种可能的排布方式的结构示意图。本实施例中的多频AMC结构11可以包括图5所示实施例中多频AMC结构11的部分特征,两者相同的部分不再赘述,以下主要说明两者的区别。其中第一AMC结构单元111的内部贴片1112的每条侧边与外部框形贴片1111的对应的侧边平行设置,外部框形贴片1111的每条侧边与第一方向X设置有夹角,第二AMC结构单元112的线形贴片1121和1122的延伸方向与第一方向X之间形成夹角。在一些实施例中,夹角在0至90°的范围内。
请参阅图20,图20是图4所示第一AMC结构单元111的一种可能的实现方式的结构示意图。本实施例中的多频AMC结构11可以包括图5所示实施例中多频AMC结构11的部分特征,两者相同的部分不再赘述,以下主要说明两者的区别。其中第一AMC结构单元111的内部贴片1112可为方框形贴片。
请参阅图21,图21是图4所示第一AMC结构单元111的一种可能的实现方式的结构示意图。本实施例中的多频AMC结构11可以包括图4所示实施例中多频AMC结构11的部分特征,两者相同的部分不再赘述,以下主要说明两者的区别。其中第一AMC结构单元111为方形贴片,方形贴片具有耶路撒冷十字架形的空隙。其中,耶路撒冷十字架形的空隙为中心对称图形。其中,耶路撒冷十字架形的空隙中的“十”字空隙为直边。其他一些实施例中,耶路撒冷十字架形的空隙中的“十”字空隙也可以为曲边。
请参阅图22,图22是图4所示第一AMC结构单元111的一种可能的实现方式的结构示意图。本实施例中的多频AMC结构11可以包括图4所示实施例中多频AMC结构11的部分特征,两者相同的部分不再赘述,以下主要说明两者的区别。其中第一AMC结构单元111为方形贴片,方形贴片具有卍字形结构的空隙。在其他一些实施例中,第一AMC结构单元111为方形贴片,方形贴片具有反卍字形结构的空隙。
请参阅图23,图23是图4所示第二AMC结构单元112的一种可能的实现方式的结构示意图。本实施例中的多频AMC结构11可以包括图4所示实施例中多频AMC结构11的部分特征,两者相同的部分不再赘述,以下主要说明两者的区别。其中第二AMC结构单元112为耶路撒冷十字架形的贴片。其中,耶路撒冷十字架形的空隙为中心对称图形。其中,耶路撒冷十字架形的空隙中的“十”字空隙为直边。其他一些实施例中,耶路撒冷十字架形的空隙中的“十”字空隙也可以为曲边。
请参阅图24,图24是图4所示第二AMC结构单元的一种可能的实现方式的结构示意图。本实施例中的多频AMC结构11可以包括图4所示实施例中多频AMC结构11的部分特征,两者相同的部分不再赘述,以下主要说明两者的区别。第二AMC结构单元112由多个贴片组成,每个贴片为cross结构,多个贴片以中心对称的方式排布。例如,第二AMC结构单元112由四个贴片组成,每个贴片形状为耶路撒冷十字架形。其中,耶路撒冷十字架形的空隙中的“十”字空隙为曲边。其他一些实施例中,耶路撒冷十字架形的空隙中的“十”字空隙也可以为直边。
请参阅图25,图25是图24所示第一AMC结构单元111和第二AMC结构单元112组 成的多频AMC结构11的反射系数相位曲线,反射系数相位曲线上有3个谐振点,分别对应谐振频率为26.6GHz、30.8GHz和39.3GHz。其中第一AMC结构单元111的第一谐振频率为26.6GHz,第一AMC结构单元111和第二AMC结构单元112耦合产生第三谐振频率30.8GHz,第二AMC结构单元112的第二谐振频率为39.3GHz。这种多频AMC结构11具有三个谐振频率,可用于多样化的使用场景,满足消费者的使用要求。
以上描述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内;在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (22)

  1. 一种后盖,应用于终端,所述终端包括所述后盖和天线,其特征在于,所述后盖包括非金属板体和多频AMC结构,所述多频AMC结构固定于所述非金属板体的内表面,所述多频AMC结构的中部具有开口,所述开口用于允许电磁波信号沿垂直于所述非金属板体的方向穿过所述后盖,所述多频AMC结构用于阻碍电磁波在所述非金属板体上的传播。
  2. 如权利要求1所述的后盖,其特征在于,所述多频AMC结构具有至少两个谐振频率,所述多频AMC结构的谐振频率与所述天线的工作频带至少部分重叠。
  3. 如权利要求1所述的后盖,其特征在于,所述多频AMC结构包括多个结构单元,所述结构单元包括第一AMC结构单元和第二AMC结构单元,所述第一AMC结构单元的谐振频率为第一谐振频率,所述第二AMC结构单元的谐振频率为第二谐振频率,所述第一谐振频率小于所述第二谐振频率。
  4. 如权利要求3所述的后盖,其特征在于,多个所述结构单元呈周期性排布,每个所述结构单元均为中心对称结构,多个所述结构单元的对称中心沿第一方向对齐排列且沿第二方向对齐排列,所述第二方向垂直于所述第一方向。
  5. 如权利要求4所述的后盖,其特征在于,所述第一AMC结构单元与所述第二AMC结构单元交错排列,在所述第一方向和所述第二方向上,每个所述第一AMC结构单元的相邻结构单元均为所述第二AMC结构单元,每个所述第二AMC结构单元的相邻结构单元均为所述第一AMC结构单元。
  6. 如权利要求3至5中任一项所述的后盖,其特征在于,所述第一AMC结构单元包括内部贴片和外部框形贴片,所述外部框形贴片环绕所述内部贴片设置,所述内部贴片与所述外部框形贴片之间存在间隙。
  7. 如权利要求6所述的后盖,其特征在于,所述间隙在0.005倍至0.04倍的第一波长的范围内,所述第一波长为所述第一谐振频率所对应的等效介质波长。
  8. 如权利要求6所述的后盖,其特征在于,所述第一AMC结构单元的所述内部贴片为正方形贴片,所述外部框形贴片为方框形贴片。
  9. 如权利要求8所述的后盖,其特征在于,所述外部框形贴片的侧边尺寸在0.15倍至0.4倍的所述第一谐振频率所对应的等效介质波长的范围内,所述内部贴片的侧边尺寸在0.1倍至0.3倍的所述第一谐振频率所对应的等效介质波长的范围内。
  10. 如权利要求6所述的后盖,其特征在于,所述第二AMC结构单元包括第一线形贴片和第二线形贴片,所述第一线形贴片和所述第二线形贴片交叉排布,且互相垂直。
  11. 如权利要求10所述的后盖,其特征在于,所述第一线形贴片呈直线形,所述第二线形贴片呈直线形。
  12. 如权利要求10所述的后盖,其特征在于,所述第一线形贴片包括一个或多个凸起,所述第二线形贴片包括一个或多个凸起。
  13. 如权利要求10所述的后盖,其特征在于,所述第一线形贴片和所述第二线形贴片的实际长度在0.3倍至1倍的所述第一谐振频率所对应的等效介质波长内。
  14. 如权利要求3至5中任一项所述的后盖,其特征在于,所述第一AMC结构单元包括第一内部贴片和第一外部框形贴片,所述第一外部框形贴片环绕所述第一内部贴片设置,所述第一内部贴片与所述第一外部框形贴片之间存在第一间隙,所述第二AMC结构单元包括第二内部贴片和第二外部框形贴片,所述第二外部框形贴片环绕所述第二内部贴片设置,所述第二内部贴片与所述第二外部框形贴片之间存在第二间隙,所述第一间隙小于所述第二间 隙。
  15. 如权利要求4或5所述的后盖,其特征在于,所述第一AMC结构单元包括内部贴片和外部框形贴片,所述外部框形贴片环绕所述内部贴片设置,所述内部贴片与所述外部框形贴片之间存在间隙,所述内部贴片的每条侧边与所述外部框形贴片的对应的侧边平行设置,所述内部贴片的每条侧边与所述第一方向之间形成夹角,所述夹角在0至90°的范围内。
  16. 如权利要求4或5所述的后盖,其特征在于,所述第二AMC结构单元包括第一线形贴片和第二线形贴片,所述第一线形贴片和所述第二线形贴片交叉排布,且互相垂直,所述第一线形贴片的延伸方向与所述第一方向之间形成夹角,所述夹角在0至90°的范围内。
  17. 如权利要求3至5中任一项所述的后盖,其特征在于,所述第一AMC结构单元为在方形贴片上形成耶路撒冷十字架形的空隙;或者,
    所述第一AMC结构单元为在方形贴片上形成卍字形的空隙;或者,
    所述第二AMC结构单元为耶路撒冷十字架形的贴片。
  18. 如权利要求3至5中任一项所述的后盖,其特征在于,所述第一AMC结构单元包括内部贴片和外部框形贴片,所述外部框形贴片环绕所述内部贴片设置,所述内部贴片与所述外部框形贴片之间存在间隙,所述第二AMC结构单元由多个耶路撒冷十字架形的贴片组成,所述第一AMC结构单元和所述第二AMC结构单元耦合产成第三谐振频率。
  19. 如权利要求1所述的后盖,其特征在于,所述非金属板体的介电常数在2至10的范围内,介质损耗参数小于0.03,厚度在0.3mm至1.4mm的范围内。
  20. 一种终端,其特征在于,包括天线和权利要求1至19中任一项所述的后盖,所述天线位于所述后盖的内侧,且正对所述后盖的多频AMC结构的开口设置。
  21. 如权利要求20所述的终端,其特征在于,所述终端还包括接地件,所述接地件位于所述后盖的内侧,所述天线固定于所述接地件朝向所述后盖的一侧。
  22. 如权利要求20所述的终端,其特征在于,所述天线的工作频段范围为n257+n258、n257+n260、n258+n260或n257+n258+n260。
PCT/CN2021/117377 2020-09-30 2021-09-09 后盖及终端 WO2022068548A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21874209.6A EP4210304A4 (en) 2020-09-30 2021-09-09 BACK COVER AND TERMINAL UNIT
CN202180062206.5A CN116114237A (zh) 2020-09-30 2021-09-09 后盖及终端
US18/029,332 US20230370536A1 (en) 2020-09-30 2021-09-09 Back Cover and Terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202022224032.3 2020-09-30
CN202022224032.3U CN213403085U (zh) 2020-09-30 2020-09-30 后盖及终端

Publications (1)

Publication Number Publication Date
WO2022068548A1 true WO2022068548A1 (zh) 2022-04-07

Family

ID=76185501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/117377 WO2022068548A1 (zh) 2020-09-30 2021-09-09 后盖及终端

Country Status (4)

Country Link
US (1) US20230370536A1 (zh)
EP (1) EP4210304A4 (zh)
CN (2) CN213403085U (zh)
WO (1) WO2022068548A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN213403085U (zh) * 2020-09-30 2021-06-08 华为技术有限公司 后盖及终端

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130237272A1 (en) * 2010-11-16 2013-09-12 Muthukumar Prasad Smart directional radiation protection system for wireless mobile device to reduce sar
CN106410396A (zh) * 2016-10-26 2017-02-15 华南理工大学 一种高低频滤波阵子交织排列的紧凑型多波束天线阵列
CN209418761U (zh) * 2018-07-17 2019-09-20 云南大学 新型amc的宽带电磁偶极子天线
CN111406443A (zh) * 2017-11-28 2020-07-10 三星电子株式会社 包括导电图案的印刷电路板和包括印刷电路板的电子装置
CN213403085U (zh) * 2020-09-30 2021-06-08 华为技术有限公司 后盖及终端

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100753830B1 (ko) * 2006-04-04 2007-08-31 한국전자통신연구원 인공자기도체를 이용한 고임피던스 표면 구조 및 그 구조를이용한 안테나 장치 및 전자기 장치
US8055274B2 (en) * 2007-11-12 2011-11-08 Lg Electronics Inc. Portable terminal
KR101986170B1 (ko) * 2017-09-27 2019-06-07 엘지전자 주식회사 전자 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130237272A1 (en) * 2010-11-16 2013-09-12 Muthukumar Prasad Smart directional radiation protection system for wireless mobile device to reduce sar
CN106410396A (zh) * 2016-10-26 2017-02-15 华南理工大学 一种高低频滤波阵子交织排列的紧凑型多波束天线阵列
CN111406443A (zh) * 2017-11-28 2020-07-10 三星电子株式会社 包括导电图案的印刷电路板和包括印刷电路板的电子装置
CN209418761U (zh) * 2018-07-17 2019-09-20 云南大学 新型amc的宽带电磁偶极子天线
CN213403085U (zh) * 2020-09-30 2021-06-08 华为技术有限公司 后盖及终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4210304A4

Also Published As

Publication number Publication date
US20230370536A1 (en) 2023-11-16
CN116114237A (zh) 2023-05-12
CN213403085U (zh) 2021-06-08
EP4210304A4 (en) 2024-02-28
EP4210304A1 (en) 2023-07-12

Similar Documents

Publication Publication Date Title
WO2022021824A1 (zh) 低频辐射单元及基站天线
US11387568B2 (en) Millimeter-wave antenna array element, array antenna, and communications product
WO2021082988A1 (zh) 天线模组及电子设备
TWI482360B (zh) 行動裝置
WO2018028323A1 (zh) 天线系统
WO2021022941A1 (zh) 天线阵列及终端
WO2020073329A1 (zh) 一种低剖面封装天线
CN112290193B (zh) 毫米波模组、电子设备及毫米波模组的调节方法
WO2022083276A1 (zh) 天线阵列组件及电子设备
US11201394B2 (en) Antenna device and electronic device
US8648762B2 (en) Loop array antenna system and electronic apparatus having the same
WO2021000731A1 (zh) 天线组件及电子设备
WO2022134786A1 (zh) 一种天线和通信设备
WO2022068548A1 (zh) 后盖及终端
CN113659325B (zh) 集成基片间隙波导阵列天线
WO2020010941A1 (zh) 天线及通信设备
JP7228720B2 (ja) ハウジングアセンブリ、アンテナデバイス及び電子機器
CN111430893B (zh) 电子设备
WO2023016184A1 (zh) 天线装置、壳体及电子设备
WO2022268086A1 (zh) 边射天线、封装天线和通讯设备
TWI451632B (zh) 高增益迴圈陣列天線系統及電子裝置
WO2021000780A1 (zh) 天线组件及电子设备
US20190379127A1 (en) Terminal Antenna and Terminal
WO2024001072A1 (zh) 天线模组、天线阵列及电子设备
WO2024104087A1 (zh) 天线辐射单元和天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21874209

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021874209

Country of ref document: EP

Effective date: 20230406

NENP Non-entry into the national phase

Ref country code: DE