WO2022134786A1 - 一种天线和通信设备 - Google Patents

一种天线和通信设备 Download PDF

Info

Publication number
WO2022134786A1
WO2022134786A1 PCT/CN2021/124762 CN2021124762W WO2022134786A1 WO 2022134786 A1 WO2022134786 A1 WO 2022134786A1 CN 2021124762 W CN2021124762 W CN 2021124762W WO 2022134786 A1 WO2022134786 A1 WO 2022134786A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibrating arm
antenna
microstrip line
symmetrical
vibrator
Prior art date
Application number
PCT/CN2021/124762
Other languages
English (en)
French (fr)
Inventor
邵金进
武东伟
石操
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022134786A1 publication Critical patent/WO2022134786A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q11/00Electrically-long antennas having dimensions more than twice the shortest operating wavelength and consisting of conductive active radiating elements
    • H01Q11/02Non-resonant antennas, e.g. travelling-wave antenna
    • H01Q11/10Logperiodic antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/20Two collinear substantially straight active elements; Substantially straight single active elements

Definitions

  • the present application relates to the field of communication technologies, and in particular, to an antenna and a communication device.
  • the antennas used are mainly half-wave dipole antennas.
  • Half-wave dipole antenna as a commonly used narrowband antenna, has the characteristics of omnidirectional radiation direction in the horizontal plane, and the maximum gain is generally about 2dBi.
  • the half-wave dipole antenna generally consists of a pair of symmetrically arranged conductors, and the two ends of the two conductors that are close to each other are connected to the feeder respectively, wherein the sum of the lengths of the two conductors is approximately equal to the operating frequency of the two conductors. half. As the operating frequency of the antenna continues to increase, the frequency of the electromagnetic wave emitted by the antenna also increases.
  • the half-wave dipole antenna can only generate a beam of a single frequency band, and the gain in the vertical direction is low, so it cannot achieve full-area coverage.
  • the present application provides an antenna and a communication device with wide coverage and favorable for realizing high gain and multi-beam characteristics.
  • the present application provides an antenna including a dielectric substrate, a folded vibrator and N symmetrical vibrators.
  • an assembly line is provided on the dielectric substrate, and the assembly line has a first end and a second end.
  • the folded vibrator is arranged on the dielectric substrate, and the folded vibrator is located at the first end of the assembly line and connected to the assembly line.
  • N symmetrical vibrators are arranged on the dielectric substrate, and the N symmetrical vibrators are connected to the collection line, where N is an integer greater than or equal to 1.
  • N symmetrical oscillators are arranged in sequence from the first end to the second end of the assembly line, and the N symmetrical oscillators satisfy:
  • n is the serial number of the symmetrical vibrator, and it increases sequentially from the first end to the second end of the set line;
  • R is the distance from the folded vibrator to the virtual vertex of the antenna;
  • R N is the Nth symmetrical vibrator to the virtual vertex of the antenna the distance.
  • L n is the length of the n-th symmetric oscillator;
  • L n+1 is the length of the n+1-th symmetric oscillator.
  • R n is the distance from the n-th symmetric element to the virtual vertex of the antenna;
  • R n+1 is the distance from the n+1-th symmetric element to the virtual vertex of the antenna.
  • d n is the distance between the n th symmetric oscillator and the n+1 th symmetric oscillator; d n+1 is the distance between the n+1 th symmetric oscillator and the n+2 th symmetric oscillator.
  • is the aggregation factor of the antenna.
  • the folded vibrator is used as the top excitation unit of the symmetrical vibrator, which can realize high-frequency bandwidth control.
  • the operating frequency of the reduced oscillator determines the highest operating frequency of the entire antenna
  • the operating frequency of the longest symmetrical oscillator determines the lowest operating frequency of the entire antenna. That is to say, the whole antenna realizes the bandwidth control of different frequency bands through the folded oscillator and the symmetrical oscillator, which is beneficial to increase the working bandwidth of the antenna.
  • the working bandwidth of the antenna needs to be adjusted, it is only necessary to independently adjust factors such as the dimensions of the folded vibrator and the symmetrical vibrator, thereby increasing the convenience of adjustment.
  • the folded oscillator has the characteristics of strong radiation gain in the vertical direction
  • the symmetrical oscillator has the characteristics of omnidirectional radiation direction in the horizontal plane.
  • the assembly line may include a first microstrip line and a second microstrip line.
  • the first microstrip line and the second microstrip line are arranged parallel to each other and have a gap.
  • the folding vibrator includes a first connecting arm and a second connecting arm, the first connecting arm is connected with the first microstrip line, and the second connecting arm is connected with the second microstrip line.
  • Each symmetric vibrator may include a first vibrating arm and a second vibrating arm, and the first vibrating arm and the second vibrating arm are symmetrically arranged with respect to the collection line.
  • Reduced oscillators and symmetrical oscillators can be used to convert current energy into electromagnetic energy and radiate it out, or to receive electromagnetic energy and convert it into current energy, and transmit it to related feeding components (such as feed signal transmitters, feeder electrical signal receiver, etc.).
  • the antenna in order to satisfy the connection between the antenna and the relevant feeding components, the antenna can be connected through one end of the coaxial cable, and the other end of the coaxial cable can be connected with the relevant feeding component.
  • a coaxial cable generally includes a cable core and an outer conductor located around the outer periphery of the cable core.
  • the first connection arm may be provided with a first feed end for connecting with the inner conductor of the coaxial cable
  • the second connection arm may be provided with a second feed end for connection with the outer conductor of the coaxial line .
  • the width of the second feed end is greater than the width of the first feed end.
  • the connection effect between the antenna and the coaxial cable can be improved.
  • the second feed end may also be provided with a through hole, and the inner conductor of the coaxial cable can be connected to the first feed end after passing through the through hole. Therefore, the connection effect between the antenna and the coaxial cable can be guaranteed.
  • the first microstrip line, the second microstrip line, the N symmetrical oscillators and the folded oscillator can be arranged on the same plate surface of the dielectric substrate, or can be arranged on different plate surfaces of the dielectric substrate.
  • first microstrip line and the first vibrating arm may be provided on the first surface of the dielectric substrate
  • second microstrip line and the second vibrating arm may be provided on the second surface of the dielectric substrate
  • first board surface and the second board surface are two board surfaces facing away from each other.
  • the symmetrical vibrator further includes a first auxiliary vibration arm and a second auxiliary vibration arm arranged coaxially, and the first auxiliary vibration arm and the second auxiliary vibration arm are arranged symmetrically about the collection line.
  • the first auxiliary vibrating arm may be located on one side of the first microstrip line, and one end of the first auxiliary vibrating arm close to the first microstrip line is connected to the first microstrip line.
  • the second auxiliary vibrating arm may be disposed on one side of the second microstrip line, and one end of the second auxiliary vibrating arm close to the second microstrip line is connected to the second microstrip line.
  • the first auxiliary vibrating arm is arranged adjacent to the first vibrating arm
  • the second auxiliary vibrating arm is arranged adjacent to the second vibrating arm.
  • the first auxiliary vibrating arm is set closer to the first end of the assembly line than the first vibrating arm.
  • the second auxiliary vibrating arm may be disposed closer to the first end of the assembly line.
  • the length of the first auxiliary vibrating arm and the length of the first vibrating arm may be the same or different.
  • the length of the second auxiliary vibrating arm and the length of the second vibrating arm may be the same or different.
  • the extending end of the first vibrating arm and the extending end of the first auxiliary vibrating arm may be connected to each other.
  • the extending end of the second vibrating arm and the extending end of the second auxiliary vibrating arm may also be connected to each other.
  • an embodiment of the present application further provides a communication device, including a signal processing circuit and the above-mentioned antenna, and the signal processing circuit can be electrically connected to the antenna through a coaxial cable.
  • the communication setting may be a wireless router, a mobile phone, a tablet computer, or the like.
  • the signal processing circuit is electrically connected with the antenna to input or output radio frequency signals.
  • the antenna performance of the electronic device is better, and can realize a wider frequency band and an omnidirectional coverage.
  • FIG. 1 is a schematic plan view of an antenna according to an embodiment of the present application.
  • FIG. 2 is a cross-sectional view of a coaxial cable according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a plane structure of another antenna provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a plane structure of another antenna provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a plane structure of another antenna provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a plane structure of another antenna provided by an embodiment of the present application.
  • FIG. 7 is a top view of an antenna provided by an embodiment of the present application.
  • FIG. 8 is a bottom view of an antenna provided by an embodiment of the present application.
  • FIG. 9 is a simulation diagram of a current distribution of an antenna provided by an embodiment of the present application.
  • 10 is a simulation diagram of radiation intensity of an antenna provided by an embodiment of the application.
  • FIG. 11 is an antenna radiation pattern corresponding to FIG. 10;
  • Fig. 13 is the antenna radiation pattern corresponding to Fig. 12;
  • FIG. 15 is an antenna radiation pattern corresponding to FIG. 14 .
  • the antenna provided by the embodiment of the present application can be applied to a communication device, and is used to enable the communication device to receive or send wireless signals, so as to realize a wireless communication function.
  • the communication device may be a wireless router, a mobile phone, a tablet computer, a notebook computer, a vehicle-mounted device, a wearable device, and the like.
  • a router usually relies on an antenna to generate a WiFi signal with a certain coverage.
  • Devices such as mobile phones and tablet computers located within the coverage area can achieve signal interconnection with the router.
  • the coverage frequency band of WiFi signals is gradually covered by 2G to 5G or even higher frequency bands.
  • the antennas used are mainly half-wave dipole antennas.
  • Half-wave dipole antenna as a commonly used narrowband antenna, has the characteristics of omnidirectional radiation direction in the horizontal plane, and the maximum gain is generally about 2dBi.
  • the operating frequency of the antenna continues to increase, the frequency of the electromagnetic wave emitted by the antenna also increases.
  • the half-wave dipole antenna can only generate a beam of a single frequency band, and the gain in the vertical direction is low, so it cannot achieve full-area coverage.
  • the embodiments of the present application provide an antenna with a large gain, which is beneficial to achieve omnidirectional coverage.
  • references in this specification to "one embodiment” or “some embodiments” and the like mean that a particular feature, structure, or characteristic described in connection with the embodiment is included in one or more embodiments of the present application.
  • appearances of the phrases “in one embodiment,” “in some embodiments,” “in other embodiments,” “in other embodiments,” etc. in various places in this specification are not necessarily All refer to the same embodiment, but mean “one or more but not all embodiments” unless specifically emphasized otherwise.
  • the terms “including”, “including”, “having” and their variants mean “including but not limited to” unless specifically emphasized otherwise.
  • the antenna includes a dielectric substrate 10 , a folded vibrator 30 and four symmetrical vibrators disposed on the dielectric substrate 10 .
  • the four symmetrical oscillators are respectively a symmetrical oscillator 40a, a symmetrical oscillator 40b, a symmetrical oscillator 40c and a symmetrical oscillator 40d.
  • the four symmetrical oscillators are arranged in turn from the first end to the second end of the assembly line 20 (ie from right to left), and the four symmetrical oscillators satisfy:
  • n is the serial number of the symmetrical vibrator, and increases sequentially from the right end to the left end of the collection line 20 . That is, from right to left are the first symmetrical oscillator 40a, the second symmetrical oscillator 40b, the third symmetrical oscillator 40c and the fourth symmetrical oscillator 40d.
  • L n is the length of the n-th symmetric oscillator.
  • the length of the symmetrical vibrator 40d is the sum of the lengths of the first vibrating arm 41 and the second vibrating arm 42 .
  • the length of a symmetrical oscillator is about half the wavelength of the electromagnetic wave it emits (or receives).
  • L n+1 is the length of the n+1th symmetric oscillator.
  • d n is the distance between the n th symmetric oscillator and the n+1 th symmetric oscillator; d n+1 is the distance between the n+1 th symmetric oscillator and the n+2 th symmetric oscillator.
  • is the aggregation factor of the antenna.
  • R n is the distance from the n-th symmetric element to the virtual vertex of the antenna; R n+1 is the distance from the n+1-th symmetric element to the virtual vertex of the antenna.
  • the lengths of the four symmetrical elements 40 satisfy a gradual relationship from large to small. Therefore, the tops of the symmetrical elements 40 located on the upper side of the assembly line 20 are located on the same straight line.
  • the tops of the symmetrical oscillators 40 located on the lower side of the collection line 20 are also located on the same straight line. The intersection of the two straight lines constitutes the virtual vertex O.
  • the antenna can include N symmetrical oscillators, and the N symmetrical oscillators are arranged in sequence from the first end to the second end of the collection line, and the N symmetrical oscillators satisfy the size of the above formula (1). Require.
  • the adjacent symmetrical oscillators can be operated at different phases and amplitudes, and the multi-beam characteristics can be realized by using the coherent superposition of electromagnetic waves of multiple symmetrical oscillators in different directions, which is beneficial to Improve the signal radiation range of the antenna.
  • the value of ⁇ may be reasonably selected according to actual requirements.
  • the value of ⁇ may be 0.5, 0.6, 0.7, etc., which is not limited in this application.
  • the number of symmetrical oscillators can be any value greater than or equal to 1.
  • the antenna may include 2, 3 or more symmetrical vibrators, and the application does not limit the number of symmetrical vibrators.
  • the number of symmetrical vibrators 40 may also be one.
  • the antenna includes a dielectric substrate 10 , a folded vibrator 30 and a symmetrical vibrator 40 disposed on the dielectric substrate 10 .
  • the assembly line 20 is provided on the dielectric substrate 10 ; and the folded vibrator 30 is located at the first end (the right end in the figure) of the assembly line 20 and is connected to the assembly line 20 .
  • the assembly line 20 includes a first microstrip line 21 and a second microstrip line 22, and the first microstrip line 21 and the second microstrip line 22 are arranged parallel to each other and have a gap.
  • the folding vibrator 30 includes a first connecting arm 31 and a second connecting arm 32 .
  • the first connecting arm 31 is connected to the first microstrip line 21
  • the second connecting arm 32 is connected to the second microstrip line 22 .
  • the symmetrical vibrator 40 includes a first vibrating arm 41 and a second vibrating arm 42 , and the first vibrating arm 41 and the second vibrating arm 42 are symmetrically arranged with respect to the assembly line 20 .
  • the folded oscillator 30 and the symmetrical oscillator 40 can be used for converting current energy into electromagnetic energy and radiating it out, or for receiving electromagnetic energy and converting it into current energy.
  • the antenna satisfies:
  • R is folded as the distance from the folded vibrator 30 to the virtual vertex O of the antenna.
  • R N is the distance from the symmetrical element 40 to the virtual vertex of the antenna.
  • is the aggregation factor of the antenna.
  • may specifically be a value smaller than 1 and larger than 0, such as 0.5, 0.6, 0.7, etc.
  • only one symmetrical vibrator 40 and one folded vibrator 30 may be reserved, and the symmetrical vibrator 40 and the folded vibrator 30 may be arranged according to the size requirements of the above formula (2).
  • the folded vibrator 30 is used as the top excitation unit of the symmetrical vibrator 40, and can realize high-frequency bandwidth control.
  • the operating frequency of the reference oscillator 30 determines the highest operating frequency of the entire antenna
  • the operating frequency of the symmetrical oscillator 40 determines the lowest operating frequency of the entire antenna. That is to say, the whole antenna realizes bandwidth control of different frequency bands through the folded vibrator 30 and the symmetrical vibrator 40, which is beneficial to increase the working bandwidth of the antenna.
  • the working bandwidth of the antenna needs to be adjusted, it is only necessary to independently adjust factors such as the dimensions of the folded vibrator 30 and the symmetrical vibrator 40, thereby increasing the convenience of adjustment.
  • the folded oscillator 30 has a strong radiation gain in the vertical direction
  • the symmetrical oscillator 40 has the characteristics of an omnidirectional radiation direction in the horizontal plane.
  • the dielectric substrate 10 may be a printed circuit board, a flexible circuit board or the like.
  • the collection line 20 may be formed on the dielectric substrate 10 by a process such as photolithography.
  • the width dimension of the first microstrip line 21 and the second microstrip line 22 may be the same, so as to ensure the working stability of the symmetrical vibrator 40 and the folded vibrator 30 .
  • the assembly line 20 may also be referred to as a parallel strip line.
  • the first microstrip line 21 and the second microstrip line 22 may maintain a parallel or approximately parallel relationship with each other.
  • the folded vibrator 30 may be a relatively common folded vibrator 30 in the prior art, or the folded vibrator 30 may be miniaturized.
  • the bending structure 331 is provided in the third connecting arm 33 of the folding vibrator 30
  • the bending structure 341 is provided in the fourth connecting arm 34 .
  • the bending structure 331 and the bending structure 341 are beneficial to realize the miniaturization of the folded vibrator 30 , thereby reducing the volume of the folded vibrator 30 .
  • the bending structure 331 and the bending structure 341 are also beneficial to reduce the resonant frequency of the folded vibrator 30, so that the folded vibrator 30 is in the normal working frequency band.
  • the antenna needs to be connected to the signal processing circuit through the coaxial cable 50 .
  • the coaxial cable 50 generally includes a cable core 51 and a cylindrical outer conductor 52 wrapped around the outer periphery of the cable core 51 .
  • the folded vibrator 30 needs to be connected with the coaxial cable 50 .
  • the first connection arm 41 of the folded vibrator 30 is provided with a first feed end 311
  • the second connection arm 42 is provided with a second feed end 321 .
  • the second feed end 321 has a through hole, and the cable core 51 of the coaxial cable 50 is connected to the first feed end 311 after passing through the through hole. Meanwhile, the outer conductor 52 of the coaxial cable 50 is connected to the second feed end 311 .
  • the feeding terminal 321 is connected.
  • the coaxial cable 50 may be outlet in an orthogonal manner.
  • the cable core 51 and the outer conductor 52 of the coaxial cable 50 can be routed perpendicular to the substrate 10 , so that the electromagnetic coupling between the coaxial cable 50 and the antenna is weak, thereby reducing the radiation to the antenna in the coaxial cable 50 performance impact.
  • the width of the second feeding end 321 is larger than that of the first feeding end 321.
  • the width of the electrical terminal 311 Therefore, while ensuring the miniaturization of the antenna, a good connection between the coaxial cable 50 and the antenna can be achieved.
  • the width dimension of the second connecting arm 3232 is greater than the width dimension of the first connecting arm 3131 .
  • a part of the second connecting arm 3232 may also be widened.
  • the lower end of the first connecting arm 31 has a U-shaped structure disposed downward.
  • the upper end of the second connecting arm 32 is provided with a protruding portion, and the protruding portion extends into the U-shaped structure.
  • the structure of the folded vibrator 30 can be reasonably selected and adjusted according to different requirements, which is not limited in this application.
  • the folding oscillator 30 may be formed on the dielectric substrate 10 by a process such as photolithography.
  • the length of the reduced vibrator 30 ie, the sum of the lengths of the first connecting arm 31 and the second connecting arm 32 ) can be reasonably adjusted according to the required antenna bandwidth, which is not limited in this application.
  • the symmetrical vibrator 40 may be formed on the dielectric substrate 10 by a process such as photolithography during fabrication, and the length of the symmetrical vibrator 40 (that is, the sum of the lengths of the first vibrating arm 41 and the second vibrating arm 42 ) can be determined according to the required The antenna bandwidth requirement is adjusted reasonably, which is not limited in this application.
  • the symmetrical oscillator can also be understood as a dipole, a half-wave oscillator, and the like.
  • Symmetrical arrangement of the first vibrating arm 41 and the second vibrating arm 42 refers to the symmetry in position. In specific implementation, the structural dimensions of the first vibrating arm 41 and the second vibrating arm 42 may be the same or different.
  • a single symmetric vibrator may further include a first auxiliary vibration arm and a second auxiliary vibration arm.
  • the first symmetrical vibrator 40d is taken as an example.
  • the first symmetrical vibrator 40 d includes a first vibrating arm 41 , a second vibrating arm 42 , a first auxiliary vibrating arm 43 and a second auxiliary vibrating arm 44 .
  • the first vibrating arm 41 and the second vibrating arm 42 are arranged coaxially and symmetrically with respect to the assembly line 20 .
  • the first auxiliary vibrating arm 43 and the second auxiliary vibrating arm 44 are arranged coaxially and symmetrically with respect to the assembly line 20 .
  • the first auxiliary vibrating arm 43 is located on the right side of the first vibrating arm 41 and maintains a gap
  • the second auxiliary vibrating arm 44 is located on the right side of the second vibrating arm 42 and maintains a gap.
  • the dimensions of the first vibrating arm 41 and the first auxiliary vibrating arm 43 may be the same or different.
  • the dimensions of the second vibrating arm 42 and the second auxiliary vibrating arm 44 may be the same or different.
  • the first vibrating arm 41 and the first auxiliary vibrating arm 43 have the same size, and the second vibrating arm 42 and the second auxiliary vibrating arm 44 are also the same size.
  • the first vibrating arm 41 and the first auxiliary vibrating arm 43 may be combined into an integral structure.
  • the extension ends (upper ends in the figure) of the first vibrating arm 41 and the first auxiliary vibrating arm 43 are connected to each other, so that the first vibrating arm 41 and the first auxiliary vibrating arm 43 are connected to each other.
  • the vibrating arms 43 are combined into a single integral structure.
  • a slit is formed in the middle of the vibrating arm with a larger width, the portion on the left side of the slit constitutes the first vibrating arm 41 , and the portion on the right side of the slit constitutes the first auxiliary vibrating arm 43 .
  • the second vibrating arm 42 and the second auxiliary vibrating arm 44 may also be combined into an integral structure.
  • the second vibrating arm 42 and the second auxiliary vibrating arm 44 may be correspondingly arranged according to the first vibrating arm 41 and the first auxiliary vibrating arm 43 to form a symmetrical structure.
  • first vibrating arm 41 and the first auxiliary vibrating arm 43 are two independent structures, the dimensions of the first vibrating arm 41 and the first auxiliary vibrating arm 43 may also be different.
  • the dimensions of the second vibrating arm 42 and the second auxiliary vibrating arm 44 may also be different.
  • the length of the first auxiliary vibrating arm 43 is slightly smaller than the length of the first vibrating arm 41 .
  • the length of the second auxiliary vibrating arm 44 is slightly smaller than the length of the second vibrating arm 42 .
  • the relative size relationship between the first vibrating arm 41 and the first auxiliary vibrating arm 43 can be correspondingly set according to the actual situation.
  • the relative size relationship between the second vibrating arm 42 and the second auxiliary vibrating arm 44 can also be set correspondingly according to the actual situation, which is not limited in the application itself.
  • the second symmetrical vibrator 40b, the third symmetrical vibrator 40c and the fourth symmetrical vibrator 40d may be correspondingly set according to the structure types of the first symmetrical vibrator 40d, which will not be repeated here.
  • Each symmetric oscillator can be regarded as a whole structure and set accordingly.
  • the first symmetrical vibrator 40d includes the first vibrating arm 41, the second vibrating arm 42, the first auxiliary vibrating arm 43 and the second auxiliary vibrating arm 44, the first vibrating arm 41, the second vibrating arm 42, the first auxiliary vibrating arm 43
  • the combination with the second auxiliary vibrating arm 44 is regarded as an overall structure, and then the positions of the plurality of symmetrical vibrators are arranged according to the size constraints of the above formula (2).
  • the symmetrical vibrator 40 , the folded vibrator 30 , the first microstrip line 21 and the second microstrip line 22 may be arranged on the same surface of the dielectric substrate 10 , or may be arranged on two different plates of the dielectric substrate 10 respectively. face.
  • the four symmetrical vibrators 40 , the first microstrip line 21 , the second microstrip line 22 and the folded vibrator 30 are all arranged on the same plate on the dielectric substrate 10 noodle.
  • the first microstrip line 21 is arranged on the first board surface (eg, the upper board surface) of the dielectric substrate 10
  • the second microstrip line 22 is arranged on the first board surface (eg, the upper board surface) of the dielectric substrate 10 .
  • the second board surface of the dielectric substrate 10 (as follows). Wherein, the first microstrip line 21 and the second microstrip line 22 also maintain a positional relationship parallel to each other, and the projection of the second microstrip line 22 on the first board surface and the first microstrip line 21 still maintain a predetermined relationship gap.
  • the projection of the second microstrip line 22 on the first board surface may also overlap or partially overlap with the first microstrip line 21 . That is, the thickness of the base substrate 10 may constitute a gap between the first microstrip line 21 and the second microstrip line 22 .
  • the first vibrating arm 41 and the first auxiliary vibrating arm 43 of the first symmetrical vibrator 40 are both located on the first surface of the dielectric substrate 10 and connected to the first microstrip line 21 .
  • the second vibrating arm 42 and the second auxiliary vibrating arm 44 of the first symmetrical vibrator 40 are both located on the second surface of the dielectric substrate 10 and connected to the second microstrip line 22 .
  • the second symmetrical vibrator 40 , the third symmetrical vibrator 40 and the fourth symmetrical vibrator 40 are all set correspondingly according to the setting positions of the first symmetrical vibrator 40 , which will not be repeated here.
  • the folded vibrator 30 in the embodiment provided in this application, the folded vibrator 30 is located on the first board surface of the dielectric substrate 10 , and the first connecting arm 31 is connected to the first microstrip line 21 .
  • structures such as via holes may be provided on the dielectric substrate 10
  • the second connecting arm 32 may be connected to the second microstrip line 22 through structures such as via holes.
  • the folded vibrator 30 is also disposed on the second surface of the dielectric substrate 10 .
  • the first vibrating arm 41 can be connected to the first microstrip line 21 through structures such as vias.
  • the current distribution diagram of the antenna is shown. It can be seen from the figure that the current distribution density is relatively high at the folded vibrator 30 .
  • the distribution density of the current from left to right shows an increasing trend.
  • the reduced oscillator 30 and the symmetrical oscillator 40 with a shorter length are mainly responsible for transmitting and receiving high-frequency electromagnetic signals, and the symmetrical oscillator 40 with a longer length (such as the first symmetrical oscillator 40 ) is mainly responsible for low-frequency electromagnetic signals. transmission and reception.
  • the attenuation and penetration performance of high-frequency electromagnetic signals are lower than those of low-frequency electromagnetic signals. Therefore, on the whole, the antenna provided by the embodiment of the present application can ensure that the high-frequency signal has sufficient radiation intensity and coverage, and at the same time, it can also effectively take into account the radiation intensity and coverage of the low-frequency signal.
  • FIG. 10 a data simulation diagram of the radiation intensity of the antenna in the X-Y direction is shown.
  • the antenna radiation pattern (aka pattern) in the X-O-Y direction is shown. That is, in the X-O-Y direction, the radiated signal of the antenna exhibits a double-beam characteristic.
  • FIG. 12 a data simulation diagram of the radiation intensity of the antenna in the Y-Z direction is shown.
  • Figure 13 the antenna radiation pattern in the Y-O-Z direction is shown. That is, in the Y-O-Z direction, the radiation signal of the antenna exhibits a three-beam characteristic.
  • FIG. 14 a data simulation diagram of the radiation intensity of the antenna in the X-Z direction is shown.
  • the antenna radiation pattern in the X-O-Z direction is shown. That is, in the X-O-Z direction, the radiated signal of the antenna exhibits a double-beam characteristic.
  • the antenna provided by the embodiments of the present application can achieve an omnidirectional radiation range within a three-dimensional space range, and can achieve a multi-beam characteristic, thereby helping to improve the use effect of the antenna.
  • an embodiment of the present application also provides a communication device, the communication device includes the above-mentioned antenna, and the communication device may be an optical network unit (Optical network unit, ONU), an access point (Access Point, AP), a station (Station) , STA), wireless routers, mobile phones, tablet computers, or any other electronic devices that use the above antennas.
  • the communication device may also be a module including the above-mentioned antenna, or the like.
  • the communication device may also include a signal processing circuit that is electrically connected to the antenna to input or output radio frequency signals.
  • the signal processing circuit may be electrically connected to the antenna through a transmission medium.
  • the transmission medium can be, for example, a coaxial cable, or any other medium.
  • the antenna performance of the electronic device is better, and can realize a wider frequency band and an omnidirectional coverage.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Abstract

本申请提供了一种天线和通信设备,涉及通信技术领域,以解决天线覆盖范围局限的技术问题。本申请提供的天线包括介质基板、折合振子和N个对称振子;介质基板上设有集合线,且集合线具有第一端和第二端;折合振子位于集合线的第一端,并与集合线连接;N个对称振子设置在介质基板上,且N个对称振子与集合线连接;在本申请提供的天线中,通过折合振子和对称振子共同实现不同频段的带宽控制,从而有利于增加天线的工作带宽,另外,将折合振子和对称振子按照一定的尺寸要求进行排布后,折合振子和对称振子所产生的电磁波能够实现相干叠加,从而能够实现多波束特性,有利于实现天线的全向覆盖范围。

Description

一种天线和通信设备
本申请要求于2020年12月22日提交中国国家知识产权局、申请号为202011528553.6、申请名称为“一种天线和通信设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种天线和通信设备。
背景技术
在目前的无线通信设备中,所采用的天线主要以半波偶极子天线为主。半波偶极子天线作为一种常用的窄带天线,具有水平面全向的辐射方向等特点,最大增益一般在2dBi左右。在实际应用中,半波偶极子天线一般包括一对对称设置的导体构成,且两个导体相互靠近的两端分别与馈电线相连,其中,两个导体长度的总和大致等于其工作频率的一半。随着天线工作频率的不断提高,天线所发射的电磁波的频率也随之提高。但是,相较于低频电磁波,在相同传播距离下,高频电磁波的会有明显的衰减,且绕设能力和墙体穿透能力都存在明显不足。但是,由于半波偶极子所发射的电磁波频率与其尺寸高度相关,导致半波偶极子天线只能产生单一频带的波束,且在垂直方向上的增益较低,无法实现全区域的覆盖。
发明内容
本申请提供了一种覆盖范围广、有利于实现高增益和多波束特性的天线和通信设备。
一方面,本申请提供了一种天线,包括介质基板、折合振子和N个对称振子。其中,介质基板上设有集合线,且集合线具有第一端和第二端。折合振子设置在介质基板上,折合振子位于集合线的第一端,并与集合线连接。N个对称振子,设置在介质基板上,且N个对称振子与集合线连接,其中,N为大于或等于1的整数。
天线满足:
Figure PCTCN2021124762-appb-000001
在N大于1时,N个对称振子由集合线的第一端向第二端依次设置,且N个对称振子满足:
Figure PCTCN2021124762-appb-000002
其中,n为对称振子的序号,且自集合线的第一端向第二端顺序递增;R 为折合振子到天线的虚拟顶点的距离;R N为第N个对称振子到天线的虚拟顶点的距离。L n为第n个对称振子的长度;L n+1为第n+1个对称振子的长度。R n为第n个对称振子到天线的虚拟顶点的距离;R n+1为第n+1个对称振子到天线的虚拟顶点的距离。d n为第n个对称振子与第n+1个对称振子的间距;d n+1为第n+1个对称振子与第n+2个对称振子的间距。τ为天线的集合因子。
在本申请提供的天线中,折合振子作为对称振子的顶部激励单元,可以实现高频带宽 控制。或者,也可以理解为,折合振子的工作频率决定着整个天线的最高工作频率,最长的对称振子的工作频率决定着整个天线的最低工作频率。即整个天线通过折合振子和对称振子共同实现不同频段的带宽控制,从而有利于增加天线的工作带宽。另外,当需要对天线的工作带宽进行调整时,只需要对折合振子和对称振子的尺寸等因数进行独立调整即可,从而增加了调整时的便利性。另外,折合振子由于具有较强垂直方向上的辐射增益,且对称振子具有水平面全向的辐射方向等特点。将折合振子和对称振子按照上述的尺寸要求进行排布后,折合振子和对称振子所产生的电磁波能够实现相干叠加,从而能够实现多波束特性。因此,通过折合振子和对称振子的叠加,有利于实现天线的全向覆盖范围。例如,当配备有上述天线的无线路由器应用到多楼层结构中时,不仅能够保证同楼层内WiFi信号的覆盖范围,还能够提升上、下楼层WiFi信号的覆盖范围。
另外,当对称振子的设置数量为多个时,通过上式的尺寸约束对多个对称振子的位置进行排布,能够有效提升天线的带宽,且有利于实现多波束特性,从而有利于实现天线的全兴覆盖范围。
在具体设置时,集合线可以包括第一微带线和第二微带线。其中,第一微带线和第二微带线相互平行设置,且具有间隙。折合振子包括第一连接臂和第二连接臂,第一连接臂与第一微带线连接,第二连接臂与第二微带线连接。每个对称振子可以包括第一振臂和第二振臂,且第一振臂和第二振臂关于集合线对称设置。折合振子和对称振子可用于将电流能量转化为电磁能量并辐射出去,或者用于接收电磁能量并转化为电流能量,并通过集合线传输至相关馈电组件中(如馈电信号发射器、馈电信号接收器等)。
其中,为了满足天线与相关馈电组件之间的连接,天线可以通过同轴线缆的一端进行连接,同轴线缆的另一端可以与相关馈电组件进行连接。同轴线缆一般包括缆芯和位于缆芯外围的外导体。在具体实施时,第一连接臂可以设置用于与同轴线的内导体连接的第一馈电端,第二连接臂可以设置用于与同轴线的外导体连接的第二馈电端。考虑到外导体的尺寸大于缆芯的尺寸,因此,在具体设置时,第二馈电端的宽度大于第一馈电端的宽度。从而可以提升天线与同轴线缆之间的连接效果。在另一些实施方式中,第二馈电端还可以设置通孔,同轴线的内导体穿设通孔后可以与第一馈电端连接。从而可以保证天线与同轴线缆之间的连接效果。
另外,在具体设置时,第一微带线、第二微带线、N个对称振子和折合振子既可以设置在介质基板的同一板面上,也可以设置在介质基板的不同板面上。
例如,第一微带线和第一振臂可以设置在介质基板的第一板面,第二微带线和第二振臂可以设置在介质基板的第二板面。其中,第一板面和第二板面为相背离的两个板面。
在一些实施方式中,对称振子中还包括同轴设置的第一辅助振臂和第二辅助振臂,第一辅助振臂和第二辅助振臂关于集合线对称设置。其中,第一辅助振臂可以位于第一微带线的一侧,且第一辅助振臂靠近第一微带线的一端与第一微带线连接。第二辅助振臂可以设置在第二微带线的一侧,且第二辅助振臂靠近第二微带线的一端与第二微带线连接。其中,第一辅助振臂与第一振臂相邻设置,第二辅助振臂与第二振臂相邻设置。通过第一辅助振臂和第二振臂可以有效提升天线的辐射性能,从而有利于提升其信号辐射范围。
在具体设置时,第一辅助振臂相较于第一振臂靠近集合线的第一端进行设置。第二辅助振臂相较于第二振臂可以靠近集合线的第一端进行设置。
另外,第一辅助振臂的长度与第一振臂的长度可以相同也可以不同。相应的,第二辅 助振臂的长度与第二振臂的长度可以相同也可以不同。
在一些实现方式中,第一振臂的延伸端和第一辅助振臂的延伸端可以相互连接。第二振臂的延伸端和第二辅助振臂的延伸端也可以相互连接。
另外,本申请实施例还提供了一种通信设备,包括信号处理电路和上述的天线,信号处理电路可以通过同轴线缆与天线电连接。其中,通信设置可以是无线路由器、手机、平板电脑等。信号处理电路与天线电连接,以输入或输出射频信号。该电子设备的天线性能较佳,能够实现较宽的频带和全向覆盖范围。
附图说明
图1为本申请实施例提供的一种天线的平面结构示意图;
图2为本申请实施例提供的一种同轴线缆的截面图;
图3为本申请实施例提供的另一种天线的平面结构示意图;
图4为本申请实施例提供的另一种天线的平面结构示意图;
图5为本申请实施例提供的另一种天线的平面结构示意图;
图6为本申请实施例提供的另一种天线的平面结构示意图;
图7为本申请实施例提供的一种天线的顶视图;
图8为本申请实施例提供的一种天线的仰视图;
图9为本申请实施例提供的一种天线的电流分布仿真图;
图10为本申请实施例提供的一种天线的辐射强度的仿真图;
图11为对应图10的天线辐射方向图;
图12为本申请实施例提供的一种天线的辐射强度的仿真图;
图13为对应图12的天线辐射方向图;
图14为本申请实施例提供的一种天线的辐射强度的仿真图;
图15为对应图14的天线辐射方向图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
为了方便理解本申请实施例提供的天线,下面首先介绍一下其应用场景。
本申请实施例提供的天线可以应用在通信设备中,用于使通信设备接收或发送无线信号,以实现无线通信功能。该通信设备可以为无线路由器、手机、平板电脑、笔记本电脑、车载设备、可穿戴设备等。
以路由器为例,路由器通常依靠天线产生具有一定覆盖范围的WiFi信号。位于该覆盖范围内的手机、平板电脑等设备可以与路由器实现信号互联。为了实现更高速率的信号传输,WiFi信号的覆盖频段逐渐由2G覆盖到5G甚至更高的频段。在目前的路由器中,所采用的天线主要以半波偶极子天线为主。半波偶极子天线作为一种常用的窄带天线,具有水平面全向的辐射方向等特点,最大增益一般在2dBi左右。随着天线工作频率的不断提高,天线所发射的电磁波的频率也随之提高。但是,相较于低频电磁波,在相同传播距离下,高频电磁波的会有明显的衰减,且绕设能力和墙体穿透能力都存在明显不足。但是,由于半波偶极子所发射的电磁波频率与其尺寸高度相关,导致半波偶极子天线只能产生单 一频带的波束,且在垂直方向上的增益较低,无法实现全区域的覆盖。
另外,对于常规的定向天线,往往呈现的是单波束特性,在提升增益的过程中,其覆盖范围会有所降低。相应的,在增加其覆盖范围的过程中,其增益会有明显的降低。因此,对于定向天线,增益和覆盖范围是一个此消彼长的关系,从而不能同时实现高增益和较大的覆盖范围的效果。
为此,本申请实施例提供了一种增益较大,有利于实现全向覆盖范围的天线。
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图和具体实施例对本申请作进一步地详细描述。
以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。还应当理解,在本申请以下各实施例中,“至少一个”、“一个或多个”是指一个、两个或两个以上。术语“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系;例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A、B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
如图1所示,在本申请提供的一个实施例中,天线包括介质基板10以及设置在介质基板10上的折合振子30和四个对称振子。其中,四个对称振子分别为对称振子40a、对称振子40b、对称振子40c和对称振子40d。四个对称振子由集合线20的第一端向第二端(即由右向左)依次设置,且四个对称振子满足:
Figure PCTCN2021124762-appb-000003
其中,n为对称振子的序号,且自集合线20的右端向左端顺序递增。即由右到左分别为第一个对称振子40a、第二个对称振子40b、第三个对称振子40c和第四个对称振子40d。
L n为第n个对称振子的长度。例如,在第四个对称振子40d中,对称振子40d的长度为第一振臂41和第二振臂42的长度总和。通常情况下,对称振子的长度约等于其所发射(或接收)电磁波的波长的一半。
L n+1为第n+1个对称振子的长度。
d n为第n个对称振子与第n+1个对称振子的间距;d n+1为第n+1个对称振子与第n+2个对称振子的间距。τ为天线的集合因子。
R n为第n个对称振子到天线的虚拟顶点的距离;R n+1为第n+1个对称振子到天线的虚拟顶点的距离。在图1中所示出的天线结构中,四个对称振子40的长度满足从大到小的渐变关系,因此,位于集合线20上侧的对称振子40的顶端位于同一直线上。相应的,位于集合线20下侧的对称振子40的顶端也位于同一直线上。两条直线的交点便构成该虚拟顶点O。
概括来说,在具体应用时,天线中可以包含N个对称振子,且N个对称振子由集合线的第一端向第二端依次设置,且N个对称振子满足上式(1)的尺寸要求。
其中,通过上式(1)的尺寸要求,可以使相邻的对称振子在不同相位和幅度下工作,并利用多个对称振子在不同方向上的电磁波相干叠加,实现多波束特性,从而有利于提升天线的信号辐射范围。
在具体应用时,可以根据实际需求对τ的取值进行合理选择,例如,τ的取值可以为0.5、0.6、0.7等,本申请对此不作限定。
可以理解的是,在具体应用时,对称振子的设置数量可以是大于或等于1的任何数值。例如,天线中可以包含2个、3个或者更多个对称振子,本申请对对称振子的设置数量不作限制。
另外,在具体应用时,对称振子40的设置数量也可以是一个。
例如,如图2所示,在本申请提供的一个实施例中,天线包括介质基板10以及设置在介质基板10上的折合振子30和一个对称振子40。介质基板10上设有集合线20;且折合振子30位于集合线20的第一端(图中的右端),并与集合线20连接。具体来说,集合线20包括第一微带线21和第二微带线22,第一微带线21和第二微带线22相互平行设置,且具有间隙。折合振子30包括第一连接臂31和第二连接臂32,第一连接臂31与第一微带线21连接,第二连接臂32与第二微带线22连接。对称振子40包括第一振臂41和第二振臂42,且第一振臂41和第二振臂42关于集合线20对称设置。折合振子30和对称振子40可用于将电流能量转化为电磁能量并辐射出去,或者用于接收电磁能量并转化为电流能量。且天线满足:
Figure PCTCN2021124762-appb-000004
R 为折合振子30到天线的虚拟顶点O的距离。
R N为对称振子40到天线的虚拟顶点的距离。
τ为天线的集合因子。在实际应用中,τ具体可以是0.5、0.6、0.7等小于1且大于0的数值。
概括来说,在本申请实施例提供的天线中,可以仅保留一个对称振子40和折合振子30,且对称振子40和折合振子30可以按照上式(2)的尺寸要求进行排列。
在本申请实施提供的天线中,折合振子30作为对称振子40的顶部激励单元,可以实现高频带宽控制。或者,也可以理解为,折合振子30的工作频率决定着整个天线的最高工作频率,对称振子40的工作频率决定着整个天线的最低工作频率。即整个天线通过折合振子30和对称振子40共同实现不同频段的带宽控制,从而有利于增加天线的工作带宽。另外,当需要对天线的工作带宽进行调整时,只需要对折合振子30和对称振子40的尺寸等因数进行独立调整即可,从而增加了调整时的便利性。另外,折合振子30由于具有较强垂直方向上的辐射增益,且对称振子40具有水平面全向的辐射方向等特点。将折合振子30和对称振子40按照上述的尺寸要求进行排布后,折合振子30和对称振子40所产生的电磁波能够实现相干叠加,从而能够实现多波束特性。因此,通过折合振子30和对称振子40的叠加,有利于实现天线的全向覆盖范围。例如,当配备有上述天线的无线路由器应用到多楼层结构中时,不仅能够保证同楼层内WiFi信号的覆盖范围,还能够提升上、下楼层WiFi信号的覆盖范围。
在具体实施时,介质基板10可以是印制电路板、柔性电路板等结构。集合线20可以 采用光刻等工艺形成在介质基板10上。其中,第一微带线21和第二微带线22的宽度尺寸可以相同,以保证对称振子40和折合振子30的工作稳定性。在具体实施时,集合线20也可以称为平行带线。其中,第一微带线21和第二微带线22之间可以保持相互平行或近似平行的关系。
在具体实施时,折合振子30可以采用现有技术中较为常见的折合振子30,或者也可以对折合振子30进行小型化处理。
例如,在本申请提供的实施例中,折合振子30的第三连接臂33中设有弯折结构331,第四连接臂34中设有弯折结构341。通过弯折结构331和弯折结构341有利于实现折合振子30的小型化,从而降低折合振子30的体积。另外,通过弯折结构331和弯折结构341还有利于降低折合振子30的谐振频率,使折合振子30处于正常的工作频段内。
另外,请参阅图3。在实际应用中,天线需要通过同轴线缆50与信号处理电路进行连接。其中,同轴线缆50一般包括缆芯51和包裹在缆芯51外围的筒形外导体52。折合振子30作为天线的激励单元,需要与同轴线缆50进行连接。
请结合参阅图2和图3。具体来说,折合振子30的第一连接臂41上设有第一馈电端311,第二连接臂42上设有第二馈电端321。其中,第二馈电端321具有通孔,同轴线缆50的缆芯51穿过通孔后,与第一馈电端311连接,同时,同轴线缆50的外导体52与第二馈电端321连接。在具体实施时,同轴线缆50可以采用正交的方式进行出线。例如,同轴线缆50的缆芯51和外导体52可以垂直于基板10进行出线,从而使得同轴线缆50与天线之间电磁耦合较弱,从而降低同轴线缆50中对天线辐射性能的影响。
考虑到同轴线缆50的外导体52尺寸大于缆芯51的尺寸,因此,为了使得同轴线缆50能够与天线之间实现良好的连接,第二馈电端321的宽度大于第一馈电端311的宽度。从而在保证了天线小型化的同时,能够实现同轴线缆50与天线之间的良好连接。可以理解的是,在本申请提供的实施例中,第二连接臂3232的宽度尺寸大于第一连接臂3131的宽度尺寸。然而在其他的实施方式中,也可以对第二连接臂3232的局部进行加宽处理。
另外,为了改善折合振子30的阻抗,在本申请提供的实施例中,第一连接臂31的下端具有朝下设置的U形结构。相应的,在第二连接臂32的上端,设有凸出部,且凸出部延伸至U形结构内。
可以理解的是,在具体应用时,可以根据不同需求对折合振子30的结构进行合理选择和调整,本申请对此不作限定。
另外,在进行制作时,折合振子30可以通过光刻等工艺形成在介质基板10上。其中,折合振子30的长度(即第一连接臂31和第二连接臂32的长度总和),可以根据所需的天线带宽需求进行合理调整,本申请对此不作限定。
对于对称振子40,在进行制作时,可以采用光刻等工艺形成在介质基板10上,且对称振子40的长度(即第一振臂41和第二振臂42的长度总和),可以根据所需的天线带宽需求进行合理调整,本申请对此不作限定。其中,对称振子也可以理解为偶极子、半波振子等。第一振臂41和第二振臂42对称设置指的是位置上的对称,在具体实施时,第一振臂41和第二振臂42的结构尺寸可以相同也可以不同。
另外,在具体应用时,单个对称振子中还可以包括第一辅助振臂和第二辅助振臂。
如图4所示,以第一对称振子40d为例。在本申请提供的一个实施例中,第一对称振子40d中包括第一振臂41、第二振臂42、第一辅助振臂43和第二辅助振臂44。其中,第 一振臂41和第二振臂42同轴设置,且关于集合线20对称设置。第一辅助振臂43和第二辅助振臂44同轴设置,且关于集合线20对称设置。第一辅助振臂43位于第一振臂41的右侧,且保持间隙,第二辅助振臂44位于第二振臂42的右侧,且保持间隙。通过增加第一辅助振臂43和第二辅助振臂44,可以提升第一对称振子40d的电磁辐射效率和接收能力。
在具体实施时,第一振臂41和第一辅助振臂43的尺寸可以相同也可以不同。相应的,第二振臂42和第二辅助振臂44的尺寸可以相同也可以不同。
请继续参阅图4,在本申请提供的实施例中,第一振臂41和第一辅助振臂43的尺寸相同、第二振臂42和第二辅助振臂44的尺寸也相同。
另外,在实际应用中,由于第一振臂41和第一辅助振臂43上的电流分布几乎相同,因此,第一振臂41和第一辅助振臂43可以合为一个整体结构。
例如,如图5所示,在本申请提供的一个实施例中,第一振臂41和第一辅助振臂43的延伸端(图中的上端)相互连接,从而使得第一振臂41和第一辅助振臂43合为一个整体结构。或者,也可以理解为在宽度较大的振臂的中部形成缝隙,位于缝隙的左侧的部分构成第一振臂41,位于缝隙右侧的部分构成第一辅助振臂43。
相应的,由于第二振臂42和第二辅助振臂44的上的电流分布几乎相同,因此,第二振臂42和第二辅助振臂44也可以合为一个整体结构。在具体设置时,第二振臂42和第二辅助振臂44可以依照第一振臂41和第一辅助振臂43进行对应设置,以形成对称结构。
另外,当第一振臂41和第一辅助振臂43为两个相互独立的结构时,第一振臂41和第一辅助振臂43的尺寸也可以不同。相应的,第二振臂42和第二辅助振臂44的尺寸也可以不同。
例如,如图6所示,在本申请提供的另一个实施例中,第一辅助振臂43的长度略小于第一振臂41的长度。相应的,第二辅助振臂44的长度略小于第二振臂42的长度。
可以理解的是,在具体应用时,第一振臂41和第一辅助振臂43之间的相对尺寸关系可以根据实际情况进行对应设置。相应的,第二振臂42和第二辅助振臂44之间的相对尺寸关系也可以根据实际情况进行对应设置,本身申请对此不作限定。
另外,对于第二对称振子40b、第三对称振子40c和第四对称振子40d可以依照上述的第一对称振子40d的结构类型进行对应设置,在此不作赘述。
另外,在对四个对称振子的相对位置进行排布时。可以将每个对称振子看作一个整体结构进行对应设置。例如,当第一对称振子40d中包括第一振臂41、第二振臂42、第一辅助振臂43和第二辅助振臂44时,可以将第一振臂41、第二振臂42、第一辅助振臂43和第二辅助振臂44的组合看作整体结构,然后依照上述公式(2)的尺寸约束对多个对称振子进行位置排布。
在具体应用时,对称振子40、折合振子30、第一微带线21和第二微带线22可以设置在介质基板10的同一板面,也可以分别设置在介质基板10的两个不同板面上。
例如,如图6所示,在本申请提供的实施例中,四个对称振子40、第一微带线21、第二微带线22和折合振子30均设置在介质基板10的上同一板面。
如图7和图8所示,在本申请提供的另一个实施例中,第一微带线21设置在介质基板10的第一板面(如上板面),第二微带线22设置在介质基板10的第二板面(如下板面)。其中,第一微带线21和第二微带线22同样保持相互平行的位置关系,且第二微带线22 在第一板面上的投影与第一微带线21之间仍保持预定间隙。可以理解的是,在另外的实施方式中,第二微带线22在第一板面上的投影与第一微带线21也可以重叠或部分重叠。即,基质基板10的厚度可以构成第一微带线21和第二微带线22之间的缝隙。第一对称振子40的第一振臂41和第一辅助振臂43均位于介质基板10的第一板面,且均与第一微带线21连接。第一对称振子40的第二振臂42和第二辅助振臂44均位于介质基板10的第二板面,且均与第二微带线22连接。对于第二对称振子40、第三对称振子40和第四对称振子40均依照第一对称振子40的设置位置进行对应设置,在此不作赘述。
对于折合振子30,在本申请提供的实施例中,折合振子30位于介质基板10的第一板面,且第一连接臂31与第一微带线21连接。在实际应用中,可以在介质基板10上设置过孔等结构,第二连接臂32可以通过过孔等结构与第二微带线22进行连接。可以理解的是,在其他的实施方式中,折合振子30也设置在介质基板10的第二板面,此时,第一振臂41可以通过过孔等结构与第一微带线21进行连接。
下面,将以图4中所示出的天线为例,通过实验数据的方式对其有益效果进行说明:
如图9所示,示出了天线的电流分布图。由图中可以看出,在折合振子30处,电流的分布密度较高。在四个对称振子40中,由左到右电流的分布密度呈现出增高的趋势。折合振子30和长度较短的对称振子40(如第四对称振子40)主要负责高频电磁信号的发射和接收,长度较长的对称振子40(如第一对称振子40)主要负责低频电磁信号的发射和接收。另外,在传播过程中,由于高频电磁信号的衰减和穿透性能要低于低频电磁信号。因此,综合来看,本申请实施例提供的天线能够保证高频信号有足够的辐射强度和覆盖范围,同时,还能够有效兼顾低频信号的辐射强度和覆盖范围。
另外,如图10所示,示出了在X-Y方向上,天线辐射强度的数据仿真图。在图11中,示出了在X-O-Y方向上的天线辐射图(又称方向图)。即在X-O-Y方向上,天线的辐射信号呈现出了双波束特性。
另外,如图12所示,示出了在Y-Z方向上,天线辐射强度的数据仿真图。在图13中,示出了在Y-O-Z方向上的天线辐射图。即在Y-O-Z方向上,天线的辐射信号呈现出了三波束特性。
另外,如图14所示,示出了在X-Z方向上,天线辐射强度的数据仿真图。在图15中,示出了在X-O-Z方向上的天线辐射图。即在X-O-Z方向上,天线的辐射信号呈现出了双波束特性。
综合来看,本申请实施例提供的天线,在立体的空间范围内能够实现全向的辐射范围,并能够实现多波束特性,从而有利于提升天线的使用效果。
另外,本申请实施例还提供了一种通信设备,该通信设备包括上述天线,该通信设备可以是光网络单元(Optical network unit,ONU)、接入点(Access Point,AP)、站点(Station,STA)、无线路由器、手机、平板电脑,或者其他任何采用上述天线的电子设备等。或者,该通信设备也可以为包括上述天线的模块等。该通信设备还可以包括信号处理电路,信号处理电路与天线电连接,以输入或输出射频信号。信号处理电路可以通过传输媒介与天线电连接。传输媒介例如可以为同轴电缆、或者其他任何媒介等。该电子设备的天线性能较佳,能够实现较宽的频带和全向覆盖范围。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本 申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (14)

  1. 一种天线,其特征在于,包括:
    介质基板;
    集合线,设置在所述介质基板上,且所述集合线具有第一端和第二端;
    折合振子,设置在所述介质基板上,所述折合振子位于所述集合线的第一端,并与所述集合线连接;
    N个对称振子,设置在所述介质基板上,且所述N个对称振子与所述集合线连接;其中,N为大于或等于1的整数;
    所述天线满足:
    Figure PCTCN2021124762-appb-100001
    在N大于1时,N个所述对称振子由所述集合线的第一端向第二端依次设置,且N个所述对称振子满足:
    Figure PCTCN2021124762-appb-100002
    其中,n为所述对称振子的序号,且自所述集合线的第一端向第二端顺序递增;R 为折合振子到所述天线的虚拟顶点的距离;R N为第N个对称振子到所述天线的虚拟顶点的距离;L n为第n个对称振子的长度;L n+1为第n+1个对称振子的长度;R n为第n个对称振子到所述天线的虚拟顶点的距离;R n+1为第n+1个对称振子到所述天线的虚拟顶点的距离;d n为第n个对称振子与第n+1个对称振子的间距;d n+1为第n+1个对称振子与第n+2个对称振子的间距;τ为所述天线的集合因子。
  2. 根据权利要求1所述的天线,其特征在于,所述集合线包括第一微带线和第二微带线;
    所述第一微带线和所述第二微带线相互平行设置,且所述第一微带线和所述第二微带线之间具有间隙。
  3. 根据权利要求2所述的天线,其特征在于,所述对称振子包括第一振臂和第二振臂,所述第一振臂和所述第二振臂关于所述集合线对称设置;
    其中,所述第一振臂位于所述第一微带线的一侧,且所述第一振臂靠近所述第一微带线的一端与所述第一微带线连接;所述第二振臂位于所述第二微带线的一侧,且所述第二振臂靠近所述第二微带线的一端与所述第二微带线连接。
  4. 根据权利要求2或3所述的天线,其特征在于,所述折合振子包括第一连接臂和第二连接臂,所述第一连接臂与所述第一微带线的一端连接,所述第二连接臂与所述第二微带线的一端连接。
  5. 根据权利要求4所述的天线,其特征在于,所述第一连接臂具有用于与同轴线的内导体连接的第一馈电端,所述第二连接臂具有用于与同轴线的外导体连接的第二馈电端。
  6. 根据权利要求5所述的天线,其特征在于,所述第二馈电端的宽度大于所述第一馈电端的宽度。
  7. 根据权利要求4至6中任一所述的天线,其特征在于,所述第二馈电端具有通孔,所述同轴线的内导体穿设所述通孔后与所述第一馈电端连接。
  8. 根据权利要求2至7中任一所述的天线,其特征在于,所述第一微带线、所述第二微带线、所述N个对称振子和所述折合振子位于所述介质基板的同一板面上。
  9. 根据权利要求3至7中任一所述的天线,其特征在于,所述第一微带线和所述第一振臂位于所述介质基板的第一板面,所述第二微带线和所述第二振臂位于所述介质基板的第二板面;
    其中,所述第一板面和所述第二板面为相背离的两个板面。
  10. 根据权利要求9所述的天线,其特征在于,所述折合振子位于所述介质基板的第一板面或第二板面。
  11. 根据权利要求3至10中任一所述的天线,其特征在于,所述对称振子还包括第一辅助振臂和第二辅助振臂,所述第一辅助振臂和所述第二辅助振臂关于所述集合线对称设置;
    其中,所述第一辅助振臂位于所述第一微带线的一侧,且所述第一辅助振臂靠近所述第一微带线的一端与所述第一微带线连接;所述第二辅助振臂位于所述第二微带线的一侧,且所述第二辅助振臂靠近所述第二微带线的一端与所述第二微带线连接;
    其中,所述第一辅助振臂与所述第一振臂相邻设置,所述第二辅助振臂与所述第二振臂相邻设置。
  12. 根据权利要求11所述的天线,其特征在于,所述第一辅助振臂相较于所述第一振臂靠近所述集合线的第一端设置,且所述第一辅助振臂的长度小于所述第一振臂的长度;
    所述第二辅助振臂相较于所述第二振臂靠近所述集合线的第一端设置,且所述第二辅助振臂的长度小于所述第二振臂的长度。
  13. 根据权利要求11或12所述的天线,其特征在于,所述第一振臂的延伸端和所述第一辅助振臂的延伸端相互连接;所述第二振臂的延伸端和所述第二辅助振臂的延伸端相互连接。
  14. 一种通信设备,其特征在于,包括信号处理电路和如权利要求1至13中任一项所述的天线,所述信号处理电路与所述天线电连接。
PCT/CN2021/124762 2020-12-22 2021-10-19 一种天线和通信设备 WO2022134786A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011528553.6A CN114665260B (zh) 2020-12-22 2020-12-22 一种天线和通信设备
CN202011528553.6 2020-12-22

Publications (1)

Publication Number Publication Date
WO2022134786A1 true WO2022134786A1 (zh) 2022-06-30

Family

ID=82024669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/124762 WO2022134786A1 (zh) 2020-12-22 2021-10-19 一种天线和通信设备

Country Status (2)

Country Link
CN (1) CN114665260B (zh)
WO (1) WO2022134786A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115882187A (zh) * 2023-02-22 2023-03-31 广东健博通科技股份有限公司 一种侧射式全向天线
CN116345137A (zh) * 2023-05-30 2023-06-27 佛山市粤海信通讯有限公司 一种低频振子及低频天线

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2084663U (zh) * 1991-01-07 1991-09-11 宋晓光 全频道电视接收天线
JP2003124734A (ja) * 2001-10-18 2003-04-25 Mitsubishi Electric Corp 対数周期アンテナ装置及びアレーアンテナ装置
US20040233110A1 (en) * 2003-05-20 2004-11-25 Zhen-Da Hung Antenna with metal ground
CN1957503A (zh) * 2005-04-07 2007-05-02 松下电器产业株式会社 天线装置
WO2009067472A1 (en) * 2007-11-19 2009-05-28 X-Ether, Inc. Balanced antenna
CN102394352A (zh) * 2011-07-14 2012-03-28 东南大学 双频宽带可重构微带天线
CN104993222A (zh) * 2014-12-02 2015-10-21 威海市泓淋电子有限公司 混合式辐射体组件的天线数组
CN111029734A (zh) * 2019-11-19 2020-04-17 航天恒星科技有限公司 一种超宽带端射天线
US20200395669A1 (en) * 2018-01-18 2020-12-17 Saab Ab A dual directional log-periodic antenna and an antenna arrangement

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7336243B2 (en) * 2003-05-29 2008-02-26 Sky Cross, Inc. Radio frequency identification tag
CN104157968B (zh) * 2014-07-10 2017-04-19 华南理工大学 一种新概念宽带圆极化天线
CN105206927B (zh) * 2015-09-06 2018-03-30 哈尔滨工业大学 印刷型单极折合振子对数周期天线
CN106299690A (zh) * 2016-09-27 2017-01-04 华南理工大学 一种差分馈电宽带圆极化天线
CN207938802U (zh) * 2018-02-10 2018-10-02 广东司南通信科技有限公司 一种不对称超宽带基站天线振子和天线
WO2019173865A1 (en) * 2018-03-15 2019-09-19 Netcomm Wireless Limited Wideband dual polarised antenna element
CN208272130U (zh) * 2018-05-31 2018-12-21 北京邮电大学 一种串联结构宽带双频偶极子基站天线

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2084663U (zh) * 1991-01-07 1991-09-11 宋晓光 全频道电视接收天线
JP2003124734A (ja) * 2001-10-18 2003-04-25 Mitsubishi Electric Corp 対数周期アンテナ装置及びアレーアンテナ装置
US20040233110A1 (en) * 2003-05-20 2004-11-25 Zhen-Da Hung Antenna with metal ground
CN1957503A (zh) * 2005-04-07 2007-05-02 松下电器产业株式会社 天线装置
WO2009067472A1 (en) * 2007-11-19 2009-05-28 X-Ether, Inc. Balanced antenna
CN102394352A (zh) * 2011-07-14 2012-03-28 东南大学 双频宽带可重构微带天线
CN104993222A (zh) * 2014-12-02 2015-10-21 威海市泓淋电子有限公司 混合式辐射体组件的天线数组
US20200395669A1 (en) * 2018-01-18 2020-12-17 Saab Ab A dual directional log-periodic antenna and an antenna arrangement
CN111029734A (zh) * 2019-11-19 2020-04-17 航天恒星科技有限公司 一种超宽带端射天线

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YONG LIU; XIAOZHONG SHUI; HONG-DA LU; LI-MING SI; YA-FEN GE; XIN LV: "Design of ultra-wideband printed log-periodic dipole antenna", 2013 IEEE INTERNATIONAL CONFERENCE ON MICROWAVE TECHNOLOGY & COMPUTATIONAL ELECTROMAGNETICS, IEEE, 25 August 2013 (2013-08-25), pages 176 - 178, XP032594578, DOI: 10.1109/ICMTCE.2013.6812415 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115882187A (zh) * 2023-02-22 2023-03-31 广东健博通科技股份有限公司 一种侧射式全向天线
CN116345137A (zh) * 2023-05-30 2023-06-27 佛山市粤海信通讯有限公司 一种低频振子及低频天线
CN116345137B (zh) * 2023-05-30 2023-07-25 佛山市粤海信通讯有限公司 一种低频振子及低频天线

Also Published As

Publication number Publication date
CN114665260B (zh) 2023-03-28
CN114665260A (zh) 2022-06-24

Similar Documents

Publication Publication Date Title
WO2020233477A1 (zh) 天线单元及终端设备
WO2022021824A1 (zh) 低频辐射单元及基站天线
KR102589595B1 (ko) 편파-가변 위상 어레이 안테나를 포함하는 무선 통신 장치
KR102505800B1 (ko) 누설파 위상 어레이 안테나를 포함하는 무선 통신 장치
US6593891B2 (en) Antenna apparatus having cross-shaped slot
JP2022544808A (ja) アンテナモジュール及び電子機器
JP7239743B2 (ja) アンテナユニット及び端末機器
WO2020233478A1 (zh) 天线单元及终端设备
WO2021104191A1 (zh) 天线单元及电子设备
WO2019144739A1 (zh) 一种双极化天线、射频前端装置和通信设备
Iwamoto et al. Design of an antenna decoupling structure for an inband full-duplex collinear dipole array
WO2022134786A1 (zh) 一种天线和通信设备
WO2021083223A1 (zh) 天线单元及电子设备
WO2021083214A1 (zh) 天线单元及电子设备
WO2021077718A1 (zh) 天线组件和无线设备
WO2021213182A1 (zh) 一种电子设备及天线装置
CN109560387B (zh) 一种用于移动终端的毫米波双极化天线
US20230327341A1 (en) Antenna and communication device
WO2021083217A1 (zh) 天线单元及电子设备
WO2023138324A1 (zh) 一种天线结构、电子设备及无线网络系统
EP4340127A1 (en) Broadside antenna, package antenna, and communication device
WO2022068548A1 (zh) 后盖及终端
WO2021083220A1 (zh) 天线单元及电子设备
WO2021083218A1 (zh) 天线单元及电子设备
WO2022017220A1 (zh) 一种电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21908787

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21908787

Country of ref document: EP

Kind code of ref document: A1