WO2021077718A1 - 天线组件和无线设备 - Google Patents

天线组件和无线设备 Download PDF

Info

Publication number
WO2021077718A1
WO2021077718A1 PCT/CN2020/088783 CN2020088783W WO2021077718A1 WO 2021077718 A1 WO2021077718 A1 WO 2021077718A1 CN 2020088783 W CN2020088783 W CN 2020088783W WO 2021077718 A1 WO2021077718 A1 WO 2021077718A1
Authority
WO
WIPO (PCT)
Prior art keywords
network
microstrip line
antenna assembly
pcb
board surface
Prior art date
Application number
PCT/CN2020/088783
Other languages
English (en)
French (fr)
Inventor
陶醉
周晓
赵捷
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20878136.9A priority Critical patent/EP4033609A4/en
Publication of WO2021077718A1 publication Critical patent/WO2021077718A1/zh
Priority to US17/723,972 priority patent/US20220247088A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0075Stripline fed arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2291Supports; Mounting means by structural association with other equipment or articles used in bluetooth or WI-FI devices of Wireless Local Area Networks [WLAN]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/20Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
    • H01Q21/205Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path providing an omnidirectional coverage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/06Details
    • H01Q9/065Microstrip dipole antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole

Definitions

  • This application relates to the field of communication technology, and in particular to an antenna assembly and a wireless device.
  • a wireless access point can use an omnidirectional antenna to provide large signal coverage, thereby meeting communication capacity requirements.
  • the distance between wireless APs working on the same frequency is small, the signals of adjacent wireless APs working on the same frequency will interfere with each other, resulting in a decrease in communication quality.
  • the sidelobe suppression capability of the omnidirectional antenna determines the interference suppression capability of the entire network.
  • Omnidirectional antennas mainly include dipole antennas, monopole antennas, and slot antennas. Take a dipole antenna as an example.
  • the dipole antenna is usually similar to a point source, with a wide beam width and weak sidelobe suppression.
  • the present application provides an antenna assembly and a wireless device, which can solve the problem of weak sidelobe suppression capability of an omnidirectional antenna.
  • the technical solutions are as follows:
  • an antenna assembly in the first aspect, includes N oscillators, a feed network and a printed circuit board (PCB).
  • the N is an integer greater than or equal to 3.
  • the N vibrators and the feed network are all located on the PCB.
  • the N vibrators are all connected to the feeding network.
  • Each vibrator has a radial part. The radial portion of each vibrator points to the antenna phase center, and the length of the radial portion of each vibrator is greater than the sum of the lengths of other non-radial portions.
  • each vibrator 301 is equivalent to a line source with a narrow beam width and strong sidelobe suppression capability.
  • the N is an even number, there are multiple pairs of dipoles in the N dipoles, and the dipoles in each dipole pair are center-symmetric with respect to the antenna phase center.
  • the distance between the two elements in each element pair is a preset multiple of the operating wavelength of the antenna assembly.
  • the preset multiple is any value between 0.25-1.
  • the N dipole elements can be divided into multiple dipole element pairs, and the two elements of each element pair are center-symmetric with respect to the antenna phase center.
  • the distance between the two vibrators can be set according to the use scenario, so as to adjust the radiation intensity of the antenna assembly at different radiation angles, and thereby adjust the side lobe suppression capability of the antenna assembly.
  • the feeding network is a double-sided parallel strip line (DSPSL) power division network.
  • the N oscillators are N dipole oscillators.
  • Each dipole vibrator includes two arms. One of the two arms is located on the upper board surface of the PCB, and is connected to one end of the arc-shaped microstrip line located on the upper board surface of the PCB in the double-sided parallel microstrip line power division network.
  • the other arm is located on the lower board surface of the PCB and is connected to one end of the arc-shaped microstrip line located on the lower board surface of the PCB in the double-sided parallel microstrip line power division network.
  • the arc-shaped microstrip line connected by the two arms is mirror-symmetrical with respect to the PCB, and the connection point between the two arms and the arc-shaped microstrip line is mirror-symmetrical with the PCB.
  • the double-sided parallel microstrip line power division network includes an upper board surface network and a lower board surface network.
  • the upper board surface network is located on the upper board surface of the PCB, and the lower board surface network is located on the lower board surface of the PCB.
  • the upper board surface network and the lower board surface network are mirror-symmetrical with respect to the PCB.
  • the upper board surface network and the lower board surface network both include a first power divider, a plurality of linear microstrip lines, a plurality of impedance transformation lines, a second power divider, and a plurality of arc-shaped microstrip lines.
  • the first power divider is used to connect the multiple linear microstrip lines and the multiple arc microstrip lines.
  • Each of the plurality of linear microstrip lines is connected to one of the plurality of impedance conversion lines.
  • the second power divider is used to connect the multiple impedance conversion lines.
  • the length of each of the two arms is a designated multiple of the operating wavelength of the antenna assembly.
  • the designated multiple is any value in 0.125-1.
  • the first arm of the two arms includes a non-radial portion, and the shape of the first arm is L-shaped, and the second arm does not include a non-radial portion, and the first arm and The distance between the antenna phase center is greater than the distance between the second arm and the antenna phase center.
  • one of the two arms of the dipole vibrator that is far from the antenna phase center may be L-shaped, and the other arm may not include a non-radial part. In this way, the area occupied by the feed network and the dipole element can be reduced, thereby reducing the size of the antenna.
  • the distance between the center-symmetric first dipole oscillator and the second dipole oscillator among the N dipole oscillators refers to the distance between the first connection point and the second connection point, so
  • the first connection point is a connection point between the first dipole vibrator and the arc microstrip line
  • the second connection point is a connection point between the second dipole vibrator and the arc microstrip line.
  • the feed network is a microstrip line power division network
  • the N oscillators are N monopole oscillators.
  • the microstrip line power division network and the N monopole oscillators are both located on the upper surface of the PCB.
  • Each monopole oscillator is connected to one end of an arc-shaped microstrip line in the microstrip line power division network.
  • the feed network is a microstrip line power division network
  • the microstrip line power division network is located on the bottom surface of the PCB.
  • the N vibrators are N slot vibrators.
  • the N slot oscillators refer to N grooves on the upper board surface of the PCB, and each slot oscillator is connected to one end of an arc-shaped microstrip line in the microstrip line power division network.
  • a wireless device in a second aspect, includes a baseband circuit, a radio frequency circuit, and the antenna assembly described in the first aspect.
  • the radio frequency circuit and the antenna assembly cooperate to realize the transmission and reception of wireless signals, and the baseband circuit is used for processing wireless signals.
  • FIG. 1 is an application scenario diagram of an antenna assembly provided by an embodiment of the present application
  • Figure 2 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of an antenna assembly provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of an antenna assembly including a dipole element provided by an embodiment of the present application
  • FIG. 5 is a schematic structural diagram of the upper board surface of a PCB of an antenna assembly including a dipole element provided by an embodiment of the present application;
  • FIG. 6 is a schematic diagram of the structure of the lower board surface of the PCB of the antenna assembly including the dipole element provided by the embodiment of the present application;
  • FIG. 7 is a schematic structural diagram of the upper board surface of a PCB including an antenna assembly with an odd number of dipole elements provided by an embodiment of the present application;
  • FIG. 8 is a schematic diagram of an L-shaped arm of a dipole element in an antenna assembly provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of the structure of the upper board surface of the PCB of the antenna assembly including the monopole element provided by the embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of the upper board surface of a PCB including an antenna assembly with a slot element provided by an embodiment of the present application;
  • FIG. 11 is a schematic structural diagram of a lower board surface of a PCB including an antenna assembly with a slot element provided by an embodiment of the present application.
  • Fig. 1 is an application scenario diagram of an antenna assembly provided by an embodiment of the present application. As shown in FIG. 1, this scenario includes a controller 101, an access point (AP) 102, and multiple terminals 103.
  • AP access point
  • the controller 101 may be used to centrally manage and configure multiple APs 102, and to forward user data.
  • the AP is used to provide wireless access services for multiple connected terminals 103.
  • the AP In a high-density deployment scenario, the AP is generally set at a height of 3-5 meters (m), and the radius of the coverage cell can reach 5-8m. In this scenario, the number of users per unit area is usually large. Therefore, in order to ensure communication capacity, a large-angle omnidirectional antenna can be used in the AP for signal coverage. However, due to the limited number of channels, the distance between APs working on the same frequency is usually small. In this case, there will be signal interference between APs working on the same frequency. Based on this, the embodiments of the present application provide an antenna assembly applied to an AP, so as to improve the interference suppression capability of the AP, thereby reducing signal interference between APs working on the same frequency.
  • the AP 102 may be a network device such as a base station, a router, or a switch, and the multiple terminals 103 may be a mobile phone or a computer.
  • FIG. 1 only uses three terminals as an example for description, which does not constitute a limitation on the number of terminals in the application scenario provided by the embodiment of the present application.
  • Fig. 2 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • the AP in FIG. 1 may be implemented by the network device shown in FIG. 2.
  • the network device includes a processor 201, a communication bus 202, a memory 203, a radio frequency circuit 204, an antenna component 205, and a baseband circuit 206.
  • the processor 201 may be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more integrated circuits.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the communication bus 202 may include a path for transferring information between the above-mentioned components.
  • the memory 203 may be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types that can store information and instructions
  • the dynamic storage device can also be an electrically erasable programmable read-only memory (EEPROM), optical disk, magnetic disk or other magnetic storage device, or can be used to carry or store the desired program code in the form of instructions or data structures and can be used by Any other medium accessed by the computer.
  • the memory 203 may exist independently and be connected to the processor 201.
  • the memory 203 may also be integrated with the processor 201.
  • the radio frequency circuit 204 and the antenna assembly 205 are used to cooperate to realize the transmission and reception of wireless signals.
  • the antenna component 205 is the antenna component provided in this embodiment of the application.
  • the baseband circuit 206 is used to process the received wireless signal or the wireless signal to be sent.
  • the processor 201 may include one or more CPUs.
  • the network device may further include an output device (not shown in the figure) and an input device (not shown in the figure).
  • the output device communicates with the processor 201 and can display information in a variety of ways.
  • the output device may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector.
  • the input device communicates with the processor 201 and can receive user input in a variety of ways.
  • the input device can be a mouse, a keyboard, a touch screen, or a sensor.
  • FIG. 3 is a schematic structural diagram of an antenna assembly provided by an embodiment of the present application.
  • the antenna assembly may include N elements 30, a feed network 40, and a printed circuit board (PCB) 50, where N is an integer greater than or equal to 3.
  • the N elements 30 and the feed network 40 are all located on the PCB 50, and the N elements 30 are all connected to the feed network 40.
  • Each element 30 has a radial part, and the radial part of each element 30 points to the antenna phase center.
  • the length of the radial part of each vibrator is greater than the sum of the lengths of other non-radial parts.
  • N can be an even number or an odd number.
  • N can be 3, 4, or other values.
  • N is 4 as an example for illustration, but this does not constitute a limitation on the number of dipoles 30 included in the antenna assembly.
  • each vibrator 30 After the electromagnetic wave radiated by each vibrator is a certain distance away from the vibrator, its isophase surface will approximate a spherical surface, and the spherical center of the spherical surface is the phase center of the antenna.
  • each vibrator 30 has a radial portion pointing to the phase center of the antenna. In a possible situation, each vibrator 30 may not include other parts that are not radial, that is, each vibrator 30 is linear and all points to the antenna phase center.
  • each element 30 has a radial part pointing to the phase center of the antenna, and also has one or more non-radial parts not pointing to the phase center of the antenna, and, The sum of the lengths of all non-radial parts that are not directed to the phase center of the antenna is smaller than the length of the radial parts included in the corresponding vibrator 30.
  • the radiation intensity of the electromagnetic field of each vibrator in the direction of the radial part will be greater than the radiation intensity of the non-radial part, that is, the main radiation direction of each vibrator will be consistent with the direction of the radial part. Therefore,
  • Each vibrator 30 is equivalent to a line source, the beam width is relatively narrow, and the sidelobe shift suppression capability is enhanced.
  • Each part of the vibrator 30 may be linear or may have a certain width.
  • the direction of a part of the vibrator 30 refers to the direction of the long axis of the part.
  • the vibrator 30 in FIG. 3 has a certain width, and its direction is radial, which means that its length direction is in the radial direction.
  • the width of the vibrator 30 does not have to be the same everywhere, as long as the width is less than the length as a whole, and the length direction is in the radial direction.
  • the N elements 30 may be distributed and arranged on a circle centered on the antenna phase center.
  • each vibrator 30 may be arranged at equal intervals on the circumference. That is, the angle between each two adjacent elements 30 and the line connecting the antenna phase center will be 360/N degrees.
  • N an even number
  • the angle between each two adjacent elements 30 and the line connecting the antenna phase center is 45 degrees.
  • the 8 dipoles 30 can be divided into 4 dipole pairs, and the two dipoles 30 in each dipole pair are center-symmetric with respect to the antenna phase center.
  • the elements 30 may also be arranged at non-equal intervals. For example, suppose that the angle between two adjacent elements connected to both ends of the same transmission line in the feed network 40 and the line of the antenna phase center is the first An included angle and an included angle between two adjacent vibrators connected to different transmission lines and the line of the antenna phase center are the second included angle, and the first included angle and the second included angle may be different.
  • both the N vibrators 30 and the feeder network 40 can be printed on the board surface of the PCB 50, and, according to the difference of the feeder network 40 and the difference of the N vibrators 30, the feeder network 40 and the N vibrators 30 may be located
  • the upper surface of the PCB50 may also be located on the lower surface of the PCB50.
  • the oscillator in the above-mentioned antenna assembly may be a dipole oscillator, a monopole oscillator or a slot oscillator.
  • the feed network is also different.
  • the antenna components including different vibrators and feeder networks will be described separately.
  • each dipole vibrator 301 includes two arms.
  • One arm 3011 of the two arms is located on the upper board surface of the PCB50, and is connected to one end of the arc microstrip line located on the upper board surface of the PCB50 in the double-sided parallel microstrip line power division network 401, and the other arm 3012 is located on the PCB50 It is connected to one end of the arc-shaped microstrip line on the lower plate surface of the PCB50 in the double-sided parallel microstrip line power division network.
  • the arc-shaped microstrip line connected by the two arms is mirror-symmetrical with respect to the PCB50.
  • the connection point between the two arms and the arc-shaped microstrip line is mirror-symmetrical with respect to the PCB50.
  • the double-sided parallel microstrip line power division network 401 includes an upper board surface network and a lower board surface network.
  • the upper board surface network is located on the upper board surface of the PCB 50
  • the lower board surface network is located on the lower board surface of the PCB 50
  • the upper board surface network and the lower board surface network are mirror-symmetrical with respect to the board surface of the PCB 50.
  • FIG. 5 shows a schematic diagram of an upper board surface network located on the upper board surface of the PCB 50 when N is an even number.
  • the upper board surface network may include a first power divider 4011, a plurality of linear micro The strip line 4012, a plurality of impedance conversion lines 4013, a second power divider 4014, and a plurality of arc-shaped microstrip lines 4015.
  • the second power divider 4014 can be a one-to-two power divider
  • the first power divider 4011 can be selected according to the number of vibrators. For example, in the example of FIG. 5, the number of vibrators is 8.
  • the first power divider 4011 can be a one-to-four power divider, so, Starting from the feeding point of the feeding network, 8 feeding lines can be led out through the first power divider 4011 and the second power divider 4015 to feed the 8 oscillators respectively.
  • the first power divider 4011 of the feed network may be located on the phase center of the antenna.
  • taking the sum of the lengths of the impedance transformation line 4013 and the linear microstrip line 4012 as the radius, and taking the position of the first power divider 4011 as the center of the circle it is possible to determine the one corresponding to the feed network. circumference.
  • the arc-shaped microstrip lines 4015 may be distributed along the circumference.
  • the connection point of the dipole oscillator and the arc-shaped microstrip line may be located on the circle, that is, the circle is the circle where the N dipole oscillators are distributed on the circle centered on the antenna phase center.
  • the four output ends of the first power divider 4011 can be connected to four impedance transformation lines 4013, and the other end of each impedance transformation line 4013 is connected to one end of a linear microstrip line 4012,
  • the impedance conversion line 4013 can achieve impedance matching between the linear microstrip line 4012 and the first power divider 4011.
  • a second power divider 4014 is connected to the other end of each linear microstrip line 4012.
  • the two output ends of the second power divider 4014 are respectively connected to an arc microstrip line 4015, and one end of each arc microstrip line 4015 can be connected to an arm 3011 of a dipole oscillator 301.
  • the first power divider 4011 divides the current input into the feed network into four, it can output the four currents through the four output terminals, and the four currents respectively pass through the four impedance transformation lines 4013 and the four impedance conversion lines 4013.
  • the four linear microstrip lines 4012 connected by the conversion line 4013 are transmitted to the four second power dividers 4014.
  • Each second power divider 4014 can divide the received current into two channels and pass the two output terminals respectively.
  • Output two currents which are transmitted to the arms of two adjacent dipole oscillators 301 through two arc-shaped microstrip lines 4015, so as to realize the feeding of two adjacent dipole oscillators 301 .
  • Each of the 8 dipole oscillators 301 has two arms. Among the two arms, the arm 3011 in the circle corresponding to the feed network is located on the upper plate surface and is connected to one of the upper plate surface networks. One end of the arc microstrip line 4015 is connected. Wherein, the length of each arm can be a specified multiple of the working wavelength of the antenna assembly. The specified multiple can be any value in 0.125-1.
  • the impedance conversion line 4013 may be a quarter-wavelength impedance conversion line
  • the linear microstrip line 4012 and the arc microstrip line 4015 may be 50 ohm microstrip lines.
  • FIG. 6 shows a lower board surface network that is mirror-symmetrical to the upper board surface network in FIG. 5.
  • the lower plane network also includes a first power divider 4011, a plurality of linear microstrip lines 4012, a plurality of impedance transformation lines 4013, a second power divider 4014, and a plurality of arc microstrip lines. Line 4015.
  • the structure of the lower board surface network is the same as that of the upper board surface network.
  • the lower board surface network is located on the lower board surface of the PCB 50 and is mirror-symmetrical to the upper board surface network with respect to the PCB 50.
  • the arm 3012 of the two arms of each dipole vibrator 301 of the 8 dipole elements located outside the circumference corresponding to the feed network is located on the lower board surface of the PCB 50 and is connected to the lower board surface network.
  • One end of the arc microstrip line 4015 is connected.
  • the arms 3011 and 3012 respectively connected to the two arc-shaped microstrip lines symmetrical to the mirror form a dipole oscillator.
  • the arm 3011 in FIG. 5 and the vibrating arm 3012 in FIG. 6 are two arms of a dipole vibrator.
  • the connection points A and B of the two arms and the arc-shaped microstrip line are also mirror-symmetrical.
  • the N dipole elements 301 can be divided into N/2 pairs of dipole elements.
  • the two dipole elements in each pair of dipole elements may be center-symmetric with respect to the antenna phase center.
  • the function of the radiation intensity F with the radiation angle ⁇ can be determined by the following formula (1):
  • is the pitch angle
  • k is the propagation constant of electromagnetic waves
  • h is the distance between the PCB and the metal bottom plate located under the PCB
  • a is the distance between the two dipole dipoles in the dipole dipole pair.
  • the distance between the two dipole elements of each dipole element pair included in the antenna assembly can be set according to the radiation angle of the dipole element pair and the required sidelobe suppression capability. Pitch.
  • the distance between the two dipole elements of each dipole element pair may be a preset multiple of the operating wavelength of the antenna assembly. The preset multiple can be any value from 0.25-1.
  • the distance between the first dipole oscillator and the second dipole oscillator may be the distance between the first connection point and the second connection point.
  • the first connection point refers to the connection point between the first dipole oscillator and the arc-shaped transmission line
  • the second connection point is the connection point between the second dipole oscillator and the arc-shaped transmission line. That is, as shown in FIGS. 5 and 6, the distance between point A and point B is the distance between two dipole oscillators that are symmetrical in the center.
  • Figures 5 and 6 only take N as an example for explanation. For other cases where N is an even number, you can refer to the above example. The difference is that when N is a different even number, the upper and lower planes The first power divider included in the network will be different, and the number of impedance conversion lines and microstrip lines included in the feed network will also be different.
  • the first power divider in the upper board network and the lower board network can be a one-to-three power divider.
  • the first power divider can be connected to three impedance conversion lines and three impedances.
  • the conversion line is connected with three linear microstrip lines, each linear microstrip line is connected to a one-to-two second power divider, and each second power divider can be connected to two arc-shaped microstrip lines.
  • the upper board surface network located on the upper board surface of the PCB 50 may include a first power divider 4011, multiple impedance transformation lines 4013, and multiple special-shaped microstrip lines 4016.
  • the first power divider 4011 can be a one-to-five power divider, and the first power divider 4011 can be connected to five impedance transformation lines 4013, each impedance transformation line 4013 The other end is connected to a special-shaped microstrip line 4016.
  • the special-shaped microstrip line 4016 can be a microstrip line with an arc-shaped end as shown in FIG. 7.
  • the end of each special-shaped microstrip line 4016 can be connected to a dipole oscillator.
  • One arm 3011 of the two arms of 301 is connected.
  • the structure of the lower board surface network located on the lower board surface of the PCB50 is the same as the structure of the upper board surface network, and the lower board surface network and the upper board surface network are mirror-symmetrical with respect to the PCB50.
  • the other arm 3012 of the two arms is connected to one end of a microstrip line in the lower plane network.
  • the microstrip line connecting the two arms of the dipole vibrator is mirror-symmetrical with respect to the PCB 50, so that the connection point between the two arms and the microstrip line is also mirror-symmetrical with the PCB 50.
  • the microstrip line connected to the dipole oscillator may not be an arc microstrip line, but a linear microstrip line.
  • the linear microstrip line can be connected to the feeder.
  • the circle corresponding to the electrical network is tangent.
  • the two arms of the dipole oscillator may have different lengths and different shapes.
  • the length of the arm outside the circle corresponding to the feed network of the two arms may be less than the length of the other arm.
  • the arm located in the circle corresponding to the feed network may be linear and point to the phase center of the antenna, and the arm outside the circle corresponding to the feed network may include a radial Part and a non-radial part, such as the end of the arm can be bent.
  • the radial part is connected with the arc-shaped microstrip line, so that the radial part of the arm and the other linear arm constitute the radial part of the dipole vibrator.
  • the length of the curved non-radial portion is less than the sum of the radial portion of the arm and the length of the other arm.
  • the arm outside the circle corresponding to the feed network may be L-shaped, which is not limited in the embodiment of the present application.
  • FIG. 8 shows a schematic diagram of an antenna assembly in which one arm of the dipole vibrator is L-shaped.
  • the arm 3011 is located in the circle where the feed network is located.
  • the arm 3011 may be linear and point to the antenna phase center.
  • the arm 3012 is located outside the circle corresponding to the feed network, and the shape of the arm 3012 is L-shaped.
  • the arm 3012 includes a radial part a and a non-radial part b, and the arm 3012 is connected to the arc microstrip line through the radial part a.
  • the radial part a and the arm 3011 form the diameter of the dipole vibrator.
  • the length of the non-radial portion b is less than the sum of the lengths of the radial portion a and the arm 3011.
  • FIG. 8 is only a possible implementation of the dipole oscillator given in the embodiment of the present application.
  • the arm located outside the circle corresponding to the feed network may also have other shapes.
  • the arms located within the circle corresponding to the feed network can also have other shapes, as long as the length of the radial part of the dipole oscillator is greater than the sum of the lengths of other non-radial parts.
  • the N elements and the feed network are all located on the PCB, the N elements are all connected to the feed network, each element has a radial part, and the radial part of each element points to the antenna phase center, And the length of the radial part of each vibrator is greater than the sum of the lengths of the other non-radial parts.
  • the radiation intensity of the electromagnetic field of each vibrator in the direction of the radial part will be greater than the radiation intensity of the non-radial part, that is, the main radiation direction of each vibrator will be consistent with the direction of the radial part. Therefore,
  • Each vibrator is equivalent to a line source, the beam width is relatively narrow, and the sidelobe shift suppression capability is enhanced.
  • the N dipole elements can be divided into multiple dipole element pairs, and the two elements of each element pair are center-symmetric with respect to the antenna phase center. In this way, when designing the antenna assembly, the distance between the two dipoles can be set according to the usage scenario, so as to adjust the radiation intensity of the antenna assembly at different radiation angles, thereby adjusting the side lobe suppression of the antenna assembly ability.
  • Figures 4-8 mainly introduce the implementation of the antenna assembly when the element in the antenna assembly is a dipole element.
  • the N elements included in the antenna assembly may all be monopole elements.
  • the feed network may be a microstrip line power division network.
  • FIG. 9 shows a schematic structural diagram of an antenna assembly including 8 monopole elements.
  • the antenna assembly includes 8 monopole elements 302, a microstrip line power division network 402, and a PCB50.
  • the eight monopole vibrators 302 are all located on the upper board surface of the PCB 50, and the microstrip line power division network 402 is also located on the upper board surface of the PCB 302.
  • each monopole vibrator 302 includes an arm.
  • the microstrip line power divider network 402 may include a first power divider 4011, a plurality of linear microstrip lines 4012, a plurality of impedance transformation lines 4013, a second power divider 4014, and a plurality of arc microstrip lines 4015. Since the antenna assembly includes 8 monopole elements 302, the first power divider 4011 can be a one-to-four power divider, the number of impedance conversion lines 4013 and linear microstrip lines 4012 can both be 4, and The number of arc microstrip lines 4015 is 8. Among them, the eight monopole elements may all be linear, and the eight monopole elements all point to the antenna phase center. In this case, each monopole element will not include other parts that are not radial.
  • the first power divider 4011 may be located at the antenna phase center, and the position of the first power divider 4011 is taken as the center of the circle, and the corresponding feed network can be determined.
  • the arc-shaped microstrip lines 4015 may be distributed along the circumference.
  • the connection point of the monopole oscillator and the arc-shaped microstrip line may be located on the circle, that is, the circle is the circle with the antenna phase center as the center of the N monopole oscillators.
  • the monopole oscillator 302 and the microstrip power division network 402 are generally located on one side of the PCB 50, such as the upper board surface.
  • a floor can be arranged on the other side of the PCB50.
  • the shape of the floor can be round or any other shape.
  • the floor generally does not overlap with the projection of the monopole vibrator 302.
  • the four output ends of the first power divider 4011 are respectively connected to one end of the four impedance transformation lines 4013, and the other end of the four impedance transformation lines 4013 are respectively connected to one end of the four linear microstrip lines 4012.
  • the other end of each linear microstrip line 4012 is connected to a second power divider 4014, and the two output ends of the second power divider 4014 are respectively connected to two arc-shaped microstrip lines 4015.
  • the four linear microstrip lines 4012 connected by the conversion line 4013 are transmitted to the four second power dividers 4014.
  • Each second power divider 4014 can divide the received current into two channels and pass the two output terminals respectively.
  • Two currents are output, and the two currents are transmitted to the two adjacent monopole oscillators 302 through the two arc-shaped microstrip lines 4015, so as to realize the feeding of the two adjacent monopole oscillators 302.
  • the impedance conversion line 4013 may be a quarter-wavelength impedance conversion line 4013, and the linear microstrip line 4012 and the arc microstrip line 4015 may be 50 ohm microstrip lines.
  • the N monopole dipoles 302 can also be divided into N/2 dipole pairs, and the two monopole dipoles of each dipole pair are center-symmetric with respect to the antenna phase center.
  • the two oscillators of each oscillator pair can also be equivalent to a point source with an amplitude of 1 and a phase of 0.
  • the function of the radiation intensity changing with the radiation angle ⁇ can also be expressed by formula (1).
  • the distance between the two monopole dipoles of the dipole pair the radiation intensity of the monopole dipole pair at different radiation angles can also be adjusted, thereby adjusting the sidelobe suppression capability of the antenna assembly. That is, in the embodiment of the present application, the distance between the two monopole dipoles of each dipole pair included in the antenna assembly can be set according to the radiation angle of the dipole pair and the required sidelobe suppression capability.
  • Figure 9 mainly introduces the implementation of an antenna assembly including 8 monopole elements.
  • N is an even number
  • the implementation of the antenna assembly can refer to the implementation when N is 8, and the implementation when N is 8.
  • the difference is that the first power divider 4011 in the microstrip line power divider network is different according to the number of monopole oscillators included, and the number of impedance conversion lines 4013 and the number of microstrip lines included will be different.
  • the implementation manner of the antenna assembly can refer to the related implementation manner when an odd number of dipole elements are included in the foregoing embodiment, and the details are not described herein again in the embodiment of the present application.
  • each monopole vibrator 302 may not be linear.
  • each monopole vibrator 302 may also be L-shaped.
  • each monopole vibrator 302 may also be L-shaped.
  • the pole element 302 may include a radial part pointing to the phase center of the antenna and a non-radial part not pointing to the phase center of the antenna, wherein the length of the radial part is greater than the length of the non-radial part.
  • each monopole element 302 may also have other shapes, as long as the length of the radial part pointing to the phase center of the antenna is greater than the length of other parts that are not radial.
  • the N elements and the feed network are all located on the PCB, the N elements are all connected to the feed network, each element has a radial part, and the radial part of each element points to the antenna phase center, And the length of the radial part of each vibrator is greater than the sum of the lengths of the other non-radial parts.
  • the radiation intensity of the electromagnetic field of each vibrator in the direction of the radial part will be greater than the radiation intensity of the non-radial part, that is, the main radiation direction of each vibrator will be consistent with the direction of the radial part. Therefore,
  • Each vibrator is equivalent to a line source, the beam width is relatively narrow, and the sidelobe shift suppression capability is enhanced.
  • the N dipole elements can be divided into multiple dipole element pairs, and the two elements of each element pair are center-symmetric with respect to the antenna phase center. In this way, when designing the antenna assembly, the distance between the two dipoles can be set according to the usage scenario, so as to adjust the radiation intensity of the antenna assembly at different radiation angles, thereby adjusting the side lobe suppression of the antenna assembly ability.
  • Figure 9 illustrates the implementation when the element in the antenna assembly is a monopole element.
  • the N elements included in the antenna assembly may also be slot elements.
  • the feed network can be a microstrip line power division network. The difference from the structure when the monopole oscillator is included is that in this type of antenna assembly, the N slot oscillators are located on the upper surface of the PCB, and the microstrip line power division network is located on the lower surface of the PCB.
  • FIG. 10 shows a schematic structural diagram of the upper board surface of a PCB of an antenna assembly including 8 slot elements.
  • the 8 slot vibrators 303 refer to 8 notches carved on the upper surface of the PCB 50, and each notch is a slot vibrator.
  • each slot element 303 can be linear, and each slot element 303 points to the antenna phase center. That is, each slot vibrator 303 does not include a non-radial portion.
  • FIG. 11 shows a schematic diagram of the lower board surface of the PCB 50 of the antenna assembly. As shown in FIG.
  • a microstrip line power division network 402 is provided on the lower board surface of the PCB 50, wherein the microstrip line power division network 402 It may include a first power divider 4011, a plurality of linear microstrip lines 4012, a plurality of impedance transformation lines 4013, a second power divider 4014, and a plurality of special-shaped microstrip lines 4016. Since the antenna assembly includes 8 slot elements, the first power divider 4011 can be a one-to-four power divider, the number of impedance conversion lines 4013 and the number of linear microstrip lines 4012 can both be 4, and the special-shaped microstrip The number of lines 4016 is 8.
  • the special-shaped microstrip line 4016 may be an approximately L-shaped microstrip line connected by a section of linear microstrip line 4012 and an arc-shaped microstrip line at one end, or may be an arc-shaped microstrip line, or may be composed of two
  • the L-shaped microstrip line obtained by connecting the linear microstrip line 4012 is not limited in the embodiment of the present application.
  • the special-shaped microstrip line 4016 is taken as an example of an L-shaped microstrip line connected by a section of linear microstrip line and a section of arc-shaped microstrip line.
  • the four output ends of the first power divider 4011 are respectively connected to one end of the four impedance transformation lines 4013, and the other end of the four impedance transformation lines 4013 are respectively connected to one end of the four linear microstrip lines 4012.
  • the other end of each linear microstrip line 4012 is connected to a second power divider 4014, and the two output ends of the second power divider 4014 are respectively connected to two special-shaped microstrip lines 4016.
  • the four linear microstrip lines 4012 connected by the conversion line 4013 are transmitted to the four second power dividers 4014.
  • Each second power divider 4014 can divide the received current into two channels and pass the two output terminals respectively.
  • Two currents are output, and the two currents are respectively transmitted to the two adjacent slot oscillators 303 through the two special-shaped microstrip lines 4016, so as to realize the feeding of the two adjacent slot oscillators 303.
  • the impedance conversion line 4013 may be a quarter-wavelength impedance conversion line 4013, and the linear microstrip line 4012 and the special-shaped microstrip line 4016 may be 50 ohm microstrip lines. The embodiment of the application does not limit this.
  • the upper board surface of the PCB50 can be a copper plate
  • the N slot oscillators 303 are N slots carved on the copper board, and each slot intersects a special-shaped microstrip line 4016 on the lower board surface of the PCB50, thereby realizing each gap The connection of the vibrator 303 and the special-shaped microstrip line 4016.
  • the N slot elements 303 can also be divided into N/2 element pairs, and the two slot elements 303 of each element pair are relative to the center of the antenna phase center. symmetry. In this way, it is also possible to adjust the radiation intensity of the pair of slot dipoles 303 at different radiation angles by setting the distance between the two slot dipoles 303 of a pair of dipole pairs, thereby adjusting the sidelobe suppression capability of the antenna assembly.
  • the implementation of the antenna assembly can refer to the foregoing implementation of when N is 8.
  • the difference from the foregoing implementation of N is 8 is that according to the number of slot elements included, micro
  • the first power divider 4011 included in the strip-line power division network 402 is different, and the number of impedance conversion lines 4013 and the number of microstrip lines included will be different.
  • the antenna assembly including an even number of dipole elements.
  • the embodiments of the present application will not be repeated here.
  • the implementation manner of the antenna assembly can refer to the related implementation manner when an odd number of dipole elements are included in the foregoing embodiment, which is not repeated in the embodiment of the present application.
  • each slot vibrator 303 may not be linear, for example, each slot vibrator 303 may also be L-shaped.
  • the specific implementation manner can refer to the aforementioned related implementation manner in which the monopole vibrator is not linear, which is not repeated in the embodiment of the present application.
  • the N elements and the feed network are all located on the PCB, the N elements are all connected to the feed network, each element has a radial part, and the radial part of each element points to the antenna phase center, And the length of the radial part of each vibrator is greater than the sum of the lengths of the other non-radial parts.
  • the radiation intensity of the electromagnetic field of each vibrator in the direction of the radial part will be greater than the radiation intensity of the non-radial part, that is, the main radiation direction of each vibrator will be consistent with the direction of the radial part. Therefore,
  • Each vibrator is equivalent to a line source, the beam width is relatively narrow, and the sidelobe shift suppression capability is enhanced.
  • the N dipole elements can be divided into multiple dipole element pairs, and the two elements of each element pair are center-symmetric with respect to the antenna phase center. In this way, when designing the antenna assembly, the distance between the two dipoles can be set according to the usage scenario, so as to adjust the radiation intensity of the antenna assembly at different radiation angles, thereby adjusting the side lobe suppression of the antenna assembly ability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

公开了一种天线组件和无线设备,属于通信技术领域。天线组件包括N个振子、馈电网络和印刷电路板PCB,N为大于或等于4的整数;N个振子和馈电网络均位于PCB上,N个振子均与馈电网络连接,每个振子具有一个径向部分,各个振子的径向部分均指向天线相位中心,且每个振子的径向部分的长度大于非径向的其他部分的长度之和。这样,各个振子的主辐射方向将与径向部分所在的方向一致,因此,每个振子相当于是一个线源,波束宽度相对于较窄,副瓣移抑制能力增强。

Description

天线组件和无线设备
本申请要求于2019年10月22日提交的申请号为201911005244.8、发明名称为“天线组件和无线设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,特别涉及一种天线组件和无线设备。
背景技术
无线接入点(access point,AP)可以采用全向天线以提供大的信号覆盖,从而满足通信容量需求。然而,当同频工作的无线AP的间距小时,相邻的同频工作的无线AP的信号会互相干扰,从而导致通信质量下降。全向天线的副瓣抑制能力决定了整个网络的干扰抑制能力。
全向天线主要有偶极子天线、单极子天线和缝隙天线等。以偶极子天线为例,偶极子天线通常近似一个点源,波束宽度宽,副瓣抑制能力弱。
发明内容
本申请提供了一种天线组件和无线设备,可以解决全向天线副瓣抑制能力弱的问题。技术方案如下:
第一方面,提供了一种天线组件。所述天线组件包括N个振子、馈电网络和印刷电路板(printed circuit board,PCB)。所述N为大于或等于3的整数。所述N个振子和所述馈电网络均位于所述PCB上。所述N个振子均与所述馈电网络连接。每个振子具有一个径向部分。各个振子的径向部分均指向天线相位中心,且每个振子的径向部分的长度大于非径向的其他部分的长度之和。
在本申请中,每个振子的径向部分的长度大于非径向的其他部分的长度之和。这样,各个振子在径向部分所在的方向上的电磁场的辐射强度将大于在非径向部分上的辐射强度,使得各个振子的主辐射方向将与径向部分所在的方向一致。因此,每个振子301相当于是一个线源,波束宽度窄,副瓣抑制能力强。
可选地,所述N为偶数,所述N个振子中存在多个振子对,每个振子对中的振子相对于所述天线相位中心中心对称。
可选地,每个振子对中的两个振子之间的距离为所述天线组件的工作波长的预设倍数。
可选地,所述预设倍数为0.25-1之间的任一数值。
当N为偶数时,N个偶极子振子可以分为多个偶极子振子对,每个振子对的两个振子相对于天线相位中心中心对称。这样,在设计该天线组件时,可以根据使用场景来设置两个振子的间距,以此来调节该天线组件的在不同辐射角度下的辐射强度,进而来调节该天线组件的副瓣抑制能力。
可选地,所述馈电网络为双面平行微带线(double-sided parallel strip line,DSPSL)功分网络。所述N个振子为N个偶极子振子。每个偶极子振子包括两个臂。所述 两个臂中的一个臂位于所述PCB的上板面,且与所述双面平行微带线功分网络中位于所述PCB的上板面的弧形微带线的一端连接。另一个臂位于所述PCB的下板面,且与所述双面平行微带线功分网络中位于所述PCB的下板面上的弧形微带线的一端连接。所述两个臂连接的弧形微带线相对于所述PCB镜面对称,且所述两个臂与弧形微带线的连接点相对于所述PCB镜面对称。
可选地,所述双面平行微带线功分网络包括上板面网络和下板面网络。所述上板面网络位于所述PCB的上板面,所述下板面网络位于所述PCB的下板面。所述上板面网络和所述下板面网络相对于所述PCB镜面对称。所述上板面网络和所述下板面网络均包括第一功分器、多条直线形微带线、多条阻抗变换线、第二功分器和多条弧形微带线。所述第一功分器用于连接所述多条直线形微带线和所述多条弧形微带线。所述多条直线形微带线中的每条直线形微带线与所述多条阻抗变换线中的一条阻抗变换线连接。所述第二功分器用于连接所述多条阻抗变换线。
可选地,所述两个臂中每个臂的长度为所述天线组件的工作波长的指定倍数。
可选地,所述指定倍数为0.125-1中的任一数值。
可选地,所述两个臂中的第一臂包含有非径向部分,且所述第一臂的形状为L型,第二臂不包含有非径向部分,所述第一臂与所述天线相位中心的距离大于所述第二臂与所述天线相位中心的距离。上述结构中,偶极子振子的两个臂中远离天线相位中心的一臂可以为L型,另一臂则可以不包含有非径向部分。这样,可以减小馈电网络和偶极子振子所占用的面积,从而降低天线尺寸。
可选地,所述N个偶极子振子中中心对称的第一偶极子振子和第二偶极子振子之间的间距是指第一连接点与第二连接点之间的距离,所述第一连接点为所述第一偶极子振子与弧形微带线的连接点,所述第二连接点为所述第二偶极子振子与弧形微带线的连接点。
可选地,所述馈电网络为微带线功分网络,所述N个振子为N个单极子振子。所述微带线功分网络与所述N个单极子振子均位于所述PCB的上板面。每个单极子振子与所述微带线功分网络中的一条弧形微带线的一端连接。
可选地,所述馈电网络为微带线功分网络,所述微带线功分网络位于所述PCB的下板面。所述N个振子为N个缝隙振子。所述N个缝隙振子是指所述PCB的上板面的N个刻槽,每个缝隙振子与所述微带线功分网络中的一条弧形微带线的一端连接。
第二方面,提供了一种无线设备,所述无线设备包括基带电路、射频电路和前述第一方面所述的天线组件。所述射频电路和所述天线组件配合实现无线信号的收发,所述基带电路用于处理无线信号。
上述第二方面所获得的技术效果与第一方面中对应的技术手段获得的技术效果近似,在这里不再赘述。
附图说明
图1是本申请实施例提供的一种天线组件的应用场景图;
图2是本申请实施例提供的一种网络设备的结构示意图;
图3是本申请实施例提供的一种天线组件的结构示意图;
图4是本申请实施例提供的一种包含有偶极子振子的天线组件的结构示意图;
图5是本申请实施例提供的一种包含有偶极子振子的天线组件的PCB的上板面的结构示意图;
图6是本申请实施例提供的一种包含有偶极子振子的天线组件的PCB的下板面的结构示意图;
图7是本申请实施例提供的一种包含有奇数个偶极子振子的天线组件的PCB的上板面的结构示意图;
图8是本申请实施例提供的一种天线组件中偶极子振子的一个臂为L型的示意图;
图9是本申请实施例提供的一种包含有单极子振子的天线组件的PCB的上板面的结构示意图;
图10是本申请实施例提供的一种包含有缝隙振子的天线组件的PCB的上板面的结构示意图;
图11是本申请实施例提供的一种包含有缝隙振子的天线组件的PCB的下板面的结构示意图。
具体实施方式
图1是本申请实施例提供的一种天线组件的应用场景图。如图1中所示,该场景中包括控制器101、接入点(access point,AP)102和多个终端103。
其中,控制器101可以用于对多个AP102进行集中管理和配置,并进行用户数据的转发。AP用于为连接的多个终端103提供无线接入服务。
在高密部署场景下,AP一般挂高3-5米(m)进行设置,覆盖小区的半径可以达到5-8m。在这种场景下,单位面积的用户数量通常较多,因此,为了保证通信容量,可以在AP中采用大角度的全向天线进行信号覆盖。然而,由于信道数量受限,因此,在相同频率下工作的AP的间距通常较小,在这种情况下,同频工作的各个AP之间将会存在信号干扰。基于此,本申请实施例提供了一种应用于AP中的天线组件,以此来提升AP的干扰抑制能力,从而减轻各个同频工作的AP之间的信号干扰。
其中,AP102可以为基站、路由器、交换机等网络设备,多个终端103可以为手机或电脑等。另外,图1中仅仅以3个终端为例进行说明,并不构成对本申请实施例提供的应用场景中的终端的数量的限制。
图2是本申请实施例提供的一种网络设备的结构示意图。示例性地,图1中的AP可以通过图2所示的网络设备来实现。参见图2,该网络设备包括处理器201、通信总线202、存储器203、射频电路204、天线组件205和基带电路206。
处理器201可以是一个通用中央处理器(central processing unit,CPU)、微处理器、特定应用集成电路(application-specific integrated circuit,ASIC)、或一个或多个集成电路。
通信总线202可包括一通路,在上述组件之间传送信息。
存储器203可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令 的其它类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其它类型的动态存储设备,也可以是电可擦可编程只读存储器(EEPROM)、光盘、磁盘或者其它磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其它介质。存储器203可以是独立存在并与处理器201相连接。存储器203也可以和处理器201集成在一起。
射频电路204与天线组件205,用于配合实现无线信号的收发。其中,天线组件205即为本申请实施例提供的天线组件。该天线组件的结构可以参见后续实施例中的相关介绍。
基带电路206,用于对接收到的无线信号或者是待发送的无线信号进行处理。
在具体实现中,作为一种实施例,处理器201可以包括一个或多个CPU。
在具体实现中,作为一种实施例,网络设备还可以包括输出设备(图中未示出)和输入设备(图中未示出)。输出设备和处理器201通信,可以以多种方式来显示信息。例如,输出设备可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪等。输入设备和处理器201通信,可以以多种方式接收用户的输入。例如,输入设备可以是鼠标、键盘、触摸屏或传感器等。
接下来对本申请实施例提供的天线组件进行介绍。
图3是本申请实施例提供的一种天线组件的结构示意图。如图3中所示,该天线组件可以包括N个振子30、馈电网络40和印刷电路板(printed circuit board,PCB)50,其中,N为大于或等于3的整数。该N个振子30和馈电网络40均位于PCB50上,N个振子30均与馈电网络40连接,每个振子30均具有一个径向部分,各个振子30的径向部分均指向天线相位中心,且每个振子的径向部分的长度大于非径向的其他部分的长度之和。其中,N可以为偶数,也可以为奇数。例如,N可以为3,也可以为4,或者是其他数值。当N为4时,该天线组件的副瓣抑制能力将强于N等于3时。图3中以N为8为例进行示例说明,但是这并不构成对该天线组件中包括的振子30的数量的限定。
各个振子所辐射出的电磁波在离开振子一定距离后,其等相位面会近似为一个球面,该球面的球心即为天线相位中心。在本申请实施例中,每个振子30均具有一个指向天线相位中心的径向部分。在一种可能的情况中,每个振子30可以不包含有非径向的其他部分,也即,每个振子30均为直线型且均指向天线相位中心。可选地,在另一种可能的情况中,每个振子30具有一个指向天线相位中心的径向部分,同时还具有一个或多个未指向天线相位中心的非径向的其他部分,并且,所有未指向天线相位中心的非径向的部分的长度总和小于相应振子30中包含的径向部分的长度。这样,各个振子在径向部分所在的方向上的电磁场的辐射强度将大于在非径向部分上的辐射强度,也即,各个振子的主辐射方向将与径向部分所在的方向一致,因此,每个振子30相当于是一个线源,波束宽度相对于较窄,副瓣移抑制能力增强。振子30各部分可以是线状也可以有一定宽度。振子30的一个部分的方向是指该部分长轴的方向。例如图3中振子30有一定宽度,其方向为径向是指其长度方向在径向上。振子30的宽度各处不一定要相同,只要其宽度总体小于长度,且长度方向在径向上即可。
另外,如图3所示,N个振子30可以分布排列在以天线相位中心为圆心的圆周上。可选地,各个振子30可以在该圆周上等间隔排列。也即,每相邻的两个振子30与天线相位中心的连线之间的夹角将为360/N度。当N为偶数时,该N个振子30中可以存在多个振子对,每个振子对中的两个振子30相对于天线相位中心中心对称。例如,当N为8时,每相邻的两个振子30与天线相位中心的连线之间的夹角为45度。其中,8个振子30可以分为4个振子对,每个振子对中的两个振子30相对于天线相位中心中心对称。当然,各个振子30之间也可以非等间隔排列,例如,假设与馈电网络40中同一条传输线两端连接的相邻的两个振子与天线相位中心的连线之间的夹角为第一夹角,以及与不同传输线连接的相邻的两个振子与天线相位中心的连线之间的夹角为第二夹角,第一夹角和第二夹角可以不同。
另外,N个振子30和馈电网络40均可以印刷在PCB50的板面上,并且,根据馈电网络40的不同以及N个振子30的不同,馈电网络40和N个振子30有可能位于PCB50的上板面,也有可能位于PCB50的下板面。
上述的天线组件中的振子可以为偶极子振子、单极子振子或者是缝隙振子。根据振子的不同,馈电网络也不同。接下来,将针对包含有不同的振子和馈电网络的天线组件分别进行说明。
当天线组件包括的振子为偶极子振子301时,馈电网络40可以为双面平行微带线功分网络401。参见图4,每个偶极子振子301包括两个臂。两个臂中的一个臂3011位于PCB50的上板面,且与双面平行微带线功分网络401中位于PCB50的上板面的弧形微带线的一端连接,另一个臂3012位于PCB50的下板面,且与双面平行微带线功分网络中位于PCB50的下板面上的弧形微带线的一端连接,两个臂连接的弧形微带线相对于PCB50镜面对称,且两个臂与弧形微带线的连接点相对于PCB50镜面对称。
其中,双面平行微带线功分网络401包括上板面网络和下板面网络。上板面网络位于PCB50的上板面上,下板面网络位于PCB50的下板面上,且上板面网络和下板面网络相对于PCB50的板面镜像对称。
图5示出了N为偶数时一种位于PCB50的上板面的上板面网络的示意图,如图5所示,该上板面网络可以包括第一功分器4011、多条直线形微带线4012、多条阻抗变换线4013、第二功分器4014和多条弧形微带线4015。其中,第二功分器4014可以为一分二功分器,第一功分器4011则可以根据振子的数量来选择。例如,在图5的示例中,振子的数量为8,在第二功分器4014为一分二功分器的情况下,则第一功分器可以为一分四功分器,这样,从该馈电网络的馈电点出发,通过第一功分器4011和第二功分器4015可以引出8条馈电线,从而分别向8个振子馈电。其中,该馈电网络的第一功分器4011可以位于天线相位中心上。另外,如图5所示,以阻抗变换线4013和直线形微带线4012的长度总和为半径,以第一功分器4011所在的位置为圆心,可以确定得到该馈电网络所对应的一个圆周。弧形微带线4015可以沿该圆周分布。偶极子振子与弧形微带线的连接点可以位于该圆周上,也即,该圆周即为N个偶极子振子分布在以天线相位中心为圆心的圆周。
示例性地,如图5所示,第一功分器4011的四个输出端可以连接四条阻抗变换线4013,每条阻抗变换线4013的另一端与一条直线形微带线4012的一端连接,通过该阻抗变换线 4013可以实现直线形微带线4012与第一功分器4011之间的阻抗匹配。在每条直线形微带线4012的另一端连接一个第二功分器4014。第二功分器4014的两个输出端分别连接一条弧形微带线4015,每条弧线微带线4015的一端可以连接一个偶极子振子301的一个臂3011。这样,第一功分器4011在将输入该馈电网络的一路电流分为四路之后,可以通过四个输出端将四路电流输出,四路电流分别通过四条阻抗变换线4013以及与四条阻抗变换线4013连接的四条直线形微带线4012传输至四个第二功分器4014中,每个第二功分器4014可以将接收到的电流分为两路,并通过两个输出端分别输出两路电流,这两路电流通过两条弧形微带线4015传输至相邻的两个偶极子振子301的臂中,从而实现对相邻的两个偶极子振子301的馈电。
8个偶极子振子中每个偶极子振子301均有两个臂,两个臂中位于馈电网络所对应的圆周内的臂3011位于上板面,且与上板面网络中的一条弧形微带线4015的一端连接。其中,每个臂的长度可以为该天线组件的工作波长的指定倍数。该指定倍数可以为0.125-1中的任一数值。
其中,阻抗变换线4013可以为四分之一波长阻抗变换线,直线形微带线4012和弧形微带线4015可以为50欧姆微带线。
图6示出了与图5中的上板面网络镜面对称的下板面网络。如图6中所示,该下板面网络同样包括第一功分器4011、多条直线形微带线4012、多条阻抗变换线4013、第二功分器4014和多条弧形微带线4015。下板面网络的结构与上板面网络的结构相同,该下板面网络位于PCB50的下板面上,且与上板面网络相对于PCB50镜面对称。关于下板面网络中各个组件的介绍可以参考对图5中的上板面网络的相关介绍,本申请实施例在此不再赘述。
另外,8个偶极子阵子中每个偶极子振子301的两个臂中位于馈电网络所对应的圆周外的臂3012位于该PCB50的下板面上,且与下板面网络中的弧形微带线4015的一端连接。这样,与镜面对称的两条弧形微带线分别连接的臂3011和3012组成一个偶极子振子。如图5和6中所示,图5中的臂3011与图6中的振臂3012即为一个偶极子振子的两个臂。由于上板面网络和下板面网络镜面对称,且同一个振子的两个臂中的一个臂3011连接的弧形微带线4015与另一个臂3012连接的弧形微带线4015也镜面对称,因此,两个臂与弧形微带线的连接点A和B也镜面对称。
当N为偶数时,N个偶极子振子301可以被划分为N/2对偶极子振子对。每对偶极子振子对中的两个偶极子振子可以相对于天线相位中心中心对称。其中,如果将两个径向对称的偶极子振子等效成幅度为1,相位为0的点源,则辐射强度F随辐射角度θ变化的函数可以由通过以下公式(1)来确定:
F(θ)=e^(-jkhsinθ)(e^(-j0.5kacosθ)-e^j0.5kacosθ)-e^jkhsinθ(e^(-j0.5kacosθ)-e^j0.5kacosθ)  (1)
其中,θ是俯仰角,k是电磁波的传播常数,h是PCB与位于该PCB下方的金属底板之间的距离,a是偶极子振子对中两个偶极子振子之间的间距。
由上述函数关系可知,通过调整偶极子振子对的两个偶极子振子之间的间距,即可以调节该偶极子振子对在不同辐射角度的辐射强度,从而调节该天线组件的副瓣抑制能力。基于此,在本申请实施例中,可以根据偶极子振子对的辐射角度以及要求的副瓣抑 制能力来设置该天线组件中包括的各个偶极子振子对的两个偶极子振子之间的间距。示例性地,各个偶极子振子对的两个偶极子振子之间的间距可以为该天线组件的工作波长的预设倍数。该预设倍数可以为0.25-1中的任一数值。
在本申请实施例中,对于偶极子振子对中的中心对称的两个偶极子振子,为了便于描述,将其中一个称为第一偶极子振子,另一个称为第二偶极子振子。这样,第一偶极子振子与第二偶极子振子之间的间距可以为第一连接点与第二连接点之间的间距。其中,第一连接点是指第一偶极子振子与弧形传输线的连接点,第二连接点为第二偶极子振子与弧形传输线的连接点。也即,如图5和6所示,点A和点B之间的间距,即为中心对称的两个偶极子振子之间的间距。
图5和图6中仅以N为8为例进行说明,对于其他N为偶数的情况,均可以参考上述示例,不同的是,当N为不同的偶数时,上板面网络和下板面网络包括的第一功分器将不同,且馈电网络中包括的阻抗变换线和微带线的数量也将不同。例如,当N为6时,上板面网络和下板面网络中的第一功分器可以为一分三功分器,相应地,第一功分器可以连接三条阻抗变换线,三条阻抗变换线与三条直线形微带线连接,每条直线形微带线连接一个一分二的第二功分器,每个第二功分器可以连接两条弧形微带线。
上文介绍了振子为偶极子振子、馈电网络为双面平行微带线功分网络时,N为偶数的情况下的天线组件的结构。当N为奇数时,参见图7,位于PCB50的上板面的上板面网络可以包括一个第一功分器4011、多条阻抗变换线4013和多条异形微带线4016。如图7所示,以N为5为例,该第一功分器4011可以为一分五功分器,该第一功分器4011可以连接五条阻抗变换线4013,每条阻抗变换线4013的另一端连接一条异形微带线4016,该异形微带线4016可以为如图7中所示的末端为弧形的微带线,每条异形微带线4016的末端可以与偶极子振子301的两个臂中的一个臂3011连接。相应地,位于PCB50的下板面的下板面网络的结构与该上板面网络的结构相同,且下板面网络与上板面网络相对于PCB50镜面对称,每个偶极子振子301的两个臂中的另一个臂3012与下板面网络中的一条微带线的一端连接。并且,连接偶极子振子的两个臂的微带线相对于PCB50镜面对称,这样,两个臂与微带线的连接点相对于PCB50也是镜面对称的。
在上述实施例中,与偶极子振子连接的微带线也可以不为弧形微带线,而是为直线形微带线,在这种情况下,该直线形微带线可以与馈电网络所对应的圆周相切。
可选地,在本申请实施例中,为了减小馈电网络和偶极子振子所占用的面积,偶极子振子的两个臂的长度可以不同,形状也可以不同。例如,当偶极子振子的两个臂均为直线型,且均指向天线相位中心时,两个臂中位于馈电网络所对应的圆周之外的臂的长度可以小于另一个臂的长度。或者,偶极子振子的两个臂中位于馈电网络所对应的圆周内的臂可以为直线形,且指向天线相位中心,位于馈电网络所对应的圆周之外的臂可以包括一个径向部分和一个非径向部分,如该臂的末端可以弯曲。其中,径向部分与弧形微带线连接,这样,该臂的径向部分与另一个直线形的臂组成该偶极子振子的径向部分。弯曲的非径向部分的长度小于该臂的径向部分和另一个臂的长度的总和。例如,位于馈电网络所对应的圆周之外的臂可以为L型,本申请实施例对此不做限定。
示例性地,图8示出了一种偶极子振子中的一个臂为L型的天线组件的示意图。如图8所示,臂3011位于馈电网络所在的圆周内,臂3011可以为直线形,且指向天线相位中 心。臂3012位于馈电网络所对应的圆周外,臂3012的形状为L型。其中,臂3012的包含有径向部分a和非径向部分b,臂3012通过径向部分a与弧形微带线连接,这样,径向部分a与臂3011组成该偶极子振子的径向部分。非径向部分b的长度小于径向部分a与臂3011的长度之和。
图8仅是本申请实施例给出的偶极子振子的一种可能的实现方式,在另外一些可能的实现方式中,位于馈电网络所对应的圆周之外的臂还可以为其他形状,位于馈电网络所对应的圆周之内的臂也可以为其他形状,只要保证该偶极子振子的径向部分的长度大于非径向的其他部分的长度和即可。
在本申请实施例中,N个振子和馈电网络均位于PCB上,N个振子均与馈电网络连接,每个振子具有一个径向部分,各个振子的径向部分均指向天线相位中心,且每个振子的径向部分的长度大于非径向的其他部分的长度之和。这样,各个振子在径向部分所在的方向上的电磁场的辐射强度将大于在非径向部分上的辐射强度,也即,各个振子的主辐射方向将与径向部分所在的方向一致,因此,每个振子相当于是一个线源,波束宽度相对于较窄,副瓣移抑制能力增强。在这种情况下,对于相邻的同频工作的两个无线AP,信号干扰减轻。另外,当N为偶数时,N个偶极子振子可以分为多个偶极子振子对,每个振子对的两个振子相对于天线相位中心中心对称。这样,在设计该天线组件时,可以根据使用场景来设置两个振子之间的间距,以此来调节该天线组件的在不同辐射角度下的辐射强度,进而来调节该天线组件的副瓣抑制能力。
图4-8中主要介绍了天线组件中的振子为偶极子振子时,该天线组件的实现方式。可选地,在本申请实施例中,天线组件中包括的N个振子也可以均为单极子振子,在这种情况下,馈电网络可以为微带线功分网络。
示例性地,图9示出了一种包括8个单极子振子的天线组件的结构示意图。如图9中所示,该天线组件包括8个单极子振子302、微带线功分网络402和PCB50。其中,8个单极子振子302均位于PCB50的上板面,且微带线功分网络402也位于PCB302的上板面。其中,每个单极子振子302包括一个臂。微带线功分网络402可以包括第一功分器4011、多条直线形微带线4012、多条阻抗变换线4013、第二功分器4014以及多条弧形微带线4015。由于该天线组件包括8个单极子振子302,因此,第一功分器4011可以为一个一分四功分器,阻抗变换线4013和直线形微带线4012的数量可以均为4,且弧形微带线4015的数量为8。其中,8个单极子振子可以均为直线形,且8个单极子振子均指向天线相位中心,在这种情况下,每个单极子振子中将不包含非径向的其他部分。另外,同样的,参见图9,在本申请实施例中,第一功分器4011可以位于天线相位中心,以第一功分器4011所在的位置为圆心,可以确定得到该馈电网络所对应的一个圆周。弧形微带线4015可以沿该圆周分布。单极子振子与弧形微带线的连接点可以位于该圆周上,也即,该圆周即为N个单极子振子分布的以天线相位中心为圆心的圆周。单极子振子302和微带线功分网络402一般位于PCB50的一面,如上板面。PCB50的另一面可以布置一个地板。该地板的形状可以是圆形或任意其他形状。该地板一般不和单极子振子302的投影重叠。
其中,第一功分器4011的四个输出端分别连接四条阻抗变换线4013的一端,四条阻抗变换线4013的另一端分别连接四条直线形微带线4012的一端。每条直线形微带线4012 的另一端连接一个第二功分器4014,第二功分器4014的两个输出端则分别连接两条弧形微带线4015。这样,第一功分器4011在将输入该馈电网络的一路电流分为四路之后,可以通过四个输出端将四路电流输出,四路电流分别通过四条阻抗变换线4013以及与四条阻抗变换线4013连接的四条直线形微带线4012传输至四个第二功分器4014中,每个第二功分器4014可以将接收到的电流分为两路,并通过两个输出端分别输出两路电流,这两路电流通过两条弧形微带线4015传输至相邻的两个单极子振子302,从而实现对相邻的两个单极子振子302的馈电。其中,阻抗变换线4013可以为四分之一波长阻抗变换线4013,直线形微带线4012和弧形微带线4015可以为50欧姆微带线。
在N为偶数的情况下,N个单极子振子302同样可以为划分为N/2个振子对,每个振子对的两个单极子振子相对于天线相位中心中心对称。这样,每个振子对的两个振子同样可以等效为幅度为1,相位为0的点源,相应地,辐射强度随辐射角度θ变化的函数同样可以由公式(1)来表示。如此,通过调整振子对的两个单极子振子之间的间距,同样可以调节该单极子振子对在不同辐射角度的辐射强度,从而调节该天线组件的副瓣抑制能力。也即,在本申请实施例中,可以根据振子对的辐射角度以及要求的副瓣抑制能力来设置该天线组件中包括的各个振子对的两个单极子振子之间的间距。
图9中主要介绍了包括8个单极子振子的天线组件的实现方式,当N为其他偶数时,该天线组件的实现方式可以参考N为8时的实现方式,与N为8时的实现方式不同的是,根据包括的单极子振子的数量的不同,微带线功分网络中的第一功分器4011不同,且包括的阻抗变换线4013以及微带线的数量将不同,具体地可以参考前述对于包括偶数个偶极子振子的天线组件的馈电网络的相关说明,本申请实施例在此不再赘述。
可选地,当N为奇数时,该天线组件的实现方式可以参考前述实施例中当包括奇数个偶极子振子时的相关实现方式,本申请实施例在此不再赘述。
可选地,在一些可能的实现方式中,每个单极子振子302也可以不为直线形,例如,每个单极子振子302也可以为L型,在这种情况下,每个单极子振子302可以包括一个指向天线相位中心的径向部分以及一个未指向天线相位中心的非径向部分,其中,径向部分的长度大于非径向部分的长度。当然,每个单极子振子302还可以为其他形状,只要保证指向天线相位中心的径向部分的长度大于非径向的其他部分的长度即可。
在本申请实施例中,N个振子和馈电网络均位于PCB上,N个振子均与馈电网络连接,每个振子具有一个径向部分,各个振子的径向部分均指向天线相位中心,且每个振子的径向部分的长度大于非径向的其他部分的长度之和。这样,各个振子在径向部分所在的方向上的电磁场的辐射强度将大于在非径向部分上的辐射强度,也即,各个振子的主辐射方向将与径向部分所在的方向一致,因此,每个振子相当于是一个线源,波束宽度相对于较窄,副瓣移抑制能力增强。在这种情况下,对于相邻的同频工作的两个无线AP,信号干扰减轻。另外,当N为偶数时,N个偶极子振子可以分为多个偶极子振子对,每个振子对的两个振子相对于天线相位中心中心对称。这样,在设计该天线组件时,可以根据使用场景来设置两个振子之间的间距,以此来调节该天线组件的在不同辐射角度下的辐射强度,进而来调节该天线组件的副瓣抑制能力。
图9介绍了天线组件中的振子为单极子振子时的实现方式。可选地,在本申请实施 例中,天线组件包括的N个振子还可以为缝隙振子。在这种情况下,馈电网络可以为微带线功分网络。与包括单极子振子时的结构的不同之处在于,在该种天线组件中,N个缝隙振子位于PCB的上板面,而微带线功分网络位于PCB的下板面。
示例性地,图10示出了一种包括8个缝隙振子的天线组件的PCB的上板面的结构示意图。如图10所示,8个缝隙振子303是指在PCB50的上板面刻的8个刻槽,每个刻槽即为一个缝隙振子。其中,每个缝隙振子303均可以为直线形,且每个缝隙振子303均指向天线相位中心。也即,每个缝隙振子303不包含有非径向部分。图11示出了该天线组件的PCB50的下板面的示意图,如图11所示,在PCB50的下板面上设置有微带线功分网络402,其中,该微带线功分网络402可以包括第一功分器4011、多条直线形微带线4012、多条阻抗变换线4013、第二功分器4014以及多条异形微带线4016。由于该天线组件包括8个缝隙振子,因此,第一功分器4011可以为一个一分四功分器,阻抗变换线4013和直线形微带线4012的数量可以均为4,且异形微带线4016的数量为8。其中,该异形微带线4016可以为由一段直线形微带线4012和一端弧形微带线连接成的近似L形的微带线,或者可以为弧形微带线,或者可以是由两段直线形微带线4012连接得到的L形微带线,本申请实施例对此不作限定。图10中以该异形微带线4016为由一段直线形微带线和一段弧形微带线连接成的近似L形的微带线为例进行说明。
其中,第一功分器4011的四个输出端分别连接四条阻抗变换线4013的一端,四条阻抗变换线4013的另一端分别连接四条直线形微带线4012的一端。每条直线形微带线4012的另一端连接一个第二功分器4014,第二功分器4014的两个输出端则分别连接两条异形微带线4016。这样,第一功分器4011在将输入该馈电网络的一路电流分为四路之后,可以通过四个输出端将四路电流输出,四路电流分别通过四条阻抗变换线4013以及与四条阻抗变换线4013连接的四条直线形微带线4012传输至四个第二功分器4014中,每个第二功分器4014可以将接收到的电流分为两路,并通过两个输出端分别输出两路电流,这两路电流通过两条异形微带线4016分别传输至相邻的两个缝隙振子303,从而实现对相邻的两个缝隙振子303的馈电。其中,阻抗变换线4013可以为四分之一波长阻抗变换线4013,直线形微带线4012和异形微带线4016可以为50欧姆微带线。本申请实施例对此不作限定。
另外,PCB50的上板面可以为铜板,N个缝隙振子303为在该铜板上刻的N个槽,每个槽与PCB50下板面上的一条异形微带线4016相交,从而实现每个缝隙振子303与异形微带线4016的连接。
同样的,在本申请实施例,在N为偶数的情况下,N个缝隙振子303也可以被分为N/2个振子对,每个振子对的两个缝隙振子303相对于天线相位中心中心对称。这样,同样可以通过设置一对振子对中的两个缝隙振子303之间的间距,来调节该缝隙振子303对在不同辐射角度的辐射强度,从而调节该天线组件的副瓣抑制能力。
可选地,当N为其他偶数时,该天线组件的实现方式可以参考上述N为8时实现方式,与上述N为8的实现方式不同的是,根据包括的缝隙振子的数量的不同,微带线功分网络402中包括的第一功分器4011不同,且包括的阻抗变换线4013以及微带线的数量将不同,具体地可以参考前述对于包括偶数个偶极子振子的天线组件的馈电网络的相关说明,本申请实施例在此不再赘述。
可选地,当N为奇数时,该天线组件的实现方式可以参考前述实施例中当包括奇数 个偶极子振子时的相关实现方式,本申请实施例在此不再赘述。
另外,在一些可能的实现方式中,每个缝隙振子303也可以不为直线形,例如,每个缝隙振子303也可以为L型。当每个缝隙振子303不为直线形时,具体的实现方式可以参考前述介绍的单极子振子不为直线形的相关实现方式,本申请实施例在此不再赘述。
在本申请实施例中,N个振子和馈电网络均位于PCB上,N个振子均与馈电网络连接,每个振子具有一个径向部分,各个振子的径向部分均指向天线相位中心,且每个振子的径向部分的长度大于非径向的其他部分的长度之和。这样,各个振子在径向部分所在的方向上的电磁场的辐射强度将大于在非径向部分上的辐射强度,也即,各个振子的主辐射方向将与径向部分所在的方向一致,因此,每个振子相当于是一个线源,波束宽度相对于较窄,副瓣移抑制能力增强。在这种情况下,对于相邻的同频工作的两个无线AP,信号干扰减轻。另外,当N为偶数时,N个偶极子振子可以分为多个偶极子振子对,每个振子对的两个振子相对于天线相位中心中心对称。这样,在设计该天线组件时,可以根据使用场景来设置两个振子之间的间距,以此来调节该天线组件的在不同辐射角度下的辐射强度,进而来调节该天线组件的副瓣抑制能力。

Claims (11)

  1. 一种天线组件,其特征在于,所述天线组件包括N个振子、馈电网络和印刷电路板(PCB),所述N为大于或等于3的整数;
    所述N个振子和所述馈电网络均位于所述PCB上,所述N个振子均与所述馈电网络连接,每个振子具有一个径向部分,各个振子的径向部分均指向天线相位中心,且每个振子的径向部分的长度大于非径向的其他部分的长度之和。
  2. 根据权利要求1所述的天线组件,其特征在于,所述N为偶数,所述N个振子中存在多个振子对,每个振子对中的振子相对于所述天线相位中心中心对称。
  3. 根据权利要求1或2所述的天线组件,其特征在于,所述馈电网络为双面平行微带线功分网络,所述N个振子为N个偶极子振子;
    每个偶极子振子包括两个臂,所述两个臂中的一个臂位于所述PCB的上板面,且与所述双面平行微带线功分网络中位于所述PCB的上板面的弧形微带线的一端连接,另一个臂位于所述PCB的下板面,且与所述双面平行微带线功分网络中位于所述PCB的下板面上的弧形微带线的一端连接,所述两个臂连接的弧形微带线相对于所述PCB镜面对称,且所述两个臂与弧形微带线的连接点相对于所述PCB镜面对称。
  4. 根据权利要求3所述的天线组件,其特征在于,所述双面平行微带线功分网络包括上板面网络和下板面网络,所述上板面网络位于所述PCB的上板面,所述下板面网络位于所述PCB的下板面,所述上板面网络和所述下板面网络相对于所述PCB镜面对称;
    所述上板面网络和所述下板面网络均包括第一功分器、多条直线形微带线、多条阻抗变换线、第二功分器和多条弧形微带线,所述第一功分器用于连接所述多条直线形微带线和所述多条弧形微带线,所述多条直线形微带线中的每条直线形微带线与所述多条阻抗变换线中的一条阻抗变换线连接,所述第二功分器用于连接所述多条阻抗变换线。
  5. 根据权利要求3或4所述的天线组件,其特征在于,所述两个臂中每个臂的长度为所述天线组件的工作波长的指定倍数。
  6. 根据权利要求5所述的天线组件,其特征在于,所述指定倍数为0.125-1中的任一数值。
  7. 根据权利要求3-6任一所述的天线组件,其特征在于,所述两个臂中的第一臂包含有非径向部分,且所述第一臂的形状为L型,第二臂不包含有非径向部分,所述第一臂与所述天线相位中心的距离大于所述第二臂与所述天线相位中心的距离。
  8. 根据权利要求3-7任一所述的天线组件,其特征在于,所述N个偶极子振子中中心对称的第一偶极子振子和第二偶极子振子之间的间距是指第一连接点与第二连接点之间的距离,所述第一连接点为所述第一偶极子振子与弧形微带线的连接点,所述第二连接点为所述第二偶极子振子与弧形微带线的连接点。
  9. 根据权利要求1或2所述的天线组件,其特征在于,所述馈电网络为微带线功分网络,所述N个振子为N个单极子振子,所述微带线功分网络与所述N个单极子振子均位于所述PCB的上板面,每个单极子振子与所述微带线功分网络中的一条弧形微带线的一端连接。
  10. 根据权利要求1或2所述的天线组件,其特征在于,所述馈电网络为微带线功分网络,所述微带线功分网络位于所述PCB的下板面,所述N个振子为N个缝隙振子,所述N个缝隙振子是指所述PCB的上板面的N个刻槽,每个缝隙振子与所述微带线功分网络中的一条弧形微带线的一端连接。
  11. 一种无线设备,其特征在于,所述无线设备包括射频电路和权利要求1-10任一所述的天线组件;
    所述射频电路用于和所述天线组件配合进行无线信号的收发。
PCT/CN2020/088783 2019-10-22 2020-05-06 天线组件和无线设备 WO2021077718A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20878136.9A EP4033609A4 (en) 2019-10-22 2020-05-06 ANTENNA ARRANGEMENT AND AND WIRELESS DEVICE
US17/723,972 US20220247088A1 (en) 2019-10-22 2022-04-19 Antenna Assembly and Wireless Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911005244.8A CN111769372B (zh) 2019-10-22 2019-10-22 天线组件和无线设备
CN201911005244.8 2019-10-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/723,972 Continuation US20220247088A1 (en) 2019-10-22 2022-04-19 Antenna Assembly and Wireless Device

Publications (1)

Publication Number Publication Date
WO2021077718A1 true WO2021077718A1 (zh) 2021-04-29

Family

ID=72718367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/088783 WO2021077718A1 (zh) 2019-10-22 2020-05-06 天线组件和无线设备

Country Status (4)

Country Link
US (1) US20220247088A1 (zh)
EP (1) EP4033609A4 (zh)
CN (1) CN111769372B (zh)
WO (1) WO2021077718A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114421992A (zh) * 2022-01-28 2022-04-29 Oppo广东移动通信有限公司 射频前端模块、通信控制方法与装置、介质、电子设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116569418A (zh) * 2020-12-11 2023-08-08 华为技术有限公司 一种阵列天线及基站
CN113410642A (zh) * 2021-06-09 2021-09-17 上海微波技术研究所(中国电子科技集团公司第五十研究所) 宽带天线一分四功分馈电网络

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4672386A (en) * 1984-01-05 1987-06-09 Plessey Overseas Limited Antenna with radial and edge slot radiators fed with stripline
CN106785405A (zh) * 2017-01-12 2017-05-31 重庆邮电大学 一种加载amc反射板的低剖面双极化偶极子基站天线
CN107240766A (zh) * 2017-06-09 2017-10-10 合肥工业大学 一种超宽带全金属圆极化天线单元
CN208014903U (zh) * 2018-03-26 2018-10-26 安徽大学 一种适用于环境射频能量收集的天线

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6147657A (en) * 1998-05-19 2000-11-14 Harris Corporation Circular phased array antenna having non-uniform angular separations between successively adjacent elements
KR100526585B1 (ko) * 2002-05-27 2005-11-08 삼성탈레스 주식회사 이중 편파 특성을 갖는 평판형 안테나
US6954179B2 (en) * 2003-11-06 2005-10-11 Harris Corporation Multiband radially distributed graded phased array antenna and associated methods
US20060189273A1 (en) * 2005-02-18 2006-08-24 U.S. Monolithics, L.L.C. Systems, methods and devices for a ku/ka band transmitter-receiver
CN2836258Y (zh) * 2005-08-05 2006-11-08 西安海天天线科技股份有限公司 一种改善低仰角性能的双频宽波束圆极化天线
CN101997170A (zh) * 2010-11-24 2011-03-30 东南大学 双节阻抗变换器馈电全向宽带偶极子阵列天线
CN102122763A (zh) * 2011-03-17 2011-07-13 东南大学 并联馈电的全向阵列天线
US9259582B2 (en) * 2011-04-29 2016-02-16 Cyberonics, Inc. Slot antenna for an implantable device
EP2727183B1 (en) * 2011-06-30 2016-11-16 Gapwaves AB Improved broadband multi-dipole antenna with frequency-independent radiation characteristics
US9082307B2 (en) * 2013-02-19 2015-07-14 King Fahd University Of Petroleum And Minerals Circular antenna array for vehicular direction finding
CN104157980B (zh) * 2014-08-08 2017-02-15 电子科技大学 可重构微带八木天线
US9478865B1 (en) * 2014-12-18 2016-10-25 L-3 Communications Corp. Configurable horn antenna
CN205565000U (zh) * 2016-04-26 2016-09-07 深圳前海智讯中联科技有限公司 一种多波束选择智能天线阵列及具有该天线阵列的系统
CN106410397A (zh) * 2016-10-27 2017-02-15 深圳国人通信股份有限公司 一种印刷偶极子振子
CN106549233A (zh) * 2016-12-07 2017-03-29 西安电子科技大学 超宽带水平极化全向连接型的维瓦尔第圆形阵列天线
CN107240783A (zh) * 2017-06-07 2017-10-10 华中科技大学 一种双模式复用的涡旋电磁波天线
CN110085966B (zh) * 2019-04-29 2021-01-05 西安爱生无人机技术有限公司 一种地面遥测和遥控一体天线及平台

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4672386A (en) * 1984-01-05 1987-06-09 Plessey Overseas Limited Antenna with radial and edge slot radiators fed with stripline
CN106785405A (zh) * 2017-01-12 2017-05-31 重庆邮电大学 一种加载amc反射板的低剖面双极化偶极子基站天线
CN107240766A (zh) * 2017-06-09 2017-10-10 合肥工业大学 一种超宽带全金属圆极化天线单元
CN208014903U (zh) * 2018-03-26 2018-10-26 安徽大学 一种适用于环境射频能量收集的天线

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114421992A (zh) * 2022-01-28 2022-04-29 Oppo广东移动通信有限公司 射频前端模块、通信控制方法与装置、介质、电子设备
CN114421992B (zh) * 2022-01-28 2023-10-31 Oppo广东移动通信有限公司 射频前端模块、通信控制方法与装置、介质、电子设备

Also Published As

Publication number Publication date
CN111769372A (zh) 2020-10-13
EP4033609A4 (en) 2022-11-23
US20220247088A1 (en) 2022-08-04
CN111769372B (zh) 2021-10-22
EP4033609A1 (en) 2022-07-27

Similar Documents

Publication Publication Date Title
JP6981475B2 (ja) アンテナ、アンテナの構成方法及び無線通信装置
WO2021077718A1 (zh) 天线组件和无线设备
CN108886202B (zh) 包含变极化相控阵列天线的无线通信系统
US8884833B2 (en) Broadband monopole antenna with dual radiating structures
RU2622483C1 (ru) Мобильное устройство с фазированной антенной решеткой вытекающей волны
US9954271B2 (en) Radio-frequency device and wireless communication device for enhancing antenna isolation
EP1271692B1 (en) Printed planar dipole antenna with dual spirals
US20200412002A1 (en) Antenna Element and Array Antenna
KR20030080217A (ko) 소형 광대역 고리형 마이크로스트립 패치 안테나
JP2017533675A (ja) ワイヤレス電子デバイスのための周期スロットを有するストリップライン結合アンテナ
JP2015531577A (ja) 自己接地型アンテナ装置
TWI487191B (zh) 天線系統
US11757178B2 (en) Antenna of a terminal device
US20220399918A1 (en) Apparatus that supports spatial diversity, at least at reception
WO2020083000A1 (zh) 天线系统及通讯终端
US20170256863A1 (en) Antenna system
TW201817083A (zh) 波束選擇天線系統
US20220328974A1 (en) Reconfigurable Antenna and Network Device
WO2022134786A1 (zh) 一种天线和通信设备
US20230327341A1 (en) Antenna and communication device
CN109728416B (zh) 一种辐射单元和多频基站天线
WO2017022224A1 (ja) アンテナ及び無線通信装置
US11522270B2 (en) Solution for beam tilting associated with dual-polarized mm-Wave antennas in 5G terminals
US20230155302A1 (en) Antenna and Electronic Device
CN111800155A (zh) 无线装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20878136

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020878136

Country of ref document: EP

Effective date: 20220420