WO2020083000A1 - 天线系统及通讯终端 - Google Patents

天线系统及通讯终端 Download PDF

Info

Publication number
WO2020083000A1
WO2020083000A1 PCT/CN2019/109027 CN2019109027W WO2020083000A1 WO 2020083000 A1 WO2020083000 A1 WO 2020083000A1 CN 2019109027 W CN2019109027 W CN 2019109027W WO 2020083000 A1 WO2020083000 A1 WO 2020083000A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
antenna system
circuit board
rectangular
feed point
Prior art date
Application number
PCT/CN2019/109027
Other languages
English (en)
French (fr)
Inventor
陈友春
黄源烽
戴有祥
Original Assignee
瑞声声学科技(深圳)有限公司
瑞声科技(新加坡)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司, 瑞声科技(新加坡)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Publication of WO2020083000A1 publication Critical patent/WO2020083000A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters
    • H01Q3/38Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters the phase-shifters being digital
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/064Two dimensional planar arrays using horn or slot aerials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0025Modular arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/02Waveguide horns
    • H01Q13/0275Ridged horns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/35Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using two or more simultaneously fed points

Definitions

  • the invention relates to an antenna, in particular to an antenna system and a communication terminal used in the field of communication electronic products.
  • 5G has three main application scenarios: enhanced mobile broadband, large-scale machine communications, and high-reliability and low-latency communications. These three application scenarios correspond to different key indicators, in which the peak user speed in the enhanced mobile bandwidth scenario is 20 Gbps, and the minimum user experience rate is 100 Mbps.
  • Millimeter wave's unique high carrier frequency and large bandwidth characteristics are the main means to achieve 5G ultra-high data transmission rate. Therefore, the rich bandwidth resources of the millimeter wave frequency band provide a guarantee for high speed transmission rate.
  • the wireless communication antenna system using the millimeter wave frequency band needs to adopt a phased array architecture.
  • the phase shifter makes the phase of each array element distributed according to a certain rule, thereby forming a high-gain beam, and changes the phase shift to make the beam scan in a certain spatial range.
  • the communication link is easily interrupted. If the frequency band bandwidth covered by the beam range is limited, the reliability of the antenna system will be affected.
  • the technical problem to be solved by the present invention is to provide an antenna system and a communication terminal with strong and stable communication signals, good reliability, and wide frequency band coverage.
  • the present invention provides an antenna system, the antenna system includes a sub-array rectangular horn unit, the sub-array rectangular horn unit includes: a metal base in a rectangular parallelepiped structure, the metal base includes a top A surface, a bottom surface opposite to the top surface, and a back cavity formed by the top surface recessed in the direction of the bottom surface; a circuit board, the circuit board is stacked electrically connected to the top surface of the metal base and completely covers the In the back cavity, the circuit board includes four sub-circuit boards distributed in a matrix and electrically connected to each other.
  • Each of the sub-circuit boards includes four conductive arms connected end to end to form a rectangular ring, and The first feed point end and the second feed point end are surrounded by four conductive arms to form a clear space, and the first feed point end and the second feed point end are respectively directed from the center of the opposite two conductive arms
  • the headroom direction extends vertically, and the first feed point end and the second feed point end are spaced apart to form a feed port of the sub-array rectangular horn unit, and both ends of the feed port are respectively connected to the first Feed point and
  • the two feed points are electrically connected;
  • the phase shift unit includes a phase shift chip stacked on the center of the circuit board and electrically connected to the four sub-circuit boards respectively; and the speaker unit includes four matrix-distributed Rectangular speakers, each of the rectangular speakers is stacked and fixed on one of the sub-circuit boards; each of the rectangular speakers includes four side walls connected end to end and two fixed inside the opposite two side walls, respectively A ridge, the side walls are
  • the outer contours of the orthographic projections of the metal base and the speaker unit on the circuit board coincide with the outer contours of the circuit board, and both are square.
  • each side wall of the rectangular horn includes an outer wall surface and an inner wall surface, the outer wall surface is perpendicular to the circuit board, and the inner wall surface extends from an end near the circuit board to an end away from the circuit board Open gradually so that the cross-sectional area of the side wall closer to the end of the circuit board is larger than the cross-sectional area of the end away from the circuit board.
  • the outer contour of the mouth surface enclosed by the inner wall surface of the rectangular horn is square.
  • the ridge is fixed to the inner wall surface of the side wall, the ridge includes a fixing portion that is in contact with the sub-circuit board and extends from the fixing portion to the side wall away from the circuit board An extension portion at one end, the extension portion gradually splays from its end close to the fixing portion toward the end away from the fixing portion, so that the cross-sectional area of the end of the extension portion closer to the fixing portion is greater than The cross-sectional area of one end of the fixed portion.
  • the phase shifting unit further includes a metal shield completely covering the phase shifting chip, the side wall of the rectangular horn is provided with an escape portion to avoid the metal shield, and the metal shield The member is locked in the escape portion and connected to the side wall.
  • the phase shift chip is a quad-core phase shift chip.
  • the sub-array rectangular horn units include N, and the N sub-array rectangular horn units are distributed in a matrix and electrically connected to each other to form a phased array antenna system.
  • the metal bases of the N sub-array rectangular horn units have an integrated molding structure
  • the circuit boards of the N sub-array horn antenna units have an integrated molding structure
  • the present invention also provides a communication terminal, which includes the above-mentioned antenna system provided by the present invention.
  • the antenna system is designed as one or more sub-array rectangular horn units, thereby forming a high-gain beam, and by changing the phase shift, the beam becomes larger in size. Scan within the space to keep the line-of-sight communication between the transmitter and receiver using the antenna system uninterrupted, which makes the communication terminal using the antenna system have strong and stable communication signals, good reliability, and wide frequency band coverage.
  • FIG. 1 is a schematic structural diagram of a sub-array rectangular horn unit of the antenna system of the present invention
  • FIG. 2 is an exploded schematic view of a partial stereo structure of a sub-array rectangular horn unit of the antenna system of the present invention
  • Figure 3 is a cross-sectional view taken along line A-A in Figure 1;
  • FIG. 4 is a plan view of a partial structure of a sub-array rectangular horn unit of the antenna system of the present invention.
  • Figure 5 is a top view of Figure 1;
  • FIG. 6 is a graph of S-parameter characteristics of the sub-array rectangular speaker unit of FIG. 1, wherein FIG. 6a is a reflection coefficient curve of each rectangular speaker in the sub-array rectangular speaker unit, and FIG. 6b is one of the rectangles The graph of the isolation between the horn and the other three rectangular horns;
  • FIG. 8 is an exploded schematic view of a three-dimensional structure of one embodiment of the antenna system of the present invention.
  • FIG. 9 is a plan view of a part of the structure of the antenna system of FIG. 8;
  • FIG. 10 is a top view of the antenna system of FIG. 8;
  • FIG. 11 is an S-parameter characteristic curve diagram of the antenna system of FIG. 8, wherein FIG. 11a is a reflection coefficient curve diagram of each rectangular horn in the antenna system, and FIG. 11b is one of the rectangular horn and the other 15 rectangular horns of the antenna system Isolation curve;
  • FIG. 13 is an exploded schematic view of a three-dimensional structure of another embodiment of the antenna system of the present invention.
  • FIG. 14 is a plan view of a part of the structure of the antenna system of FIG. 13;
  • FIG. 15 is a plan view of the structure of the antenna system of FIG. 13;
  • the present invention provides an antenna system 100, including a sub-array rectangular speaker unit 10.
  • the sub-array rectangular speaker unit 10 includes a metal base 1, a circuit board 2 stacked on the metal base 1 and electrically connected to the metal base 1, and a circuit board 2 stacked on the circuit board 2 and connected with the The phase shift unit 3 electrically connected to the circuit board 2 and the speaker unit 4 stacked on the circuit board 2 and electrically connected to the circuit board 2.
  • the metal base 1 has a rectangular cubic structure, such as a rectangular parallelepiped structure.
  • the metal base 1 includes a top surface 11, a bottom surface 12 opposite to the top surface 11, and a back cavity 13 recessed from the top surface 11 toward the bottom surface 12.
  • the circuit board 2 is stacked and fixed on the top surface 11 of the metal base 1 and completely covers the back cavity 13.
  • the circuit board 2 is electrically connected to the metal base 1, and the circuit board 2 and the metal base 1 together form a back cavity space 20.
  • the circuit board 2 includes four sub-circuit boards 21 distributed in a 2 * 2 matrix and electrically connected to each other.
  • the sub-circuit boards 21 have a rectangular shape, and each of the sub-circuit boards 21 includes four conductive arms 211 connected end to end to form a rectangular ring and a first feed point end 212 extending from the conductive arms 211 ⁇ ⁇ feedpoint end 213.
  • the four conductive arms 211 are surrounded to form a clear space 22, and the first feed point end 212 and the second feed point end 213 respectively extend vertically from the center of the two conductive arms 211 toward the clear space 22 ,
  • the first feed point end 212 and the second feed point end 213 form a feed port 23 of the sub-array rectangular speaker unit 10 at intervals, and both ends of the feed port 23 are respectively connected to the first feed
  • the point end 212 and the second feed point end 213 are electrically connected.
  • the arrangement of the sub-circuit board 21 and the first feed point end 212 and the second feed point end 213 makes the headroom 22 resemble an "H" shape.
  • the feeding signal is fed from the feeding port 23.
  • the phase shift unit 3 includes a phase shift chip 31 stacked on the center of the circuit board 2 and electrically connected to the four sub-circuit boards 21 respectively.
  • the phase shift chip 31 is a quad core Phase shift chip.
  • the phase shift chip 31 provides a phase difference for each speaker unit 4 to guide the radiation pattern of the antenna system 100 within a desired coverage angle, so as to maintain line-of-sight communication between the transmitter and the receiver without interruption and increase the total gain.
  • the phase-shifting chip 31 is used to distribute the phases of the rectangular horns of the horn unit 4 according to a certain rule, thereby forming a high-gain beam, and by changing the phase shift, the beam is scanned within a certain spatial range.
  • the radiation pattern of the antenna system is guided within the coverage angle to maintain uninterrupted line-of-sight communication between the transmitter and receiver using the antenna system 100, thereby improving its reliability.
  • the phase shift unit 3 further includes a metal shield 32 completely covered on the phase shift chip 31.
  • the arrangement of the metal shield 32 can reduce or even eliminate the interference of the phase-shifting chip 31 on the rectangular horn 41 and improve communication reliability.
  • the speaker unit 4 includes four rectangular speakers 41 distributed in a 2 * 2 matrix, and each of the rectangular speakers 41 is stacked and fixed on a sub-circuit board 21 to form an electrical connection.
  • the rectangular horn 4 is a millimeter wave antenna horn.
  • Each of the rectangular horns 41 includes four side walls 411 connected end to end and two ridges 412 respectively fixed inside the two opposite side walls 411, the side walls 411 are stacked and electrically connected to the conductive In the arm 211, the two ridges 412 are stacked and electrically connected to the first feed point end 212 and the second feed point end 213, respectively.
  • the side wall 411 of each rectangular horn 41 includes an outer wall surface 411a and an inner wall surface 411b, the outer wall surface 411a is perpendicular to the circuit board 2, and the inner wall surface 411b is close to the circuit board 2
  • One end gradually expands away from the end of the circuit board 2 so that the cross-sectional area of the end of the side wall 411 close to the circuit board 2 is larger than that of the end of the side wall 411 away from the circuit board 2.
  • the outer contour of the mouth surface surrounded by the inner wall surface 411b of the rectangular horn 41 is square. That is, the above-mentioned structural arrangement makes the rectangular horn 41 form a horn-shaped structure.
  • the ridge 412 is fixed to the inner wall surface 411b of the side wall 411.
  • the ridge 412 includes a fixing portion 4121 connected to the sub-circuit board 21 and an extending portion 4122 extending from the fixing portion 4121 to an end of the side wall 411 away from the circuit board 2.
  • the extending portion 4122 gradually expands from the end near the fixing portion 4121 to the end away from the fixing portion 4121, so that the cross-sectional area of the end of the extending portion 4122 near the fixing portion 4121 is greater than The cross-sectional area of one end of the fixing portion 4121 is described.
  • the side wall 411 of the rectangular horn 41 is provided with an escape portion 413 to escape the metal shield 32, and the metal shield 32 is engaged in the escape portion 413 and is in contact with the side wall 411 .
  • the above-mentioned sub-array rectangular horn unit 10 forms a 2 * 2 millimeter wave phased array antenna system structure.
  • the outer contours of the orthographic projections of the metal base 1 and the speaker unit 4 on the circuit board 2 coincide with the outer contours of the circuit board 2 and are both square.
  • FIG. 6 is an S-parameter characteristic curve diagram of the sub-array rectangular speaker unit of FIG.
  • the reflection coefficient curves of are S11, S22, S33, and S44, respectively.
  • the reflection coefficient of all four rectangular speakers is less than -6dB in the range of 25.2GHz-30GHz, and the wide bandwidth exceeds 5GHz.
  • FIG. 6b is a graph showing the isolation between one rectangular speaker and the other three rectangular speakers of the sub-array rectangular speaker unit.
  • the isolation In the frequency range 25GHz-31GHz, the isolation is kept below -12dB, and the isolation in 28GHz is lower than -18dB.
  • the maximum gain of the 2 * 2 rectangular millimeter wave phased array antenna system is 12.2dBi
  • Phi 90 ° plane half power
  • the beam width (HPBW) is 48 °.
  • the sub-array rectangular horn unit 10 may include different numbers of implementations, the sub-array rectangular horn unit 10 includes N, and the N sub-array rectangular horn units 10 are The matrix is distributed and electrically connected to each other to form a phased array antenna system structure.
  • the metal bases 1 of the N sub-array rectangular horn units 10 have an integrated structure, and the circuit boards 2 of the N sub-array horn antenna units have an integrated structure.
  • FIG. 8 is an exploded schematic view of the three-dimensional structure of one embodiment of the antenna system of the present invention
  • FIG. 9 is a plan view of a part of the structure of the antenna system of FIG. 8; Top view.
  • the antenna system 800 includes four sub-array rectangular horn units 80, and the four sub-array rectangular horn units 80 are distributed in a matrix and electrically connected to each other to form a 4 * 4 rectangular distributed millimeter Wave phased array antenna system structure.
  • the sub-array rectangular speaker unit 80 is the sub-array rectangular speaker unit 10 in the above embodiment.
  • the metal bases 801 of the four sub-array rectangular horn units 80 have an integrally formed structure
  • the circuit boards 802 of the four sub-array rectangular horn units 80 have an integrally formed structure
  • the four phase shifting units 803 are stacked on the four circuit boards 802 respectively
  • the four speaker units 804 are stacked on the four circuit boards 802 and are electrically connected.
  • the structures of the metal base 801, the circuit board 802, the phase shifting unit 803 and the speaker unit 804 are all the same as the sub-array rectangular speakers in the above 2 * 2 rectangularly distributed millimeter wave phased array antenna system structure The corresponding structure in the unit is the same, and will not be repeated here.
  • FIGS. 11-12 where FIG. 11 is the S-parameter characteristic curve of the antenna system of FIG. 8, where FIG. 11a is the reflection coefficient curve of each rectangular horn in the antenna system, all 16 The reflection coefficient of the rectangular horn is less than -6dB in the frequency range of 25.2GHz-30GHz, and the wide bandwidth exceeds 5GHz.
  • FIG. 11b is a graph of the isolation between one rectangular horn and the other fifteen rectangular horns of the antenna system. In the frequency range 25GHz-31GHz, the isolation is kept below -12dB, and the isolation in 28GHz is lower than -18dB.
  • the sub-array rectangular horn unit 10 may further include another embodiment, an 8 * 8 rectangular distributed millimeter wave phased array antenna system structure:
  • FIG. 13 is an exploded schematic view of the stereoscopic structure of another embodiment of the antenna system of the present invention
  • FIG. 14 is a top view of a partial structure of the antenna system of FIG. 13; Top view of structure.
  • the sub-array rectangular speaker units 130 include sixteen, and the sixteen sub-array rectangular speaker units 130 are distributed in a matrix and electrically connected to each other to form an 8 * 8 rectangular distribution The structure of the millimeter wave phased array antenna system.
  • the sub-array rectangular speaker unit 130 is the sub-array rectangular speaker unit 10 in the above embodiment.
  • the metal bases 1301 of the sixteen sub-array rectangular speaker units 130 have an integrally formed structure
  • the circuit boards 1302 of the sixteen sub-array rectangular speaker units 130 have an integrally formed structure.
  • Sixteen phase shift units 1303 are stacked on the sixteen circuit boards 1302, and sixteen speaker units 1304 are stacked on the sixteen circuit boards 1302 and are electrically connected.
  • the structures of the metal base 1301, the circuit board 1302, the phase shifting unit 1303 and the speaker unit 1304 are all the same as the sub-array rectangular speakers in the above 2 * 2 rectangularly distributed millimeter wave phased array antenna system structure The corresponding structure in the unit is the same, and will not be repeated here.
  • FIG. 16 is a gain curve of the antenna system of FIG. 13 at 28 GHz and each rectangular horn has a phase difference
  • the maximum gain is 24dBi, and the antenna
  • the maximum gain is 24dBi.
  • the number of the rectangular horn units is not limited to one, four, and sixteen, but may be arranged in a matrix for other numbers.
  • the different embodiments mentioned above are only different in the number of the rectangular speaker units, not limited to 16 matrix rectangular speakers or 64 matrix rectangular speakers. It is also possible to form a larger-sized phased array rectangular horn system to achieve the required total gain of the antenna system.
  • the present invention also provides a communication terminal, which includes the above-mentioned antenna system provided by the present invention.
  • the antenna system is designed as one or more sub-array rectangular horn units, thereby forming a high-gain beam, and by changing the phase shift, the beam becomes larger in size. Scan within the space to keep the line-of-sight communication between the transmitter and receiver using the antenna system uninterrupted, which makes the communication terminal using the antenna system have strong and stable communication signals, good reliability, and wide frequency band coverage.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

本发明提供一种天线系统,包括子阵列矩形喇叭单元,其包括金属基座;电路板包括四块相互电连接的子电路板、四块绝缘层以及四个馈电元件;子电路板呈相对两侧分别向相对方向延伸形成第一馈点端和第二馈点端,每一馈电元件的两端分别与同一子电路板的第一馈点端和第二馈点端电连接;移相单元叠设于电路板并分别与四块子电路板电连接;矩形喇叭包括四个且呈矩阵分布,每一矩形喇叭包括侧壁和两个脊,所述侧壁叠设于子电路板并电连接,两个所述脊分别叠设电连接于第一馈点端和第二馈点端。本发明还提供一种运用所述天线系统的通讯终端。与相关技术相比,本发明天线系统及通讯终端通讯信号强且稳定,可靠性好,频段覆盖范围广。

Description

天线系统及通讯终端 技术领域
本发明涉及一种天线,尤其涉及一种运用在通讯电子产品领域的天线系统及通讯终端。
背景技术
随着移动通讯技术的发展,手机、PAD、笔记本电脑等逐渐成为生活中不可或缺的电子产品,并且该类电子产品都更新为增加天线系统使其具有通讯功能的电子通讯产品。
5G作为全球业界的研发焦点,其三个主要应用场景:增强型移动宽带、大规模机器通信、高可靠低延时通信。这三个应用场景分别对应着不同的关键指标,其中增强型移动带宽场景下用户峰值速度为20Gbps,最低用户体验速率为100Mbps。毫米波独有的高载频、大带宽特性是实现5G超高数据传输速率的主要手段,因此,毫米波频段丰富的带宽资源为高速传输速率提供了保障。
技术问题
然而,毫米波由于该频段电磁波剧烈的空间损耗,利用毫米波频段的无线通信天线系统需要采用相控阵的架构。通过移相器使得各个阵元的相位按一定规律分布,从而形成高增益波束,并且通过相移的改变使得波束在一定空间范围内扫描。但在毫米波频段下, 如果天线系统发射机和接收机之间不能保持视距通信, 通信链路就容易中断,若其波束范围内覆盖的频段带宽有限则会影响天线系统的可靠性。
因此,有必要提供一种新的天线系统及通讯终端解决上述问题。
技术解决方案
本发明需要解决的技术问题是提供一种通讯信号强且稳定,可靠性好,频段覆盖范围广天线系统及通讯终端。
为解决上述技术问题,本发明提供了一种天线系统,所述天线系统包括子阵列矩形喇叭单元,所述子阵列矩形喇叭单元包括:金属基座,呈长方体结构,所述金属基座包括顶面、与所述顶面相对的底面以及由所述顶面向所述底面方向凹陷形成的背腔;电路板,所述电路板叠设电连接于所述金属基座的顶面且完全覆盖所述背腔,所述电路板包括四块呈矩阵分布且相互电连接的子电路板,每一所述子电路板包括首尾相连接形成矩形环的四个导电臂以及由所述导电臂延伸的第一馈点端和第二馈点端,四个所述导电臂围设形成净空,所述第一馈点端和所述第二馈点端分别由相对两个所述导电臂的中心向所述净空方向垂直延伸,所述第一馈点端和所述第二馈点端间隔形成所述子阵列矩形喇叭单元的馈电端口,所述馈电端口的两端分别与所述第一馈点端和所述第二馈点端电连接;移相单元,包括叠设于所述电路板的中心并分别与四块所述子电路板电连接的移相芯片;及喇叭单元,包括四个且呈矩阵分布的矩形喇叭,每一所述矩形喇叭叠设固定于一所述子电路板;每一所述矩形喇叭包括首尾相接的四个侧壁以及分别固定于相对两个所述侧壁内侧的两个脊,所述侧壁叠设并电连接于所述导电臂,两个所述脊分别叠设并电连接于所述第一馈点端和所述第二馈点端。
优选的,所述金属基座和所述喇叭单元在所述电路板上的正投影的外轮廓与所述电路板的外轮廓重合,且均为正方形。
优选的,每一所述矩形喇叭的侧壁包括外壁面和内壁面,所述外壁面与所述电路板垂直,所述内壁面自靠近所述电路板的一端向远离所述电路板的一端逐渐张开,以使所述侧壁靠近所述电路板一端的横截面面积大于其远离所述电路板一端的横截面面积。
优选的,所述矩形喇叭的内壁面围成的口面的外轮廓为正方形。
优选的,所述脊固定于所述侧壁的所述内壁面,所述脊包括与所述子电路板相接的固定部和自所述固定部延伸至所述侧壁远离所述电路板一端的延伸部,所述延伸部自其靠近所述固定部的一端向远离所述固定部的一端逐渐张开,以使所述延伸部靠近所述固定部一端的横截面面积大于其远离所述固定部一端的横截面面积。
优选的,所述移相单元还包括完全盖设于所述移相芯片的金属屏蔽件,所述矩形喇叭的所述侧壁设有避让所述金属屏蔽件的避让部,且所述金属屏蔽件卡合于所述避让部内并与所述侧壁相接。
优选的,所述移相芯片为四核移相芯片。
优选的,所述子阵列矩形喇叭单元包括N个,N个所述子阵列矩形喇叭单元呈矩阵分布且相互电连接,形成相控阵天线系统。
优选的,N个所述子阵列矩形喇叭单元的所述金属基座为一体成型结构,N个所述子阵列喇叭天线单元的所述电路板为一体成型结构。
本发明还提供一种通讯终端,其包括本发明提供的上述的天线系统。
有益效果
与相关技术相比,本发明的天线系统及通讯终端中,将所述天线系统设计为一个或多个子阵列矩形喇叭单元,从而形成高增益波束,并且通过相移的改变使得波束在较大的空间范围内扫描,以保持运用该天线系统的发射机和接收机之间的视距通信不间断,进而使得运用该天线系统的通讯终端通讯信号强且稳定,可靠性好,频段覆盖范围广。
附图说明
为了更清楚地说明本实用新型实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
图1为本发明天线系统的子阵列矩形喇叭单元的结构示意图;
图2为本发明天线系统的子阵列矩形喇叭单元的部分立体结构分解示意图;
图3为沿图1中A-A线的剖示图;
图4为本发明天线系统的子阵列矩形喇叭单元的部分结构俯视图;
图5为图1的俯视图;
图6为图1的子阵列矩形喇叭单元的S参数特性曲线图,其中,图6a为子阵列矩形喇叭单元中各矩形喇叭的反射系数曲线图,图6b为子阵列矩形喇叭单元的其中一个矩形喇叭与其它三个矩形喇叭的隔离度的曲线图;
图7为本发明子阵列矩形喇叭单元在28GHz、各矩形喇叭等幅同相馈电时,Phi=0°平面内以及Phi=90°平面内的增益曲线图;
图8为本发明天线系统其中一种实施方式的立体结构分解示意图;
图9为图8的天线系统的部分结构俯视图;
图10为图8的天线系统的俯视图;
图11为图8的天线系统的S参数特性曲线图,其中,图11a为天线系统中各矩形喇叭的反射系数曲线图,图11b为天线系统的其中一个矩形喇叭与其它十五个矩形喇叭的隔离度曲线图;
图12为图8的天线系统在28GHz、各矩形喇叭具有相差时,Phi=0°平面内以及Phi=90°平面内的增益曲线图,其中图12a为Phi=0°平面内的增益曲线图,图12b为Phi=90°平面内的增益曲线图;
图13为本发明天线系统另一种实施方式的立体结构分解示意图;
图14为图13的天线系统的部分结构俯视图;
图15为图13的天线系统的结构俯视图;
图16为图13的天线系统在28GHz、各矩形喇叭具有相差时,Phi=0°平面内以及Phi=90°平面内的增益曲线图,其中图16a为Phi=0°平面内的增益曲线图,图16b为Phi=90°平面内的增益曲线图。
本发明的实施方式
下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本实用新型的一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本实用新型保护的范围。
请同时参图1-5所示,本发明提供了一种天线系统100,包括子阵列矩形喇叭单元10。所述子阵列矩形喇叭单元10包括金属基座1、叠设于所述金属基座1并与所述金属基座1电连接的电路板2、叠设于所述电路板2并与所述电路板2电连接的移相单元3以及叠设于所述电路板2并与所述电路板2电连接的喇叭单元4。
所述金属基座1呈矩形立方体结构,比如长方体结构。所述金属基座1包括顶面11、与所述顶面11相对的底面12以及由所述顶面11向所述底面12方向凹陷的背腔13。
所述电路板2叠设固定于所述金属基座1的顶面11且完全覆盖所述背腔13。所述电路板2与所述金属基座1电连接,所述电路板2与所述金属基座1共同围成一背腔空间20。
所述电路板2包括包括四块呈2*2矩阵分布且相互电连接的子电路板21。
本实施方式中,所述子电路板21呈矩形,每一所述子电路板21包括首尾相连接形成矩形环的四个导电臂211以及由所述导电臂211延伸的第一馈点端212和第二馈点端213。四个所述导电臂211围设形成净空22,所述第一馈点端212和所述第二馈点端213分别由相对两个所述导电臂211的中心向所述净空22方向垂直延伸,所述第一馈点端212和所述第二馈点端213间隔形成所述子阵列矩形喇叭单元10的馈电端口23,所述馈电端口23的两端分别与所述第一馈点端212和所述第二馈点端213电连接。
此时,所述子电路板21与所述第一馈点端212及所述第二馈点端213的设置使所述净空22呈类似“H”形。馈电信号由所述馈电端口23馈入。
所述移相单元3包括叠设于所述电路板2的中心并分别与四块所述子电路板21电连接的移相芯片31,本实施方式中,所述移相芯片31为四核移相芯片。所述移相芯片31为各喇叭单元4提供相差,以在所需的覆盖角度内引导天线系统100的辐射模式, 以保持发射机和接收机之间的视距通信不中断,增加总增益。具体的,所述移相芯片31用于使喇叭单元4的各矩形喇叭的相位按一定规律分布,从而形成高增益波束,并且通过相移的改变使得波束在一定空间范围内扫描,在所需的覆盖角度内引导天线系统的辐射模式, 以保持运用该天线系统100的发射机和接收机之间的视距通信不间断,从而提高其可靠性。
更优的,所述移相单元3还包括完全盖设于所述移相芯片31的金属屏蔽件32。所述金属屏蔽件32的设置可减小甚至消除所述移相芯片31对矩形喇叭41干扰,提高通讯可靠性。
所述喇叭单元4包括四个矩形喇叭41且呈2*2矩阵分布,每一所述矩形喇叭41叠设固定于一所述子电路板21并形成电连接。本实施方式中,所述矩形喇叭4为毫米波天线喇叭。
每一所述矩形喇叭41包括首尾相接的四个侧壁411以及分别固定于相对两个所述侧壁411内侧的两个脊412,所述侧壁411叠设并电连接于所述导电臂211,两个所述脊412分别叠设并电连接于所述第一馈点端212和所述第二馈点端213。
更优的,每一所述矩形喇叭41的侧壁411包括外壁面411a和内壁面411b,所述外壁面411a与所述电路板2垂直,所述内壁面411b自靠近所述电路板2的一端向远离所述电路板2的一端逐渐张开,以使所述侧壁411靠近所述电路板2一端的横截面面积大于其远离所述电路板2一端的横截面面积。另外,本实施方式中,所述矩形喇叭41的内壁面411b围成的口面的外轮廓为正方形。即上述结构设置使得所述矩形喇叭41形成一喇叭状结构。
所述脊412固定于所述侧壁411的所述内壁面411b。具体的,所述脊412包括与所述子电路板21相接的固定部4121和自所述固定部4121延伸至所述侧壁411远离所述电路板2一端的延伸部4122。所述延伸部4122自其靠近所述固定部4121的一端向远离所述固定部4121的一端逐渐张开,以使所述延伸部4122靠近所述固定部4121一端的横截面面积大于其远离所述固定部4121一端的横截面面积。
所述矩形喇叭41的所述侧壁411设有避让所述金属屏蔽件32的避让部413,且所述金属屏蔽件32卡合于所述避让部413内并与所述侧壁411相接。
上述子阵列矩形喇叭单元10形成2*2毫米波相控阵天线系统结构。
更优的,本实施方式中,所述金属基座1和所述喇叭单元4在所述电路板2上的正投影的外轮廓与所述电路板2的外轮廓重合,且均为正方形。
请结合图6-7所示,图6为图1子阵列矩形喇叭单元的S参数特性曲线图,其中,图6a为子阵列矩形喇叭单元中各矩形喇叭的反射系数曲线图,四个矩形喇叭的反射系数曲线分别为S11、S22、S33、S44。所有4个矩形喇叭的反射系数在25.2GHz-30GHz 内小于-6dB,宽带宽超过 5GHz。
图6b为子阵列矩形喇叭单元的其中一个矩形喇叭与其它三个矩形喇叭的隔离度的曲线图。在频率范围25GHz-31GHz内, 隔离度保持在-12dB 以下, 在28GHz 的隔离度低于-18dB。
图7为本发明天线系统的子阵列矩形喇叭单元在28GHz、各矩形喇叭等幅同相馈电时的增益曲线图,包括Phi=0°平面内的增益曲线图,以及Phi=90°平面内的增益曲线图。其中,Phi=0°平面和Phi=90°平面分别为图5中所示的平面。在28GHz 时,该 2*2矩形分布的毫米波相控阵天线系统的最大增益为 12.2dBi, Phi=0°平面上半功率波束宽度 (HPBW) 为48°;Phi=90°平面上半功率波束宽度 (HPBW)为48°。
本发明的所述天线系统中,所述子阵列矩形喇叭单元10可包括不同数量的设置的实施方式,所述子阵列矩形喇叭单元10包括N个,N个所述子阵列矩形喇叭单元10呈矩阵分布且相互电连接,形成相控阵天线系统结构。N个所述子阵列矩形喇叭单元10的所述金属基座1为一体成型结构,N个所述子阵列喇叭天线单元的所述电路板2为一体成型结构。
比如,4*4矩阵分布的毫米波相控阵天线系统结构:
如图8-10所示,其中,图8为本发明天线系统其中一种实施方式的立体结构分解示意图;图9为图8的天线系统的部分结构俯视图;图10为图8的天线系统的俯视图。
本实施方式中,所述天线系统800中,包括四个所述子阵列矩形喇叭单元80,四个所述子阵列矩形喇叭单元80呈矩阵分布且相互电连接,形成4*4矩形分布的毫米波相控阵天线系统结构。该子阵列矩形喇叭单元80即为上述实施方式中的子阵列矩形喇叭单元10。
更优的,四个所述子阵列矩形喇叭单元80的所述金属基座801为一体成型结构,四个所述子阵列矩形喇叭单元80的所述电路板802为一体成型结构。四个移相单元803分别叠设于四个所述电路板802上,四个喇叭单元804分别叠设于四个所述电路板802上并电连接。所述金属基座801、所述电路板802、所述移相单元803以及所述喇叭单元804的结构均与上述2*2矩形分布的毫米波相控阵天线系统结构中的子阵列矩形喇叭单元中对应的结构相同,在此不在赘述。
该实施方式中,请结合图11-12所示,其中图11为图8的天线系统的S参数特性曲线图,其中,图11a为天线系统中各矩形喇叭的反射系数曲线图,所有16个矩形喇叭的反射系数在频段范围为25.2GHz-30GHz 内小于-6dB,宽带宽超过 5GHz。
图11b为天线系统的其中一个矩形喇叭与其它十五个矩形喇叭的隔离度的曲线图。在频率范围25GHz-31GHz内, 隔离度保持在-12dB 以下, 在28GHz 的隔离度低于-18dB。
图12为图8的天线系统在28GHz、各矩形喇叭具有相差时的增益曲线图,其中图12a为Phi=0°平面内的增益曲线图,图12b为Phi=90°平面内的增益曲线图。其中,Phi=0°平面和Phi=90°平面分别为图10中所示的平面。
由图12a可知,当所述天线系统800中的相应的矩形喇叭间相差为±160°、±120°、±60°和0°时,最大增益为 18dBi, 天线系统800能够从θ=-45°至θ=45°(总覆盖90°)范围内,保持高于15dBi的增益。
由图12b可知,当所述天线系统800中的相应的矩形喇叭间相差为±160°、±120°、±60°和 0 °时,最大增益为 18dBi, θ=-42°至θ=42°(总覆盖84°)范围内, 同时保持高于15dBi的增益。
本发明的所述天线系统中,所述子阵列矩形喇叭单元10的还可包括另一种实施方式,8*8矩形分布的毫米波相控阵天线系统结构:
如图13-15所示,其中,图13为本发明天线系统另一种实施方式的立体结构分解示意图;图14为图13的天线系统的部分结构俯视图;图15为图13的天线系统的结构俯视图。
本实施方式中,所述天线系统1300中,所述子阵列矩形喇叭单元130包括十六个,十六个所述子阵列矩形喇叭单元130呈矩阵分布且相互电连接,形成8*8矩形分布的毫米波相控阵天线系统结构。该子阵列矩形喇叭单元130即为上述实施方式中的子阵列矩形喇叭单元10。
更优的,十六个所述子阵列矩形喇叭单元130的所述金属基座1301为一体成型结构,十六个所述子阵列矩形喇叭单元130的所述电路板1302为一体成型结构。十六个移相单元1303分别叠设于十六个所述电路板1302上,十六个喇叭单元1304分别叠设于十六个所述电路板1302上并电连接。所述金属基座1301、所述电路板1302、所述移相单元1303以及所述喇叭单元1304的结构均与上述2*2矩形分布的毫米波相控阵天线系统结构中的子阵列矩形喇叭单元中对应的结构相同,在此不在赘述。
该实施方式中,请结合图16所示,图16为图13的天线系统在28GHz、各矩形喇叭具有相差时的增益曲线图,其中图16a为Phi=0°平面的增益曲线图,图16b为Phi=90°平面的增益曲线图。其中,Phi=0°平面和Phi=90°平面分别为图15中所示的平面。由图16a可知,当所述天线系统1300中的相应的矩形喇叭间相差为±150°、±120°、±90°、±60°、±30°和0°时,最大增益为 24dBi, 天线系统1300能够从θ=-45°至θ=45°(总覆盖90°)范围内,保持高于21dBi的增益。
由图16b可知,当所述天线系统1300中的相应的矩形喇叭间相差为±150°、±120°、±90°、±60°、±30°和0°时,最大增益为 24dBi, 天线系统1300能够从θ=-42°至θ=42°(总覆盖84°)范围内,保持高于21dBi的增益。
需要说明的是,本发明的天线系统中,所述矩形喇叭单元的数量并不限于一个、四个、十六个,还可为其它数量形成矩阵排布即可。上述提及的不同实施方式仅为所述矩形喇叭单元的数量不同,不仅限于16矩阵矩形喇叭或64矩阵矩形喇叭。还可以形成更大尺寸的相控阵矩形喇叭系统, 以达到所需的天线系统总增益。
本发明还提供一种通讯终端,其包括本发明提供的上述的天线系统。
与相关技术相比,本发明的天线系统及通讯终端中,将所述天线系统设计为一个或多个子阵列矩形喇叭单元,从而形成高增益波束,并且通过相移的改变使得波束在较大的空间范围内扫描,以保持运用该天线系统的发射机和接收机之间的视距通信不间断,进而使得运用该天线系统的通讯终端通讯信号强且稳定,可靠性好,频段覆盖范围广。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其它相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

  1. 一种天线系统,其特征在于,所述天线系统包括子阵列矩形喇叭单元,所述子阵列矩形喇叭单元包括:
    金属基座,呈长方体结构,所述金属基座包括顶面、与所述顶面相对的底面以及由所述顶面向所述底面方向凹陷形成的背腔;
    电路板,所述电路板叠设电连接于所述金属基座的顶面且完全覆盖所述背腔,所述电路板包括四块呈矩阵分布且相互电连接的子电路板,每一所述子电路板包括首尾相连接形成矩形环的四个导电臂以及由所述导电臂延伸的第一馈点端和第二馈点端,四个所述导电臂围设形成净空,所述第一馈点端和所述第二馈点端分别由相对两个所述导电臂的中心向所述净空方向垂直延伸,所述第一馈点端和所述第二馈点端间隔形成所述子阵列矩形喇叭单元的馈电端口,所述馈电端口的两端分别与所述第一馈点端和所述第二馈点端电连接;
    移相单元,包括叠设于所述电路板的中心并分别与四块所述子电路板电连接的移相芯片;及
    喇叭单元,包括四个且呈矩阵分布的矩形喇叭,每一所述矩形喇叭叠设固定于一所述子电路板;每一所述矩形喇叭包括首尾相接的四个侧壁以及分别固定于相对两个所述侧壁内侧的两个脊,所述侧壁叠设并电连接于所述导电臂,两个所述脊分别叠设并电连接于所述第一馈点端和所述第二馈点端。
  2. 根据权利要求1所述的天线系统,其特征在于,所述金属基座和所述喇叭单元在所述电路板上的正投影的外轮廓与所述电路板的外轮廓重合,且均为正方形。
  3. 根据权利要求1所述的天线系统,其特征在于,每一所述矩形喇叭的侧壁包括外壁面和内壁面,所述外壁面与所述电路板垂直,所述内壁面自靠近所述电路板的一端向远离所述电路板的一端逐渐张开,以使所述侧壁靠近所述电路板一端的横截面面积大于其远离所述电路板一端的横截面面积。
  4. 根据权利要求3所述的天线系统,其特征在于,所述矩形喇叭的内壁面围成的口面的外轮廓为正方形。
  5. 根据权利要求3所述的天线系统,其特征在于,所述脊固定于所述侧壁的所述内壁面,所述脊包括与所述子电路板相接的固定部和自所述固定部延伸至所述侧壁远离所述电路板一端的延伸部,所述延伸部自其靠近所述固定部的一端向远离所述固定部的一端逐渐张开,以使所述延伸部靠近所述固定部一端的横截面面积大于其远离所述固定部一端的横截面面积。
  6. 根据权利要求1所述的天线系统,其特征在于,所述移相单元还包括完全盖设于所述移相芯片的金属屏蔽件,所述矩形喇叭的所述侧壁设有避让所述金属屏蔽件的避让部,且所述金属屏蔽件卡合于所述避让部内并与所述侧壁相接。
  7. 根据权利要求1所述的天线系统,其特征在于,所述移相芯片为四核移相芯片。
  8. 根据权利要求1所述的天线系统,其特征在于,所述子阵列矩形喇叭单元包括N个,N个所述子阵列矩形喇叭单元呈矩阵分布且相互电连接,形成相控阵天线系统。
  9. 根据权利要求8所述的天线系统,其特征在于,N个所述子阵列矩形喇叭单元的所述金属基座为一体成型结构,N个所述子阵列喇叭天线单元的所述电路板为一体成型结构。
  10. 一种通讯终端,其特征在于,其包括如权利要求1-9任意一项所述的天线系统。
PCT/CN2019/109027 2018-10-25 2019-09-29 天线系统及通讯终端 WO2020083000A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811253306.2 2018-10-25
CN201811253306.2A CN109616766B (zh) 2018-10-25 2018-10-25 天线系统及通讯终端

Publications (1)

Publication Number Publication Date
WO2020083000A1 true WO2020083000A1 (zh) 2020-04-30

Family

ID=66002846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109027 WO2020083000A1 (zh) 2018-10-25 2019-09-29 天线系统及通讯终端

Country Status (3)

Country Link
US (1) US10819039B2 (zh)
CN (1) CN109616766B (zh)
WO (1) WO2020083000A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109616766B (zh) * 2018-10-25 2021-02-26 瑞声科技(新加坡)有限公司 天线系统及通讯终端
WO2021000078A1 (zh) * 2019-06-29 2021-01-07 瑞声声学科技(深圳)有限公司 一种天线模组及电子设备
CN111129727B (zh) * 2019-12-09 2022-07-26 瑞声科技(新加坡)有限公司 天线系统以及电子设备
WO2021114019A1 (zh) * 2019-12-09 2021-06-17 瑞声声学科技(深圳)有限公司 天线系统以及电子设备
KR20210105473A (ko) * 2020-02-18 2021-08-27 현대모비스 주식회사 차량용 레이더 센서
DE102021201394A1 (de) * 2021-02-15 2022-08-18 Vega Grieshaber Kg Zweiteilige hohlleitereinkopplungsvorrichtung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105322298A (zh) * 2015-12-02 2016-02-10 成都润博科技有限公司 一种自适应性多波段集成阻抗匹配网络双脊喇叭天线
US20170256863A1 (en) * 2016-03-01 2017-09-07 Wistron Neweb Corp. Antenna system
CN108417993A (zh) * 2018-01-25 2018-08-17 瑞声科技(南京)有限公司 天线系统及通讯终端
CN109616766A (zh) * 2018-10-25 2019-04-12 瑞声科技(新加坡)有限公司 天线系统及通讯终端

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5930517B2 (ja) * 2011-08-02 2016-06-08 日本電産エレシス株式会社 アンテナ装置
KR20130043792A (ko) * 2011-10-21 2013-05-02 한국전자통신연구원 안테나 장치
CN104428949B (zh) * 2012-07-03 2017-05-24 利萨·德雷克塞迈尔有限责任公司 包括电介质填充喇叭天线的用于GHz频率范围的宽带卫星通信的天线系统
CN103107418A (zh) * 2013-01-17 2013-05-15 北京爱科迪信息通讯技术有限公司 一种平板卫星通信天线
CN104716426A (zh) * 2013-12-13 2015-06-17 华为技术有限公司 一种阵列天线
CN105141717B (zh) * 2015-07-31 2019-07-26 瑞声光电科技(苏州)有限公司 移动终端设备
CN205595462U (zh) * 2016-04-12 2016-09-21 中国电子科技集团公司第五十四研究所 一种喇叭阵列天线
CN206947546U (zh) * 2017-07-17 2018-01-30 中国电子科技集团公司第五十四研究所 一种双频圆极化阵列天线
KR102426656B1 (ko) * 2017-11-28 2022-07-28 삼성전자주식회사 안테나를 포함하는 전자 장치
CN108199130A (zh) * 2017-12-13 2018-06-22 瑞声科技(南京)有限公司 一种天线系统和移动终端

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105322298A (zh) * 2015-12-02 2016-02-10 成都润博科技有限公司 一种自适应性多波段集成阻抗匹配网络双脊喇叭天线
US20170256863A1 (en) * 2016-03-01 2017-09-07 Wistron Neweb Corp. Antenna system
CN108417993A (zh) * 2018-01-25 2018-08-17 瑞声科技(南京)有限公司 天线系统及通讯终端
CN109616766A (zh) * 2018-10-25 2019-04-12 瑞声科技(新加坡)有限公司 天线系统及通讯终端

Also Published As

Publication number Publication date
US10819039B2 (en) 2020-10-27
CN109616766B (zh) 2021-02-26
CN109616766A (zh) 2019-04-12
US20200136267A1 (en) 2020-04-30

Similar Documents

Publication Publication Date Title
WO2020083000A1 (zh) 天线系统及通讯终端
US11387568B2 (en) Millimeter-wave antenna array element, array antenna, and communications product
US10276943B2 (en) Antenna device including patch array antenna and conductive metal member
US9287633B2 (en) Dual frequency coupling feed antenna and adjustable wave beam module using the antenna
US10971824B2 (en) Antenna element
US11367943B2 (en) Patch antenna unit and antenna in package structure
JP2020511890A (ja) アンテナ、アンテナの構成方法及び無線通信装置
US10862212B2 (en) Antenna device and wireless communication device
WO2020125127A1 (zh) 天线系统及通讯终端
KR20170116558A (ko) 편파-가변 위상 어레이 안테나를 포함하는 무선 통신 장치
US10312584B2 (en) Dual antenna device
US8223077B2 (en) Multisector parallel plate antenna for electronic devices
WO2020134477A1 (zh) 介质谐振器封装天线系统及移动终端
WO2020134362A1 (zh) 一种天线、天线阵列和基站
KR20210077808A (ko) 마이크로스트립 안테나, 안테나 어레이, 및 마이크로스트립 안테나의 제조 방법
CN109786938B (zh) 移动终端
WO2020119228A1 (zh) 天线系统及通讯终端
WO2021077718A1 (zh) 天线组件和无线设备
EP4071927A1 (en) Reconfigurable antenna and network device
US11967771B2 (en) Dual polarization antenna, router, and base station
KR101985686B1 (ko) 수직 편파 안테나
KR20220111555A (ko) 안테나 모듈 및 이를 포함하는 전자 장치
CN218351715U (zh) 无线耳机
CN111129727B (zh) 天线系统以及电子设备
KR102158981B1 (ko) 안테나 패턴을 개선하기 위한 대칭 급전회로를 갖는 안테나

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19875000

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19875000

Country of ref document: EP

Kind code of ref document: A1