WO2020119228A1 - 天线系统及通讯终端 - Google Patents

天线系统及通讯终端 Download PDF

Info

Publication number
WO2020119228A1
WO2020119228A1 PCT/CN2019/109413 CN2019109413W WO2020119228A1 WO 2020119228 A1 WO2020119228 A1 WO 2020119228A1 CN 2019109413 W CN2019109413 W CN 2019109413W WO 2020119228 A1 WO2020119228 A1 WO 2020119228A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate layer
antenna system
dual
polarized
base material
Prior art date
Application number
PCT/CN2019/109413
Other languages
English (en)
French (fr)
Inventor
陈友春
黄源烽
戴有祥
Original Assignee
瑞声声学科技(深圳)有限公司
瑞声光电科技(常州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司, 瑞声光电科技(常州)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Publication of WO2020119228A1 publication Critical patent/WO2020119228A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means
    • H01Q9/0457Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means electromagnetically coupled to the feed line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0414Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2258Supports; Mounting means by structural association with other equipment or articles used with computer equipment
    • H01Q1/2266Supports; Mounting means by structural association with other equipment or articles used with computer equipment disposed inside the computer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/22Antenna units of the array energised non-uniformly in amplitude or phase, e.g. tapered array or binomial array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices

Definitions

  • the invention relates to an antenna, in particular to an antenna system and a communication terminal used in the field of communication electronic products.
  • 5G has three main application scenarios: enhanced mobile broadband, large-scale machine communication, and high reliability and low latency communication. These three application scenarios correspond to different key indicators, in which the peak user speed in the enhanced mobile bandwidth scenario is 20Gbps, and the minimum user experience rate is 100Mbps.
  • Millimeter wave's unique high carrier frequency and large bandwidth characteristics are the main means to achieve 5G ultra-high data transmission rate. Therefore, the rich bandwidth resources of the millimeter wave frequency band provide a guarantee for the high speed transmission rate.
  • the wireless communication antenna system using the millimeter wave frequency band needs to adopt a phased array architecture.
  • the phase shifter Through the phase shifter, the phase of each array element is distributed according to a certain rule, thereby forming a high-gain beam, and the beam is scanned in a certain spatial range through the change of the phase shift.
  • the communication link is easily interrupted. If the frequency band bandwidth covered by the beam range is limited, the reliability of the antenna system will be affected.
  • the technical problem to be solved by the present invention is to provide an antenna system and a communication terminal with strong and stable communication signals, good reliability, and wide frequency band coverage.
  • the present invention provides an antenna system, the antenna system includes: a system ground unit and a dual-polarized millimeter wave antenna unit, the system ground unit includes a receiving hole penetrating therethrough, the bipolar The millimeter-wave antenna unit is embedded and fixed in the receiving hole.
  • the dual-polarization millimeter-wave antenna unit includes: a first substrate layer; a second substrate layer stacked on the first substrate layer; Three base material layers, stacked on the second base material layer and located on the side of the second base material layer away from the first base material layer; a ground layer, attached to the first base material layer The side far away from the second base material layer and electrically connected to the system ground unit; the feeder is interposed between the first base material layer and the second base material layer; The feeder is provided with a horizontally polarized feed port and a vertically polarized feed port that are spaced apart from each other; and a radiator fixed to the side of the third substrate layer away from the second substrate layer, the The feeder forms a coupling with the radiator.
  • the feeding body is a capacitive feeding patch.
  • the feed body is fixed to the first substrate layer.
  • the feeder is formed on the surface of the first substrate layer by etching.
  • the radiator is a patch, and the radiator is formed on the third substrate layer by etching.
  • the horizontally polarized feed port and the vertically polarized feed port are located at a non-geometric center position of the feed body.
  • the first base material layer and the third base material have the same material, and the second base material layer and the third base material layer are respectively oriented in a direction perpendicular to the first base material layer The orthographic projection of the first substrate layer completely coincides with the first substrate layer.
  • the receiving holes include N
  • the dual-polarized millimeter wave antenna units include N
  • the N dual-polarized millimeter wave antenna units are distributed in a matrix to form a phased array antenna system.
  • the dual-polarized millimeter wave antenna elements include four and form a 2*2 matrix distribution.
  • the present invention also provides a communication terminal including the above-mentioned antenna system provided by the present invention.
  • the antenna system is designed as one or more dual-polarized millimeter-wave antenna units, thereby forming a high-gain beam, and by changing the phase shift, the beam Scan in a large space to keep the line-of-sight communication between the transmitter and receiver using the antenna system uninterrupted, which makes the communication terminal using the antenna system have strong and stable communication signals, good reliability, and frequency band coverage wide range.
  • FIG. 1 is a schematic structural diagram of an antenna system of the present invention
  • Figure 2 is a top view of Figure 1;
  • FIG. 3 is a schematic diagram of a stereo structure of a dual-polarized millimeter wave antenna unit of the antenna system of the present invention.
  • FIG. 4 is an exploded schematic view of the stereo structure of the dual-polarized millimeter wave antenna unit of the antenna system of the present invention.
  • FIG. 5 is an S-parameter characteristic curve diagram of the dual-polarized millimeter wave antenna unit of the antenna system of FIG. 1;
  • FIG. 6 is a graph of the gain curve of the horizontal polarization of the antenna system in FIG. 1 at 28 GHz;
  • FIG. 7 is a graph of the gain curve of the vertical polarization of the antenna system in FIG. 1 at 28 GHz;
  • FIG. 8 is a three-dimensional structural schematic diagram of one embodiment of the antenna system of the present invention.
  • FIG. 9 is a top view of the antenna system of FIG. 8.
  • FIG. 10 is a graph of the gain curve of the horizontal polarization of the antenna system of FIG. 8 at 28 GHz;
  • FIG. 11 is a graph of the gain curve of the vertical polarization of the antenna system of FIG. 8 at 28 GHz;
  • FIG. 12 is a gain curve of the antenna system of FIG. 8 in a 28 GHz, horizontal plane, and horizontal polarization mode with the main beam pointing at different ⁇ angles;
  • the main beams are directed at gain curves with different ⁇ angles.
  • the present invention provides an antenna system 100, which includes a system ground unit 1 and a dual polarized millimeter wave antenna unit 2.
  • the system unit 1 includes a receiving hole 11 therethrough.
  • the dual polarized millimeter wave antenna unit 2 is embedded and fixed in the receiving hole 11.
  • the dual-polarized millimeter wave antenna unit 2 includes a first base material layer 21, a second base material layer 22, a third base material layer 23, a ground layer 24, a feeder 25, and a radiator 26.
  • the second substrate layer 22 is stacked on the first substrate layer 21; the third substrate layer 23 is stacked on the second substrate layer 22 and is located away from the second substrate layer 22
  • One side of the first base material layer 21, that is, the first base material layer 21, the second base material layer 22, and the third base material layer 23 are sequentially stacked vertically to form a stack structure.
  • the first substrate layer 21 and the third substrate 23 have the same material, and the second substrate layer 22 and the third substrate layer 23 are perpendicular to the first The orthographic projection of the direction of the base material layer 21 toward the first base material layer 21 completely coincides with the first base material layer 21.
  • the ground layer 24 is attached to a side of the first base material layer 21 away from the second base material layer 22 and electrically connected to the system ground unit 1.
  • the feeder 25 is interposed between the first substrate layer 21 and the second substrate layer 22.
  • the feeding body 25 is provided with a horizontally polarized feeding port 251 and a vertically polarized feeding port 252 which are spaced apart from each other.
  • the structure of the above feeding body 25 forms a dual polarized structure.
  • the horizontally polarized feed port 251 and the vertically polarized feed port 252 are connected to a feed network or an external power source after passing through the first substrate layer 21 through a probe. More preferably, the horizontally polarized power feeding port 251 and the vertically polarized power feeding port 252 are located at the non-geometric center of the power feeding body 25, for example, at the edge of the power feeding body 25.
  • the feeding body 25 is a capacitive feeding patch. Specifically, the feeder 25 is fixed to the first substrate layer 21. More preferably, the feeder 25 is formed on the surface of the first substrate layer 21 by etching.
  • the radiator 26 is fixed to a side of the third base material layer 23 away from the second base material layer 22.
  • the feeder 25 and the radiator 26 form a coupling, so that the energy of the feeder 25 is coupled to the radiator 26, so that the radiator 26 forms dual-polarized radiation and works in millimeters Band 28GHz.
  • the radiator 26 is not connected to the ground layer 24; the radiator 26 is also not directly electrically connected to the feeder 25, and only forms a coupling with the feeder 25.
  • the radiator 26 is a patch. More preferably, the radiator 26 is formed on the third base material layer 23 by etching.
  • FIG. 5 is an S-parameter characteristic curve diagram of the dual-polarized millimeter wave antenna unit of the antenna system of FIG.
  • the curve 5a in FIG. 5 is the reflection coefficient curve of the horizontally polarized feed port and the vertically polarized feed port of the dual-polarized millimeter wave antenna unit.
  • the horizontally polarized feed port and the vertically polarized The reflection coefficient curve of the feed port is consistent.
  • the antenna system 100 resonates around 28 GHz, the reflection coefficient in the 27.4 GHz-28.6 GHz band is less than -6 dB, and the absolute bandwidth is 1.2 GHz.
  • the curve 5b in FIG. 5 is the curve of the isolation between the horizontally polarized feed port and the vertically polarized feed port of the dual-polarized millimeter-wave antenna unit. As can be seen from the curve 5b, in the 25GHz-31GHz band, two The isolation between the feed ports is less than -15dB.
  • FIG. 6 is a gain curve diagram of the horizontal polarization of the antenna system of FIG. 1 at 28 GHz.
  • the horizontally polarized feed port 251 is in a feeding state (ON)
  • the vertically polarized feed port 252 is in a matching state (OFF).
  • the horizontal plane is the observation plane passing through the horizontally polarized feed port
  • the vertical plane is the feed through the vertically polarized feed Point of view
  • the solid line is the Theta ( ⁇ ) component of the gain
  • the dotted line is the Phi component of the gain.
  • Theta component is the main polarization
  • the Phi component is the cross polarization.
  • the maximum gain of the main polarization is 6.7dBi
  • the gain value of the cross polarization is lower than -19dBi.
  • the solid line is the Theta component of the gain
  • the dotted line is the Phi component of the gain.
  • the Phi component is the main polarization
  • Theta component is the cross polarization.
  • the maximum gain of the main polarization is 6.7dBi
  • the gain value of the cross polarization is lower than -16dBi.
  • FIG. 7 is a graph of the gain curve of the vertical polarization of the antenna system of FIG. 1 at 28 GHz.
  • the vertical polarization feed port 252 is in a feeding state (ON)
  • the horizontal polarization feed port 251 is in a matching state (OFF).
  • the solid line is the Theta component of the gain
  • the dotted line is the Phi component of the gain.
  • the Phi component is the main polarization
  • Theta component is the cross polarization.
  • the maximum gain of the main polarization is 6.7dBi
  • the gain value of the cross polarization is lower than -16dBi.
  • the solid line is the Theta component of the gain
  • the dotted line is the Phi component of the gain. It can be seen that the Theta component is the main polarization and the Phi component is the cross polarization.
  • the maximum gain of the main polarization is 6.7dBi
  • the gain value of the cross polarization is lower than -19dBi.
  • Figure 6-7 shows that the gain characteristic of horizontal polarization in the vertical plane is the same as the gain characteristic of vertical polarization in the horizontal plane. Similarly, the gain characteristic of horizontal polarization in the horizontal plane is the same as the gain characteristic of vertical polarization in the vertical plane.
  • the above structure is an antenna system structure formed by a single dual-polarized millimeter wave antenna unit 2.
  • the antenna system 100 of the present invention may include different embodiments in which different numbers of dual-polarized millimeter-wave antenna units 2 are formed, that is, the receiving holes 11 of the system ground unit 1 include N, and the dual-polarized millimeters
  • the wave antenna unit 2 includes N pieces and is respectively embedded and fixed in the N receiving holes 11.
  • the N pieces of dual-polarized millimeter wave antenna units 2 are distributed in a matrix to form a phased array antenna system structure.
  • the dual-polarized millimeter-wave antenna unit includes four and forms a 2*2 matrix distribution to form another embodiment of the present invention, as shown in FIGS. 8-9:
  • the antenna system 800 includes four dual-polarized millimeter wave antenna units 82, the system ground unit 81 is provided with four receiving holes 811, and four dual-polarized millimeter wave antenna units 82 They are embedded in the four receiving holes 811 respectively to form a phased array antenna system structure with a 2*2 matrix distribution.
  • the dual-polarized millimeter-wave antenna unit 82 in this embodiment has the same structure as the dual-polarized millimeter-wave antenna unit 2 in the foregoing embodiment, and details are not described herein.
  • FIG. 10 is a graph of the gain curve of the horizontal polarization of the antenna system of FIG. 8 at 28 GHz.
  • the horizontally polarized feed port is in the feeding state (ON), and the vertically polarized feed port is in the matched state ( OFF).
  • the horizontal plane is the observation plane passing through the horizontally polarized feed port
  • the vertical plane is the observation plane passing through the vertically polarized feed point .
  • the solid line is the Theta component of the gain
  • the dotted line is the Phi component of the gain.
  • Theta component is the main polarization
  • the Phi component is the cross polarization.
  • the maximum gain of the main polarization is 14dBi
  • the gain value of the cross polarization is lower than -10dBi.
  • the solid line is the Theta component of the gain
  • the dotted line is the Phi component of the gain.
  • the Phi component is the main polarization
  • Theta component is the cross polarization.
  • the maximum gain of the main polarization is 14dBi
  • the gain value of the cross polarization is lower than -10dBi.
  • FIG. 11 is a gain curve diagram of the vertical polarization of the antenna system of FIG. 8 at 28 GHz.
  • the vertical polarization feed port In the vertical polarization mode, the vertical polarization feed port is in the feeding state (ON), and the horizontal polarization feed port is in the matching state (OFF).
  • the solid line is the Theta component of the gain
  • the dotted line is the Phi component of the gain.
  • the Phi component is the main polarization
  • Theta component is the cross polarization.
  • the maximum gain of the main polarization is 14dBi
  • the gain value of the cross polarization is lower than -10dBi.
  • the solid line is the Theta component of the gain
  • the dotted line is the Phi component of the gain. It can be seen that the Theta component is the main polarization and the Phi component is the cross polarization.
  • the maximum gain of the main polarization is 14dBi
  • the gain value of the cross polarization is lower than -10dBi.
  • FIG. 12 is the gain curve of the antenna system of FIG. 8 at 28 GHz, horizontal plane, and horizontal polarization mode, with the main beam pointing at different ⁇ angles, where each curve represents the phase shift between dual-polarized millimeter-wave antenna units of -150 Beam scanning direction at °, -120°, -60°, 0°, 60°, 120° and 150°.
  • the main beams are directed to gain curves with different ⁇ angles, where each curve represents the phase shift between dual-polarized millimeter-wave antenna units as -150 Beam scanning direction at °, -120°, -60°, 0°, 60°, 120° and 150°.
  • FIG. 11a in the vertical polarization mode, in the vertical plane, the Theta component of the gain is the main polarization.
  • the number of the dual-polarized millimeter wave antenna units is not limited to one, four, sixteen, etc., and may be formed in a matrix distribution for other numbers.
  • the above-mentioned different embodiments are only different in the number of the dual-polarized millimeter wave antenna units, and are not limited to four forming matrix distribution. It is also possible to form a larger-sized phased array antenna system to achieve the desired total gain of the antenna system.
  • the present invention also provides a communication terminal, which includes the above-mentioned antenna system provided by the present invention.
  • the antenna system is designed as one or more dual-polarized millimeter-wave antenna units, thereby forming a high-gain beam, and by changing the phase shift, the beam Scan in a large space to keep the line-of-sight communication between the transmitter and receiver using the antenna system uninterrupted, which makes the communication terminal using the antenna system have strong and stable communication signals, good reliability, and frequency band coverage wide range.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明提供一种天线系统,包括系统地单元和双极化毫米波天线单元,双极化毫米波天线单元包括依次叠设的第一基材层、第二基材层、和第三基材层,以及贴设于所述第一基材层的远离所述第二基材层的一侧的且与所述系统地单元电连接的接地层、夹设于所述第一基材层与所述第二基材层之间馈电体以及固定于所述第三基材层的远离所述第二基材层的一侧辐射体;所述馈电体设有相互间隔的水平极化馈电端口与垂直极化馈电端口;所述馈电体与所述辐射体形成耦合。本发明还提供一种通讯终端。与相关技术相比,本发明天线系统及通讯终端通讯信号强且稳定,可靠性好,频段覆盖范围广。

Description

天线系统及通讯终端 技术领域
本发明涉及一种天线,尤其涉及一种运用在通讯电子产品领域的天线系统及通讯终端。
背景技术
随着移动通讯技术的发展,手机、PAD、笔记本电脑等逐渐成为生活中不可或缺的电子产品,并且该类电子产品都更新为增加天线系统使其具有通讯功能的电子通讯产品。
5G作为全球业界的研发焦点,其三个主要应用场景:增强型移动宽带、大规模机器通信、高可靠低延时通信。这三个应用场景分别对应着不同的关键指标,其中增强型移动带宽场景下用户峰值速度为20Gbps,最低用户体验速率为100Mbps。毫米波独有的高载频、大带宽特性是实现5G超高数据传输速率的主要手段,因此,毫米波频段丰富的带宽资源为高速传输速率提供了保障。
技术问题
然而,毫米波由于该频段电磁波剧烈的空间损耗,利用毫米波频段的无线通信天线系统需要采用相控阵的架构。通过移相器使得各个阵元的相位按一定规律分布,从而形成高增益波束,并且通过相移的改变使得波束在一定空间范围内扫描。但在毫米波频段下, 如果天线系统发射机和接收机之间不能保持视距通信, 通信链路就容易中断,若其波束范围内覆盖的频段带宽有限则会影响天线系统的可靠性。
因此,有必要提供一种新的天线系统及通讯终端解决上述问题。
技术解决方案
本发明需要解决的技术问题是提供一种通讯信号强且稳定,可靠性好,频段覆盖范围广天线系统及通讯终端。
为解决上述技术问题,本发明提供了一种天线系统,所述天线系统包括:系统地单元及双极化毫米波天线单元,所述系统地单元包括贯穿其上的收容孔,所述双极化毫米波天线单元嵌设固定于所述收容孔内,所述双极化毫米波天线单元包括:第一基材层;第二基材层,叠设于所述第一基材层;第三基材层,叠设于所述第二基材层并位于所述第二基材层的远离所述第一基材层的一侧;接地层,贴设于所述第一基材层的远离所述第二基材层的一侧,且与所述系统地单元电连接;馈电体,夹设于所述第一基材层与所述第二基材层之间;所述馈电体设有相互间隔的水平极化馈电端口与垂直极化馈电端口;及辐射体,固定于所述第三基材层的远离所述第二基材层的一侧,所述馈电体与所述辐射体形成耦合。
优选的,所述馈电体为电容式馈电贴片。
优选的,所述馈电体固定于所述第一基材层。
优选的,所述馈电体通过蚀刻方式形成于所述第一基材层的表面。
优选的,所述辐射体为贴片,所述辐射体通过蚀刻方式形成于所述第三基材层。
优选的,所述水平极化馈电端口与垂直极化馈电端口位于所述馈电体的非几何中心位置。
优选的,所述第一基材层与所述第三基材的材质相同,所述第二基材层和所述第三基材层分别沿垂直于所述第一基材层方向向所述第一基材层的正投影完全与所述第一基材层重合。
优选的,所述收容孔包括N个,所述双极化毫米波天线单元包括N个,N个所述双极化毫米波天线单元呈矩阵分布形成相控阵天线系统。
优选的,所述双极化毫米波天线单元包括4个并形成2*2矩阵分布。
本发明还提供一种通讯终端,该通讯终端包括如本发明提供的上述天线系统。
有益效果
与相关技术相比,本发明的天线系统及通讯终端中,将所述天线系统设计为一个或多个双极化毫米波天线单元,从而形成高增益波束,并且通过相移的改变使得波束在较大的空间范围内扫描,以保持运用该天线系统的发射机和接收机之间的视距通信不间断,进而使得运用该天线系统的通讯终端通讯信号强且稳定,可靠性好,频段覆盖范围广。
附图说明
为了更清楚地说明本实用新型实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
图1为本发明天线系统的结构示意图;
图2为图1的俯视图;
图3为本发明天线系统的双极化毫米波天线单元的立体结构示意图;
图4为本发明天线系统的双极化毫米波天线单元的立体结构分解示意图;
图5为图1的天线系统的双极化毫米波天线单元的S参数特性曲线图;
图6为图1中天线系统在28GHz时水平极化的增益曲线图;
图7为图1中天线系统在28GHz时垂直极化的增益曲线图;
图8为本发明天线系统其中一种实施方式的立体结构示意图;
图9为图8的天线系统的俯视图;
图10为图8的天线系统在28GHz时水平极化的增益曲线图;
图11为图8的天线系统在28GHz时垂直极化的增益曲线图;
图12为图8的天线系统在28GHz、水平面上、水平极化模式下,主波束指向不同θ角的增益曲线;
图13图8的天线系统在28GHz、垂直平面上、垂直极化模式下,主波束指向不同θ角的增益曲线。
本发明的实施方式
下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本实用新型的一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本实用新型保护的范围。
请同时参图1-4所示,本发明提供了一种天线系统100,所述天线系统100包括系统地单元1和双极化毫米波天线单元2。
所述系统地单元1包括贯穿其上的收容孔11。所述双极化毫米波天线单元2嵌设固定于所述收容孔11内。
具体的,所述双极化毫米波天线单元2包括第一基材层21、第二基材层22、第三基材层23、接地层24、馈电体25以及辐射体26。
所述第二基材层22叠设于所述第一基材层21;第三基材层23叠设于所述第二基材层22并位于所述第二基材层22的远离所述第一基材层21的一侧,即所述第一基材层21、所述第二基材层22及所述第三基材层23依次垂直叠设形成堆叠结构。
本实施方式中,所述第一基材层21与所述第三基材23的材质相同,所述第二基材层22和所述第三基材层23分别沿垂直于所述第一基材层21方向向所述第一基材层21的正投影完全与所述第一基材层21重合。
所述接地层24贴设于所述第一基材层21的远离所述第二基材层22的一侧,且与所述系统地单元1电连接。
所述馈电体25夹设于所述第一基材层21与所述第二基材层22之间。所述馈电体25设有相互间隔的水平极化馈电端口251与垂直极化馈电端口252,上述馈电体25的结构形成双极化结构。本实施方式中,所述水平极化馈电端口251与所述垂直极化馈电端口252通过探针穿过所述第一基材层21后与馈电网络或外部电源连接。更优的,所述水平极化馈电端口251与垂直极化馈电端口252位于所述馈电体25的非几何中心位置,比如为于所述馈电体25的边缘等。
本实施方式中,所述馈电体25为电容式馈电贴片。具体的,所述馈电体25固定于所述第一基材层21。更优的,所述馈电体25通过蚀刻方式形成于所述第一基材层21的表面。
所述辐射体26固定于所述第三基材层23的远离所述第二基材层22的一侧。所述馈电体25与所述辐射体26形成耦合,实现将所述馈电体25的能量耦合至所述辐射体26,从而使所述辐射体26形成双极化辐射,并工作在毫米波段28GHz。
也就是说,所述辐射体26不与所述接地层24连接;所述辐射体26也不与所述馈电体25直接电连接,仅与所述馈电体25形成耦合。
本实施方式中,所述辐射体26为贴片,更优的,所述辐射体26通过蚀刻方式形成于所述第三基材层23。
请结合图5-7所示,图5为图1的天线系统的双极化毫米波天线单元的S参数特性曲线图。
其中,图5中的曲线5a为双极化毫米波天线单元的水平极化馈电端口和垂直极化馈电端口的反射系数曲线,由曲线5a可知,水平极化馈电端口和垂直极化馈电端口的反射系数曲线一致。从反射系数曲线中可以看出,天线系统100谐振在28GHz左右,27.4GHz-28.6GHz频段内反射系数小于-6dB,绝对带宽为1.2GHz。
图5中的曲线5b为双极化毫米波天线单元的水平极化馈电端口和垂直极化馈电端口之间的隔离度的曲线,由曲线5b可知,在25GHz-31GHz频段内,两个馈电端口之间的隔离度小于-15dB。
图6为图1的天线系统在28GHz时水平极化的增益曲线图。在水平极化模式下,水平极化馈电端口251处于馈电状态(ON),垂直极化馈电端口252处于匹配状态(OFF)。
参阅图2,图2中定义Phi=0°的面为水平面,Phi=90°的面为垂直平面,水平面是经过水平极化馈电端口的观察面,垂直平面为是经过垂直极化馈电点的观察面
图6a为沿图2中对应Phi=0°平面内的增益曲线图,即双极化毫米波天线单元2在28GHz、水平面上的增益曲线。其中,实线是增益的Theta(θ)分量,虚线是增益的Phi分量。可以看出,Theta分量为主极化,Phi分量为交叉极化。其中,主极化的最大增益为6.7dBi,交叉极化的增益值低于-19dBi。
图6b为沿图2中对应Phi=90°平面内的增益曲线图,即双极化毫米波天线单元2在28GHz、垂直平面上的增益曲线。其中,实线是增益的Theta分量,虚线是增益的Phi分量。可以看出,Phi分量为主极化,Theta分量为交叉极化。其中,主极化的最大增益为6.7dBi,交叉极化的增益值低于-16dBi。
图7为图1的天线系统在28GHz时垂直极化的增益曲线图。在垂直极化模式下,垂直极化馈电端口252处于馈电状态(ON),水平极化馈电端口251处于匹配状态(OFF)。
图7a为沿图2中对应Phi=0°平面内的增益曲线图,即双极化毫米波天线单元2在28GHz、水平面上的增益曲线。其中,实线是增益的Theta分量,虚线是增益的Phi分量。可以看出,Phi分量为主极化,Theta分量为交叉极化。其中,主极化的最大增益为6.7dBi,交叉极化的增益值低于-16dBi。
图7b为沿图2中对应Phi=90°平面内的增益曲线图,即双极化毫米波天线单元2在28GHz、垂直平面上的增益曲线。其中,实线是增益的Theta分量,虚线是增益的Phi分量。可以看出,Theta分量为主极化,Phi分量为交叉极化。其中,主极化的最大增益为6.7dBi,交叉极化的增益值低于-19dBi。
图6-7可知,水平极化在垂直平面的增益特征与垂直极化在水平面的增益特征相同。 同样, 水平极化在水平面的增益特征与垂直极化在垂直平面的增益特征相同。
上述结构为单一双极化毫米波天线单元2形成的天线系统结构。而本发明的天线系统100可包括不同数量的双极化毫米波天线单元2设置形成的不同实施方式,即所述系统地单元1的所述收容孔11包括N个,所述双极化毫米波天线单元2包括N个并分别嵌设固定于N个所述收容孔11内,N个所述双极化毫米波天线单元2呈矩阵分布形成相控阵天线系统结构。
所述双极化毫米波天线单元包括四个并形成2*2矩阵分布,形成本发明另一种实施方式,如图8-9所示:
本实施方式中,所述天线系统800包括四个所述双极化毫米波天线单元82,所述系统地单元81设有四个收容孔811,四个所述双极化毫米波天线单元82分别嵌设于四个所述收容孔811,即形成2*2矩阵分布的相控阵天线系统结构,相对于单一双极化毫米波天线单元形成的天线系统结构而言,其光束覆盖范围更广,通讯可靠性更强。需要说明的是,本实施方式中所述双极化毫米波天线单元82与上述实施方式中的双极化毫米波天线单元2的结构相同,在此不在赘述。
请结合图10-13。图10为图8的天线系统在28GHz时水平极化的增益曲线图,在水平极化模式下,水平极化馈电端口处于馈电状态(ON),垂直极化馈电端口处于匹配状态(OFF)。图9中定义Phi=0°的面为水平面,Phi=90°的面为垂直平面,水平面是经过水平极化馈电端口的观察面,垂直平面为是经过垂直极化馈电点的观察面。
其中,图10a为沿图9中对应Phi=0°平面内的增益曲线图,即双极化毫米波天线单元82在28GHz、水平面上的增益曲线。其中,实线是增益的Theta分量,虚线是增益的Phi分量。可以看出,Theta分量为主极化,Phi分量为交叉极化。其中,主极化的最大增益为14dBi,交叉极化的增益值低于-10dBi。
图10b为沿图9中对应Phi=90°平面内的增益曲线图,即双极化毫米波天线单元82在28GHz、垂直平面上的增益曲线。其中,实线是增益的Theta分量,虚线是增益的Phi分量。可以看出,Phi分量为主极化,Theta分量为交叉极化。其中,主极化的最大增益为14dBi,交叉极化的增益值低于-10dBi。
图11为图8的天线系统在28GHz时垂直极化的增益曲线图。在垂直极化模式下,垂直极化馈电端口处于馈电状态(ON),水平极化馈电端口处于匹配状态(OFF)。
图11a为沿图9中对应Phi=0°平面内的增益曲线图,即双极化毫米波天线单元82在28GHz、水平面上的增益曲线。其中,实线是增益的Theta分量,虚线是增益的Phi分量。可以看出,Phi分量为主极化,Theta分量为交叉极化。其中,主极化的最大增益为14dBi,交叉极化的增益值低于-10dBi。
图11b为沿图9中对应Phi=90°平面内的增益曲线图,即双极化毫米波天线单元82在28GHz、垂直平面上的增益曲线。其中,实线是增益的Theta分量,虚线是增益的Phi分量。可以看出,Theta分量为主极化,Phi分量为交叉极化。其中,主极化的最大增益为14dBi,交叉极化的增益值低于-10dBi。
图12为图8的天线系统在28GHz、水平面上、水平极化模式下,主波束指向不同θ角的增益曲线,其中,各曲线分别表示了双极化毫米波天线单元间相移为-150°, -120°, -60°, 0°, 60°, 120° 和 150°时的波束扫描方向。
从图12可知,从θ=-45°到θ=45°的扫描范围内,主波束增益均可达到10dBi。其中,从图10a已知,在水平极化模式下,在水平面内,增益的Theta分量为主极化。
图13图8的天线系统在28GHz、垂直平面上、垂直极化模式下,主波束指向不同θ角的增益曲线,其中,各曲线分别表示了双极化毫米波天线单元间相移为-150°, -120°, -60°, 0°, 60°, 120° 和150°时的波束扫描方向。
从图13可知,从θ=-45°到θ=45°的扫描范围内,主波束增益均可达到10dBi。其中,从图11a已知,在垂直极化模式下,在垂直平面内,增益的Theta分量为主极化。
需要说明的是,本发明的天线系统中,所述双极化毫米波天线单元的数量并不限于一个、四个、十六个等,还可为其它数量形成矩阵分布即可。上述提及的不同实施方式仅为所述双极化毫米波天线单元的数量不同,不仅限于4个形成矩阵分布。还可以形成更大尺寸的相控阵天线系统, 以达到所需的天线系统总增益。
本发明还提供一种通讯终端,其包括本发明提供的上述的天线系统。
与相关技术相比,本发明的天线系统及通讯终端中,将所述天线系统设计为一个或多个双极化毫米波天线单元,从而形成高增益波束,并且通过相移的改变使得波束在较大的空间范围内扫描,以保持运用该天线系统的发射机和接收机之间的视距通信不间断,进而使得运用该天线系统的通讯终端通讯信号强且稳定,可靠性好,频段覆盖范围广。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其它相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

  1. 一种天线系统,其特征在于,所述天线系统包括:
    系统地单元,所述系统地单元包括贯穿其上的收容孔;及
    双极化毫米波天线单元,嵌设固定于所述收容孔内,所述双极化毫米波天线单元包括:
    第一基材层;
    第二基材层,叠设于所述第一基材层;
    第三基材层,叠设于所述第二基材层并位于所述第二基材层的远离所述第一基材层的一侧;
    接地层,贴设于所述第一基材层的远离所述第二基材层的一侧,且与所述系统地单元电连接;
    馈电体,夹设于所述第一基材层与所述第二基材层之间;所述馈电体设有相互间隔的水平极化馈电端口与垂直极化馈电端口;及
    辐射体,固定于所述第三基材层的远离所述第二基材层的一侧,所述馈电体与所述辐射体形成耦合。
  2. 根据权利要求1所述的天线系统,其特征在于,所述馈电体为电容式馈电贴片。
  3. 根据权利要求2所述的天线系统,其特征在于,所述馈电体固定于所述第一基材层。
  4. 根据权利要求3所述的天线系统,其特征在于,所述馈电体通过蚀刻方式形成于所述第一基材层的表面。
  5. 根据权利要求1所述的天线系统,其特征在于,所述辐射体为贴片,所述辐射体通过蚀刻方式形成于所述第三基材层。
  6. 根据权利要求1所述的天线系统,其特征在于,所述水平极化馈电端口与垂直极化馈电端口位于所述馈电体的非几何中心位置。
  7. 根据权利要求1所述的天线系统,其特征在于,所述第一基材层与所述第三基材的材质相同,所述第二基材层和所述第三基材层分别沿垂直于所述第一基材层方向向所述第一基材层的正投影完全与所述第一基材层重合。
  8. 根据权利要求1所述的天线系统,其特征在于,所述收容孔包括N个,所述双极化毫米波天线单元包括N个,N个所述双极化毫米波天线单元呈矩阵分布形成相控阵天线系统。
  9. 根据权利要求8所述的天线系统,其特征在于,所述双极化毫米波天线单元包括4个并形成2*2矩阵分布。
  10. 一种通讯终端,其特征在于,其包括如权利要求1-9任意一项所述的天线系统。
PCT/CN2019/109413 2018-12-12 2019-09-30 天线系统及通讯终端 WO2020119228A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811514001.2A CN109560379B (zh) 2018-12-12 2018-12-12 天线系统及通讯终端
CN201811514001.2 2018-12-12

Publications (1)

Publication Number Publication Date
WO2020119228A1 true WO2020119228A1 (zh) 2020-06-18

Family

ID=65869779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109413 WO2020119228A1 (zh) 2018-12-12 2019-09-30 天线系统及通讯终端

Country Status (3)

Country Link
US (1) US10777897B2 (zh)
CN (1) CN109560379B (zh)
WO (1) WO2020119228A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019029819A1 (en) * 2017-08-11 2019-02-14 Telefonaktiebolaget Lm Ericsson (Publ) INTEGRATED CIRCUIT WITH CLOCK DISTRIBUTION
CN109560379B (zh) * 2018-12-12 2020-09-29 瑞声光电科技(常州)有限公司 天线系统及通讯终端
CN110011028B (zh) * 2018-12-29 2020-09-18 瑞声科技(新加坡)有限公司 一种天线系统、通讯终端和基站
CN112151938A (zh) * 2019-06-28 2020-12-29 深圳市超捷通讯有限公司 天线结构及具有所述天线结构的无线通信装置
CN112688079A (zh) * 2020-12-21 2021-04-20 华南理工大学 一种基于加载弯折接地金属柱的双极化宽波束天线

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100328142A1 (en) * 2008-03-20 2010-12-30 The Curators Of The University Of Missouri Microwave and millimeter wave resonant sensor having perpendicular feed, and imaging system
US20140055312A1 (en) * 2012-08-27 2014-02-27 Honeywell International Inc. Systems and methods for a dual polarization feed
US20140218230A1 (en) * 2011-07-01 2014-08-07 University Of Manitoba Imaging using probes
CN105470661A (zh) * 2015-11-30 2016-04-06 成都亿豪智科技有限公司 毫米波双层双频双极化平面反射阵列天线
CN106887722A (zh) * 2017-03-30 2017-06-23 北京邮电大学 一种毫米波双极化缝隙天线阵列
CN109560379A (zh) * 2018-12-12 2019-04-02 瑞声光电科技(常州)有限公司 天线系统及通讯终端

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6028562A (en) * 1997-07-31 2000-02-22 Ems Technologies, Inc. Dual polarized slotted array antenna
JP4822262B2 (ja) * 2006-01-23 2011-11-24 沖電気工業株式会社 円形導波管アンテナ及び円形導波管アレーアンテナ
US8188932B2 (en) * 2007-12-12 2012-05-29 The Boeing Company Phased array antenna with lattice transformation
JP5590504B2 (ja) * 2009-08-31 2014-09-17 日立化成株式会社 トリプレート線路層間接続器及び平面アレーアンテナ
US9331771B2 (en) * 2010-09-28 2016-05-03 Aviat U.S., Inc. Systems and methods for wireless communication using polarization diversity
CN102280718A (zh) * 2011-04-29 2011-12-14 上海交通大学 Ku波段低剖面双频双极化阵列天线
US8988294B2 (en) * 2011-12-06 2015-03-24 Viasat, Inc. Antenna with integrated condensation control system
KR101982028B1 (ko) * 2012-09-21 2019-05-24 가부시키가이샤 무라타 세이사쿠쇼 편파 공용 안테나
US8917210B2 (en) * 2012-11-27 2014-12-23 International Business Machines Corporation Package structures to improve on-chip antenna performance
US20170222863A1 (en) * 2016-01-30 2017-08-03 HGST Netherlands B.V. Cloud computer realized in a datacenter using mmwave radio links for a 3d torus
CN108475852A (zh) * 2016-03-15 2018-08-31 康普技术有限责任公司 具有集成极化旋转器的平板阵列天线
US10516201B2 (en) * 2016-04-11 2019-12-24 Samsung Electronics Co., Ltd. Wireless communication system including polarization-agile phased-array antenna
CN108736160B (zh) * 2017-04-20 2020-12-15 惠州硕贝德无线科技股份有限公司 一种辐射方向图可重构的5g终端天线
CN108879114A (zh) * 2017-05-16 2018-11-23 华为技术有限公司 集成天线封装结构和终端
KR102428929B1 (ko) * 2018-01-29 2022-08-05 삼성전자주식회사 기생 도전성 판을 포함하는 안테나 구조
CN108550981A (zh) * 2018-04-03 2018-09-18 北京理工大学 工作于tm210谐振模式的w波段双极化缝隙天线及馈电网络
CN108717992B (zh) * 2018-04-09 2020-01-31 杭州电子科技大学 毫米波差分馈电的双极化电磁偶极子天线
CN108899642A (zh) * 2018-06-12 2018-11-27 瑞声科技(新加坡)有限公司 天线系统及应用该天线系统的移动终端
CN109066065A (zh) * 2018-07-18 2018-12-21 华中科技大学 一种低剖面ltcc毫米波双极化天线

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100328142A1 (en) * 2008-03-20 2010-12-30 The Curators Of The University Of Missouri Microwave and millimeter wave resonant sensor having perpendicular feed, and imaging system
US20140218230A1 (en) * 2011-07-01 2014-08-07 University Of Manitoba Imaging using probes
US20140055312A1 (en) * 2012-08-27 2014-02-27 Honeywell International Inc. Systems and methods for a dual polarization feed
CN105470661A (zh) * 2015-11-30 2016-04-06 成都亿豪智科技有限公司 毫米波双层双频双极化平面反射阵列天线
CN106887722A (zh) * 2017-03-30 2017-06-23 北京邮电大学 一种毫米波双极化缝隙天线阵列
CN109560379A (zh) * 2018-12-12 2019-04-02 瑞声光电科技(常州)有限公司 天线系统及通讯终端

Also Published As

Publication number Publication date
CN109560379A (zh) 2019-04-02
US10777897B2 (en) 2020-09-15
US20200194898A1 (en) 2020-06-18
CN109560379B (zh) 2020-09-29

Similar Documents

Publication Publication Date Title
US11973280B2 (en) Antenna element and terminal device
US11387568B2 (en) Millimeter-wave antenna array element, array antenna, and communications product
WO2020119228A1 (zh) 天线系统及通讯终端
US9287633B2 (en) Dual frequency coupling feed antenna and adjustable wave beam module using the antenna
US11367943B2 (en) Patch antenna unit and antenna in package structure
WO2021104191A1 (zh) 天线单元及电子设备
US9112260B2 (en) Microstrip antenna
CN112290193B (zh) 毫米波模组、电子设备及毫米波模组的调节方法
CN111129704B (zh) 一种天线单元和电子设备
WO2021184986A1 (zh) 天线装置及电子设备
WO2021013010A1 (zh) 天线单元和电子设备
CN112117532B (zh) 基于微带天线的紧凑型低耦合三极化回溯阵及三极化mimo天线单元
WO2021083214A1 (zh) 天线单元及电子设备
WO2021083223A1 (zh) 天线单元及电子设备
WO2020125127A1 (zh) 天线系统及通讯终端
CN109742515B (zh) 一种用于移动终端的毫米波圆极化天线
EP3965538A1 (en) Housing assembly, antenna apparatus and electronic device
WO2023051177A1 (zh) 双频双圆极化天线和天线系统
WO2021083212A1 (zh) 天线单元及电子设备
WO2021083213A1 (zh) 天线单元及电子设备
CN111615775B (zh) 垂直极化天线和终端设备
US10992044B2 (en) Antenna system, communication terminal and base station
CN110600858A (zh) 一种天线单元及终端设备
WO2020133390A1 (zh) 一种天线系统
CN110600867A (zh) 一种天线单元及终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19897010

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19897010

Country of ref document: EP

Kind code of ref document: A1