WO2021082988A1 - 天线模组及电子设备 - Google Patents

天线模组及电子设备 Download PDF

Info

Publication number
WO2021082988A1
WO2021082988A1 PCT/CN2020/122211 CN2020122211W WO2021082988A1 WO 2021082988 A1 WO2021082988 A1 WO 2021082988A1 CN 2020122211 W CN2020122211 W CN 2020122211W WO 2021082988 A1 WO2021082988 A1 WO 2021082988A1
Authority
WO
WIPO (PCT)
Prior art keywords
patch
sub
main
main patch
antenna module
Prior art date
Application number
PCT/CN2020/122211
Other languages
English (en)
French (fr)
Inventor
于晨武
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP20882404.5A priority Critical patent/EP4047746A4/en
Publication of WO2021082988A1 publication Critical patent/WO2021082988A1/zh
Priority to US17/730,893 priority patent/US20220255238A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0025Modular arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2283Supports; Mounting means by structural association with other equipment or articles mounted in or on the surface of a semiconductor substrate as a chip-type antenna or integrated with other components into an IC package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/005Patch antenna using one or more coplanar parasitic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • H01Q5/28Arrangements for establishing polarisation or beam width over two or more different wavebands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • H01Q5/364Creating multiple current paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/378Combination of fed elements with parasitic elements
    • H01Q5/385Two or more parasitic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0414Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means

Definitions

  • This application relates to the field of electronic technology, in particular to an antenna module and electronic equipment.
  • the present application provides an antenna module and electronic device that increase the frequency width covered by the antenna module of the electronic device and increase the data transmission rate.
  • an antenna module provided by the present application includes a first main patch and at least one first sub patch, and the first sub patch and the first main patch are spaced apart on the same plane;
  • the first main patch is used to generate a first radio frequency signal, and the first radio frequency signal of the first main patch is coupled to the first sub patch, so that the first main patch and the second One sub patch radiates radio frequency signals in the first frequency band together;
  • a second main patch and at least one second sub patch located on a different plane from the second main patch, the second main patch and the first main patch are located on a different plane, the The second sub patch and the first main patch are located on the same plane or different planes; the second main patch is used to generate a second radio frequency signal, and the second radio frequency signal of the second main patch is coupled to The second sub-patch enables the second main patch and the second sub-patch to jointly radiate radio frequency signals in a second frequency band; the second frequency band is different from the first frequency band.
  • an electronic device provided by the present application includes the antenna module described above.
  • the antenna unit can radiate radio frequency signals in dual bands. ;
  • the first main patch and the first sub patch to cover the n260 frequency band, and designing the second main patch and the second sub patch to cover the n257, n258, n261 frequency bands, so that the antenna unit can cover n257, n258, n260
  • the n261 frequency band realizes that the antenna module can cover the two millimeter wave frequency bands in the 5G communication system of the 3GPP Release 15 specification.
  • FIG. 1 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • Figure 2 is a top view of an antenna module provided by an embodiment of the present application.
  • Fig. 3 is a top view of an antenna unit provided by an embodiment of the present application.
  • Figure 4 is a cross-sectional view along line A-A in Figure 3;
  • FIG. 5 is a top view of a first main patch and a first sub patch provided by an embodiment of the present application
  • FIG. 6 is a curve diagram of return loss of an antenna unit in a first frequency band and a second frequency band according to an embodiment of the present application.
  • FIG. 7 is a top view of a second main patch and a second sub patch provided by an embodiment of the present application.
  • FIG. 8 is a top view of a second type of first main patch and a first sub patch provided by an embodiment of the present application.
  • FIG. 9 is a top view of a third type of first main patch and first sub patch provided by an embodiment of the present application.
  • FIG. 10 is a top view of a fourth first main patch and a first sub patch provided by an embodiment of the present application.
  • FIG. 11 is a top view of a fifth first main patch and a first sub patch provided by an embodiment of the present application.
  • FIG. 12 is a graph of radiation efficiency of an antenna unit in a first frequency band according to an embodiment of the present application.
  • FIG. 13 is a graph of radiation efficiency of an antenna unit in a second frequency band according to an embodiment of the present application.
  • FIG. 14 is a directional diagram of an antenna unit at a frequency of 26 GHz according to an embodiment of the present application.
  • FIG. 15 is a directional diagram of an antenna unit at a frequency of 28 GHz according to an embodiment of the present application.
  • FIG. 16 is a directional diagram of an antenna unit provided by an embodiment of the present application at a frequency of 39 GHz.
  • FIG. 1 is a schematic structural diagram of an electronic device according to an embodiment of the application.
  • the electronic device 100 may be a phone, a television, a tablet computer, a mobile phone, a camera, a personal computer, a notebook computer, a vehicle-mounted device, a wearable device, a base station, and other devices with an antenna module 10.
  • the embodiment of the present application takes the electronic device 100 as a mobile phone as an example for description.
  • the electronic device 100 includes an antenna module 10, a housing 20, a display screen 30, a battery, a motherboard and other electronic components.
  • the antenna module 10 can be arranged on the housing 20, the display screen 30 or the main board.
  • This application does not limit the specific location of the antenna module 10.
  • This application does not give examples of electronic devices one by one, but the electronic devices protected by this application include all the electronic devices of the mobile phone in the prior art.
  • FIG. 2 provides an antenna module 10 according to an embodiment of the application.
  • the antenna module 10 may be an antenna array used for at least one of the millimeter wave frequency band, the sub-millimeter wave frequency band, and the terahertz frequency band.
  • the antenna module 102 is an antenna that radiates radio frequency signals in the millimeter wave frequency band as an example for description.
  • the frequency range of the millimeter wave frequency band is 24.25GHz ⁇ 52.6GHz.
  • 3GPP Release 15 specifies the current 5G millimeter wave frequency bands as follows: n257 (26.5-29.5GHz), n258 (24.25-27.5GHz), n261 (27.5-28.35GHz) and n260 (37-40GHz).
  • the width direction of the antenna module 10 is defined as the X direction
  • the length direction of the antenna module 10 is defined as the Y direction
  • the thickness direction of the antenna module 10 is defined as the Z direction.
  • the antenna module 10 provided by the embodiment of the present application is a microstrip patch antenna.
  • the frequency bandwidth of the microstrip patch antenna is relatively narrow, and the frequency coverage is relatively small.
  • the frequency band of millimeter wave signals is relatively large, and traditional patch antennas cannot meet the coverage of millimeter wave dual frequency bands and wide frequency bands.
  • This application implements a dual-band antenna by improving and designing the structure of the traditional microstrip patch antenna, and the antenna bandwidth covers the millimeter wave n257, n258, n260, and n261 frequency bands specified by 3GPP, and it can also have better performance in the dual-frequency range. High antenna gain.
  • the antenna module 10 includes a plurality of antenna units 1 arranged in an array.
  • the multiple antenna units 1 may be arranged in an M*N array. Among them, M and N are positive integers.
  • M and N are positive integers.
  • the antenna unit 1 includes a first main patch 21, at least one first sub patch 22, (there are four first sub patches 22-1 ⁇ 22-4 in FIG. 3) a second main patch The patch 31 and at least one second sub patch 32 (there are four second sub patches 32-1 to 32-4 in FIG. 3).
  • the first main patch 21, the first sub patch 22, the second main patch 31, and the second sub patch 32 are all conductive patches.
  • the first sub patch 22 and the first main patch 21 are spaced apart on the same plane. Specifically, the first main patch 21 and the second main patch 31 are located on the same X-Y plane.
  • the first main patch 21 is used to generate a first radio frequency signal under the excitation of a first excitation signal. Specifically, the first main patch 21 may be directly coupled to receive the first excitation signal through the feeding port, or the feeding patch may be capacitively coupled to receive the first excitation signal.
  • the first excitation signal may be a high-frequency alternating current signal or a radio frequency signal.
  • the radio frequency signal is a modulated electromagnetic wave with a certain emission frequency.
  • a capacitive coupling can be formed between the first sub patch 22 and the first main patch 21.
  • the first radio frequency signal radiated by the first main patch 21 is coupled to the first sub patch 22.
  • the first sub patch 22 generates an electromagnetic response under the excitation of the first radio frequency signal, so that the first main patch 21 and the first sub patch 22 jointly radiate a radio frequency signal of the first frequency band. It is understandable that the difference between the first main patch 21 and the first sub patch 22 is that the excitation signal from the feed port directly excites the first main patch 21, and the excitation signal from the feed port passes through the first main patch. 21 Stimulate the first sub patch 22.
  • the first excitation signal may be an excitation signal with a center frequency of 39 GHz.
  • the first main patch 21 forms an electromagnetic field under the first excitation signal to generate a first radio frequency signal.
  • the first radio frequency signal excites the first sub-patch 22, so that the first sub-patch 22 has an electromagnetic response, so that the first sub-patch 22 and the first main patch 21 radiate the radio frequency signal of the first frequency band.
  • the center frequency of the radio frequency signal in the first frequency band may be f1 in FIG. 6, and the frequency of f1 is 38.2 GHz.
  • the frequency width where the return loss is less than -8dB is defined as the bandwidth of the antenna unit 1.
  • the first frequency band is a frequency range of 36.7-40.7 GHz between a and b in FIG. 6.
  • the first frequency band covers the millimeter wave n260 (37-40 GHz) frequency band specified by 3GPP, so the antenna unit 1 can cover the millimeter wave n260 frequency band specified by 3GPP.
  • the first main patch 21 and the first sub patch are The slices 22 are coupled with each other so that the 39 GHz excitation signal generates a radio frequency signal of 36.7-40.7 GHz, which greatly expands the frequency width of the antenna unit 1 so that the antenna unit 1 can cover the millimeter wave n260 frequency band specified by 3GPP.
  • the second main patch 31 and the first main patch 21 are respectively located on different planes.
  • the second sub patch 32 and the second main patch 32 are located on different planes.
  • the second sub patch 32 and the first main patch 21 are located on the same plane or different planes.
  • the second main patch 31 and the first main patch 21 are respectively located in parallel XY planes, so that the first main patch 21 and the second main patch 31 can be superimposed and arranged in the Z-axis direction, thereby reducing
  • the planar area of the antenna unit 1 on the XY plane promotes the miniaturization of the antenna unit 1.
  • the second main patch 31 is used to generate a second radio frequency signal under the excitation of a second excitation signal.
  • the second main patch 31 may be directly coupled to receive the second excitation signal through the feeding port, or the feeding patch may be capacitively coupled to receive the second excitation signal.
  • the frequency of the second excitation signal is different from the frequency of the first excitation signal.
  • the center frequency of the first excitation signal is 39 GHz
  • the center frequency of the second excitation signal is 28 GHz.
  • a capacitive coupling can be formed between the second sub patch 32 and the second main patch 31.
  • the second radio frequency signal of the second main patch 31 is coupled to the second sub patch 32, so that the second sub patch 32 generates an electromagnetic response, thereby causing the second main patch 31 and the second sub patch 32 to generate an electromagnetic response.
  • the second sub-patches 32 jointly radiate radio frequency signals in the second frequency band.
  • the second frequency band is different from the first frequency band. It is understandable that the difference between the second main patch 31 and the second sub patch 32 is that the second excitation signal from the feeding port is directly fed into the second main patch 31, while the second excitation signal from the feeding port is directly fed into the second main patch 31.
  • the second sub patch 32 is fed through the second main patch 31. In other words, the second excitation signal from the feeding port is indirectly fed into the second sub patch 32.
  • the second excitation signal may be an excitation signal with a center frequency of 28 GHz.
  • the excitation signal may be an alternating current signal or a radio frequency signal or the like.
  • the radio frequency signal is a modulated electromagnetic wave with a certain emission frequency.
  • the second main patch 31 forms an electromagnetic field under the second excitation signal to generate a second radio frequency signal.
  • the second radio frequency signal excites the second sub-patch 32, so that the second sub-patch 32 has an electromagnetic response under the second radio frequency signal, so that the second sub-patch 32 and the second main patch 31 jointly radiate the first Two-band radio frequency signal.
  • the radio frequency signal in the second frequency band may have two resonances.
  • the center frequencies of these two resonances are 25.2 GHz and 29.4 GHz, respectively.
  • the center frequency of the resonance generated by the second main patch 31 may be f2 in FIG. 6, and f2 is about 25.2 GHz.
  • the center frequency of the resonance generated by the second sub-patch 32 is f3 in FIG. 6, and f3 is about 29.4 GHz.
  • the frequency width where the return loss is less than -8dB is defined as the bandwidth of the antenna unit 1.
  • the bandwidth of the second frequency band is the frequency range between c and d, which is approximately 23.9-29.9 GHz. Therefore, the second frequency band covers n257, n258, and n261 frequency bands (24.25-29.5 GHz).
  • the size of the second main patch 31 and the second sub patch 32 can be adjusted so that the center frequency of the resonance generated by the second main patch 31 after being excited is as shown in FIG. 6 f3 and f3 are approximately 29.4 GHz, and the center frequency of the resonance generated by the second sub-patch 32 after being excited is f2 in FIG. 6, and f2 is approximately 25.2 GHz.
  • the bandwidth of the second frequency band is 23.9-29.9 GHz. Therefore, the second frequency band covers n257, n258, and n261 frequency bands (24.25-29.5 GHz).
  • the second main patch 31 and the second sub patch are coupled with each other so that the 28GHz excitation signal generates a radio frequency signal of 23.9-29.9GHz, which greatly expands the frequency width of the radio frequency signal, so that the antenna unit 1 can cover the millimeter wave n257, n258, and n261 frequency bands specified by 3GPP (24.25 ⁇ 29.5GHz).
  • the second main patch 31 and the second sub patch 32 radiate the radio frequency signal in the second frequency band to realize the radiation of the antenna unit 1 Dual-band radio frequency signals; by designing the first main patch 21 and the first sub patch 22 to cover the n260 frequency band, and designing the second main patch 31 and the second sub patch 32 to cover the n257, n258, and n261 frequency bands, so that
  • the antenna unit 1 can cover the frequency bands n257, n258, n260, and n261, and the antenna module 10 can cover the two millimeter wave frequency bands in China's 5G communication system specified in the 3GPP Release 15 version.
  • the process of designing the size of the main patch should consider that the impedance of the main patch matches the RF signals in the first and second frequency bands.
  • the distance from the feeding point to one side of the main patch needs to match the RF signal of the first frequency band, and the distance from the feeding point to the other side of the main patch matches the RF signal of the second frequency band, and then As a result, the size of the main patch is too large, which is not conducive to miniaturization of the antenna module 10.
  • the antenna module 10 needs to be installed on the side frame of the mobile phone. With the miniaturization of the mobile phone, the size of the side frame of the mobile phone is extremely small, which requires the antenna The module 10 must be miniaturized.
  • the antenna module 10 provided in the present application radiates the radio frequency signals of the two frequency bands by two patch groups respectively, so that the size of the main patch can be liberated, so that the size of the main patch only needs to be matched with one frequency band.
  • the size of the main patch is greatly reduced.
  • a main patch with a larger area is divided into two main patches with a smaller area.
  • two main patches with relatively small areas are laminated to reduce the planar area of the antenna unit 1, so that the antenna module 10 can be installed on the side frame of the mobile phone, which facilitates the integration of the antenna unit 1 into the electronics.
  • the side of the machine is
  • the specific structure of the antenna unit 1 is further supplemented by taking the implementation as an example.
  • the specific structure of the antenna unit 1 in this application includes but is not limited to the following implementations.
  • the antenna unit 1 includes a printed circuit board 11 (Printed Circuit Board, PCB).
  • the first main patch 21, the second main patch 31, the first sub patch 22, the second sub patch 32 and the ground layer 4 are arranged in the printed circuit board 11.
  • the antenna unit 1 may be processed by a high density interconnect (High Density Interconnector) process or an integrated circuit (Integrated Circuit, IC) carrier board process.
  • the printed circuit board 11 includes an intermediate layer 51, and multiple insulating dielectric layers 52 provided on the upper and lower sides of the intermediate layer 51. In this embodiment, description is made by taking as an example the three insulating dielectric layers 52 are provided on both upper and lower sides of the intermediate layer 51.
  • the material of the intermediate layer 51 may be a plastic material.
  • the intermediate layer 51 has a first surface 511 and a second surface 512 disposed opposite to each other.
  • the second main patch 31 is provided on the first surface 511.
  • the ground layer 4 is provided on the second surface 512.
  • the first main patch 21 and the second main patch 31 are arranged on the same side of the intermediate layer 51, but the distance between the first main patch 21 and the ground layer 4 is larger than the second main patch 31 and the ground The spacing between layers 4.
  • the first main patch 21 is provided on the outer surface of the printed circuit board 11, so that the radio frequency signal radiated by the first main patch 21 is not blocked, thereby increasing the radiation efficiency of the first main patch 21 .
  • the first sub patch 22 and the first main patch 21 are provided on the outer surface of the printed circuit board 11 so that the first sub patch 22 and the first main patch 21 are provided in the same layer.
  • the second sub patch 32 is provided between the layer where the first main patch 21 is located and the layer where the second main patch 31 is located, so that the second sub patch 32 and the second main patch 31 are laminated.
  • a metal layer may be provided between adjacent insulating dielectric layers 52.
  • the antenna unit 1 also includes a power chip 7 and an interface structure, which will not be repeated here.
  • the antenna module 10 can be easily pasted on the surface of other objects , Easy to integrate with RF front-end system.
  • Both the intermediate layer 51 and the insulating dielectric layer 52 are made of non-conductive materials.
  • the intermediate layer 51 and the insulating dielectric layer 52 may be the same material or different materials.
  • the intermediate layer 51 and the insulating dielectric layer 52 are made of millimeter wave high frequency and low loss materials.
  • the base materials of the intermediate layer 51 and the insulating medium layer 52 are selected as plastic base materials, for example, epoxy resin and polytetrafluoroethylene.
  • the base materials of the intermediate layer 51 and the insulating dielectric layer 52 may also be made of other materials.
  • the dielectric constant of the intermediate layer 51 and the insulating dielectric layer 52 is 3-4.
  • the material of the first main patch 21, the second main patch 31, the first sub patch 22, the second sub patch 32, and the ground layer 4 may be a metal material with good conductivity, such as silver, Copper or gold.
  • the first main patch 21, the second main patch 31, the first sub patch 22, the second sub patch 32, and the ground layer 4 can be made of conductive silver paste material after screen printing and then sintering.
  • the antenna unit 1 further includes a radio frequency chip 61, and the radio frequency chip 61 has a first feeding end 62 and a second feeding end 63.
  • the printed circuit board 11 has an outer surface 111 and an inner surface 112 opposite to each other.
  • the first main patch 21 and the first sub patch 22 are provided on the outer surface 111 of the circuit board.
  • the radio frequency chip 61 may be provided on the inner surface 112 of the printed circuit board 11.
  • the first feeding end 62 and the second feeding end 63 are spaced apart on the side where the inner surface 112 of the printed circuit board 11 is located.
  • the first feeding terminal 62 is electrically connected to the first main patch 21 through a first conductive wire 64 to feed the first radio frequency signal generated by the radio frequency chip 61 into the first main patch 21.
  • the second feeding terminal 63 is electrically connected to the second main patch 31 through a second conductive wire 65 to feed the second radio frequency signal generated by the radio frequency chip 61 into the second main patch 31. It can be understood that there is a first through hole between the first main patch 21 and the radio frequency chip 61 (which is blocked by the first conductive wire 64 in FIG.
  • the first conductive wire 64 is electrically connected to the first main patch 21 ,
  • the first conductive wire 64 passes through the first through hole, and the other end is electrically connected to the first feeding end 62.
  • the radio frequency chip 61 When the radio frequency chip 61 generates the first excitation signal, the first excitation signal is fed into the first main patch 21 through the first feeding terminal 62 and the first conductive wire 64 to radiate the radio frequency of the first frequency band. signal.
  • there is a second through hole between the second main patch 31 and the radio frequency chip 61 hidden by the second conductive wire 65 in FIG.
  • the radio frequency chip 61 When the radio frequency chip 61 generates the second excitation signal, the second excitation signal is fed into the second main patch 31 through the second feeding terminal 63 and the second conductive wire 65 to radiate the radio frequency of the second frequency band. signal.
  • the first main patch 21 and the second main patch 31 are liberated.
  • the size of the first main patch 21 and the second main patch 31 only need to be matched with the first frequency band and the second frequency band respectively. In other words, a main patch with a larger area is divided into The two main patches with smaller areas reduce the areas of the first main patch 21 and the second main patch 31 to promote the miniaturization of the antenna unit 1.
  • the orthographic projection of the first main patch 21 on the plane where the second main patch 31 is located overlaps with the area where the second main patch 31 is located.
  • the orthographic projections of the first main patch 21 and the second main patch 31 in the Z-axis direction at least partially overlap, so as to reduce the planar area of the antenna unit 1, thereby reducing the planar size of the antenna module 10, and promoting the antenna model.
  • Group 10 is integrated on the side of the whole machine.
  • the orthographic projection of the first main patch 21 on the plane where the second main patch 31 is located is located in the area where the second main patch 31 is located, so as to further reduce the plane of the antenna unit 1
  • the area is maximized to promote the miniaturization of the antenna module 10.
  • the area of the first main patch 21 is smaller than the area of the second main patch 31, so that the first main patch 21 will not affect the signal radiation of the second main patch 31, so as to improve the signal radiation of the antenna module 10. effectiveness.
  • the first main patch 21 and the second main patch 31 can be arranged concentrically, that is, the orthographic projection of the geometric center of the first main patch 21 in the Z-axis direction and the second main patch 31
  • the geometric centers are coincident, so that the internal structure of the antenna unit 1 has symmetry, and the radiation effect of each polarization direction of the antenna unit 1 is uniform.
  • the second main patch 31 has a through hole.
  • the first conductive wire 64 passes through the through hole 66 of the second main patch 31.
  • the through hole 66 is a hole formed by the first through hole penetrating the second main patch 31. Since the first main patch 21 and the second main patch 31 overlap in the Z axis, the first conductive wire 64 penetrates the second main patch 31. It can be understood that the first conductive wire 64 is insulated from the second main patch 31.
  • the first main patch 21 and the second main patch 31 can be arranged in the same layer to reduce the mutual influence when the first main patch 21 and the second main patch 31 radiate signals.
  • the radiation efficiency of the antenna module 10 is improved.
  • the first main patch 21 and the first sub patch 22 can be stacked to increase the distance between the first main patch 21 and the first sub patch 22 in a limited plane space. It is convenient to adjust the first radio frequency signal radiated by the first main patch 21 and the first sub patch 22 according to the distance between the first main patch 21 and the first sub patch 22.
  • the second main patch 31 and the second sub patch 32 can be arranged in the same layer to reduce the number of insulating dielectric layers 52 in the printed circuit board 11, thereby reducing the thickness of the antenna unit 1. Promote the lightness and thinness of the antenna module 10.
  • the first main patch 21 and the second main patch 31 are square, and the first sub patch 22 and the second sub patch 32 are rectangular.
  • the first main patch 21 and the second main patch 31 are square, which facilitates the realization of the dual polarization of the first main patch 21 in the X-axis direction or the Y-axis direction.
  • the connection between the first conductive wire 64 and the first main patch 21 is a feeding point, and the feeding point is located on the diagonal of the first main patch 21.
  • the connection between the second conductive wire 65 and the second main patch 31 is a feeding point, and the feeding point is located on the diagonal of the second main patch 31.
  • the arrangement of the first main patch 21 and the first sub patch 22 includes but is not limited to the following embodiments.
  • the number of the first sub-tile 22 is one.
  • the first sub patch 22 and the first main patch 21 are arranged opposite to each other along the X-axis direction or the Y-axis direction, so that the first sub patch 22 and the first main patch 21 form a coupling, which widens the first sub patch 22 and the first main patch 21.
  • the bandwidth of a radio frequency signal and it occupies a small plane area.
  • the first main patch 21 has a first direction and a second direction that are perpendicular to each other.
  • the first direction is the X-axis direction
  • the second direction is the Y-axis direction.
  • the number of the first sub-patches 22 is two.
  • One of the two first sub-patches 22 and the first main patch 21 are arranged along a first direction.
  • the other of the two first sub-patches 22 and the first main patch 21 are arranged along the second direction.
  • one first sub patch 22 is coupled with the first main patch 21 in the X-axis direction
  • the other first sub patch 22 is coupled with the first main patch 21 in the Y-axis direction.
  • the number of the first sub-patches 22 is three.
  • the first first sub patch 22, the first main patch 21, and the second first sub patch 22 are sequentially arranged along the first direction, and the third first sub patch 22 And the first main patch 21 are arranged along the second direction.
  • the two first sub-patches 22 and the first main patch 21 are coupled in the X-axis direction, and the other first sub-patch 22 and the first main patch 21 are formed in the Y-axis direction. Coupling to further broaden the bandwidth of the first radio frequency signal.
  • the number of the first sub-patches 22 is four, and the first sub-pattern 22, the first main patch 21 and The second one of the first sub-patches 22 is sequentially arranged along the first direction, the third one of the first sub-patches 22, the first main patch 21, and the fourth of the first sub-patches 22 Aligned in the second direction.
  • the two first sub-patches 22 and the first main patch 21 are coupled in the X-axis direction, and the other two first sub-patches 22 and the first main patch 21 are in the Y-axis direction.
  • the coupling is formed to further broaden the bandwidth of the first radio frequency signal and realize dual polarization in the X-axis direction and the Y-axis direction.
  • one side of the first main patch 21 may be provided on two or more first sub patches 22 to further increase the number of parasitic patches and further adjust the bandwidth.
  • the first main patch 21 may also be circular, and the sub-patches may be arc-shaped; or, the first main patch 21 may also be triangular, circular, rectangular, rectangular, or ten-shaped. Shapes such as glyphs and cross-shaped rings.
  • the first main patch 21 may be provided with a slot 211 to extend the current path on the surface of the first main patch 21, thereby reducing the resonant frequency of the antenna and ensuring a certain gain and bandwidth.
  • the first main patch 21 can be miniaturized.
  • the shape of the slot 211 may be a U-shaped slot.
  • both ends of the first sub patch 22 may have branches that extend toward the direction where the first main patch 21 is located, so that the first sub patch 22 is roughly "[" to adjust the The impedance of the first sub-patch 22 is described so as to match the impedance of the first sub-patch 22 with the first radio frequency signal to improve the radiation efficiency of the first sub-patch 22 to the radio frequency signal of the first frequency band.
  • the shape of the second main patch 31 may refer to the shape of the first main patch 21
  • the shape of the second sub patch 32 may refer to the shape of the first sub patch 22
  • the second main patch 31 and the second main patch 31 may refer to the shape of the first main patch 21.
  • the arrangement of the two sub-patches 32 can refer to the arrangement of the first main patch 21 and the first sub-pattern 22, which will not be repeated here.
  • FIG. 4 The cross-sectional view of an antenna unit 1 provided by this embodiment is shown in FIG. 4, which includes the first 39GHz first main patch 21 of the first layer and the four 39GHz first sub-patches 22 of the same layer from top to bottom.
  • the 4 28GHz second sub-patches 32 on the second layer, the 28GHz second main patch 31 on the third layer, the ground layer 4 on the fourth layer, and the second conductive wire 65 is fed from the 28GHz dual-frequency radio frequency chip 61
  • the port is directly fed to the 28GHz main radiating patch antenna through the second through hole to generate the first resonant signal in the 28GHz frequency band, and the 28GHz second sub-patch 32 is coupled to produce the 28GHz second resonant signal, and the 28GHz second main
  • the size of the patch 31 and the second sub patch 32 and the distance between the two enable the first resonant signal and the second resonant signal to cover the n257, n258, and n261 frequency bands, that is, 24.25-29.5 GHz. That is, the
  • the first conductive wire 64 is fed from the 39GHz feeding port of the dual-frequency radio frequency chip 61 through the first through hole, through the through hole 66 on the 28GHz second main patch 31, and fed to the 39GHz first main patch 21 to generate the 39GHz frequency band Adjust the size of the four 39GHz first sub-patches 22 and the distance to the 39GHz first main patch 21 to optimize the impedance bandwidth of the 39GHz band so that the antenna covers the n260 band, that is, 37-40GHz, so the antenna unit 1 Covers n257, n258, n260 and n261 frequency bands.
  • This application proposes an antenna unit 1, based on a multi-layer PCB process, adopts the form of laminated parasitic patches for relatively low frequency bands, and adopts the form of same-layer parasitic patches for relatively high frequency bands, achieving 23.9-29.9 GHz and 36.7 ⁇ 40.7GHz dual band coverage.
  • the center frequency of the first excitation signal is 39 GHz.
  • the design of the spacing between the first main patch 21 and the first sub patch 22 the first sub patch
  • the size design of 22 and the design of the distance between the first sub-patch 22 and the ground layer 4 are designed to broaden the bandwidth of the antenna to obtain a radio frequency signal of 37-40 GHz.
  • the specific control implementation is as follows.
  • the materials of the intermediate layer 51 and the insulating dielectric layer 52 are determined to be plastic materials. Considering the performance of the intermediate layer 51 and the insulating medium layer 52 comprehensively, the relative dielectric constant of the intermediate layer 51 and the insulating medium layer 52 is determined to be 3-4. Further, it is determined that the relative permittivity ⁇ r of the intermediate layer 51 and the insulating dielectric layer 52 is 3.4. The distance between the first main patch 21 and the ground layer 4 is 0.4 mm.
  • the width w of the first main patch 21 can be calculated using formula (1):
  • c is the speed of light
  • f is the resonance frequency of the first main patch 21
  • ⁇ r is the relative permittivity of the medium between the first main patch 21 and the ground layer 4.
  • the length of the first main patch 21 is generally taken However, due to the edge effect, the electrical size of the microstrip antenna is larger than the actual size.
  • the actual length L of the first main patch 21 can be calculated using formulas (2) and (3):
  • is the guided wave wavelength in the medium
  • ⁇ 0 is the free space wavelength
  • ⁇ e is the effective dielectric constant
  • ⁇ L is the equivalent radiation gap width.
  • the effective dielectric constant ⁇ e can be calculated using formula (4):
  • h is the distance between the first main patch 21 and the ground layer 4; W is the width of the first main patch 21.
  • the effective dielectric constant ⁇ L can be calculated using formula (5):
  • the resonant frequency of the first main patch 21 can be calculated using formula (6):
  • the length and width of the first main patch 21 can be calculated according to formulas (1)-(6).
  • the length of the first main patch 21 is along the X-axis direction
  • the width of the first main patch 21 is along the Y-axis direction.
  • the distance between the first main patch 21 and the first sub patch 22, the distance between the first main patch 21 and the ground layer 4, and the length and width of the first sub patch 22 are preset.
  • the antenna is modeled and analyzed, the radiation boundary, boundary conditions and radiation port are set, and the return loss and frequency change curve obtained by frequency sweeping.
  • the bandwidth is further optimized.
  • the length L1 and width W1 of the first main patch 21 the distance S1 between the first main patch 21 and the first sub patch 22, the distance h1 between the first main patch 21 and the ground layer 4, the first The length L2 of a sub-patch 22 is further adjusted to optimize the change curve of return loss and frequency.
  • the bandwidth is 36.7 ⁇ 40.7GHz. Radio frequency signal.
  • the adjustment process of the length L2 of the first sub patch 22 can be obtained, the range of the length L1 and the width W1 of the first main patch 21, and the distance between the first main patch 21 and the first sub patch 22
  • the range of S1 the range of the distance h1 between the first main patch 21 and the ground layer 4, and the range of the length L2 of the first sub patch 22.
  • the plane where the first main patch 21 is located has a first direction and a second direction perpendicular to each other.
  • the first direction is the X-axis direction
  • the second direction is the Y-axis direction.
  • the length L1 of the first main patch 21 in the first direction and the length W1 of the first main patch 21 in the second direction are both less than or equal to 2 mm.
  • the length W1 of the first main patch 21 in the second direction is the width of the first main patch 21.
  • the length L1 of the first main patch 21 in the first direction and the length W1 of the first main patch 21 in the second direction are 1.6 mm to 2 mm, so that the first main patch 21 And the first sub-pattern 22 has a radio frequency signal with a bandwidth of 36.7-40.7 GHz.
  • the length L1 of the first main patch 21 in the first direction is equal to the length W1 of the first main patch 21 in the second direction, so that the The first main patch 21 can realize polarization in the X-axis direction and the Y-axis direction.
  • the length L1 of the first main patch 21 in the first direction is less than or equal to 0.8 mm.
  • the length L1 of the first main patch 21 may be greater than, equal to, or less than the length L2 of the second main patch 31.
  • the length L1 of the first main patch 21 in the first direction is equal to the length L2 of the first sub patch 22 in the first direction, so that the first The resonant frequency of a sub patch 22 is the same as or similar to the resonant frequency of the first main patch 21.
  • the length W2 of the first sub-patch 22 in the second direction is smaller than the length L2 of the first sub-patch 22 in the first direction.
  • the length W2 of the first sub patch 22 in the second direction is the width W2 of the first sub patch 22.
  • the length W2 of the first sub-patch 22 in the second direction ranges from 0.2 mm to 0.9 mm, so that the impedance of the first sub-patch 22 matches the frequency of the first radio frequency signal to improve The radiation efficiency of the first sub patch 22.
  • the distance S1 between the first main patch 21 and the first sub patch 22 is 0.2 mm to 0.8 mm. Because the radio frequency electromagnetic field is excited between the first main patch 21 and the ground layer 4, it radiates outward through the gap between the periphery of the first main patch 21 and the ground layer 4. Generally speaking, when the distance S1 between the first main patch 21 and the first sub patch 22 is too small or too large, effective coupling cannot be achieved; when the first main patch 21 and the first sub patch The spacing between 22 is 0.2mm-0.8mm, the coupling effect between the first main patch 21 and the first sub patch 22 is better, and the bandwidth adjustment is better.
  • the distance h1 between the first main patch 21 and the ground layer 4 is less than or equal to 0.9 mm.
  • the distance h2 between the second main patch 31 and the ground layer 4 is in the range of 0.3-0.6 mm.
  • the distance h2 between the second main patch 31 and the ground layer 4 is the thickness of the intermediate layer 51.
  • the distance h2 between the second main patch 31 and the ground layer 4 is in the range of 0.3-0.6 mm. According to the distance h2 between the second main patch 31 and the ground layer 4 and the distance between the first main patch 21 and the second main patch 31, it can be determined that the first main patch 21 and The spacing h1 between the ground layers 4 is less than or equal to 0.9 mm.
  • the distance between the first main patch 21 and the ground layer 4 can be adjusted appropriately.
  • the distance h1 between the first main patch 21 and the ground layer 4 is proportional to the frequency bandwidth.
  • increasing the distance between the first main patch 21 and the ground layer 4 means increasing the width of the gap around the first main patch 21, thereby increasing the radiation from the resonant cavity. Out of energy.
  • the distance between the first main patch 21 and the ground layer 4 will excite more surface wave modes. Although the surface wave loss will also reduce the Q value, it will also reduce the radiation in the required direction. And it will change the directional characteristics of the antenna.
  • the distance h1 between the first main patch 21 and the ground layer 4 can only be increased to a certain extent. In this embodiment, it is determined according to the bandwidth effect that the distance h1 between the first main patch 21 and the ground layer 4 is less than or equal to 0.9 mm.
  • the size of the first sub patch 22, the distance between the first main patch 21 and the first sub patch 22 to optimize the return loss and frequency change curve please refer to the optimized return in Figure 6
  • the change curve of wave loss and frequency, and then a radio frequency signal with a bandwidth of 36.7-40.7GHz is obtained.
  • the spacing design between the second main patch 31 and the second sub patch 32, the distance between the second main patch 31 and the ground layer 4, the size design of the second sub patch 32, and the second sub patch 32 and The distance between the ground layers 4 is designed to broaden the frequency bandwidth of the antenna to obtain a radio frequency signal of 23.9-29.9 GHz.
  • the specific control implementation manner is as follows. The formulas (1)-(6) can be directly applied to the second main patch 31, and will not be repeated here.
  • the relative permittivity ⁇ r of the intermediate layer 51 and the insulating dielectric layer 52 is 3.4.
  • the distance between the second main patch 31 and the ground layer 4 is 0.5 mm.
  • the length L3 and the width W3 of the second main patch 31 can be calculated according to formulas (1)-(6).
  • the horizontal distance S2 and the vertical distance h3 between the second main patch 31 and the second sub patch 32 are preset, the distance h2 between the second main patch 31 and the ground layer 4, and the length of the second sub patch 32 L4 and width W4.
  • the antenna is modeled and analyzed, the radiation boundary, boundary conditions and radiation port are set, and the return loss and frequency change curve obtained by frequency sweeping.
  • the bandwidth is further optimized.
  • the horizontal distance S2 and the vertical distance h3 between the second main patch 31 and the second sub patch 32, and the second main patch 31 and the ground layer 4 The distance h2 and the length L4 of the second sub-patch 32 are further adjusted to optimize the return loss and frequency change curve.
  • the optimized return loss and frequency change curve in Figure 6 is a radio frequency signal of 23.9 ⁇ 29.9GHz.
  • the adjustment method is the same as that of the first main patch 21, based on the above-mentioned length L3 and width W3 of the second main patch 31, the horizontal spacing S2 and the vertical spacing between the second main patch 31 and the second sub patch 32 h3.
  • the distance between the second main patch 31 and the ground layer 4 is h2, and the length L4 of the second sub patch 32 can be adjusted.
  • the length L3 range and width range of the second main patch 31 can be obtained.
  • the length L3 of the second main patch 31 in the first direction and the length W3 of the second main patch 31 in the second direction are both in the range of 2 to 2.8 mm, so that the first The frequency bandwidth of the second main patch 31 and the second sub patch 32 is a radio frequency signal of 23.9-29.9 GHz.
  • the length W3 of the second main patch 31 in the second direction is the width of the second main patch 31.
  • the greater the length L3 of the second main patch 31 is, the resonant frequency shifts to a low frequency.
  • the length L3 of the second main patch 31 in the first direction is equal to the length W3 of the second main patch 31 in the second direction, so that the The second main patch 31 can realize polarization in the X-axis direction and the Y-axis direction.
  • the length L3 of the second main patch 31 in the first direction The absolute value of the difference with the length L4 of the second sub patch 32 in the first direction is less than or equal to 0.8 mm.
  • the length L3 of the second main patch 31 may be greater than, equal to or less than the length L4 of the second sub patch 32.
  • the length L3 of the second main patch 31 in the first direction is equal to the length L4 of the second sub patch 32 in the first direction, so that the second sub patch 32
  • the resonant frequency of is the same as or close to the resonant frequency of the second main patch 31.
  • the second sub patch 32 is located between the second main patch 31 and the first main patch 21.
  • the distance S2 between the orthographic projection of the second sub patch 32 on the plane where the second main patch 31 is located and the second sub patch 32 is 0.2 mm to 0.8 mm. Because the radio frequency electromagnetic field is excited between the second main patch 31 and the ground layer 4, it radiates outward through the gap between the periphery of the second main patch 31 and the ground layer 4.
  • the distance h3 between the second sub patch 32 and the second main patch 31 is 0.05 to 0.6 mm, so that The adjustable range of the distance h3 between the second sub patch 32 and the second main patch 31 is relatively large, so that the adjustable space for realizing the bandwidth is relatively large.
  • the width of the antenna unit 1 can be less than 4 mm, and the length of the antenna unit 1 can be less than 5 mm, which realizes the miniaturization of the antenna unit 1 and facilitates the installation of the antenna unit 1 on the side frame of the mobile phone.
  • FIG. 12 shows the radiation efficiency of the antenna unit 1 in the first frequency band. It can be seen from FIG. 12 that the radiation efficiency of the antenna unit 1 at 37-40 GHz is greater than 90%, so the radiation efficiency of the antenna unit 1 provided in the embodiment of the present application at n260 (37-40 GHz) is greater than 90%.
  • FIG. 13 shows the radiation efficiency of the antenna unit 1 in the second frequency band. It can be seen from Figure 13 that the radiation efficiency of the antenna unit 1 at 24.25-29.9 GHz is greater than 85%, so the antenna unit 1 provided by the embodiment of the present application is at n257 (26.5-29.5 GHz), n258 (24.25-27.5 GHz), n261 (27.5-28.35GHz) radiation efficiency is greater than 85%.
  • Figures 14 to 16 are directional diagrams of the antenna unit 1 at 26 GHz, 28 GHz, and 39 GHz frequency points. It can be seen from FIG. 14 to FIG. 16 that the radiation pattern of the antenna unit 1 in the first frequency band and the second frequency band are in good agreement. Moreover, it can be seen from FIG. 14 and FIG. 15 that the gain of the antenna unit 1 at the 26 GHz frequency point is 6.01 dB, and the gain of the antenna unit 1 at the 28 GHz frequency point is 5.65 dB. Therefore, the antenna unit 1 provided in the embodiment of the present application has a higher gain in the first frequency band. It can be seen from FIG. 16 that the gain of the antenna unit 1 at the frequency of 39 GHz is 5.27 dB. Therefore, the antenna unit 1 provided by the embodiment of the present application has a higher gain in the second frequency band.
  • the embodiment of the application does not increase the volume and cross-sectional thickness of the antenna unit 1, by adjusting the size of the main patch, the distance between the main patch and the sub-pattern, the distance between the patch and the ground layer 4, etc.
  • the parameters are adjusted so that the resonant frequency, bandwidth, and impedance of the antenna unit 1 meet the index requirements, and an antenna module 10 with high efficiency, large gain, and good directivity is also formed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请提供的一种天线模组及电子设备,包括阵列排布的多个天线单元,天线单元包括:第一主贴片、至少一个第一子贴片、第二主贴片及至少一个第二子贴片,第一子贴片与第一主贴片在同一平面上间隔设置;第一主贴片用于产生第一射频信号,第一射频信号耦合至第一子贴片,以使第一主贴片和第一子贴片共同辐射第一频段的射频信号;第二主贴片与第一主贴片位于不同的平面,第二子贴片与第一主贴片位于同一平面或不同的平面;第二主贴片用于产生第二射频信号,第二射频信号耦合至所述第二子贴片,以使第二主贴片和第二子贴片共同辐射第二频段的射频信号;第二频段与第一频段不同。本申请提供一种可覆盖双频且频宽较大的天线模组及电子设备。

Description

天线模组及电子设备 技术领域
本申请涉及电子技术领域,具体涉及一种天线模组及电子设备。
背景技术
随着移动通信技术的发展,人们对于数据传输速率、天线信号频宽的要求越来越高,如何将提高电子设备的天线模组所覆盖的频率宽度,提高数据传输速率,成为需要解决的问题。
发明内容
本申请提供一种提高电子设备的天线模组所覆盖的频率宽度,提高数据传输速率的天线模组及电子设备。
第一方面,本申请提供的一种天线模组,第一主贴片和至少一个第一子贴片,所述第一子贴片与所述第一主贴片在同一平面上间隔设置;所述第一主贴片用于产生第一射频信号,所述第一主贴片的第一射频信号耦合至所述第一子贴片,以使所述第一主贴片和所述第一子贴片共同辐射第一频段的射频信号;
第二主贴片及与所述第二主贴片位于不同的平面上的至少一个第二子贴片,所述第二主贴片与所述第一主贴片位于不同的平面,所述第二子贴片与所述第一主贴片位于同一平面或不同的平面;所述第二主贴片用于产生第二射频信号,所述第二主贴片的第二射频信号耦合至所述第二子贴片,以使所述第二主贴片和所述第二子贴片共同辐射第二频段的射频信号;所述第二频段与所述第一频段不同。
第二方面,本申请提供的一种电子设备,包括所述的天线模组。
通过设置第一主贴片和第一子贴片辐射第一频段的射频信号,第二主贴片和第二子贴片辐射第二频段的射频信号,以实现天线单元辐射双频段的射频信号;通过设计第一主贴片和第一子贴片覆盖n260频带,及设计第二主贴片和第二子贴片覆盖n257、n258、n261频带,以使天线单元能够覆盖n257、n258、n260、n261频带,实现了天线模组能够覆盖3GPP Release 15版本规范的5G通信系统中的两个毫米波频段。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种电子设备的结构示意图;
图2是本申请实施例提供的一种天线模组的俯视图;
图3是本申请实施例提供的一种天线单元的俯视图;
图4是图3中沿A-A线的截面图;
图5是本申请实施例提供的第一种第一主贴片和第一子贴片的俯视图;
图6是本申请实施例提供的一种天线单元在第一频段和第二频段的回波损耗曲线图。
图7是本申请实施例提供的一种第二主贴片和第二子贴片的俯视图;
图8是本申请实施例提供的第二种第一主贴片和第一子贴片的俯视图;
图9是本申请实施例提供的第三种第一主贴片和第一子贴片的俯视图;
图10是本申请实施例提供的第四种第一主贴片和第一子贴片的俯视图;
图11是本申请实施例提供的第五种第一主贴片和第一子贴片的俯视图;
图12是本申请实施例提供的一种天线单元在第一频段的辐射效率曲线图;
图13是本申请实施例提供的一种天线单元在第二频段的辐射效率曲线图;
图14是本申请实施例提供的一种天线单元在26GHz频点的方向图;
图15是本申请实施例提供的一种天线单元在28GHz频点的方向图;
图16是本申请实施例提供的一种天线单元在39GHz频点的方向图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。本申请所列举的实施例之间可以适当的相互结合。
请参照图1,图1为本申请实施例提供的一种电子设备的结构示意图。所述电子设备100可以为电话、电视、平板电脑、手机、照相机、个人计算机、笔记本电脑、车载设备、可穿戴设备、基站等具有天线模组10的设备。
请参照图1,本申请实施例以电子设备100为手机为例进行说明,电子设备100包括天线模组10、壳体20、显示屏30、电池、主板等其他的电子器件。天线模组10可以设于壳体20、显示屏30或主板上。本申请对于天线模组10的具体位置不做限定。本申请不对电子器件进行一一举例说明,但是本申请所保护的电子设备包括现有技术中手机所具备的所有电子器件。
请参照图2,图2为本申请实施例提供了一种天线模组10。天线模组10可以是用于辐射频段为毫米波频段、亚毫米波频段、太赫兹频段中的至少一种的天线阵列。本实施例以天线模组102为辐射毫米波频段的射频信号的天线为例进行说明。其中,毫米波频段的频率范围是24.25GHz~52.6GHz。3GPP Release 15版本规范了目前5G毫米波频段如下:n257(26.5~29.5GHz),n258(24.25~27.5GHz),n261(27.5~28.35GHz)和n260(37~40GHz)。为了便于描述,天线模组10的宽度方向定义为X向,天线模组10的长度方向定义为Y向,天线模组10的厚度方向定义为Z向。
本申请实施例提供的天线模组10为微带贴片天线。一般而言,微带贴片天线的频带宽度较窄,频率覆盖范围较小。对于毫米波信号而言,毫米波信号的频带宽度较大,传统的贴片天线无法满足毫米波双频段且宽频带的覆盖。本申请通过对传统的微带贴片天线进行 结构改进和设计,实现了双频天线,且天线带宽覆盖3GPP规范的毫米波n257、n258、n260、n261频段,还能够在双频范围内具有较高的天线增益。
请参阅图2,天线模组10包括阵列排布的多个天线单元1。例如,天线单元1-1到天线单元1-10。多个天线单元1可以呈M*N的阵列排布。其中,M、N为正整数。通过改变馈入每个天线单元1的信号的相位,来实现每个天线单元1的主瓣辐射方向一致,进而实现对多个天线单元1进行波束赋形和波束扫描,增加天线模组10的增益。本申请对于多个天线单元1的排布方式并不做限定。
通过以下的实施例对于一个天线单元1的具体结构进行具体的说明。
请参阅图3,所述天线单元1包括第一主贴片21、至少一个第一子贴片22、(图3中有四个第一子贴片22-1~22-4)第二主贴片31及至少一个第二子贴片32(图3中有四个第二子贴片32-1~32-4)。第一主贴片21、第一子贴片22、第二主贴片31与第二子贴片32皆为导电贴片。
请一并参阅图4及图5,所述第一子贴片22与所述第一主贴片21在同一平面上间隔设置。具体的,第一主贴片21与第二主贴片31位于同一个X-Y平面。所述第一主贴片21用于在第一激励信号的激励下产生第一射频信号。具体的,所述第一主贴片21可以通过馈电端口直接耦合接收第一激励信号,也可以由馈电贴片电容耦合接收第一激励信号。所述第一激励信号可以为高频的交变电流信号或射频信号。射频信号为经过调制的,拥有一定发射频率的电磁波。
所述第一子贴片22与所述第一主贴片21之间能够形成电容耦合。所述第一主贴片21辐射的第一射频信号耦合至所述第一子贴片22。所述第一子贴片22在所述第一射频信号的激发下产生电磁响应,以使所述第一主贴片21和所述第一子贴片22共同辐射第一频段的射频信号。可以理解的,第一主贴片21与第一子贴片22的区别在于,来自馈电端口的激励信号直接激励第一主贴片21,来自馈电端口的激励信号通过第一主贴片21激励第一子贴片22。
举例而言,第一激励信号可以是中心频率为39GHz的激励信号。第一主贴片21在所述第一激励信号下形成电磁场,产生第一射频信号。第一射频信号激励所述第一子贴片22,以使第一子贴片22发生电磁响应,进而使得第一子贴片22和第一主贴片21辐射第一频段的射频信号。请参阅图6,所述第一频段的射频信号的中心频率可以为图6中的f1,f1的频率为38.2GHz。定义回波损耗小于-8dB的频率宽度为该天线单元1的带宽。所述第一频段为图6中a与b之间的频率区间36.7~40.7GHz。第一频段覆盖3GPP规范的毫米波n260(37~40GHz)频带,所以天线单元1可以覆盖3GPP规范的毫米波n260频带。
通过在第一主贴片21的周侧设置至少一个寄生贴片(第一子贴片22为第一主贴片21的寄生贴片),第一主贴片21与所述第一子贴片22之间相互耦合,以使39GHz的激励信号产生36.7~40.7GHz的射频信号,极大地扩宽了天线单元1的频率宽度,使天线单元1可以覆盖3GPP规范的毫米波n260频带。
请一并参阅图4及图7,所述第二主贴片31与所述第一主贴片21分别位于不同的平 面上。第二子贴片32与所述第二主贴片32位于不同的平面上。所述第二子贴片32与所述第一主贴片21位于同一平面或不同的平面。具体的,第二主贴片31与第一主贴片21分别位于相平行的X-Y平面,以便于第一主贴片21与第二主贴片31在Z轴方向能够叠加设置,进而减小天线单元1在X-Y平面上的平面面积,促进天线单元1的小型化。所述第二主贴片31用于在第二激励信号的激励下产生第二射频信号。具体的,所述第二主贴片31可以通过馈电端口直接耦合接收第二激励信号,也可以由馈电贴片电容耦合接收第二激励信号。第二激励信号的频率与第一激励信号的频率不同。例如,第一激励信号的中心频率为39GHz,第二激励信号的中心频率为28GHz。
所述第二子贴片32与所述第二主贴片31之间能够形成电容耦合。所述第二主贴片31的第二射频信号耦合至所述第二子贴片32,以使所述第二子贴片32产生电磁响应,进而使得所述第二主贴片31和所述第二子贴片32共同辐射第二频段的射频信号。所述第二频段与所述第一频段不同。可以理解的,第二主贴片31与第二子贴片32的区别在于,来自馈电端口的第二激励信号直接馈入第二主贴片31,而来自馈电端口的第二激励信号通过第二主贴片31馈入第二子贴片32。换言之,来自馈电端口的第二激励信号间接馈入第二子贴片32。
举例而言,第二激励信号可以是中心频率为28GHz的激励信号。所述激励信号可以为交变电流信号或射频信号等。射频信号为经过调制的,拥有一定发射频率的电磁波。第二主贴片31在所述第二激励信号下形成电磁场,产生第二射频信号。第二射频信号激励所述第二子贴片32,以使第二子贴片32在第二射频信号下发生电磁响应,进而使得第二子贴片32和第二主贴片31共同辐射第二频段的射频信号。
请参阅图6,第二频段的射频信号可以具有两个谐振。这两个谐振的中心频率分别为25.2GHz和29.4GHz。
在一实施方式中,第二主贴片31产生的谐振的中心频率可以为图6中的f2,f2约为25.2GHz。第二子贴片32产生的谐振的中心频率为图6中的f3,f3约为29.4GHz。定义回波损耗小于-8dB的频率宽度为该天线单元1的带宽。第二频段的带宽为c与d之间的频率范围,约为23.9~29.9GHz。所以,所述第二频段覆盖n257,n258,n261频带(24.25~29.5GHz)。
当然,在另一实施方式中,可以通过调节第二主贴片31和第二子贴片32的尺寸,可以使得第二主贴片31受激励后产生的谐振的中心频率为图6中的f3,f3约为29.4GHz,第二子贴片32受激励后产生的谐振的中心频率为图6中的f2,f2约为25.2GHz。第二频段的带宽为23.9~29.9GHz。所以,所述第二频段覆盖n257,n258,n261频带(24.25~29.5GHz)。
通过在第二主贴片31的周侧设置至少一个寄生贴片(第二子贴片32为第二主贴片31的寄生贴片),第二主贴片31与所述第二子贴片32之间相互耦合,以使28GHz的激励信号产生23.9~29.9GHz的射频信号,极大地扩宽了射频信号的频率宽度,使天线单元1可以覆盖3GPP规范的毫米波n257、n258、n261频带(24.25~29.5GHz)。
通过设置第一主贴片21和第一子贴片22辐射第一频段的射频信号,第二主贴片31和 第二子贴片32辐射第二频段的射频信号,以实现天线单元1辐射双频段的射频信号;通过设计第一主贴片21和第一子贴片22覆盖n260频带,及设计第二主贴片31和第二子贴片32覆盖n257、n258、n261频带,以使天线单元1能够覆盖n257、n258、n260、n261频带,进而天线模组10能够覆盖3GPP Release 15版本规范的中国的5G通信系统中的两个毫米波频段。
当采用一个贴片组辐射第一频段和第二频段的射频信号时,设计主贴片的尺寸的过程,要考虑主贴片的阻抗要与第一频段和第二频段的射频信号相匹配,需要满足馈电点到主贴片的一侧边的距离与第一频段的射频信号相匹配,馈电点到主贴片的另一侧边的距离与第二频段的射频信号相匹配,进而使得主贴片的尺寸过大,不利于天线模组10的小型化。而且,由于手机内的空间限制或天线模组10的结构限制,天线模组10需要设置在手机的侧边框上,而随着手机的小型化,手机侧边框的尺寸极小,这就要求天线模组10必须小型化设计。
本申请提供的天线模组10,通过将两个频段的射频信号分别由两个贴片组辐射,这样可以解放主贴片的尺寸,以使主贴片的尺寸只需与一个频段相匹配,极大地减小了主贴片的尺寸,换而言之,将一个面积较大的主贴片分成了两个面积较小的主贴片。进一步地,将两个面积相对较小的主贴片叠层设置,以减小天线单元1的平面面积,进而使得天线模组10能够安装于手机的侧边框上,便于天线单元1集成于电子设备的整机侧边。
以实施方式为例对于天线单元1的具体结构进行进一步的补充说明,当然,本申请中天线单元1的具体结构包括但不限于以下的实施方式。
请参阅图4,天线单元1包括印刷电路板11(Printed Circuit Board,PCB)。第一主贴片21、第二主贴片31、第一子贴片22、第二子贴片32及接地层4设于印刷电路板11内。天线单元1可以由高密度互连(High Density Interconnector)工艺或集成电路(Integrated Circuit,IC)载板工艺加工实现。印刷电路板11包括中间层51,设于所述中间层51的上下两侧的多层绝缘介质层52。本实施例中,以中间层51上下两侧皆设有三层绝缘介质层52为例进行说明。中间层51的材质可以为塑料材质。中间层51具有相背设置的第一表面511和第二表面512。第二主贴片31设于所述第一表面511。接地层4设于第二表面512。第一主贴片21与第二主贴片31设于中间层51的同一侧,但第一主贴片21与接地层4之间的间距大于所述第二主贴片31与所述接地层4之间的间距。在一实施方式中,第一主贴片21设于印刷电路板11的外表面,以使第一主贴片21所辐射的射频信号不受阻挡,进而增加第一主贴片21的辐射效率。第一子贴片22与第一主贴片21设于印刷电路板11的外表面,以使第一子贴片22与第一主贴片21同层设置。第二子贴片32设于第一主贴片21所在层与第二主贴片31所在层之间,以使第二子贴片32与第二主贴片31叠层设置。可以理解的,相邻的绝缘介质层52之间可以设有金属层。可以理解的,天线单元1还包括电源芯片7及接口等结构,在此不再赘述。
通过将第一主贴片21、第二主贴片31、第一子贴片22、第二子贴片32设于印刷电路板11上,以便于将天线模组10粘贴于其他物件的表面,易于和射频前端系统集成。
中间层51和绝缘介质层52皆为不导电材质。其中,中间层51和绝缘介质层52可以为相同的材质或不同的材质。中间层51和绝缘介质层52为毫米波高频低损耗材料。为了确保印刷电路板11的结构强度,选取中间层51和绝缘介质层52的基材为塑料基材,例如,环氧树脂、聚四氟乙烯。当然,中间层51和绝缘介质层52的基材还可以为其他材质。本实施例中,中间层51和绝缘介质层52的介电常数为3~4。
请参阅图4,第一主贴片21、第二主贴片31、第一子贴片22、第二子贴片32及接地层4的材质可以为导电性能好的金属材质,例如银、铜或金。第一主贴片21、第二主贴片31、第一子贴片22、第二子贴片32及接地层4可以由导电银浆材料丝网印刷之后烧结而成。
以下实施方式对于印刷电路板11内的第一主贴片21、第二主贴片31、第一子贴片22、第二子贴片32及接地层4的位置和第一主贴片21、第二主贴片31的导电线等结构进行进一步的说明。
请参阅图4,所述天线单元1还包括射频芯片61,所述射频芯片61具有第一馈电端62和第二馈电端63。印刷电路板11具有相背设置的外表面111和内表面112。第一主贴片21和第一子贴片22设于电路板的外表面111。所述射频芯片61可以设于印刷电路板11的内表面112。
请参阅图4,第一馈电端62和第二馈电端63相间隔地设于印刷电路板11的内表面112所在侧。所述第一馈电端62通过第一导电线64电连接所述第一主贴片21,以将射频芯片61产生的第一射频信号馈入所述第一主贴片21。所述第二馈电端63通过第二导电线65电连接所述第二主贴片31,以将射频芯片61产生的第二射频信号馈入所述第二主贴片31。可以理解的,第一主贴片21与射频芯片61之间具有第一通孔(在图4中被第一导电线64遮挡),第一导电线64的一端电连接第一主贴片21,第一导电线64穿过第一通孔,另一端电连接第一馈电端62。当射频芯片61产生第一激励信号时,所述第一激励信号经过所述第一馈电端62、第一导电线64馈入所述第一主贴片21,以辐射第一频段的射频信号。相应地,第二主贴片31与射频芯片61之间具有第二通孔(在图4中被第二导电线65遮挡),第二导电线65的一端电连接第二主贴片31,第二导电线65穿过第二通孔,另一端电连接第二馈电端63。当射频芯片61产生第二激励信号时,所述第二激励信号经过所述第二馈电端63、第二导电线65馈入所述第二主贴片31,以辐射第二频段的射频信号。
通过将第一激励信号和第二激励信号分别以不同的馈入通道馈入第一主贴片21和第二主贴片31,以使解放第一主贴片21和第二主贴片31的尺寸,以使第一主贴片21和第二主贴片31的尺寸只需分别与第一频段和第二频段相匹配,换而言之,将一个面积较大的主贴片分成了两个面积较小的主贴片,减小了第一主贴片21和第二主贴片31的面积,以促进天线单元1的小型化。
请参阅图3,所述第一主贴片21在所述第二主贴片31所在平面的正投影与所述第二主贴片31所在的区域重叠。换言之,第一主贴片21与第二主贴片31在Z轴方向的正投影至少部分重合,以减小天线单元1的平面面积,进而减小天线模组10的平面尺寸,促进天 线模组10集成于整机侧边。
请参阅图3,所述第一主贴片21在所述第二主贴片31所在平面的正投影位于所述第二主贴片31所在区域内,以进一步地减小天线单元1的平面面积,最大化地促进天线模组10的小型化。换言之,第一主贴片21的面积小于第二主贴片31的面积,以使第一主贴片21不会影响第二主贴片31的信号辐射,以提高天线模组10的信号辐射效率。
进一步地,请参阅图3,第一主贴片21与第二主贴片31可以同心设置,即第一主贴片21的几何中心在Z轴方向的正投影与第二主贴片31的几何中心重合,以使天线单元1的内部结构具有对称性,进而天线单元1各个极化方向的辐射效果均匀。
进一步地,请参阅图4及图7,第二主贴片31具有通孔。所述第一导电线64穿过所述第二主贴片31的通孔66。所述通孔66为第一通孔贯穿第二主贴片31形成的孔。由于第一主贴片21与第二主贴片31在Z轴相重叠,所以,第一导电线64贯穿所述第二主贴片31。可以理解的,第一导电线64与所述第二主贴片31相绝缘。
在一实施方式中,所述第一主贴片21与所述第二主贴片31可以同一层设置,以减少第一主贴片21与第二主贴片31辐射信号时的相互影响,提高天线模组10的辐射效率。
在另一实施方式中,第一主贴片21与第一子贴片22可以叠设设置,以在有限的平面空间内增加第一主贴片21与第一子贴片22之间的间距,便于根据第一主贴片21与第一子贴片22之间的间距调节第一主贴片21与第一子贴片22辐射的第一射频信号。
在再一实施方式中,第二主贴片31与第二子贴片32可以同层设置,以减小印刷电路板11中绝缘介质层52的层数,进而减小天线单元1的厚度,促进天线模组10的轻薄化。
本实施方式中,第一主贴片21和第二主贴片31为正方形,第一子贴片22和第二子贴片32为矩形。第一主贴片21和第二主贴片31为正方形,利于实现第一主贴片21沿X轴方向或Y轴方向的双极化。可以理解的,第一导电线64与第一主贴片21的连接处为馈电点,该馈电点位于第一主贴片21的对角线上。相类似地,第二导电线65与第二主贴片31的连接处为馈电点,该馈电点位于第二主贴片31的对角线上。
进一步地,第一主贴片21与第一子贴片22的排列方式包括但不限于以下的实施方式。
在第一种可能的实施方式中,请参阅图8,所述第一子贴片22的数量为一个。所述第一子贴片22与第一主贴片21沿X轴方向或Y轴方向相对设置,以使第一子贴片22与所述第一主贴片21之间形成耦合,拓宽第一射频信号的频宽,而且占据较小的平面面积。
在第二种可能的实施方式中,请参阅图9,所述第一主贴片21具有相互垂直的第一方向和第二方向。其中,第一方向为X轴方向,第二方向为Y轴方向。所述第一子贴片22的数量为两个。两个所述第一子贴片22中的一者与所述第一主贴片21沿第一方向排列。两个所述第一子贴片22中的另一者与所述第一主贴片21沿第二方向排列。如此,以使一个第一子贴片22与所述第一主贴片21在X轴方向形成耦合,另一个第一子贴片22与所述第一主贴片21在Y轴方向形成耦合,以拓宽第一射频信号的频宽,且实现在X轴方向和Y轴方向的双极化。
在第三种可能的实施方式中,请参阅图10,所述第一子贴片22的数量为三个。第一 个所述第一子贴片22、所述第一主贴片21及第二个所述第一子贴片22依次沿第一方向排列,第三个所述第一子贴片22与所述第一主贴片21沿第二方向排列。如此,以使两个第一子贴片22与所述第一主贴片21在X轴方向形成耦合,另一个第一子贴片22与所述第一主贴片21在Y轴方向形成耦合,以进一步拓宽第一射频信号的频宽。
在第四种可能的实施方式中,请参阅图5,所述第一子贴片22的数量为四个,第一个所述第一子贴片22、所述第一主贴片21及第二个所述第一子贴片22依次沿第一方向排列,第三个所述第一子贴片22、所述第一主贴片21及第四个所述第一子贴片22沿第二方向排列。如此,以使两个第一子贴片22与所述第一主贴片21在X轴方向形成耦合,另两个第一子贴片22与所述第一主贴片21在Y轴方向形成耦合,以进一步拓宽第一射频信号的频宽,且实现在X轴方向和Y轴方向的双极化。
当然,在其他实施方式中,第一主贴片21的一侧边可以设于两个或两个以上第一子贴片22,以进一步增加寄生贴片的数量,进一步调节频宽。
在其他实施方式中,第一主贴片21还可以呈圆形,子贴片可以呈圆弧形;或者,第一主贴片21还可以呈三角形、圆环形、矩形、矩形环、十字形、十字形环等形状。
进一步地,请参阅图11,第一主贴片21上可以设有开槽211,以延长第一主贴片21表面的电流路径,从而降低天线的谐振频率,还能够保证一定的增益和带宽,及使得第一主贴片21可以小型化。举例而言,所述开槽211的形状可以为U形槽。
进一步地,第一子贴片22的两端可以具有分支,所述分支朝向第一主贴片21所在的方向延伸,以使所述第一子贴片22大致呈“〔”,以调节所述第一子贴片22的阻抗,以使第一子贴片22的阻抗与第一射频信号相匹配,提高第一子贴片22对第一频段的射频信号的辐射效率。
可以理解的,第二主贴片31的形状可以参考第一主贴片21的形状,第二子贴片32的形状可以参考第一子贴片22的形状,第二主贴片31与第二子贴片32的排布方式可以参考第一主贴片21与第一子贴片22的排布方式,在此不再赘述。
本实施例提供的一种天线单元1的截面图如图4所示,从上往下分别包括第一层的39GHz第一主贴片21,同层的4个39GHz第一子贴片22,第二层的4个28GHz的第二子贴片32,第三层的28GHz第二主贴片31,第四层的接地层4,第二导电线65从双频射频芯片61的28GHz馈电端口经过第二通孔,直接馈入到28GHz主辐射贴片天线上,产生28GHz频段的第一谐振信号,通过28GHz的第二子贴片32耦合产生28GHz第二谐振信号,调节28GHz第二主贴片31和第二子贴片32的尺寸,以及两者之间的间距,使得第一谐振信号和第二谐振信号覆盖n257,n258,n261频带,即24.25~29.5GHz。即满足n257,n258,n261频带。
第一导电线64从双频射频芯片61的39GHz馈电端口经过第一通孔穿过28GHz第二主贴片31上的通孔66,馈入到39GHz第一主贴片21,产生39GHz频段的谐振信号,调节4个39GHz第一子贴片22的尺寸以及到39GHz第一主贴片21的间距,优化39GHz频段的阻抗带宽,使得天线覆盖n260频带,即37~40GHz,因此天线单元1覆盖n257,n258, n260和n261频带。
本申请提出了一种天线单元1,基于多层PCB工艺,对相对较低的频段采用叠层寄生贴片的形式,对相对较高的频段采用同层寄生贴片的形式,实现23.9~29.9GHz和36.7~40.7GHz双频段覆盖。
本申请中,第一激励信号的中心频率为39GHz,通过对第一主贴片21的尺寸设计、第一主贴片21与第一子贴片22之间的间距设计、第一子贴片22的尺寸设计及第一子贴片22与接地层4之间的距离设计,以扩宽天线的频宽,得到37~40GHz的射频信号,具体的调控实施方式如下。
为了确保天线单元1的结构强度,确定中间层51和绝缘介质层52的材质为塑料材质。综合考虑中间层51和绝缘介质层52的性能,确定中间层51和绝缘介质层52的相对介电常数为3~4。进一步地,确定中间层51和绝缘介质层52的相对介电常数ε r为3.4。第一主贴片21与接地层4之间的间距为0.4mm。
可以用公式(1)计算第一主贴片21的宽度w:
Figure PCTCN2020122211-appb-000001
其中,c为光速,f为第一主贴片21的谐振频率,ε r是第一主贴片21与接地层4之间的介质的相对介电常数。
第一主贴片21的长度一般取
Figure PCTCN2020122211-appb-000002
但是由于边缘效应,微带天线的电尺寸要比实际尺寸大。可以用公式(2)和(3)计算第一主贴片21的实际长度L:
Figure PCTCN2020122211-appb-000003
Figure PCTCN2020122211-appb-000004
其中,λ是介质内的导波波长;λ 0为自由空间波长;ε e是有效介电常数,ΔL是等效辐射缝隙宽度。
可以用公式(4)计算有效介电常数ε e
Figure PCTCN2020122211-appb-000005
其中,h是第一主贴片21与接地层4之间的间距;W是第一主贴片21的宽度。
可以用公式(5)计算有效介电常数ΔL:
Figure PCTCN2020122211-appb-000006
可以用公式(6)计算第一主贴片21的谐振频率:
Figure PCTCN2020122211-appb-000007
根据要设计的第一主贴片21的谐振频率为39GHz,根据公式(1)-(6)可以计算第一主贴片21的长度及宽度。其中,第一主贴片21的长度沿X轴方向,第一主贴片21的宽度沿Y轴方向。预设第一主贴片21与第一子贴片22之间的间距、第一主贴片21与接地层4之间的间距、第一子贴片22的长度和宽度。根据上述的参数对天线进行建模分析,设置好辐射边界、边界条件及辐射端口,扫频得到的回波损耗与频率的变化曲线。
根据上述的回波损耗与频率的变化曲线,进一步优化频宽。对第一主贴片21的长度L1及宽度W1、第一主贴片21与第一子贴片22之间的间距S1、第一主贴片21与接地层4之间的间距h1、第一子贴片22的长度L2进行进一步地调节,以优化回波损耗与频率的变化曲线,请参阅图6中优化后的回波损耗与频率的变化曲线,进而得到频宽为36.7~40.7GHz的射频信号。
基于上述对第一主贴片21的长度L1及宽度W1、第一主贴片21与第一子贴片22之间的间距S1、第一主贴片21与接地层4之间的间距h1、第一子贴片22的长度L2的调节过程可以得到,第一主贴片21的长度L1的范围及宽度W1的范围、第一主贴片21与第一子贴片22之间的间距S1的范围、第一主贴片21与接地层4之间的间距h1的范围及第一子贴片22的长度L2的范围。
请参阅图5,所述第一主贴片21所在平面具有相互垂直的第一方向和第二方向。其中,所述第一方向为X轴方向,所述第二方向为Y轴方向。所述第一主贴片21在第一方向上的长度L1和所述第一主贴片21在第二方向上的长度W1皆小于或等于2mm。第一主贴片21在第二方向上的长度W1是第一主贴片21的宽度。进一步地,所述第一主贴片21在第一方向上的长度L1和所述第一主贴片21在第二方向上的长度W1为1.6mm~2mm,以使第一主贴片21和第一子贴片22的频宽为36.7~40.7GHz的射频信号。一般而言,第一主贴片21的长度L1越大,谐振频率向低频偏移。
进一步地,请参阅图5,所述第一主贴片21在所述第一方向上的长度L1等于所述第一主贴片21在所述第二方向上的长度W1,以使所述第一主贴片21能够实现X轴方向和Y轴方向的极化。
请参阅图5,当所述第一主贴片21与所述第一子贴片22沿所述第二方向排列时,所述第一主贴片21在所述第一方向上的长度L1与所述第一子贴片22在所述第一方向上的长度L2之差的绝对值小于或等于0.8mm。具体的,第一主贴片21的长度L1可以大于、等于或小于第二主贴片31的长度L2。
进一步地,请参阅图5,所述第一主贴片21在所述第一方向上的长度L1与所述第一子贴片22在所述第一方向上的长度L2相等,以使第一子贴片22的谐振频率与第一主贴片21的谐振频率相同或相近。
请参阅图5,所述第一子贴片22在所述第二方向上的长度W2小于所述第一子贴片22在所述第一方向上的长度L2。第一子贴片22在所述第二方向上的长度W2即为第一子贴片22的宽度W2。所述第一子贴片22在所述第二方向上的长度W2范围为0.2~0.9mm,以使所述第一子贴片22的阻抗与所述第一射频信号的频率相匹配,提高第一子贴片22的辐射效率。一般而言,第一子贴片22的宽度W2愈窄,第一子贴片22的阻抗愈高。
请参阅图5,第一主贴片21与第一子贴片22之间的间距S1为0.2mm~0.8mm。由于在第一主贴片21与接地层4之间激励起射频电磁场,并通过第一主贴片21四周与接地层4之间的缝隙向外辐射。一般而言,当第一主贴片21与第一子贴片22之间的间距S1过小或过大时,皆不能实现有效的耦合;当第一主贴片21与第一子贴片22之间的间距为0.2mm~0.8mm,第一主贴片21与第一子贴片22之间的耦合效果较好,频宽调节较好。
请参阅图4,所述第一主贴片21与所述接地层4之间的间距h1小于或等于0.9mm。所述第二主贴片31与所述接地层4之间的间距h2位于0.3~0.6mm范围内。
具体的,所述第二主贴片31与所述接地层4之间的间距h2为中间层51的厚度,当中间层51的厚度过小时,易在印刷电路板11成型时造成起翘。当中间层51的厚度过大时,易造成印刷电路板11的厚度过大。所以,确定所述第二主贴片31与所述接地层4之间的间距h2位于0.3~0.6mm范围内。根据所述第二主贴片31与所述接地层4之间的间距h2及第一主贴片21与第二主贴片31之间的距离,可以确定所述第一主贴片21与所述接地层4之间的间距h1小于或等于0.9mm。
为了得到需要的频带宽度,可适当调节所述第一主贴片21与所述接地层4之间的间距。一般而言,所述第一主贴片21与所述接地层4之间的间距h1跟频带宽度成正比。但从物理意义上说,增大所述第一主贴片21与所述接地层4之间的间距,即增大第一主贴片21四周缝隙的宽度,从而增加了从谐振腔中辐射出的能量。但是所述第一主贴片21与所述接地层4之间的间距会激励起更多的表面波模式,虽然表面波损耗也会降低Q值,但同时也降低了需要方向上的辐射,并且会改变天线的方向特性,因此所述第一主贴片21与所述接地层4之间的间距h1的增加只能在一定程度上进行。本实施例中根据频宽效果确定所述第一主贴片21与所述接地层4之间的间距h1小于或等于0.9mm。
根据第一主贴片21的尺寸、第一子贴片22的尺寸、第一主贴片21与第一子贴片22之间的间距与频率之间的关系,调节第一主贴片21的尺寸、第一子贴片22的尺寸、第一主贴片21与第一子贴片22之间的间距,来优化回波损耗与频率的变化曲线,请参阅图6 中优化后的回波损耗与频率的变化曲线,进而得到频宽为36.7~40.7GHz的射频信号。
与第一主贴片21相类似地,取第二主贴片31和第二子贴片32辐射射频信号的中心频率分别为26GHz、28GHz,通过对第二主贴片31的尺寸设计、第二主贴片31与第二子贴片32之间的间距设计、第二主贴片31与接地层4之间的距离、第二子贴片32的尺寸设计及第二子贴片32与接地层4之间的距离设计,以扩宽天线的频宽,得到23.9~29.9GHz的射频信号,具体的调控实施方式如下。公式(1)-(6)可以直接用于第二主贴片31,在此不再赘述。
确定中间层51和绝缘介质层52的相对介电常数ε r为3.4。第二主贴片31与接地层4之间的间距为0.5mm。根据要设计的第二主贴片31的谐振频率为39GHz,根据公式(1)-(6)可以计算第二主贴片31的长度L3及宽度W3。预设第二主贴片31与第二子贴片32之间的水平间距S2和垂直间距h3、第二主贴片31与接地层4之间的间距h2、第二子贴片32的长度L4和宽度W4。根据上述的参数对天线进行建模分析,设置好辐射边界、边界条件及辐射端口,扫频得到的回波损耗与频率的变化曲线。
根据上述的回波损耗与频率的变化曲线,进一步优化频宽。对第二主贴片31的长度L3及宽度W3、第二主贴片31与第二子贴片32之间的水平间距S2和垂直间距h3、第二主贴片31与接地层4之间的间距h2、第二子贴片32的长度L4进行进一步地调节,以优化回波损耗与频率的变化曲线,请参阅图6中优化后的回波损耗与频率的变化曲线,进而得到频宽为23.9~29.9GHz的射频信号。
与第一主贴片21的调节方式相同,基于上述对第二主贴片31的长度L3及宽度W3、第二主贴片31与第二子贴片32之间的水平间距S2和垂直间距h3、第二主贴片31与接地层4之间的间距h2、第二子贴片32的长度L4的调节过程可以得到,第二主贴片31的长度L3范围及宽度范围、第二主贴片31与第二子贴片32之间的水平间距范围和垂直间距范围、第二主贴片31与接地层4之间的间距范围、第二子贴片32的长度范围。
请参阅图7,所述第二主贴片31在第一方向上的长度L3和所述第二主贴片31在第二方向上的长度W3皆位于2~2.8mm范围内,以使第二主贴片31和第二子贴片32的频宽为23.9~29.9GHz的射频信号。所述第二主贴片31在第二方向上的长度W3为所述第二主贴片31的宽度。一般而言,第二主贴片31的长度L3越大,谐振频率向低频偏移。
进一步地,请参阅图7,所述第二主贴片31在所述第一方向上的长度L3等于所述第二主贴片31在所述第二方向上的长度W3,以使所述第二主贴片31能够实现X轴方向和Y轴方向的极化。
请参阅图7,当所述第二主贴片31与所述第二子贴片32沿所述第二方向排列时,所述第二主贴片31在所述第一方向上的长度L3与所述第二子贴片32在所述第一方向上的长度L4之差的绝对值小于或等于0.8mm。具体的,第二主贴片31的长度L3可以大于、等于或小于所述第二子贴片32的长度L4。进一步地,所述第二主贴片31在所述第一方向上的长度L3与所述第二子贴片32在所述第一方向上的长度L4相等,以使第二子贴片32的 谐振频率与第二主贴片31的谐振频率相同或相近。
请参阅图7,所述第二子贴片32位于所述第二主贴片31与所述第一主贴片21之间。所述第二子贴片32在所述第二主贴片31所在平面上的正投影与所述第二子贴片32之间的间距S2为0.2mm~0.8mm。由于在第二主贴片31与接地层4之间激励起射频电磁场,并通过第二主贴片31四周与接地层4之间的缝隙向外辐射。一般而言,当第二主贴片31与第二子贴片32之间的水平间距S2过小或过大时,皆不能实现有效的耦合;当第二主贴片31与第二子贴片32之间的水平间距S2为0.2mm~0.8mm,第二主贴片31与第二子贴片32之间的耦合效果较好,频宽调节较好。
请参阅图4,在所述第二子贴片32的法线方向上,所述第二子贴片32与所述第二主贴片31之间的间距h3为0.05~0.6mm,以使所述第二子贴片32与所述第二主贴片31之间的间距h3可调范围较大,以使实现频宽的可调空间较大。
基于以上的尺寸设计,天线单元1的宽度可以小于4mm,天线单元1的长度可以小于5mm,实现了天线单元1的小型化,利于将天线单元1设于手机的侧边框上。
图12为天线单元1在第一频段的辐射效率。从图12可以看出,天线单元1在37~40GHz的辐射效率大于90%,所以本申请实施例提供的天线单元1在n260(37~40GHz)的辐射效率大于90%。
图13为天线单元1在第二频段的辐射效率。从图13可以看出,天线单元1在24.25~29.9GHz的辐射效率大于85%,所以本申请实施例提供的天线单元1在n257(26.5~29.5GHz),n258(24.25~27.5GHz),n261(27.5~28.35GHz)的辐射效率大于85%。
图14至图16为天线单元1在26GHz,28GHz,39GHz频点的方向图。从图14至图16可以看出,天线单元1在第一频段和第二频段上的辐射方向图的一致性较好。而且,从图14和图15可以看出,天线单元1在26GHz频点处的增益为6.01dB,天线单元1在28GHz频点处的增益为5.65dB。所以,本申请实施例提供的天线单元1在第一频段的增益较高。从图16可以看出,天线单元1在39GHz频点处的增益为5.27dB,所以,本申请实施例提供的天线单元1在第二频段的增益较高。
本申请实施例在不增大天线单元1体积和剖面厚度的前提下,通过对主贴片的尺寸、主贴片与子贴片之间的间距、贴片与接地层4之间的间距等参数的调整,以使天线单元1的谐振频率、带宽和阻抗达到指标要求,还形成效率高、增益大、方向性好的天线模组10。
以上所述是本申请的部分实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本申请的保护范围。

Claims (22)

  1. 一种天线模组,其特征在于,包括阵列排布的多个天线单元,所述天线单元包括:第一主贴片和至少一个第一子贴片,所述第一子贴片与所述第一主贴片在同一平面上间隔设置;所述第一主贴片用于产生第一射频信号,所述第一主贴片的第一射频信号耦合至所述第一子贴片,以使所述第一主贴片和所述第一子贴片共同辐射第一频段的射频信号;
    第二主贴片及与所述第二主贴片位于不同的平面上的至少一个第二子贴片,所述第二主贴片与所述第一主贴片位于不同的平面,所述第二子贴片与所述第一主贴片位于同一平面或不同的平面;所述第二主贴片用于产生第二射频信号,所述第二主贴片的第二射频信号耦合至所述第二子贴片,以使所述第二主贴片和所述第二子贴片共同辐射第二频段的射频信号;所述第二频段与所述第一频段不同。
  2. 权利要求1所述的天线模组,其特征在于,所述天线单元还包括射频芯片,所述射频芯片具有第一馈电端和第二馈电端,所述第一馈电端通过第一导电线电连接所述第一主贴片,所述第二馈电端通过第二导电线电连接所述第二主贴片。
  3. 权利要求2所述的天线模组,其特征在于,所述第一主贴片在所述第二主贴片所在平面的正投影与所述第二主贴片所在的区域重叠。
  4. 权利要求3所述的天线模组,其特征在于,所述第一主贴片在所述第二主贴片所在平面的正投影位于所述第二主贴片所在区域内。
  5. 权利要求3所述的天线模组,其特征在于,所述第二主贴片具有通孔,所述第一导电线穿过所述第二主贴片的通孔。
  6. 权利要求1~5任意一项所述的天线模组,其特征在于,所述第一主贴片所在平面具有相互垂直的第一方向和第二方向,所述第一主贴片在第一方向上的长度和所述第一主贴片在第二方向上的长度皆小于或等于2mm。
  7. 权利要求6所述的天线模组,其特征在于,所述第一主贴片在所述第一方向上的长度等于所述第一主贴片在所述第二方向上的长度。
  8. 权利要求6所述的天线模组,其特征在于,当所述第一主贴片与所述第一子贴片沿所述第二方向排列时,所述第一主贴片在所述第一方向上的长度与所述第一子贴片在所述第一方向上的长度之差的绝对值小于或等于0.8mm。
  9. 权利要求8所述的天线模组,其特征在于,所述第一主贴片在所述第一方向上的长度与所述第一子贴片在所述第一方向上的长度相等。
  10. 权利要求8所述的天线模组,其特征在于,所述第一子贴片在所述第二方向上的长度小于所述第一子贴片在所述第一方向上的长度,所述第一子贴片在所述第二方向上的长度范围为0.2~0.9mm。
  11. 权利要求1~5任意一项所述的天线模组,其特征在于,所述第一子贴片与所述第一主贴片之间的间距为0.2mm~0.8mm。
  12. 权利要求1~5任意一项所述的天线模组,其特征在于,所述第一主贴片所在平面具 有相互垂直的第一方向和第二方向,所述第一子贴片的数量为两个,一个所述第一子贴片与所述第一主贴片沿所述第一方向排列,另一个所述第一子贴片与所述第一主贴片沿所述第二方向排列;或者,所述第一子贴片的数量为三个,第一个所述第一子贴片、所述第一主贴片及第二个所述第一子贴片依次沿所述第一方向排列,第三个所述第一子贴片与所述第一主贴片沿所述第二方向排列;或者,所述第一子贴片的数量为四个,第一个所述第一子贴片、所述第一主贴片及第二个所述第一子贴片依次沿所述第一方向排列,第三个所述第一子贴片、所述第一主贴片及第四个所述第一子贴片依次沿所述第二方向排列。
  13. 权利要求1~5任意一项所述的天线模组,其特征在于,所述天线单元还包括接地层,所述接地层设于所述第二主贴片背离所述第一主贴片的一侧,所述第一主贴片与所述接地层之间的间距小于或等于0.9mm。
  14. 权利要求13所述的天线模组,其特征在于,所述第二主贴片与所述接地层之间的间距位于0.3~0.6mm范围内。
  15. 权利要求1~5任意一项所述的天线模组,其特征在于,所述第二子贴片位于所述第二主贴片与所述第一主贴片之间,且所述第二子贴片在所述第二主贴片所在平面上的正投影与所述第二子贴片所在区域相间隔。
  16. 权利要求15所述的天线模组,其特征在于,在所述第二子贴片的法线方向上,所述第二子贴片与所述第二主贴片之间的间距为0.05~0.6mm。
  17. 权利要求15所述的天线模组,其特征在于,所述第二主贴片所在平面具有相互垂直的第一方向和第二方向,所述第二主贴片在所述第一方向上的长度和所述第二主贴片在所述第二方向上的长度皆位于2~2.8mm范围内。
  18. 权利要求17所述的天线模组,其特征在于,当所述第二主贴片与所述第二子贴片沿所述第二方向排列时,所述第二主贴片在所述第一方向上的长度与所述第二子贴片在所述第一方向上的长度之差的绝对值小于或等于0.8mm。
  19. 权利要求18所述的天线模组,其特征在于,所述第二主贴片在所述第一方向上的长度与所述第二子贴片在所述第一方向上的长度相等。
  20. 权利要求15所述的天线模组,其特征在于,所述第二子贴片在所述第二主贴片所在平面上的正投影与所述第二子贴片所在区域之间的间距为0.2mm~0.8mm。
  21. 权利要求1所述的天线模组,其特征在于,所述第一频段为23.9~29.9GHz,所述第二频段为36.7~40.7GHz。
  22. 一种电子设备,其特征在于,包括权利要求1~21任意一项所述的天线模组。
PCT/CN2020/122211 2019-10-31 2020-10-20 天线模组及电子设备 WO2021082988A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20882404.5A EP4047746A4 (en) 2019-10-31 2020-10-20 ANTENNA MODULE AND ELECTRONIC DEVICE
US17/730,893 US20220255238A1 (en) 2019-10-31 2022-04-27 Antenna module and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911057288.5 2019-10-31
CN201911057288.5A CN110768006A (zh) 2019-10-31 2019-10-31 天线模组及电子设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/730,893 Continuation US20220255238A1 (en) 2019-10-31 2022-04-27 Antenna module and electronic device

Publications (1)

Publication Number Publication Date
WO2021082988A1 true WO2021082988A1 (zh) 2021-05-06

Family

ID=69335113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122211 WO2021082988A1 (zh) 2019-10-31 2020-10-20 天线模组及电子设备

Country Status (4)

Country Link
US (1) US20220255238A1 (zh)
EP (1) EP4047746A4 (zh)
CN (1) CN110768006A (zh)
WO (1) WO2021082988A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023152292A1 (en) * 2022-02-11 2023-08-17 Analog Devices International Unlimited Company Dual wideband orthogonally polarized antenna

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020251064A1 (ko) * 2019-06-10 2020-12-17 주식회사 에이티코디 패치 안테나 및 이를 포함하는 배열 안테나
CN110768006A (zh) * 2019-10-31 2020-02-07 Oppo广东移动通信有限公司 天线模组及电子设备
CN111370870B (zh) * 2020-03-19 2021-11-12 Oppo广东移动通信有限公司 天线装置及电子设备
CN111541026A (zh) * 2020-04-22 2020-08-14 上海安费诺永亿通讯电子有限公司 超宽带天线及集成超宽带天线的电子设备外壳及电子设备
CN111710970B (zh) * 2020-06-08 2022-07-08 Oppo广东移动通信有限公司 毫米波天线模组和电子设备
KR20220070991A (ko) * 2020-11-23 2022-05-31 삼성전기주식회사 안테나 장치
CN112436272B (zh) * 2020-12-01 2022-11-29 深圳市锐尔觅移动通信有限公司 天线装置及电子设备
CN113437505A (zh) * 2021-06-24 2021-09-24 维沃移动通信有限公司 多层天线结构及电子设备
KR20230011050A (ko) * 2021-07-13 2023-01-20 삼성전기주식회사 안테나 장치
KR20230024104A (ko) * 2021-08-11 2023-02-20 삼성전기주식회사 안테나 장치
CN114188731B (zh) * 2022-02-15 2022-04-26 云谷(固安)科技有限公司 集成天线的显示屏、显示装置和电子设备
US20230352837A1 (en) * 2022-04-28 2023-11-02 City University Of Hong Kong Patch antenna
US20240096858A1 (en) * 2022-09-15 2024-03-21 Amkor Technology Singapore Holding Pte. Ltd. Semiconductor devices and methods of manufacturing semiconductor devices
WO2024072120A1 (ko) * 2022-09-27 2024-04-04 삼성전자 주식회사 안테나를 포함하는 전자 장치

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1751413A (zh) * 2003-02-14 2006-03-22 圣韵无线技术公司 宽带组合式曲折线和贴片天线
CN103457029A (zh) * 2013-09-04 2013-12-18 北京合众思壮科技股份有限公司 双频天线
CN108199134A (zh) * 2018-01-11 2018-06-22 淮阴师范学院 一种多频天线装置
US20180294567A1 (en) * 2017-04-06 2018-10-11 The Charles Stark Draper Laboratory, Inc. Patch antenna system with parasitic edge-aligned elements
CN109845034A (zh) * 2016-10-19 2019-06-04 株式会社村田制作所 天线元件、天线模块以及通信装置
CN110098474A (zh) * 2019-04-26 2019-08-06 维沃移动通信有限公司 一种天线模组及终端设备
CN110768006A (zh) * 2019-10-31 2020-02-07 Oppo广东移动通信有限公司 天线模组及电子设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE511911C2 (sv) * 1997-10-01 1999-12-13 Ericsson Telefon Ab L M Antennenhet med en flerskiktstruktur
KR101014352B1 (ko) * 2010-11-03 2011-02-15 삼성탈레스 주식회사 이중 대역 이중 편파의 구현이 가능한 마이크로스트립 스택 패치 안테나
CN103427160B (zh) * 2013-08-23 2015-02-04 厦门大学 耳状调谐环叠层耦合北斗双频微带天线
EP3262711B1 (en) * 2015-02-26 2020-11-18 The Government of the United States of America as represented by the Secretary of the Navy Planar ultrawideband modular antenna array having improved bandwidth
WO2017100126A1 (en) * 2015-12-09 2017-06-15 Viasat, Inc. Stacked self-diplexed multi-band patch antenna
US10651555B2 (en) * 2017-07-14 2020-05-12 Apple Inc. Multi-band millimeter wave patch antennas
US10777895B2 (en) * 2017-07-14 2020-09-15 Apple Inc. Millimeter wave patch antennas
JP7077587B2 (ja) * 2017-11-17 2022-05-31 Tdk株式会社 デュアルバンドパッチアンテナ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1751413A (zh) * 2003-02-14 2006-03-22 圣韵无线技术公司 宽带组合式曲折线和贴片天线
CN103457029A (zh) * 2013-09-04 2013-12-18 北京合众思壮科技股份有限公司 双频天线
CN109845034A (zh) * 2016-10-19 2019-06-04 株式会社村田制作所 天线元件、天线模块以及通信装置
US20180294567A1 (en) * 2017-04-06 2018-10-11 The Charles Stark Draper Laboratory, Inc. Patch antenna system with parasitic edge-aligned elements
CN108199134A (zh) * 2018-01-11 2018-06-22 淮阴师范学院 一种多频天线装置
CN110098474A (zh) * 2019-04-26 2019-08-06 维沃移动通信有限公司 一种天线模组及终端设备
CN110768006A (zh) * 2019-10-31 2020-02-07 Oppo广东移动通信有限公司 天线模组及电子设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023152292A1 (en) * 2022-02-11 2023-08-17 Analog Devices International Unlimited Company Dual wideband orthogonally polarized antenna

Also Published As

Publication number Publication date
EP4047746A4 (en) 2022-12-21
CN110768006A (zh) 2020-02-07
US20220255238A1 (en) 2022-08-11
EP4047746A1 (en) 2022-08-24

Similar Documents

Publication Publication Date Title
WO2021082988A1 (zh) 天线模组及电子设备
CN111834731B (zh) 天线模组及电子设备
US20220255240A1 (en) Antenna module and electronic device
US20150311589A1 (en) Multiband antenna
WO2017045385A1 (en) Low-profile, broad-bandwidth, dual-polarization dipole radiating element
CN111063988A (zh) 天线模组及电子设备
US20190305415A1 (en) Integrated multi-standard antenna system with dual function connected array
CN111710970B (zh) 毫米波天线模组和电子设备
CN114976583B (zh) 毫米波天线、装置及电子设备
CN109728413B (zh) 天线结构及终端
WO2022083276A1 (zh) 天线阵列组件及电子设备
CN111987422B (zh) 一种超低剖面多频宽带天线及通信设备
CN111129704A (zh) 一种天线单元和电子设备
JP7228720B2 (ja) ハウジングアセンブリ、アンテナデバイス及び電子機器
CN112886234A (zh) 一种基于嵌入式结构的微波毫米波共面共口径天线
CN109560387B (zh) 一种用于移动终端的毫米波双极化天线
WO2024082994A1 (zh) 天线、天线阵列和电子设备
CN112821050B (zh) 天线组件及电子设备
WO2021218392A1 (zh) 天线模组及电子设备
KR20070071816A (ko) 패치안테나
CN112736439A (zh) 天线、天线组件及电子设备
CN115207613B (zh) 一种宽带双极化天线单元及天线阵列
CN117673705A (zh) 天线单元及通信设备
CN114464991A (zh) 一种电子设备
WO2024017164A1 (zh) 天线及通讯设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20882404

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020882404

Country of ref document: EP

Effective date: 20220517