WO2020251064A1 - 패치 안테나 및 이를 포함하는 배열 안테나 - Google Patents

패치 안테나 및 이를 포함하는 배열 안테나 Download PDF

Info

Publication number
WO2020251064A1
WO2020251064A1 PCT/KR2019/006923 KR2019006923W WO2020251064A1 WO 2020251064 A1 WO2020251064 A1 WO 2020251064A1 KR 2019006923 W KR2019006923 W KR 2019006923W WO 2020251064 A1 WO2020251064 A1 WO 2020251064A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiator
patch antenna
frequency band
operating frequency
antenna
Prior art date
Application number
PCT/KR2019/006923
Other languages
English (en)
French (fr)
Inventor
김정표
Original Assignee
주식회사 에이티코디
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에이티코디 filed Critical 주식회사 에이티코디
Priority to PCT/KR2019/006923 priority Critical patent/WO2020251064A1/ko
Priority to US17/610,373 priority patent/US11923625B2/en
Publication of WO2020251064A1 publication Critical patent/WO2020251064A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0421Substantially flat resonant element parallel to ground plane, e.g. patch antenna with a shorting wall or a shorting pin at one end of the element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/005Patch antenna using one or more coplanar parasitic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path

Definitions

  • the present invention relates to a patch antenna and an array antenna including the same.
  • it relates to a patch antenna that can be used in a vehicle radar by showing a wide bandwidth and a beam width, and an array antenna including the same.
  • LRR Long Range Radar
  • MRR Middle Range Radar
  • SRR Short Range Radar
  • USRR Ultra Short Range Radar
  • the USRR performs a blind spot detection (BSD) function for blind spot detection, it is essential to represent a wide bandwidth and beam width, and more specifically, a beam width of 150° or more in the 77-81 GHz band is required.
  • BSD blind spot detection
  • the present invention reflects these problems and relates to a patch antenna of a new and advanced technology capable of representing a wide bandwidth and a beam width, and an array antenna including the same.
  • the technical problem to be solved by the present invention is to provide a patch antenna capable of perfectly performing the BSD function of USRR and an array antenna including the same by showing a wide bandwidth and a beam width.
  • Another technical problem to be solved by the present invention is to provide a patch antenna capable of exhibiting a bandwidth of 77-81 GHz and a beam width of 150° or more required for USRR, and an array antenna including the same.
  • the patch antenna according to an embodiment of the present invention for achieving the above technical problem is a substrate, a first radiator of a first shape disposed on the substrate, and disposed on the substrate, and spaced apart from the first radiator by a predetermined distance. And a second radiator having a second shape disposed and a feeding part supplying a feed signal to the first radiator, wherein the first radiator includes a first outer circumferential portion formed in a horizontal direction and vertical at both ends of the first outer circumferential portion It includes a second outer peripheral portion formed in the direction.
  • the first shape and the second shape may have the same shape, and the first radiator and the second radiator may have different sizes.
  • the second outer circumferential portion includes a 2-1 outer circumferential portion formed in a straight line in a vertical direction, a 2-2 outer circumferential portion curved from one end of the 2-1 outer circumferential portion toward the center of the first radiator, and the It may further include a 2-3rd outer peripheral part formed in a horizontal direction from one end of the 2-2 outer peripheral part.
  • a first via and a second via formed in an inner space of the outer periphery of the second-2 may be further included.
  • the shortest distance between the first and second vias from the first outer circumference may be less than or equal to the shortest distance between the first and second vias.
  • a distance between the center of the first via and the center of the second via may be 2/ ⁇ or less.
  • the power supply unit may be directly connected to the 2-3rd outer circumferential part or extended from the 2-3rd outer circumferential part to supply a feed signal to the first radiator.
  • the first radiator and the second radiator may have the same length in a horizontal direction and may have different lengths in a vertical direction.
  • the first radiator operates within a first operating frequency band, and is tuned to achieve resonance within the first operating frequency band, and the second radiator is after the first operating frequency band. It operates within a second operating frequency band and may be tuned so that resonance does not occur within the first operating frequency band and the second operating frequency band.
  • the predetermined distance may be 0.1mm to 0.2mm.
  • an array antenna may be implemented that includes a plurality of patch antennas, supplies a feed signal to the plurality of patch antennas, and further includes a common feed unit connected to the feed unit.
  • both the wide bandwidth and the beam width required by the USRR can be expressed. There is an effect.
  • the bandwidth and the beam width by extending the bandwidth and the beam width by adjoining the resonances of the first radiator and the second radiator, the bandwidth of 77-81 GHz required for the USRR and more than 150° is extended by expanding the band of one resonance according to the first radiator. There is an effect of being able to represent the beam width.
  • FIG. 1 is a top view of a patch antenna according to a first embodiment of the present invention.
  • FIG. 2 is a perspective view of a patch antenna according to a first embodiment of the present invention.
  • FIG 3 is a side view of a patch antenna according to a first embodiment of the present invention.
  • FIG 5 is an exemplary top view of a conventional patch antenna implemented using a single radiator.
  • FIG. 6 is a simulation result of the band characteristics of the conventional patch antenna shown in FIG. 5 and the patch antenna according to the first embodiment of the present invention.
  • FIG. 7 is a simulation result of the beam width of the conventional patch antenna shown in FIG. 5 and the patch antenna according to the first embodiment of the present invention.
  • FIG 8 is a top view of an array antenna according to a second embodiment of the present invention.
  • FIG. 1 is a top view of a patch antenna 100 according to a first embodiment of the present invention
  • FIG. 2 is a perspective view of a patch antenna 100 according to a first embodiment of the present invention
  • FIG. 3 is a first embodiment of the present invention. It is a side view of the patch antenna 100 according to the embodiment.
  • the patch antenna 100 may include a substrate 5, a first radiator 10, a second radiator 20, and a feeding part 30, and other objects of the present invention It goes without saying that it may further include conventional configurations required to achieve.
  • the substrate 5 may be a general antenna substrate.
  • a known antenna board such as a PCB (Printed Circuit Board) or F-PCB (Flexible Printed Circuit Board) can be used, and since the area of the board is closely related to the area of the entire patch antenna 100, the antenna miniaturization It is not necessary to use an excessively wide substrate 5 for this, and a substrate 5 having an area sufficient to form the first radiating element 10, the second radiating element 20, and the power feeding part 30 on one surface. ) Is enough.
  • the first radiator 10 is a material representing a conductive material and is disposed in the form of a patch on one surface of the substrate 5 and has a first shape.
  • the first radiator 10 is formed in a vertical direction from both ends of the first outer circumferential portion 10-1 and the first outer circumferential portion formed in a straight line in the horizontal direction. It can be seen that the formed second outer peripheral portion 10-2 is included, and the first outer peripheral portion 10-1 and the second outer peripheral portion 10-2 separate regions according to the shape of the first radiator 10, It corresponds to the name given to this.
  • the second outer circumferential portion 10-2 is formed in a vertical direction at both ends of the first outer circumferential portion 10-1 formed in a horizontal direction, so it is a concept including two.
  • One formed in the vertical direction at one end may be referred to as a second outer circumferential portion 10-2, and those formed in a vertical direction at the other end may be referred to as a third outer circumferential portion (not shown). Name it 2) and continue the explanation.
  • the first outer circumferential portion 10-1 is a portion formed on the top when the first radiator 10 is viewed from the top, and may have a predetermined length in the horizontal direction and may be formed in a straight line, but for adjusting the operating frequency band or resonance. Of course, it can be formed in a different shape through antenna tuning or the like.
  • the first outer circumferential portion 10-1 may be formed in a toothed wheel shape by forming one or more grooves, and in this case, the effect of lengthening may be obtained.
  • the second outer circumferential portion 10-2 is formed in a vertical direction at both ends of the first outer circumferential portion 10-1, and more specifically, the second outer circumferential portion 10-2-1 formed in a straight line in the vertical direction, 2-1
  • the 2-2 outer circumferential part (10-2-2) and the 2-2 outer circumferential part (10-2-2) formed bent in the direction of the center of the first radiator 10 at one end of the outer circumference (10-2-1) ) May include a 2-3rd outer peripheral portion (10-2-3) formed in a straight line in the horizontal direction at one end.
  • the 2-1 outer circumferential portion 10-2-1 is a portion formed on the left and right when viewed from the top, similar to the first outer circumferential portion 10-1 described above, and has a predetermined length in the vertical direction and is formed in a straight line. However, of course, it may be formed in a different shape through antenna tuning for adjusting the operating frequency band or resonance.
  • the 2-1 outer circumferential portion 10-2-1 may be formed in a toothed wheel shape by forming one or more grooves, and in this case, the effect of lengthening may be obtained.
  • the 2-2 outer circumferential portion (10-2-2) is formed to be bent from one end of the 2-1 outer circumferential portion (10-2-1) toward the center of the first radiator 10, where the first radiator 10
  • the center direction of is indicated separately as a dot in FIG. 4, and means the direction in which the power supply unit 30 to be described later is arranged.
  • the fact that the first radiator 10 is curved in the center direction means that it is formed to be bent inward.
  • the 2-2 outer circumferential part 10-2-2 is on the left and right sides. Since it is a formed part, it can be seen that the 2-2 outer circumferential part 10-2-2 formed on the left is bent counterclockwise, and the 2-2 outer circumferential part 10-2-2 formed on the right is bent clockwise. .
  • the 2-2 outer circumferential part 10-2-2 when the 2-2 outer circumferential part 10-2-2 is bent, it has a predetermined curvature and can be bent, and it will be bent more than if the curvature is large, so the 2-2 outer circumferential part 10-2-2
  • the length of 2) will be shortened, and if the curvature is large, the length of the outer peripheral portion 2-2 (10-2-2) will be longer because it will be less curved. Accordingly, the curvature of the 2-2 outer circumferential portion 10-2-2 may be freely set through antenna tuning for adjusting the operating frequency band or resonance.
  • a first via 12-1 and a second via 12-2 may be formed in the inner space of the first radiator 10 in which the 2-2 outer circumferential portion 10-2-2 is formed, where the first The via 12-1 and the second via 12-2 are connected to the substrate 5 to perform a short circuit.
  • the distance between the center of the first via 12-1 and the center of the second via 12-2 may be 2/ ⁇ or less, which is the patch antenna 100 according to the first embodiment of the present invention. This is to allow a bandwidth of 77-81GHz and a beam width of 150° or more.
  • the shortest distance (d1) between the first via (12-1) and the second via (12-2) from the first outer peripheral portion (10-1) is from the first outer peripheral portion (10-1) to the outer peripheral portion 2-3
  • the shortest distance (d2) or less between (10-2-3), and the shortest distance between the centers of the first via (12-1) and the second via (12-2) from the first outer periphery (10-1) (d3) may be greater than or equal to the shortest distance (d2) between the first outer periphery (10-1) and the 2-3rd outer periphery (10-2-3), which is also the patch antenna according to the first embodiment of the present invention. This is to enable (100) to represent a bandwidth of 77-81GHz and a beam width of 150° or more.
  • the 2-3rd outer circumferential part 10-2-3 may be formed in a horizontal direction at one end of the 2-2 outer circumferential part 10-2-2, and the 2-2 outer circumferential part 10 Due to the formation of -2-2), the length of the 2-3rd outer circumferential part (10-2-3) is bound to be shorter than that of the 2-1 outer circumferential part (10-2-1). It goes without saying that -2-3) can also be formed in a different shape through antenna tuning for adjustment of the operating frequency band or resonance.
  • the 2-3rd outer circumferential portion 10-2-3 may be formed in a toothed wheel shape by forming one or more grooves, and in this case, the effect of lengthening may be obtained.
  • the second radiator 20 is a material representing a conductive material and is disposed in the form of a patch on one surface of the substrate 5 and is disposed in a second shape spaced apart from the first radiator 10 by a predetermined distance.
  • the conductive material is preferably implemented using the same material as the conductive material used to implement the first radiator 10 in terms of simplification of the manufacturing process, and one side of the substrate 5 is the first radiator 10 on which the first radiator 10 is disposed. It will be referred to as the same surface as one surface of the substrate 5.
  • the description of the second radiator 20 is basically the same as the description of the first radiator 10 described above.
  • the second radiator 20 is also the first outer periphery of the first radiator 10 (10-1), the second outer circumference including the 2-1 outer periphery (10-2-1), the 2-2 outer periphery (10-2-2), and the 2-3 outer periphery (10-2-3) (10-2), a configuration corresponding to the first via 12-1 and the second via 12-2 may be included, and detailed descriptions of these configurations are also included in the second radiator 20 The same can be applied.
  • the first radiator 10 and the second radiator 20 will have the same shape, the first shape of the first radiator 10 and the second shape of the second radiator 20 may have the same shape. have. However, since the first radiator 10 and the second radiator 20 are not in a symmetrical relationship with each other, the first radiator 10 and the second radiator 20 may have different sizes.
  • the length in the horizontal direction of the first radiator 10 and the length in the horizontal direction of the second radiator 20 are the same, and the length D1 in the vertical direction of the first radiator 10 and the second It can be seen that the length D2 in the vertical direction of the radiator 20 is different.
  • the length D1 in the vertical direction of the first radiator 10 is the length in the vertical direction of the second radiator 20
  • the length D1 in the vertical direction of the first radiator 10 can be implemented to be greater than or equal to the length D2 in the vertical direction of the second radiator 20, and accordingly
  • the first radiator 10 and the second radiator 20 may have different sizes, lengths and areas (widths) in the vertical direction.
  • a predetermined distance in which the second radiator 20 is spaced apart from the first radiator 10 can be viewed as a kind of slot, and by setting any one of 0.1mm to 0.2mm to a predetermined distance, the operating frequency band Alternatively, antenna tuning for resonance adjustment may be possible.
  • the second radiator 20 does not directly receive a feed signal for operation through a separate feeder, but electromagnetically couples the feed signal supplied by the feeder 30 to the first radiator 10 to be described later (couple Ring coupling) may be provided, and in this case, the feed signal supplied to the first radiator 10 by the power supply unit 30 may be provided to the second radiator 20 through a predetermined distance apart.
  • the second radiator 20 serves as a kind of parasitic element in the relationship with the first radiator 10, which is a matter related to the operating frequency band and resonance, and will be described later in FIGS. 6 and 7 It will be explained in detail in
  • the power supply unit 30 supplies a power supply signal to the first radiator 10.
  • the power supply unit 30 is directly connected to the 2-3rd outer circumferential part 10-2-3 of the first radiator 10 or integrally implemented in implementing the first radiator 10 so that the 2-3rd outer circumferential part ( It can also be formed extending from 10-2-3).
  • the feeder 30 directly supplies a feed signal to the first radiator 10, and the feed signal supplied to the first radiator 10 is transferred to the second radiator 20 through electromagnetic coupling (coupling coupling). Supply was described above.
  • a wide bandwidth and a beam width are determined according to the specific shape and size difference of the first radiator 10 and the second radiator 20 and a predetermined distance between the first radiator 10 and the second radiator 10.
  • the BSD function of USRR can be performed perfectly, and this will be described below with a detailed simulation result.
  • FIG. 5 is a top view of an exemplary view of a conventional patch antenna implemented using a single radiator
  • FIG. 6 is a conventional patch antenna shown in FIG. 5 and a patch antenna 100 according to the first embodiment of the present invention.
  • a simulation result of the band characteristics of FIG. 7 is a view showing a simulation result of the beam width of the conventional patch antenna shown in FIG. 5 and the patch antenna 100 according to the first embodiment of the present invention.
  • the simulation result indicated by ⁇ in FIGS. 6 and 7 is the simulation result for the patch antenna 100 according to the first embodiment of the present invention
  • the graph indicated by ⁇ is the simulation result of the conventional patch antenna shown in FIG.
  • the conventional patch antenna shown in FIG. 5 corresponds to a known technology, a detailed description will be omitted.
  • the bandwidth of the conventional patch antenna shown in FIG. 5 is 77.79GHz-80.4GHz, which is m1 to m2, and the bandwidth of the patch antenna 100 according to the first embodiment of the present invention is m3 to m4.
  • the range is 77.11GHz-81.06GHz, it can be seen that the bandwidth of the patch antenna 100 according to the first embodiment of the present invention is broader than that of the conventional patch antenna shown in FIG. 5.
  • the bandwidth of the conventional patch antenna shown in FIG. 5 is 77.79GHz-80.4GHz.
  • 77-81GHz which is a bandwidth required by the USRR
  • 0.79GHz in the region below 77.79GHZ and 0.6in the region above 80.4GHz. It lacks as much as GHz.
  • the bandwidth of the patch antenna 100 according to the first embodiment of the present invention is 77.11GHz-81.06GHz, there is no shortage in the region above 81.06GHz, and it lacks as much as 0.11GH in the region below 77.11GHz, but this can be ignored. As it is at a level that is fine enough, as a result, it is possible to implement a broadband that can cover all 77-81GHz, which is the bandwidth required by the USRR.
  • the beam width of the conventional patch antenna shown in FIG. 5 is 133.2°, which is m2 to m3, and the beam width of the patch antenna 100 according to the first embodiment of the present invention is 160.2, which is m5 to m6. As can be seen, it can be seen that the beam width of the patch antenna 100 according to the first embodiment of the present invention is wider than that of the conventional patch antenna shown in FIG. 5.
  • the beam width of the conventional patch antenna shown in FIG. 5 is 133.2, and 16.8° is insufficient to cover 150°, which is the beam width required by the USRR.
  • the beam width of the patch antenna 100 according to the first embodiment of the present invention is 160.2°, it is possible to implement a beam width capable of covering all of the beam width 150° required by the USRR.
  • the patch antenna 100 according to the first embodiment of the present invention can satisfy both the bandwidth and the beam width required by the USRR, which is the first radiator 10 Is operated within a first operating frequency band, tuned to make resonance within the first operating frequency band, and the second radiator 20 operates within a second operating frequency band after the first operating frequency band, This is because tuning is performed so that resonance does not occur within the first operating frequency band and the second operating frequency band.
  • the detailed tuning of the first radiator 10 and the second radiator 20 includes differences in the specific shapes and sizes of the first radiator 10 and the second radiator 20, and the first radiator 10 and the first radiator 20 2 As it can be seen by adjusting a predetermined distance between the radiators 10, it can be seen as an independent technical feature of the patch antenna 100 itself according to the first embodiment of the present invention. In addition, this does not extend the bandwidth and the beam width by adjoining the resonance of the main radiator and the parasitic element like a conventional patch antenna, but a new and progressive band that expands the band of one resonance according to one main radiator (first radiator). It can be seen as a technical feature.
  • FIG 8 is a top view of an array antenna 1000 according to a second embodiment of the present invention.
  • the array antenna 1000 according to the second embodiment of the present invention may include a plurality of patch antennas 100 and a common power feeding unit 300, and other conventional configurations required to achieve the object of the present invention. Of course, it may include more.
  • the plurality of patch antennas 100 are the patch antennas 100 according to the first embodiment of the present invention described above, detailed descriptions will be omitted to prevent redundant descriptions.
  • the common power supply unit 300 is connected to the patch antenna 100 according to the first embodiment of the present invention or the power supply unit 30 included therein to supply a power supply signal. Accordingly, each power supply unit 30
  • the feed signal may be directly supplied to the feeder, and the feed signal supplied to the feeder 30 may be supplied to the second radiator 20 as described above.

Landscapes

  • Waveguide Aerials (AREA)

Abstract

본 발명의 일 실시 예에 따른 패치 안테나는 기판, 상기 기판 상에 배치된 제1 형상의 제1 방사체, 상기 기판 상에 배치되며, 상기 제1 방사체와 소정 거리 이격하여 배치된 제2 형상의 제2 방사체 및 상기 제1 방사체에 급전 신호를 공급하는 급전부를 포함하며, 상기 제1 방사체는, 수평 방향으로 일자로 형성된 제1 외주부 및 상기 제1 외주부의 양단에서 수직 방향으로 형성된 제2 외주부를 포함한다.

Description

패치 안테나 및 이를 포함하는 배열 안테나
본 발명은 패치 안테나 및 이를 포함하는 배열 안테나에 관한 것이다. 보다 자세하게는 넓은 대역폭과 빔 폭을 나타냄으로써 차량용 레이다에 사용될 수 있는 패치 안테나 및 이를 포함하는 배열 안테나에 관한 것이다.
자율 주행 시대가 도래하며 차량에는 다양한 종류의 센서들이 장착되고 있으며, 레이다 역시 이러한 센서들의 하나로 볼 수 있다.
한편, 차량에 장착되는 레이다는 다양한 종류가 있는바, 커버할 수 있는 거리 및 각도에 따라 LRR(Long Range Radar), MRR(Middle Range Radar) 및 SRR(Short Range Radar)이 있으며, 승용차 등의 코너 레이다나 트럭, 버스 등의 측면에는 SRR이, 보다 구체적으로 USRR(Ultra Short Range Radar)가 사용되고 있다.
이러한 USRR은 사각 지대 탐지를 위한 BSD(Blind Spot Detection) 기능을 수행하는바, 그에 따라 넓은 대역폭과 빔 폭을 나타내는 것이 필수적이며, 보다 구체적으로 77-81GHz 대역에서 150° 이상의 빔 폭이 요구된다.
그러나 패치 안테나 형태로 구현했던 종래의 USRR은 단일 방사체(패치)를 이용하는 경우 동작하는 대역폭에 한계가 있으며, 복수 개의 방사체를 이용하는 경우라 할지라도 메인 방사체와 기생 소자의 공진을 인접시켜 대역폭을 확장시킬 수밖에 없는바, 대역폭 확장의 효과가 미미하다는 문제점이 있다. 아울러, 메인 방사체와 기생 소자의 공진을 인접시키기 때문에 빔 폭 역시 100° 전후로 나타났던바, BSD 기능을 수행하기에는 너무나 부족하였다.
본 발명은 이러한 문제점을 반영하여 넓은 대역폭과 빔 폭을 나타낼 수 있는 새롭고 진보된 기술의 패치 안테나 그리고 이를 포함하는 배열 안테나에 관한 것이다.
본 발명이 해결하고자 하는 기술적 과제는 넓은 대역폭과 빔 폭을 나타냄으로써 USRR의 BSD 기능을 완벽하게 수행할 수 있는 패치 안테나 및 이를 포함하는 배열 안테나를 제공하는 것이다.
본 발명이 해결하고자 하는 또 다른 기술적 과제는 USRR에 요구되는 77-81GHz의 대역폭과 150° 이상의 빔 폭을 나타낼 수 있는 패치 안테나 및 이를 포함하는 배열 안테나를 제공하는 것이다.
본 발명의 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
상기 기술적 과제를 달성하기 위한 본 발명의 일 실시 예에 따른 패치 안테나는 기판, 상기 기판 상에 배치된 제1 형상의 제1 방사체, 상기 기판 상에 배치되며, 상기 제1 방사체와 소정 거리 이격하여 배치된 제2 형상의 제2 방사체 및 상기 제1 방사체에 급전 신호를 공급하는 급전부를 포함하며, 상기 제1 방사체는, 수평 방향으로 일자로 형성된 제1 외주부 및 상기 제1 외주부의 양단에서 수직 방향으로 형성된 제2 외주부를 포함한다.
일 실시 예에 따르면, 상기 제1 형상 및 제2 형상은, 형상이 동일하며, 상기 제1 방사체 및 제2 방사체는, 크기가 상이할 수 있다.
일 실시 예에 따르면, 상기 제2 외주부는, 수직 방향으로 일자로 형성된 제2-1 외주부, 상기 제2-1 외주부의 일단에서 상기 제1 방사체의 중심 방향으로 굴곡 형성된 제2-2 외주부 및 상기 제2-2 외주부의 일단에서 수평 방향으로 일자로 형성된 제2-3 외주부를 더 포함할 수 있다.
일 실시 예에 따르면, 상기 제2-2 외주부의 내부 공간에 형성된 제1 비아(Via) 및 제2 비아를 더 포함할 수 있다.
일 실시 예에 따르면, 상기 제1 외주부로부터 상기 제1 비아 및 제2 비아 사이의 최단 거리는, 상기 제1 외주부로부터 상기 제2-3 외주부 사이의 최단 거리 이하일 수 있다.
일 실시 예에 따르면, 상기 제1 비아의 중심과 제2 비아의 중심 사이의 거리는, 2/λ 이하일 수 있다.
일 실시 예에 따르면, 상기 급전부는, 상기 제2-3 외주부와 직접 연결되거나 상기 제2-3 외주부로부터 연장 형성되어 상기 제1 방사체에 급전 신호를 공급할 수 있다.
일 실시 예에 따르면, 상기 제1 방사체 및 제2 방사체는, 수평 방향의 길이는 동일하며, 수직 방향의 길이는 상이할 수 있다.
일 실시 예에 따르면, 상기 제1 방사체는, 제1 동작 주파수 대역 내에서 동작하며, 상기 제1 동작 주파수 대역 내에서 공진이 이루어지도록 튜닝되고, 상기 제2 방사체는, 상기 제1 동작 주파수 대역 이후인 제2 동작 주파수 대역 내에서 동작하며, 상기 제1 동작 주파수 대역 및 상기 제2 동작 주파수 대역 내에서 공진이 이루어지지 않도록 튜닝될 수 있다.
일 실시 예에 따르면, 상기 소정 거리는, 0.1mm 내지 0.2mm일 수 있다.
일 실시 예에 따르면, 상기 패치 안테나를 복수 개 포함하며, 상기 복수 개의 패치 안테나에 급전 신호를 공급하며, 상기 급전부와 연결된 공통 급전부를 더 포함하는 배열 안테나를 구현할 수 있다.
상기와 같은 본 발명에 따르면, 제1 방사체 및 제2 방사체의 구체적인 형상, 크기의 차이 그리고 제1 방사체와 제2 방사체 사이의 소정 거리의 조정함으로써 USRR에서 요구하는 넓은 대역폭과 빔 폭을 모두 나타낼 수 있다는 효과가 있다.
또한, 제1 방사체와 제2 방사체의 공진을 인접시켜 대역폭 및 빔 폭을 확장시키는 것이 아니라, 제1 방사체에 따른 하나의 공진의 대역을 확장시킴으로써 USRR에 요구되는 77-81GHz의 대역폭과 150° 이상의 빔 폭을 나타낼 수 있다는 효과가 있다.
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해 될 수 있을 것이다.
도 1은 본 발명의 제1 실시 예에 따른 패치 안테나의 상면도이다.
도 2는 본 발명의 제1 실시 예에 따른 패치 안테나의 사시도이다.
도 3은 본 발명의 제1 실시 예에 따른 패치 안테나의 측면도이다.
도 4는 제1 방사체의 상면도이다.
도 5는 단일 방사체를 이용하여 구현한 종래의 패치 안테나의 예시적인 상면도이다.
도 6은 도 5에 도시된 종래의 패치 안테나와 본 발명의 제1 실시 예에 따른 패치 안테나의 대역 특성에 대한 시뮬레이션 결과이다.
도 7은 도 5에 도시된 종래의 패치 안테나와 본 발명의 제1 실시 예에 따른 패치 안테나의 빔 폭에 대한 시뮬레이션 결과이다.
도 8은 본 발명의 제2 실시 예에 따른 배열 안테나의 상면도이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 예를 상세히 설명한다. 본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시 예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 게시되는 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시 예들은 본 발명의 게시가 완전하도록 하고, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다. 본 명세서에서 사용된 용어는 실시 예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다.
본 명세서에서 사용되는 "포함한다 (comprises)" 및/또는 "포함하는 (comprising)"은 언급된 구성 요소, 단계, 동작 및/또는 소자는 하나 이상의 다른 구성 요소, 단계, 동작 및/또는 소자의 존재 또는 추가를 배제하지 않는다.
도 1은 본 발명의 제1 실시 예에 따른 패치 안테나(100)의 상면도이며, 도 2는 본 발명의 제1 실시 예에 따른 패치 안테나(100)의 사시도, 도 3은 본 발명의 제1 실시 예에 따른 패치 안테나(100)의 측면도이다.
본 발명의 제1 실시 예에 따른 패치 안테나(100)는 기판(5), 제1 방사체(10), 제2 방사체(20) 및 급전부(30)를 포함할 수 있으며, 기타 본 발명의 목적을 달성함에 있어서 요구되는 통상적인 구성들을 더 포함할 수 있음은 물론이다.
기판(5)은 일반적인 안테나 기판을 사용할 수 있다. 예를 들어 PCB(Printed Circuit Board) 또는 F-PCB(Flexible Printed Circuit Board) 등과 같이 공지된 안테나 기판을 사용할 수 있으며, 기판의 면적은 전체 패치 안테나(100)의 면적과 밀접한 연관이 있기 때문에 안테나 소형화를 위해 지나치게 넓은 기판(5)을 사용할 필요는 없고, 제1 방사소자(10), 제2 방사소자(20) 및 급전부(30)를 일면에 형성할 수 있을 정도의 면적을 가지는 기판(5)이면 충분하다 할 것이다.
제1 방사체(10)는 전도성 재질을 나타내는 소재로 기판(5)의 일면에 패치 형식으로 배치되며, 제1 형상을 갖는다.
도 4는 제1 방사체(10)의 상면도인바, 도 4를 참조하면 제1 방사체(10)는 수평 방향으로 일자로 형성된 제1 외주부(10-1) 및 제1 외주부의 양단에서 수직 방향으로 형성된 제2 외주부(10-2)를 포함함을 확인할 수 있으며, 제1 외주부(10-1) 및 제2 외주부(10-2)는 제1 방사체(10)의 형상에 따라 영역을 분리하고, 이에 대한 명칭을 부여한 것에 해당한다.
한편, 제2 외주부(10-2)는 수평 방향으로 일자로 형성된 제1 외주부(10-1)의 양단에서 수직 방향으로 형성되므로 2개를 포함하는 개념이며, 제1 외주부(10-1)의 일단에서 수직 방향으로 형성되는 것을 제2 외주부(10-2), 타단에서 수직 방향으로 형성되는 것을 제3 외주부(미도시)로 명명할 수도 있으나, 설명의 편의상 이들 모두를 제2 외주부(10-2)로 명명하여 설명을 이어가도록 한다.
제1 외주부(10-1)는 제1 방사체(10)를 상면에서 바라볼 때, 상단에 형성된 부분인바, 수평 방향으로 소정 길이를 갖고 일자로 형성될 수 있으나, 동작 주파수 대역 또는 공진 조정을 위한 안테나 튜닝 등을 통해 다른 형상으로 형성될 수 있음은 물론이다. 예를 들어, 제1 외주부(10-1)는 하나 이상의 홈을 형성하여 톱니 바퀴 형상으로 형성할 수도 있으며, 이 경우 길이 연장의 효과를 얻을 수 있을 것이다.
제2 외주부(10-2)는 제1 외주부(10-1)의 양단에서 수직 방향으로 형성되는바, 보다 구체적으로 수직 방향으로 일자로 형성된 제2-1 외주부(10-2-1), 제2-1 외주부(10-2-1)의 일단에서 제1 방사체(10)의 중심 방향으로 굴곡 형성된 제2-2 외주부(10-2-2) 및 제2-2 외주부(10-2-2)의 일단에서 수평 방향으로 일자로 형성된 제2-3 외주부(10-2-3)를 포함할 수 있다.
제2-1 외주부(10-2-1)는 앞서 설명한 제1 외주부(10-1)와 마찬가지로 상면에서 바라볼 때, 좌측 및 우측에 형성된 부분인바, 수직 방향으로 소정 길이를 갖고 일자로 형성될 수 있으나, 동작 주파수 대역 또는 공진 조정을 위한 안테나 튜닝 등을 통해 다른 형상으로 형성될 수 있음은 물론이다. 예를 들어, 제2-1 외주부(10-2-1)는 하나 이상의 홈을 형성하여 톱니 바퀴 형상으로 형성할 수도 있으며, 이 경우 길이 연장의 효과를 얻을 수 있을 것이다.
제2-2 외주부(10-2-2)는 제2-1 외주부(10-2-1)의 일단에서 제1 방사체(10)의 중심 방향으로 굴곡 형성되는바, 여기서 제1 방사체(10)의 중심 방향은 도 4에 점으로 별도 표시하여 놓았으며, 후술할 급전부(30)가 배치되어 있는 방향을 의미한다. 이 경우 제1 방사체(10)의 중심 방향으로 굴곡 형성되었다 함은 안쪽으로 휘어지도록 형성되었음을 의미하는바, 제2-2 외주부(10-2-2)는 상면에서 바라볼 때, 좌측 및 우측에 형성된 부분이므로 좌측에 형성된 제2-2 외주부(10-2-2)는 반시계 방향으로 휘어지고, 우측에 형성된 제2-2 외주부(10-2-2)는 시계 방향으로 휘어지는 것으로 볼 수 있다.
한편, 제2-2 외주부(10-2-2)가 굴곡 형성됨에 있어서는 소정의 곡률을 가지며 굴곡 형성될 수 있는바, 곡률이 큰 경우 보다 많이 휘어질 것이므로 제2-2 외주부(10-2-2)의 길이는 짧아질 것이며, 곡률이 큰 경우 보다 적게 휘어질 것이므로 제2-2 외주부(10-2-2)의 길이는 길어질 것이다. 따라서 제2-2 외주부(10-2-2)의 곡률은 동작 주파수 대역 또는 공진 조정을 위한 안테나 튜닝 등을 통해 자유롭게 설정할 수 있을 것이다.
제2-2 외주부(10-2-2)가 형성된 제1 방사체(10)의 내부 공간에는 제1 비아(12-1) 및 제2 비아(12-2)가 형성될 수 있으며, 여기서 제1 비아(12-1) 및 제2 비아(12-2)는 기판(5)과 연결되어 단락을 수행한다.
이 경우, 제1 비아(12-1)의 중심과 제2 비아(12-2)의 중심 사이의 거리는 2/λ 이하일 수 있는바, 이는 본 발명의 제1 실시 예에 따른 패치 안테나(100)가 77-81GHz의 대역폭과 150° 이상의 빔 폭을 나타낼 수 있도록 하기 위함이다.
또한, 제1 외주부(10-1)로부터 제1 비아(12-1) 및 제2 비아(12-2) 사이의 최단 거리(d1)는 제1 외주부(10-1)로부터 제2-3 외주부(10-2-3) 사이의 최단 거리(d2) 이하일 수 있고, 제1 외주부(10-1)로부터 제1 비아(12-1) 및 제2 비아(12-2)의 중심 사이의 최단 거리(d3)는 제1 외주부(10-1)로부터 제2-3 외주부(10-2-3) 사이의 최단 거리(d2) 이상일 수 있는바, 이 역시 본 발명의 제1 실시 예에 따른 패치 안테나(100)가 77-81GHz의 대역폭과 150° 이상의 빔 폭을 나타낼 수 있도록 하기 위함이다.
제2-3 외주부(10-2-3)은 제2-2 외주부(10-2-2)의 일단에서 수평 방향으로 일자로 형성될 수 있으며, 수평 방향을 기준으로 제2-2 외주부(10-2-2)의 형성으로 인해 제2-3 외주부(10-2-3)의 길이는 제2-1 외주부(10-2-1)의 길이보다 짧을 수밖에 없으나, 제2-3 외주부(10-2-3) 역시 동작 주파수 대역 또는 공진 조정을 위한 안테나 튜닝 등을 통해 다른 형상으로 형성될 수 있음은 물론이다. 예를 들어, 제2-3 외주부(10-2-3)는 하나 이상의 홈을 형성하여 톱니 바퀴 형상으로 형성할 수도 있으며, 이 경우 길이 연장의 효과를 얻을 수 있을 것이다.
지금까지 도 4를 참조하여 제1 방사체(10)의 구체적인 형상에 대하여 설명하였으며, 이하 도 1 및 도 2를 다시 참조하여 제2 방사체(20)에 대하여 설명을 이어가도록 한다.
제2 방사체(20)는 전도성 재질을 나타내는 소재로 기판(5)의 일면에 패치 형식으로 배치되며, 제1 방사체(10)와 소정 거리 이격하여 제2 형상으로 배치된다.
여기서 전도성 재질은 제1 방사체(10)를 구현하는데 사용한 전도성 재질과 동일한 재질을 사용하여 구현하는 것이 제조 공정의 간소화 측면에서 바람직하며, 기판(5)의 일면은 제1 방사체(10)가 배치된 기판(5)의 일면과 동일한 면이라 할 것이다.
한편, 제2 방사체(20)에 대한 설명은 앞서 설명한 제1 방사체(10)에 대한 설명과 기본적으로 동일한바, 예를 들어, 제2 방사체(20) 역시 제1 방사체(10)의 제1 외주부(10-1), 제2-1 외주부(10-2-1), 제2-2 외주부(10-2-2) 및 제2-3 외주부(10-2-3)를 포함하는 제2 외주부(10-2), 제1 비아(12-1) 및 제2 비아(12-2)에 대응되는 구성을 포함할 수 있으며, 이들 구성들에 대한 세부적인 설명들 역시 제2 방사체(20)에 동일하게 적용될 수 있다.
이 경우, 제1 방사체(10)와 제2 방사체(20)는 형상이 동일할 것인바, 제1 방사체(10)의 제1 형상과 제2 방사체(20)의 제2 형상은 동일한 형상일 수 있다. 그러나 제1 방사체(10)와 제2 방사체(20)는 서로 대칭 관계에 있지는 않은바, 제1 방사체(10)와 제2 방사체(20)는 크기가 상이할 수 있다.
도 1을 참조하면, 제1 방사체(10)의 수평 방향의 길이와 제2 방사체(20)의 수평 방향의 길이는 동일하고, 제1 방사체(10)의 수직 방향의 길이(D1)과 제2 방사체(20)의 수직 방향의 길이(D2)가 상이함을 확인할 수 있는바, 도 1에는 제1 방사체(10)의 수직 방향의 길이(D1)가 제2 방사체(20)의 수직 방향의 길이(D2) 보다 긴 것으로 도시되어 있으나, 경우에 따라 제1 방사체(10)의 수직 방향의 길이(D1)가 제2 방사체(20)의 수직 방향의 길이(D2) 이상으로 구현할 수 있으며, 그에 따라 제1 방사체(10)와 제2 방사체(20)는 크기, 수직 방향의 길이 및 면적(넓이)이 상이해질 수 있다.
한편, 제2 방사체(20)가 제1 방사체(10)와 이격하여 배치된 소정 거리는 일종의 슬롯(Slot)으로 볼 수 있으며, 0.1mm 내지 0.2mm 사이 중 어느 하나를 소정 거리로 설정함으로써 동작 주파수 대역 또는 공진 조정을 위한 안테나 튜닝이 가능할 것이다.
이러한 제2 방사체(20)는 동작을 위한 급전 신호를 별도의 급전부를 통해 직접 공급 받는 것이 아니라, 후술할 급전부(30)가 제1 방사체(10)에 공급한 급전 신호를 전자기 결합(커플링 결합)을 통해 제공받을 수 있으며, 이 경우 급전부(30)가 제1 방사체(10)에 공급한 급전 신호는 이격된 소정 거리를 거쳐 제2 방사체(20)에 제공될 수 있을 것이다.
한편, 제2 방사체(20)는 제1 방사체(10)와의 관계에 있어서 일종의 기생 소자의 역할을 수행하는바, 이는 동작 주파수 대역 및 공진에 관한 사항이며, 후술할 도 6 및 도 7에 대한 설명에서 자세히 설명하도록 한다.
급전부(30)는 제1 방사체(10)에 급전 신호를 공급한다.
여기서 급전부(30)는 제1 방사체(10)의 제2-3 외주부(10-2-3)와 직접 연결되거나 제1 방사체(10)를 구현함에 있어서 일체로 구현하여 제2-3 외주부(10-2-3)로부터 연장 형성할 수도 있다.
이러한 급전부(30)는 제1 방사체(10)에 급전 신호를 직접적으로 공급하며, 제1 방사체(10)에 공급한 급전 신호는 전자기 결합(커플링 결합)을 통해 제2 방사체(20)로 공급됨은 앞서 설명하였다.
지금까지 본 발명의 제1 실시 예에 따른 패치 안테나(100)가 포함하는 구성에 대하여 설명하였다. 본 발명에 따르면 제1 방사체(10) 및 제2 방사체(20)의 구체적인 형상, 크기의 차이 그리고 제1 방사체(10)와 제2 방사체(10) 사이의 소정 거리에 따라 넓은 대역폭과 빔 폭을 나타냄으로써 USRR의 BSD 기능을 완벽하게 수행할 수 있는바, 이하 이를 구체적인 시뮬레이션 결과와 함께 설명하도록 한다.
도 5는 단일 방사체를 이용하여 구현한 종래의 패치 안테나의 예시적인 모습에 대한 상면도이며, 도 6은 도 5에 도시된 종래의 패치 안테나와 본 발명의 제1 실시 예에 따른 패치 안테나(100)의 대역 특성에 대한 시뮬레이션 결과, 도 7은 도 5에 도시된 종래의 패치 안테나와 본 발명의 제1 실시 예에 따른 패치 안테나(100)의 빔 폭에 대한 시뮬레이션 결과를 도시한 도면이다. 아울러, 도 6 및 도 7에서 □ 표시된 시뮬레이션 결과는 본 발명의 제1 실시 예에 따른 패치 안테나(100)에 대한 시뮬레이션 결과이며, △ 표시된 그래프는 도 5에 도시된 종래의 패치 안테나의 시뮬레이션 결과이고, 이하의 설명을 이어감에 있어서 도 5에 도시된 종래의 패치 안테나는 공지 기술에 해당하기 때문에 자세한 설명은 생략하도록 한다.
도 6을 참조하면, 도 5에 도시된 종래의 패치 안테나의 대역폭은 m1 내지 m2인 77.79GHz-80.4GHz이며, 본 발명의 제1 실시 예에 따른 패치 안테나(100)의 대역폭은 m3 내지 m4인 77.11GHz-81.06GHz임을 확인할 수 있는바, 본 발명의 제1 실시 예에 따른 패치 안테나(100)의 대역폭이 도 5에 도시된 종래의 패치 안테나의 대역폭보다 광대역인 것을 확인할 수 있다.
이 경우, 도 5에 도시된 종래의 패치 안테나의 대역폭은 77.79GHz-80.4GHz인바, USRR에서 요구하는 대역폭인 77-81GHz을 커버하기에는 77.79GHZ 이하의 영역에서 0.79GHz만큼, 80.4GHz 이상의 영역에서 0.6GHz 만큼이 결여된다.
그러나 본 발명의 제1 실시 예에 따른 패치 안테나(100)의 대역폭은 77.11GHz-81.06GHz인바, 81.06GHz 이상의 영역에서는 부족함이 전혀 없으며, 77.11GHz 이하의 영역에서는 0.11GH만큼 결여되나, 이는 무시할 수 있을 정도로 미세한 수준이므로, 결과적으로 USRR에서 요구하는 대역폭인 77-81GHz을 전부 커버할 수 있는 광대역의 구현이 가능하다.
도 7을 참조하면, 도 5에 도시된 종래의 패치 안테나의 빔 폭은 m2 내지 m3인 133.2°이며, 본 발명의 제1 실시 예에 따른 패치 안테나(100)의 빔 폭은 m5 내지 m6인 160.2°임을 확인할 수 있는바, 본 발명의 제1 실시 예에 따른 패치 안테나(100)의 빔 폭이 도 5에 도시된 종래의 패치 안테나의 빔 폭보다 넓은 것을 확인할 수 있다.
이 경우, 도 5에 도시된 종래의 패치 안테나의 빔 폭은 133.2 인바, USRR에서 요구하는 빔 폭인 150°를 커버하기에는 16.8° 만큼이 결여된다.
그러나 본 발명의 제1 실시 예에 따른 패치 안테나(100)의 빔 폭은 160.2°인바, USRR에서 요구하는 빔 폭인 150°를 전부 커버할 수 있는 빔 폭의 구현이 가능하다.
이상 도 6 및 도 7을 참조하여 설명한 바와 같이 본 발명의 제1 실시 예에 따른 패치 안테나(100)는 USRR에서 요구하는 대역폭과 빔 폭을 모두 만족시킬 수 있는바, 이는 제1 방사체(10)가 제1 동작 주파수 대역 내에서 동작하며, 제1 동작 주파수 대역 내에서 공진이 이루어지도록 튜닝되고, 제2 방사체(20)가 제1 동작 주파수 대역 이후인 제2 동작 주파수 대역 내에서 동작하며, 제1 동작 주파수 대역 및 상기 제2 동작 주파수 대역 내에서 공진이 이루어지지 않도록 튜닝되기 때문이다. 여기서 제1 방사체(10) 및 제2 방사체(20)의 세부적인 튜닝은 앞서 설명한 제1 방사체(10) 및 제2 방사체(20)의 구체적인 형상, 크기의 차이 그리고 제1 방사체(10)와 제2 방사체(10) 사이의 소정 거리의 조정으로 볼 수 있는바, 본 발명의 제1 실시 예에 따른 패치 안테나(100) 자체의 독자적인 기술적 특징으로 볼 수 있다. 아울러 이는 종래의 패치 안테나와 같이 메인 방사체와 기생 소자의 공진을 인접시켜 대역폭 및 빔 폭을 확장시키는 것이 아니라, 하나의 메인 방사체(제1 방사체)에 따른 하나의 공진의 대역을 확장시키는 새롭고 진보적인 기술적 특징으로 볼 수 있을 것이다.
도 8은 본 발명의 제2 실시 예에 따른 배열 안테나(1000)의 상면도이다.
본 발명의 제2 실시 예에 따른 배열 안테나(1000)는 복수 개의 패치 안테나(100) 및 공통 급전부(300)을 포함할 수 있으며, 기타 본 발명의 목적을 달성함에 있어서 요구되는 통상적인 구성들을 더 포함할 수 있음은 물론이다.
복수 개의 패치 안테나(100)는 앞서 설명한 본 발명의 제1 실시 예에 따른 패치 안테나(100)인바, 중복 서술을 방지하기 위해 자세한 설명은 생략하도록 한다.
공통 급전부(300)는 본 발명의 제1 실시 예에 따른 패치 안테나(100)나 각각이 포함하는 급전부(30)와 연결되어 급전 신호를 공급하는바, 그에 따라 각각의 급전부(30)에 급전 신호가 직접적으로 공급될 수 있으며, 앞서 설명한 바와 같이 급전부(30)에 공급된 급전 신호는 제2 방사체(20)로 공급될 수 있다.
이상 첨부된 도면을 참조하여 본 발명의 실시 예들을 설명하였지만, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.

Claims (11)

  1. 기판;
    상기 기판 상에 배치된 제1 형상의 제1 방사체;
    상기 기판 상에 배치되며, 상기 제1 방사체와 소정 거리 이격하여 배치된 제2 형상의 제2 방사체; 및
    상기 제1 방사체에 급전 신호를 공급하는 급전부;
    를 포함하는 배열 안테나에 있어서,
    상기 제1 방사체는,
    수평 방향으로 일자로 형성된 제1 외주부; 및
    상기 제1 외주부의 양단에서 수직 방향으로 형성된 제2 외주부;
    를 포함하는,
    패치 안테나.
  2. 제1항에 있어서,
    상기 제1 형상 및 제2 형상은,
    형상이 동일하며,
    상기 제1 방사체 및 제2 방사체는,
    크기가 상이한,
    패치 안테나.
  3. 제1항에 있어서,
    상기 제2 외주부는,
    수직 방향으로 일자로 형성된 제2-1 외주부;
    상기 제2-1 외주부의 일단에서 상기 제1 방사체의 중심 방향으로 굴곡 형성된 제2-2부; 및
    상기 제2-2 외주부의 일단에서 수평 방향으로 일자로 형성된 제2-3부;
    를 더 포함하는 패치 안테나.
  4. 제3항에 있어서,
    상기 제2-2 외주부의 내부 공간에 형성된 제1 비아(Via) 및 제2 비아;
    를 더 포함하는 패치 안테나.
  5. 제4항에 있어서,
    상기 제1 외주부로부터 상기 제1 비아 및 제2 비아 사이의 최단 거리는,
    상기 제1 외주부로부터 상기 제2-3 외주부 사이의 최단 거리 이하인,
    패치 안테나.
  6. 제4항에 있어서,
    상기 제1 비아의 중심과 제2 비아의 중심 사이의 거리는,
    2/λ 이하인,
    배열 안테나
  7. 제3항에 있어서,
    상기 급전부는,
    상기 제2-3 외주부와 직접 연결되거나 상기 제2-3 외주부로부터 연장 형성되어 상기 제1 방사체에 급전 신호를 공급하는,
    패치 안테나.
  8. 제3항 내지 제7항 중 어느 한 항에 있어서,
    상기 제1 방사체 및 제2 방사체는,
    수평 방향의 길이는 동일하며,
    수직 방향의 길이는 상이한,
    패치 안테나.
  9. 제1항에 있어서,
    상기 제1 방사체는,
    제1 동작 주파수 대역 내에서 동작하며,
    상기 제1 동작 주파수 대역 내에서 공진이 이루어지도록 튜닝되고,
    상기 제2 방사체는,
    상기 제1 동작 주파수 대역 이후인 제2 동작 주파수 대역 내에서 동작하며,
    상기 제1 동작 주파수 대역 및 상기 제2 동작 주파수 대역 내에서 공진이 이루어지지 않도록 튜닝되는,
    패치 안테나.
  10. 제1항에 있어서,
    상기 소정 거리는,
    0.1mm 내지 0.2mm인,
    패치 안테나.
  11. 제1항에 있어서,
    상기 패치 안테나를 복수 개 포함하며,
    상기 복수 개의 패치 안테나에 급전 신호를 공급하며, 상기 급전부와 연결된 공통 급전부;
    를 더 포함하는 배열 안테나.
PCT/KR2019/006923 2019-06-10 2019-06-10 패치 안테나 및 이를 포함하는 배열 안테나 WO2020251064A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/KR2019/006923 WO2020251064A1 (ko) 2019-06-10 2019-06-10 패치 안테나 및 이를 포함하는 배열 안테나
US17/610,373 US11923625B2 (en) 2019-06-10 2019-06-10 Patch antenna and array antenna comprising same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2019/006923 WO2020251064A1 (ko) 2019-06-10 2019-06-10 패치 안테나 및 이를 포함하는 배열 안테나

Publications (1)

Publication Number Publication Date
WO2020251064A1 true WO2020251064A1 (ko) 2020-12-17

Family

ID=73782042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/006923 WO2020251064A1 (ko) 2019-06-10 2019-06-10 패치 안테나 및 이를 포함하는 배열 안테나

Country Status (2)

Country Link
US (1) US11923625B2 (ko)
WO (1) WO2020251064A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220224012A1 (en) * 2019-06-10 2022-07-14 Atcodi Co., Ltd Patch antenna and array antenna comprising same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100156725A1 (en) * 2008-12-23 2010-06-24 Thales Dual Polarization Planar Radiating Element and Array Antenna Comprising Such a Radiating Element
KR20140101657A (ko) * 2013-02-11 2014-08-20 삼성전자주식회사 초광대역 다이폴 안테나
KR20150070356A (ko) * 2012-10-15 2015-06-24 갭웨이브스 에이비 자기 접지형 안테나 장치
KR20170028598A (ko) * 2015-09-04 2017-03-14 현대모비스 주식회사 패치 어레이 안테나 및 이를 구비하는 레이더 신호 송수신 장치
KR20170051046A (ko) * 2015-11-02 2017-05-11 주식회사 에스원 배열 안테나

Family Cites Families (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5400040A (en) * 1993-04-28 1995-03-21 Raytheon Company Microstrip patch antenna
US5408241A (en) * 1993-08-20 1995-04-18 Ball Corporation Apparatus and method for tuning embedded antenna
US5594455A (en) * 1994-06-13 1997-01-14 Nippon Telegraph & Telephone Corporation Bidirectional printed antenna
KR100207600B1 (ko) * 1997-03-31 1999-07-15 윤종용 공진기 부착형 마이크로스트립 다이폴 안테나 어레이
US6049309A (en) * 1998-04-07 2000-04-11 Magellan Corporation Microstrip antenna with an edge ground structure
US6466176B1 (en) * 2000-07-11 2002-10-15 In4Tel Ltd. Internal antennas for mobile communication devices
US7019697B2 (en) * 2003-08-08 2006-03-28 Paratek Microwave, Inc. Stacked patch antenna and method of construction therefore
US7557755B2 (en) * 2005-03-02 2009-07-07 Samsung Electronics Co., Ltd. Ultra wideband antenna for filtering predetermined frequency band signal and system for receiving ultra wideband signal using the same
TWI256177B (en) * 2005-07-13 2006-06-01 Jabil Circuit Taiwan Ltd Quadrifilar spiral antenna structure without coaxial cable
TWI275205B (en) * 2005-12-07 2007-03-01 Compal Electronics Inc Planar antenna structure
US7450072B2 (en) * 2006-03-28 2008-11-11 Qualcomm Incorporated Modified inverted-F antenna for wireless communication
US7453402B2 (en) * 2006-06-19 2008-11-18 Hong Kong Applied Science And Research Institute Co., Ltd. Miniature balanced antenna with differential feed
KR100847144B1 (ko) * 2006-09-29 2008-07-18 한국전자통신연구원 Pcb 프린트 타입의 듀얼 밴드 패치 안테나 및 이를일체화한 무선통신 모듈
EP2081251B1 (en) * 2008-01-15 2018-07-11 HMD Global Oy Patch antenna
US8063832B1 (en) * 2008-04-14 2011-11-22 University Of South Florida Dual-feed series microstrip patch array
TWI372488B (en) * 2008-08-11 2012-09-11 Unictron Technologies Corp Circularly polarized antenna
KR101484749B1 (ko) * 2008-08-19 2015-01-21 삼성전자주식회사 안테나장치
TWI352454B (en) * 2009-08-14 2011-11-11 Htc Corp Planar antenna with isotropic radiation pattern
KR101067118B1 (ko) * 2009-12-08 2011-09-22 고려대학교 산학협력단 다층 기판에 내장된 유전체 공진기 안테나
US8482465B1 (en) * 2010-01-10 2013-07-09 Stc.Unm Optically pumped reconfigurable antenna systems (OPRAS)
EP2487754A3 (en) * 2010-09-01 2012-11-07 Sony Corporation Antenna, communication module, communication system, position estimating device, position estimating method, position adjusting device, and position adjusting method
CN102386482B (zh) * 2010-09-06 2014-06-18 光宝电子(广州)有限公司 多回圈天线系统及具有该多回圈天线系统的电子装置
KR101277894B1 (ko) * 2011-05-23 2013-06-21 주식회사 에이스테크놀로지 레이더 배열 안테나
TWI499127B (zh) * 2012-05-11 2015-09-01 Wistron Corp 天線結構
JP6318392B2 (ja) * 2013-06-18 2018-05-09 日本無線株式会社 2ポートトリプレート線路−導波管変換器
KR20150022067A (ko) * 2013-08-21 2015-03-04 엘지이노텍 주식회사 레이더 시스템의 안테나 장치
KR102151425B1 (ko) * 2014-08-05 2020-09-03 삼성전자주식회사 안테나 장치
US10020594B2 (en) * 2015-10-21 2018-07-10 Gwangji Institute of Science and Technology Array antenna
TWM524568U (zh) * 2016-01-25 2016-06-21 智邦科技股份有限公司 倒f型天線結構
EP3242358B1 (en) * 2016-05-06 2020-06-17 Amphenol Antenna Solutions, Inc. High gain, multi-beam antenna for 5g wireless communications
CN108270075A (zh) * 2016-12-30 2018-07-10 鸿富锦精密电子(郑州)有限公司 多频带天线及应用该天线的电子装置
CN107134646A (zh) * 2017-05-25 2017-09-05 东莞质研工业设计服务有限公司 天线
KR102402411B1 (ko) * 2017-06-28 2022-05-27 삼성전자주식회사 안테나 장치 및 안테나를 포함하는 전자 장치
US10158384B1 (en) * 2017-09-08 2018-12-18 Apple Inc. Electronic devices with indirectly-fed adjustable slot elements
US10892561B2 (en) * 2017-11-15 2021-01-12 Mediatek Inc. Multi-band dual-polarization antenna arrays
CN109951205B (zh) * 2017-12-20 2021-04-20 立积电子股份有限公司 无线信号收发装置
KR102481505B1 (ko) * 2018-06-11 2022-12-26 엘지이노텍 주식회사 안테나
US20200021010A1 (en) * 2018-07-13 2020-01-16 Qualcomm Incorporated Air coupled superstrate antenna on device housing
JP7107105B2 (ja) * 2018-08-30 2022-07-27 Tdk株式会社 アンテナ
DE102018218897A1 (de) * 2018-11-06 2020-05-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Dreidimensionale Antennenvorrichtung mit mindestens einem zusätzlichen Radiator
KR102584727B1 (ko) * 2018-12-21 2023-10-05 삼성전자주식회사 안테나 모듈 및 이를 포함하는 전자 장치
JP2020120262A (ja) * 2019-01-23 2020-08-06 ソニーセミコンダクタソリューションズ株式会社 アンテナおよびミリ波センサ
WO2020251064A1 (ko) * 2019-06-10 2020-12-17 주식회사 에이티코디 패치 안테나 및 이를 포함하는 배열 안테나
WO2020258199A1 (zh) * 2019-06-28 2020-12-30 瑞声声学科技(深圳)有限公司 Pcb天线
KR102607538B1 (ko) * 2019-08-08 2023-11-28 삼성전기주식회사 안테나 장치
KR20210050435A (ko) * 2019-10-28 2021-05-07 동우 화인켐 주식회사 안테나 구조체 및 이를 포함하는 디스플레이 장치
CN110768006A (zh) * 2019-10-31 2020-02-07 Oppo广东移动通信有限公司 天线模组及电子设备
EP3883051A1 (en) * 2020-03-19 2021-09-22 Maritime IoT Solutions BV Antenna array module
JPWO2022038879A1 (ko) * 2020-08-21 2022-02-24
KR20220070991A (ko) * 2020-11-23 2022-05-31 삼성전기주식회사 안테나 장치
US20230078966A1 (en) * 2021-09-14 2023-03-16 Rogers Corporation Electromagnetic waveguide
US20230253709A1 (en) * 2022-01-07 2023-08-10 Analog Devices International Unlimited Company Phased antenna array with perforated and augmented antenna elements

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100156725A1 (en) * 2008-12-23 2010-06-24 Thales Dual Polarization Planar Radiating Element and Array Antenna Comprising Such a Radiating Element
KR20150070356A (ko) * 2012-10-15 2015-06-24 갭웨이브스 에이비 자기 접지형 안테나 장치
KR20140101657A (ko) * 2013-02-11 2014-08-20 삼성전자주식회사 초광대역 다이폴 안테나
KR20170028598A (ko) * 2015-09-04 2017-03-14 현대모비스 주식회사 패치 어레이 안테나 및 이를 구비하는 레이더 신호 송수신 장치
KR20170051046A (ko) * 2015-11-02 2017-05-11 주식회사 에스원 배열 안테나

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220224012A1 (en) * 2019-06-10 2022-07-14 Atcodi Co., Ltd Patch antenna and array antenna comprising same
US11923625B2 (en) * 2019-06-10 2024-03-05 Atcodi Co., Ltd Patch antenna and array antenna comprising same

Also Published As

Publication number Publication date
US11923625B2 (en) 2024-03-05
US20220224012A1 (en) 2022-07-14

Similar Documents

Publication Publication Date Title
US4291312A (en) Dual ground plane coplanar fed microstrip antennas
US4197544A (en) Windowed dual ground plane microstrip antennas
US4291311A (en) Dual ground plane microstrip antennas
WO2016076601A1 (ko) 이동통신 기지국 안테나
WO2011062416A2 (ko) 서로 다른 평면에 배치되는 방사소자들의 설치 방법 및 이를 이용한 안테나
WO2015041422A1 (ko) 안테나 장치 및 그를 구비하는 전자 기기
WO2015174621A1 (ko) 안테나 장치
WO2012165797A2 (en) Antenna structure
US6661386B1 (en) Through glass RF coupler system
WO2010076982A2 (ko) 무한 파장 안테나 장치
GB2147744A (en) A radiating device with an improved microstrip structure and its application to an adaptable antenna
WO2018236174A1 (ko) 고 이득 안테나
US20120038519A1 (en) Multi-loop antenna system and electronic apparatus having the same
WO2022103159A1 (ko) 안테나 모듈 및 이를 포함하는 무선 통신 단말기
WO2020251064A1 (ko) 패치 안테나 및 이를 포함하는 배열 안테나
EP4213301A1 (en) Antenna and preparation method therefor, and millimeter-wave sensor and terminal
WO2019128181A1 (zh) 微带天线和电视机
EP0956614B1 (en) Microstrip distribution array for group antenna and such group antenna
WO2018088669A1 (en) Antenna device including parabolic-hyperbolic reflector
WO2010067930A1 (ko) 소형 이중대역 복사 소자
CA1214545A (en) Broadband diamond-shaped antenna
WO2021071143A1 (ko) 차량용 스마트 안테나 모듈
WO2010101378A2 (ko) 메타머티리얼을 이용한 다중 대역 및 광대역 안테나 및 이를 포함하는 통신장치
WO2016056715A1 (en) Directional mimo antenna using electro-polarization
EP3516738A1 (en) Antenna device including parabolic-hyperbolic reflector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19932787

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 22.04.22.)

122 Ep: pct application non-entry in european phase

Ref document number: 19932787

Country of ref document: EP

Kind code of ref document: A1