WO2018236174A1 - 고 이득 안테나 - Google Patents

고 이득 안테나 Download PDF

Info

Publication number
WO2018236174A1
WO2018236174A1 PCT/KR2018/007057 KR2018007057W WO2018236174A1 WO 2018236174 A1 WO2018236174 A1 WO 2018236174A1 KR 2018007057 W KR2018007057 W KR 2018007057W WO 2018236174 A1 WO2018236174 A1 WO 2018236174A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens unit
planar lens
radiation
gain
present
Prior art date
Application number
PCT/KR2018/007057
Other languages
English (en)
French (fr)
Inventor
김병남
장인석
Original Assignee
주식회사 센서뷰
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 센서뷰 filed Critical 주식회사 센서뷰
Publication of WO2018236174A1 publication Critical patent/WO2018236174A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism

Definitions

  • the present invention relates to an antenna, and more particularly, to a high gain antenna usable in a millimeter wave.
  • the RF signal In the millimeter wave band, the RF signal has very different characteristics from the transmission characteristics in the low frequency band.
  • the RF signal in the millimeter wave band has very steep path cabin characteristics, and as the transmission distance increases, the magnitude of the RF signal rapidly decreases.
  • the RF signal has poor transmission characteristics to obstacles in the presence of obstacles.
  • the present invention has been made to solve the above problems, and it is an object of the present invention to provide a high gain antenna that can be used in a millimeter wave band.
  • the present invention is conceived to achieve the above-mentioned object, and it is an object of the present invention to provide a radio frequency (RF) A planar lens unit located on the radiation portion and including a planar lens and a plurality of metal patterns formed on the planar lens; And a 3D lens unit positioned on the plane lens unit and having a 3D lens structure.
  • RF radio frequency
  • the plurality of metal patterns form an array structure, and holes are formed in at least one of the plurality of metal patterns.
  • the shapes and sizes of the holes formed in the at least one metal pattern are set to be different from each other.
  • the radiation section includes a substrate and at least one radiation patch formed on the substrate.
  • At least one first post for supporting the planar lens unit is formed in the radiation unit such that the planar lens unit is spaced apart from the radiation unit by a predetermined distance.
  • At least one second post for supporting the 3D lens unit is formed on the planar lens unit so that the 3D lens unit is spaced apart from the planar lens unit by a predetermined distance.
  • the planar lens unit has a vertically movable structure.
  • a radio communication apparatus including: a radiation section for radiating an RF signal; There is provided a high gain antenna including a planar lens and a planar lens portion located on the radiation portion and including a plurality of metal patterns formed on the planar lens, wherein the plurality of metal patterns form an array structure.
  • the antenna according to the present invention has an advantage that an appropriate gain and beam width can be realized even in a millimeter wave band.
  • FIG. 1 is an exploded perspective view of a high gain antenna according to an embodiment of the present invention.
  • FIG. 2 is a perspective view of a high gain antenna according to an embodiment of the present invention.
  • FIG 3 shows a structure of a radiation part according to an embodiment of the present invention.
  • FIG. 4 is a view showing the structure of a planar lens portion according to one embodiment of the present invention.
  • FIG. 5 is a view showing a structure of a 3D lens unit according to an embodiment of the present invention.
  • FIG. 6 illustrates a structure of a planar lens unit according to another embodiment of the present invention.
  • FIG. 7 is a table showing the gain and the beam width when only the radiation part exists in the antenna of the present invention.
  • FIG. 8 is a table showing a gain and a beam width when only a planar lens having no metal pattern formed on an upper part of the radiation part in the antenna of the present invention is applied.
  • FIG. 9 is a table showing gain and beam width when a planar lens having a metal pattern formed on an upper part of a radiation part in the antenna of the present invention is applied.
  • FIG. 10 is a table showing gain and beam width of an antenna (a structure in which a 3D lens portion is applied to the antenna of FIG. 9) according to an embodiment of the present invention.
  • FIG. 1 is an exploded perspective view of a high-gain antenna according to an embodiment of the present invention
  • FIG. 2 is a perspective view of a high-gain antenna according to an embodiment of the present invention.
  • a high gain antenna includes a radiation unit 100, a planar lens unit 200, and a 3D lens unit 300.
  • the radiation unit 100 includes a radiator for radiating an RF signal, which is located at the bottom of the high gain antenna according to an exemplary embodiment of the present invention.
  • the planar lens unit 200 may be located at an upper portion of the radiation unit 100 and may be directly coupled to the radiation unit 100 or may be spaced apart from the radiation unit by a predetermined distance.
  • the planar lens unit 300 primarily functions to improve the gain of the RF signal radiated from the radiation unit 100.
  • a plurality of metal patterns are formed in the planar lens portion, and the plurality of metal patterns formed serve to increase the gain of the RF signal radiated from the radiation portion 100.
  • the 3D lens unit 300 may be disposed on the planar lens unit 200 and may be directly coupled to the planar lens unit 200 or may be spaced apart from the planar lens unit by a predetermined distance.
  • the 3D lens unit 300 functions to improve the gain of the RF signal emitted from the radiation unit 100 together with the planar lens unit 200.
  • the present invention is a structure in which the planar lens unit 200 and the 3D lens unit 300 are additionally coupled to the radiation unit 100, and a detailed structure of each component will be described below.
  • FIG 3 is a view showing a structure of a radiating part according to an embodiment of the present invention.
  • a radiation unit includes a dielectric plate 110, a substrate 120, a feeding unit 130, and a plurality of radiation patches 140, 150, 160, and 170.
  • the dielectric plate 110 is coupled to the substrate 120 and functions as the body of the radiation section 100.
  • the dielectric plate 110 may be made of a ceramic material and may have a rectangular parallelepiped structure as shown in FIGS.
  • the feeder 130 is provided with a feed signal.
  • a feed signal may be provided to the feeder 110 via a coaxial cable, and a signal provided to the feeder 130 may be branched and provided to a plurality of the radiation patches 140, 150, 160, and 170.
  • the plurality of radiation patches 140, 150, 160, and 170 radiate a power feed signal provided through the feeder 130 to the outside. Although the case of radiating an RF signal using four radiation patches 140, 150, 160, and 170 is shown, the number of radiation patches may vary widely depending on the required radiation gain and radiation pattern.
  • FIG. 3 shows the case where a radiation patch is used as the radiator for radiation, it will be apparent to those skilled in the art that other types of radiators may be used in addition to the radiation patch.
  • a plurality of first posts 180 may be coupled to the substrate.
  • the first post 180 is formed to set a distance between the planar lens unit 200 and the substrate 120 and supports the planar lens unit 200. If the planar lens unit 200 is directly coupled to the substrate 120, the first post 180 may not be formed.
  • a plurality of radiation patches 140, 150, 160, 170 emit RF signals upwardly with respect to the substrate 120.
  • FIG. 4 is a view showing a structure of a planar lens unit according to an embodiment of the present invention.
  • the planar lens unit 200 includes a planar lens 210 and a plurality of metal patterns 220 formed on a planar lens.
  • the planar lens 210 enhances the gain of the signal radiated from the radiation patches 140, 150, 160, 170 of the radiation portion 100. [ As shown in FIGS. 1 and 4, the planar lens 210 has a rectangular plate shape.
  • FIG. 4 shows a case where a square metal pattern forms an array with a square structure as a whole.
  • the plurality of metal patterns are arranged at predetermined intervals, and the spacing is preferably the same, but is not limited thereto.
  • a hole 230 is formed in each metal pattern forming the array. It has been confirmed through experiments that the metal pattern forming the array and the holes formed in each metal pattern significantly increase the gain of the antenna when the metal pattern having holes is applied to the planar lens portion as the characteristic structure of the present invention. Experimental results will be described later in a separate drawing.
  • the shape of the holes formed in each metal pattern may vary. For example, various shapes such as a circle, a square, and a rhombus shape can be employed in the form of holes of each metal pattern.
  • the shape of holes of each metal pattern may be the same for each metal pattern.
  • holes having different shapes may be applied to the metal pattern. For example, a circular hole may be formed in the first group of metal patterns, and a rhombic hole may be formed in the second group of metal patterns.
  • FIG. 6 is a view illustrating a structure of a planar lens unit according to another embodiment of the present invention.
  • the planar lens unit according to another embodiment of the present invention includes a plurality of metal patterns 600, and holes 610 are formed in each of the plurality of metal patterns, Holes are formed.
  • relatively large holes are formed in the metal patterns located at the outer periphery of the metal pattern array, and relatively small holes are formed in the metal patterns located therein.
  • holes of different sizes may be formed for each metal pattern group, and the size and shape of the holes may be determined based on the required gain and radiation pattern.
  • the formation of a metal pattern on a planar lens may be implemented in a variety of ways. For example, plastic plating, metal printing, etc. may be used to form a plurality of metal pattern arrays of planar lenses.
  • a plurality of second posts 280 may be coupled to the planar lens 210.
  • the second post 180 is formed to set a separation distance between the planar lens unit 200 and the 3D lens unit 300 and supports the 3D lens unit 300.
  • FIG. 5 is a view showing a structure of a 3D lens unit according to an embodiment of the present invention.
  • the 3D lens unit has the form of a convex lens.
  • the 3D lens unit 300 improves the gain of the signal radiated with the planar lens unit 200. If various types of 3D lenses are known, various known 3D lenses may be used as the 3D lens part.
  • the millimeter wave band antenna requires a higher gain than that of the conventional antenna because there is a problem in that significant path loss occurs and the obstacle does not pass therethrough.
  • the present invention applies a metal pattern in which a hole is formed in a planar lens while coupling a planar lens and a 3D lens.
  • the planar lens unit 200 may have a structure capable of moving up and down.
  • the planar lens unit 200 moves upward, the planar lens unit 200 approaches the 3D lens unit 300 and moves away from the radiation unit 100.
  • the planar lens unit 200 moves downward, the planar lens unit 200 approaches the radiation unit 100 and moves away from the 3D lens unit 300.
  • the gain and the beam width of the antenna can be adjusted, and the planar lens unit 200 is moved so that the required beam width and gain are realized.
  • the up and down movement of the planar lens unit 200 may be implemented in various ways.
  • the planar lens unit 200 may be moved up and down using a step motor.
  • a step motor Of course, it will be apparent to those skilled in the art that a variety of moving structures other than step motors can be applied.
  • FIG. 7 is a table showing the gain and the beam width when only the radiation part exists in the antenna of the present invention.
  • Figure 7 shows gain and beam width for azimuth and elevation for 27.5 GHz, 28 GHz and 28.5 GHz.
  • the gain for the azimuth is 11.2 dBi
  • the beam width is 59.9 degrees
  • the gain for elevation is 11.2
  • the beam width is 38.5 degrees.
  • FIG. 8 is a table showing a gain and a beam width when only a planar lens having no metal pattern formed on the radiation part of the antenna of the present invention is applied.
  • the gain for the azimuth at 27.5 GHz is 13.0 dBi and the beam width is 33.9 degrees. Also, the gain for the altitude is 13.0 dBi and the beam width is 31.4 degrees.
  • FIG. 8 shows that the gain is increased and the beam width is decreased compared with the result of FIG. 7 in which only the radiation portion is present.
  • FIG. 9 is a table showing gain and beam width when a planar lens having a metal pattern formed on an upper part of a radiation part of the antenna of the present invention is applied.
  • the gain for the azimuth at 27.5 GHz is 14.2 dBi and the beam width is 21.1 degrees. Also, the gain for the altitude is 14.2 dBi and the beam width is 19.5 degrees.
  • FIG. 9 shows that the gain is increased and the beam width is decreased in comparison with the result of FIG. 8 in which no metal pattern is formed.
  • FIG. 10 is a table showing gain and beam width of an antenna (a structure in which a 3D lens portion is applied to the antenna of FIG. 9) according to an embodiment of the present invention.
  • the gain for the azimuth at 27.5 GHz is 22.8 dBi and the beam width is 10.7 degrees. Also, the gain for the altitude is 22.8 dBi and the beam width is 11.1 degrees.
  • FIG. 10 shows that the gain is increased and the beam width is decreased in comparison with the result of FIG. 9 in which the 3D lens portion is not applied.

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

고 이득 안테나가 개시된다. 개시된 안테나는,, RF 신호를 방사하는 방사부; 상기 방사부 위에 위치하며 평면 렌즈 및 상기 평면 렌즈상에 형성되는 다수의 금속 패턴을 포함하는 평면 렌즈부; 및 상기 평면 렌즈부 위에 위치하며 3D 렌즈 구조를 가지는 3D 렌즈부를 포함한다. 개시된 안테나는 밀리미터 웨이브 대역에서도 적절한 이득 및 빔폭을 구현할 수 있는 장점이 있다.

Description

고 이득 안테나
본 발명은 안테나에 관한 것으로서, 더욱 상세하게는 밀리미터 웨이브에서 사용 가능한 고 이득 안테나에 관한 것이다.
향후 5G 환경에서는 20GHz 이상의 밀리미터 웨이브 대역에서 통신이 이루어질 것으로 예상된다.
기존의 저주파 대역은 대부분 다양한 통신 대역으로 사용되고 있으며, 저지연 및 고속 통신을 위해 밀리미터 웨이브 대역에서의 통신은 계속적으로 증가할 것으로 예상된다.
밀리미터 웨이브 대역에서 RF 신호는 저주파 대역에서의 전송 특성과는 매우 다른 특성을 보인다. 밀리미터 웨이브 대역에서의 RF 신호는 매우 급격한 경로 선실 특성을 가지며 이로 인해 전송 거리가 증가할수록 RF 신호의 크기는 급격히 감쇠하게 된다.
또한, 밀리미터 웨이브 대역에서 RF 신호는 장애물이 존재할 경우 장애물에 대한 투과 특성이 열악한 특성이 있다.
이러한 문제들로 인해 밀리미터 웨이브 대역에서는 빔폭이 좁은 상당한 고 이득의 안테나가 요구되고 있으며, 고 이득 안테나를 구현하기 위한 다양한 연구가 이루어지고 있다.
안테나의 이득을 향상시키기 위해 3D 렌즈를 도입하는 방법이 연구되었다. 그러나, 3D 렌즈만으로는 충분한 이득을 확보하기 어려운 문제점이 있었다.
본 발명은 상기한 문제점을 해결하기 위해 안출된 것으로서, 밀리미터 웨이브 대역에서 사용 가능한 고 이득 안테나를 제안하는 것이다.
본 발명은 상기한 목적을 달성하기 위해 안출된 것으로서, RF 신호를 방사하는 방사부; 상기 방사부 위에 위치하며 평면 렌즈 및 상기 평면 렌즈상에 형성되는 다수의 금속 패턴을 포함하는 평면 렌즈부; 및 상기 평면 렌즈부 위에 위치하며 3D 렌즈 구조를 가지는 3D 렌즈부를 포함하는 고 이득 안테나가 제공된다.
상기 다수의 금속 패턴은 어레이 구조를 형성하며 다수의 금속 패턴 중 적어도 하나에는 홀이 형성된다.
상기 적어도 하나의 금속 패턴에 형성되는 홀들의 형태 및 사이즈는 서로 상이하게 설정된다.
상기 방사부는 기판 및 상기 기판 상에 형성되는 적어도 하나의 방사 패치를 포함한다.
상기 방사부에는 상기 평면 렌즈부가 상기 방사부와 소정 거리 이격되어 위에 위치하도록 상기 평면 렌즈부를 지지하는 적어도 하나의 제1 포스트가 형성된다.
상기 평면 렌즈부에는 상기 3D 렌즈부가 상기 평면 렌즈부와 소정 거리 이격되어 위치하도록 상기 3D 렌즈부를 지지하는 적어도 하나의 제2 포스트가 형성된다.
상기 평면 렌즈부는 상하로 이동 가능한 구조를 가진다.
본 발명의 다른 측면에 따르면, RF 신호를 방사하는 방사부; 상기 방사부 위에 위치하며 평면 렌즈 및 상기 평면 렌즈상에 형성되는 다수의 금속 패턴을 포함하는 평면 렌즈부를 포함하되, 상기 다수의 금속 패턴이 어레이 구조를 형성하는 고 이득 안테나가 제공된다.
본 발명에 의한 안테나는 밀리미터 웨이브 대역에서도 적절한 이득 및 빔폭을 구현할 수 있는 장점이 있다.
도 1은 본 발명의 일실시예에 따른 고이득 안테나의 분해 사시도를 나타낸 도면.
도 2는 본 발명의 일 실시예에 따른 고이득 안테나의 사시도를 나타낸 도면.
도 3은 본 발명의 일 실시예에 따른 방사부의 구조를 도시한 도면.
도 4는 본 발명의 일 실시에에 따른 평면 렌즈부의 구조를 도시한 도면.
도 5는 본 발명의 일 실시예에 따른 3D 렌즈부의 구조를 도시한 도면.
도 6은 본 발명의 다른 실시예에 따른 평면 렌즈부의 구조를 나타낸 도면.
도 7은 본 발명의 안테나에서 방사부만이 존재할 경우의 이득(Gain) 및 빔폭을 나타낸 표.
도 8은 본 발명의 안테나에서 방사부 상부에 금속 패턴이 형성되지 않은 평면 렌즈만이 적용될 경우의 이득(Gain) 및 빔폭을 나타낸 표.
도 9는 본 발명의 안테나에서 방사부 상부에 금속 패턴이 형성된 평면 렌즈가 적용될 경우의 이득 및 빔폭을 나타낸 표.
도 10은 본 발명의 일 실시예에 따른 안테나(도 9의 안테나에 3D 렌즈부가 적용된 구조)의 이득 및 빔폭을 나타낸 표.
이하, 본 발명의 바람직한 실시예를 첨부된 도면들을 참조하여 상세히 설명한다. 우선 각 도면의 구성요소들에 참조 부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다. 또한, 이하에서 본 발명의 바람직한 실시예를 설명할 것이나, 본 발명의 기술적 사상은 이에 한정하거나 제한되지 않고 당업자에 의해 변형되어 다양하게 실시될 수 있음은 물론이다.
도 1은 본 발명의 일실시예에 따른 고이득 안테나의 분해 사시도를 나타낸 도면이고, 도 2는 본 발명의 일 실시예에 따른 고이득 안테나의 사시도를 나타낸 도면이다.
도 1 및 도 2를 참조하면, 본 발명의 일 실시예에 따른 고이득 안테나는 방사부(100), 평면 렌즈부(200) 및 3D 렌즈부(300)를 포함한다.
방사부(100)는 본 발명의 일 실시예에 따른 고이득 안테나에서 가장 하부에 위치하며 RF 신호를 방사하기 위한 방사체를 구비한다.
평면 렌즈부(200)는 방사부(100)의 상부에 위치하며, 방사부(100)와 직접 결합될 수도 있고, 방사부와 소정 거리 이격되어 위치할 수도 있을 것이다. 평면 렌즈부(300)는 방사부(100)로부터 방사되는 RF 신호의 이득을 1차적으로 향상시키는 기능을 한다. 추후 자세히 설명하겠지만, 평면 렌즈부에는 다수의 금속 패턴이 형성되며, 형성되는 다수의 금속 패턴은 방사부(100)로부터 방사되는 RF 신호의 이득 증가에 기여하는 역할을 한다.
3D 렌즈부(300)는 평면 렌즈부(200) 상부에 위치하며, 평면 렌즈부(200)와 직접 결합될 수도 있고 평면 렌즈부와 소정 거리 이격되어 위치할 수도 있을 것이다. 3D 렌즈부(300)는 평면 렌즈부(200)와 함께 방사부(100)로부터 방사되는 RF 신호의 이득을 향상시키는 기능을 한다.
요컨대, 본 발명은 방사부(100)에 평면 렌즈부(200) 및 3D 렌즈부(300)가 추가적으로 결합된 구조이며 이하에서는 각 구성 요소의 상세 구조에 대해 살펴보기로 한다.
도 3은 본 발명의 일 실시예에 따른 방사부의 구조를 도시한 도면이다.
도 3을 참조하면, 본 발명의 일 실시예에 따른 방사부는 유전체 플레이트(110), 기판(120), 급전부(130) 및 다수의 방사 패치(140, 150, 160, 170)를 포함한다.
유전체 플레이트(110)는 기판(120)이 결합되며 방사부(100)의 몸체로 기능한다. 일례로, 유전체 플레이트(110)는 세라믹 재질로 이루어질 수 있으며 도 1 및 도 3에 도시된 바와 같이 직육면체 구조를 가질 수 있다.
급전부(130)로는 급전 신호가 제공된다. 예를 들어, 동축 케이블을 통해 급전부(110)로 급전 신호가 제공될 수 있으며, 급전부(130)로 제공된 신호는 분기되어 다수의 방사 패치(140, 150, 160, 170)에 제공된다.
다수의 방사 패치(140, 150, 160, 170)는 급전부(130)를 통해 제공되는 급전 신호를 외부로 방사하는 기능을 한다. 4개의 방사 패치(140, 150, 160, 170)를 이용하여 RF 신호를 방사하는 경우가 도시되어 있으나 방사 패치의 수는 요구되는 방사 이득 및 방사 패턴에 따라 다양하게 변경될 수 있을 것이다.
또한, 도 3에는 방사를 위한 방사체로 방사 패치가 사용되는 경우가 도시되어 있으나 방사 패치 이외에 다른 종류의 방사체가 사용될 수도 있다는 점 역시 당업자에게 있어 자명할 것이다.
한편, 기판에는 다수의 제1 포스트(180)가 결합될 수 있다. 제1 포스트(180)는 평면 렌즈부(200)와 기판(120)의 이격 거리를 설정하기 위해 형성되며 평면 렌즈부(200)를 지지한다. 만약, 평면 렌즈부(200)가 기판(120))에 직접 결합될 경우 제1 포스트(180)는 형성되지 않아도 무방하다.
다수의 방사 패치(140, 150, 160, 170)는 기판(120)에 대해 상향으로 RF 신호를 방사한다.
도 4는 본 발명의 일 실시에에 따른 평면 렌즈부의 구조를 도시한 도면이다.
도 4를 참조하면, 평면 렌즈부(200)는 평면 렌즈(210) 및 평면 렌즈상에 형성되는 다수의 금속 패턴(220)을 포함한다.
평면 렌즈(210)는 방사부(100)의 방사 패치(140, 150, 160, 170)로부터 방사되는 신호의 이득을 향상시킨다. 도 1 및 도 4에 도시된 바와 같이 평면 렌즈(210)는 사각판의 형태를 가지고 있다.
평면 렌즈(210)의 일 면에는 다수의 패턴이 어레이를 형성한다. 도 4에는 사각형의 금속 패턴이 전체적으로 정사각형 구조를 이루면서 어레이를 형성하는 경우가 도시되어 있다.
다수의 금속 패턴은 소정 간격으로 이격되어 배열되며, 이격 간격은 동일한 것이 바람직하나 이에 한정되지는 않는다.
본 발명의 바람직한 실시예에 따르면, 어레이를 형성하는 각각의 금속 패턴에는 홀(230)이 형성된다. 어레이를 형성하는 금속 패턴 및 각 금속 패턴에 형성되는 홀은 본 발명의 특징적 구조로서 홀이 형성된 금속 패턴을 평면 렌즈부에 적용할 때 안테나의 이득이 현저히 상승한다는 점을 실험을 통해 확인하였으며, 구체적인 실험 결과는 추후 별도의 도면을 통해 살펴보기로 한다.
각 금속 패턴에 형성되는 홀의 형태는 다양할 수 있다. 예를 들어, 원형, 사각형, 마름모 형상 등 다양한 형상이 각 금속 패턴의 홀의 형태로 채용될 수 있는 것이다.
본 발명의 일 실시예에 따르면, 각 금속 패턴의 홀의 형태는 각 금속 패턴별로 동일할 수 있다. 그러나, 본 발명의 다른 실시예에 따르면 서로 다른 형상을 가지는 홀이 금속 패턴에 적용될 수도 있을 것이다. 예를 들어, 제1 그룹의 금속 패턴들에 대해서는 원형의 홀이 형성되고, 제2 그룹의 금속 패턴 들에 대해서는 마름모 형태의 홀이 형성될 수도 있는 것이다.
도 6은 본 발명의 다른 실시예에 따른 평면 렌즈부의 구조를 나타낸 도면이다.
도 6을 참조하면, 본 발명의 다른 실시예에 따른 평면 렌즈부는 다수의 금속 패턴(600)을 포함하되, 다수의 금속 패턴 각각에는 홀(610)이 형성되며, 금속 패턴 그룹별로 서로 다른 사이즈의 홀이 형성된다.
도 6에 도시된 바와 같이, 금속 패턴 어레이에서 외곽에 위치하는 금속 패턴들에는 상대적으로 큰 홀이 형성되고, 내부에 위치하는 금속 패턴들에는 상대적으로 작은 홀이 형성된다.
이와 같이, 금속 패턴 그룹별로 서로 다른 사이즈의 홀이 형성될 수도 있으며, 홀의 크기 및 형태는 요구되는 이득 및 방사 패턴에 기초하여 결정될 수 있을 것이다.
평면 렌즈에 금속 패턴을 형성하는 것은 다양한 방법으로 구현될 수 있을 것이다. 예를 들어, 플라스틱 도금, 금속 프린팅 등이 평면 렌즈의 다수의 금속 패턴 어레이를 형성하기 위해 사용될 수 있다.
한편, 한편, 평면 렌즈(210)에는 다수의 제2 포스트(280)가 결합될 수 있다. 제2 포스트(180)는 평면 렌즈부(200)와 3D 렌즈부(300)의 이격 거리를 설정하기 위해 형성되며, 3D 렌즈부(300)를 지지한다.
도 5는 본 발명의 일 실시예에 따른 3D 렌즈부의 구조를 도시한 도면이다.
도 5를 참조하면, 본 발명의 일 실시에에 따른 3D 렌즈부는 볼록 렌즈의 형태를 가진다. 3D 렌즈부(300)는 평면 렌즈부(200)와 함께 방사되는 신호의 이득을 향상시킨다. 다양한 형태의 3D 렌즈가 공지되어 있으면, 알려진 다양한 3D 렌즈가 3D 렌즈부로 사용될 수 있을 것이다.
20GHz 이상의 밀리미터 웨이브 대역에서는 상당한 경로 손실이 발생하고 장애물이 존재할 경우 이를 투과하지 못하는 문제점이 있기 때문에 밀리미터 웨이브 대역의 안테나는 기존의 안테나에 비해 높은 이득이 요구된다. 이러한 높은 이득을 실현하기 위해 본 발명은 평면 렌즈와 3D 렌즈를 결합하면서 평면 렌즈에 홀이 형성된 금속 패턴을 적용하는 것이다.
한편, 평면 렌즈부(200)는 상하로 이동 가능한 구조를 가질 수 있다. 평면 렌즈부(200)가 상향으로 이동할 경우 평면 렌즈부(200)는 3D 렌즈부(300)에 근접하고 방사부(100)로부터 멀어지게 된다. 또한, 평면 렌즈부(200)가 하향으로 이동할 경우 평면 렌즈부(200)는 방사부(100)에 근접하고 3D 렌즈부(300)로부터 멀어지게 된다.
이와 같은 이동에 의해 안테나의 이득 및 빔폭이 조절될 수 있으며, 요구되는 빔폭 및 이득이 구현되도록 평면 렌즈부(200)를 이동시킨다.
평면 렌즈부(200)의 상하 이동은 다양한 방법으로 구현될 수 있을 것이다. 일례로 스텝 모터를 이용하여 평면 렌즈부(200)를 상하로 이동시킬 수 있을 것이다. 물론, 스텝 모터 이외에도 다양한 이동 구조가 적용될 수 있다는 점은 당업자에게 있어 자명할 것이다.
도 7은 본 발명의 안테나에서 방사부만이 존재할 경우의 이득(Gain) 및 빔폭을 나타낸 표이다.
도 7에는 27.5GHz, 28GHz 및 28.5GHz에 대해 방위(Azimuth) 및 고도(Elevation)에 대한 이득 및 빔폭이 표시되어 있다.
27.5GHz에서 방위에 대한 이득은 11.2dBi이고, 빔폭은 59.9도이며, 고도에 대한 이득은 11.2이고 빔폭은 38.5도임을 확인할 수 있다.
도 8은 본 발명의 안테나에서 방사부 상부에 금속 패턴이 형성되지 않은 평면 렌즈만이 적용될 경우의 이득(Gain) 및 빔폭을 나타낸 표이다.
도 8을 참조하면, 27.5GHz에서 방위에 대한 이득은 13.0dBi이고 빔폭은 33.9도임을 확인할 수 있다. 또한 고도에 대한 이득은 13.0dBi이고 빔폭은 31.4도임을 확인할 수 있다.
이러한 도 8의 결과는 방사부만이 존재하는 도 7의 결과와 비교해볼 대 이득은 증가하고 빔폭은 감소하는 것을 확인할 수 있다.
도 9는 본 발명의 안테나에서 방사부 상부에 금속 패턴이 형성된 평면 렌즈가 적용될 경우의 이득 및 빔폭을 나타낸 표이다.
도 9를 참조하면, 27.5GHz에서 방위에 대한 이득은 14.2dBi이고 빔폭은 21.1도임을 확인할 수 있다. 또한, 고도에 대한 이득은 14.2dBi이고 빔폭은 19.5도임을 확인할 수 있다.
이러한 도 9의 결과는 금속 패턴이 형성되지 않은 도 8의 결과와 비교해볼 때 이득은 증가하고 빔폭은 감소하는 것을 확인할 수 있다.
도 10은 본 발명의 일 실시예에 따른 안테나(도 9의 안테나에 3D 렌즈부가 적용된 구조)의 이득 및 빔폭을 나타낸 표이다.
도 10을 참조하면, 27.5GHz에서 방위에 대한 이득은 22.8dBi이고 빔폭은 10.7도임을 확인할 수 있다. 또한, 고도에 대한 이득은 22.8dBi이고 빔폭은 11.1도임을 확인할 수 있다.
이러한 도 10의 결과는 3D 렌즈부가 적용되지 않은 도 9의 결과와 비교해볼 때 이득은 증가하고 빔폭이 감소하는 것을 확인할 수 있다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위 내에서 다양한 수정, 변경 및 치환이 가능할 것이다. 따라서, 본 발명에 개시된 실시예 및 첨부된 도면들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예 및 첨부된 도면에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구 범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리 범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (10)

  1. RF 신호를 방사하는 방사부;
    상기 방사부 위에 위치하며 평면 렌즈 및 상기 평면 렌즈상에 형성되는 다수의 금속 패턴을 포함하는 평면 렌즈부; 및
    상기 평면 렌즈부 위에 위치하며 3D 렌즈 구조를 가지는 3D 렌즈부를 포함하는 것을 특징으로 하는 고 이득 안테나.
  2. 제1항에 있어서,
    상기 다수의 금속 패턴은 어레이 구조를 형성하며 다수의 금속 패턴 중 적어도 하나에는 홀이 형성되는 것을 특징으로 하는 고 이득 안테나.
  3. 제2항에 있어서,
    상기 적어도 하나의 금속 패턴에 형성되는 홀들의 형태 및 사이즈는 서로 상이한 것을 특징으로 하는 고 이득 안테나.
  4. 제1항에 있어서,
    상기 방사부는 기판 및 상기 기판 상에 형성되는 적어도 하나의 방사 패치를 포함하는 것을 특징으로 하는 고 이득 안테나.
  5. 제1항에 있어서,
    상기 방사부에는 상기 평면 렌즈부가 상기 방사부와 소정 거리 이격되어 위에 위치하도록 상기 평면 렌즈부를 지지하는 적어도 하나의 제1 포스트가 형성되는 것을 특징으로 하는 고 이득 안테나.
  6. 제5항에 있어서,
    상기 평면 렌즈부에는 상기 3D 렌즈부가 상기 평면 렌즈부와 소정 거리 이격되어 위치하도록 상기 3D 렌즈부를 지지하는 적어도 하나의 제2 포스트가 형성되는 것을 특징으로 하는 고 이득 안테나.
  7. 제1항에 있어서,
    상기 평면 렌즈부는 상하로 이동 가능한 구조를 가지는 것을 특징으로 하는 고 이득 안테나.
  8. RF 신호를 방사하는 방사부;
    상기 방사부 위에 위치하며 평면 렌즈 및 상기 평면 렌즈상에 형성되는 다수의 금속 패턴을 포함하는 평면 렌즈부를 포함하되,
    상기 다수의 금속 패턴이 어레이 구조를 형성하는 것을 특징으로 하는 고 이득 안테나.
  9. 제8항에 있어서,
    상기 다수의 금속 패턴 중 적어도 하나에는 홀이 형성되는 것을 특징으로 하는 고 이득 안테나.
  10. 제8항에 있어서,
    상기 적어도 하나의 금속 패턴에 형성되는 홀들의 형태 및 사이즈는 서로 상이한 것을 특징으로 하는 고 이득 안테나.
PCT/KR2018/007057 2017-06-22 2018-06-22 고 이득 안테나 WO2018236174A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0079150 2017-06-22
KR20170079150 2017-06-22

Publications (1)

Publication Number Publication Date
WO2018236174A1 true WO2018236174A1 (ko) 2018-12-27

Family

ID=64735802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/007057 WO2018236174A1 (ko) 2017-06-22 2018-06-22 고 이득 안테나

Country Status (2)

Country Link
KR (1) KR102026081B1 (ko)
WO (1) WO2018236174A1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020184803A1 (ko) * 2019-03-08 2020-09-17 주식회사 센서뷰 밀리미터 웨이브용 안테나 장치
KR102152180B1 (ko) * 2019-05-31 2020-09-04 주식회사 센서뷰 빔 틸트가 가능한 유전체 렌즈 안테나
KR102120455B1 (ko) * 2019-08-20 2020-06-08 연세대학교 산학협력단 광각 특성을 갖는 차량용 레이더 안테나
KR102252950B1 (ko) * 2019-11-13 2021-05-17 주식회사 한신 매칭 레이어를 갖는 광각 레이돔 구조체
KR102189242B1 (ko) * 2020-02-18 2020-12-09 국방과학연구소 입출력 피드 안테나 장치
KR102358473B1 (ko) * 2021-01-29 2022-02-08 홍익대학교 산학협력단 해상 조난 신호 전송 장치용 헬리컬 안테나 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020041254A1 (en) * 2000-09-29 2002-04-11 Fujitsu Quantum Devices Limited Patch antenna with dielectric separated from patch plane to increase gain
KR20100118889A (ko) * 2009-04-29 2010-11-08 한국전자통신연구원 메타물질 상판덮개를 이용한 이득향상과 빔 성형이 동시에 가능한 안테나
KR20110026654A (ko) * 2009-09-08 2011-03-16 한국전자통신연구원 밀리미터파 대역 패치 안테나
US20120032836A1 (en) * 2010-08-09 2012-02-09 King Abdullah University Of Science And Technology Gain Enhanced LTCC System-on-Package for UMRR Applications
JP2015216520A (ja) * 2014-05-12 2015-12-03 パナソニックIpマネジメント株式会社 アンテナ装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100415138B1 (ko) * 2001-01-20 2004-01-14 한현길 기지국용 광대역 마이크로 스트립 안테나 및 그 설계방법
JP6298715B2 (ja) * 2014-05-30 2018-03-20 日立オートモティブシステムズ株式会社 アンテナ装置およびそれを用いた速度センサ
US9812786B2 (en) * 2015-08-25 2017-11-07 Huawei Technologies Co., Ltd. Metamaterial-based transmitarray for multi-beam antenna array assemblies

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020041254A1 (en) * 2000-09-29 2002-04-11 Fujitsu Quantum Devices Limited Patch antenna with dielectric separated from patch plane to increase gain
KR20100118889A (ko) * 2009-04-29 2010-11-08 한국전자통신연구원 메타물질 상판덮개를 이용한 이득향상과 빔 성형이 동시에 가능한 안테나
KR20110026654A (ko) * 2009-09-08 2011-03-16 한국전자통신연구원 밀리미터파 대역 패치 안테나
US20120032836A1 (en) * 2010-08-09 2012-02-09 King Abdullah University Of Science And Technology Gain Enhanced LTCC System-on-Package for UMRR Applications
JP2015216520A (ja) * 2014-05-12 2015-12-03 パナソニックIpマネジメント株式会社 アンテナ装置

Also Published As

Publication number Publication date
KR20190000320A (ko) 2019-01-02
KR102026081B1 (ko) 2019-09-27

Similar Documents

Publication Publication Date Title
WO2018236174A1 (ko) 고 이득 안테나
WO2016027997A1 (ko) 이동통신 서비스용 옴니 안테나
WO2020204578A1 (en) Radiating element of antenna and antenna
WO2016076601A1 (ko) 이동통신 기지국 안테나
US6118405A (en) Antenna arrangement
WO2015068981A1 (ko) 다중대역 다중편파 무선 통신 안테나
WO2017039161A1 (ko) 레이더 모듈 및 이를 포함하는 차량용 레이더 장치
WO2009134013A2 (ko) 지연파 구조를 이용한 광대역 내장형 안테나
WO2016056767A1 (ko) 차량용 레이더 장치
WO2018159988A1 (ko) 이중편파 옴니 안테나 및 이를 포함하는 기지국
WO2019194357A1 (ko) 1차원 강한 결합 다이폴 배열 안테나
WO2022103159A1 (ko) 안테나 모듈 및 이를 포함하는 무선 통신 단말기
WO2016036043A2 (ko) 옴니 안테나
WO2010038929A1 (ko) 다층 안테나
EP3570444A1 (en) Fiber integrated radio equipment for network optimization and densification ecosystem (fire-node)
US3899787A (en) Triplex antenna
WO2022225245A1 (ko) 저대역 방사체 및 이를 포함하는 다중 광대역 안테나
WO2015111932A1 (ko) 레이더 시스템의 안테나 장치
WO2022102862A1 (ko) 5g 듀얼 포트 빔포밍 안테나
EP3516738A1 (en) Antenna device including parabolic-hyperbolic reflector
WO2023080529A1 (ko) 고출력 슬롯 도파관 배열 안테나
WO2017069358A1 (ko) 방사 이득 향상을 위한 다이폴 안테나 및 다이폴 안테나 어레이
WO2019216721A1 (ko) 이중 편파 안테나 및 안테나 어레이
WO2016064080A1 (ko) 다중대역 2포트 안테나
WO2022010042A1 (ko) 안테나 빔 향상용 적층공극의 방사열화를 극복한 트랜스밋어레이를 구비한 안테나 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18821157

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18821157

Country of ref document: EP

Kind code of ref document: A1