WO2022102862A1 - 5g 듀얼 포트 빔포밍 안테나 - Google Patents

5g 듀얼 포트 빔포밍 안테나 Download PDF

Info

Publication number
WO2022102862A1
WO2022102862A1 PCT/KR2020/018857 KR2020018857W WO2022102862A1 WO 2022102862 A1 WO2022102862 A1 WO 2022102862A1 KR 2020018857 W KR2020018857 W KR 2020018857W WO 2022102862 A1 WO2022102862 A1 WO 2022102862A1
Authority
WO
WIPO (PCT)
Prior art keywords
patch
antenna
beamforming
beamforming antenna
antennas
Prior art date
Application number
PCT/KR2020/018857
Other languages
English (en)
French (fr)
Inventor
김기진
안광호
Original Assignee
한국전자기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전자기술연구원 filed Critical 한국전자기술연구원
Priority to US17/623,093 priority Critical patent/US20230025634A1/en
Publication of WO2022102862A1 publication Critical patent/WO2022102862A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0421Substantially flat resonant element parallel to ground plane, e.g. patch antenna with a shorting wall or a shorting pin at one end of the element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/005Patch antenna using one or more coplanar parasitic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas

Definitions

  • the present invention relates to antenna-related technology, and more particularly, to a beamforming antenna that can be used in a millimeter wave 5G mobile communication system that is being prepared for next-generation mobile communication.
  • FIG. 1 is a structure in which an antenna bandwidth is widened using a basic patch antenna.
  • the radio wave transmission loss is large as shown in FIG. 2 .
  • 3 illustrates a structure of a beamforming antenna.
  • a beamforming antenna has several array antenna radiators and a block called a phase shifter is attached to each antenna, so that the radiation pattern can be adjusted by aligning the propagation phases of signals output/input from the antenna in a specific direction ( ⁇ ).
  • FIG. 4 shows the configuration of a 2x2 patch antenna that is most commonly used. Considering the 5G system configuration, it is known that the patch antenna structure is most suitable for beamforming.
  • 5 and 6 show simulation results appearing when beamforming is implemented by implementing 16 patch antennas as 4x4.
  • 5 is a radiation pattern when the main lobe is 0 degrees
  • FIG. 6 is a radiation pattern when the main lobe is 55 degrees.
  • the antenna radiation angle is usually about ⁇ 50.
  • the present invention has been devised to solve the above problems, and an object of the present invention is to provide a dual port beamforming antenna as a method for enabling 3D wide-angle beamforming as an antenna to be used in a 5G mobile communication system. .
  • a beamforming antenna includes a plurality of patch antennas, and the patch antenna includes: a first patch located on an upper portion; a second patch located on the lower left side of the first patch and having a plurality of feeding ports; a third patch located on the upper right side of the second patch; and a fourth patch located on the lower right side of the second patch.
  • the radiation angle When power is fed to the first feeding port, the radiation angle may be widened to the first plane.
  • the radiation angle may be widened to a second plane perpendicular to the first plane.
  • the first patch and the second patch may have a larger area than the third patch and the fourth patch, and the third patch and the fourth patch may have the same shape.
  • Ground vias may be formed in the second patch, the third patch, and the fourth patch.
  • a ground via may be formed in a left region.
  • a ground via may be formed in a right region of the third patch and the fourth patch.
  • Patch antennas may be connected by wire bonding or bumping.
  • a patch antenna a first patch located on the top; a second patch located on the lower left side of the first patch and having a plurality of feeding ports; a third patch located on the upper right side of the second patch; and a fourth patch located on the lower right side of the second patch.
  • a communication system includes: a beamforming antenna including a plurality of patch antennas;
  • a communication method the communication module, generating a transmission signal; transmitting, by the communication module, the generated transmission signal through a beamforming antenna including a plurality of patch antennas; Including, by the communication module, receiving a signal through a beamforming antenna, the patch antenna includes: a first patch located on the top; a second patch located on the lower left side of the first patch and having a plurality of feeding ports; a third patch located on the upper right side of the second patch; and a fourth patch located on the lower right side of the second patch.
  • 1 is a structure in which an antenna bandwidth is widened using a basic patch antenna
  • FIG. 2 is a frequency bandwidth of the antenna shown in FIG. 1;
  • 5 and 6 are simulation results for beamforming of a 4x4 patch antenna
  • FIG. 7 is a structure of a dual port patch antenna according to an embodiment of the present invention.
  • FIG. 10 is a structure of a beamforming antenna according to another embodiment of the present invention.
  • FIG. 11 is a block diagram of a communication system according to another embodiment of the present invention.
  • An embodiment of the present invention provides a dual port beamforming antenna.
  • the dual-port beamforming antenna operates dual feed ports to enable 3D beamforming in millimeter wave communication and military radar.
  • the dual port patch antenna according to an embodiment of the present invention enables 3D beamforming by configuring the feed port as dual.
  • a dual port patch antenna according to an embodiment of the present invention, as shown in Figure 7, a plurality of patches, specifically, patch-1 110, patch-2 120, patch-3 130, It consists of including patch-4 (140).
  • the patch-1 110 is located on the upper portion of the dual port patch antenna, and the left and right widths are longer than the vertical widths.
  • the left and right widths of the patch-1 110 are more than twice as long as the left and right widths of other patches 120 , 130 , and 140 to be described later.
  • the patch-2 120 is located on the lower left side of the patch-1 110, and has a shape in which the upper and lower widths are longer than the left and right widths.
  • the upper and lower widths of patch-2 120 are more than twice as long as the upper and lower widths of patch-3 130 and patch-4 140 .
  • Patch-3 130 is located on the upper right side of patch-2 120
  • patch-4 140 is located on the lower right side of patch-2 120
  • the patch-3 130 and the patch-4 140 may be implemented in the same shape.
  • the left and right widths of patch-3 (130) and patch-4 (140) are shorter than that of patch-1 (110), and the upper and lower widths are shorter than that of patch-2 (120), so that the overall size/area is that of patch-1 (110). smaller than patch-2 (120).
  • Ground vias are formed in the patch-2 120 , the patch-3 130 , and the patch-4 140 .
  • a region in which a ground via is formed on a patch is different for each patch.
  • ground vias 123 are formed in the left region, but in patch-3 130 and patch-4 140 , ground vias are formed in right regions 131 and 141 .
  • the patch-2 (120) is formed with two power feeding ports (121, 122).
  • the feeding port-1 121 is formed on the upper portion of the patch-2 120
  • the feeding port-2 122 is formed on the lower portion of the patch-2 120 .
  • Power is selectively fed to the feeding port-1 (121) and the feeding port-2 (122). That is, power may be fed through the feeding port-1 121 or power feeding may be made through the feeding port-2 122 .
  • the radiation angle is widened in the Y-Z plane, as shown in the simulation result of FIG. 8 .
  • the radiation angle to the X-Z plane is 131.9 degrees, but the radiation angle to the Y-Z plane is widened to 153.9 degrees.
  • the radiation angle is widened in the X-Z plane, as shown in the simulation result of FIG. 9 .
  • the radiation angle to the Y-Z plane is 134.9 degrees, but the radiation angle to the X-Z plane is widened to 154.9 degrees.
  • the beamforming control chip (not shown) controls the switching of the port-1 121 and the port-2 122 to realize a wide angle of radiation for both the X-Z plane and the Y-Z plane, 3D beamforming is possible.
  • a beamforming antenna according to an embodiment of the present invention is configured to include a plurality of dual port patch antennas 100 .
  • a plurality of dual port patch antennas 100 may be connected in the form of wire bonding or bumping.
  • FIG. 10 shows a beamforming antenna in which the dual port patch antenna 100 is arranged in 8 ⁇ 8, there is no limitation on the arrangement structure, so the dual port patch antenna 100 may be arranged in another form.
  • FIG. 11 is a block diagram of a communication system according to another embodiment of the present invention. As shown in FIG. 11 , a communication system according to another embodiment of the present invention is configured to include a beamforming antenna 100 and a communication module 200 .
  • the communication module 200 generates a transmission signal and transmits it through the beamforming antenna 100 . In addition, the communication module 200 performs necessary signal processing on a signal received through the beamforming antenna 100 .
  • the communication module 200 may control a feeding port in the beamforming antenna 100 .
  • a technical configuration for 3D wide-angle beamforming is presented as an antenna to be used in a 5G mobile communication beamforming system, and it has the effect of satisfying all broadband characteristics and 3D beamforming characteristics at the same time. It can be applied to 5G antennas.
  • the technology presented in the embodiment of the present invention is millimeter wave communication and radar components, modules and systems, and can be used not only in the millimeter wave 5G mobile communication beamforming system being prepared for next-generation mobile communication, but also in military radar and searchers. Do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)

Abstract

5G 듀얼 포트 빔포밍 안테나가 제공된다. 본 발명의 실시예에 따른 빔포밍 안테나는, 다수의 패치 안테나들을 포함하고, 패치 안테나는 상부에 위치하는 제1 패치, 제1 패치의 하부 좌측에 위치하며 다수의 급전 포트가 형성된 제2 패치, 제2 패치의 우측 상부에 위치하는 제3 패치, 제2 패치의 우측 하부에 위치하는 제4 패치를 포함한다. 이에 의해, 5G 이동통신 시스템, 군용 레이더 등에 사용될 안테나에서 3D 광각 빔포밍을 가능하게 한다.

Description

5G 듀얼 포트 빔포밍 안테나
본 발명은 안테나 관련 기술에 관한 것으로, 더욱 상세하게는 차세대 이동통신으로 준비 중인 밀리미터웨이브 5G 이동통신 시스템에 활용가능한 빔포밍 안테나에 관한 것이다.
5G 밀리미터주파수에서 사용되는 대부분의 안테나는 패치(patch) 안테나로써, 대역폭이 상대적으로 좁다. 5G 주파수에서는 10% 이상의 대역폭을 이용하고 있기 때문에 기존에 많은 연구들은 패치안테나의 대역폭을 넓히는 구조에 관한 연구가 주를 이뤄왔다.
도 1은 기본 패치 안테나를 이용하여 안테나 대역폭을 넓히는 구조이다. 하지만, 5G 밀리미터주파수에서는 28GHz 이상의 높은 주파수를 사용하기 때문에, 도 2에 나타난 바와 같이 전파 전송손실이 크다.
따라서, 이를 보상하기 위한 빔포밍 기법이 반드시 적용되어야 한다. 도 3은 빔포밍 안테나 구조를 설명하고 있다.
빔포밍 안테나는 여러 개의 배열 안테나 방사체가 있고 이 안테나 각각에 Phase shifter라는 블록이 붙어 있어, 안테나에서 출력/입력되는 신호의 전파 위상을 특정방향(θ)으로 정렬시켜 방사패턴을 조절할 수 있다.
도 4는 가장 많이 사용되고 있는 2x2 패치 안테나의 구성을 보여준다. 5G 시스템 구성을 고려했을 때 패치 안테나 구조가 가장 빔포밍에 적합한 것으로 알려져 있다.
도 5와 도 6에는 패치 안테나 16개를 4x4로 구현하여 빔포밍하였을 때 나타나는 시뮬레이션 결과를 도시하였다. 도 5는 main lobe가 0도 일 때 방사 패턴이고, 도 6은 main lobe가 55도 일 때 방사 패턴이다.
도시된 바와 같이, 빔포밍 안테나를 구성하였을 때 방사 패턴과 side lobe의 level을 고려하면 보통 안테나 방사 각도가 ±50 정도이다. 이런 특성은 X-Z 평면 뿐만 아니라, Y-Z 평면에서도 똑같이 보여야 3D 빔포밍을 완벽하게 수행할 수 있을 것이다.
하지만, 동시에 5G의 넓은 대역폭에서 이런 빔포밍 특성을 만족시키는 것은 어려운 문제이다.
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은, 5G 이동통신 시스템에 사용될 안테나로써 3D 광각 빔포밍을 가능하게 하기 위한 방안으로, 듀얼 포트 빔포밍 안테나를 제공함에 있다.
상기 목적을 달성하기 위한 본 발명의 일 실시예에 따른, 빔포밍 안테나는, 다수의 패치 안테나들;을 포함하고, 패치 안테나는, 상부에 위치하는 제1 패치; 제1 패치의 하부 좌측에 위치하며, 다수의 급전 포트가 형성된 제2 패치; 제2 패치의 우측 상부에 위치하는 제3 패치; 제2 패치의 우측 하부에 위치하는 제4 패치;를 포함한다.
제2 패치는, 상부에 형성된 제1 급전 포트; 및 하부에 형성된 제2 급전 포트;를 포함하고, 제1 급전 포트와 제2 급전 포트에는, 선택적으로 급전이 이루어질 수 있다.
제1 급전 포트로 급전이 이루어지면, 제1 평면으로 방사각이 넓어질 수 있다.
제2 급전 포트로 급전이 이루어지면, 제1 평면에 수직인 제2 평면으로 방사각이 넓어질 수 있다.
제1 패치와 제2 패치는, 제3 패치와 제4 패치 보다 면적이 넓고, 제3 패치와 제4 패치는, 형상이 동일할 수 있다.
제2 패치, 제3 패치 및 제4 패치에는, 그라운드 비아가 형성되어 있을 수 있다.
제2 패치는, 좌측 영역에 그라운드 비아가 형성되어 있을 수 있다. 그리고, 제3 패치와 제4 패치는, 우측 영역에 그라운드 비아가 형성되어 있을 수 있다.
패치 안테나들은, Wire bonding 또는 Bumping 형태로 연결되어 있을 수 있다.
한편, 본 발명의 다른 실시예에 따른, 패치 안테나는, 상부에 위치하는 제1 패치; 제1 패치의 하부 좌측에 위치하며, 다수의 급전 포트가 형성된 제2 패치; 제2 패치의 우측 상부에 위치하는 제3 패치; 제2 패치의 우측 하부에 위치하는 제4 패치;를 포함한다.
한편, 본 발명의 다른 실시예에 따른, 통신 시스템은, 다수의 패치 안테나들을 포함하는 빔포밍 안테나; 송신 신호를 생성하여 빔포밍 안테나를 통해 송신하고, 빔포밍 안테나를 통해 신호를 수신하는 통신 모듈;을 포함하고, 패치 안테나는, 상부에 위치하는 제1 패치; 제1 패치의 하부 좌측에 위치하며, 다수의 급전 포트가 형성된 제2 패치; 제2 패치의 우측 상부에 위치하는 제3 패치; 제2 패치의 우측 하부에 위치하는 제4 패치;를 포함한다.
한편, 본 발명의 다른 실시예에 따른, 통신 방법은, 통신 모듈이, 송신 신호를 생성하는 단계; 통신 모듈이, 생성한 송신 신호를 다수의 패치 안테나들을 포함하는 빔포밍 안테나를 통해 송신하는 단계; 통신 모듈이, 빔포밍 안테나를 통해 신호를 수신하는 단계;를 포함하고, 패치 안테나는, 상부에 위치하는 제1 패치; 제1 패치의 하부 좌측에 위치하며, 다수의 급전 포트가 형성된 제2 패치; 제2 패치의 우측 상부에 위치하는 제3 패치; 제2 패치의 우측 하부에 위치하는 제4 패치;를 포함한다.
이상 설명한 바와 같이, 본 발명의 실시예들에 따르면, 듀얼 포트 빔포밍 안테나로 X-Z 평면 뿐만 아니라 Y-Z 평면에 대해서도 광각 특성을 구현할 수 있으므로, 5G 이동통신 시스템, 군용 레이더 등에 사용될 안테나에서 3D 광각 빔포밍을 가능하게 한다.
도 1은 기본 패치 안테나를 이용하여 안테나 대역폭을 넓히는 구조,
도 2는, 도 1에 도시된 안테나의 주파수 대역폭,
도 3은 빔포밍 안테나 구조,
도 4은 2x2 패치 안테나의 구성,
도 5와 도 6은, 4x4 패치 안테나의 빔포밍에 대한 시뮬레이션 결과,
도 7은 본 발명의 일 실시예에 따른 듀얼 포트 패치 안테나의 구조,
도 8은, 도 7에서 급전 포트-1을 통해 급전이 이루어진 경우에 대한 시뮬레이션 결과,
도 9는, 도 7에서 급전 포트-2를 통해 급전이 이루어진 경우에 대한 시뮬레이션 결과,
도 10은 본 발명의 다른 실시예에 따른 빔포밍 안테나의 구조,
도 11은 본 발명의 또 다른 실시예에 따른 통신 시스템의 블럭도이다.
이하에서는 도면을 참조하여 본 발명을 보다 상세하게 설명한다.
본 발명의 실시예에서는 듀얼 포트 빔포밍 안테나를 제시한다. 듀얼 포트 빔포밍 안테나는 밀리미터웨이브 통신, 군용 레이더 등에서 3D 빔포밍을 가능하게 하기 위해 급전 포트를 듀얼로 운용한다.
도 7은 본 발명의 일 실시예에 따른 듀얼 포트 패치 안테나의 구조를 도시한 도면이다. 본 발명의 실시예에 따른 듀얼 포트 패치 안테나는 급전 포트를 듀얼로 구성함으로써 3D 빔포밍을 가능하게 한다.
본 발명의 실시예에 따른 듀얼 포트 패치 안테나는, 도 7에 도시된 바와 같이, 다수의 패치들, 구체적으로, 패치-1(110), 패치-2(120), 패치-3(130), 패치-4(140)를 포함하여 구성된다.
패치-1(110)은 듀얼 포트 패치 안테나의 상부에 위치하며, 좌우 폭이 상하 폭 보다 긴 형상이다. 패치-1(110)의 좌우 폭은, 후술할 다른 패치들(120,130,140)의 좌우 폭 보다 2배 이상 길다.
패치-2(120)는 패치-1(110)의 하부 좌측에 위치하며, 상하 폭이 좌우 폭 보다 긴 형상이다. 패치-2(120)의 상하 폭은, 패치-3(130)과 패치-4(140)의 상하 폭 보다 2배 이상 길다.
패치-3(130)은 패치-2(120)의 우측 상부에 위치하며, 패치-4(140)는 패치-2(120)의 우측 하부에 위치한다. 패치-3(130)과 패치-4(140)은 동일한 형상으로 구현 가능하다.
패치-3(130)과 패치-4(140)의 좌우 폭은 패치-1(110) 보다 짧고, 상하 폭은 패치-2(120) 보다 짧아, 전체적인 크기/면적이 패치-1(110)과 패치-2(120) 보다 작다.
패치-2(120), 패치-3(130) 및 패치-4(140)에는, 그라운드 비아(Ground Via)가 형성되어 있다. 패치 상에서 그라운드 비아가 형성되는 영역은 패치 마다 차이가 있다.
구체적으로, 패치-2(120)에는 좌측 영역에 그라운드 비아(123)가 형성되어 있지만, 패치-3(130)와 패치-4(140)에는 우측 영역(131,141)에 그라운드 비아가 형성되어 있다.
한편, 패치-2(120)에는 2개의 급전 포트(121,122)가 형성되어 있다. 급전 포트-1(121)은 패치-2(120)의 상부에 형성되어 있고, 급전 포트-2(122)는 패치-2(120)의 하부에 형성되어 있다.
급전 포트-1(121)과 급전 포트-2(122)에는 선택적으로 급전이 이루어진다. 즉, 급전 포트-1(121)을 통해 급전이 이루어지거나 급전 포트-2(122)를 통해 급전이 이루어질 수 있는 것이다.
도시된 바와 같이, 패치 안테나가 X-Y 평면에 형성되어 있다고 할 때, 급전 포트-1(121)을 통해 급전이 이루어지면, 도 8의 시뮬레이션 결과에 나타낸 바와 같이, Y-Z 평면으로 방사각이 넓어지게 된다. 구체적으로, 도 8에 따르면, X-Z 평면으로의 방사각은 131.9도이지만, Y-Z 평면으로의 방사각은 153.9도로 넓어지게 된다.
반면, 급전 포트-2(122)를 통해 급전이 이루어지면, 도 9의 시뮬레이션 결과에 나타낸 바와 같이, X-Z 평면으로 방사각이 넓어지게 된다. 구체적으로, 도 9에 따르면, Y-Z 평면으로의 방사각은 134.9도이지만, X-Z 평면으로의 방사각은 154.9도로 넓어지게 된다.
빔포밍 제어 칩(미도시)에서 포트-1(121)과 포트-2(122)의 스위칭을 제어하여 X-Z 평면과 Y-Z 평면 모두에 대한 방사각을 광각으로 구현하면, 3D 빔포밍이 가능해진다.
도 10은 본 발명의 다른 실시예에 따른 빔포밍 안테나의 구조를 도시한 도면이다. 본 발명의 실시예에 따른 빔포밍 안테나는 다수의 듀얼 포트 패치 안테나(100)를 포함하여 구성된다.
다수의 듀얼 포트 패치 안테나(100)는 Wire bonding 또는 Bumping 형태로 연결시킬 수 있다.
도 10에는 듀얼 포트 패치 안테나(100)를 8×8로 배열한 빔포밍 안테나를 제시하였지만, 배열 구조에 대한 제한은 없으므로, 듀얼 포트 패치 안테나(100)를 다른 형태로 배열할 수 있다.
도 10에 제시된 빔포밍 안테나에 대한 시뮬레이션 결과, 다수의 듀얼 포트 패치 안테나(100)에서 포트-1에 신호를 인가하는 경우 X-Z 축으로 138도의 빔 스캔닝이 가능하고, 포트-2에 신호를 인가하는 경우 Y-Z 축으로 138도의 빔 스캔닝이 가능한 것으로 나타났다.
도 11은 본 발명의 또 다른 실시예에 따른 통신 시스템의 블럭도이다. 본 발명의 다른 실시예에 따른 통신 시스템은, 도 11에 도시된 바와 같이, 빔포밍 안테나(100)와 통신 모듈(200)을 포함하여 구성된다.
빔포밍 안테나(100)의 구성에 대해서는 도 10을 통해 전술한 바 있으므로, 이에 대한 상세한 설명은 생략한다.
통신 모듈(200)은 송신 신호를 생성하여 빔포밍 안테나(100)를 통해 송신한다. 또한, 통신 모듈(200)은 빔포밍 안테나(100)를 통해 수신되는 신호에 대해 필요한 신호 처리를 수행한다.
나아가, 통신 모듈(200)은 빔포밍 안테나(100)에서 급전 포트를 제어할 수도 있다.
지금까지, 듀얼 포트 패치 안테나, 이들을 배열하여 구현한 빔포밍 안테나 및 이를 적용한 통신 시스템에 대해 바람직한 실시예들을 제시하면서 상세히 설명하였다.
본 발명의 실시예에서는, 5G 이동통신 빔포밍 시스템에 사용될 안테나로써 특히 3D 광각 빔포밍을 위한 기술 구성을 제시하였으며, 광대역 특성을 모두 만족하면서 동시에 3D 빔포밍 특성 만족하는 효과를 가지고 있어 향후 밀리미터웨이브 5G 안테나에 적용될 수 있다.
본 발명의 실시예에서 제시한 기술은 밀리미터웨이브 통신 및 레이더 부품, 모듈 및 시스템으로써, 차세대 이동통신으로 준비 중인 밀리미터웨이브 5 G 이동통신 빔포밍 시스템에 활용가능할 뿐만 아니라, 군용 레이더 및 탐색기에도 활용 가능하다.
본 발명의 실시예들에서 제시한 기술들에 대한 실시 범위에 대한 제한은 없다. 즉, 통신 시스템을 구현하는 경우와 빔포밍 안테나를 구현하는 경우는 물론이고, 듀얼 포트 패치 안테나 만을 구현하는 경우에도 본 발명의 기술적 범주에 포함될 수 있음은 물론이다.
또한, 이상에서는 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어져서는 안될 것이다.

Claims (12)

  1. 다수의 패치 안테나들;을 포함하고,
    패치 안테나는,
    상부에 위치하는 제1 패치;
    제1 패치의 하부 좌측에 위치하며, 다수의 급전 포트가 형성된 제2 패치;
    제2 패치의 우측 상부에 위치하는 제3 패치;
    제2 패치의 우측 하부에 위치하는 제4 패치;를 포함하는 것을 특징으로 하는 빔포밍 안테나.
  2. 청구항 1에 있어서,
    제2 패치는,
    상부에 형성된 제1 급전 포트; 및
    하부에 형성된 제2 급전 포트;를 포함하고,
    제1 급전 포트와 제2 급전 포트에는,
    선택적으로 급전이 이루어지는 것을 특징으로 하는 빔포밍 안테나.
  3. 청구항 2에 있서서,
    제1 급전 포트로 급전이 이루어지면, 제1 평면으로 방사각이 넓어지는 것을 특징으로 하는 빔포밍 안테나.
  4. 청구항 3에 있서서,
    제2 급전 포트로 급전이 이루어지면, 제1 평면에 수직인 제2 평면으로 방사각이 넓어지는 것을 특징으로 하는 빔포밍 안테나.
  5. 청구항 1에 있어서,
    제1 패치와 제2 패치는,
    제3 패치와 제4 패치 보다 면적이 넓고,
    제3 패치와 제4 패치는,
    형상이 동일한 것을 특징으로 하는 빔포밍 안테나.
  6. 청구항 1에 있어서,
    제2 패치, 제3 패치 및 제4 패치에는,
    그라운드 비아가 형성되어 있는 것을 특징으로 하는 빔포밍 안테나.
  7. 청구항 6에 있어서,
    제2 패치는,
    좌측 영역에 그라운드 비아가 형성되어 있는 것을 특징으로 하는 빔포밍 안테나.
  8. 청구항 7에 있어서,
    제3 패치와 제4 패치는,
    우측 영역에 그라운드 비아가 형성되어 있는 것을 특징으로 하는 빔포밍 안테나.
  9. 청구항 1에 있어서,
    패치 안테나들은,
    Wire bonding 또는 Bumping 형태로 연결되어 있는 것을 특징으로 하는 빔포밍 안테나.
  10. 상부에 위치하는 제1 패치;
    제1 패치의 하부 좌측에 위치하며, 다수의 급전 포트가 형성된 제2 패치;
    제2 패치의 우측 상부에 위치하는 제3 패치;
    제2 패치의 우측 하부에 위치하는 제4 패치;를 포함하는 것을 특징으로 하는 패치 안테나.
  11. 다수의 패치 안테나들을 포함하는 빔포밍 안테나;
    송신 신호를 생성하여 빔포밍 안테나를 통해 송신하고, 빔포밍 안테나를 통해 신호를 수신하는 통신 모듈;을 포함하고,
    패치 안테나는,
    상부에 위치하는 제1 패치;
    제1 패치의 하부 좌측에 위치하며, 다수의 급전 포트가 형성된 제2 패치;
    제2 패치의 우측 상부에 위치하는 제3 패치;
    제2 패치의 우측 하부에 위치하는 제4 패치;를 포함하는 것을 특징으로 하는 통신 시스템.
  12. 통신 모듈이, 송신 신호를 생성하는 단계;
    통신 모듈이, 생성한 송신 신호를 다수의 패치 안테나들을 포함하는 빔포밍 안테나를 통해 송신하는 단계;
    통신 모듈이, 빔포밍 안테나를 통해 신호를 수신하는 단계;를 포함하고,
    패치 안테나는,
    상부에 위치하는 제1 패치;
    제1 패치의 하부 좌측에 위치하며, 다수의 급전 포트가 형성된 제2 패치;
    제2 패치의 우측 상부에 위치하는 제3 패치;
    제2 패치의 우측 하부에 위치하는 제4 패치;를 포함하는 것을 특징으로 하는 통신 방법.
PCT/KR2020/018857 2020-11-10 2020-12-22 5g 듀얼 포트 빔포밍 안테나 WO2022102862A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/623,093 US20230025634A1 (en) 2020-11-10 2020-12-22 5g dual port beamforming antenna

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200149089A KR102445291B1 (ko) 2020-11-10 2020-11-10 5g 듀얼 포트 빔포밍 안테나
KR10-2020-0149089 2020-11-10

Publications (1)

Publication Number Publication Date
WO2022102862A1 true WO2022102862A1 (ko) 2022-05-19

Family

ID=81601428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/018857 WO2022102862A1 (ko) 2020-11-10 2020-12-22 5g 듀얼 포트 빔포밍 안테나

Country Status (3)

Country Link
US (1) US20230025634A1 (ko)
KR (1) KR102445291B1 (ko)
WO (1) WO2022102862A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2019256534A1 (en) 2018-04-19 2020-10-22 Ember Technologies, Inc. Portable cooler with active temperature control
WO2021085665A1 (ko) * 2019-10-30 2021-05-06 엘지전자 주식회사 5g 안테나를 구비하는 전자 기기

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004266549A (ja) * 2003-02-28 2004-09-24 Toshiba Tec Corp アンテナ装置
KR20090126803A (ko) * 2008-06-05 2009-12-09 엘에스산전 주식회사 안테나 시스템 및 이를 포함하는 알에프아이디 단말기
KR20120053884A (ko) * 2010-11-18 2012-05-29 (주)백금티앤에이 레이더 디텍터 용 패치 어레이 안테나
KR102064175B1 (ko) * 2019-01-30 2020-02-11 주식회사 아모센스 이중 원형편파 안테나
KR20200117223A (ko) * 2019-04-03 2020-10-14 중앙대학교 산학협력단 다중폴 안테나

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3217477B1 (en) * 2014-11-03 2022-01-19 Amotech Co., Ltd. Wideband patch antenna module
KR102402411B1 (ko) * 2017-06-28 2022-05-27 삼성전자주식회사 안테나 장치 및 안테나를 포함하는 전자 장치
KR102323000B1 (ko) * 2019-08-27 2021-11-09 주식회사 아모텍 다중 대역 패치 안테나
KR20210061577A (ko) * 2019-11-20 2021-05-28 삼성전기주식회사 안테나 장치
KR20220032895A (ko) * 2020-09-08 2022-03-15 삼성전기주식회사 안테나 장치
CN114389011A (zh) * 2020-10-19 2022-04-22 华为技术有限公司 一种天线、信道状态信息传输方法和相关装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004266549A (ja) * 2003-02-28 2004-09-24 Toshiba Tec Corp アンテナ装置
KR20090126803A (ko) * 2008-06-05 2009-12-09 엘에스산전 주식회사 안테나 시스템 및 이를 포함하는 알에프아이디 단말기
KR20120053884A (ko) * 2010-11-18 2012-05-29 (주)백금티앤에이 레이더 디텍터 용 패치 어레이 안테나
KR102064175B1 (ko) * 2019-01-30 2020-02-11 주식회사 아모센스 이중 원형편파 안테나
KR20200117223A (ko) * 2019-04-03 2020-10-14 중앙대학교 산학협력단 다중폴 안테나

Also Published As

Publication number Publication date
KR20220063357A (ko) 2022-05-17
US20230025634A1 (en) 2023-01-26
KR102445291B1 (ko) 2022-09-20

Similar Documents

Publication Publication Date Title
EP3975337A1 (en) Antenna unit and terminal device
US7663544B2 (en) Antenna system for sharing of operation
EP1297591B1 (en) System and method for simultaneous transmission of signals in multiple beams without feeder cable coherency
EP3384558B1 (en) Dual-polarized wideband radiator with single-plane stripline feed
WO2010033004A2 (ko) 이동통신 기지국용 이중대역 이중편파 안테나
WO2022102862A1 (ko) 5g 듀얼 포트 빔포밍 안테나
US7245938B2 (en) Wireless antenna traffic matrix
AU2008305785B2 (en) Antenna arrangement for a multi radiator base station antenna
WO2020040624A1 (ko) 빔 조향 및 집속을 위한 안테나 장치
CN106602265A (zh) 波束成形网络及其输入结构、输入输出方法及三波束天线
CN105790860A (zh) 天线耦合校准系统
CN109167186A (zh) 一种基于5g通信的共口径双频段相控阵天线系统
WO2015068962A1 (ko) 다중대역 안테나
WO2016056715A1 (en) Directional mimo antenna using electro-polarization
CN112886282A (zh) 一种模块化拼接的集成网络阵列天线
US11121462B2 (en) Passive electronically scanned array (PESA)
WO2016117734A1 (ko) 패턴/편파 안테나 장치와 이를 이용한 빔 형성 방법
WO2023191228A1 (ko) 능동위상배열 안테나
WO2019216721A1 (ko) 이중 편파 안테나 및 안테나 어레이
US10873130B2 (en) Phased array antenna system and mobile terminal using same
EP2218133B1 (en) A display arrangement with enhanced functionality
CA2037911C (en) Microstrip antenna system
WO2021060629A1 (en) Base station antenna and base station
KR20130046350A (ko) 통신 시스템에서 다기능 급전 회로 및 안테나
CN111313153A (zh) 一种天线单元、天线和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20961731

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20961731

Country of ref document: EP

Kind code of ref document: A1