WO2010033004A2 - 이동통신 기지국용 이중대역 이중편파 안테나 - Google Patents

이동통신 기지국용 이중대역 이중편파 안테나 Download PDF

Info

Publication number
WO2010033004A2
WO2010033004A2 PCT/KR2009/005387 KR2009005387W WO2010033004A2 WO 2010033004 A2 WO2010033004 A2 WO 2010033004A2 KR 2009005387 W KR2009005387 W KR 2009005387W WO 2010033004 A2 WO2010033004 A2 WO 2010033004A2
Authority
WO
WIPO (PCT)
Prior art keywords
radiating element
element module
dipoles
dual
antenna
Prior art date
Application number
PCT/KR2009/005387
Other languages
English (en)
French (fr)
Other versions
WO2010033004A3 (ko
Inventor
최오석
문영찬
심환석
Original Assignee
주식회사 케이엠더블유
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020080092963A external-priority patent/KR101498161B1/ko
Priority claimed from KR1020090021874A external-priority patent/KR101085887B1/ko
Application filed by 주식회사 케이엠더블유 filed Critical 주식회사 케이엠더블유
Priority to EP09814820.8A priority Critical patent/EP2346114B1/en
Priority to CN200980146089.XA priority patent/CN102217140B/zh
Priority to US13/119,854 priority patent/US20110175782A1/en
Priority to JP2011527753A priority patent/JP5312598B2/ja
Publication of WO2010033004A2 publication Critical patent/WO2010033004A2/ko
Publication of WO2010033004A3 publication Critical patent/WO2010033004A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • H01Q21/26Turnstile or like antennas comprising arrangements of three or more elongated elements disposed radially and symmetrically in a horizontal plane about a common centre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • H01Q5/42Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements using two or more imbricated arrays

Definitions

  • the present invention relates to a dual band dual polarization antenna for diversity in a base station antenna of mobile communication (PCS, Cellular, IMT-2000, etc.).
  • Antennas for mobile communication base stations are designed using spatial diversity or polarization diversity to reduce fading.
  • the spatial diversity method is to install a transmitting antenna and a receiving antenna spaced apart by a predetermined distance, which is not only limited in terms of space but also in terms of cost. Accordingly, the mobile communication system generally uses a dual band dual polarized antenna by applying a polarization diversity scheme.
  • Dual-band dual polarization antennas are used to transmit (or receive) two linear polarizations that are aligned at right angles to one another, for example vertically and horizontally. However, in practical applications it is very important to operate these antennas to align this polarization to +45 degrees and -45 degrees with respect to the vertical (or horizontal). Dual band dual polarization antennas generally operate in two frequency bands that are sufficiently spaced apart from one another. For such a dual band dual polarized antenna, there is exemplified what is disclosed in Korean Patent Application No. 2000-7010785 (name: dual polarized multiband antenna) filed by Katline-Berke Cage.
  • a conventional dual band dual polarization antenna includes a first radiating element module 1 and a second frequency band (higher frequency band, hereinafter) for a first frequency band (lower frequency band, hereinafter referred to as low frequency band). And a second radiating element module (3) for high frequency band.
  • the two radiating element modules 1, 3 are arranged in front of the conductive reflecting plate 5, the shape of which is substantially square.
  • the feed grid may be located on the rear surface of the reflector 5, through which the first and second radiating element modules 1 and 3 are electrically connected.
  • the first radiating element module has a plurality of dipoles 1a which are generally arranged in a square shape, which are mechanically supported by the so-called balancing device 7 on the reflecting plate 5 or a plate located behind it. And also in electrical contact. At this time, both edges of the reflecting plate 5 have sidewalls 6 protruding at a suitable height from the plane to improve radiation characteristics.
  • the length of the dipole element of the first radiating element module 1 is set such that electromagnetic waves corresponding thereto are transmitted and received through the corresponding dipole element.
  • the dipole elements are orthogonally aligned.
  • each of these dipole elements 1a is precisely aligned at angles of +45 and -45 degrees with respect to the vertical (or with respect to the horizontal) to form a bipolar antenna, referred to simply as an X-polarized antenna.
  • the second radiating element module 3 may be located in or outside the first radiating element module 1 in the form of a square dipole.
  • the second radiating element module 3 is not a square dipole but a cross dipole.
  • the two dipoles 3a positioned at right angles to each other are likewise supported on the reflecting plate 5 through the balance net, and are fed through them.
  • the first and second radiating element modules 1 and 3 are precisely arranged at different distances in front of the reflecting plate 5. At this time, the second radiating element module 3 is arranged to be interleaved with the first radiating element module 1.
  • two antenna devices formed by the first and second radiating element modules 1 and 3 may be installed on the reflecting plate 5 in the vertical direction, and two antenna devices.
  • An additional second radiating element module 3 ′ of the second frequency band may be installed in the space between the two. This arrangement allows for high vertical gain.
  • An object of the present invention is to enable a more optimized structure arrangement and optimization of the antenna size, to have a stable antenna characteristics and a simpler structure, to move the beam width adjustment of the antenna and to facilitate the design of the antenna
  • the present invention provides a dual band dual polarization antenna for a communication base station.
  • a dual band dual polarization antenna for a mobile communication base station comprising: a reflector; At least one first radiating element module formed on the reflecting plate and composed of a plurality of dipoles which are generally installed in an 'X' shape, for transmitting and receiving two linear quadrature polarizations for a first frequency band; And at least one second radiating element module for a second frequency band interleaved between the first radiating element modules on the reflecting plate.
  • a dual band dual polarization antenna for a mobile communication base station comprising: a reflector; At least one or more dipoles formed on the reflector and composed of a plurality of dipoles which are generally installed in a '>>' or ' ⁇ ' shape to transmit and receive two linear quadrature polarizations for a first frequency band.
  • the dual band dual polarization antenna according to the present invention enables more optimized structure arrangement and optimization of antenna size, has stable characteristics and simpler structure, and can bring about easy beam width adjustment and antenna design of the antenna. have.
  • FIG. 1 is an exemplary perspective view of a conventional dual band dual polarization antenna array
  • FIG. 2 is a perspective view of a dual band dual polarization antenna array according to a first embodiment of the present invention
  • FIG. 3 is a structural diagram of a dipole constituting a first radiating device module of FIG.
  • FIG. 4 is a plan view of FIG.
  • FIG. 5 is a perspective view of a dual band dual polarization antenna array according to a second embodiment of the present invention.
  • FIG. 6 is a structural diagram of a dipole constituting the first radiating element module of FIG.
  • FIG. 7 is a plan view of FIG.
  • FIG. 8 is a plan view of a dual band dual polarization antenna array according to a third embodiment of the present invention.
  • FIG. 9 is a plan view of a dual band dual polarization antenna array according to a fourth embodiment of the present invention.
  • FIG. 10 is a plan view of a dual band dual polarization antenna array according to a fifth embodiment of the present invention.
  • FIG. 11 is a plan view of a dual band dual polarization antenna array according to a sixth embodiment of the present invention.
  • FIG. 12 is a plan view of a dual band dual polarization antenna array according to a seventh embodiment of the present invention.
  • FIG. 13 is a plan view of a dual band dual polarization antenna array according to an eighth embodiment of the present invention.
  • 15 is a graph showing beam characteristics in the fifth embodiment of the present invention.
  • 16 is a graph showing beam characteristics in the seventh embodiment of the present invention.
  • the dual band dual polarization antenna array according to the first embodiment of the present invention includes a plurality of first radiating element modules of a low frequency band (for example, 800 MHz band) installed in front of the reflector 15. (10: generic reference numerals 10-1, 10-2, 10-3, 10-4) and a high frequency band (for example, 2GHz installed in a form disposed appropriately between the first radiating element module 10) Band) and a plurality of second radiating element modules 20, 22, and 24.
  • a low frequency band for example, 800 MHz band
  • a high frequency band for example, 2GHz installed in a form disposed appropriately between the first radiating element module 10) Band
  • One first radiating element module of the plurality of first radiating element modules may include first to fourth dipoles 10-1 to 10-4.
  • the first radiating element module 10 has an 'X' structure as a whole, rather than a conventional square structure to implement X polarization. That is, the first to fourth dipoles 10-1 to 10-4 each form one end portion of the entire 'X' shape. As shown in FIG. 4, the first and third dipoles 10-1 and 10-3 form a +45 degree polarization, and the second and fourth dipoles 10-2 and 10-4 are ⁇ It will form a 45 degree polarization.
  • FIG 3 illustrates a detailed structure of the first dipole 10-1, with reference to the structure of the first to fourth dipoles 10-1 to 10-4 according to the present invention,
  • the first to fourth dipoles 10-1 to 10-4 have a folded dipole structure.
  • the folded dipoles are divided into left and right ends so that the first and second side dipole elements 104 and 106 are designed according to the corresponding frequency, and the first and second side dipole elements 104 and 106.
  • the first and second side dipole elements 104 and 106, the balun 102, the feed line 112, and the third side dipole element 108 are designed in a metal pattern that is connected as a whole on one metallic plane. Can be made.
  • the folded dipole When a current is provided through the feed line 112 in the folded dipole, an antenna mode electric field is formed on the first and second side dipole elements 104 and 106 in the direction of the arrow as shown in FIG.
  • the three-side dipole element 108 is induced with an electric field in the same direction as the electric fields formed on the first and second side dipole elements 104 and 106 (see arrows in FIG. 3).
  • the folded dipole has a simpler structure for feeding than the general dipole, and has a wider broadband characteristic and more stable antenna horizontal beamwidth variation.
  • the first and third The dipoles 10-1 and 10-3 are installed to have a slope of +45 degrees, and according to the installed state, the +45 degrees polarization of +45 degrees out of the total polarizations of the antennas is induced to induce an electric field of +45 degrees which is directly formed. do.
  • the second and fourth dipoles 10-2 and 10-4 are installed to have a slope of -45 degrees, and are directly formed by arranging -45 degrees of polarizations among the total polarizations of the antenna according to the installed state. Induce an electric field of -45 degrees.
  • the second radiating element modules 20, 22, and 24 are illustrated as an example of a radiating element of a PCB (Print Circuit Board) type.
  • the second radiating element module 20, 22 and 24 may be applied to a conventional general high frequency band radiating element module including the conventional second radiating element module 3 shown in FIG. 1.
  • the first radiating element module 10 is installed in two places
  • the second radiating element module is, for example, a whole of the first radiating element module having an 'X' shape ( 10) is installed one by one at the center position and the upper and lower positions in the center of the installation range, it is shown that a predetermined number of second radiating element modules interleaved between the first radiating element module 10 installed in two places is installed have.
  • the second radiating element module (s) may be arranged side by side with respect to the installation center axis in the horizontal or vertical direction in which the first radiating element module 10 is disposed.
  • FIG. 5 is a perspective view of a dual band dual polarization antenna array according to a second embodiment of the present invention
  • FIG. 6 is a structural diagram of a folded dipole constituting the first radiating element module of FIG. 5
  • FIG. 7 is a plan view of FIG. 5.
  • the dual band dual polarization antenna array according to the second embodiment of the present invention may be installed in front of the reflector 15 in the same manner as the structure of the first embodiment shown in FIGS. 2 to 4.
  • a plurality of first radiating element module (refer to reference numerals 12-1, 12-2, 12-3, 12-4 collectively) and the first radiating element module 12 in a form that is properly disposed between It consists of the second radiating element module (20, 22, 24).
  • the detailed configuration of the first radiating element module 12 according to the second embodiment of the present invention is different from the configuration of the first embodiment. That is, as described in detail in FIG. 6, the first to fourth dipoles 12-1, 12-2, 12-3, and 12-4 constituting the first radiating element module 12 are described in the first embodiment.
  • the first through fourth dipoles 12-1 through 12-4 according to the second embodiment of the present invention have at least one of the outer ends of the dipole elements. It is characterized by having a bent portion (part A of FIG. 6).
  • the outer ends of the dipole elements have a bent structure. At this time, the bent portion does not exceed more than half of the length of the entire dipole element.
  • the dual band dual polarization antenna array according to the third embodiment of the present invention may have first to fourth dipoles having folded dipole structures similar to those of the first embodiment shown in FIGS. 2 to 4.
  • the first radiating element module 10 is referred to as a reference number 10-1, 10-2, 10-3, 10-4 collectively, the first radiation
  • the device module 10 has a structure of '>>' or ' ⁇ ' rather than an 'X' structure as a whole. That is, the structure of the third embodiment of the present invention can be seen that the first and second dipoles (10-1, 10-2) in the first embodiment of the 'X' structure is installed to be replaced with each other.
  • the first And the third dipoles (10-1, 10-3) are installed in parallel with each other while having a slope of +45 degrees, and forms a +45 degree polarization directly of the total polarization of the antenna according to the installed state, respectively.
  • the second and fourth dipoles 10-2 and 10-4 are installed in parallel with each other having a slope of -45 degrees, and directly form a -45 degree polarization of the total polarizations of the antenna depending on the installed state. do.
  • FIG. 8 unlike the first embodiment in which the second radiating element module is installed in six places for each of the first radiating element modules 10 installed in two places, four second radiating element modules 20 and 22 are provided. It is shown to be installed.
  • the ease of antenna design such as to properly adjust the optimized total number of each of the first or second radiating element module and the distance between each module.
  • FIG. 9 is a plan view of a dual band dual polarization antenna array according to a fourth embodiment of the present invention.
  • the dual band dual polarization antenna array according to the fourth embodiment of the present invention is illustrated in FIG.
  • the first radiating element module 12 according to the fourth embodiment of the present invention reference numeral 12-1, 12-2, 12-3, 12-4 collectively
  • the first to fourth dipoles 12-1, 12-2, 12-3, and 12-4 constitute a folded dipole structure that is bent as in the second embodiment of the present invention shown in FIGS. 5 to 7. It can be seen that it is adopted.
  • FIG. 10 is a plan view of a dual band dual polarization antenna array according to a fifth embodiment of the present invention.
  • the antenna array structure according to the fifth embodiment of the present invention is almost the same as that of the dual band dual polarization antenna array according to the first embodiment of the present invention shown in FIGS. 2 to 4. It can be seen.
  • the conductive balun 102 is formed in the structure of each of the first to fourth dipoles 10-1, 10-2, 10-3, and 10-4 for implementing X polarization in the 800 MHz first radiator module 10.
  • each of the baluns 102 is inclined in a form in which the lower end of the balun 102 is farther from the second radiating element module 20 than the upper end thereof.
  • each balun 102 may be applied to a structure in which the first radiating device module 10 is a 'X' shape as a whole, as shown in Figure 1, the first radiating device module as a whole It can also be applied to structures in the form of conventional rhombuses. In this case, when viewed from the front, the baluns are located outside of the rhombus structure, not in a range corresponding to the inside of the overall rhombus structure of the first radiating element module as in the related art.
  • FIG. 11 is a plan view of a dual band dual polarization antenna array according to a sixth embodiment of the present invention.
  • the antenna array structure according to the fifth embodiment of the present invention is almost the same as that of the dual band dual polarization antenna array according to the second embodiment of the present invention shown in FIGS. 5 to 7. It can be seen.
  • FIG. 12 is a plan view of a dual band dual polarization antenna array according to a seventh embodiment of the present invention. 12, it can be seen that the antenna array according to the seventh embodiment of the present invention is almost similar to the structure of the fifth embodiment shown in FIG. However, in the antenna array according to the seventh embodiment of the present invention, the mutual arrangement structure between the first radiating element module 10 and the second radiating element modules 20 and 22 is different from that of the fifth embodiment. Able to know.
  • the first radiating element module 10 is installed in two places, and the second radiating element module 20, 22, 24 is, for example, a whole 'X' character.
  • the first radiating device module 10 of the form has been shown to be installed one by one in the center position and the top and bottom positions of the installation range.
  • the second radiating element modules 20 and 22 are not installed at the center position of the 'X' shape of the first radiating element module 10. Instead, the second radiating device module 20 (20-1, 20-2 in FIG. 12) in the upper and lower portions out of the central position of the 'X' shape in the installation range of one first radiating device module 10 This is installed one by one.
  • an additional second radiating element module 21 may be installed in a space between the first radiating element modules 10 installed at two places to maintain a constant interval of arrangement of the second radiating element modules.
  • FIG. 13 is a plan view of a dual band dual polarization antenna array according to an eighth embodiment of the present invention.
  • the antenna array according to the eighth embodiment of the present invention is mostly similar to the structure of the fifth embodiment shown in FIG. 10.
  • the second radiating element modules 22 and 24 are not installed at the central position of the 'X' shape of the first radiating element module 10, but one The second radiating element module 20 (20-1, 20-1, 20-2 in FIG. 12) is installed one by one outside the center position of the 'X' shape in the installation range of the first radiating element module 10 of FIG. do.
  • the arrangement of the second radiating element modules in the space between the first radiating element modules 12 installed at two places.
  • An additional second radiating element module 21 is installed to keep the interval constant.
  • FIG. 14 is a graph showing beam characteristics in the first embodiment of the present invention
  • FIG. 15 is a graph showing beam characteristics in the fifth embodiment shown in FIG. 14 and 15, in the fifth embodiment, the CPR characteristics are 16.3 dB to 21.4 dB at 0 degrees, 8.1 dB to 11.8 dB at +60 degrees, and -60 degrees in comparison with the first embodiment. It can be seen that the overall improvement from 5.7dB to 10.6dB.
  • FIG. 16 is a graph showing beam characteristics in the seventh embodiment of the present invention shown in FIG. 12.
  • the CPR characteristic is 21.4 dB at 0 degrees even when compared to the fifth embodiment. It can be seen that the overall improvement is 25.3dB, from 11.8dB to 13.6dB at +60 degrees, and from 10.6dB to 14.3dB at -60 degrees.
  • a dual band dual polarization antenna may be configured.
  • modifications of the first and second embodiments are shown in FIGS. 10 and 11, respectively, but the same modifications may also be applied to the third and fourth embodiments shown in FIGS. 8 and 9. have. That is, in the first radiating element module illustrated in FIGS. 8 and 9, the balun may be installed at left and right portions of the entire first radiating element module such that the balun is installed as far as possible from the installation position of the second radiating element module.
  • the scope of the present invention should be determined by the equivalents of the claims and the claims, rather than by the embodiments described.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

본 발명은 이동통신 기지국용 이중대역 이중편파 안테나에 있어서, 반사판과; 반사판 상에 형성되며, 전체적으로 'X'자 형태로 설치되는 다수의 다이폴들로 구성되어, 제1주파수 대역용 2개의 선형 직교 편파를 송신 및 수신하기 위한 적어도 하나 이상의 제1방사소자모듈과; 반사판 상에서 제1방사소자모듈 사이에 인터리빙되는 제2주파수 대역용 적어도 하나 이상의 제2방사소자모듈을 구비한다.

Description

이동통신 기지국용 이중대역 이중편파 안테나
본 발명은 이동통신(PCS, Cellular, IMT-2000 등) 기지국 안테나에서 다이버시티용 이중대역 이중편파 안테나에 관한 것이다.
이동통신 기지국용 안테나는 페이딩 현상을 경감시키기 위해 공간 다이버시티 방식 또는 편파 다이버시티 방식을 적용하여 설계되고 있다. 공간 다이버시티 방식은 송신 안테나와 수신 안테나를 공간적으로 일정거리 이상 이격시켜 설치하는 것으로 공간적인 제약이 많을 뿐만 아니라 비용적인 측면에서 바람직하지 않다. 이에따라 이동통신 시스템에서는 편파 다이버시티 방식을 적용하여 이중대역 이중편파 안테나를 일반적으로 사용하고 있다.
이중대역 이중편파 안테나는 서로에 대해 직각으로 정렬되고, 예를 들어, 수직과 수평으로 정렬될 수 있는 2개의 선형 편파를 송신(또는 수신)하는데 사용된다. 그러나 실제 적용에 있어서는 이 편파를 수직(또는 수평)에 대하여 +45도와 -45도로 정렬시키도록 이들 안테나를 동작시키는 것이 매우 중요하다. 이중대역 이중편파 안테나는 일반적으로 서로에 대해 충분히 이격되어 있는 2개의 주파수 대역으로 동작된다. 이러한 이중대역 이중편파 안테나에 대해서는 카트라인-베르케 카게에 의해 국내 선출원된 특허 출원번호 제2000-7010785호(명칭: 이중 편파 다중대역 안테나)에 개시된 바를 예로 들 수 있다.
도 1은 종래 이중대역 이중편파 안테나 어레이의 일 예시 사시도로서, 상기 국내 특허 출원번호 제2000-7010785호에 개시된 바와 같다. 도 1을 참조하여 종래의 이중대역 이중편파 안테나는 제1주파수 대역(보다 낮은 주파수 대역, 이하 저주파 대역으로 칭함)용 제1방사소자모듈(1) 및 제2주파수 대역(보다 높은 주파수 대역, 이하 고주파 대역으로 칭함)용 제2방사소자모듈(3)을 구비한다.
2개의 방사소자모듈(1, 3)은 도전성 반사판(5) 앞에 배치되는데, 이 반사판(5)의 형상은 실질적으로 정방형이다. 급전망은 반사판(5)의 배면에 위치될 수 있으며, 이를 통해 제1, 제2방사소자모듈(1, 3)이 각각 전기적으로 접속된다. 제1방사소자모듈은 전체적으로 정방형으로 배치되는 다수의 다이폴(1a)을 구비하며, 이 다이폴(1a)은 소위 평형 장치(7)에 의해 반사판(5) 또는 그 뒤에 위치된 판에 기계적으로 지지되며, 또한 전기적으로 접촉된다. 이때 반사판(5)의 양 가장자리는 해당 평면으로부터 적당한 높이로 돌출되어 있는 측벽(side wall)(6)을 가짐으로서 방사특성을 향상시킨다.
제1방사소자모듈(1)의 다이폴 소자의 길이는 이에 상응하는 전자기파가 해당 다이폴 소자를 통해서 송,수신되도록 설정된다. 따라서, 이중편파 안테나에서 다이폴 소자는 직교하여 정렬된다. 통상적으로는 이 다이폴 소자(1a) 각각은 수직에 대해서(또는 수평에 대해서) +45 및 -45도의 각도로 정확하게 정렬되어, 간략히 X-편파 안테나라 칭하는 복편파 안테나를 형성한다.
제2방사소자모듈(3)은 정방형 다이폴 형태의 제1방사소자모듈(1) 내에, 또는 그 외부에 위치될 수 있다. 이러한 제2방사소자모듈(3)은 정방형 다이폴 형태가 아니라 십자형 다이폴 형태이다. 서로 직각으로 위치되는 2개의 다이폴(3a)은 마찬가지로 반사판(5)에 해당 평형망을 통해 지지되며, 이를 통해 급전된다.
제1, 제2방사소자모듈(1, 3)은 반사판(5) 앞에서 서로 다른 거리로 정확하게 배치되어 있다. 이때 제2방사소자모듈(3)은 제1방사소자모듈(1)에 인터리빙되어 배열된다. 또한, 도 1에 도시된 바와 같이, 이러한 제1, 제2방사소자모듈(1, 3)에 의해 형성된 안테나 장치는 수직 방향으로 2개가 반사판(5)상에 설치될 수 있으며, 두 개의 안테나 장치사이의 공간에는 제2주파수 대역의 부가 제2방사소자모듈(3')가 설치될 수 있다. 이러한 배열방식으로 높은 수직 이득을 갖도록 한다.
이와 같이, 종래의 이중대역 이중편파 안테나 어레이의 일 예시적인 구성이 있을 수 있으며, 이와 더불어, 이중대역 이중편파 안테나 어레이의 최적화 구조 및 안테나 사이즈의 최적화, 안정적인 특성, 빔폭 조정의 용이성 및 안테나 설계의 용이성 등을 위해 현재 다양한 연구가 진행되고 있다.
본 발명의 목적은 보다 최적화된 구조 배열 및 안테나 사이즈의 최적화를 가능하게 하며, 안정적인 안테나 특성 및 보다 간단한 구조를 가지도록 하며, 안테나의 빔폭 조정의 용이성 및 안테나 설계의 용이성을 가져올 수 있도록 하기 위한 이동통신 기지국용 이중대역 이중편파 안테나를 제공함에 있다.
상기한 목적을 달성하기 위하여 본 발명의 일 특징에 따르면 이동통신 기지국용 이중대역 이중편파 안테나에 있어서, 반사판과; 상기 반사판 상에 형성되며, 전체적으로 'X'자 형태로 설치되는 다수의 다이폴들로 구성되어, 제1주파수 대역용 2개의 선형 직교 편파를 송신 및 수신하기 위한 적어도 하나 이상의 제1방사소자모듈과; 상기 반사판 상에서 상기 제1방사소자모듈 사이에 인터리빙되는 제2주파수 대역용 적어도 하나 이상의 제2방사소자모듈을 포함함을 특징으로 한다.
본 발명의 다른 특징에 따르면, 이동통신 기지국용 이중대역 이중편파 안테나에 있어서, 반사판과; 상기 반사판 상에 형성되며, 전체적으로 '>>'자 또는 '<<'자 형태로 설치되는 다수의 다이폴들로 구성되어, 제1주파수 대역용 2개의 선형 직교 편파를 송신 및 수신하기 위한 적어도 하나 이상의 제1방사소자모듈과; 상기 반사판 상에서 상기 제1방사소자모듈 사이에 인터리빙되는 제2주파수 대역용 적어도 하나 이상의 제2방사소자모듈을 포함함을 특징으로 한다.
본 발명에 따른 이중대역 이중편파 안테나는 보다 최적화된 구조 배열 및 안테나 사이즈의 최적화를 가능하게 하며, 안정적인 특성 및 보다 간단한 구조를 가지도록 하며, 안테나의 빔폭 조정의 용이성 및 안테나 설계의 용이성을 가져올 수 있다.
도 1은 종래 이중대역 이중편파 안테나 어레이의 일 예시 사시도
도 2는 본 발명의 제1실시예에 따른 이중대역 이중편파 안테나 어레이의 사시도
도 3은 도 2 중 제1방사소자모듈을 구성하는 다이폴의 구조도
도 4는 도 2의 평면도
도 5는 본 발명의 제2실시예에 따른 이중대역 이중편파 안테나 어레이의 사시도
도 6은 도 2 중 제1방사소자모듈을 구성하는 다이폴의 구조도
도 7은 도 5의 평면도
도 8은 본 발명의 제3실시예에 따른 이중대역 이중편파 안테나 어레이의 평면도
도 9는 본 발명의 제4실시예에 따른 이중대역 이중편파 안테나 어레이의 평면도
도 10은 본 발명의 제5실시예에 따른 이중대역 이중편파 안테나 어레이의 평면도
도 11은 본 발명의 제6실시예에 따른 이중대역 이중편파 안테나 어레이의 평면도
도 12는 본 발명의 제7실시예에 따른 이중대역 이중편파 안테나 어레이의 평면도
도 13은 본 발명의 제8실시예에 따른 이중대역 이중편파 안테나 어레이의 평면도
도 14는 본 발명의 제1실시예에서의 빔 특성을 나타낸 그래프
도 15는 본 발명의 제5실시예에서의 빔 특성을 나타낸 그래프
도 16은 본 발명의 제7실시예에서의 빔 특성을 나타낸 그래프
이하 본 발명에 따른 바람직한 실시예를 첨부한 도면을 참조하여 상세히 설명한다. 하기 설명에서는 구체적인 구성 소자 등과 같은 특정 사항들이 나타나고 있는데 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐 이러한 특정 사항들이 본 발명의 범위 내에서 소정의 변형이나 혹은 변경이 이루어질 수 있음은 이 기술분야에서 통상의 지식을 가진 자에게는 자명하다 할 것이다.
도 2는 본 발명의 제1실시예에 따른 이중대역 이중편파 안테나 어레이의 사시도이며, 도 3은 도 2 중 제1방사소자모듈을 구성하는 다이폴의 구조도이며, 도 4는 도 2의 평면도이다. 도 2 내지 도 4를 참조하면, 본 발명의 제1실시예에 따른 이중대역 이중편파 안테나 어레이는 반사판(15) 전면에 설치되는 저주파 대역(예를 들어 800MHz 대역)의 다수의 제1방사소자모듈(10 : 참조번호10-1, 10-2, 10-3, 10-4를 총칭함) 및 상기 제1방사소자모듈(10) 사이에 적절히 배치되는 형태로 설치되는 고주파 대역(예를 들어 2GHz 대역)의 다수의 제2방사소자모듈(20, 22, 24)로 구성된다.
상기 다수의 제1방사소자모듈 중 하나의 제1방사소자모듈은 제1 내지 제4 다이폴(10-1 내지 10-4)로 구성될 수 있다.
제1방사소자모듈(10)은 X편파를 구현하기 위하여 종래의 정방형 구조가 아닌 전체적으로 'X'자 구조를 가지게 된다. 즉, 상기 제1 내지 제4다이폴(10-1 내지 10-4)은 각각 전체 'X'자 구조의 각 일단부를 형성한다. 이때 도 4에 도시된 바와 같이, 제1, 제3다이폴(10-1, 10-3)은 +45도 편파를 형성하며, 제2, 제4다이폴(10-2, 10-4)은 -45도 편파를 형성하게 된다.
도 3에는 제1다이폴(10-1)의 상세 구조가 개시되는데, 이를 참조하여 본 발명에 따른 제1 내지 제4다이폴(10-1 내지 10-4)의 구조를 살펴보면, 본 발명에 따른 제1 내지 제4다이폴(10-1 내지 제10-4)은 폴디드 다이폴(folded dipole) 구조를 가진다.
폴디드 다이폴은 좌, 우측단으로 구분되어 전체 길이가 해당 주파수에 따라 설계되는 제1측 및 제2측 다이폴 소자(104, 106)와, 제1측 및 제2측 다이폴 소자(104, 106)를 각각 개별적으로 지지하기 위한 적절한 형상의 전도성 발룬(Balun)(102)과, 발룬(102)의 길이 방향으로 신장되어 제1측 다이폴 소자(104)의 내측 단부와 접속되는 급전선(112)과, 상기 제1측 및 제2측 다이폴 소자(104, 106)의 길이 방향으로 신장되어 이들의 외측 단부를 서로 연결하며, 다이폴 소자(104, 106)와 평행한 제3측 다이폴 소자(108)로 구성된다. 이때 상기 제1측 및 제2측 다이폴 소자(104, 106), 발룬(102), 급전선(112) 및 제3측 다이폴 소자(108)는 전체적으로 하나의 금속성 평면상에서 하나로 연결되는 금속 패턴으로 설계 및 제작될 수 있다.
이와 같은 폴디드 다이폴에서 급전선(112)을 통해 전류가 제공되면, 도 3에 도시된 바와 같은 화살표 방향으로 제1측 및 제2측 다이폴 소자(104, 106)에 안테나 모드 전계가 형성되며, 제3측 다이폴 소자(108)에는 해당 제1측 및 제2측 다이폴 소자(104, 106)에 형성된 전계와 동일한 방향(도 3의 화살표 참조)의 전계가 유기된다. 이러한 폴디드 다이폴은 일반적인 다이폴에 비해 보다 광대역 특성과 안테나 수평빔폭 변화의 안정성을 가지고 급전 구조가 간단한 구조를 갖게 된다.
이와 같은 폴디드 다이폴을 이용하는 본 발명에 따른 제1방사소자모듈(10)의 제1 내지 제4다이폴(10-1, 10-2, 10-3, 10-4)에서, 제1 및 제3다이폴(10-1, 10-3)은 기울기가 +45도를 가지도록 설치되며, 각각 설치된 상태에 따라 안테나의 전체 편파 중 +45도 편파를 배열하여 직접적으로 형성하는 +45도의 전계를 유기하게 된다. 마찬가지로, 제2 및 제4다이폴(10-2, 10-4)은 기울기가 -45도를 가지도록 설치되며, 각각 설치된 상태에 따라 안테나의 전체 편파 중 -45도 편파를 배열하여 직접적으로 형성하는 -45도의 전계를 유기하게 된다.
한편, 도 2 및 도 4에서 제2방사소자모듈(20, 22, 24)은 PCB(Print Circuit Board) 타입의 방사소자가 구성되는 것이 예로서 도시되고 있는데, 이러한 제2방사소자모듈(20, 22, 24)은 도 1에 도시된 종래의 제2방사소자모듈(3)을 비롯한 종래의 일반적인 고주파 대역용 방사소자 모듈이 적용될 수 있다.
또한, 상기 도 2 및 도 4에서는 예를 들어, 제1방사소자모듈(10)이 2개소에 설치되며, 제2방사소자모듈이 예를 들어 전체적으로 'X'자 형태의 제1방사소자모듈(10)의 설치 범위의 중앙 위치 및 중앙에서 상하 위치에 하나씩 설치되어, 2개소에 설치된 제1방사소자모듈(10)들 사이에 미리 설정된 개수의 제2방사소자모듈이 인터리빙되어 설치되는 것이 도시되고 있다. 그러나, 이는 설명의 편의를 위한 것으로서 각 제1 또는 제2방사소자모듈의 총 수 및 각 모듈간의 간격 등은 특정 안테나 어레이의 설계에 따라 적절히 변형될 수 있음은 물론이다. 기본적으로는, 제1방사소자모듈(10)이 배치되는 가로 또는 세로 방향의 설치 중심 축을 기준으로 제2방사소자모듈(들)이 나란히 배치될 수 있다.
도 5는 본 발명의 제2실시예에 따른 이중대역 이중편파 안테나 어레이의 사시도이며, 도 6은 도 5 중 제1방사소자모듈을 구성하는 폴디드 다이폴의 구조도이며, 도 7은 도 5의 평면도이다. 도 5 내지 도 7을 참조하면, 본 발명의 제2실시예에 따른 이중대역 이중편파 안테나 어레이는 도 2 내지 도 4에 도시된 제1실시예의 구조와 마찬가지로 반사판(15) 전면에 설치되는 다수의 제1방사소자모듈(12 : 참조번호 12-1, 12-2, 12-3, 12-4를 총칭함) 및 상기 제1방사소자모듈(12) 사이에 적절히 배치되는 형태로 설치되는 다수의 제2방사소자모듈(20, 22, 24)로 구성된다.
이때, 본 발명의 제2실시예에 따른 제1방사소자모듈(12)의 상세 구성은 제1실시예의 구성과 차이가 있게 된다. 즉, 도 6에 상세히 개시된 바와 같이, 제1방사소자모듈(12)을 구성하는 제1 내지 제4다이폴(12-1, 12-2, 12-3, 12-4)은 제1실시예에서와 같은 폴디드 다이폴 형태를 가지지만, 도 4에 도시된 바와 같이, 제2실시예에 따른 제1 내지 제4다이폴(12-1 내지 12-4)은 다이폴 소자의 외측 단부들 중 적어도 하나가 구부러진 부분(도 6의 A부분)을 가짐을 특징으로 한다. 도 5 내지 도 7에 도시된 제2실시예에서는 다이폴 소자의 외측 단부들이 모두 구부러진 구조를 가짐이 예로서 도시된다. 이때 구부러지는 부분은 전체 다이폴 소자의 길이에서 반 이상을 넘지 않도록 한다.
통상적인 다이폴 구조에서 다이폴 소자의 외측 단부에 전계가 강하게 발생하여 인접한 다이폴 소자에 영향을 끼치게 되는데, 상기 구부러진 구조의 폴디드 다이폴을 사용할 경우에, 이와 같이 다이폴 소자에서 인접한 다이폴 소자에 강한 전계를 줄일 수 있게 된다.
또한, 본 발명의 제1실시예에서 도 4에 B1로 도시된 부분에서와 같이, 제1방사소자모듈을 'X'자 형태로 배열할 경우에 'X'자 중앙에서 서로간의 거리가 가깝게 되어 강한 커플링이 발생되며, 이에 서로 다른 편파가 영향을 받을 수 있게 된다. 이때, 본 발명의 제2실시예에서 도 7의 B2로 도시된 부분에서와 같이, 구부러진 구조의 폴디드 다이폴을 사용하여 서로 다른 편파들 사이를 이격시킴으로써 편파의 영향을 줄일 수 있게 된다.
도 8은 본 발명의 제3실시예에 따른 이중대역 이중편파 안테나 어레이의 평면도이다. 도 8을 참조하면, 본 발명의 제3실시예에 따른 이중대역 이중편파 안테나 어레이는 도 2 내지 도 4에 도시된 제1실시예의 구조와 유사하게 폴디드 다이폴 구조를 가지는 제1 내지 제4다이폴(10-1 내지 10-4)을 사용하여 제1방사소자모듈(10 : 참조번호 10-1, 10-2, 10-3, 10-4를 총칭함)을 구성하게 되는데, 이때 제1방사소자모듈(10)은 전체적으로 'X'자 구조가 아니라, '>>'자 또는 '<<'자 구조를 가지게 된다. 즉, 본 발명의 제3실시예의 구조는 'X'자 구조의 제1실시예에서 제1, 제2다이폴(10-1, 10-2)의 위치가 서로 바뀌어 설치되는 형태임을 볼 수 있다.
이러한 구성에 따라, 본 발명의 제3실시예에 따른 제1방사소자모듈(10)의 제1 내지 제4다이폴(10-1, 10-2, 10-3, 10-4)에서, 제1 및 제3다이폴(10-1, 10-3)은 기울기가 +45도를 가지면서 서로 나란하게 설치되며, 각각 설치된 상태에 따라 안테나의 전체 편파 중 +45도 편파를 직접적으로 형성한다. 마찬가지로, 제2 및 제4다이폴(10-2, 10-4)은 기울기가 -45도를 가지면서 서로 나란하게 설치되며, 각각 설치된 상태에 따라 안테나의 전체 편파 중 -45도 편파를 직접적으로 형성한다.
한편, 도 8에서는 2개소에 설치되는 제1방사소자모듈(10)별로 6개소에 제2방사소자모듈이 설치되는 제1실시예와는 달리 4개의 제2방사소자모듈(20, 22)이 설치되는 것으로 도시되고 있다. 이와 같이, 본 발명의 실시예의 구조를 조합하여 각 제1 또는 제2방사소자모듈의 최적화된 총 수 및 각 모듈간의 간격 등을 적절히 조절할 수 있는 등 안테나 설계의 용이성을 가져올 수 있게 된다.
도 9는 본 발명의 제4실시예에 따른 이중대역 이중편파 안테나 어레이의 평면도로서, 도 9를 참조하면, 본 발명의 제4실시예에 따른 이중대역 이중편파 안테나 어레이는 상기 도 8에 도시된 제3실시예의 구성과 대부분 동일하며, 이때 본 발명의 제4실시예에 따른 제1방사소자모듈(12 : 참조번호 12-1, 12-2, 12-3, 12-4를 총칭함)을 구성하는 제1 내지 제4다이폴(12-1, 12-2, 12-3, 12-4)은 도 5 내지 도 7에 도시된 본 발명의 제2실시예에서와 같이 구부러진 폴디드 다이폴 구조를 채용하고 있음을 볼 수 있다.
도 10은 본 발명의 제5실시예에 따른 이중대역 이중편파 안테나 어레이의 평면도이다. 도 10을 참조하면, 본 발명의 제5실시예에 따른 안테나 어레이 구조는 상기 도 2 내지 도 4에 도시된 본 발명의 제1실시예에 따른 이중대역 이중편파 안테나 어레이의 구조와 거의 대부분 동일함을 알 수 있다. 다만, 800MHz 제1방사소자모듈(10)에서 X편파를 구현하기 위한 각각의 제1 내지 제4다이폴(10-1, 10-2, 10-3, 10-4)들의 구조에서 전도성 발룬(102)은 그 설치 범위가 중심 축에 위치하는 2GHz 대역의 제2방사소자모듈(20, 22, 24)의 설치 범위와 겹치지 않고 가급적이면 멀리 위치하도록, 전체 제1방사소자모듈(10)의 좌우측에 위치하도록 구성한다. 즉, 도 10에 도시된 바와 같이, 각 발룬(102)들은 해당 발룬(102)의 하단부가 상단부에 비해 상기 제2방사소자모듈(20)에서 더 멀어지는 형태로 기울어져 설치된다.
이는 제1실시예에서와 같이 제1방사소자모듈(10)의 발룬(102)이 제2방사소자모듈(20, 22, 24)에 가까이 배치되어 있을 경우, 2GHz 대역의 CPR(Cross-Polarization Ratio: 교차편파비) 특성이 나빠질 수 있으므로, 이를 개선하기 위함이다.
이와 같이, 각 발룬(102)들을 하단부가 상단부에 비해 상기 제2방사소자모듈(20, 22, 24)에서 더 멀어지는 형태로 기울어지게 설치하는 것은 제2방사소자모듈(20, 22, 24)의 CPR 특성을 개선하게 되는 특성이 있다. 이때 각 발룬(102)을 구성하는 것은 상기와 같이 제1방사소자모듈(10)이 전체적으로 'X' 자 형태인 구조에 적용될 수도 있지만, 도 1에 도시된 바와 같이, 제1방사소자모듈이 전체적으로 통상적인 마름모 형태인 구조에도 적용될 수 있다. 그럴 경우에는 정면에서 볼 때에, 발룬들이 종래와 같이 제1방사소자모듈의 전체적인 마름모 구조 내부에 해당하는 범위에 위치하는 것이 아니라 마름모 구조의 외부에 위치하게 된다.
도 11은 본 발명의 제6실시예에 따른 이중대역 이중편파 안테나 어레이의 평면도이다. 도 11을 참조하면, 본 발명의 제5실시예에 따른 안테나 어레이 구조는 상기 도 5 내지 도 7에 도시된 본 발명의 제2실시예에 따른 이중대역 이중편파 안테나 어레이의 구조와 거의 대부분 동일함을 알 수 있다. 다만, 상기 도 10에 도시된 변형예와 마찬가지로 800MHz 제1방사소자모듈(12)의 제1 내지 제4다이폴(12-1, 12-2, 12-3, 10-4)들의 구조에서 전도성 발룬을 그 설치 범위가 제2방사소자모듈(20, 22, 24)의 설치 범위와 겹치지 않고 가급적이면 멀리 위치하도록, 전체 제1방사소자모듈(12)의 좌우측에 위치하도록 구성한다.
도 12는 본 발명의 제7실시예에 따른 이중대역 이중편파 안테나 어레이의 평면도이다. 도 12를 참조하면, 본 발명의 제7실시예에 따른 안테나 어레이는 상기 도 10에 도시된 제5실시예의 구조와 대부분 유사함을 알 수 있다. 다만, 본 발명의 제7실시예에 따른 안테나 어레이에서는 제1방사소자모듈(10)과 제2방사소자모듈(20, 22)간의 상호 배치 구조가 제5실시예에서의 배치 구조와는 다름을 알 수 있다.
즉, 상기 도 10에 도시된 구조에서는 예를 들어, 제1방사소자모듈(10)이 2개소에 설치되며, 제2방사소자모듈(20, 22, 24)이 예를 들어 전체적으로 'X'자 형태의 제1방사소자모듈(10)의 설치 범위의 중앙 위치 및 중앙에서 상하 위치에 하나씩 설치되는 것으로 도시하였다. 그러나 도 12에 도시된 바와 같이, 제7실시예에 따른 안테나 어레이 구조에서는 제1방사소자모듈(10)의 'X'자 형태의 중앙 위치에는 제2방사소자모듈(20, 22)이 설치되지 않고, 하나의 제1방사소자모듈(10)의 설치 범위 중에서 'X'자 형태의 중앙 위치를 벗어나서 상, 하측 부위에 제2방사소자모듈(20, 도 12에서는 20-1, 20-2)이 하나씩 설치된다.
아울러, 2개소에 설치되는 제1방사소자모듈(10) 사이의 공간에는 제2방사소자모듈들의 배치 간격을 일정하게 유지하기 위한 부가 제2방사소자모듈(21)이 설치될 수 있다.
이와 같이 제1방사소자모듈(10)과 제2방사소자모듈(20, 22, 21)간의 상호 배치 구조를 설정하는 것은, 제1방사소자모듈(10)의 'X'자 형태의 중앙 위치에 제2방사소자모듈이 설치된 경우와 비교하여 CPR 특성에 악영향을 주는 요인을 더욱 줄이게 되므로, CPR 특성을 더욱 향상시키게 된다.
도 13은 본 발명의 제8실시예에 따른 이중대역 이중편파 안테나 어레이의 평면도이다. 도 13을 참조하면, 본 발명의 제8실시예에 따른 안테나 어레이는 상기 도 10에 도시된 제5실시예의 구조와 대부분 유사함을 알 수 있다. 다만, 상기 도12에 도시된 제7실시예에서와 마찬가지로, 제1방사소자모듈(10)의 'X'자 형태의 중앙 위치에는 제2방사소자모듈(22, 24)이 설치되지 않고, 하나의 제1방사소자모듈(10)의 설치 범위 중에서 'X'자 형태의 중앙 위치를 벗어나서 상, 하측 부위에 제2방사소자모듈(20, 도 12에서는 20-1, 20-2)이 하나씩 설치된다.
또한, 도 13에 도시된 제8실시예에서도 상기 도 12에 도시된 제7실시예에서와 마찬가지로, 2개소에 설치되는 제1방사소자모듈(12) 사이의 공간에 제2방사소자모듈들의 배치 간격을 일정하게 유지하기 위한 부가 제2방사소자모듈(21)이 설치된다.
도 14는 본 발명의 제1실시예에서의 빔 특성을 나타낸 그래프이며, 도 15는 상기 도 10에 도시된 제5실시예에서의 빔 특성을 나타낸 그래프이다. 도 14 및 도 15를 참조하면, 제5실시예에서는 제1실시예와 비교하여 CPR 특성이 0도에서는 16.3dB에서 21.4dB로, 또한 +60도에서는 8.1dB에서11.8dB로, 그리고 -60도에서는 5.7dB에서 10.6dB로 전체적으로 개선되는 것으로 측정됨을 알 수 있다.
또한, 도 16은 상기 도 12에 도시된 본 발명의 제7실시예에서의 빔 특성을 나타낸 그래프인데, 제7실시예는 제5실시예와 비교하여도, CPR 특성이 0도에서는 21.4dB에서25.3dB로, 또한 +60도에서는 11.8dB에서 13.6dB로, 그리고 -60도에서는 10.6dB에서14.3dB로 전체적으로 더욱더 개선되는 것으로 측정됨을 알 수 있다.
상기와 같이 본 발명의 일 실시예에 따른 이중대역 이중편파 안테나가 구성될 수 있으며, 한편 상기한 본 발명의 설명에서는 구체적인 실시예에 관해 설명하였으나 여러 가지 변형이 본 발명의 범위를 벗어나지 않고 실시될 수 있다. 예를 들어, 상기의 설명에서는 도 10 및 도 11에서 각각 제1, 제2실시예의 변형예를 도시하였으나, 마찬가지의 변형이 도 8 및 도 9에 도시된 제3, 제4실시예에서도 적용될 수 있다. 즉, 도 8 및 도 9에 도시된 제1방사소자모듈에도 발룬이 제2방사소자모듈의 설치 위치와 가급적이면 멀리 설치되도록 전체 제1방사소자모듈의 좌우측 부위에 설치될 수 있다. 이와 같이, 본 발명의 다양한 변형 및 변경이 있을 수 있으며, 따라서 본 발명의 범위는 설명된 실시예에 의하여 정할 것이 아니고 청구범위와 청구범위의 균등한 것에 의하여 정하여져야 할 것이다.

Claims (17)

  1. 이동통신 기지국용 이중대역 이중편파 안테나에 있어서,
    반사판과,
    상기 반사판 상에 형성되며, 전체적으로 'X'자 형태로 설치되는 다수의 다이폴들로 구성되어, 제1주파수 대역용 2개의 선형 직교 편파를 송신 및 수신하기 위한 적어도 하나 이상의 제1방사소자모듈과,
    상기 반사판 상에서 상기 하나 이상의 제1방사소자모듈과 함께 설치되는 적어도 하나 이상의 제2주파수 대역용 제2방사소자모듈을 포함함을 특징으로 하는 이중대역 이중편파 안테나.
  2. 제1항에 있어서, 상기 제1방사소자모듈의 제1 내지 제4다이폴들의 전도성 발룬들은 그 설치 범위가 상기 제2방사소자모듈의 설치 범위와 가급적 멀리 위치하도록, 각 발룬의 하단부가 상단부에 비해 상기 제2방사소자모듈에서 더 멀어지게 구성함을 특징으로 하는 이중대역 이중편파 안테나.
  3. 제1또는 제2항에 있어서, 상기 제1방사소자모듈은 상기 'X'자 구조의 각 일단부를 형성하는 제1, 제2, 제3 및 제4다이폴로 구성되며,
    상기 제1 및 제3다이폴은 기울기가 +45도를 가지도록 설치되며, 각각 설치된 상태에 따라 안테나의 전체 편파 중 +45도 편파를 직접적으로 형성하는+45도의 전계를 유기하며,
    상기 제2 및 제4다이폴은 기울기가 -45도를 가지도록 설치되며, 각각 설치된 상태에 따라 안테나의 전체 편파 중 -45도 편파를 직접적으로 형성하는-45도의 전계를 유기함을 특징으로 하는 이중대역 이중편파 안테나.
  4. 제3항 에 있어서,
    상기 제1방사소자모듈의 제1 내지 제4다이폴은 폴디드 다이폴 형태임을 특징으로 하는 이중대역 이중편파 안테나.
  5. 제3항 에 있어서,
    상기 제1방사소자모듈의 제1 내지 제4다이폴 중 적어도 일부는 해당 다이폴 소자의 외측 단부들 중 적어도 하나가 구부러진 부분을 가지는 구부러진 폴디드 다이폴 형태임을 특징으로 하는 이중대역 이중편파 안테나.
  6. 제3항 에 있어서, 상기 제2방사소자모듈은 상기 제1방사소자모듈의 상기 'X' 자 형태의 중앙 위치를 벗어나서 상, 하측 부위에 설치됨을 특징으로 하는 이중대역 이중편파 안테나.
  7. 이동통신 기지국용 이중대역 이중편파 안테나에 있어서,
    반사판과,
    상기 반사판 상에 형성되며, 전체적으로 'X'자 형태로 설치되는 다수의 다이폴들로 구성되어, 제1주파수 대역용 2개의 선형 직교 편파를 송신 및 수신하기 위한 적어도 하나 이상의 제1방사소자모듈과,
    상기 반사판 상에서 상기 하나 이상의 제1방사소자모듈과 함께 설치되는 적어도 하나 이상의 제2주파수 대역용 제2방사소자모듈을 포함하며,
    상기 제2방사소자모듈은 상기 제1방사소자모듈의 상기 'X' 자 형태의 중앙 위치를 벗어나서 상, 하측 부위에 설치됨을 특징으로 하는 이중대역 이중편파 안테나.
  8. 제7항에 있어서, 상기 제1방사소자모듈은 상기 'X'자 구조의 각 일단부를 형성하는 제1, 제2, 제3 및 제4다이폴로 구성되며,
    상기 제1 및 제3다이폴은 기울기가 +45도를 가지도록 설치되며, 각각 설치된 상태에 따라 안테나의 전체 편파 중 +45도 편파를 직접적으로 형성하는+45도의 전계를 유기하며,
    상기 제2 및 제4다이폴은 기울기가 -45도를 가지도록 설치되며, 각각 설치된 상태에 따라 안테나의 전체 편파 중 -45도 편파를 직접적으로 형성하는-45도의 전계를 유기함을 특징으로 하는 이중대역 이중편파 안테나.
  9. 제7항 또는 제8항에 있어서,
    상기 제1방사소자모듈의 제1 내지 제4다이폴은 폴디드 다이폴 형태임을 특징으로 하는 이중대역 이중편파 안테나.
  10. 제7항 또는 제8항에 있어서,
    상기 제1방사소자모듈의 제1 내지 제4다이폴 중 적어도 일부는 해당 다이폴 소자의 외측 단부들 중 적어도 하나가 구부러진 부분을 가지는 구부러진 폴디드 다이폴 형태임을 특징으로 하는 이중대역 이중편파 안테나.
  11. 이동통신 기지국용 이중대역 이중편파 안테나에 있어서,
    반사판과,
    상기 반사판 상에 형성되며, 전체적으로 '>>'자 또는 '<<'자 형태로 설치되는 다수의 다이폴들로 구성되어, 제1주파수 대역용 2개의 선형 직교 편파를 송신 및 수신하기 위한 적어도 하나 이상의 제1방사소자모듈과,
    상기 반사판 상에서 상기 하나 이상의 제1방사소자모듈과 함께 설치되는 적어도 하나 이상의 제2주파수 대역용 제2방사소자모듈을 포함함을 특징으로 하는 이중대역 이중편파 안테나.
  12. 제11항에 있어서,
    상기 제1방사소자모듈의 제1 내지 제4다이폴들의 전도성 발룬들은 그 설치 범위가 상기 제2방사소자모듈의 설치 범위와 가급적 멀리 위치하도록, 각 발룬의 하단부가 상단부에 비해 상기 제2방사소자모듈에서 더 멀어지게 구성함을 특징으로 하는 이중대역 이중편파 안테나.
  13. 제11항 또는 제12항에 있어서, 상기 제1방사소자모듈은 상기 '>>'자 또는 '<<'자 구조의 각 일단부를 형성하는 제1, 제2, 제3 및 제4다이폴로 구성되며,
    상기 제1 및 제3다이폴은 기울기가 +45도를 가지도록 나란히 설치되며, 각각 설치된 상태에 따라 안테나의 전체 편파 중 +45도 편파를 직접적으로 형성하는 +45도의 전계를 유기하며,
    상기 제2 및 제4다이폴은 기울기가 -45도를 가지도록 나란히 설치되며, 각각 설치된 상태에 따라 안테나의 전체 편파 중 -45도 편파를 직접적으로 형성하는 -45도의 전계를 유기함을 특징으로 하는 이중대역 이중편파 안테나.
  14. 제13항에 있어서,
    상기 제1방사소자모듈의 제1 내지 제4다이폴은 폴디드 다이폴 형태임을 특징으로 하는 이중대역 이중편파 안테나.
  15. 제13항에 있어서,
    상기 제1방사소자모듈의 제1 내지 제4다이폴 중 적어도 일부는 해당 다이폴 소자의 외측 단부들 중 적어도 하나가 구부러진 부분을 가지는 구부러진 폴디드 다이폴 형태임을 특징으로 하는 이중대역 이중편파 안테나.
  16. 이동통신 기지국용 이중대역 이중편파 안테나에 있어서,
    반사판과,
    상기 반사판 상에 형성되며, 다수의 다이폴들로 구성되어, 제1주파수 대역용 2개의 선형 직교 편파를 송신 및 수신하기 위한 적어도 하나 이상의 제1방사소자모듈과,
    상기 반사판 상에서 상기 하나 이상의 제1방사소자모듈과 함께 설치되는 적어도 하나 이상의 제2주파수 대역용 제2방사소자모듈을 포함하며,
    상기 제1방사소자모듈의 제1 내지 제4다이폴들의 전도성 발룬들은 그 설치 범위가 상기 제2방사소자모듈의 설치 범위와 가급적 멀리 위치하도록, 각 발룬의 하단부가 상단부에 비해 상기 제2방사소자모듈에서 더 멀어지게 구성함을 특징으로 하는 이중대역 이중편파 안테나.
  17. 제16항에 있어서, 상기 제1방사소자모듈은 전체적으로 'X'자 형태 또는 마름모 형태로 설치되는 다수의 다이폴들로 구성됨을 특징으로 하는 이중대역 이중편파 안테나.
PCT/KR2009/005387 2008-09-22 2009-09-22 이동통신 기지국용 이중대역 이중편파 안테나 WO2010033004A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09814820.8A EP2346114B1 (en) 2008-09-22 2009-09-22 Dual-frequency / polarization antenna for mobile-communications base station
CN200980146089.XA CN102217140B (zh) 2008-09-22 2009-09-22 用于移动通信的基站的双频段双极化天线
US13/119,854 US20110175782A1 (en) 2008-09-22 2009-09-22 Dual-band dual-polarized antenna of base station for mobile communication
JP2011527753A JP5312598B2 (ja) 2008-09-22 2009-09-22 移動通信基地局用二重帯域二重偏波アンテナ

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2008-0092963 2008-09-22
KR1020080092963A KR101498161B1 (ko) 2008-09-22 2008-09-22 이동통신 기지국용 이중대역 이중편파 안테나
KR20080131460 2008-12-22
KR10-2008-0131460 2008-12-22
KR10-2009-0021874 2009-03-13
KR1020090021874A KR101085887B1 (ko) 2008-12-22 2009-03-13 이동통신 기지국용 이중대역 이중편파 안테나

Publications (2)

Publication Number Publication Date
WO2010033004A2 true WO2010033004A2 (ko) 2010-03-25
WO2010033004A3 WO2010033004A3 (ko) 2010-07-22

Family

ID=44146627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/005387 WO2010033004A2 (ko) 2008-09-22 2009-09-22 이동통신 기지국용 이중대역 이중편파 안테나

Country Status (5)

Country Link
US (1) US20110175782A1 (ko)
EP (1) EP2346114B1 (ko)
JP (1) JP5312598B2 (ko)
CN (1) CN102217140B (ko)
WO (1) WO2010033004A2 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102176536A (zh) * 2011-01-28 2011-09-07 京信通信技术(广州)有限公司 一种双极化辐射单元及宽频基站天线
WO2012159406A1 (en) * 2011-05-20 2012-11-29 Tongyu Communication Inc. Dual-band and dual-polarized antenna
KR20150060878A (ko) * 2012-10-10 2015-06-03 후아웨이 테크놀러지 컴퍼니 리미티드 공급 네트워크, 안테나, 및 이중 편파 안테나 어레이 공급 회로
CN110622352A (zh) * 2017-05-16 2019-12-27 日本电业工作株式会社 天线、阵列天线、扇形天线以及偶极天线
KR20200001704U (ko) * 2019-01-21 2020-07-30 페가트론 코포레이션 전자 장치 및 그 안테나 구조

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2960710B1 (fr) 2010-05-28 2013-08-23 Alcatel Lucent Element rayonnant a double polarisation d'antenne multibande
CN103503231B (zh) * 2011-05-02 2015-06-10 康普技术有限责任公司 三极子天线元件与天线阵列
CN103098304B (zh) * 2011-09-07 2016-03-02 华为技术有限公司 双频双极化天线
CA2867669A1 (en) * 2012-03-19 2013-09-26 Galtronics Corporation Ltd. Multiple-input multiple-output antenna and broadband dipole radiating element therefore
CN102891353B (zh) * 2012-09-29 2015-08-19 武汉虹信通信技术有限责任公司 一种伞形超宽频双极化基站天线辐射单元
US9000991B2 (en) 2012-11-27 2015-04-07 Laird Technologies, Inc. Antenna assemblies including dipole elements and Vivaldi elements
ES2639846T3 (es) * 2012-12-24 2017-10-30 Commscope Technologies Llc Antenas de estaciones base móviles intercaladas de doble banda
CN103165976B (zh) * 2013-03-01 2016-06-08 江苏省东方世纪网络信息有限公司 具有仿生外形的宽频带高增益天线和具有它的天线组件
JP5735591B2 (ja) * 2013-08-02 2015-06-17 日本電業工作株式会社 アンテナ及びセクタアンテナ
US9780457B2 (en) 2013-09-09 2017-10-03 Commscope Technologies Llc Multi-beam antenna with modular luneburg lens and method of lens manufacture
CN104753554B (zh) * 2013-12-27 2017-08-15 启碁科技股份有限公司 射频装置及无线通信装置
JP2017505075A (ja) * 2014-01-31 2017-02-09 クインテル テクノロジー リミテッド ビーム幅制御を伴うアンテナシステム
JP6267005B2 (ja) * 2014-03-04 2018-01-24 日本電業工作株式会社 アレイアンテナ及びセクタアンテナ
CN103972660B (zh) * 2014-05-06 2017-03-08 京信通信技术(广州)有限公司 多频共用基站天线及其天线反射板
WO2016078475A1 (zh) * 2014-11-18 2016-05-26 李梓萌 小型化双极化基站天线
US9912076B2 (en) * 2015-06-15 2018-03-06 Commscope Technologies Llc Choked dipole arm
US10476150B2 (en) 2015-07-08 2019-11-12 Nec Corporation Wireless communication device
CN106450751A (zh) * 2015-08-06 2017-02-22 哗裕实业股份有限公司 具片状金属群负载的偶极单元及其应用的天线装置
US20170062952A1 (en) * 2015-09-02 2017-03-02 Ace Antenna Company Inc. Dual band, multi column antenna array for wireless network
KR101703741B1 (ko) * 2015-09-11 2017-02-07 주식회사 케이엠더블유 다중편파 방사소자 및 이를 구비한 안테나
CN106099396B (zh) * 2015-10-21 2019-02-05 罗森伯格技术(昆山)有限公司 双极化天线辐射单元及双极化天线阵列
JP6541556B2 (ja) * 2015-11-26 2019-07-10 日本アンテナ株式会社 アンテナ装置
EP3373390B1 (en) * 2015-12-03 2021-09-01 Huawei Technologies Co., Ltd. Multi-frequency communication antenna and base station
US11128055B2 (en) * 2016-06-14 2021-09-21 Communication Components Antenna Inc. Dual dipole omnidirectional antenna
CN106207474B (zh) * 2016-07-19 2019-12-10 电子科技大学 一种馈电结构带有谐振环的宽频带圆极化交叉偶极子天线
TWI643405B (zh) * 2017-07-20 2018-12-01 啓碁科技股份有限公司 天線系統
CN108461904A (zh) * 2018-03-13 2018-08-28 江苏捷士通射频系统有限公司 应用于低频段天线的超宽带辐射单元
US10700441B2 (en) 2018-07-20 2020-06-30 Huawei Technologies Co., Ltd. Configurable wide scan angle array
CN109193176A (zh) * 2018-07-24 2019-01-11 广东博纬通信科技有限公司 一种双极化低频振子单元及多频段阵列天线
CN109713433B (zh) * 2019-01-15 2022-11-04 武汉虹信科技发展有限责任公司 分体式辐射单元、天线阵列及基站天线
KR102529052B1 (ko) * 2019-06-12 2023-05-03 삼성전기주식회사 안테나 장치
US20210305721A1 (en) * 2020-03-26 2021-09-30 Commscope Technologies Llc Cloaked radiating elements having asymmetric dipole radiators and multiband base station antennas including such radiating elements
CN114122686A (zh) * 2020-09-01 2022-03-01 康普技术有限责任公司 基站天线
CN114243258A (zh) * 2020-09-09 2022-03-25 康普技术有限责任公司 包括具有倾斜偶极子的辐射元件的基站天线
WO2022063387A1 (en) * 2020-09-22 2022-03-31 Huawei Technologies Co., Ltd. Dual polarized semi-continuous dipole antenna device, antenna array and antenna architecture
US11909133B2 (en) * 2020-11-23 2024-02-20 Huawei Technologies Co., Ltd. Dielectrically loaded printed dipole antenna

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4434425A (en) * 1982-02-02 1984-02-28 Gte Products Corporation Multiple ring dipole array
US5596336A (en) * 1995-06-07 1997-01-21 Trw Inc. Low profile TEM mode slot array antenna
DE19627015C2 (de) * 1996-07-04 2000-07-13 Kathrein Werke Kg Antennenfeld
US6094166A (en) * 1996-07-16 2000-07-25 Metawave Communications Corporation Conical omni-directional coverage multibeam antenna with parasitic elements
JPH10303638A (ja) * 1997-04-23 1998-11-13 Toyota Motor Corp 偏波共用型平板アンテナ
DE19823750A1 (de) * 1998-05-27 1999-12-09 Kathrein Werke Kg Antennenarray mit mehreren vertikal übereinander angeordneten Primärstrahler-Modulen
DE19823749C2 (de) * 1998-05-27 2002-07-11 Kathrein Werke Kg Dualpolarisierte Mehrbereichsantenne
US6034649A (en) * 1998-10-14 2000-03-07 Andrew Corporation Dual polarized based station antenna
SE514557C2 (sv) * 1999-07-09 2001-03-12 Ericsson Telefon Ab L M Anordning för bruk i en gruppantenn för sändning och mottagning på minst en frekvens i minst två polarisationer
US6211841B1 (en) * 1999-12-28 2001-04-03 Nortel Networks Limited Multi-band cellular basestation antenna
JP3302669B2 (ja) * 2000-01-07 2002-07-15 電気興業株式会社 偏波共用アンテナ装置
DE10012809A1 (de) * 2000-03-16 2001-09-27 Kathrein Werke Kg Dualpolarisierte Dipolantenne
JP2004503159A (ja) * 2000-07-10 2004-01-29 アンドリュー・コーポレイション セル式アンテナ
WO2002023669A1 (en) * 2000-09-12 2002-03-21 Andrew Corporation A dual polarised antenna
JP4161530B2 (ja) * 2000-10-26 2008-10-08 日立電線株式会社 2周波共用アレイアンテナ
DE10064129B4 (de) * 2000-12-21 2006-04-20 Kathrein-Werke Kg Antenne, insbesondere Mobilfunkantenne
JP2003243922A (ja) * 2002-02-15 2003-08-29 Toyota Central Res & Dev Lab Inc アンテナ装置
EP1509969A4 (en) * 2002-03-26 2005-08-31 Andrew Corp MULTI-BAND ADJUSTABLE BASE STATION ANTENNA WITH INCLINE BEAM AND DUAL POLARIZATION
US7358922B2 (en) * 2002-12-13 2008-04-15 Commscope, Inc. Of North Carolina Directed dipole antenna
WO2004055938A2 (en) * 2002-12-13 2004-07-01 Andrew Corporation Improvements relating to dipole antennas and coaxial to microstrip transitions
US7053852B2 (en) * 2004-05-12 2006-05-30 Andrew Corporation Crossed dipole antenna element
DE102004025904B4 (de) * 2004-05-27 2007-04-05 Kathrein-Werke Kg Antenne
US7079083B2 (en) * 2004-11-30 2006-07-18 Kathrein-Werke Kg Antenna, in particular a mobile radio antenna
DE102004057774B4 (de) * 2004-11-30 2006-07-20 Kathrein-Werke Kg Antenne, insbesondere Mobilfunkantenne
KR100795485B1 (ko) * 2005-03-10 2008-01-16 주식회사 케이엠더블유 광대역 다이폴 안테나
US7639198B2 (en) * 2005-06-02 2009-12-29 Andrew Llc Dipole antenna array having dipole arms tilted at an acute angle
CN2879454Y (zh) * 2005-09-09 2007-03-14 摩比天线技术(深圳)有限公司 双极化天线
GB0616449D0 (en) * 2006-08-18 2006-09-27 Quintel Technology Ltd Diversity antenna system with electrical tilt
KR100883408B1 (ko) * 2006-09-11 2009-03-03 주식회사 케이엠더블유 이동통신 기지국용 이중대역 이중편파 안테나
JP4732321B2 (ja) * 2006-12-18 2011-07-27 電気興業株式会社 アンテナ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2346114A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102176536A (zh) * 2011-01-28 2011-09-07 京信通信技术(广州)有限公司 一种双极化辐射单元及宽频基站天线
WO2012100582A1 (zh) * 2011-01-28 2012-08-02 京信通信技术(广州)有限公司 一种双极化辐射单元及宽频基站天线
WO2012159406A1 (en) * 2011-05-20 2012-11-29 Tongyu Communication Inc. Dual-band and dual-polarized antenna
KR20150060878A (ko) * 2012-10-10 2015-06-03 후아웨이 테크놀러지 컴퍼니 리미티드 공급 네트워크, 안테나, 및 이중 편파 안테나 어레이 공급 회로
US9525212B2 (en) 2012-10-10 2016-12-20 Huawei Technologies Co., Ltd. Feeding network, antenna, and dual-polarized antenna array feeding circuit
KR101693583B1 (ko) * 2012-10-10 2017-01-06 후아웨이 테크놀러지 컴퍼니 리미티드 공급 네트워크, 안테나, 및 이중 편파 안테나 어레이 공급 회로
CN110622352A (zh) * 2017-05-16 2019-12-27 日本电业工作株式会社 天线、阵列天线、扇形天线以及偶极天线
US11336031B2 (en) 2017-05-16 2022-05-17 Nihon Dengyo Kosaku Co., Ltd. Antenna, array antenna, sector antenna, and dipole antenna
KR20200001704U (ko) * 2019-01-21 2020-07-30 페가트론 코포레이션 전자 장치 및 그 안테나 구조
KR200493613Y1 (ko) 2019-01-21 2021-05-04 페가트론 코포레이션 전자 장치 및 그 안테나 구조

Also Published As

Publication number Publication date
CN102217140B (zh) 2015-04-29
JP2012503405A (ja) 2012-02-02
EP2346114A4 (en) 2013-07-24
US20110175782A1 (en) 2011-07-21
WO2010033004A3 (ko) 2010-07-22
EP2346114A2 (en) 2011-07-20
EP2346114B1 (en) 2016-01-27
JP5312598B2 (ja) 2013-10-09
CN102217140A (zh) 2011-10-12

Similar Documents

Publication Publication Date Title
WO2010033004A2 (ko) 이동통신 기지국용 이중대역 이중편파 안테나
WO2015068981A1 (ko) 다중대역 다중편파 무선 통신 안테나
EP3968458B1 (en) Radiating structure and array antenna
WO2016076601A1 (ko) 이동통신 기지국 안테나
KR100883408B1 (ko) 이동통신 기지국용 이중대역 이중편파 안테나
CA2331681C (en) Dual polarised multi-range antenna
KR101085887B1 (ko) 이동통신 기지국용 이중대역 이중편파 안테나
US11205847B2 (en) 5-6 GHz wideband dual-polarized massive MIMO antenna arrays
WO2016027997A1 (ko) 이동통신 서비스용 옴니 안테나
US11108137B2 (en) Compact omnidirectional antennas having stacked reflector structures
WO2012105784A2 (ko) 이동통신 기지국용 이중편파 안테나 및 이를 이용한 다중대역 안테나 시스템
WO2011087177A1 (ko) 아이솔레이션 에이드를 구비한 내장형 mimo 안테나
CA3172688A1 (en) Radiating elements having angled feed stalks and base station antennas including same
WO2014084655A1 (ko) 이동통신 기지국 안테나
KR101498161B1 (ko) 이동통신 기지국용 이중대역 이중편파 안테나
US6225950B1 (en) Polarization isolation in antennas
WO2017000215A1 (zh) 辐射装置
WO2018159988A1 (ko) 이중편파 옴니 안테나 및 이를 포함하는 기지국
CN111819731B (zh) 多频带基站天线
KR20120078646A (ko) 450 MHz 도너 안테나
CN113454922A (zh) 不使用双工器的带有4个端口具有辐射元件阵列的基站天线
WO2014084659A1 (ko) 빔폭 확대 장치를 구비한 이동통신 기지국 안테나
EP1566857B1 (en) Dual polarized antenna module
CN113708051A (zh) 辐射单元、天线及基站
WO2020005298A1 (en) Multiband antenna structure

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980146089.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09814820

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 13119854

Country of ref document: US

NENP Non-entry into the national phase in:

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011527753

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009814820

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2689/CHENP/2011

Country of ref document: IN