WO2022268086A1 - 边射天线、封装天线和通讯设备 - Google Patents

边射天线、封装天线和通讯设备 Download PDF

Info

Publication number
WO2022268086A1
WO2022268086A1 PCT/CN2022/100213 CN2022100213W WO2022268086A1 WO 2022268086 A1 WO2022268086 A1 WO 2022268086A1 CN 2022100213 W CN2022100213 W CN 2022100213W WO 2022268086 A1 WO2022268086 A1 WO 2022268086A1
Authority
WO
WIPO (PCT)
Prior art keywords
gap
radiator
antenna
sub
ground
Prior art date
Application number
PCT/CN2022/100213
Other languages
English (en)
French (fr)
Inventor
戴祯坊
许志玮
李建铭
蔡智宇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22827579.8A priority Critical patent/EP4340127A1/en
Publication of WO2022268086A1 publication Critical patent/WO2022268086A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/526Electromagnetic shields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • H01Q21/26Turnstile or like antennas comprising arrangements of three or more elongated elements disposed radially and symmetrically in a horizontal plane about a common centre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/001Crossed polarisation dual antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/378Combination of fed elements with parasitic elements
    • H01Q5/385Two or more parasitic elements

Definitions

  • the present application relates to the technical field of communication, and in particular to a side-firing antenna, a packaged antenna and communication equipment.
  • an antenna As a device for transmitting and receiving electromagnetic waves, an antenna is an important part of electronic equipment.
  • the existing side-fire antennas have a high section height and a large volume, which not only increases the load of the electronic equipment, but also occupies a large space of the electronic equipment, which is not conducive to the miniaturization and thinning design of the electronic equipment.
  • the application provides a side-firing antenna, a packaged antenna and communication equipment.
  • the side-firing antenna has a low-profile characteristic and a small volume, which can effectively reduce the load of the electronic equipment and reduce the space occupied by the electronic equipment.
  • the present application provides a broadside-fire antenna, including a first radiating unit, a second radiating unit, a first grounding unit, a second grounding unit, and a first exciting unit.
  • the first radiating unit and the second radiating unit are arranged at intervals along the first direction, and a first gap extending along the second direction is formed between the first radiating unit and the second radiating unit. Wherein, the second direction is different from the first direction.
  • the first radiating unit is provided with a first sub-gap communicating with the first gap
  • the second radiating unit is provided with a second sub-gap communicating with the first gap
  • both the first sub-gap and the second sub-gap extend along the first direction.
  • the first grounding unit and the second grounding unit are arranged at intervals along the first direction.
  • One end of the first grounding unit is connected to a side of the first radiating unit close to the second radiating unit, and the other end is used to connect to a ground plane.
  • the second grounding unit is connected to one side of the second radiating unit close to the first radiating unit, and the other end is used to connect to the ground plane.
  • the first excitation unit includes a first feed structure and a first extension branch arranged at intervals along the first direction.
  • the first feeding structure includes a first feeding part and a first feeding part, and the first feeding part is connected to a side of the first feeding part facing the ground plane.
  • the first feeding part is located in the first sub-gap and is used for connecting a feeding source. Part of the first feeding part is located in the first gap, part of the first feeding part is located in the second sub-gap, the first extension stub is located in the first sub-gap, the first extension stub includes a first grounding part close to the first feed-in part, The first ground portion is used to connect to the ground plane.
  • the first exciting unit is used for exciting the first radiating unit and the second radiating unit to generate an electric field along the first direction.
  • the first feed structure is " ⁇ " type.
  • the end of the first feeding part away from the first feeding part is a first feeding end, and the first feeding end is used for connecting a feed source.
  • the first ground part includes a first ground terminal close to the first feeding terminal, and the first ground terminal is used for connecting to the ground plane.
  • the first direction is a vertical direction
  • the second direction is a horizontal direction.
  • the first exciting unit is used to excite the first radiating unit and the second radiating unit to generate an electric field in a vertical direction, so that the edge-fire antenna generates vertically polarized radiation.
  • a first extension stub close to the first feed-in part is added, and the first extension stub is used to improve the side-fire antenna
  • the reflection coefficient in the low frequency band reduces the section height (clearance height) of the side-fire antenna, so that the side-fire antenna has a low-profile characteristic, which helps to reduce the volume of the side-fire antenna.
  • the first direction is a horizontal direction
  • the second direction is a vertical direction.
  • the first exciting unit is used to excite the first radiating unit and the second radiating unit to generate an electric field in the horizontal direction, so as to generate horizontally polarized radiation.
  • the first extension branch further includes a first extension part and a second extension part, the first ground part and the second extension part are located on the side of the first extension part facing the ground plane, and the first ground part is connected to The first extension part is close to a side of the first feed structure, and the second extension part is connected to a side of the first extension part away from the first feed structure.
  • the first extended branch is in the shape of " ⁇ ".
  • the end of the first ground portion away from the first extension portion is the first ground end.
  • the first radiation unit includes a first radiator and a second radiator arranged at intervals along the second direction, and a first sub-gap is formed between the first radiator and the second radiator.
  • the second radiation unit includes a third radiator and a fourth radiator arranged at intervals along the second direction, and a second sub-gap is formed between the third radiator and the fourth radiator.
  • a third sub-gap extending along the second direction is formed between the first radiator and the third radiator, and a fourth sub-gap extending along the second direction is formed between the second radiator and the fourth radiator.
  • the first gap includes a third sub-gap, a fourth sub-gap and a fifth sub-gap, and the fifth sub-gap communicates with the third sub-gap and the fourth sub-gap, and communicates with the first sub-gap and the second sub-gap.
  • the first sub-gap, the second sub-gap and the fifth sub-gap form a second gap, and the second gap extends along the first direction.
  • the first excitation unit is located in the second gap.
  • Part of the first feeding part is located in the first sub-gap and connected to the first feeding part.
  • Part of the first feeding part is located in the fifth sub-gap, and part of the first feeding part is located in the second sub-gap.
  • the broadside antenna also includes a second excitation unit located in the first gap.
  • the second excitation unit includes a second feed structure and a second extension branch arranged at intervals along the second direction.
  • the second feeding structure includes a second feeding part and a second feeding part, and the second feeding part is connected to a side of the second feeding part facing the connecting surface.
  • the second feeding part is located in the third sub-gap and is used for connecting a feeding source.
  • Part of the second feeding part is located in the third sub-gap and is connected with the second feeding part.
  • Part of the second feeding part is located in the fifth sub-gap and is interleaved with the first feeding part.
  • a portion of the second feeding portion is located in the fourth sub-gap.
  • the second extension stub is located in the third sub-gap, the second extension stub includes a second ground portion close to the second feeding portion, and the second ground portion is used for connecting to the ground plane.
  • the second excitation unit is used to excite the first radiation unit and the second radiation unit to generate an electric field along the second direction.
  • the second feed structure is " ⁇ " type.
  • the end of the second feeding part away from the second feeding part is the second feeding end, and the second feeding end is used for connecting the feeding source.
  • the second ground part includes a second ground terminal close to the second feeding terminal, and the second ground terminal is used for connecting to the ground plane.
  • the first direction is a vertical direction
  • the second direction is a horizontal direction.
  • the second excitation unit is used to excite the first radiation unit and the second excitation unit to generate an electric field in the horizontal direction, so that the broadside-fire antenna generates horizontally polarized radiation.
  • the first radiating unit and the second radiating unit are respectively used to excite the first radiating unit and the second radiating unit to generate electric fields along the vertical direction and the horizontal direction, so that the side-fire antenna can generate vertical and horizontal electric fields at the same time.
  • Polarized and horizontally polarized radiation makes the side-fire antenna have dual-polarization characteristics, which helps to improve the reliability of wireless communication using the side-fire antenna.
  • a second extension stub close to the second feed-in part is added, and the second extension stub is used to improve the edge
  • the reflection coefficient of the side-fire antenna in the low frequency band reduces the profile height (clearance height) of the side-fire antenna, so that the side-fire antenna has a low-profile characteristic, which helps to reduce the volume of the side-fire antenna.
  • the first radiation unit includes a first radiator, a second radiator and a first auxiliary radiator, the first radiator and the second radiator are arranged at intervals along the second direction, and the first auxiliary radiator is connected to Between the first radiator and the second radiator, the first radiator, the second radiator and the first radiator form a first sub-gap.
  • the second radiation unit includes a third radiator, a fourth radiator and a second auxiliary radiator, the third radiator and the fourth radiator are arranged at intervals along the second direction, and the second auxiliary radiator is connected to the third radiator and the second auxiliary radiator. Between the fourth radiators, the third radiator, the fourth radiator and the second auxiliary radiator form a second sub-gap.
  • the first excitation unit is used to excite the first radiating unit and the second radiating unit to generate an electric field along the first direction, so that the side-fire antenna produces single-polarized radiation.
  • the side-fire antenna It has a single polarization characteristic.
  • the second extension branch further includes a third extension part and a fourth extension part, both the second ground part and the fourth extension part are located on the side of the third extension part facing the ground plane, and the second ground part is connected to The third extension part is close to a side of the second power feeding structure, and the fourth extension part is connected to a side of the third extension part away from the second power feeding structure.
  • the first extended branch is in the shape of " ⁇ ".
  • the end of the second ground portion away from the third extension portion is the second ground end.
  • the first radiator, the second radiator, the third radiator and the fourth radiator have the same structure, so as to improve the impedance matching degree of the edge-fire antenna and improve the bandwidth of the edge-fire antenna.
  • the first radiator, the second radiator, the third radiator and the fourth radiator are arranged in a four-leaf clover shape.
  • the width of the first sub-gap gradually increases.
  • the width of the second sub-gap gradually increases.
  • the width of the third sub-gap gradually increases.
  • the width of the fourth sub-gap gradually increases.
  • the width of each sub-gap gradually increases, which helps to improve the impedance matching of the side-fire antenna and improve the bandwidth of the side-fire antenna.
  • the first grounding unit includes first grounding stubs and second grounding stubs arranged at intervals along the second direction.
  • One end of the first grounding stub is connected to the side of the first radiator close to the second radiator, the other end is used to connect to the ground plane, and one end of the second grounding stub is connected to the side of the second radiator close to the first radiator, The other end is used to connect to the ground plane.
  • the second grounding unit includes third grounding stubs and fourth grounding stubs arranged at intervals along the second direction.
  • One end of the third grounding branch is connected to the side of the third radiator close to the fourth radiator, the other end is used to connect to the ground plane
  • the fourth grounding branch is connected to the side of the fourth radiator close to the third radiator, and the other end is connected to the ground plane.
  • One end is used to connect to the ground plane.
  • the structures of the first ground stub, the second ground stub, the third ground stub and the fourth ground stub are the same, so as to improve the impedance matching degree of the side-fire antenna and improve the bandwidth of the side-fire antenna.
  • the arrangement of the first ground stub, the second ground stub, the third ground stub and the fourth ground stub is rectangular or square.
  • the first grounding stub, the second grounding stub, the third grounding stub and the fourth grounding stub may also be arranged in an approximately rectangular or square shape.
  • the first ground stub includes a first part, a second part and a third part connected in sequence, the first part is located on the side of the second part away from the ground plane, and the end of the first part away from the second part is connected to the first radiation Body, the third part is located on the side of the second part close to the ground plane, the end of the third part away from the second part is used to connect the ground plane, along the third direction, the first part and the third part are misplaced to improve the edge-fire antenna Impedance matching improves the bandwidth of the side-fire antenna.
  • the third direction is different from the first direction and the second direction.
  • the third direction is perpendicular to the ground plane.
  • the dislocation of the first part and the third part along the third direction means that the projections of the first part and the third part on the ground plane do not completely coincide.
  • the side-fire antenna has a first electric dipole mode in the first frequency band, the wavelength corresponding to the first frequency band is ⁇ 1 , and the profile height of the side-fire antenna is between 0.1 ⁇ 1 and 0.2 ⁇ 1 .
  • the profile height of the broadside-fire antenna is 0.12 ⁇ 1 .
  • the sum of the lengths of the first ground portion, the first extension portion and the second extension portion of the first extension stub is between 0.3 ⁇ 1 and 0.4 ⁇ 1 .
  • the sum of the lengths of the second ground portion, the third extension portion and the fourth extension portion of the second extension stub is between 0.3 ⁇ 1 and 0.4 ⁇ 1 .
  • the broadside-fire antenna has a first magnetic dipole mode in the second frequency band, and the minimum frequency point of the second frequency band is higher than the maximum frequency point of the first frequency band.
  • the broadside-fire antenna has a second electric dipole mode in the third frequency band, and the minimum frequency point of the third frequency band is higher than the maximum frequency point of the second frequency band.
  • the wavelength corresponding to the third frequency band is ⁇ 3
  • the first radiator is heart-shaped
  • the first radiator has two inner edges and two outer edges
  • the inner and outer edges are both elliptical arcs
  • the lengths of the inner edge and the outer edge are both between 0.2 ⁇ 3 and 0.3 ⁇ 3 .
  • the lengths of the inner edge and the outer edge are both 0.25 ⁇ 3 .
  • the working frequency band of the broadside antenna supports at least one frequency band among n257, n258, n259, n260 and n261 frequency bands.
  • the working frequency band of the side-fire antenna is 24.5 GHz-43.5 GHz
  • the working frequency band of the side-fire antenna supports the full frequency band of 5G millimeter waves.
  • the frequency point in the first electric dipole mode, the frequency point is 21 GHz
  • the frequency point in the first magnetic dipole mode, the frequency point is 29.5 GHz
  • the frequency point in the second electric dipole mode, the frequency point is 40 GHz.
  • the present application provides a packaged antenna, including a transceiver chip of any one of the aforementioned side-fire antennas, the transceiver chip is used to send electromagnetic wave signals to the side-fire antenna, or receive external electromagnetic wave signals received by the side-fire antenna.
  • the edge-firing antenna shown in this application has a low-profile characteristic and a small volume, which is conducive to reducing the volume of the packaged antenna and realizing the miniaturization design of the packaged antenna.
  • the antenna-in-package further includes a substrate, and the edge-fire antenna is embedded inside the substrate to reuse the volume of the substrate, further reducing the volume of the antenna-in-package, and realizing a miniaturized design of the antenna-in-package.
  • the antenna-in-package further includes a substrate, and the edge-fire antenna is mounted on the substrate.
  • the edge-fire antenna and the substrate are formed in the same process, so as to simplify the manufacturing process of the packaged antenna.
  • the present application provides a communication device, including a casing and any one of the packaged antennas described above, and the packaged antenna is located inside the casing.
  • the side-firing antenna shown in this application has low-profile characteristics and a small volume, which is conducive to reducing the volume of the packaged antenna, effectively reducing the load on the electronic equipment, and reducing the space occupied by the electronic equipment.
  • the antenna aperture of the side-fire antenna faces the casing, and the side-fire antenna can transmit electromagnetic wave signals through the casing, or receive electromagnetic wave signals through the casing.
  • the communication device further includes a display screen, the display screen is installed on the casing, the antenna aperture of the side-fire antenna faces the display screen, and the side-fire antenna can transmit electromagnetic wave signals through the display screen, or receive electromagnetic wave signals through the display screen.
  • FIG. 1 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Fig. 2 is a partial structural schematic diagram of the communication device shown in Fig. 1;
  • FIG. 3 is a schematic structural diagram of an antenna module packaged with an antenna in the communication device shown in FIG. 2 in an implementation manner;
  • FIG. 4 is a schematic plan view of the communication device shown in FIG. 1 in an implementation manner
  • FIG. 5 is a schematic structural diagram of the communication device shown in FIG. 1 in another implementation manner
  • Fig. 6 is a structural schematic diagram of the communication device shown in Fig. 5 at another angle;
  • Fig. 7 is a schematic structural diagram of the antenna module in the communication device shown in Fig. 5;
  • Fig. 8 is a partial structural schematic diagram of the antenna module shown in Fig. 7;
  • Fig. 9 is a partial structural schematic diagram of the antenna module shown in Fig. 8.
  • Fig. 10 is a top view structural diagram of the radiator in the side-fire antenna shown in Fig. 9;
  • Fig. 11 is a top view structural diagram of the radiation unit group in the side-fire antenna shown in Fig. 9;
  • Fig. 12 is a partial structural schematic diagram of the antenna module shown in Fig. 9;
  • Fig. 13 is a partial structural schematic diagram of the antenna module shown in Fig. 9;
  • Fig. 14 is a schematic cross-sectional structure diagram of the structure shown in Fig. 13 cut along A-A;
  • Fig. 15 is a partial structural schematic diagram of the antenna module shown in Fig. 9;
  • Fig. 16 is a schematic cross-sectional structure diagram of the structure shown in Fig. 15 cut along B-B;
  • Fig. 17 is a partial structural schematic diagram of the antenna module shown in Fig. 9;
  • Fig. 18 is a schematic cross-sectional structure diagram of the structure shown in Fig. 17 cut along C-C;
  • Fig. 19 is a graph showing the return loss coefficient of the side-fire antenna in the antenna module shown in Fig. 9;
  • Fig. 20 is a Smith chart corresponding to the return loss coefficient graph shown in Fig. 19;
  • Fig. 21 is a current mode diagram at 21 GHz of a partial structure of the side-fire antenna in the antenna module shown in Fig. 9;
  • Fig. 22 is a current mode diagram at 29.5 GHz of a partial structure of the side-fire antenna in the antenna module shown in Fig. 9;
  • Fig. 23 is an efficiency curve diagram of the side-fire antenna in the antenna module shown in Fig. 9;
  • Fig. 24 is an efficiency curve diagram when the side-fire antenna in the antenna module shown in Fig. 9 generates the first polarized radiation and the radiation pattern of the side-fire antenna at multiple frequency points;
  • Fig. 25 is a first polarized antenna current mode diagram of the side-fire antenna in the antenna module shown in Fig. 9 under three basic modes;
  • Fig. 26 is a schematic diagram of the radiation field corresponding to the first polarization current pattern shown in Fig. 25;
  • Fig. 27 is a second polarized antenna current mode diagram of the side-fire antenna in the antenna module shown in Fig. 9 under three basic modes;
  • Fig. 28 is a schematic diagram of the radiation field corresponding to the second polarized antenna current mode diagram shown in Fig. 27;
  • Fig. 29 is a curve diagram of the return loss coefficient of the side-fire antenna when the semi-minor axis of the first edge of the radiator of the side-fire antenna in the antenna module shown in Fig. 9 is in different sizes;
  • Fig. 30 is an impedance chart corresponding to the return loss coefficient graph shown in Fig. 29;
  • Fig. 31 is a curve diagram of the return loss coefficient of the side-fire antenna when the semi-minor axis of the third edge of the radiator of the side-fire antenna in the antenna module shown in Fig. 9 is in different sizes;
  • Fig. 32 is the impedance chart corresponding to the return loss coefficient graph shown in Fig. 31;
  • Fig. 33 is a curve diagram of the return loss coefficient of the side-fire antenna when the misalignment distance of the ground stub of the side-fire antenna in the antenna module shown in Fig. 9 is different in size;
  • Fig. 34 is the impedance chart corresponding to the return loss coefficient graph shown in Fig. 33;
  • Fig. 35 is a curve diagram of the return loss coefficient of the side-fire antenna when the width of the second extension part of the second excitation unit of the side-fire antenna in the antenna module shown in Fig. 9 is different in size;
  • FIG. 36 is an impedance chart corresponding to the return loss coefficient graph shown in FIG. 35 .
  • FIG. 1 is a schematic structural diagram of a communication device 1000 provided in an embodiment of the present application.
  • the communication device 1000 may be an electronic product with a wireless communication function such as a handheld device, a vehicle-mounted device, a wearable device, a computer device, a wireless local area network (wireless local area network, WLAN) device, or a router.
  • the communication device 1000 may also be called by different names, for example: user equipment, access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, wireless Communication equipment, user agent or user device, cellular phone, wireless phone, session initiation protocol (SIP) phone, wireless local loop (WLL) station, personal digital assistant (PDA) , 5G network or terminal equipment in the future evolution network.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the communication device 1000 may also be a device deployed in a wireless access network to provide wireless communication functions, including but not limited to: base stations, relay stations, access points, vehicle equipment, wireless-fidelity (wireless- fidelity, Wi-Fi) sites, wireless backhaul nodes, small stations, micro stations, etc.
  • wireless-fidelity wireless-fidelity, Wi-Fi
  • wireless backhaul nodes small stations, micro stations, etc.
  • the base station can be a base transceiver station (base transceiver station, BTS), a node B (NodeB, NB), an evolved base station B (evolutional Node B, eNB or eNodeB), a transmission node or a transceiver in an NR (new radio) system Point (transmission reception point, TRP or TP) or next generation node B (generation nodeB, gNB), base station or network equipment in the future communication network.
  • BTS base transceiver station
  • NodeB node B
  • evolutional Node B evolutional Node B, eNB or eNodeB
  • TRP transmission reception point
  • TP transmission reception point
  • generation nodeB generation nodeB
  • the communication device 1000 includes a housing 100, a display module 200, a circuit board 300, a receiver (not shown) and a speaker (not shown), the display module 200 is installed in the housing 100, and the circuit board 300, the receiver and the speaker are all installed inside the housing 100.
  • the casing 100 may include a frame 110 and a rear cover 120 , and the rear cover 120 is fixed on one side of the frame 110 .
  • the frame 110 and the rear cover 120 may be integrally formed to ensure the structural stability of the casing 100 .
  • the frame 110 and the rear cover 120 may also be fixed to each other by assembly.
  • the casing 100 is provided with a sound-speaking hole 1001, and the number of the sound-speaking hole 1001 may be one or more.
  • there are multiple speaker holes 1001 and the plurality of speaker holes 1001 are disposed on the frame 110 .
  • the sound hole 1001 communicates with the inside of the casing 100 and the outside of the casing 100 .
  • the "hole” described in the embodiment of the present application refers to a hole with a complete hole wall, and the description of "hole” will be understood in the same way hereinafter.
  • the display module 200 is fixed on the other side of the frame 110 .
  • the display module 200 and the rear cover 120 are respectively fixed on two sides of the frame 110 .
  • the display module 200 is placed facing the user, and the rear cover 120 is placed facing away from the user.
  • the display module 200 is provided with a receiving hole 2001 , and the receiving hole 2001 is a through hole penetrating the display module 200 .
  • a phone hole 2001 may be formed between the edge of the display module 200 and the casing 100 .
  • a phone hole 2001 is formed between the display module 200 and the top edge of the frame 1001 of the casing 100 .
  • the casing 100 is provided with a receiving hole 2001 .
  • a phone hole 2001 is formed at the top area of the frame 110 of the casing 100 . It should be understood that the present application does not strictly limit the specific structure and position of the receiver hole 2001 .
  • the circuit board 300 is located between the rear cover 120 and the display module 200 . Wherein, the circuit board 300 may be a mainboard of the communication device 1000 .
  • the receiver is located on the top of the communication device 1000 , and the sound emitted by the receiver is transmitted to the outside of the communication device 1000 through the phone hole 2001 , so as to realize the sound playing function of the communication device 1000 .
  • the speaker is located at the bottom of the communication device 1000 , and the sound from the speaker can be transmitted to the outside of the communication device 1000 through the speaker hole 1001 to realize the sound playing function of the communication device 1000 .
  • orientation words such as “top” and “bottom” used in the embodiment of the present application to describe the communication device 1000 are mainly based on the orientation of the user when using the communication device 1000 in hand, so as to face the position of the top side of the communication device 1000 "Top” and “bottom” towards the bottom side of the communication device 1000 do not indicate or imply that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be interpreted as a reference to The orientation of the communication device 1000 in an actual application scenario is limited.
  • FIG. 2 is a partial structural diagram of the communication device 1000 shown in FIG. 1 .
  • the communication device 1000 also includes a central processing unit (CPU) chip 400, a low-frequency baseband chip 500, an intermediate-frequency baseband chip 600, and an antenna-in-package (also called substrate antenna, antenna-in-package, AIP) 700.
  • CPU central processing unit
  • the low-frequency baseband chip 500 , the intermediate-frequency baseband chip 600 and the packaged antenna 700 are installed inside the casing 100 .
  • the CPU chip 400 , the low frequency baseband chip 500 , the intermediate frequency baseband chip 600 and the packaged antenna 700 can all be mounted on the circuit board 300 .
  • the CPU chip 400 can be mounted on the circuit board 300
  • the low frequency baseband chip 500 , the intermediate frequency baseband chip 600 and the packaged antenna 700 can be mounted on a connection board (not shown).
  • connection board is electrically connected with the circuit board 300, and the connection board can be a rigid circuit board or a flexible circuit board.
  • connection board can be a rigid circuit board or a flexible circuit board.
  • low-frequency baseband chips 500 and the two low-frequency baseband chips 500 can both be electrically connected to the CPU chip 400 .
  • intermediate frequency baseband chips 600 and the two intermediate frequency baseband chips 600 can be electrically connected to one low frequency baseband chip 500 .
  • There are two packaged antennas 700 and the two packaged antennas 700 can be electrically connected to one IF baseband chip 600 .
  • the package antenna 700 may also be one or more or more than three, and/or, the low-frequency baseband chip 500 and the intermediate-frequency baseband chip 600 are integrated into one chip.
  • “A and/or B” includes three situations of "A", “B” and “A and B", and the related descriptions below can be understood in the same way.
  • the packaged antenna 700 includes a transmitter and/or receiver (T/R) chip 710 and an antenna-in-module (antenna-in-module) 720 , and the transceiver chip 710 is electrically connected to the antenna module 720 .
  • the transceiver chip 710 is used for sending and/or receiving electromagnetic wave signals to the antenna module 720 .
  • the antenna module 720 is used for radiating electromagnetic waves according to the received electromagnetic signals, and/or sending electromagnetic signals to the transceiver chip 710 according to the received electromagnetic waves, so as to realize wireless communication of the communication device 1000 .
  • the transceiver chip 710 is a millimeter wave (mmW) transceiver chip.
  • mmW millimeter wave
  • the communication device 1000 is a mobile phone with a millimeter wave function, and the communication device 1000 can work in the millimeter wave frequency band.
  • the transceiver chip 710 may also be other radio frequency modules (radio frequency module, AF module) capable of transmitting and/or receiving radio frequency signals.
  • FIG. 3 is a structural diagram of the antenna module 720 encapsulating the antenna 700 in the communication device 1000 shown in FIG. 2 in an implementation manner.
  • the antenna module 720 includes a substrate 721, a broadside antenna (broadside antenna, BR Antenna) 722 and an end-fire antenna (EF Antenna, EF Antenna) 723, both of which are embedded in the substrate 721.
  • the substrate 721 can be a circuit board (it can be a flexible circuit board or a rigid circuit board).
  • the side-firing antenna may also be called a vertical antenna or a broadside antenna.
  • the edge-fire antenna 722 and the end-fire antenna 723 can be formed in the same process as the substrate 721 to simplify the forming process of the antenna module 720 .
  • the antenna module 720 can be formed by a flexible flexible board process such as liquid crystal polymer (liquid crystal polymer, LCP) or heterogeneous polyimide (modified PI), or it can be formed by multi-layer lamination (laminate) circuit board and other rigid board processes, or it can be formed by wafer-level fan-out packaging (fan-out wafer level package) or low temperature ceramic co-fired (low temperature co-fired ceramic, LTCC) and other packaging processes.
  • a flexible flexible board process such as liquid crystal polymer (liquid crystal polymer, LCP) or heterogeneous polyimide (modified PI)
  • LCP liquid crystal polymer
  • modified PI modified PI
  • multi-layer lamination laminate
  • wafer-level fan-out packaging fan-out wafer level package
  • low temperature ceramic co-fired low temperature co-fired ceramic
  • the main radiation direction of the side-fire antenna 722 is the first radiation direction
  • the main radiation direction of the end-fire antenna 723 is the second radiation direction
  • the first radiation direction is different from the second radiation direction.
  • the first radiation direction is a direction perpendicular to the substrate 721
  • the second radiation direction is a direction parallel to the substrate 721 .
  • the side-fire antenna 722 and the end-fire antenna 723 can also be mounted on the substrate 721 , or mounted on a bracket provided on the substrate 721 .
  • a and B are parallel, which means that A and B are parallel or nearly parallel, and the angle between A and B may be between 0° and 10°.
  • A is perpendicular to B, which means that A and B are perpendicular or nearly perpendicular, and the angle between A and B may be between 80 degrees and 100 degrees.
  • the two side-fire antennas 722 are arranged at intervals on the extension surface of the substrate 721 .
  • the main radiation direction of the side-fire antenna 722 is the first radiation direction.
  • the edge-fire antenna 722 radiates outward from the substrate 721 along a first radiation direction.
  • the first radiation direction is a direction perpendicular to the substrate 721 .
  • the main radiation direction of the edge-fire antenna 722 is a direction perpendicular to the substrate 721 , and the antenna aperture (not shown) of the edge-fire antenna 722 is perpendicular to the thickness direction of the substrate 721 .
  • each side-fire antenna 722 is used to transmit and/or receive millimeter wave signals perpendicular to the substrate 721 .
  • each side-fire antenna 722 may have dual-polarization characteristics, and each side-fire antenna 722 may have first polarization and second polarization characteristics at the same time, wherein the first polarization direction is different from the second polarization direction, so that Realizing the polarization diversity of the antenna module 720 helps to improve transmission throughput and signal stability in weak signal areas, and meets the requirements of 5G signal transmission.
  • the first polarization is vertical polarization
  • the second polarization is horizontal polarization.
  • each side-firing antenna 722 may have both vertical polarization and horizontal polarization characteristics.
  • antenna aperture also known as antenna aperture or effective radiation aperture, is a measure of how effectively an antenna receives electromagnetic radiation (such as radio wave) power.
  • one side-fire antenna 722 may also have the characteristics of the first polarization and the second polarization, for example, the characteristics of vertical polarization and horizontal polarization, and the other side-fire antenna 722 may have the characteristics of the first polarization or the second polarization.
  • Two polarization characteristics such as vertical polarization characteristics or horizontal polarization characteristics. It can be understood that there may be one or more than three side-fire antennas 722 , and this application does not specifically limit the number of side-fire antennas 722 .
  • the two end-fire antennas 723 are arranged at intervals on the extension surface of the substrate 721 .
  • the main radiation direction of the endfire antenna 723 is the second radiation direction
  • the endfire antenna 723 radiates outward from the substrate 721 along the second radiation direction.
  • the second radiation direction is different from the first radiation direction.
  • the second radiation direction is a direction parallel to the substrate 721 .
  • the main radiation direction of the endfire antenna 723 is parallel to the direction of the substrate 721
  • the antenna aperture (not shown) of the endfire antenna 723 is parallel to the thickness direction of the substrate 721 .
  • each endfire antenna 723 is used to transmit and/or receive millimeter wave signals parallel to the substrate 721 .
  • each end-fire antenna 723 may adopt the end-fire antenna described in the following embodiments.
  • Each endfire antenna 723 can have dual polarization characteristics, and each endfire antenna 723 can have first polarization and second polarization characteristics at the same time, wherein the first polarization direction is different from the second polarization direction, so as to realize the antenna
  • the polarization diversity of module 720 helps to improve transmission throughput and signal stability in weak signal areas, meeting the requirements of 5G signal transmission.
  • the first polarization is vertical polarization
  • the second polarization is horizontal polarization.
  • each end-fire antenna 723 can have both vertical polarization and horizontal polarization characteristics.
  • both end-fire antennas 723 may have a first polarization characteristic, such as a vertical polarization characteristic, or both end-fire antennas 723 may have a second polarization characteristic, such as a horizontal polarization characteristic , or, one endfire antenna 723 has a first polarization characteristic, such as a vertical polarization characteristic, and the other endfire antenna 723 has a second polarization characteristic, such as a horizontal polarization characteristic, or, one endfire antenna 723 has a second polarization characteristic at the same time
  • the first polarization and the second polarization characteristics, such as vertical polarization and horizontal polarization characteristics, and the other endfire antenna 723 has the first polarization or the second polarization characteristics, such as vertical polarization characteristics or horizontal polarization characteristics. It can be understood that there may be one endfire antenna 723 or more than three, and the present application does not specifically limit the number of endfire antennas 723 .
  • FIG. 4 is a schematic plan view of the communication device 1000 shown in FIG. 1 in an implementation manner. Wherein, the communication device 1000 shown in FIG. 4 adopts the antenna module 720 shown in FIG. 3 .
  • the communication device 1000 includes four antenna modules 720 .
  • an antenna module 720 is arranged on the top of the communication device 1000, such as near the inner edge of the top of the communication device 1000, and an antenna module 720 is arranged on the left side of the communication device 1000, such as near the left inner edge of the communication device 1000
  • an antenna module 720 is disposed on the bottom of the communication device 1000 , such as near the bottom inner edge of the communication device 1000
  • an antenna module 720 is disposed on the right side of the communication device 1000 , such as near the right inner edge of the communication device 1000 .
  • close to the inner edge may be within a range of 0.2 mm to 1 mm from the inner edge.
  • the communication device 1000 may also include 1, 2, 3 or more than 5 antenna modules 720 , and this application does not specifically limit the number of antenna modules 720 .
  • orientation words such as “top”, “bottom”, “left” and “right” used in the embodiment of the present application to describe the communication device 1000 are mainly explained based on the orientation of the user when holding the communication device 1000 in hand.
  • the position toward the top side of the communication device 1000 is “top”, the position toward the bottom side of the communication device 1000 is “bottom”, the position toward the right side of the communication device 1000 is “right”, and the position toward the left side of the communication device 1000 is “right”.
  • “Left” does not indicate or imply that the referred device or element has a specific orientation, is constructed and operates in a specific orientation, and therefore cannot be understood as a limitation on the orientation of the communication device 1000 in actual application scenarios.
  • FIG. 5 is a schematic structural diagram of the communication device 1000 shown in FIG. 1 in another implementation manner
  • FIG. 6 is a schematic structural diagram of the communication device 1000 shown in FIG. 5 at another angle.
  • the communication device 1000 includes three antenna modules 720 , and the three antenna modules 720 are fixedly connected to the circuit board 300 . Specifically, one antenna module 720 is fixed to the left side of the circuit board 300 , one antenna module 720 is fixed to the right side of the circuit board 300 , and one antenna module 720 is fixed to the top side of the circuit board 300 .
  • the three antenna modules 720 can also be fixed to other positions of the circuit board 300, or one or two or three antenna modules 720 can be integrally formed with the circuit board 300, at this time, some
  • the circuit board 300 forms one or two or three antenna modules 720, or the substrate 721 of one, two or three antenna modules 720 is a part of the circuit board 300, and the antenna modules 720 are packaged on the circuit board 300, or
  • the bases 721 of one or two or three antenna modules 720 are distributed inside the housing 100 and are electrically connected to the circuit board 300 .
  • the three antenna modules 720 are respectively named as the first antenna module 720a, the second antenna module 720b and the third antenna module 720c, and the structures of the three antenna modules 720 are specifically described. .
  • the first antenna module 720 a is fixed on the left side of the circuit board 300 .
  • the first antenna module 720 a is fixed on the left peripheral surface 300 a of the circuit board 300 , or the first antenna module 720 a is disposed between the circuit board 300 and the frame 110 .
  • the first antenna module 720a can also be fixed on the front 300b or the back 300c of the circuit board 300, or the first antenna module 720a is arranged on the circuit board 300 and the display module 200 or the back cover 120 between.
  • the first antenna module 720a includes four edge-fire antennas 722 (as shown in FIG. 3 ).
  • the four edge-fire antennas 722 of the first antenna module 720a are arranged at intervals along the length direction of the substrate 721 (as shown in FIG. 3 ) of the first antenna module 720a.
  • the antenna apertures 701 of the four edge-firing antennas 722 of the first antenna module 720a all face the left side of the frame 110 for transmitting and/or receiving millimeter wave signals parallel to the substrate 721 of the first antenna module 720a.
  • each side-firing antenna 722 of the first antenna module 720a has characteristics of the first polarization and the second polarization at the same time.
  • the first polarization is horizontal polarization
  • the second polarization is vertical polarization.
  • each side-firing antenna 722 of the first antenna module 720a has dual-polarization characteristics, so as to realize the first antenna mode
  • the polarization diversity of the group 720a helps to improve transmission throughput and signal stability in weak signal areas, and meets the requirements of 5G signal transmission.
  • the second antenna module 720b is fixed on the right side of the circuit board 300 . Specifically, the second antenna module 720b is fixedly connected to the right peripheral surface 300d of the circuit board 300 , or the second antenna module 720b is disposed between the circuit board 300 and the frame 110 . In some other embodiments, the second antenna module 720b can also be fixed on the front 300b or the back 300c of the circuit board 300, or the second antenna module 720b is arranged on the circuit board 300 and the display module 200 or the back cover 120 between.
  • the structure of the second antenna module 720b is the same as that of the first antenna module 720a.
  • the four edge-fire antennas 722 of the second antenna module 720b are arranged at intervals along the length direction of the substrate 721 of the second antenna module 720b.
  • the antenna apertures 701 of the four side-firing antennas 722 of the second antenna module 720b all face the right side of the frame 110 for transmitting and/or receiving millimeter wave signals parallel to the substrate 721 of the second antenna module 720b.
  • each side-firing antenna 722 of the second antenna module 720b has characteristics of the first polarization and the second polarization at the same time. Exemplarily, the first polarization is horizontal polarization, and the second polarization is vertical polarization.
  • each side-firing antenna 722 of the second antenna module 720b has dual-polarization characteristics, so as to realize the second antenna mode
  • the polarization diversity of the group 720b helps to improve transmission throughput and signal stability in weak signal areas, and meets the requirements of 5G signal transmission.
  • the frame 110 is made of non-metallic materials, and the non-metallic materials will not interfere with the transmission of electromagnetic waves.
  • the side-firing antenna 722 of the first antenna module 720a and the side-firing antenna 722 of the second antenna module 720b Both can transmit and/or receive millimeter wave signals normally, ensuring the normal operation of the side-fire antenna 722 of the first antenna module 720a and the side-fire antenna 722 of the second antenna module 720b.
  • the frame 110 includes a main body and a first auxiliary part and a second auxiliary part fixedly connected to the main body (not shown).
  • the main body can be made of metal material, or can be made of metal material and non-metal material composite.
  • the main body part may be provided with a first through hole and a second through hole, and both the first through hole and the second through hole pass through the main body part along the main body part. Both the first auxiliary part and the second auxiliary part are made of non-metallic materials.
  • the first auxiliary part is embedded in the first through hole, and the second auxiliary part is embedded in the second through hole.
  • the frame 110 may be made of metal materials and non-metal materials.
  • the side-firing antenna 722 of the first antenna module 720a is disposed opposite to the first auxiliary part, and can transmit and/or receive millimeter wave signals through the first auxiliary part.
  • the side-firing antenna 722 of the second antenna module 720b is disposed opposite to the second auxiliary part, and can transmit and/or receive millimeter wave signals through the second auxiliary part.
  • the third antenna module 720c is fixed on the top side of the circuit board 300 . Specifically, the third antenna module 720c is fixedly connected to the back surface 300c of the circuit board 300 , or the third antenna module 720c is disposed between the circuit board 300 and the rear cover 120 . In other embodiments, the third antenna module 720c can also be fixed on the front surface 300b of the circuit board 300 or the front peripheral surface 300e of the circuit board 300, or the third antenna module 720c is arranged on the circuit board 300 and the display module. between groups 200 or borders 110 .
  • the structure of the third antenna module 720c is the same as that of the first antenna module 720a. In other words, the structures of the three antenna modules 720 are the same.
  • the four edge-fire antennas 722 of the third antenna module 720c are arranged at intervals along the length direction of the substrate 721 of the third antenna module 720c.
  • the antenna apertures 701 of the four edge-firing antennas 722 of the third antenna module 720c all face the rear cover 120 for transmitting and/or receiving millimeter wave signals parallel to the substrate 721 of the third antenna module 720c.
  • each side-firing antenna 722 of the third antenna module 720c has characteristics of the first polarization and the second polarization at the same time.
  • the first polarization is vertical polarization
  • the second polarization is horizontal polarization
  • each side-firing antenna 722 of the third antenna module 720c has dual-polarization characteristics, so as to realize the third antenna mode
  • the polarization diversity of the group 720c helps to improve the transmission throughput and signal stability in weak signal areas, and meets the requirements of 5G signal transmission.
  • the rear cover 120 is made of non-metallic materials, which will not interfere with the transmission of electromagnetic waves, and the edge-firing antenna 722 of the third antenna module 720c can normally transmit and/or receive millimeter wave signals, Ensure the normal operation of the side-fire antenna 722 of the third antenna module 720c.
  • the rear cover 120 includes a main part and an auxiliary part affixed to the main part.
  • the main part can be made of metal material, or composite of metal material and non-metallic material, and the main part can be provided with a through hole, which can extend along the thickness direction of the main part, or pass through the main body along the thickness direction of the main part part.
  • the auxiliary part is embedded in the through hole, and the auxiliary part is made of non-metallic material.
  • the back cover can be made of metal materials and non-metal materials.
  • the side-firing antenna 722 of the third antenna module 720c is disposed opposite to the auxiliary part, and can transmit and/or receive millimeter wave signals through the auxiliary part.
  • the antenna apertures 701 of the four edge-fire antennas 722 of the third antenna module 720 c may also all face the display module 300 . It can be understood that since the display module 300 is basically made of non-metallic materials, the display module 300 will not interfere with the transmission of electromagnetic waves, and the four side-firing antennas 722 of the third antenna module 720c can pass through the display module. Group 300 normally transmits and/or receives millimeter wave signals.
  • FIG. 7 is a schematic structural diagram of the antenna module 720 in the communication device 1000 shown in FIG. 5
  • FIG. 8 is a partial structural schematic diagram of the antenna module 720 shown in FIG. 7 .
  • FIG. 8 only shows part of the substrate 721 of the antenna module 720 .
  • the length direction of the antenna module 720 in FIG. 7 is defined as the X-axis direction
  • the width direction of the antenna module 720 is defined as the Y-axis direction
  • the height direction of the antenna module 720 is defined as the Z-axis direction. direction
  • the height direction Z of the antenna module 720 is perpendicular to the width direction X of the antenna module 720 and the length direction Y of the antenna module 720 .
  • the substrate 721 includes a top surface 7211 , a bottom surface 7212 and a ground surface 7213 .
  • the top surface 7211 and the bottom surface 7212 are opposite to each other, for example, the top surface 7211 and the bottom surface 7212 are parallel.
  • the substrate 721 includes a ground layer 721a, and the ground layer 721a is located between the top surface 7211 and the bottom surface 7212, for example, the ground layer 721a is parallel to the top surface 7211 and the bottom surface 7212.
  • the top surface 7211 of the ground layer 721a is a ground plane 7213 .
  • the ground plane 7213 is located between the top plane 7211 and the bottom plane 7212 , for example, the ground plane 7213 is arranged parallel to the top plane 7211 and the bottom plane 7212 .
  • the top surface 7211 , the bottom surface 7212 and the ground surface 7213 are all parallel to the XY axis plane.
  • the thickness of the substrate 721 is H 0 .
  • the thickness H 0 of the substrate 721 is between 1 mm ⁇ 1.5 mm.
  • the four edge-fire antennas 722 are buried inside the substrate 721 .
  • the four side-fire antennas 722 have the same structure.
  • the radiating element groups of the four edge-fire antennas 722 are spaced apart from the ground plane 7213 in the Z-axis direction, and are arranged in a spaced-apart manner along the X-axis direction.
  • the antenna apertures 701 of the four edge-fire antennas 722 all face the top surface 7211 .
  • the edge-fire antenna 722 has a center line O-O, and the radiation elements of the edge-fire antenna 722 are rotationally symmetrical with respect to the center line O-O.
  • the distance D between the center lines O-O of two adjacent side-fire antennas 722 is large enough to prevent signal interference between two adjacent side-fire antennas 722 .
  • D is between 0.4 ⁇ and 0.6 ⁇
  • is the wavelength corresponding to the central frequency point of the working frequency band of the edge-fire antenna 722 .
  • D is 0.5 ⁇ .
  • the distance D between the center lines O-O of two adjacent edge-fire antennas 722 may be 4.5 mm.
  • the qualifiers on the relative positional relationship such as center and symmetry mentioned in the embodiments of the present application are all aimed at the current technological level, rather than an absolutely strict definition in the mathematical sense, a small amount of deviation is allowed, and the approximate It can be centered or approximately symmetrical.
  • the center position of A includes the geometric center position of A or a position close to the geometric center of A, and A and B are symmetrical with respect to C, including two cases where A and B are symmetrical or approximately symmetrical with respect to C.
  • the antenna module 720 also includes a parasitic branch 724 and a separation wall 725 , both of which are buried inside the substrate 721 .
  • Both the parasitic stub 724 and the isolation wall 725 are connected to the ground plane 7213 .
  • At least part of the parasitic stub 724 and at least part of the isolation wall 725 are spaced apart from the ground plane 7213 in the Z-axis direction.
  • the parasitic branch 724 and the separation wall 725 can be formed in the same process as the substrate 721 , and the parasitic branch 724 and the separation wall 725 can be formed simultaneously in the preparation process of the substrate 721 to simplify the preparation process of the antenna module 720 .
  • the sixteen parasitic branches 724 there are sixteen parasitic ground branches 724 and six isolation walls 725 . Specifically, every four parasitic ground branches 724 are arranged at intervals around one edge-fire antenna 722 . Among them, the sixteen parasitic branches 724 form a first parasitic branch group (not shown in the figure) and a second parasitic branch group (not shown in the figure). The first parasitic branch group and the second parasitic branch group are arranged at intervals along the Y-axis direction. The eight parasitic branches 724 of the first parasitic branch group and the second parasitic branch group are arranged at intervals along the X-axis direction.
  • the parasitic branch 724 includes a parasitic layer 7241 , a first parasitic element 7242 and a second parasitic element (not shown).
  • the parasitic layer 7241 has multiple layers, and the multiple layers of parasitic layer 7241 are arranged at intervals along the Z-axis direction.
  • the parasitic layer 7241 can be a metal layer made of metal materials such as copper, silver, aluminum, magnesium or tin.
  • There are multiple first parasitic elements 7242 and each first parasitic element 7242 is connected between two adjacent parasitic layers 7241 to realize the connection between multiple parasitic layers 7241 .
  • the second parasitic element is connected between the parasitic layer 7241 and the ground plane 7213 to realize the connection between the parasitic ground stub 724 and the ground plane 7213 and to realize the grounding of the parasitic ground stub 724 .
  • the multi-layer parasitic layer 7241 includes a multi-layer first parasitic layer 7241 and a multi-layer second parasitic layer 7241, and the multi-layer first parasitic layer 7241 is located on the side of the multi-layer second parasitic layer 7241 facing the top surface 7211.
  • the multiple first parasitic layers 7241 have the same shape and size.
  • the area of the first parasitic layer 7241 is smaller than the area of the second parasitic layer 7241 .
  • the projection of the first parasitic layer 7241 on the second parasitic layer 7241 is located in the second parasitic layer 7241 .
  • the shapes of the first parasitic layer 7241 and the second parasitic layer 7241 are not limited to the rectangle shown in FIG. 8 , and may also be other polygons or irregular shapes.
  • the multiple second parasitic layers 7241 have the same shape and size.
  • Each second parasitic layer 7241 is provided with a notch 7243 , and the notch 7243 penetrates through the second parasitic layer 7241 along the thickness direction of the second parasitic layer 7241 .
  • the notch 7243 is provided at one end of the second parasitic layer 7241 facing the side-fire antenna 722, and runs through the peripheral surface of the second parasitic layer 7241, so as to increase the distance between the parasitic branch 724 and the side-fire antenna 722, and prevent parasitic
  • the ground stub 724 affects the normal operation of the side-fire antenna 722 .
  • the shape of the notch 7243 is not limited to the rectangle shown in FIG. 8 , and may also be other polygons or irregular shapes.
  • the second parasitic layer 7241 may not be designed with a gap 7243, as long as the distance between the parasitic branch 724 and the side-fire antenna 722 is large enough, and the existence of the parasitic branch 724 does not affect the side-fire antenna 722. Just work.
  • the parasitic branch 724 and the substrate 721 can be formed in the same process, and the parasitic branch 724 can be formed simultaneously in the manufacturing process of the substrate 721 , so as to simplify the manufacturing process of the antenna module 720 .
  • the substrate 721 is provided with a first parasitic hole and a second parasitic hole (not shown).
  • first parasitic hole communicates with two adjacent parasitic layers 7241 .
  • the first parasitic hole is a via hole or a buried hole.
  • Each first parasitic element 7242 is located in a first parasitic hole to connect two adjacent parasitic layers 7241 .
  • the first parasitic element 7242 may be a solid metal post formed by filling the first parasitic hole with a metal material, or the first parasitic element 7242 may be a hole that partially or completely covers the first parasitic hole with a metal material Wall to form a metal layer.
  • the second parasitic hole communicates with the parasitic layer 7241 and the ground plane 7213 .
  • the second parasitic hole is a via hole or a buried hole.
  • the second parasitic element is located in the second parasitic hole to connect the parasitic layer 7241 and the ground plane 7213 .
  • the second parasitic element may be a solid metal post formed by filling the second parasitic hole with a metal material, or the second parasitic element may be partially or completely covered with a metal material to cover the wall of the second parasitic hole. formed metal layer.
  • the six partition walls 725 form a first partition wall group (not shown) and a second partition wall group (not shown).
  • the first partition wall group and the second partition wall group are arranged at intervals along the Y-axis direction.
  • the three partition walls 725 of the first partition wall group and the second partition wall group are arranged at intervals along the X-axis direction.
  • each partition wall 725 of the first partition wall group is located between two adjacent edge-fire antennas 722 and is fixedly connected between two adjacent parasitic ground branches 724 in the first parasitic ground branch group.
  • Each partition wall 725 of the second partition wall group is located between two adjacent edge-fire antennas 722 , and is fixedly connected between two adjacent parasitic ground stubs 724 in the second parasitic ground stub group.
  • the isolation wall 725 may be made of metal materials such as copper, silver, aluminum, magnesium or tin.
  • the parasitic stub 724 and the partition wall 725 are used to isolate two adjacent side-fire antennas 722, so as to prevent signal interference between two adjacent side-fire antennas 722 and ensure the normal operation of the side-fire antenna 722 of the antenna module 720.
  • the number of parasitic branches 724 in the antenna module 720 may be less than sixteen or greater than sixteen, or the number of partition walls 725 in the antenna module 720 may be less than six, or More than six, the application does not specifically limit the number of parasitic stubs 724 and isolation walls 725 in the antenna module 720 .
  • FIG. 9 is a partial structural diagram of the antenna module 720 shown in FIG. 8 . Wherein, FIG. 9 only shows a part of the substrate 721 of the antenna module 720 and a side-fire antenna 722 .
  • the edge-fire antenna 722 includes a radiation unit group 10 , a ground unit group 20 , a first excitation unit 30 and a second excitation unit 40 .
  • the side-fire antenna 722 is a magnetoelectric dipole (magneto electric dipole) antenna with dual polarization characteristics.
  • the first exciting unit 30 is used to excite the radiation unit group 10 to generate an electric field along the first direction, and then excite the side-fire antenna 722 to generate the first polarized radiation.
  • the second exciting unit 40 is used to excite the radiating unit group 10 to generate an electric field along the second direction, and then excite the side-fire antenna 722 to generate the second polarized radiation.
  • the first direction mentioned in the embodiment of the present application refers to the Y-axis direction
  • the second direction refers to the X-axis direction
  • the Y-axis direction refers to the vertical direction
  • the X-axis direction refers to the horizontal direction
  • the first polarization refers to the vertical polarization
  • the second polarization refers to the horizontal polarization
  • the radiating element group 10 is centrosymmetric with respect to the center line O-O.
  • the radiation unit group 10 includes four radiators 11, and the four radiators 11 are arranged at intervals.
  • the four radiators 11 are respectively a first radiator 11a, a second radiator 11b, a third radiator 11c and a fourth radiator 11d.
  • the first radiator 11a and the fourth radiator 11d are arranged opposite to each other, and are symmetrical with respect to the center line O-O.
  • the second radiator 11b and the third radiator 11c are respectively located on opposite sides of the first radiator 11a, and are symmetrical with respect to the center line O-O.
  • the radiating unit group 10 includes a first radiating unit 10a and a second radiating unit 10b, the first radiating unit 10a and the second radiating unit 10b are arranged at intervals along the first direction, the first radiating unit 10a and the second A first gap 101 extending along the second direction is formed between the radiation units 10b.
  • the first radiation unit 10a is provided with a first sub-gap 102 communicating with the first gap 101
  • the second radiation unit 10b is provided with a second sub-gap 103 communicating with the first gap 101
  • the first sub-gap 102 and the second sub-gap 103 all extend along the first direction.
  • the first radiation unit 10a includes a first radiator 11a and a second radiator 11b arranged at intervals along the second direction, and a first sub-gap 102 is formed between the first radiator 11a and the second radiator 11b.
  • the second radiation unit 10b includes a third radiator 11c and a fourth radiator 11d arranged at intervals along the second direction, and a second sub-gap 103 is formed between the third radiator 11c and the fourth radiator 11d.
  • the first gap 101 is a three-dimensional gap structure, including not only the space between the first radiating unit 10a and the second radiating unit 10b, but also the space between the first radiating unit 10a and the second radiating unit 10b facing the ground plane 7213. The space on one side and the space on the side facing away from the ground plane 7213 . The gaps mentioned later can be understood in the same way.
  • a third sub-gap 104 extending along the second direction is formed between the first radiator 11a and the third radiator 11c
  • a fourth sub-gap 105 is formed between the second radiator 11b and the fourth radiator 11d.
  • the first gap 101 includes a third sub-gap 104 , a fourth sub-gap 105 and a fifth sub-gap 106
  • the fifth sub-gap 106 communicates with the third sub-gap 104 and the fourth sub-gap 105
  • the fifth sub-gap 106 also communicates with the first sub-gap 102 and the second sub-gap 103 .
  • the first sub-gap 102, the second sub-gap 103 and the fifth sub-gap 106 form a second gap 107 extending along the first direction.
  • the second gap 107 is partially shared with the first gap 101 .
  • the second gap 107 shares the fifth sub-gap 106 with the first gap 101 .
  • the second gap 107 is a three-dimensional gap structure, including not only the space between the third radiating unit 10c and the fourth radiating unit 10d, but also the space between the third radiating unit 10c and the fourth radiating unit 10d facing the ground plane 7213. and the space away from the ground plane 7213.
  • the first radiation unit 10a further includes a first auxiliary radiator (not shown in the figure), the first auxiliary radiator is connected between the first radiator 11a and the second radiator 11b, and the first radiator 11 a , the second radiator 11 b and the first auxiliary radiator form a first sub-gap 102 .
  • the second radiation unit 10b also includes a second auxiliary radiator (not shown), the second auxiliary radiator is connected between the third radiator 11c and the fourth radiator 11d, the third radiator 11c, the fourth radiator 11d
  • the second sub-gap 103 is formed with the second auxiliary radiator.
  • the side-fire antenna 722 only has the first exciting unit 30, and the first exciting unit 30 excites the first radiating unit 10a and the second radiating unit 10b to generate an electric field along the first direction, so that the side-fire antenna 722 generates a single polarization Radiation, at this time, the broadside antenna 722 only has a single polarization characteristic.
  • the four radiators 11 are all metal layers.
  • the four radiators 11 are located on the same plane and are all parallel to the XY axis plane (slight deviation is allowed).
  • the distance between the radiator 11 and the ground plane 7213 is H
  • the section height (also known as the headroom height) of the side-fire antenna 722 is H
  • H ⁇ H 0 is H
  • multiple metal layers are disposed inside the substrate 721 , and the multiple metal layers are arranged at intervals along the Z-axis direction.
  • One metal layer of the substrate 721 forms the four radiators 11 of the radiation unit group 10 .
  • the four radiators 11 of the radiation unit group 10 can be formed in the same process as the metal layer inside the substrate 721 , so as to simplify the manufacturing process of the edge-fire antenna 722 .
  • FIG. 10 is a schematic top view of the radiator 11 in the edge-fire antenna 722 shown in FIG. 9 .
  • the four radiators 11 have the same structure, and the four radiators 11 are arranged in a four-leaf clover shape. Specifically, each radiator 11 is heart-shaped.
  • the radiator 11 has a center line O / -O / , and the radiator 11 is mirror-symmetrical to the center line O / -O / .
  • the radiator 11 has a first edge point A 1 , a second edge point A 2 , a third edge point B and a fourth edge point C. Both the third edge point B and the fourth edge point C are located on the center line O / -O / , and the first edge point A1 and the second edge point A2 are mirror - symmetrical to the center line O / -O / . It should be understood that the same structures mentioned in the embodiments of the present application refer to the same shape and size.
  • the radiator 11 has two outer edges (111 and 112 shown in FIG. 10 ) and two inner edges (113 and 114 shown in FIG. 10 ). It should be noted that the orientation words “inside” and “outside” mentioned in the embodiment of the present application are described in terms of the orientation shown in the structure in Figure 9, with the inner being close to the centerline OO and the outer being farther away from the centerline OO. The orientation words “inner” and “outer” mentioned later can be understood in the same way.
  • the inner edge of the radiator 11 is the edge of the radiator 11 used to form the first gap 101 or the second gap 102 .
  • the two outer edges of the radiator 11 are respectively the first outer edge 111 and the second outer edge 112
  • the two inner edges of the radiator 11 are respectively the first inner edge 113 and the second inner edge 114
  • the first edge point A 1 and the fourth edge point C are two end points of the first outer edge 111 respectively, and the edge line between the first edge point A 1 and the fourth edge point C forms the first outer edge 111
  • the second edge point A 1 and the fourth edge point C are two end points of the second outer edge 112 respectively, and the edge line between the second edge point A 1 and the fourth edge point C forms the second outer edge 112 .
  • Both the first outer edge 111 and the second outer edge 112 are elliptical arcs, and are mirror-symmetrical with respect to the central line O / -O / .
  • both the semi-major axis of the first outer edge 111 and the second outer edge 112 are a 1
  • the semi-minor axis is b 1
  • the lengths of the first outer edge 111 and the second outer edge 112 are both L 1 .
  • the first edge point A 1 and the third edge point B are two end points of the first inner edge 113 respectively, and the edge line between the first edge point A 1 and the third edge point B forms the first inner edge 113 .
  • the second edge point A 1 and the third edge point B are two end points of the second inner edge 114 respectively, and the edge line between the second edge point A 1 and the third edge point B forms the second inner edge 114 .
  • Both the first inner edge 113 and the second inner edge 114 are elliptical arcs, and are mirror-symmetrical with respect to the central line O / -O / .
  • the semi-major axis of the first inner edge 113 and the second inner edge 114 are both a 2
  • the semi-minor axis is b 2
  • the lengths of the first inner edge 113 and the second inner edge 114 are both L 2 .
  • FIG. 11 is a top structural schematic view of the radiation element group 10 in the side-fire antenna 722 shown in FIG. 9 .
  • the radiation unit group 10 has four sub-gaps, each sub-gap is located between two adjacent radiators 11 , and the interval between two adjacent radiators 11 forms a sub-gap.
  • each sub-gap is located between two adjacent radiators 11 , and the interval between two adjacent radiators 11 forms a sub-gap.
  • the width of each sub-gap is getting larger and larger, so as to improve the impedance matching of the side-fire antenna 722, The bandwidth of the broadside antenna 722 is improved.
  • the four sub-gaps are respectively the first sub-gap 102 , the second sub-gap 103 , the third sub-gap 104 and the fourth sub-gap 105 .
  • a first sub-gap 102 is formed between the first radiator 11a and the second radiator 11b
  • a third sub-gap 104 is formed between the first radiator 11a and the third radiator 11c
  • a second sub-gap 103 is formed between the four radiators 11d
  • a fourth sub-gap 105 is formed between the fourth radiator 11d and the second radiator 11b.
  • the distance between the third edge point B of the third radiator 11c and the fourth radiator 11d is W 1
  • the distance between the third radiator 11c and the second edge point A 2 of the fourth radiator 11d The distance is W 2
  • W 2 is greater than W 1
  • the first inner edge 113 and the second inner edge 114 of the radiator 11 are not limited to the illustrated elliptical arc shape, but may also be arc shaped or straight. In some other embodiments, in the direction from the center line OO to the edge of the radiation unit group 10, the distance between two adjacent radiators 11 may not change. At this time, W 2 is equal to W 1 . This is not specifically limited.
  • FIG. 12 is a partial structural diagram of the antenna module 720 shown in FIG. 9
  • FIG. 13 is a partial structural diagram of the antenna module 720 shown in FIG. 9 .
  • the side-firing antenna 722 in the antenna module 720 shown in FIG. 12 only shows the grounding unit group 20
  • the side-firing antenna 722 in the antenna module 720 shown in FIG. 13 only shows the radiating unit group 10 and the grounding unit group 20. .
  • the ground unit group 20 is connected between the radiation unit group 10 and the ground plane 7213 .
  • the ground unit group 20 is centrosymmetric about the centerline O-O.
  • the grounding unit group 20 includes four grounding stubs 21, the four grounding stubs 21 surround the central line O-O, and are arranged at intervals with each other. Among them, the four grounding stubs 21 have the same structure.
  • Each ground stub 21 is fixedly connected to a radiator 11 . Specifically, each ground stub 21 is fixedly connected to a side of a radiator 11 close to the central line O-O.
  • Each ground stub 21 is fixedly connected to a side of a radiator 11 close to the third edge point B (as shown in FIG. 10 ).
  • the four ground stubs 21 are respectively the first ground stub 21a, the second ground stub 21c, the third ground stub 21b and the fourth ground stub 21d.
  • the first grounding stubs 21a, the second grounding stubs 21c, the third grounding stubs 21b and the fourth grounding stubs 21d are arranged around the central line O-O in a rectangular or square shape (a little deviation is allowed, roughly rectangular or square).
  • One end of the first ground stub 21 a is connected to the side of the first radiator 11 a close to the second radiator 11 b, and the other end is connected to the ground plane 7213 .
  • One end of the second ground stub 21 c is connected to the side of the second radiator 11 b close to the first radiator 11 a , and the other end is connected to the ground plane 7213 .
  • One end of the third grounding stub 21 b is connected to the side of the third radiator 11 c close to the fourth radiator 11 d , and the other end is connected to the ground plane 7213 .
  • One end of the fourth ground stub 21d is connected to the side of the fourth radiator 11d close to the third radiator 11c, and the other end is connected to the ground plane 7213 .
  • the grounding unit group 20 includes a first grounding unit 20a and a second grounding unit 20b, and the first grounding unit 20a and the second grounding unit 20b are arranged at intervals along the first direction. Wherein, the first grounding unit 20 a and the second grounding unit 20 b are respectively located on opposite sides of the first gap 101 .
  • One end of the first grounding unit 20 a is connected to a side of the first radiating unit 10 a close to the second radiating unit 10 b , and the other end is connected to the ground plane 7213 .
  • the first grounding unit 20a includes a first grounding branch 21a and a second grounding branch 21c arranged at intervals along the second direction
  • the second grounding unit 20b includes a third grounding branch 21b and a fourth grounding branch 21b arranged at intervals along the second direction. Ground stub 21d.
  • FIG. 14 is a schematic cross-sectional view of the structure shown in FIG. 13 along A-A.
  • cutting along A-A refers to cutting along the plane where the A-A line is located, and similar descriptions in the following can be understood in the same way.
  • the ground stub 21 includes a first part 211 , a second part 212 and a third part 213 connected in sequence.
  • the first portion 211 is located on a side of the second portion 212 away from the ground plane 7213 .
  • An end of the first part 211 away from the second part 212 is connected to the radiator 11 .
  • the third portion 213 is located on a side of the second portion 21 facing the ground plane 7213 .
  • the first part 211 and the third part 213 are dislocated.
  • An end of the third portion 213 away from the second portion 212 is connected to the ground plane 7213 .
  • the dislocation distance between the first part 211 and the third part 213 is w 1 .
  • the third direction is different from the first direction and the second direction.
  • the third direction is the Z-axis direction.
  • the first part 211 and the third part 213 may also be partially misaligned. It should be noted that the complete misalignment of the first part 211 and the third part 213 means that the projections of the first part 211 and the third part 213 on the ground plane 7213 do not coincide. It can be understood that the partial dislocation of the first part 211 and the third part 213 means that the projections of the first part 211 and the third part 213 on the ground plane 7213 are partially overlapped.
  • the first part 211 is connected to one end of the second part 212 close to the center line O-O.
  • the first part 211 includes a first ground layer 214 , a first connection piece 215 , a second connection piece 216 and a third connection piece 217 .
  • the first ground layer 214 has multiple layers, and the multiple layers of the first ground layer 214 are arranged at intervals along the Z-axis direction.
  • the first ground layer 214 may be a metal layer made of metal materials such as copper, silver, aluminum, magnesium or tin. It should be understood that the shape of the first ground layer 214 is not limited to the rectangle shown in FIG. 12 , and may also be other polygons or irregular shapes.
  • the first ground layer 214 is provided with a notch 214a, and the notch 214a penetrates the first ground layer 214 along the thickness direction of the first ground layer 214 .
  • the notch 214 a is disposed at an end of the first ground layer 214 away from the central line O-O, and runs through the peripheral surface of the first ground layer 214 .
  • the existence of the notch 214a is used to avoid the drastic change of the impedance of the ground stub 21 and improve the impedance matching of the side-fire antenna 722 .
  • the first connection piece 215 is connected between the radiator 11 of the radiation unit group 10 and the first ground layer 214 to realize the connection between the ground stub 21 of the ground unit group 20 and the radiator 11 of the radiation unit group 10 .
  • the width of the first connecting member 215 is w 2 .
  • There are multiple second connecting pieces 216 and each second connecting piece 216 is connected between two adjacent first ground layers 214 to realize the connection between multiple layers of first ground layers 214 .
  • the sum of the heights of the plurality of first ground layers 214 , the first connecting elements 215 and the plurality of second connecting elements 217 is h 1 .
  • the third connecting piece 217 is connected between the first ground layer 214 and the second portion 212 to realize the connection between the ground stub 21 and the second portion 212 .
  • the third connecting member 217 has a width of w 3 and a height of h 2 .
  • the multi-layer first ground layer 214 can be formed in the same process as the metal layer inside the substrate 721 , so as to simplify the manufacturing process of the edge-fire antenna 722 .
  • the substrate 721 is provided with a first connection hole, a second connection hole and a third ground hole (not shown).
  • the first connection hole communicates with the radiator 11 and the first ground layer 214 .
  • the first connection hole is a via hole or a buried hole.
  • the first connection hole runs through the radiator 11 . In some other implementation manners, the first connection hole may not pass through the radiator 11 .
  • the first connection part 215 is located in the first connection hole to connect the radiator 11 and the first ground layer 214 .
  • the first connecting member 215 may be a solid metal post formed by filling the first connecting hole with a metal material, or the first connecting member 215 may be a hole that partially or completely covers the first connecting hole with a metal material Wall to form a metal layer.
  • each second connection hole communicates with two adjacent first ground layers 214 .
  • the second connection hole is a via hole or a buried hole.
  • the second connection hole does not penetrate through the first ground layer 214 .
  • the second connection hole may also penetrate through the first ground layer 214 .
  • each second connecting member 216 is located in a second connecting hole to connect two adjacent first ground layers 214 .
  • the second connection member 216 may be a solid metal post formed by filling the second connection hole with a metal material, or the second connection member 216 may be a hole that partially or completely covers the second connection hole with a metal material Wall to form a metal layer.
  • the third ground hole communicates with the first ground layer 214 and the second portion 212 .
  • the third ground hole is a via hole or a buried hole.
  • the third ground hole does not penetrate through the second portion 212 .
  • the third ground hole may also pass through the second portion 212 .
  • the third connecting member 217 is located in the third ground hole to connect the first ground layer 214 and the second part 212 .
  • the third connecting member 217 may be a solid metal post formed by filling the third ground hole with a metal material, or the third connecting member 217 may be a hole that partially or completely covers the third ground hole with a metal material Wall to form a metal layer.
  • the second portion 212 is parallel to the XY axis plane (slight deviation is allowed). Wherein, the distance between the second portion 212 and the ground plane 7213 is h 3 , and the width of the second portion 212 is w 1 .
  • the second portion 212 may be a metal layer.
  • a metal layer of the substrate 721 forms the second portion 212 .
  • the second portion 212 can be formed in the same process as the metal layer inside the substrate 721 , so as to simplify the manufacturing process of the edge-fire antenna 722 .
  • the third portion 213 is connected to an end of the second portion 212 away from the central line O-O.
  • the third part 213 includes a second radiation layer 218 , a fourth connection part 219 and a fifth connection part 2110 .
  • the second radiation layer 218 is located between the second portion 212 and the ground plane 7213 .
  • the second radiation layer 218 may be a metal layer made of metal materials such as copper, silver, aluminum, magnesium or tin. It should be understood that the shape of the second radiation layer 218 is not limited to the rectangle shown in FIG. 12 , and may also be other polygons or irregular shapes.
  • the fourth connecting piece 219 is connected between the second part 212 and the second radiation layer 218 to realize the connection between the third part 213 and the second part 212 .
  • the fifth connecting member 2110 is connected between the second radiation layer 218 and the ground plane 7213 to realize the grounding of the ground stub 21 .
  • the second radiation layer 218 can be formed in the same process as the metal layer inside the substrate 721 , so as to simplify the manufacturing process of the edge-fire antenna 722 .
  • the substrate 721 is provided with a fourth connection hole and a fifth connection hole (not shown).
  • the fourth connection hole communicates with the second portion 212 and the second radiation layer 218 .
  • the fourth connection hole is a via hole or a buried hole.
  • the fourth connection hole does not penetrate the second portion 212 and the second radiation layer 218 .
  • the fourth connection hole may also pass through the second portion 212 , or, the fourth connection hole may also pass through the second ground stub 218 .
  • the fourth connection part 219 is located in the fourth connection hole to connect the second part 212 and the second radiation layer 218 .
  • the fourth connecting member 219 may be a solid metal post formed by filling the fourth connecting hole with a metal material, or the fourth connecting member 219 may be a hole that partially or completely covers the fourth connecting hole with a metal material Wall to form a metal layer.
  • the fifth connection hole communicates with the second radiation layer 218 and the ground plane 7213 .
  • the fifth connection hole is a via hole or a buried hole.
  • the fifth connection hole does not penetrate the second radiation layer 218, but penetrates the ground layer 721a. In some other implementation manners, the fifth connection hole may also penetrate the second radiation layer 218, or the fifth connection hole may not penetrate the ground layer 721a.
  • the fifth connecting member 2110 is located in a fifth connecting hole to connect the second radiation layer 218 and the ground plane 7213 .
  • the fifth connecting member 2110 may be a solid metal post formed by filling the fifth connecting hole with a metal material, or the fifth connecting member 2110 may be a hole partially or completely covering the fifth connecting hole with a metal material Wall to form a metal layer.
  • FIG. 15 is a partial structural diagram of the antenna module 720 shown in FIG. 9, and FIG. 16 is a schematic cross-sectional structural diagram of the structure shown in FIG. 15 taken along B-B.
  • the side-fire antenna 722 in the antenna module 720 shown in FIG. 15 only shows the radiation unit group 10, the ground unit group 20 and the first excitation unit 30, and the side-fire antenna 722 in the antenna module 720 shown in FIG. 16 only shows The first excitation unit 30 is shown.
  • the first excitation unit 30 is located in the second gap 107 .
  • the first excitation unit 30 is a first polarization excitation unit, configured to excite the first radiation unit 10a and the second radiation unit 10a to generate an electric field along a first direction.
  • the first excitation unit 30 includes a first feed structure 31 and a first extension branch 32 , and the first feed structure 31 and the first extension branch 32 are arranged at intervals along the first direction.
  • the first feeding structure 31 includes a first feeding end 31a connected to a feeding source. Specifically, the first feeding end 31a is electrically connected to the radio frequency port of the transceiver chip 710 (as shown in FIG. 2 ), so as to realize the connection with the feeding source.
  • the first feeding structure 31 is electrically connected to the radio frequency port of the transceiver chip 710 through the first feeding line 51 .
  • the first feeder 51 may be a microstrip line.
  • the first extension branch 32 is located on a side of the first feed structure 31 close to the first feed end 31a.
  • the first extension branch 32 includes a first ground terminal 32 a close to the first feeding terminal 31 a, and the first ground terminal 32 a is electrically connected to the ground plane 7213 .
  • the first ground end 32a of the first extension branch 32 is electrically connected to the ground layer 721a to realize grounding.
  • the first feeding structure 31 is " ⁇ " shaped.
  • the first feed structure 31 includes a first feed part 311 , a first feed part 312 and a first auxiliary part 313 connected in sequence. Both the first feeding part 311 and the first auxiliary part 313 are located on a side of the first feeding part 312 facing the ground plane 7213 .
  • the first feeding part 311 and the first auxiliary part 313 are spaced apart from each other along the first direction. Wherein, the first feeding part 312 extends along the first direction, the first feeding part 311 and the first auxiliary part 313 both extend along the third direction, and the first feeding part 311 connects the feed source to realize the first feeding structure 31 feed.
  • the first feeding portion 311 is connected to a side of the first feeding portion 312 close to the first extension branch 32 .
  • the end of the first feeding part 311 away from the first feeding part 312 is the first feeding end 31a.
  • one end of the first feeding part 311 is connected to the end of the first feeding part 312 close to the first extension branch 32, and the other end is connected to the first feeding line 51, so as to realize the connection between the first feeding structure 31 and the first feeding line 51. electrical connection.
  • the first feeding portion 311 is located in the first sub-gap 102 .
  • the ground layer 721a is provided with a first through hole 721b, and the first through hole 721b penetrates the ground layer 721a along the thickness direction of the ground layer 721a.
  • the other end of the first feeding portion 311 is connected to the first feeding line 51 through the first through hole 721b.
  • the structure of the first feeding part 311 is substantially the same as that of the ground stub 21 .
  • the first feeding part 311 includes an access layer 314 and an access piece.
  • the access layer 314 may have multiple layers, and the multi-layer access layers 314 are arranged at intervals along the third direction.
  • the access layer 314 may be a metal layer made of metal materials such as copper, silver, aluminum, magnesium or tin.
  • the plurality of access parts 315, the plurality of access parts 316 and the access parts 317 are arranged at intervals along the third direction, and are sequentially connected to the first power feeding part 312, the multi-layer access part layer 314 and the first feeder 51 to realize the connection between the first feeder 311 and the first feeder 312 , and the connection between the first feeder 311 and the first feeder 51 .
  • the multi-layer access layer 314 of the first feeding part 311 can be formed in the same process as the metal layer inside the substrate 721, so as to simplify the preparation process of the edge-fire antenna 722, and the preparation process of the metal layer in the substrate It is similar to the foregoing and will not be repeated here.
  • the first feeding part 312 crosses the first gap 101 in the first direction. Part of the first feeding part 312 is located in the first sub-gap 102 , part of the first feeding part 312 is located in the first gap 101 , and part of the first feeding part 312 is located in the second sub-gap 103 . Wherein, part of the first feeding portion 312 is located in the fifth sub-gap 106 . Specifically, the first feeding part 312 is parallel to the XY axis plane (a little deviation is allowed). Wherein, the distance between the first feeding portion 312 and the ground plane 7213 is H 1 , and the width of the first feeding portion 312 is w 4 . Exemplarily, the first feeding part 312 may be located on the same plane as the radiator 11 .
  • H 1 H.
  • the first feeding part 312 may not be located on the same plane as the radiator 11, and the first feeding part 312 may be located on the side of the radiator 11 away from the ground plane 7213, or on the side of the radiator 11 facing the ground plane 7213. One side of ground 7213.
  • a metal layer of the substrate 721 forms the first power feeding part 312 .
  • One end of the first auxiliary portion 313 is connected to an end of the first feeding portion 312 away from the first extension branch 32 , and the other end extends along the third direction. Specifically, the first auxiliary portion 313 is located in the second sub-gap 103 . Wherein, the height of the first auxiliary portion 313 is H 2 , where H 2 ⁇ H 1 .
  • the structure of the first auxiliary part 313 is substantially the same as that of the ground stub 21 .
  • the first auxiliary part 313 includes auxiliary layers and auxiliary pieces.
  • the auxiliary layer 318 may have multiple layers, and the multiple layers of auxiliary layers 318 are arranged at intervals along the third direction.
  • the auxiliary layer 318 may be a metal layer made of metal materials such as copper, silver, aluminum, magnesium or tin.
  • the auxiliary member 319 is connected between the first power feeding part 312 and the auxiliary layer 318 .
  • the auxiliary element 3110 is connected between two adjacent auxiliary layers 318 .
  • the multi-layer auxiliary layer 318 of the first auxiliary part 313 can be formed in the same process as the metal layer inside the substrate 721, so as to simplify the manufacturing process of the edge-fire antenna 722, and the manufacturing process of the metal layer in the substrate is the same as the aforementioned Similar and will not be repeated here.
  • the first extension branch 32 is in the shape of " ⁇ ".
  • the first extension branch 32 is located in the first sub-gap 102 . Specifically, the first extension branch 32 is located on a side of the first feed-in portion 311 away from the first auxiliary portion 313 , and is spaced apart from the first feed-in portion 311 . Wherein, the distance between the first extension branch 32 and the first feeding structure 31 is w 5 .
  • the first extension branch 32 includes a first ground portion 321 , a first extension portion 322 and a second extension portion 323 connected in sequence. Both the first ground portion 321 and the second extension portion 323 are located on a side of the first extension portion 322 facing the ground plane 7213 . The first ground portion 321 and the second extension portion 323 are spaced apart from each other along the first direction.
  • the first ground portion 321 is connected to a side of the first extension portion 322 close to the first feed structure 31 , and the end of the first ground portion 321 away from the first extension portion 322 is the first ground end 32 a. Wherein, the first grounding portion 321 is close to the first feeding portion 311 . Specifically, one end of the first grounding portion 321 is connected to a side of the first extension portion 322 close to the first feeding structure 31 , and the other end is connected to the ground plane 7213 to realize the grounding of the first extension branch 32 .
  • the structure of the first ground portion 321 is substantially the same as that of the ground stub 21 .
  • the first ground part 321 includes a ground layer and a ground piece.
  • the ground layer 324 has multiple layers, and the multiple layers of ground layers 324 are arranged at intervals along the third direction.
  • the ground layer 324 may be a metal layer made of metal materials such as copper, silver, aluminum, magnesium or tin.
  • grounding elements There may be multiple grounding elements, the plurality of grounding elements 325, the plurality of grounding elements 326, and the grounding elements 327 are arranged at intervals along the third direction, and are sequentially connected to the first extension portion 322, the plurality of grounding layers 324, and the ground plane 7213 Between, to realize the connection between the first ground portion 321 and the first extension portion 322 , and the connection between the first ground portion 321 and the ground plane 7213 .
  • the multilayer ground layer 324 of the first ground portion 321 can be formed in the same process as the metal layer inside the substrate 721, so as to simplify the manufacturing process of the edge-fire antenna 722, and the manufacturing process of the metal layer in the substrate is the same as the aforementioned Similar here will not repeat them.
  • the first extension portion 322 extends along the first direction.
  • the first extending portion 322 is located between the first radiator 11a and the second radiator 11b, and is spaced apart from the first radiator 11a and the second radiator 11b.
  • the first extension portion 322 is parallel to the XY axis plane (slight deviation is allowed).
  • the distance between the first extension portion 322 and the ground plane 7213 is H 3
  • the width of the first extension portion 322 is w 6 .
  • a metal layer of the substrate 721 forms the first extension portion 322 .
  • the second extension portion 323 is connected to a side of the first extension portion 322 away from the first feeding structure 32 . Specifically, one end of the second extension portion 323 is connected to an end of the first extension portion 322 away from the first feeding structure 31 , and the other end extends along the third direction. Wherein, the height of the second extension portion 323 is H 4 , and H 4 is smaller than H 3 .
  • the second extension part 323 includes a first extension layer 328 , a first extension 329 and a second extension 3210 .
  • the first extension layer 328 has multiple layers, and the multiple layers of the first extension layer 328 are arranged at intervals along the Z-axis direction.
  • the first extension layer 328 may be a metal layer made of metal materials such as copper, silver, aluminum, magnesium or tin.
  • the first extension part 329 is connected between the first extension part 322 and the first extension layer 328 to realize the connection between the first extension part 323 and the second extension part 323 .
  • There are multiple second extension pieces 3210 and each second extension piece 3210 is connected between two adjacent first extension layers 328 , so as to realize the connection between multiple first extension layers 328 .
  • the multi-layer first extension layer 328 of the second extension part 323 can be formed in the same process as the metal layer inside the substrate 721, so as to simplify the preparation process of the edge-fire antenna 722, and the preparation process of the metal layer in the substrate It is similar to the foregoing and will not be repeated here.
  • FIG. 17 is a partial structural diagram of the antenna module 720 shown in FIG. 9
  • FIG. 18 is a cross-sectional schematic diagram of the structure shown in FIG. 17 along C-C.
  • the side-fire antenna 722 in the antenna module 720 shown in FIG. 17 only shows the radiation unit group 10, the ground unit group 20 and the second excitation unit 40
  • the side-fire antenna 722 in the antenna module 720 shown in FIG. 18 only shows The second excitation unit 40 is shown.
  • the second excitation unit 40 is located in the first gap 101 .
  • the second excitation unit 40 is a second polarization excitation unit, configured to excite the first radiation unit 10a and the second radiation unit 10b to generate an electric field along the second direction.
  • the second excitation unit 40 includes a second feed structure 41 and a second extension branch 42 , and the second feed structure 41 and the second extension branch 42 are arranged at intervals along the second direction.
  • the second feed structure 41 is arranged alternately with the first feed structure 31 .
  • the second feed structure 41 includes a second feed end 41a connected to a feed source. Specifically, the second feeding end 41a is electrically connected to the radio frequency port of the transceiver chip 710 (as shown in FIG. 2 ), so as to realize the connection with the feeding source.
  • the second feeding point structure 41 is electrically connected to the radio frequency port of the transceiver chip 710 through the second feeding line 52 .
  • the second feeder 52 may be a microstrip line.
  • the second extension branch 42 is located on the side of the second feed structure 41 close to the second feed-in end 41a.
  • the second extension branch 42 includes a second ground end 42a close to the second feed-in end 41a.
  • the second ground end 42a is connected to the ground plane. 7213 electrical connection.
  • the second ground end 42a of the second extension branch 42 is electrically connected to the ground layer 721a to achieve grounding.
  • the second feed structure 41 is " ⁇ " shaped.
  • the structure of the second feed structure 41 is substantially the same as that of the first feed structure 31 .
  • the second feed structure 41 includes a second feed part 411 , a second feed part 412 and a second auxiliary part 413 connected in sequence, and are connected to the first feed part 311 , the first feed part 413 of the first feed structure 31 , respectively.
  • the electric part 312 and the first auxiliary part 313 have the same or similar structures, and details will not be repeated here.
  • the second feeding portion 411 is connected to a side of the second feeding portion 412 close to the second extension branch 42 .
  • the end of the second feeding part 411 away from the second feeding part 412 is the second feeding end 41a.
  • one end of the second feeding part 411 is connected to the end of the second feeding part 412 close to the second extension branch 42, and the other end is connected to the second feeding line 52, so as to realize the connection between the second feeding structure 41 and the second feeding line 52. electrical connection.
  • the second feeding part 411 is located between the first grounding stub 21a and the second grounding stub 21c (as shown in FIG.
  • the ground layer 721 is provided with a second through hole 721c, and the second through hole 721c penetrates the ground layer 721a along the thickness direction of the ground layer 721a.
  • the other end of the second feeding portion 411 is connected to the second feeding line 52 through the second through hole 721c.
  • the structure of the second feeding part 411 is substantially the same as the structure of the first feeding part 311, and will not be repeated here.
  • the second feeding portion 412 is located on a side of the first feeding portion 312 facing the ground plane 7213 .
  • the second feed portion 412 spans the second gap 102 in the second direction.
  • Part of the second feeding part 412 is located in the third sub-gap 104
  • part of the second feeding part 412 is located in the second gap 102
  • part of the second feeding part 412 is located in the fourth sub-gap 105 .
  • part of the second feeding portion 412 is located in the fifth sub-gap 106 .
  • the second feeding portion 412 is parallel to the XY axis plane (a slight deviation is allowed).
  • the distance between the second feeding portion 412 and the ground plane 7213 is H 5
  • the width of the second feeding portion 412 is w 7
  • the first power feeding part 312 may also be located on the side of the second power feeding part 412 facing the ground plane 7213 . At this time, H 5 >H 1 .
  • One end of the second auxiliary portion 413 is connected to an end of the second feeding portion 412 away from the second extension branch 42 , and the other end extends along the third direction. Specifically, the second auxiliary portion 413 is located in the fourth sub-gap 105 . Wherein, the height of the second auxiliary portion 413 is H 6 , where H 6 ⁇ H 1 . Wherein, the structure of the second auxiliary part 413 is substantially the same as that of the first auxiliary part 313 , which will not be repeated here.
  • the second extension branch 42 is in the shape of " ⁇ ". Wherein, the structure of the second extension branch 42 is the same or similar to that of the first extension branch 32 .
  • the second extension branch 42 is located in the third sub-gap 104 . Specifically, the second extension branch 42 is located on a side of the second feed-in portion 411 away from the second auxiliary portion 413 , and is spaced apart from the second feed-in portion 411 . Wherein, the distance between the second extension branch 42 and the second feeding structure 42 is w 8 .
  • the second extension branch 42 includes a second ground portion 421 , a third extension portion 422 and a fourth extension portion 423 connected in sequence. Both the second ground portion 421 and the fourth extension portion 423 are located on a side of the third extension portion 422 facing the ground plane 7213 . The second ground portion 421 and the fourth extension portion 423 are spaced apart from each other along the second direction.
  • the second ground portion 421 is connected to a side of the third extension portion 422 close to the second feeding structure 41 .
  • An end of the second ground portion 421 away from the third extension portion 422 is the second ground end 42a.
  • the second grounding portion 421 is close to the second feeding portion 311 .
  • one end of the second grounding portion 421 is connected to an end of the third extension portion 422 close to the second feeding structure 41 , and the other end is fixedly connected to the ground plane 7213 to realize the grounding of the second extension branch 42 .
  • the structure of the second grounding portion 421 is substantially the same as that of the first grounding portion 321 , which will not be repeated here.
  • the third extension portion 422 extends along the second direction.
  • the third extending portion 422 is located between the first radiator 11a and the third radiator 11c, and is spaced apart from the first radiator 11a and the third radiator 11c.
  • the third extension portion 422 is parallel to the XY axis plane (a slight deviation is allowed).
  • the distance between the third extension portion 422 and the ground plane 7213 is H 7
  • the width of the third extension portion 422 is w 9 .
  • the fourth extension portion 423 is connected to a side of the third extension portion 422 away from the second feeding structure 42 . Specifically, one end of the fourth extension portion 423 is connected to an end of the third extension portion 422 away from the second feeding structure 41 , and the other end extends along the third direction. Wherein, the height of the fourth extension portion 423 is H 8 , and H 8 is smaller than H 7 . Wherein, the structure of the fourth extension portion 423 is substantially the same as that of the second extension portion 323 , and will not be repeated here.
  • both the first excitation unit 30 and the second excitation unit 40 are coupling capacitive excitation structures, and both the first excitation unit 30 and the second excitation unit 40 excite the radiating unit group 10 by means of coupling feeding.
  • both the first excitation unit 30 and the second excitation unit 40 shown in this embodiment are excited at the antenna aperture 701 close to the edge-fire antenna 722, since the antenna aperture 701 is the high impedance of the antenna in the resonant mode Therefore, the first excitation unit 30 and the second excitation unit 40 excite the radiating unit group 10 in a coupled feeding manner, which can avoid loss caused by impedance mismatch and is beneficial to improve the radiation efficiency of the side-fire antenna 722 .
  • a width w 4 of the feeding portion 312 is 1.2 mm
  • a height H 2 of the first auxiliary portion 313 is 0.13 mm.
  • the distance w 5 between the first extension branch 32 and the first feeding structure 31 is 0.15mm.
  • the distance H3 between the first extension part 322 and the ground plane 7213 in the first extension branch 32 is 0.865mm
  • the width w6 of the first extension part 322 is 0.65mm
  • the height H4 of the second extension part 323 is 0.74mm .
  • the width w 7 of 412 is 1.2 mm
  • the height H 6 of the second auxiliary portion 413 is 0.065 mm.
  • the distance w 8 between the second extension branch 42 and the second feeding structure 41 is 0.15 mm
  • the width w 9 of the third extension portion 422 is 0.65 mm
  • the height H 8 of the fourth extension portion 423 is 0.65 mm.
  • the thickness (H 0 shown in FIG. 12 ) of the substrate 721 was 1.093 mm.
  • the semi-major axis a1 of the first outer edge 111 and the second outer edge 112 of the radiator 11 is 0.6 mm
  • the semi - minor axis b1 is 0.58 mm. mm
  • the semi-major axis a 2 of the first inner edge 113 and the second inner edge 114 of the radiator 11 is 1.55 mm
  • the semi-minor axis b 2 is 0.4 mm.
  • the distance L1 between the first edge point A1 of the third radiator 11c and the first edge point A1 of the fourth radiator 11d is 3.5mm, and the third edge point B of the third radiator 11c
  • the distance W 1 from the third edge point B of the fourth radiator 11d is 0.4mm.
  • the distance H between the radiator 11 and the ground plane 7213 is 0.865mm
  • the width w1 of the second radiation layer 218b is 0.4mm
  • the third connecting member The width w 2 of 213a is 0.07mm
  • the width w 3 of the fourth connecting member 213b is 0.14mm.
  • the height h1 of the first part is 0.215 mm
  • the height h2 of the second part is 0.5 mm
  • the height of the third part h3 is 0.15 mm.
  • Fig. 19 is the return loss coefficient (S11) curve diagram of the side-fire antenna 722 in the antenna module 720 shown in Fig. 9, and Fig. 20 is the Smith corresponding to the return loss coefficient diagram shown in Fig. 19 circle diagram.
  • the abscissa shown in FIG. 19 is the frequency (unit is GHz), and the ordinate is the return loss (return loss) coefficient (unit is dB).
  • the solid line represents the return loss coefficient curve of the first polarization radiation of the side-fire antenna 722
  • the dotted line represents the return loss coefficient curve of the second polarization radiation of the side-fire antenna 722
  • the dotted line represents the first polarization radiation of the side-fire antenna 722.
  • the working frequency band (supporting frequency band) of the side-firing antenna 722 is 24.25GHz to 42.5GHz, which can support n257, n258, n259, n260 and n261, and can cover the entire 5G millimeter wave frequency band.
  • the working frequency band of the sidefire antenna 722 may support one or more of frequency bands such as n257, n258, n259, n260 and n261.
  • the reflection coefficient of the broadside antenna 722 is close to -10 dB. It should be noted that the arrangement of the first extension branch 32 and the second extension branch 42 greatly improves the reflection coefficient of the side-fire antenna 722 at the lowest operating frequency of 24.25 GHz, and reduces the requirement of the side-fire antenna 722 for headroom.
  • the impedance at the lowest operating frequency of 24.25GHz falls outside the frequency band of the lower frequency point, and the excessively high impedance point at 23GHz is strongly filtered, which forcibly narrows the 50ohm impedance point in the center of the original Smith diagram, so
  • the arrangement of the first extension stub 32 and the second extension stub 42 improves the impedance matching and reflection coefficient of the lowest operating frequency of 24.25 GHz.
  • the side-fire antenna 722 shown in the embodiment of the present application is effectively excited to produce three basic modes of magnetic dipoles, which are respectively the first mode of the electric dipole (E-dipole 1st mode) under the first frequency band. ), the first magnetic dipole mode (M-dipole 1st mode) in the second frequency band and the second electric dipole mode (E-dipole 2st mode) in the third frequency band.
  • the minimum frequency point of the second frequency band is higher than the maximum frequency point of the first frequency band
  • the minimum frequency point of the third frequency band is higher than the maximum frequency point of the second frequency band.
  • the electromagnetic wave wavelength corresponding to the first frequency band is ⁇ 1 .
  • the distance L3 between the first edge point A1 of the fourth radiator 11d of the radiation element group 10 and the first edge point A1 of the first radiator 11a (as shown in FIG. 11 shown) between 0.4 ⁇ 1 and 0.6 ⁇ 1 , for example 0.5 ⁇ 1 .
  • the section height (as shown in FIG. 14 ) H is between 0.1 ⁇ 1 and 0.2 ⁇ 1 , for example 0.12 ⁇ 1 .
  • the length of the first extension branch 32 is the sum of H 3 +w 6 +H 4 (as shown in FIG.
  • the length of the second extension branch 42 is H 7 +w 9 +H 8 (as shown in FIG. 18 ), and the sum of H 7 +w 9 +H 8 is between 0.3 ⁇ 1 and 0.4 ⁇ 1 .
  • FIG. 21 is a current mode diagram at 21 GHz of a partial structure of the side-fire antenna 722 in the antenna module 720 shown in FIG. 9 . It can be seen from FIG. 21 that at the frequency point of 21 GHz, no return current is formed on the side-fire antenna 722, and the side-fire antenna 722 is in the first electric dipole mode. At this time, the electromagnetic wave wavelength ⁇ 1 is 7.6 mm.
  • the electromagnetic wave wavelength corresponding to the second frequency band is ⁇ 2 .
  • the distance L4 between the first edge point A1 of the second radiator 11b of the radiation element group 10 and the first edge point A1 of the fourth radiator 11d (as shown in FIG. 11 shown) between 0.4 ⁇ 2 and 0.6 ⁇ 2 , for example 0.5 ⁇ 2 .
  • the section height (as shown in FIG. 14 ) H is between 0.2 ⁇ 2 and 0.3 ⁇ 2 , for example 0.25 ⁇ 2 .
  • FIG. 22 is a current mode diagram at 29.5 GHz of a partial structure of the side-fire antenna 722 in the antenna module 720 shown in FIG. 9 . It can be seen from 22 that at the frequency point of 29.5 GHz, a backflow current is formed on the side-fire antenna 722, and the side-fire antenna 722 is in the first magnetic dipole mode. At this time, the electromagnetic wave wavelength ⁇ 2 is 5.4 mm.
  • the electromagnetic wave wavelength corresponding to the third frequency band is ⁇ 3 .
  • the length L 1 (as shown in FIG. 10 ) of the first outer edge 111 and the second outer edge 112 of the radiator 11 of the radiation element group 10 is between 0.2 ⁇ 3 to 0.3 ⁇ 3 , for example 0.25 ⁇ 3 .
  • the length L 2 of the first inner edge 113 and the second inner edge 114 (as shown in FIG. 10 ) is between 0.2 ⁇ 3 and 0.3 ⁇ 3 , for example, 0.25 ⁇ 3 .
  • the section height (as shown in FIG. 14 ) H is between 0.2 ⁇ 3 and 0.25 ⁇ 3 , for example 0.22 ⁇ 2 .
  • the frequency point is 40 GHz
  • the wavelength ⁇ 3 of the electromagnetic wave is 4.0 mm at this time.
  • edge-firing antenna 722 shown in the embodiment of the present application has the advantage of ultra-wideband, and can realize a low-profile and dual-polarized 5G millimeter-wave full-band antenna design.
  • FIG. 23 is an efficiency curve diagram of the side-fire antenna 722 in the antenna module 720 shown in FIG. 9, and FIG. Efficiency curves during radiation and radiation patterns of the broadside-fire antenna 722 at multiple frequency points.
  • the abscissa shown in FIG. 23 and FIG. 24 is the frequency (the unit is GHz), and the ordinate is the efficiency parameter (the unit is dB).
  • the first polarization is vertical polarization.
  • the system gain of the side-fire antenna 722 at the lowest frequency of 24.0 GHz is greater than 6 dB, which helps to improve the stability of signal transmission when the side-fire antenna 722 works.
  • FIG. 24 at the frequency points of 27GHz, 39GHz, 45GHz, and 47GHz, the radiation pattern of the side-fire antenna 722 shown in this application can maintain a positive vertical radiation pattern, and the radiation pattern of the side-fire antenna 722 There is no field pattern pit in the vertical direction.
  • the side-fire antenna 722 has the advantage of field pattern consistency at multiple frequency points, and can be used for antenna array field pattern synthesis, which is conducive to improving antenna gain and conforms to the requirements of antenna array subunits. Require.
  • Fig. 25 is the antenna current mode diagram of the first polarized antenna of the side-fire antenna 722 in the antenna module 720 shown in Fig. 9 under the three basic modes
  • Fig. 26 is the first polarized antenna shown in Fig. 25 Schematic diagram of the radiation field pattern corresponding to the antenna current pattern diagram.
  • (a) in Figure 25 and Figure 26 is a schematic diagram at a frequency point of 21GHz
  • (b) in Figure 25 and Figure 26 is a schematic diagram at a frequency point of 29.5GHz
  • Figure 25 and Figure 26 (c) is a schematic diagram at a frequency point of 40GHz.
  • the first polarization is vertical polarization.
  • the first electric dipole mode and the first magnetic dipole mode are both basic modes, and the radiation currents of the left and right lobes on the radiator 10 are in the same direction, forming a uniform vertical radiation field type.
  • the electric dipole second mode is a second-order doubled mode of the electric dipole first mode. Due to the convective current problem, it is not easy to form a uniform vertical radiation field.
  • the current generated by the two co-directional electric dipoles of the upper and lower lobes (the current path length is 0.5 ⁇ 3 ) mainly contributes to the current in the first direction, and the magnetic dipole in the middle
  • the substructure is designed so that the reverse currents in the second direction above and below the slot (the current path length is 0.25 ⁇ 3 ) cancel each other out, so that purely polarized radiation in the first direction can be obtained and a uniform vertical radiation field can be maintained.
  • Fig. 27 is the second polarized antenna current mode diagram of the side-fire antenna 722 in the antenna module 720 shown in Fig. 9 under three basic modes
  • Fig. 28 is the second polarized antenna shown in Fig. 27 Schematic diagram of the radiation field pattern corresponding to the antenna current pattern diagram.
  • (a) in Figure 27 and Figure 28 is a schematic diagram at a frequency point of 21GHz
  • (b) in Figure 27 and Figure 28 is a schematic diagram at a frequency point of 29.5GHz
  • Figure 27 and Figure 28 (c) is a schematic diagram at a frequency point of 40GHz.
  • the second polarization is horizontal polarization.
  • the first electric dipole mode and the first magnetic dipole mode are both fundamental modes, and the radiation currents of the upper and lower lobes on the radiator 10 are in the same direction, forming a uniform vertical radiation field type.
  • the electric dipole second mode is a second-order doubled mode of the electric dipole first mode. Due to the convective current problem, it is not easy to form a uniform vertical radiation field.
  • the electric currents (current path length being 0.5 ⁇ 3 ) generated by the two co-directional electric dipoles of the left and right lobes mainly contribute to the electric current in the second direction
  • the magnetic dipole in the middle The substructure is designed so that the reverse currents in the first direction (the current path length is 0.25 ⁇ 3 ) on the left and right of the slot cancel each other out, so that pure polarized radiation in the second direction can be obtained and a uniform vertical radiation field can be maintained.
  • FIG. 29 shows the semi-minor axis b1 of the first outer edge 111 of the radiator 11 of the radiator 11 in the antenna module 720 shown in FIG.
  • Figure 30 is the impedance chart corresponding to the return loss coefficient curve shown in Figure 29.
  • the abscissa is the frequency (in GHz), and the ordinate is the return loss coefficient (in dB).
  • the size of the semi-minor axis b1 of the first outer edge 111 changes among the four sizes of 0.3 mm, 0.4 mm, 0.5 mm and 0.6 mm, the electric dipole of the edge-fire antenna 722
  • the frequency point at which the first mode appears changes accordingly.
  • FIG. 31 shows the semi-minor axis b2 of the first inner edge 113 of the radiator 11 of the side-fire antenna 722 in the antenna module 720 shown in FIG.
  • Figure 32 is the impedance chart corresponding to the return loss coefficient curve shown in Figure 31.
  • the abscissa is the frequency (in GHz), and the ordinate is the return loss coefficient (in dB). It can be seen from FIG. 29 that when the size of the semi-minor axis b2 of the first inner edge 113 changes among the three sizes of 0.4mm, 0.6mm and 0.8mm, the electric dipole second mode of the side-fire antenna 722 The return loss coefficient at the frequency point changes accordingly.
  • FIG. 33 is a curve diagram of the return loss coefficient of the side-fire antenna 722 when the misalignment distance w1 of the ground stub 21 of the antenna module 720 shown in FIG. Impedance circle plot for Return Loss Factor plot shown.
  • the abscissa is the frequency (in GHz), and the ordinate is the return loss coefficient (in dB). It can be seen from FIG. 29 that when the dislocation distance w 1 of the grounding stub 21 of the grounding unit group 20 changes among the four dimensions of 0.2 mm, 0.3 mm, 0.4 mm and 0.5 mm, the galvanic couple of the side-fire antenna 722 The frequency point at which the second pole mode appears changes accordingly.
  • FIG. 35 shows the width w9 of the second extension portion 422 of the second excitation unit 40 of the side-fire antenna 722 in the antenna module 720 of FIG.
  • Figure 36 is the impedance chart corresponding to the return loss coefficient curve shown in Figure 35.
  • the abscissa is the frequency (in GHz), and the ordinate is the return loss coefficient (in dB). It can be seen from Fig. 35 and Fig. 36 that when the width w9 of the second extension part 422 changes among the four dimensions of 0.4mm, 0.5mm, 0.6mm and 0.7mm, the first mode of the electric dipole of the side-fire antenna 722 appears The frequency point changes accordingly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请实施例提供一种边射天线、封装天线和通讯设备。边射天线包括沿第一方向间隔排布的第一辐射单元和第二辐射单元、沿第一方向间隔排布的第一接地单元和第二接地单元以及第一激励单元。第一辐射单元和第二辐射单元之间形成沿第二方向延伸的第一间隙。第一接地单元连接于第一辐射单元和接地面之间,第二接地单元连接于第二辐射单元和接地面之间。第一激励单元包括沿第一方向间隔排布的第一馈电结构和第一延伸枝节,第一馈电结构包括与馈源连接的第一馈入部分,第一延伸枝节位于第一馈电结构靠近第一馈入部分的一侧,第一延伸枝节包括靠近第一馈入部分的第一接地部分,第一接地部分连接接地面。

Description

边射天线、封装天线和通讯设备
本申请要求于2021年06月24日提交中国专利局、申请号为202110707696.1、申请名称为“边射天线、封装天线和通讯设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种边射天线、封装天线和通讯设备。
背景技术
天线作为发射和接收电磁波的装置,是电子设备的重要组成部分。然而,现有的边射天线的剖面高度较高,体积较大,不仅增加了电子设备的负载,还占用了电子设备的较大空间,不利于电子设备的小型化和轻薄化设计。
发明内容
本申请提供一种边射天线、封装天线和通讯设备,边射天线具有低剖面特性,体积较小,能有效减小电子设备的负载,减少对电子设备的空间占用。
第一方面,本申请提供一种边射天线,包括第一辐射单元、第二辐射单元、第一接地单元、第二接地单元和第一激励单元。
第一辐射单元和第二辐射单元沿第一方向间隔排布,第一辐射单元和第二辐射单元之间形成沿第二方向延伸的第一间隙。其中,第二方向不同于第一方向。第一辐射单元设有与第一间隙连通的第一子间隙,第二辐射单元设有与第一间隙连通的第二子间隙,第一子间隙与第二子间隙均沿第一方向延伸。
第一接地单元和第二接地单元沿第一方向间隔排布。第一接地单元的一端连接第一辐射单元靠近第二辐射单元的一侧,另一端用于连接接地面。第二接地单元连接第二辐射单元靠近第一辐射单元的一侧,另一端用于连接接地面。
第一激励单元包括沿第一方向间隔排布的第一馈电结构和第一延伸枝节。第一馈电结构包括第一馈入部分和第一馈电部分,第一馈入部分连接于第一馈电部分朝向接地面的一侧。第一馈入部分位于第一子间隙,且用于连接馈源。部分第一馈电部分位于第一间隙,部分第一馈电部分位于第二子间隙,第一延伸枝节位于第一子间隙,第一延伸枝节包括靠近第一馈入部分的第一接地部分,第一接地部分用于连接接地面。
其中,第一激励单元用于激励第一辐射单元和第二辐射单元产生沿第一方向的电场。
其中,第一馈电结构呈“Γ”型。
其中,第一馈入部分远离第一馈电部分的一端为第一馈入端,第一馈入端用于连接馈源。
其中,第一接地部分包括靠近第一馈入端的第一接地端,第一接地端用于连接接地面。
一种实施方式中,第一方向为垂直方向,第二方向为水平方向。此时,第一激励单元用于激励第一辐射单元和第二辐射单元产生垂直方向的电场,以使边射天线产生垂直极化辐射。
本申请所示边射天线的第一激励单元中,除了连接馈源的第一馈电结构,还增设了靠近 第一馈入部分的第一延伸枝节,利用第一延伸枝节来改善边射天线在低频段下的反射系数,降低边射天线的剖面高度(净空高度),使得边射天线具有低剖面特性,有助于缩小边射天线的体积。
另一种实施方式中,第一方向为水平方向,第二方向为垂直方向。此时,第一激励单元用于激励第一辐射单元和第二辐射单元产生水平方向的电场,以使产生水平极化辐射。
一种实施方式中,第一延伸枝节还包括第一延伸部分和第二延伸部分,第一接地部分和第二延伸部分均位于第一延伸部分朝向接地面的一侧,第一接地部分连接于第一延伸部分靠近第一馈电结构的一侧,第二延伸部分连接于第一延伸部分背离第一馈电结构的一侧。
其中,第一延伸枝节呈“冂”型。
其中,第一接地部分背离第一延伸部分的一端为第一接地端。
一种实施方式中,第一辐射单元包括沿第二方向间隔排布的第一辐射体和第二辐射体,第一辐射体和第二辐射体之间形成第一子间隙。第二辐射单元包括沿第二方向间隔排布的第三辐射体和第四辐射体,第三辐射体和第四辐射体之间形成第二子间隙。
第一辐射体和第三辐射体之间形成沿第二方向延伸的第三子间隙,第二辐射体和第四辐射体之间形成沿第二方向延伸的第四子间隙。第一间隙包括第三子间隙、第四子间隙和第五子间隙,第五子间隙连通第三子间隙和第四子间隙,且连通第一子间隙和第二子间隙。
其中,第一子间隙、第二子间隙和第五子间隙形成第二间隙,第二间隙沿第一方向延伸。此时,第一激励单元位于第二间隙。部分第一馈电部分位于第一子间隙,且与第一馈入部分连接。部分第一馈电部分位于第五子间隙,部分第一馈电部分位于第二子间隙。
边射天线还包括第二激励单元,第二激励单元位于第一间隙。第二激励单元包括沿第二方向间隔排布的第二馈电结构和第二延伸枝节。第二馈电结构包括第二馈入部分和第二馈电部分,第二馈入部分连接于第二馈电部分朝向连接面的一侧。第二馈入部分位于第三子间隙,且用于连接馈源。部分第二馈电部分位于第三子间隙,且与第二馈入部分连接。部分第二馈电部分位于第五子间隙,且与第一馈电部分交错。部分第二馈电部分位于第四子间隙。第二延伸枝节位于第三子间隙,第二延伸枝节包括靠近第二馈入部分的第二接地部分,第二接地部分用于连接接地面。
其中,第二激励单元用于激励第一辐射单元和第二辐射单元产生沿第二方向的电场。
其中,第二馈电结构呈“Γ”型。
其中,第二馈入部分远离第二馈电部分的一端为第二馈入端,第二馈入端用于连接馈源。
其中,第二接地部分包括靠近第二馈入端的第二接地端,第二接地端用于连接接地面。
一种实施方式中,第一方向为垂直方向,第二方向为水平方向。此时,第二激励单元用于激励第一辐射单元和第二激励单元产生水平方向的电场,以使边射天线产生水平极化辐射。
本实施方式所示边射天线中,分别利用第一激励单元和第二激励单元激励第一辐射单元和第二辐射单元产生沿垂直方向和水平方向的电场,以使边射天线可同时产生垂直极化和水平极化辐射,使得边射天线具有双极化特性,有助于提高利用边射天线进行无线通信的可靠性。
此外,本申请所示边射天线的第二激励单元中,除了连接馈源的第二馈电结构,还增设了靠近第二馈入部分的第二延伸枝节,利用第二延伸枝节来改善边射天线在低频段下的反射系数,降低边射天线的剖面高度(净空高度),使得边射天线具有低剖面特性,有助于缩小边射天线的体积。
一种实施方式中,第一辐射单元包括第一辐射体、第二辐射体以及第一辅助辐射体,第 一辐射体和第二辐射体沿第二方向间隔排布,第一辅助辐射体连接于第一辐射体和第二辐射体之间,第一辐射体、第二辐射体和第一辐射体形成第一子间隙。
第二辐射单元包括第三辐射体、第四辐射体以及第二辅助辐射体,第三辐射体和第四辐射体沿第二方向间隔排布,第二辅助辐射体连接于第三辐射体和第四辐射体之间,第三辐射体、第四辐射体和第二辅助辐射体形成第二子间隙。
本申请所示边射天线中,第一激励单元用于激励第一辐射单元和第二辐射单元产生沿第一方向的电场,以使边射天线产生单极化辐射,此时,边射天线具有单极化特性。
一种实施方式中,第二延伸枝节还包括第三延伸部分和第四延伸部分,第二接地部分和第四延伸部分均位于第三延伸部分朝向接地面的一侧,第二接地部分连接于第三延伸部分靠近第二馈电结构的一侧,第四延伸部分连接于第三延伸部分背离第二馈电结构的一侧。
其中,第一延伸枝节呈“冂”型。
其中,第二接地部分背离第三延伸部分的一端为第二接地端。
一种实施方式中,第一辐射体、第二辐射体、第三辐射体和第四辐射体的结构相同,以提高边射天线的阻抗匹配度,改善边射天线的频宽。
一种实施方式中,第一辐射体、第二辐射体、第三辐射体和第四辐射体排布呈四叶草形。
一种实施方式中,沿第一子间隙的内侧向外侧的方向上,第一子间隙的宽度渐大。
沿第二子间隙的内侧向外侧的方向上,第二子间隙的宽度渐大。
沿第三子间隙的内侧向外侧的方向上,第三子间隙的宽度渐大。
沿第四子间隙的内侧向外侧的方向上,第四子间隙的宽度渐大。
本实施方式所示边射天线中,沿各子间隙的内侧向外侧的方向上,各子间隙的宽度渐大,有助于提高边射天线的阻抗匹配,改善边射天线的频宽。
一种实施方式中,第一接地单元包括沿第二方向间隔排布的第一接地枝节和第二接地枝节。第一接地枝节的一端连接于第一辐射体靠近第二辐射体的一侧,另一端用于连接接地面,第二接地枝节的一端连接于第二辐射体靠近第一辐射体的一侧,另一端用于连接接地面。
第二接地单元包括沿第二方向间隔排布的第三接地枝节和第四接地枝节。第三接地枝节的一端连接于第三辐射体靠近第四辐射体的一侧,另一端用于连接于接地面,第四接地枝节连接于第四辐射体靠近第三辐射体的一侧,另一端用于连接接地面。
一种实施方式中,第一接地枝节、第二接地枝节、第三接地枝节和第四接地枝节的结构相同,以提高边射天线的阻抗匹配度,改善边射天线的频宽。
一种实施方式中,第一接地枝节、第二接地枝节、第三接地枝节和第四接地枝节排布呈矩形或方形。其中,第一接地枝节、第二接地枝节、第三接地枝节和第四接地枝节也可排布呈近似矩形或方形。
一种实施方式中,第一接地枝节包括依次连接的第一部分、第二部分和第三部分,第一部分位于第二部分远离接地面的一侧,第一部分远离第二部分的一端连接第一辐射体,第三部分位于第二部分靠近接地面的一侧,第三部分远离第二部分的一端用于连接接地面,沿第三方向上,第一部分与第三部分错位设置,以提高边射天线的阻抗匹配度,改善边射天线的频宽。
其中,第三方向不同于第一方向和第二方向。
示例性的,第三方向垂直于接地面。此时,沿第三方向上,第一部分和第三部分错位设置,是指,第一部分和第三部分在接地面上的投影不完全重合。
一种实施方式中,边射天线在第一频段具有电偶极子第一模式,第一频段所对应的波长为λ 1,边射天线的剖面高度在0.1λ 1至0.2λ 1之间。
示例性的,边射天线的剖面高度为0.12λ 1
其中,第一延伸枝节的第一接地部分、第一延伸部分和第二延伸部分的长度之和在0.3λ 1至0.4λ 1之间。
其中,第二延伸枝节的第二接地部分、第三延伸部分和第四延伸部分的长度之和在0.3λ 1至0.4λ 1之间。
一种实施方式中,边射天线在第二频段具有磁偶极子第一模式,第二频段的最小频率点高于第一频段的最大频率点。
一种实施方式中,边射天线在第三频段具有电偶极子第二模式,第三频段的最小频率点高于第二频段的最大频率点。
一种实施方式中,第三频段对应的波长为λ 3,第一辐射体呈心形,第一辐射体具有两个内边缘和两个外边缘,内边缘和外边缘均为椭圆弧线,内边缘和外边缘的长度均在0.2λ 3至0.3λ 3之间。
示例性的,内边缘和外边缘的长度均为0.25λ 3
一种实施方式中,边射天线的工作频段至少支持n257、n258、n259、n260和n261频带中的一个频带。
示例性的,边射天线的工作频段为24.5GHz~43.5GHz,边射天线的工作频段支持5G毫米波全频段。其中,在电偶极子第一模式下,频率点为21GHz,在磁偶极子第一模式下,频率点为29.5GHz,在电偶极子第二模式下,频率点为40GHz。
第二方面,本申请提供一种封装天线,包括收发芯片上述任一种边射天线,收发芯片用以向边射天线发送电磁波信号,或者,接收边射天线接收到的外界的电磁波信号。
本申请所示边射天线具有低剖面特性,体积较小,有利于缩小封装天线的体积,实现封装天线的小型化设计。
一种实施方式中,封装天线还包括基板,边射天线内嵌于基板的内部,以复用基板的体积,进一步缩小封装天线的体积,实现封装天线的小型化设计。
一种实施方式中,封装天线还包括基板,边射天线安装于所述基板。
一种实施方式中,边射天线与基板在同一工艺下形成,以简化封装天线的制备工艺。
第三方面,本申请提供一种通讯设备,包括壳体和上述任一种封装天线,封装天线位于壳体的内侧。
本申请所示边射天线具有低剖面特性,体积较小,有利于缩小封装天线的体积,有效减小电子设备的负载,减少对电子设备的空间占用。
一种实施方式中,边射天线的天线孔径朝向壳体,边射天线可通过壳体发射电磁波信号,或,通过壳体接收电磁波信号。
一种实施方式中,通讯设备还包括显示屏,显示屏安装于壳体,边射天线的天线孔径朝向显示屏,边射天线可通过显示屏发射电磁波信号,或,通过显示屏接收电磁波信号。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是本申请实施例提供的一种通讯设备的结构示意图;
图2是图1所示通讯设备的部分结构示意图;
图3是图2所示通讯设备中封装天线的天线模组在一种实施方式下的结构示意图;
图4是图1所示通讯设备在一种实施方式下的平面结构示意图;
图5是图1所示通讯设备在另一种实施方式下的结构示意图;
图6是图5所示通讯设备在另一个角度下的结构示意图;
图7是图5所示通讯设备中天线模组的结构示意图;
图8是图7所示天线模组的部分结构示意图;
图9是图8所示天线模组的部分结构示意图;
图10是图9所示边射天线中辐射体的俯视结构示意图;
图11是图9所示边射天线中辐射单元组的俯视结构示意图;
图12是图9所示天线模组的部分结构示意图;
图13是图9所示天线模组的部分结构示意图;
图14是图13所示结构沿A-A处剖开的剖面结构示意图;
图15是图9所示天线模组的部分结构示意图;
图16是图15所示结构沿B-B处剖开的剖面结构示意图;
图17是图9所示天线模组的部分结构示意图;
图18是图17所示结构沿C-C处剖开的剖面结构示意图;
图19是图9所示天线模组中边射天线的返回损耗系数曲线图;
图20是图19所示返回损耗系数曲线图所对应的史密斯圆图;
图21是图9所示天线模组中边射天线的部分结构在21GHz下的电流模式图;
图22是图9所示天线模组中边射天线的部分结构在29.5GHz下的电流模式图;
图23是图9所示天线模组中边射天线的效率曲线图;
图24是图9所示天线模组中边射天线产生第一极化辐射时的效率曲线图以及边射天线在多个频率点下的辐射场型;
图25是图9所示天线模组中边射天线在三个基础模式下的第一极化天线电流模式图;
图26是图25所示第一极化电流模式图对应的辐射场型示意图;
图27是图9所示天线模组中边射天线在三个基础模式下的第二极化天线电流模式图;
图28是图27所示第二极化天线电流模式图对应的辐射场型示意图;
图29是图9所示天线模组中边射天线的辐射体的第一边缘的半短轴在不同尺寸下时,边射天线的返回损耗系数曲线图;
图30是图29所示返回损耗系数曲线图对应的阻抗圆图;
图31是图9所示天线模组中边射天线的辐射体的第三边缘的半短轴在不同尺寸下时,边射天线的返回损耗系数曲线图;
图32是图31所示返回损耗系数曲线图对应的阻抗圆图;
图33是图9所示天线模组中边射天线的接地枝节的错位距离在不同尺寸下时,边射天线的返回损耗系数曲线图;
图34是图33所示返回损耗系数曲线图对应的阻抗圆图;
图35是图9所示天线模组中边射天线的第二激励单元的第二延伸部分的宽度在不同尺寸下时,边射天线的返回损耗系数曲线图;
图36是图35所示返回损耗系数曲线图对应的阻抗圆图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。
请参阅图1,图1是本申请实施例提供的一种通讯设备1000的结构示意图。
通讯设备1000可以是手持设备、车载设备、可穿戴设备、计算机设备、无线局域网(wireless local area network,WLAN)设备或路由器等具有无线通信功能的电子产品。在一些应用场景下,通讯设备1000也可以叫做不同的名称,例如:用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、无线通讯设备、用户代理或用户装置、蜂窝电话、无线电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、5G网络或未来演进网络中的终端设备等。
一些实施例中,通讯设备1000也可以是一种部署在无线接入网用以提供无线通信功能的设备,包括但不限于:基站、中继站、接入点、车载设备、无线保真(wireless-fidelity,Wi-Fi)的站点、无线回传节点、小站、微站等等。其中,基站可以是基站收发台(base transceiver station,BTS)、节点B(NodeB,NB)、演进型基站B(evolutional Node B,eNB或eNodeB)、NR(new radio)系统中的传输节点或收发点(transmission reception point,TRP或者TP)或者下一代节点B(generation nodeB,gNB)、未来通信网络中的基站或网络设备。本申请实施例以通讯设备1000是手机为例进行说明。
通讯设备1000包括壳体100、显示模组200、电路板300、受话器(图未示)和扬声器(图未示),显示模组200安装于壳体100,电路板300、受话器和扬声器均安装于壳体100的内侧。
壳体100可以包括边框110和后盖120,后盖120固定于边框110的一侧。边框110与后盖120可以为一体成型的结构,以保证壳体100的结构稳定性。或者,边框110与后盖120也可以通过组装方式彼此固定。壳体100设有扬声孔1001,扬声孔1001的数量可以为一个或多个。示例性的,扬声孔1001的数量为多个,多个扬声孔1001设于边框110。扬声孔1001连通壳体100的内侧与壳体100的外侧。需要说明的是,本申请实施例所描述的“孔”是指具有完整孔壁的孔,后文中对“孔”的描述作相同理解。
显示模组200固定于边框110的另一侧。显示模组200和后盖120分别固定于边框110的两侧。用户使用通讯设备1000时,显示模组200朝向用户放置,后盖120背离用户放置。显示模组200设有受话孔2001,受话孔2001为贯穿显示模组200的通孔。
在其他一些实施例中,显示模组200的边缘可与壳体100之间形成受话孔2001。例如,显示模组200与壳体100的边框1001的顶部边缘之间形成受话孔2001。或者,在其他一些实施例中,壳体100设有受话孔2001。例如,壳体100的边框110的顶部区域处形成受话孔2001。应当理解的是,本申请不对受话孔2001的具体形成结构及位置做严格限定。
电路板300位于后盖120和显示模组200之间。其中,电路板300可以为通讯设备1000的主板(mainboard)。受话器位于通讯设备1000的顶部,受话器发出的声音经受话孔2001传输至通讯设备1000的外部,以实现通讯设备1000的声音播放功能。扬声器位于通讯设备1000的底部,扬声器发出的声音能够经扬声孔1001传输至通讯设备1000的外部,以实现通讯设备1000的声音播放功能。
应当理解的是,本申请实施例描述通讯设备1000时所采用“顶”和“底”等方位用词主要依据用户手持使用通讯设备1000时的方位进行阐述,以朝向通讯设备1000顶侧的位置为“顶”,以朝向通讯设备1000底侧的位置为“底”,并不是指示或暗指所指的装置或元件必须具有特定 的方位、以特定的方位构造和操作,因此不能理解为对通讯设备1000于实际应用场景中的方位的限定。
请一并参阅图2,图2是图1所示通讯设备1000的部分结构示意图。
通讯设备1000还包括中央处理器(central processing unit,CPU)芯片400、低频基带芯片500、中频基带芯片600和封装天线(又称基板天线,antenna-in-package,AIP)700,中央处理器芯片400、低频基带芯片500、中频基带芯片600和封装天线700均安装于壳体100内侧。中央处理器芯片400、低频基带芯片500、中频基带芯片600和封装天线700可均安装于电路板300。或者,中央处理器芯片400可安装于电路板300,低频基带芯片500、中频基带芯片600和封装天线700可安装于连接板(图未示)。其中,连接板与电路板300电连接,连接板可为刚性电路板或者柔性电路板。低频基带芯片500为2个,2个低频基带芯片500可均与中央处理器芯片400电连接。中频基带芯片600为2个,2个中频基带芯片600可均与一个低频基带芯片500电连接。封装天线700为2个,2个封装天线700可均与一个中频基带芯片600电连接。
在其他一些实施例中,低频基带芯片500也可以为1个或3个以上,和/或,中频基带芯片600也可以为1个或3个以上,和/或,封装天线700也可以为1个或3个以上,和/或,低频基带芯片500和中频基带芯片600集成于一个芯片内。需要说明的是,本申请实施例中,“A和/或B”包括“A”、“B”以及“A和B”三种情况,后文中的相关描述可做相同理解。
封装天线700包括收发(transmitter and/or receiver,T/R)芯片710和天线模组(antenna-in-module)720,收发芯片710与天线模组720电连接。收发芯片710用以向天线模组720发送和/或接收电磁波信号。天线模组720用以根据接收的电磁信号辐射电磁波,和/或,根据接收的电磁波向收发芯片710发送电磁信号,从而实现通讯设备1000的无线通信。其中,收发芯片710为毫米波(millimeter wave,mmW)收发芯片。此时,通讯设备1000为具有毫米波功能的手机,通讯设备1000可以工作在毫米波频段。在其他一些实施例中,收发芯片710也可以为其他可以发射和/或接收射频信号的射频模组(radio frequency module,AF module)。
请一并参阅图3,图3是图2所示通讯设备1000中封装天线700的天线模组720在一种实施方式下的结构示意图。
天线模组720包括基板721、边射天线(broadside antenna,BR Antenna)722和端射(end-fire antenna,EF Antenna)天线723,边射天线722和端射天线723均嵌设于基板721的内部。基板721可为电路板(可为柔性电路板或刚性电路板)。其中,边射天线又可称垂向天线或者宽边天线。边射天线722和端射天线723可与基板721在同一工艺下形成,以简化天线模组720的形成工艺。示例性的,天线模组720可通过液晶高分子聚合物(liquid crystal polymer,LCP)或异质聚酰亚胺(modified PI)等可挠式软板工艺形成,或者,可通过多层压合(laminate)电路板等硬板工艺形成,或者,可通过晶圆级扇出式封装(fan-out wafer level package)或低温陶瓷共烧(low temperature co-fired ceramic,LTCC)等封装工艺形成。
应当理解的是,边射天线722的主辐射方向为第一辐射方向,端射天线723的主辐射方向为第二辐射方向,第一辐射方向与第二辐射方向不同。示例性的,第一辐射方向为垂直于基板721的方向,第二辐射方向为平行于基板721的方向。在其他一些实施例中,边射天线722和端射天线723也可以安装于基板721,或者,安装于设于基板721的支架。
需要说明的是,本申请实施例中所提及的平行和垂直等关于相对位置关系的限定词,均是针对当前工艺水平而言的,而不是数学意义上绝对的严格的定义,允许存在少量偏差,近 似于平行和近似于垂直均可以。例如,A与B平行,是指A与B之间平行或者近似于平行,A与B之间的夹角在0度~10度之间均可。例如,A与B垂直,是指A与B之间垂直或者近似于垂直,A与B之间的夹角在80度~100度之间均可。
边射天线722为两个,两个边射天线722在基板721的延伸面上彼此间隔排布。其中,边射天线722的主辐射方向为第一辐射方向。边射天线722沿第一辐射方向自基板721向外辐射。例如,第一辐射方向为垂直于基板721的方向。边射天线722的主辐射方向为垂直于基板721的方向,边射天线722的天线孔径(图未标)垂直于基板721的厚度方向。此时,边射天线722用以发射和/或接收垂直于基板721的毫米波信号。其中,每一边射天线722可均具备双极化特性,每一边射天线722可同时具备第一极化和第二极化特性,其中,第一极化方向不同于第二极化方向,以实现天线模组720的极化多样性(polarization diversity),有助于提高传输吞吐量和弱信号区的信号稳定性,满足5G信号传输的要求。例如,第一极化为垂直极化,第二极化为水平极化,此时,每一边射天线722可同时具备垂直极化和水平极化特性。应当理解的是,在电磁学和天线理论中,天线孔径又称天线孔径或有效辐射孔径,是衡量天线接收电磁辐射(例如无线电波)功率的有效程度的度量。
在其他一些实施方式中,也可以一个边射天线722同时具备第一极化和第二极化特性,例如垂直极化和水平极化特性,另一个边射天线722具备第一极化或第二极化特性,例如垂直极化特性或水平极化特性。可以理解的是,边射天线722也可以为1个或3个以上,本申请对边射天线722的数量不作具体限定。
端射天线723为两个,两个端射天线723在基板721的延伸面上彼此间隔排布。其中,端射天线723的主辐射方向为第二辐射方向,端射天线723沿第二辐射方向自基板721向外辐射。第二辐射方向不同于第一辐射方向。例如,第二辐射方向为平行于基板721的方向。端射天线723的主辐射方向为平行于基板721的方向,端射天线723的天线孔径(图未标)平行于基板721的厚度方向。此时,端射天线723用以发射和/或接收平行于基板721的毫米波信号。其中,每一端射天线723可均采用后文实施例所描述的端射天线。每一端射天线723可均具备双极化特性,每一端射天线723可同时具备第一极化和第二极化特性,其中,第一极化方向不同于第二极化方向,以实现天线模组720的极化多样性,有助于提高传输吞吐量和弱信号区的信号稳定性,满足5G信号传输的要求。例如,第一极化为垂直极化,第二极化为水平极化,此时每一端射天线723可同时具备垂直极化和水平极化特性。
在其他一些实施方式中,两个端射天线723可均具备第一极化特性,例如垂直极化特性,或者,两个端射天线723可均具备第二极化特性,例如水平极化特性,或者,一个端射天线723具备第一极化特性,例如垂直极化特性,另一个端射天线723具备第二极化特性,例如水平极化特性,或者,一个端射天线723同时具备第一极化和第二极化特性,例如垂直极化和水平极化特性,另一个端射天线723具备第一极化或第二极化特性,例如垂直极化特性或水平极化特性。可以理解的是,端射天线723也可以为1个或3个以上,本申请对端射天线723的数量不作具体限定。
请参阅图4,图4是图1所示通讯设备1000在一种实施方式下的平面结构示意图。其中,图4所示通讯设备1000采用图3所示天线模组720。
本实施方式中,通讯设备1000包括四个天线模组720。具体的,一个天线模组720设于通讯设备1000的顶部,例如靠近通讯设备1000的顶部内边缘,一个天线模组720设于通讯设备1000的左侧,例如靠近通讯设备1000的左侧内边缘,一个天线模组720设于通讯设备1000的底部,例如靠近通讯设备1000的底部内边缘,一个天线模组720设于通讯设备1000 的右侧,例如靠近通讯设备1000的右侧内边缘。在一个实施例中,靠近内边缘可以是距离内边缘0.2mm至1mm的范围内。在其他一些实施方式中,通讯设备1000也可以包括1个、2个、3个或5个以上天线模组720,本申请对天线模组720的数量不作具体限定。
应当理解的是,本申请实施例描述通讯设备1000时所采用“顶”、“底”、“左”和“右”等方位用词主要依据用户手持使用通讯设备1000时的方位进行阐述,以朝向通讯设备1000顶侧的位置为“顶”,以朝向通讯设备1000底侧的位置为“底”,以朝向通讯设备1000右侧的位置为“右”,以朝向通讯设备1000左侧的位置为“左”,并不是指示或暗指所指的装置或元件具有特定的方位、以特定的方位构造和操作,因此不能理解为对通讯设备1000于实际应用场景中的方位的限定。
请参阅图5和图6,图5是图1所示通讯设备1000在另一种实施方式下的结构示意图,图6是图5所示通讯设备1000在另一个角度下的结构示意图。
本实施方式所示通讯设备1000与上述实施方式所示通讯设备1000的不同之处在于,通讯设备1000包括三个天线模组720,三个天线模组720均固接于电路板300。具体的,一个天线模组720固接于电路板300的左侧,一个天线模组720固接电路板300的右侧,一个天线模组720固接电路板300的顶侧。
在其他一些实施方式中,三个天线模组720也可以固接于电路板300的其他位置,或者,一个或两个或三个天线模组720可以与电路板300一体成型,此时,部分电路板300形成一个或两个或三个天线模组720,或者,一个或两个或三个天线模组720的基板721为电路板300的一部分,天线模组720封装于电路板300,或者,一个或两个或三个天线模组720的基座721分布于壳体100的内侧,且与电路板300电连接。
接下来,为了便于理解,将三个天线模组720分别命名为第一天线模组720a、第二天线模组720b和第三天线模组720c,对三个天线模组720的结构进行具体说明。
第一天线模组720a固接于电路板300的左侧。例如,第一天线模组720a固接于电路板300的左周面300a,或者,第一天线模组720a设置于电路板300与边框110之间。在其他一些实施方式中,第一天线模组720a也可以固接于电路板300的正面300b或者背面300c,或者,第一天线模组720a设置于电路板300与显示模组200或后盖120之间。
第一天线模组720a包括四个边射天线722(如图3所示)。第一天线模组720a的四个边射天线722沿第一天线模组720a的基板721(如图3所示)的长度方向彼此间隔排布。其中,第一天线模组720a的四个边射天线722的天线孔径701均朝向边框110的左侧,用以发射和/或接收平行于第一天线模组720a的基板721的毫米波信号。其中,第一天线模组720a的每一边射天线722均同时具备第一极化和第二极化特性。示例性的,第一极化为水平极化,第二极化为垂直极化,此时,第一天线模组720a的每一边射天线722均具备双极化特性,以实现第一天线模组720a的极化多样性,有助于提高传输吞吐量和弱信号区的信号稳定性,满足5G信号传输的要求。
第二天线模组720b固接于电路板300的右侧。具体的,第二天线模组720b固接于电路板300的右周面300d,或者,第二天线模组720b设置于电路板300与边框110之间。在其他一些实施方式中,第二天线模组720b也可以固接于电路板300的正面300b或者背面300c,或者,第二天线模组720b设置于电路板300与显示模组200或后盖120之间。
第二天线模组720b与第一天线模组720a的结构相同。第二天线模组720b的四个边射天线722沿第二天线模组720b的基板721的长度方向彼此间隔排布。其中,第二天线模组720b的四个边射天线722的天线孔径701均朝向边框110的右侧,用以发射和/或接收平行于第二 天线模组720b的基板721的毫米波信号。其中,第二天线模组720b的每一边射天线722均同时具备第一极化和第二极化特性。示例性的,第一极化为水平极化,第二极化为垂直极化,此时,第二天线模组720b的每一边射天线722均具备双极化特性,以实现第二天线模组720b的极化多样性,有助于提高传输吞吐量和弱信号区的信号稳定性,满足5G信号传输的要求。
一种实施方式中,边框110采用非金属材料制成,非金属材料不会对电磁波的传输造成干扰,第一天线模组720a的边射天线722和第二天线模组720b的边射天线722均可正常发射和/或接收毫米波信号,保证第一天线模组720a的边射天线722和第二天线模组720b的边射天线722的正常工作。
在其他一些实施方式中,边框110包括主体部分及与主体部分固接的第一辅助部分和第二辅助部分(图未示)。主体部分可采用金属材料制成,或者,可采用金属材料和非金属材料复合而成。主体部分可设有第一通孔和第二通孔,第一通孔和第二通孔均沿主体部分贯穿主体部分。第一辅助部分和第二辅助部分均采用非金属材料制成。第一辅助部分嵌设于第一通孔,第二辅助部分嵌设于第二通孔。换言之,边框110可采用金属材料和非金属材料复合而成。此时,第一天线模组720a的边射天线722与第一辅助部分相对设置,且可通过第一辅助部分发射和/或接收毫米波信号。第二天线模组720b的边射天线722与第二辅助部分相对设置,且可通过第二辅助部分发射和/或接收毫米波信号。
第三天线模组720c固接于电路板300的顶侧。具体的,第三天线模组720c固接于电路板300的背面300c,或者,第三天线模组720c设置于电路板300与后盖120之间。在其他一些实施方式中,第三天线模组720c也可以固接于电路板300的正面300b或者电路板300的前周面300e,或者,第三天线模组720c设置于电路板300与显示模组200或边框110之间。
第三天线模组720c的结构与第一天线模组720a的结构相同。换言之,三个天线模组720的结构相同。第三天线模组720c的四个边射天线722沿第三天线模组720c的基板721的长度方向彼此间隔排布。其中,第三天线模组720c的四个边射天线722的天线孔径701均朝向后盖120,用以发射和/或接收平行于第三天线模组720c的基板721的毫米波信号。其中,第三天线模组720c的每一边射天线722均同时具备第一极化和第二极化特性。示例性的,第一极化为垂直极化,第二极化为水平极化,此时,第三天线模组720c的每一边射天线722均具备双极化特性,以实现第三天线模组720c的极化多样性,有助于提高传输吞吐量和弱信号区的信号稳定性,满足5G信号传输的要求。
一种实施方式中,后盖120采用非金属材料制成,非金属材料不会对电磁波的传输造成干扰,第三天线模组720c的边射天线722可正常发射和/或接收毫米波信号,保证第三天线模组720c的边射天线722的正常工作。
在其他一些实施方式中,后盖120包括主体部分和与主体部分固接的辅助部分。主体部分可采用金属材料制成,或者采用金属材料和非金属材料复合而成,主体部分可设有通孔,通孔可沿主体部分的厚度方向延伸,或者,沿主体部分的厚度方向贯穿主体部分。辅助部分嵌设于通孔内,辅助部分采用非金属材料制成。换言之,后盖可采用金属材料和非金属材料复合而成。此时,第三天线模组720c的边射天线722与辅助部分相对设置,且可通过辅助部分发射和/或接收毫米波信号。
可以理解的是,第三天线模组720c的四个边射天线722的天线孔径701也可以均朝向显示模组300。可以理解的是,由于显示模组300基本上都采用非金属材料制成,显示模组300不会对电磁波的传输造成干扰,第三天线模组720c的四个边射天线722可通过显示模组300正常发射和/或接收毫米波信号。
请参阅图7和图8,图7是图5所示通讯设备1000中天线模组720的结构示意图,图8是图7所示天线模组720的部分结构示意图。其中,图8仅示出了天线模组720的部分基板721。
为方便后文说明,示例性的将图7中天线模组720的长度方向定义为X轴方向,天线模组720的宽度方向定义为Y轴方向,天线模组720的高度方向定义为Z轴方向,天线模组720的高度方向Z垂直于天线模组720的宽度方向X和天线模组720的长度方向Y。
基板721包括顶面7211、底面7212和接地面7213。顶面7211和底面7212相背设置,例如,顶面7211和底面7212平行。一种实施方式中,基板721包括接地层721a,接地层721a位于顶面7211和底面7212之间,例如,接地层721a与顶面7211和底面7212平行。接地层721a朝向顶面7211为接地面7213。接地面7213位于顶面7211和底面7212之间,例如,接地面7213与顶面7211和底面7212平行设置。在一个实施例中,顶面7211、底面7212和接地面7213均平行于X-Y轴平面。此外,基板721的厚度为H 0。示例性的,基板721的厚度H 0在1mm~1.5mm之间。
四个边射天线722埋设于基板721的内部。本实施例中,四个边射天线722的结构相同。四个边射天线722的辐射单元组均与接地面7213在Z轴方向上彼此间隔,且沿X轴方向彼此间隔排布。具体的,四个边射天线722的天线孔径701均朝向顶面7211。其中,边射天线722具有中心线O-O,边射天线722的辐射单元相对中心线O-O旋转对称。相邻两个边射天线722的中心线O-O之间的距离D足够大,以防止相邻两个边射天线722之间发生信号干扰。其中,D在0.4λ至0.6λ之间,λ为边射天线722的工作频段的中心频率点所对应的波长。示例性的,D为0.5λ。此时,相邻两个边射天线722的中心线O-O之间的距离可D为4.5mm。
需要说明的是,本申请实施例提及的中心和对称等关于相对位置关系的限定词,均是针对当前工艺水平而言的,而不是数学意义上绝对严格的定义,允许存在少量偏差,近似于中心和近似于对称均可。例如,A的中心位置包括A的几何中心位置或者靠近A的几何中心的位置,A和B相对于C对称,包括A和B相对于C对称和近似于对称两种情况。
此外,天线模组720还包括寄生地枝节724和隔离墙725,寄生地枝节724和隔离墙725均埋设于基板721的内部。寄生地枝节724和隔离墙725均与接地面7213连接。至少部分寄生地枝节724和至少部分隔离墙725均与接地面7213在Z轴方向上彼此间隔。其中,寄生地枝节724和隔离墙725可与基板721在同一工艺下形成,寄生地枝节724和隔离墙725可在基板721的制备工艺中同时形成,以简化天线模组720的制备工艺。
示例性的,寄生地枝节724有十六个,隔离墙725有六个。具体的,每四个寄生地枝节724环绕一个边射天线722间隔排布。其中,十六个寄生地枝节724形成第一寄生地枝节组(图未标)和第二寄生地枝节组(图未标)。第一寄生地枝节组和第二寄生地枝节组沿Y轴方向间隔排布。第一寄生地枝节组和第二寄生地枝节组的八个寄生地枝节724均沿X轴方向间隔排布。
寄生地枝节724包括寄生层7241、第一寄生件7242和第二寄生件(图未示)。寄生层7241有多层,多层寄生层7241沿Z轴方向彼此间隔排布。其中,寄生层7241可为采用铜、银、铝、镁或锡等金属材料制成的金属层。第一寄生件7242有多个,每一第一寄生件7242连接于相邻两层寄生层7241之间,以实现多层寄生层7241之间的连接。第二寄生件连接于寄生层7241和接地面7213之间,以实现寄生地枝节724与接地面7213之间的连接,实现寄生地枝节724的接地。
此外,多层寄生层7241包括多层第一寄生层7241和多层第二寄生层7241,多层第一寄 生层7241均位于多层第二寄生层7241朝向顶面7211的一侧。多层第一寄生层7241的形状和大小均相同。第一寄生层7241的面积小于第二寄生层7241的面积。第一寄生层7241在第二寄生层7241的投影位于第二寄生层7241内。应当理解的是,第一寄生层7241和第二寄生层7241的形状并不仅限于图8所示的矩形,也可以为其他多边形或者异形。
多层第二寄生层7241的形状和大小均相同。每一第二寄生层7241均设有缺口7243,缺口7243均沿第二寄生层7241的厚度方向贯穿第二寄生层7241。具体的,缺口7243设于第二寄生层7241朝向边射天线722的一端,且贯穿第二寄生层7241的周面,以增大寄生地枝节724与边射天线722之间的距离,防止寄生地枝节724影响边射天线722的正常工作。应当理解的是,缺口7243的形状并不仅限于图8所示的矩形,也可以为其他多边形或者异形。在其他一些实施例中,第二寄生层7241也可以不设计缺口7243,只要寄生地枝节724与边射天线722之间的距离足够大,且寄生地枝节724的存在不影响边射天线722的工作即可。
一种实施方式中,寄生地枝节724可与基板721在同一工艺下形成,寄生地枝节724可在基板721的制备工艺中同时形成,以简化天线模组720的制备工艺。具体的,基板721设有第一寄生孔和第二寄生孔(图未示)。第一寄生孔有多个,每一第一寄生孔连通相邻两层寄生层7241。其中,第一寄生孔为过孔或埋孔。每一第一寄生件7242位于一个第一寄生孔,以连接相邻两层寄生层7241。示例性的,第一寄生件7242可为采用金属材料填充于第一寄生孔以形成的实心金属柱,或者,第一寄生件7242可为采用金属材料部分覆盖或完全覆盖第一寄生孔的孔壁以形成的金属层。
第二寄生孔连通寄生层7241和接地面7213。其中,第二寄生孔为过孔或埋孔。第二寄生件位于第二寄生孔,以连接寄生层7241和接地面7213。示例性的,第二寄生件可为采用金属材料填充于第二寄生孔以形成的实心金属柱,或者,第二寄生件可为采用金属材料部分覆盖或完全覆盖第二寄生孔的孔壁以形成的金属层。
六个隔离墙725形成第一隔离墙组(图未标)和第二隔离墙组(图未标)。第一隔离墙组和第二隔离墙组沿Y轴方向间隔排布。第一隔离墙组和第二隔离墙组的三个隔离墙725均沿X轴方向间隔排布。具体的,第一隔离墙组的每一隔离墙725均位于相邻两个边射天线722之间,且固接于第一寄生地枝节组中相邻的两个寄生地枝节724之间。第二隔离墙组的每一隔离墙725均位于相邻两个边射天线722之间,且固接于第二寄生地枝节组中相邻的两个寄生地枝节724之间。示例性的,隔离墙725可采用铜、银、铝、镁或锡等金属材料制成。
其中,寄生地枝节724和隔离墙725用于隔离相邻两个边射天线722,以防止相邻两个边射天线722之间发生信号干扰,保证天线模组720的边射天线722的正常工作。在其他一些实施例中,天线模组720中寄生地枝节724的数量可以小于十六个,也可以大于十六个,或者,天线模组720中隔离墙725的数量可以小于六个,也可以大于六个,本申请对天线模组720中寄生地枝节724和隔离墙725的数量不作具体限定。
请参阅图9,图9是图8所示天线模组720的部分结构示意图。其中,图9仅示出了天线模组720的部分基板721和一个边射天线722。
边射天线722包括辐射单元组10、接地单元组20、第一激励单元30和第二激励单元40。其中,边射天线722为具有双极化特性的磁电偶极子(magneto electric dipole)天线。第一激励单元30用于激励辐射单元组10产生沿第一方向的电场,进而激励边射天线722产生第一极化辐射。第二激励单元40用于激励辐射单元组10产生沿第二方向的电场,进而激励边射天线722产生第二极化辐射。应当理解的是,本申请实施例所提及的第一方向是指Y轴方向,第二方向是指X轴方向。示例性的,Y轴方向是指垂直方向,X轴方向是水平方向,此时, 第一极化是指垂直极化,第二极化是指水平极化。
辐射单元组10相对于中心线O-O中心对称。辐射单元组10包括四个辐射体11,四个辐射体11彼此间隔排布。其中,四个辐射体11分别为第一辐射体11a、第二辐射体11b、第三辐射体11c和第四辐射体11d。第一辐射体11a和第四辐射体11d彼此相对设置,且相对中心线O-O对称。第二辐射体11b和第三辐射体11c分别位于第一辐射体11a的相对两侧,且相对中心线O-O对称。
一种实施方式中,辐射单元组10包括第一辐射单元10a和第二辐射单元10b,第一辐射单元10a和第二辐射单元10b沿第一方向间隔排布,第一辐射单元10a和第二辐射单元10b之间形成沿第二方向延伸的第一间隙101。第一辐射单元10a设有与第一间隙101连通的第一子间隙102,第二辐射单元10b设有与第一间隙101连通的第二子间隙103,第一子间隙102和第二子间隙103均沿第一方向延伸。
其中,第一辐射单元10a包括沿第二方向间隔排布的第一辐射体11a和第二辐射体11b,第一辐射体11a和第二辐射体11b之间形成第一子间隙102。第二辐射单元10b包括沿第二方向间隔排布的第三辐射体11c和第四辐射体11d,第三辐射体11c和第四辐射体11d之间形成第二子间隙103。需要说明的是,第一间隙101为立体间隙结构,不仅包括第一辐射单元10a和第二辐射单元10b之间的空间,还包括位于第一辐射单元10a和第二辐射单元10b朝向接地面7213一侧的空间和背离接地面7213一侧的空间。后文中提及的间隙可做相同理解。
此外,第一辐射体11a和第三辐射体11c之间形成沿第二方向延伸的第三子间隙104,第二辐射体11b和第四辐射体11d之间形成第四子间隙105。第一间隙101包括第三子间隙104、第四子间隙105和第五子间隙106,第五子间隙106连通第三子间隙104和第四子间隙105。此外,第五子间隙106还连通第一子间隙102和第二子间隙103。第一子间隙102、第二子间隙103和第五子间隙106形成沿第一方向延伸的第二间隙107。第二间隙107与第一间隙101部分共用。其中,第二间隙107与第一间隙101共用第五子间隙106。
需要说明的是,第二间隙107为立体间隙结构,不仅包括第三辐射单元10c和第四辐射单元10d之间的空间,还包括位于第三辐射单元10c和第四辐射单元10d朝向接地面7213的空间和背离接地面7213的空间。
在其他一些实施例中,第一辐射单元10a还包括第一辅助辐射体(图未示),第一辅助辐射体连接于第一辐射体11a和第二辐射体11b之间,第一辐射体11a、第二辐射体11b和第一辅助辐射体形成第一子间隙102。第二辐射单元10b还包括第二辅助辐射体(图未示),第二辅助辐射体连接于第三辐射体11c和第四辐射体11d之间,第三辐射体11c、第四辐射体11d和第二辅助辐射体形成第二子间隙103。此时,边射天线722仅有第一激励单元30,第一激励单元30激励第一辐射单元10a和第二辐射单元10b产生沿第一方向的电场,以使边射天线722产生单极化辐射,此时,边射天线722仅具有单极化特性。
本实施例中,四个辐射体11均为金属层。四个辐射体11位于同一平面,且均平行于X-Y轴平面(允许存在少许偏差)。其中,辐射体11与接地面7213之间的间距为H,边射天线722的剖面高度(又称净空高度)为H,H<H 0
一些实施方式中,基板721内部设有多层金属层,多层金属层沿Z轴方向间隔排布。基板721的一层金属层形成辐射单元组10的四个辐射体11。换言之,辐射单元组10的四个辐射体11可与基板721内部的金属层在同一工艺下形成,以简化边射天线722的制备工艺。
请一并参阅图10,图10是图9所示边射天线722中辐射体11的俯视结构示意图。
本实施例中,四个辐射体11的结构相同,四个辐射体11排布呈四叶草形。具体的,每 一辐射体11均呈心形。辐射体11具有中心线O /-O /,辐射体11相对中心线O /-O /镜像对称。辐射体11具有第一边缘点A 1、第二边缘点A 2、第三边缘点B和第四边缘点C。第三边缘点B和第四边缘点C均位于中心线O /-O /,第一边缘点A 1和第二边缘点A 2相对于中心线O /-O /镜像对称。应当理解的是,本申请实施例所提及的结构相同,是指形状和大小相同。
其中,辐射体11具有两个外边缘(图10所示111和112)和两个内边缘(图10所示113和114)。需要说明的是,本申请实施例所提及的方位词“内”和“外”是以图9结构所示方位进行的描述,以靠近中心线O-O为内,以远离中心线O-O为外,后文所提及的方位词“内”和“外”可做相同理解。此时,辐射体11的内边缘是辐射体11用以形成第一间隙101或第二间隙102的边缘。具体的,辐射体11的两个外边缘分别为第一外边缘111和第二外边缘112,辐射体11的两个内边缘分别为第一内边缘113和第二内边缘114。第一边缘点A 1和第四边缘点C分别为第一外边缘111的两个端点,第一边缘点A 1和第四边缘点C之间的边缘线形成第一外边缘111。第二边缘点A 1和第四边缘点C分别为第二外边缘112的两个端点,第二边缘点A 1和第四边缘点C之间的边缘线形成第二外边缘112。第一外边缘111和第二外边缘112均为椭圆弧线,且相对于中心线O /-O /镜像对称。其中,第一外边缘111和第二外边缘112的半长轴均为a 1,半短轴为b 1。第一外边缘111和第二外边缘112的长度均为L 1
第一边缘点A 1和第三边缘点B分别为第一内边缘113的两个端点,第一边缘点A 1和第三边缘点B之间的边缘线形成第一内边缘113。第二边缘点A 1和第三边缘点B分别为第二内边缘114的两个端点,第二边缘点A 1和第三边缘点B之间的边缘线形成第二内边缘114。第一内边缘113和第二内边缘114均为椭圆弧线,且相对于中心线O /-O /镜像对称。其中,第一内边缘113和第二内边缘114的半长轴均为a 2,半短轴为b 2。第一内边缘113和第二内边缘114的长度均为L 2
请一并参阅图11,图11是图9所示边射天线722中辐射单元组10的俯视结构示意图。
辐射单元组10具有四个子间隙,每一子间隙均位于相邻两个辐射体11之间,相邻的两个辐射体11之间的间隔形成一个子间隙。沿每一子间隙的内侧向外侧的方向上,沿中心线O-O向辐射单元组10的边缘的方向上,每一子间隙的宽度均越来越大,以提高边射天线722的阻抗匹配,改善边射天线722的频宽。
其中,四个子间隙分别为第一子间隙102、第二子间隙103、第三子间隙104和第四子间隙105。具体的,第一辐射体11a和第二辐射体11b之间形成第一子间隙102,第一辐射体11a和第三辐射体11c之间形成第三子间隙104,第三辐射体11c和第四辐射体11d之间形成第二子间隙103,第四辐射体11d和第二辐射体11b之间形成第四子间隙105。
示例性的,第三辐射体11c和第四辐射体11d的第三边缘点B之间的距离为W 1,第三辐射体11c和第四辐射体11d的第二边缘点A 2之间的距离为W 2,W 2大于W 1。应当理解的是,辐射体11的第一内边缘113和第二内边缘114并不仅限于图示的椭圆弧形,也可以为圆弧形或者直线形。在其他一些实施例中,自中心线O-O向辐射单元组10的边缘的方向上,相邻两个辐射体11之间的距离也可以不发生变化,此时,W 2等于W 1,本申请对此不作具体限定。
请参阅图12和图13,图12是图9所示天线模组720的部分结构示意图,图13是图9所示天线模组720的部分结构示意图。其中,图12所示天线模组720中边射天线722仅示出了接地单元组20,图13所示天线模组720中边射天线722仅示出了辐射单元组10和接地单元组20。
接地单元组20连接于辐射单元组10和接地面7213之间。接地单元组20相对于中心线O-O中心对称。接地单元组20包括四个接地枝节21,四个接地枝节21环绕中心线O-O,且 彼此间隔排布。其中,四个接地枝节21的结构相同。每一接地枝节21固接于一个辐射体11。具体的,每一接地枝节21均固接于一个辐射体11靠近中心线O-O的一侧。每一接地枝节21均固接于一个辐射体11靠近第三边缘点B(如图10所示)的一侧。
其中,四个接地枝节21分别为第一接地枝节21a、第二接地枝节21c、第三接地枝节21b和第四接地枝节21d。第一接地枝节21a、第二接地枝节21c、第三接地枝节21b和第四接地枝节21d环绕中心线O-O排布呈矩形或方形(允许存在少许偏差,大致呈矩形或方形也可)。第一接地枝节21a的一端连接于第一辐射体11a靠近第二辐射体11b的一侧,另一端连接于接地面7213。第二接地枝节21c的一端连接于第二辐射体11b靠近第一辐射体11a的一侧,另一端连接于接地面7213。第三接地枝节21b的一端连接于第三辐射体11c靠近第四辐射体11d的一侧,另一端连接于接地面7213。第四接地枝节21d的一端连接于第四辐射体11d靠近第三辐射体11c的一侧,另一端连接于接地面7213。
一种实施方式中,接地单元组20包括第一接地单元20a和第二接地单元20b,第一接地单元20a和第二接地单元20b沿第一方向间隔排布。其中,第一接地单元20a和第二接地单元20b分别位于第一间隙101的相对两侧。第一接地单元20a的一端连接于第一辐射单元10a靠近第二辐射单元10b的一侧,另一端连接接地面7213。第二接地单元20b的一端连接于第二辐射单元10b靠近第一辐射单元10a的一侧,另一端连接接地面7213。其中,第一接地单元20a包括沿第二方向间隔排布的第一接地枝节21a和第二接地枝节21c,第二接地单元20b包括沿第二方向间隔排布的第三接地枝节21b和第四接地枝节21d。
请一并参阅图14,图14是图13所示结构沿A-A处剖开的剖面结构示意图。其中,沿“A-A处剖开”是指沿A-A线所在的平面剖开,后文中类似的描述可做相同理解。
接地枝节21包括依次连接的第一部分211、第二部分212和第三部分213。第一部分211位于第二部分212背离接地面7213的一侧。第一部分211远离第二部分212的一端连接辐射体11。第三部分213位于第二部分21朝向接地面7213的一侧。沿第三方向上,第一部分211和第三部分213错位设置。第三部分213远离第二部分212的一端连接接地面7213。其中,第一部分211和第三部分213之间的错位距离为w 1。第三方向不同于第一方向和第二方向。示例性的,第三方向为Z轴方向。
在其他一些实施方式中,第一部分211和第三部分213也可以部分错位。需要说明的是,第一部分211和第三部分213完全错位是指,第一部分211和第三部分213在接地面7213的投影不重合。可以理解的是,第一部分211和第三部分213部分错位是指,第一部分211和第三部分213在接地面7213的投影部分重合。
第一部分211连接于第二部分212靠近中心线O-O的一端。第一部分211包括第一接地层214、第一连接件215、第二连接件216和第三连接件217。第一接地层214有多层,多层第一接地层214沿Z轴方向彼此间隔排布。其中,第一接地层214可为采用铜、银、铝、镁或锡等金属材料制成的金属层。应当理解的是,第一接地层214的形状并不仅限于图12所示的矩形,也可以为其他多边形或者异形。
一种实施方式中,第一接地层214均设有缺口214a,缺口214a沿第一接地层214的厚度方向贯穿第一接地层214。其中,缺口214a设于第一接地层214背离中心线O-O的一端,且贯穿第一接地层214的周面。缺口214a的存在用以避免接地枝节21阻抗的剧烈变化,提高边射天线722的阻抗匹配。
第一连接件215连接于辐射单元组10的辐射体11和第一接地层214之间,以实现接地单元组20的接地枝节21与辐射单元组10的辐射体11之间的连接。其中,第一连接件215 的宽度为w 2。第二连接件216有多个,每一第二连接件216连接于相邻两层第一接地层214之间,实现多层第一接地层214之间的连接。其中,多个第一接地层214、第一连接件215和多个第二连接件217的高度和为h 1。第三连接件217连接于第一接地层214和第二部分212之间,以实现接地枝节21与第二部分212之间的连接。其中,第三连接件217的宽度为w 3,高度h 2
其中,多层第一接地层214可与基板721内部的金属层在同一工艺下形成,以简化边射天线722的制备工艺。具体的,基板721设有第一连接孔、第二连接孔和第三接地孔(图未示)。第一连接孔连通辐射体11和第一接地层214。其中,第一连接孔为过孔或埋孔。示例性性的,第一连接孔贯穿辐射体11。在其他一些实施方式中,第一连接孔也可以不贯穿辐射体11。第一连接件215位于第一连接孔,以连接辐射体11和第一接地层214。示例性的,第一连接件215可为采用金属材料填充于第一连接孔以形成的实心金属柱,或者,第一连接件215可为采用金属材料部分覆盖或完全覆盖第一连接孔的孔壁以形成的金属层。
第二连接孔有多个,每一第二连接孔均连通相邻两个第一接地层214。其中,第二连接孔为过孔或埋孔。示例性的,第二连接孔不贯穿第一接地层214。在其他一些实施方式中,第二连接孔也可以贯穿第一接地层214。具体的,每一第二连接件216位于一个第二连接孔,以连接相邻两层第一接地层214。示例性的,第二连接件216可为采用金属材料填充于第二连接孔以形成的实心金属柱,或者,第二连接件216可为采用金属材料部分覆盖或完全覆盖第二连接孔的孔壁以形成的金属层。
第三接地孔连通第一接地层214和第二部分212。其中,第三接地孔为过孔或埋孔。示例性的,第三接地孔未贯穿第二部分212。在其他一些实施例中,第三接地孔也可以贯穿第二部分212。具体的,第三连接件217位于第三接地孔,以连接第一接地层214和第二部分212。示例性的,第三连接件217可为采用金属材料填充于第三接地孔以形成的实心金属柱,或者,第三连接件217可为采用金属材料部分覆盖或完全覆盖第三接地孔的孔壁以形成的金属层。
第二部分212平行于X-Y轴平面(允许存在少许偏差)。其中,第二部分212与接地面7213之间的距离为h 3,第二部分212的宽度为w 1。一种实施方式中,第二部分212可为金属层。此时,基板721的一层金属层形成第二部分212。换言之,第二部分212可与基板721内部的金属层在同一工艺下形成,以简化边射天线722的制备工艺。
第三部分213连接于第二部分212远离中心线O-O的一端。第三部分213包括第二辐射层218、第四连接件219和第五连接件2110。第二辐射层218位于第二部分212与接地面7213之间。其中,第二辐射层218可为采用铜、银、铝、镁或锡等金属材料制成的金属层。应当理解的是,第二辐射层218的形状并不仅限于图12所示的矩形,也可以为其他多边形或者异形。第四连接件219连接于第二部分212和第二辐射层218之间,以实现第三部分213与第二部分212的连接。第五连接件2110连接于第二辐射层218与接地面7213之间,以实现接地枝节21的接地。
其中,第二辐射层218可与基板721内部的金属层在同一工艺下形成,以简化边射天线722的制备工艺。具体的,基板721设有第四连接孔和第五连接孔(图未示)。第四连接孔连通第二部分212和第二辐射层218。其中,第四连接孔为过孔或埋孔。示例性的,第四连接孔未贯穿第二部分212和第二辐射层218。在其他一些实施方式中,第四连接孔也可以贯穿第二部分212,或者,第四连接孔也可以贯穿第二接地枝节218。第四连接件219位于第四连接孔,以连接第二部分212和第二辐射层218。示例性的,第四连接件219可为采用金属材 料填充于第四连接孔以形成的实心金属柱,或者,第四连接件219可为采用金属材料部分覆盖或完全覆盖第四连接孔的孔壁以形成的金属层。
第五连接孔连通第二辐射层218和接地面7213。其中,第五连接孔为过孔或埋孔。示例性的,第五连接孔不贯穿第二辐射层218,且贯穿接地层721a。在其他一些实施方式中,第五连接孔也可以贯穿第二辐射层218,或者,第五连接孔也可以不贯穿接地层721a。具体的,第五连接件2110位于一个第五连接孔,以连接第二辐射层218和接地面7213。示例性的,第五连接件2110可为采用金属材料填充于第五连接孔以形成的实心金属柱,或者,第五连接件2110可为采用金属材料部分覆盖或完全覆盖第五连接孔的孔壁以形成的金属层。
请参阅图15和图16,图15是图9所示天线模组720的部分结构示意图,图16是图15所示结构沿B-B处剖开的剖面结构示意图。其中,图15所示天线模组720中边射天线722仅示出了辐射单元组10、接地单元组20和第一激励单元30,图16所示天线模组720中边射天线722仅示出了第一激励单元30。
第一激励单元30位于第二间隙107。第一激励单元30为第一极化激励单元,用于激励第一辐射单元10a和第二辐射单元10a产生沿第一方向的电场。第一激励单元30包括第一馈电结构31和第一延伸枝节32,第一馈电结构31和第一延伸枝节32沿第一方向间隔排布。第一馈电结构31包括与馈源连接的第一馈入端31a。具体的,第一馈入端31a与收发芯片710(如图2所示)的射频口电连接,以实现与馈源的连接。其中,第一馈电结构31经第一馈线51电连接收发芯片710的射频口。示例性的,第一馈线51可为微带线。第一延伸枝节32位于第一馈电结构31靠近第一馈入端31a的一侧。第一延伸枝节32包括靠近第一馈入端31a的第一接地端32a,第一接地端32a与接地面7213电连接。其中,第一延伸枝节32的第一接地端32a与接地层721a电连接,以实现接地。
第一馈电结构31呈“Γ”型。第一馈电结构31包括依次连接的第一馈入部分311、第一馈电部分312和第一辅助部分313。第一馈入部分311和第一辅助部分313均位于第一馈电部分312朝向接地面7213的一侧。第一馈入部分311和第一辅助部分313沿第一方向彼此间隔。其中,第一馈电部分312沿第一方向延伸,第一馈入部分311和第一辅助部分313均沿第三方向延伸,第一馈入部分311连接馈源,以实现第一馈电结构31的馈电。
第一馈入部分311连接于第一馈电部分312靠近第一延伸枝节32的一侧。其中,第一馈入部分311远离第一馈电部分312的一端为第一馈入端31a。具体的,第一馈入部分311的一端连接于第一馈电部分312靠近第一延伸枝节32的一端,另一端连接于第一馈线51,以实现第一馈电结构31与第一馈线51的电连接。其中,第一馈入部分311位于第一子间隙102。具体的,接地层721a设有第一通孔721b,第一通孔721b沿接地层721a的厚度方向贯穿接地层721a。第一馈入部分311的另一端穿过第一通孔721b连接于第一馈线51。
第一馈入部分311的结构与接地枝节21的结构大致相同。第一馈入部分311包括接入层314和接入件。接入层314可以有多层,多层接入层314沿第三方向彼此间隔排布。其中,接入层314可为采用铜、银、铝、镁或锡等金属材料制成的金属层。接入件可以有多个,多个接入件315、多个接入件316和接入件317沿第三方向彼此间隔排布,并依次连接于第一馈电部分312、多层接入层314和第一馈线51之间,以实现第一馈入部分311与第一馈电部分312之间的连接,以及第一馈入部分311与第一馈线51之间的连接。
一种实施方式中,第一馈入部分311的多层接入层314可与基板721内部的金属层在同一工艺下形成,以简化边射天线722的制备工艺,基板中金属层的制备工艺与前述类似,此处不再赘述。
第一馈电部分312沿第一方向跨过第一间隙101。部分第一馈电部分312位于第一子间隙102,部分第一馈电部分312位于第一间隙101,部分第一馈电部分312位于第二子间隙103。其中,部分第一馈电部分312位于第五子间隙106。具体的,第一馈电部分312平行于X-Y轴平面(允许存在少许偏差)。其中,第一馈电部分312与接地面7213之间的距离为H 1,第一馈电部分312的宽度为w 4。示例性的,第一馈电部分312可与辐射体11位于同一平面。此时,H 1=H。在其他一些实施例中,第一馈电部分312可以不与辐射体11位于同一平面,第一馈电部分312可以位于辐射体11背离接地面7213的一侧,也可以位于辐射体11朝向接地面7213的一侧。
一种实施方式中,基板721的一层金属层形成第一馈电部分312。
第一辅助部分313的一端连接于第一馈电部分312远离第一延伸枝节32的一端,另一端沿第三方向延伸。具体的,第一辅助部分313位于第二子间隙103。其中,第一辅助部分313的高度为H 2,H 2<H 1
第一辅助部分313的结构与接地枝节21的结构大致相同。第一辅助部分313包括辅助层和辅助件。辅助层318可以有多层,多层辅助层318沿第三方向彼此间隔排布。其中,辅助层318可为采用铜、银、铝、镁或锡等金属材料制成的金属层。辅助件319可以有多个。辅助件319连接于第一馈电部分312和辅助层318之间。辅助件3110连接于相邻两层辅助层318之间。
一种实施方式中,第一辅助部分313的多层辅助层318可与基板721内部的金属层在同一工艺下形成,以简化边射天线722的制备工艺,基板中金属层的制备工艺与前述类似,此处不再赘述。
第一延伸枝节32呈“冂”型。第一延伸枝节32位于第一子间隙102。具体的,第一延伸枝节32位于第一馈入部分311背离第一辅助部分313的一侧,且与第一馈入部分311间隔排布。其中,第一延伸枝节32与第一馈电结构31之间的距离为w 5。第一延伸枝节32包括依次连接的第一接地部分321、第一延伸部分322和第二延伸部分323。第一接地部分321和第二延伸部分323均位于第一延伸部分322朝向接地面7213的一侧。第一接地部分321和第二延伸部分323沿第一方向彼此间隔。
第一接地部分321连接于第一延伸部分322靠近第一馈电结构31的一侧,第一接地部分321背离第一延伸部分322的一端为第一接地端32a。其中,第一接地部分321靠近第一馈入部分311。具体的,第一接地部分321的一端连接于第一延伸部分322靠近第一馈电结构31的一侧,另一端连接于接地面7213,以实现第一延伸枝节32的接地。
第一接地部分321的结构与接地枝节21的结构大致相同。第一接地部分321包括接地层和接地件。接地层324有多层,多层接地层324沿第三方向彼此间隔排布。其中,接地层324可为采用铜、银、铝、镁或锡等金属材料制成的金属层。接地件可以有多个,多个接地件325、多个接地件326和接地件327沿第三方向彼此间隔排布,并依次连接于第一延伸部分322、多个接地层324和接地面7213之间,以实现第一接地部分321与第一延伸部分322之间的连接,以及第一接地部分321与接地面7213之间的连接。
一种实施方式中,第一接地部分321的多层接地层324可与基板721内部的金属层在同一工艺下形成,以简化边射天线722的制备工艺,基板中金属层的制备工艺与前述类似此处不再赘述。
第一延伸部分322沿第一方向延伸。其中,第一延伸部分322位于第一辐射体11a和第二辐射体11b之间,且与第一辐射体11a和第二辐射体11b彼此间隔。具体的,第一延伸部 分322平行于X-Y轴平面(允许存在少许偏差)。第一延伸部分322与接地面7213之间的距离为H 3,第一延伸部分322的宽度为w 6。示例性的,第一延伸部分322可与第一馈电部分312位于同一平面,且与第一馈电部分312沿第一方向彼此间隔排布。此时,H 3=H 1
一种实施方式中,基板721的一层金属层形成第一延伸部分322。
第二延伸部分323连接于第一延伸部分322背离第一馈电结构32的一侧。具体的,第二延伸部分323的一端连接于第一延伸部分322远离第一馈电结构31的一端,另一端沿第三方向延伸。其中,第二延伸部分323的高度为H 4,H 4小于H 3
第二延伸部分323包括第一延伸层328、第一延伸件329和第二延伸件3210。第一延伸层328有多层,多层第一延伸层328沿Z轴方向彼此间隔排布。其中,第一延伸层328可为采用铜、银、铝、镁或锡等金属材料制成的金属层。第一延伸件329连接于第一延伸部分322和第一延伸层328之间,以实现第一延伸部分323与第二延伸部分323之间的连接。第二延伸件3210有多个,每一第二延伸件3210连接于相邻两层第一延伸层328之间,实现多层第一延伸层328之间的连接。
一种实施方式中,第二延伸部分323的多层第一延伸层328可与基板721内部的金属层在同一工艺下形成,以简化边射天线722的制备工艺,基板中金属层的制备工艺与前述类似,此处不再赘述。
请参阅图17和图18,图17是图9所示天线模组720的部分结构示意图,图18是图17所示结构沿C-C处剖开的剖面结构示意图。其中,图17所示天线模组720中边射天线722仅示出了辐射单元组10、接地单元组20和第二激励单元40,图18所示天线模组720中边射天线722仅示出了第二激励单元40。
第二激励单元40位于第一间隙101。第二激励单元40为第二极化激励单元,用以激励第一辐射单元10a和第二辐射单元10b产生沿第二方向的电场。第二激励单元40包括第二馈电结构41和第二延伸枝节42,第二馈电结构41和第二延伸枝节42沿第二方向间隔排布。第二馈电结构41与第一馈电结构31交错设置。第二馈电结构41包括与馈源连接的第二馈入端41a。具体的,第二馈入端41a与收发芯片710(如图2所示)的射频口电连接,以实现与馈源的连接。其中,第二馈点结构41经第二馈线52电连接收发芯片710的射频口。示例性的,第二馈线52可为微带线。第二延伸枝节42位于第二馈电结构41靠近第二馈入端41a一侧,第二延伸枝节42包括靠近第二馈入端41a的第二接地端42a,第二接地端42a与接地面7213电连接。其中,第二延伸枝节42的第二接地端42a与接地层721a电连接,以实现接地。
第二馈电结构41呈“Γ”型。第二馈电结构41的结构与第一馈电结构31的结构大致相同。第二馈电结构41包括依次连接的第二馈入部分411、第二馈电部分412和第二辅助部分413,且分别与第一馈电结构31的第一馈入部分311、第一馈电部分312和第一辅助部分313结构相同或相似,此处不再赘述。
第二馈入部分411连接于第二馈电部分412靠近第二延伸枝节42的一侧。其中,第二馈入部分411远离第二馈电部分412的一端为第二馈入端41a。具体的,第二馈入部分411的一端连接于第二馈电部分412靠近第二延伸枝节42的一端,另一端连接于第二馈线52,以实现第二馈电结构41与第二馈线52的电连接。其中,第二馈入部分411位于接地单元组20的第一接地枝节21a和第二接地枝节21c(如图12所示)之间,且与第一接地枝节21a和第二接地枝节21c彼此间隔第三子间隙104。具体的,接地层721设有第二通孔721c,第二通孔721c沿接地层721a的厚度方向贯穿接地层721a。第二馈入部分411的另一端穿过第二通孔721c连接于第二馈线52。其中,第二馈入部分411的结构与第一馈入部分311的结构大致相 同,在此不再赘述。
第二馈电部分412位于第一馈电部分312朝向接地面7213的一侧。第二馈电部分412沿第二方向跨过第二间隙102。部分第二馈电部分412位于第三子间隙104,部分第二馈电部分412位于第二间隙102,部分第二馈电部分412位于第四子间隙105。其中,部分第二馈电部分412位于第五子间隙106。具体的,第二馈电部分412平行于X-Y轴平面(允许存在少许偏差)。其中,第二馈电部分412与接地面7213之间的距离为H 5,第二馈电部分412的宽度为w 7。此外,H 5<H 1。在其他一些实施例中,第一馈电部分312也可以位于第二馈电部分412朝向接地面7213的一侧。此时,H 5>H 1
第二辅助部分413的一端连接于第二馈电部分412远离第二延伸枝节42的一端,另一端沿第三方向延伸。具体的,第二辅助部分413位于第四子间隙105。其中,第二辅助部分413的高度为H 6,H 6<H 1。其中,第二辅助部分413的结构与第一辅助部分313的结构大致相同,在此不再赘述。
第二延伸枝节42呈“冂”字型。其中,第二延伸枝节42与第一延伸枝节32的结构相同或相似。第二延伸枝节42位于第三子间隙104。具体的,第二延伸枝节42位于第二馈入部分411背离第二辅助部分413的一侧,且与第二馈入部分411间隔排布。其中,第二延伸枝节42与第二馈电结构42之间的距离为w 8。第二延伸枝节42包括依次连接的第二接地部分421、第三延伸部分422和第四延伸部分423。第二接地部分421和第四延伸部分423均位于第三延伸部分422朝向接地面7213的一侧。第二接地部分421和第四延伸部分423沿第二方向彼此间隔。
第二接地部分421连接于第三延伸部分422靠近第二馈电结构41的一侧。第二接地部分421远离第三延伸部分422的一端为第二接地端42a。其中,第二接地部分421靠近第二馈入部分311。具体的,第二接地部分421的一端连接于第三延伸部分422靠近第二馈电结构41的一端,另一端固接于接地面7213,以实现第二延伸枝节42的接地。其中,第二接地部分421的结构与第一接地部分321的结构大致相同,在此不再赘述。
第三延伸部分422沿第二方向延伸。其中,第三延伸部分422位于第一辐射体11a和第三辐射体11c之间,且与第一辐射体11a和第三辐射体11c彼此间隔。具体的,第三延伸部分422平行于X-Y轴平面(允许存在少许偏差)。第三延伸部分422与接地面7213之间的距离为H 7,第三延伸部分422的宽度为w 9。示例性的,第三延伸部分422可与第二馈电部分412位于同一平面,且与第二馈电部分沿第二方向彼此间隔排布。此时,H 7=H 5
第四延伸部分423连接于第三延伸部分422背离第二馈电结构42的一侧。具体的,第四延伸部分423的一端连接于第三延伸部分422远离第二馈电结构41的一端,另一端沿第三方向延伸。其中,第四延伸部分423的高度为H 8,H 8小于H 7。其中,第四延伸部分423的结构与第二延伸部分323的结构大致相同,在此不再赘述。
本实施例中,第一激励单元30和第二激励单元40均为耦合电容式激励结构,第一激励单元30和第二激励单元40均采用耦合馈电的方式激励辐射单元组10。应当理解的是,本实施方式所示第一激励单元30和第二激励单元40均在靠近边射天线722的天线孔径701处进行激励,由于天线孔径701处是天线在谐振模式下的高阻抗点,因此第一激励单元30和第二激励单元40采用耦合式馈入的方式激励辐射单元组10,可避免阻抗不匹配造成的损耗,有利于提升边射天线722的辐射效率。
接下来,对本实施例的边射天线722的特性进行具体分析。示例性的,边射天线722的第一激励单元30中,如图16所示,第一馈电结构31中第一馈电部分312与接地面7213之 间的距离H 1为0.865mm,第一馈电部分312的宽度w 4为1.2mm,第一辅助部分313的高度H 2为0.13mm。第一延伸枝节32与第一馈电结构31之间的距离w 5为0.15mm。第一延伸枝节32中第一延伸部分322与接地面7213之间的距离H 3为0.865mm,第一延伸部分322的宽度w 6为0.65mm,第二延伸部分323的高度H 4为0.74mm。
边射天线722的第二激励单元40中,如图18所示,第二馈电结构41中第二馈电部分412与接地面7213之间的距离H 5为0.8mm,第二馈电部分412的宽度w 7为1.2mm,第二辅助部分413的高度H 6为0.065mm。第二延伸枝节42与第二馈电结构41之间的距离w 8为0.15mm,第三延伸部分422的宽度w 9为0.65mm,第四延伸部分423的高度H 8为0.65mm。
基板721的厚度(图12所示H 0)为1.093mm。边射天线722的辐射单元组10中,如图10所示,辐射体11的第一外边缘111和的第二外边缘112的半长轴a 1为0.6mm,半短轴b 1为0.58mm。辐射体11的第一内边缘113和第二内边缘114的半长轴a 2为1.55mm,半短轴b 2为0.4mm。如图11所示,第三辐射体11c的第一边缘点A1与第四辐射体11d的第一边缘点A1之间的距离L 1为3.5mm,第三辐射体11c的第三边缘点B与第四辐射体11d的第三边缘点B之间的距离W 1为0.4mm。
边射天线722的接地单元组20中,如图14所示,辐射体11与接地面7213之间的距离H为0.865mm,第二辐射层218b的宽度w 1为0.4mm,第三连接件213a的宽度w 2为0.07mm,第四连接件213b的宽度w 3为0.14mm。此外,第一部分的高度h 1为0.215mm,第二部分的高度h 2为0.5mm,第三部分h 3的高度为0.15mm。
请参阅图19和图20,图19是图9所示天线模组720中边射天线722的返回损耗系数(S11)曲线图,图20是图19所示返回损耗系数曲线图相对应的史密斯圆图。其中,图19所示横坐标为频率(单位为GHz),纵坐标为返回损耗(return loss)系数(单位为dB)。
图19中,实线代表边射天线722的第一极化辐射的返回损耗系数曲线,点虚线代表边射天线722的第二极化辐射的返回损耗系数曲线,虚线代表边射天线722的第一极化和第二极化辐射的S21曲线。其中,第一极化为垂直极化,第二极化为水平极化。
从图19中可以看出,边射天线722的工作频带(支援频带)为24.25GHz至42.5GHz,可支持n257、n258、n259、n260和n261,可覆盖5G毫米波全频段。在其他一些实施方式中,边射天线722的工作频段可以支持n257、n258、n259、n260和n261等频带中的一个或多个。
边射天线722的分数带宽(Fractional Bandwidths,FBW)=18.25/33.375=54.7%,本申请实施例所示边射天线722可达到超宽频。此时,在最低操作频率24.25GHz下,边射天线722的反射系数接近-10dB。需要说明的是,第一延伸枝节32和第二延伸枝节42的设置,大大改善了边射天线722在最低操作频率24.25GHz下的反射系数,降低了边射天线722对净空高度的需求。
结合图20的史密斯圆图可知,在最低操作频率24.25GHz的阻抗落在更低频点的频带外,落在23GHz的过高阻抗点强滤波,强制拉近了史密斯原图中心50ohm阻抗点,因此第一延伸枝节32和第二延伸枝节42的设置改善了最低操作频率24.25GHz的阻抗匹配和反射系数。
参阅图19可知,本申请实施例所示边射天线722被有效激励出磁偶电极子的三个基础模式,分别是在第一频段下的电偶极子第一模式(E-dipole 1st mode)、在第二频段下的磁偶极子第一模式(M-dipole 1st mode)以及第三频段下的电偶极子第二模式(E-dipole 2st mode)。其中,第二频段的最小频率点高于第一频段的最大频率点,第三频段的最小频率点高于第二频段的最大频率点。
在电偶极子第一模式下,第一频段所对应的电磁波波长为λ 1。此时,边射天线722中, 辐射单元组10的第四辐射体11d的第一边缘点A 1与第一辐射体11a的第一边缘点A 1之间的距离L 3(如图11所示)在0.4λ 1~0.6λ 1之间,例如为0.5λ 1。剖面高度(如图14所示)H在0.1λ 1至0.2λ 1之间,例如为0.12λ 1。第一延伸枝节32的长度为H 3+w 6+H 4(如图16所示)之和,H 3+w 6+H 4之和在0.3λ 1至0.4λ 1之间。第二延伸枝节42的长度为H 7+w 9+H 8(如图18所示),H 7+w 9+H 8之和在0.3λ 1至0.4λ 1之间。
请一并参阅图21,图21是图9所示天线模组720中边射天线722的部分结构在21GHz下的电流模式图。由图21可知,在频率点为21GHz下,边射天线722上未形成回流电流,边射天线722处于电偶极子第一模式下。此时,电磁波波长λ 1为7.6mm。
在磁偶极子第一模式下,第二频段所对应的电磁波波长为λ 2。此时,边射天线722中,辐射单元组10的第二辐射体11b的第一边缘点A 1与第四辐射体11d的第一边缘点A 1之间的距离L 4(如图11所示)在0.4λ 2~0.6λ 2之间,例如为0.5λ 2。剖面高度(如图14所示)H在0.2λ 2至0.3λ 2之间,例如为0.25λ 2
请一并参阅图22,图22是图9所述天线模组720中边射天线722的部分结构在29.5GHz下的电流模式图。由22可知,在频率点29.5GHz下,边射天线722上形成了回流电流,边射天线722处于磁偶极子第一模式下。此时,电磁波波长λ 2为5.4mm。
在电偶极子第二模式下,第三频段所对应的电磁波波长为λ 3。此时,边射天线722中,辐射单元组10的辐射体11的第一外边缘111和第二外边缘112的长度L 1(如图10所示)在0.2λ 3至0.3λ 3之间,例如为0.25λ 3。第一内边缘113和第二内边缘114的长度L 2(如图10所示)在0.2λ 3至0.3λ 3之间,例如为0.25λ 3。剖面高度(如图14所示)H在0.2λ 3至0.25λ 3之间,例如为0.22λ 2。示例性的,在电偶极子第二模式下,频率点为40GHz,此时电磁波波长λ 3为4.0mm。
由此可知,本申请实施例所示边射天线722具有超宽频的优点,可实现低剖面和双极化的5G毫米波全频段天线设计。
请参阅图23和图24,图23是图9所示天线模组720中边射天线722的效率曲线图,图24是图9所示天线模组720中边射天线722产生第一极化辐射时的效率曲线图以及边射天线722在多个频率点下的辐射场型。其中,图23和图24所示横坐标为频率(单位为GHz),纵坐标为效率参数(单位为dB)。第一极化为垂直极化。
从图23中可以看出,边射天线722在最低频率24.0GHz下的系统增益,均大于6dB,有助于提升边射天线722工作时的信号传输稳定性。从图24中可以看出,在频率点27GHz、39GHz、45GHz、47GHz下,本申请所示边射天线722的辐射场型可以维持正垂向的辐射场型,边射天线722的辐射场型在垂向上没有场型凹坑,此时,边射天线722在多个频率点下具有场型一致性的优点,可做天线阵列场型合成,有利于提高天线增益,符合天线阵列子单元的要求。
请参阅图25和图26,图25是图9所示天线模组720中边射天线722在三个基础模式下的第一极化天线电流模式图,图26是图25所示第一极化天线电流模式图对应的辐射场型示意图。其中,图25和图26中的(a)是在频率点在21GHz下的示意图,图25和图26中的(b)是在频率点在29.5GHz下的示意图,图25和图26中的(c)是在频率点在40GHz下的示意图。第一极化为垂直极化。
从图25和图26可以看出,电偶极子第一模式和磁偶极子第一模式均为基础模式,辐射体10上左右瓣的辐射电流同向,形成场型均匀的垂向辐射场型。然而,电偶极子第二模式为电偶极子第一模式的二阶倍频模式。由于对流电流问题,不容易形成场形均匀的垂向辐射场 型。但由于本申请实施例所示边射天线722中,上下瓣的两个同向电偶极子产生的电流(电流路径长度为0.5λ 3)主要贡献第一方向的电流,中間的磁偶极子结构设计成槽孔上下第二方向的反向电流(电流路径长度为0.25λ 3)互相抵消,从而可以得到纯粹的第一方向极化辐射,维持均匀的垂向辐射场型。
请参阅图27和图28,图27是图9所示天线模组720中边射天线722在三个基础模式下的第二极化天线电流模式图,图28是图27所示第二极化天线电流模式图对应的辐射场型示意图。其中,图27和图28中的(a)是在频率点在21GHz下的示意图,图27和图28中的(b)是在频率点在29.5GHz下的示意图,图27和图28中的(c)是在频率点在40GHz下的示意图。第二极化为水平极化。
从图27和图28可以看出,电偶极子第一模式和磁偶极子第一模式均为基础模式,辐射体10上上下瓣的辐射电流同向,形成场型均匀的垂向辐射场型。然而,电偶极子第二模式为电偶极子第一模式的二阶倍频模式。由于对流电流问题,不容易形成场形均匀的垂向辐射场型。但由于本申请实施例所示边射天线722中,左右瓣的两个同向电偶极子产生的电流(电流路径长度为0.5λ 3)主要贡献第二方向的电流,中间的磁偶极子结构设计成槽孔左右第一方向的反向电流(电流路径长度为0.25λ 3)互相抵消,从而可以得到纯粹的第二方向极化辐射,维持均匀的垂向辐射场型。
请参阅图29和图30,图29是图9所示天线模组720中边射天线722的辐射体11的第一外边缘111的半短轴b 1在不同尺寸下时,边射天线722的返回损耗系数曲线图,图30是图29所示返回损耗系数曲线图对应的阻抗圆图。
图29中,横坐标为频率(单位为GHz),纵坐标为返回损耗系数(单位为dB)。从图29中可以看出,第一外边缘111的半短轴b 1的尺寸在0.3mm、0.4mm、0.5mm和0.6mm四个尺寸之间变化时,边射天线722的电偶极子第一模式出现的频率点相应地发生变化。具体的,随着第一边缘的半短轴的逐渐增大,边射天线722的电偶极子第一模式出现的频率点逐渐增大。
请参阅图31和图32,图31是图9所示天线模组720中边射天线722的辐射体11的第一内边缘113的半短轴b 2在不同尺寸下时,边射天线722的返回损耗系数曲线图,图32是图31所示返回损耗系数曲线图对应的阻抗圆图。
图31中,横坐标为频率(单位为GHz),纵坐标为返回损耗系数(单位为dB)。从图29中可以看出,第一内边缘113的半短轴b 2的尺寸在0.4mm、0.6mm和0.8mm三个尺寸之间变化时,边射天线722的电偶极子第二模式所在的频率点的返回损耗系数相应地发生变化。
请参阅图33和图34,图33是图9所示天线模组720的接地枝节21的错位距离w 1在不同尺寸下时,边射天线722的返回损耗系数曲线图,图34是图33所示返回损耗系数曲线图对应的阻抗圆图。
图33中,横坐标为频率(单位为GHz),纵坐标为返回损耗系数(单位为dB)。从图29中可以看出,接地单元组20的接地枝节21的错位距离w 1的尺寸在0.2mm、0.3mm、0.4mm和0.5mm四个尺寸之间变化时,边射天线722的电偶极子第二模式出现的频率点相应地发生变化。
请参阅图35和图36,图35是图9所述天线模组720中边射天线722的第二激励单元40的第二延伸部分422的宽度w 9在不同尺寸下时,边射天线722的返回损耗系数曲线图,图36是图35所示返回损耗系数曲线图对应的阻抗圆图。
图35中,横坐标为频率(单位为GHz),纵坐标为返回损耗系数(单位为dB)。从图35 和图36可知,第二延伸部分422的宽度w 9在0.4mm、0.5mm、0.6mm和0.7mm四个尺寸之间变化时,边射天线722的电偶极子第一模式出现的频率点相应地发生变化。需要理解的是,通过调节第二延伸部分422的宽度w 9,不仅可以调整操作频带外不需要的谐振频率模式,还可以改善边射天线722的电偶极子第一模式的阻抗匹配,改善了反射系数,还有利于拓展边射天线722的支援带宽。
以上描述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内;在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (20)

  1. 一种边射天线,其特征在于,包括第一辐射单元、第二辐射单元、第一接地单元、第二接地单元和第一激励单元,所述第一辐射单元和所述第二辐射单元沿第一方向间隔排布,所述第一辐射单元和所述第二辐射单元之间形成沿第二方向延伸的第一间隙,所述第二方向不同于所述第一方向,所述第一辐射单元设有与所述第一间隙连通的第一子间隙,所述第二辐射单元设有与所述第一间隙连通的第二子间隙,所述第一子间隙与所述第二子间隙均沿所述第一方向延伸;
    所述第一接地单元和所述第二接地单元沿所述第一方向间隔排布,所述第一接地单元的一端连接所述第一辐射单元靠近所述第二辐射单元的一侧,另一端用于连接接地面,所述第二接地单元连接所述第二辐射单元靠近所述第一辐射单元的一侧,另一端用于连接所述接地面;
    所述第一激励单元包括沿所述第一方向间隔排布的第一馈电结构和第一延伸枝节,所述第一馈电结构包括第一馈入部分和第一馈电部分,所述第一馈入部分连接于所述第一馈电部分朝向所述接地面的一侧,所述第一馈入部分位于所述第一子间隙,且用于连接馈源,部分所述第一馈电部分位于所述第一间隙,部分所述第一馈电部分位于所述第二子间隙,所述第一延伸枝节位于所述第一子间隙,所述第一延伸枝节包括靠近所述第一馈入部分的第一接地部分,所述第一接地部分用于连接所述接地面。
  2. 根据权利要求1所述的边射天线,其特征在于,所述第一延伸枝节还包括第一延伸部分和第二延伸部分,所述第一接地部分和所述第二延伸部分均位于所述第一延伸部分朝向所述接地面的一侧,所述第一接地部分连接于所述第一延伸部分靠近所述第一馈电结构的一侧,所述第二延伸部分连接于所述第一延伸部分背离所述第一馈电结构的一侧。
  3. 根据权利要求1或2所述的边射天线,其特征在于,所述第一辐射单元包括沿所述第二方向间隔排布的第一辐射体和第二辐射体,所述第一辐射体和所述第二辐射体之间形成所述第一子间隙,所述第二辐射单元包括沿所述第二方向间隔排布的第三辐射体和第四辐射体,所述第三辐射体和所述第四辐射体之间形成所述第二子间隙;
    所述第一辐射体和所述第三辐射体之间形成沿所述第二方向延伸的第三子间隙,所述第二辐射体和所述第四辐射体之间形成沿所述第二方向延伸的第四子间隙,所述第一间隙包括所述第三子间隙、所述第四子间隙和第五子间隙,所述第五子间隙连通所述第一子间隙和所述第二子间隙,且连通所述第三子间隙和所述第四子间隙;
    所述边射天线还包括第二激励单元,所述第二激励单元包括沿所述第二方向间隔排布的第二馈电结构和第二延伸枝节,所述第二馈电结构包括第二馈入部分和第二馈电部分,所述第二馈入部分连接于所述第二馈电部分朝向所述连接面的一侧,所述第二馈入部分位于所述第三子间隙,且用于连接所述馈源,部分所述第二馈电部分位于所述第五子间隙,且与所述第一馈电部分交错,部分所述第二馈电部分位于所述第四子间隙,所述第二延伸枝节位于所述第三子间隙,所述第二延伸枝节包括靠近所述第二馈入部分的第二接地部分,所述第二接地部分用于连接所述接地面。
  4. 根据权利要求3所述的边射天线,其特征在于,所述第二延伸枝节还包括第三延伸部 分和第四延伸部分,所述第二接地部分和所述第四延伸部分均位于所述第三延伸部分朝向所述接地面的一侧,所述第二接地部分连接于所述第三延伸部分靠近所述第二馈电结构的一侧,所述第二接地部分背离所述第三延伸部分的一端为所述第二接地端,所述第四延伸部分连接于所述第三延伸部分背离所述第二馈电结构的一侧。
  5. 根据权利要求3或4所述的边射天线,其特征在于,所述第一辐射体、所述第二辐射体、所述第三辐射体和所述第四辐射体的结构相同。
  6. 根据权利要求5所述的边射天线,其特征在于,所述第一辐射体、所述第二辐射体、所述第三辐射体和所述第四辐射体排布呈四叶草形。
  7. 根据权利要求3至6中任一项所述的边射天线,其特征在于,沿所述第一子间隙的内侧向外侧的方向上,所述第一子间隙的宽度渐大;
    沿所述第二子间隙的内侧向外侧的方向上,所述第二子间隙的宽度渐大;
    沿所述第三子间隙的内侧向外侧的方向上,所述第三子间隙的宽度渐大;
    沿所述第四子间隙的内侧向外侧的方向上,所述第四子间隙的宽度渐大。
  8. 根据权利要求3至7中任一项所述的边射天线,其特征在于,所述第一接地单元包括沿所述第二方向间隔排布的第一接地枝节和第二接地枝节,所述第一接地枝节的一端连接于所述第一辐射体靠近所述第二辐射体的一侧,另一端用于连接所述接地面,所述第二接地枝节的一端连接于所述第二辐射体靠近所述第一辐射体的一侧,另一端用于连接所述接地面;
    所述第二接地单元包括沿所述第二方向间隔排布的第三接地枝节和第四接地枝节,所述第三接地枝节的一端连接于所述第三辐射体靠近所述第四辐射体的一侧,另一端用于连接于所述接地面,所述第四接地枝节连接于所述第四辐射体靠近所述第三辐射体的一侧,另一端用于连接所述接地面。
  9. 根据权利要求8所述的边射天线,其特征在于,所述第一接地枝节、所述第二接地枝节、所述第三接地枝节和所述第四接地枝节的结构相同。
  10. 根据权利要求9所述的边射天线,其特征在于,所述第一接地枝节包括依次连接的第一部分、第二部分和第三部分,所述第一部分位于所述第二部分远离所述接地面的一侧,所述第一部分远离所述第二部分的一端连接所述第一辐射体,所述第三部分位于所述第二部分靠近所述接地面的一侧,所述第三部分远离所述第二部分的一端用于连接所述接地面,沿第三方向上,所述第一部分与所述第三部分错位设置;
    所述第三方向不同于所述第一方向和所述第二方向。
  11. 根据权利要求2-10中任一项所述的边射天线,其特征在于,所述边射天线在第一频段具有电偶极子第一模式,所述第一频段所对应的波长为λ 1,所述边射天线的剖面高度为在0.1λ 1至0.2λ 1之间。
  12. 根据权利要求11所述的边射天线,其特征在于,所述边射天线在第二频段具有磁偶极子第一模式,所述第二频段的最小频率点高于所述第一频段的最大频率点。
  13. 根据权利要求12所述的边射天线,其特征在于,所述边射天线在第三频段具有电偶极子第二模式,所述第三频段的最小频率点高于所述第二频段的最大频率点。
  14. 根据权利要求13所述的边射天线,其特征在于,所述第三频段对应的波长为λ 3,所述第一辐射体呈心形,所述第一辐射体具有两个内边缘和两个外边缘,所述内边缘和所述外边缘均为椭圆弧线,所述内边缘和所述外边缘的长度均为在0.2λ 3至0.3λ 3之间。
  15. 根据权利要求1-14中任一项所述的边射天线,其特征在于,所述边射天线的工作频段至少支持n257、n258、n259、n260和n261频带中的一个频带。
  16. 一种封装天线,其特征在于,包括收发芯片和如权利要求1-15中任一项所述的边射天线,所述收发芯片用以向所述边射天线发送电磁波信号,或者,接收所述边射天线接收到的外界的电磁波信号。
  17. 根据权利要求16所述的封装天线,其特征在于,所述封装天线还包括基板,所述边射天线内嵌于所述基板的内部。
  18. 一种通讯设备,其特征在于,包括壳体和如权利要求16或17所述的封装天线,所述封装天线位于所述壳体的内侧。
  19. 根据权利要求18所述的通讯设备,其特征在于,所述边射天线的天线孔径朝向所述壳体,所述边射天线可通过所述壳体发射电磁波信号,或,通过所述壳体接收电磁波信号。
  20. 根据权利要求18所述的通讯设备,其特征在于,所述通讯设备还包括显示屏,所述显示屏安装于所述壳体,所述边射天线的天线孔径朝向所述显示屏,所述边射天线可通过所述显示屏发射电磁波信号,或,通过所述显示屏接收电磁波信号。
PCT/CN2022/100213 2021-06-24 2022-06-21 边射天线、封装天线和通讯设备 WO2022268086A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22827579.8A EP4340127A1 (en) 2021-06-24 2022-06-21 Broadside antenna, package antenna, and communication device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110707696.1A CN115528417A (zh) 2021-06-24 2021-06-24 边射天线、封装天线和通讯设备
CN202110707696.1 2021-06-24

Publications (1)

Publication Number Publication Date
WO2022268086A1 true WO2022268086A1 (zh) 2022-12-29

Family

ID=84545150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/100213 WO2022268086A1 (zh) 2021-06-24 2022-06-21 边射天线、封装天线和通讯设备

Country Status (3)

Country Link
EP (1) EP4340127A1 (zh)
CN (1) CN115528417A (zh)
WO (1) WO2022268086A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023087099A1 (en) * 2021-11-16 2023-05-25 Gyles Panther Broadband low profile antenna devices and methods

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105742793A (zh) * 2014-12-12 2016-07-06 青岛海尔电子有限公司 一种双宽频互补型天线
CN107104272A (zh) * 2017-04-25 2017-08-29 南京航空航天大学 宽带双极化电磁偶极子天线
CN107611570A (zh) * 2017-08-25 2018-01-19 深圳日海通讯技术股份有限公司 一种基站阵列天线和基站射频设备
CN110176667A (zh) * 2019-05-16 2019-08-27 中天宽带技术有限公司 一种极化方向可调的天线
CN111180886A (zh) * 2020-03-03 2020-05-19 南京锐码毫米波太赫兹技术研究院有限公司 小型化宽带双极化磁电偶极子毫米波边射天线及其阵列
US20200412014A1 (en) * 2019-06-29 2020-12-31 AAC Technologies Pte. Ltd. Antenna and Electronic Device Using same
CN112490632A (zh) * 2020-11-25 2021-03-12 深圳市博创域视讯科技有限公司 智能电视的5g机顶盒设备
CN112751193A (zh) * 2019-10-31 2021-05-04 Oppo广东移动通信有限公司 天线模组及电子设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104916910B (zh) * 2015-06-12 2018-06-22 华南理工大学 一种基于耦合馈电结构的双极化基站天线
US10862216B1 (en) * 2019-06-28 2020-12-08 Apple Inc. Electronic devices having indirectly-fed slot antenna elements
CN110649382A (zh) * 2019-10-18 2020-01-03 北京交通大学 一种毫米波双极化天线
CN112751180B (zh) * 2019-10-31 2022-03-22 Oppo广东移动通信有限公司 天线模组及电子设备
CN112751168B (zh) * 2019-10-31 2022-11-08 Oppo广东移动通信有限公司 天线模组及电子设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105742793A (zh) * 2014-12-12 2016-07-06 青岛海尔电子有限公司 一种双宽频互补型天线
CN107104272A (zh) * 2017-04-25 2017-08-29 南京航空航天大学 宽带双极化电磁偶极子天线
CN107611570A (zh) * 2017-08-25 2018-01-19 深圳日海通讯技术股份有限公司 一种基站阵列天线和基站射频设备
CN110176667A (zh) * 2019-05-16 2019-08-27 中天宽带技术有限公司 一种极化方向可调的天线
US20200412014A1 (en) * 2019-06-29 2020-12-31 AAC Technologies Pte. Ltd. Antenna and Electronic Device Using same
CN112751193A (zh) * 2019-10-31 2021-05-04 Oppo广东移动通信有限公司 天线模组及电子设备
CN111180886A (zh) * 2020-03-03 2020-05-19 南京锐码毫米波太赫兹技术研究院有限公司 小型化宽带双极化磁电偶极子毫米波边射天线及其阵列
CN112490632A (zh) * 2020-11-25 2021-03-12 深圳市博创域视讯科技有限公司 智能电视的5g机顶盒设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023087099A1 (en) * 2021-11-16 2023-05-25 Gyles Panther Broadband low profile antenna devices and methods

Also Published As

Publication number Publication date
EP4340127A1 (en) 2024-03-20
CN115528417A (zh) 2022-12-27

Similar Documents

Publication Publication Date Title
AU2021215154B2 (en) Communication device
JP6514408B2 (ja) 基板集積導波路を含む広帯域アンテナ
EP3427342B1 (en) Wireless communication system including polarization-agile phased-array antenna
CN110098492B (zh) 一种双极化天线、射频前端装置和通信设备
US11955738B2 (en) Antenna
WO2022179324A1 (zh) 天线装置、壳体及电子设备
WO2020073329A1 (zh) 一种低剖面封装天线
CN112290193B (zh) 毫米波模组、电子设备及毫米波模组的调节方法
WO2021013010A1 (zh) 天线单元和电子设备
EP3688840B1 (en) Perpendicular end fire antennas
WO2022268086A1 (zh) 边射天线、封装天线和通讯设备
US10148014B2 (en) Highly isolated monopole antenna system
US11784418B2 (en) Multi-directional dual-polarized antenna system
CN109560387B (zh) 一种用于移动终端的毫米波双极化天线
CN109742515B (zh) 一种用于移动终端的毫米波圆极化天线
WO2022134786A1 (zh) 一种天线和通信设备
KR20190087270A (ko) 무선 통신 시스템에서 안테나 장치 및 이를 구비하는 전자기기
US20210313710A1 (en) Broadband antenna having polarization dependent output
CN114696080A (zh) 端射天线、封装天线和通讯设备
WO2022068548A1 (zh) 后盖及终端
US20240222874A1 (en) Broadside antenna, antenna in package, and communication device
WO2023124887A1 (zh) 天线结构、封装天线、芯片和电子设备
WO2023231752A1 (zh) 一种天线及基站
US20240097339A1 (en) Substrate integrated waveguide cavity-backed dual-polarized multi-band antenna
WO2024001072A1 (zh) 天线模组、天线阵列及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22827579

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022827579

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022827579

Country of ref document: EP

Effective date: 20231211

WWE Wipo information: entry into national phase

Ref document number: 18573036

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE