WO2023124887A1 - 天线结构、封装天线、芯片和电子设备 - Google Patents

天线结构、封装天线、芯片和电子设备 Download PDF

Info

Publication number
WO2023124887A1
WO2023124887A1 PCT/CN2022/137702 CN2022137702W WO2023124887A1 WO 2023124887 A1 WO2023124887 A1 WO 2023124887A1 CN 2022137702 W CN2022137702 W CN 2022137702W WO 2023124887 A1 WO2023124887 A1 WO 2023124887A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiator
antenna
unit
ground
grounding
Prior art date
Application number
PCT/CN2022/137702
Other languages
English (en)
French (fr)
Inventor
戴祯坊
许志玮
李建铭
宇恩佐
蔡智宇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023124887A1 publication Critical patent/WO2023124887A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas

Definitions

  • the present application relates to the technical field of communication, and in particular to an antenna structure, packaged antenna, chip and electronic equipment.
  • an antenna As a device for transmitting and receiving electromagnetic waves, an antenna is an important part of electronic equipment.
  • an antenna in addition to setting a vertical antenna (broadside antenna, BR Antenna) in the electronic device, an end-fire antenna (end-fire antenna, EF Antenna) can also be set.
  • BR Antenna broadside antenna
  • EF Antenna end-fire antenna
  • the present application provides an antenna structure, a packaged antenna, a chip and an electronic device, and the area of the antenna structure can be reduced by multiplexing and co-constructing part of the antenna structure of the vertical antenna and the end-fire antenna.
  • An embodiment of the present application provides an antenna structure on the one hand, including: a ground plate, a first radiating unit, a second radiating unit, a third radiating unit, a first feeding stub and a second feeding stub; the first radiating unit and the grounding
  • the floor is arranged at intervals along the virtual Z axis and arranged oppositely, the first radiating unit and the second radiating unit are arranged at intervals along the virtual X axis, and the first gap between the first radiating unit and the second radiating unit is along the virtual Y axis extension, the third radiating unit and the second radiating unit are arranged at intervals along the virtual Z-axis and are arranged oppositely, the first radiating unit, the second radiating unit, and the third radiating unit are respectively coupled and connected to the ground plate; the first feeding stub At least a part of the second feeding stub is arranged in the first aperture, the first aperture includes the space between the first gap and the ground plate, at least a part of the second feeding
  • the embodiment of the present application provides an antenna structure, the first feeding branch, the first radiating unit and the second radiating unit can realize the vertical polarization of the vertical antenna, the second feeding branch, the second radiating unit and the third radiating unit
  • the vertical polarization of the end-fire antenna can be realized.
  • the radiation pattern of the antenna structure can be the vertical direction or the end-fire direction. Field type, so that the antenna structure can achieve a larger radiation coverage in a smaller area and improve the antenna gain.
  • the first radiation unit includes a first radiator and a second radiator arranged at intervals along the Y axis, and a second gap between the first radiator and the second radiator extends along the X axis ;
  • the second radiation unit includes a third radiator and a fourth radiator arranged at intervals along the Y axis, and a third gap between the third radiator and the fourth radiator extends along the X axis;
  • the third radiation unit includes a third radiator along the Y axis.
  • the fifth radiator and the sixth radiator are arranged at intervals along the axis, and the fourth gap between the fifth radiator and the sixth radiator extends along the X axis.
  • each radiating unit By arranging each radiating unit as two parts separated by a gap, the location arrangement of the feeding stub is facilitated.
  • the antenna structure further includes a third feeding stub, at least a part of the third feeding stub is disposed in the third aperture, and the third aperture includes the second gap and the gap between the third gap and the ground plate. space.
  • the third feeding branch, the first radiating unit and the second radiating unit can constitute a horizontally polarized vertical antenna, so as to realize dual polarization of the vertical antenna, further increase the radiation coverage of the antenna structure, and improve the antenna gain, and
  • the electric field between the horizontal polarization and the vertical polarization of the vertical antenna is orthogonal, and the dual-polarization vertical antenna has high isolation and can be operated simultaneously.
  • the antenna structure further includes a fourth radiating unit and a fourth feeding stub; the fourth radiating unit is arranged between the third radiating unit and the second radiating unit and is coupled to the ground plate, and the fourth The radiation unit includes a seventh radiator and an eighth radiator, the seventh radiator is arranged between the third radiator and the fifth radiator, and the eighth radiator is arranged between the fourth radiator and the sixth radiator;
  • the four feeding branches include a first feeding structure and a second feeding structure, the first feeding structure is coupled to the seventh radiator, and the second feeding structure is coupled to the eighth radiator.
  • the fourth radiating unit and the fourth feeding branch can form a horizontally polarized end-fire antenna to achieve dual polarization of the end-fire antenna, further increase the radiation coverage of the antenna structure, improve the antenna gain, and the level of the end-fire antenna
  • the electric field is orthogonal between the polarization and the vertical polarization, and the dual-polarized endfire antenna is highly isolated and can be operated simultaneously.
  • the antenna structure includes a first ground unit, a second ground unit, a third ground unit, and a fourth ground unit; the first ground unit is connected between the first radiator and the ground plate, and the second The grounding unit is connected between the second radiator and the grounding plate, the third grounding unit is connected between the third radiator and the grounding plate, the third grounding unit is connected at one end of the third radiator facing the first radiator, and the third grounding unit is connected between the third radiator and the grounding plate.
  • the four grounding units are connected between the fourth radiator and the grounding plate, the fourth grounding unit is connected to one end of the fourth radiator facing the second radiator, the seventh radiator is connected to the third grounding unit, and the eighth radiator is connected to the second radiator.
  • the fourth ground unit is connected.
  • the four radiators of the first radiating unit and the second radiating unit are respectively connected to the grounding plate through four grounding units, and the two radiators of the fourth radiating unit are indirectly grounded by means of the corresponding grounding unit of the second radiating unit, Therefore, the compact arrangement of the grounding structure can be realized, and the space utilization rate can be improved.
  • the third grounding unit includes a first grounding wall and a second grounding wall, the first grounding wall and the second grounding wall are respectively connected to the third radiator at the first position and the second position, and the first grounding wall
  • the first position and the second position are arranged at intervals on the third radiator, wherein the first grounding wall is located on the side of the third radiator close to the fourth radiator, the seventh radiator is connected to the first grounding wall, and the second grounding wall
  • a first switch is connected between the wall and the grounding plate
  • the fourth grounding unit includes a third grounding wall and a fourth grounding wall, and the third grounding wall and the fourth grounding wall are respectively connected to the fourth radiator at the third position and the fourth position, the third position and the fourth position are arranged at intervals on the fourth radiator, wherein the third ground wall is located on the side of the fourth radiator close to the third radiator, the eighth radiator is connected to the third ground wall, A second switch is connected between the fourth ground wall and the ground plate.
  • Both the third grounding unit and the fourth grounding unit are set as two metal walls separated by a hollow area to reduce unnecessary resonance, and at the same time facilitate the setting of the first switch and the second switch, so that the switch can be used to control the second Whether the radiating element is grounded to switch the field pattern in the vertical direction or the field pattern in the endfire direction.
  • the antenna structure When the antenna structure is in the end-fire mode, the second radiating element is grounded by controlling the first switch and the second switch to be short-circuited, so as to create the boundary condition of the minimum electric field on both sides of the vertically polarized radiation aperture of the end-fire antenna; when the antenna structure When in the vertical mode, the main radiation aperture can be returned to the vertical antenna by controlling the first switch and the second switch to be disconnected.
  • the antenna structure further includes a third switch and a fourth switch, the third switch is connected between the fifth radiator and the sixth radiator, and the third switch is located at the At one end of the radiation unit, the fourth switch is connected between the third radiator and the fourth radiator, and the fourth switch is located at one end of the second radiation unit close to the first radiation unit.
  • control the third switch to short circuit and the fourth switch to open circuit when the antenna structure is in vertical mode, control the third switch to short circuit and the fourth switch to open circuit; when the antenna structure is in end-fire mode, control the third switch to open circuit and the fourth switch to short circuit, so as to achieve vertical and end-fire field type operation.
  • both the seventh radiator and the eighth radiator are arranged perpendicular to the ground plate, the first end of the seventh radiator is connected to the third ground unit, and the second end of the seventh radiator faces away from One side of the eighth radiator extends, the first end of the eighth radiator is connected to the fourth ground unit, and the second end of the eighth radiator extends toward a side away from the seventh radiator.
  • Such arrangement can maximize the radiation aperture between the seventh radiating body and the eighth radiating body while minimizing the influence of the grounding of the fourth radiating unit on the radiation pattern of the vertical antenna.
  • the first feeder branch extends along the X-axis
  • the projection of the first end of the first feeder branch on the XY plane is located within the projection of the second gap on the XY plane
  • the first feeder branch The projection of the second end of the electrical branch on the XY plane is located within the projection of the third gap on the XY plane;
  • the second feeding branch extends along the Z axis, and one end of the second feeding branch is coupled to the second radiation unit.
  • the first feeding stub may straddle the first gap to excite the first radiating unit and the second radiating unit to form the vertically polarized radiation of the vertical antenna in the first aperture; the second feeding stub may straddle the second gap in the Z direction
  • the space between the second radiating unit and the third radiating unit excites the second radiating unit and the third radiating unit to form vertically polarized radiation of the endfire antenna in the second aperture.
  • the first gap includes a first sub-gap and a second sub-gap, the first sub-gap is between the first radiator and the third radiator, and the second sub-gap is between the second radiator and the second radiator.
  • the third feeding branch extends along the Y axis, the projection of the first end of the third feeding branch on the XY plane is located within the projection of the first sub-gap on the XY plane, and the third feeding branch The projection of the second end of the branch on the XY plane is located within the projection of the second sub-gap on the XY plane.
  • the third feeding branch may straddle the connected gap between the second gap and the third gap, and the third feeding branch may excite the first radiation unit and the second radiation unit to form horizontally polarized radiation in the third aperture.
  • the first grounding unit includes a first grounding segment, a second grounding segment, and a third grounding segment connected in sequence, the first grounding segment is connected to the first radiator, and the third grounding segment is connected to the grounding plate, The first ground segment and the third ground segment extend along the Z axis, and the second ground segment extends along the XY plane.
  • the grounding unit By arranging the grounding unit as a multi-segment bent structure, it is beneficial to reduce the height between the radiator and the grounding plate while satisfying the electrical length, thereby reducing the overall volume of the antenna structure.
  • the third ground wall includes a fourth ground section, a fifth ground section, and a sixth ground section connected in sequence, the fourth ground section is connected to the fourth radiator, and the sixth ground section is connected to the ground plate,
  • the fourth ground segment and the sixth ground segment extend along the Z axis, and the fifth ground segment extends along the XY plane.
  • the ground wall As a multi-segment bent structure, it is beneficial to reduce the height between the radiator and the ground plate while satisfying the electrical length, thereby reducing the overall volume of the antenna structure.
  • the third radiation unit reuses part of the structure of the ground plate.
  • the third radiating unit may be a part of the grounding plate, so as to reduce the volume of the antenna structure, and at the same time, facilitate the grounding design of the third radiating unit.
  • the antenna structure includes a vertical antenna and an end-fire antenna
  • the vertical antenna includes a first radiating unit, a second radiating unit, a first feeding stub, a third feeding stub and a ground plate
  • the radiating antenna includes a second radiating unit, a third radiating unit, a fourth radiating unit, a second feeding stub, a fourth feeding stub and a grounding plate.
  • the vertical antenna and the end-fire antenna co-structure multiplex the second radiating unit, the third grounding unit and the fourth grounding unit, and the second radiating unit can simultaneously serve as at least a part of the radiator of the vertical antenna and the end-fired antenna, and the third The radiating unit can be used as the reference ground of the vertical antenna and at the same time as the radiator of the end-fire antenna. Therefore, the antenna structure provided by the embodiment of the application can greatly reduce the vertical antenna while combining the functions of the vertical antenna and the end-fire antenna.
  • the integrated area of the antenna and the end-fire antenna can be used as the reference ground of the vertical antenna and at the same time as the radiator of the end-fire antenna.
  • the vertical antenna includes a vertical vertical polarization pattern and a vertical horizontal polarization field pattern
  • the first feeding branch feeds the first radiating unit and the second radiating unit to form a vertical Vertical polarization pattern
  • the third feeding branch feeds the first radiating unit and the second radiating unit to form a vertical and horizontal polarization pattern
  • the end-fire antenna includes an end-fire vertical polarization pattern and an end-fire horizontal polarization Field type
  • the second feeding branch feeds the second radiating unit and the third radiating unit to form an end-fire vertically polarized field
  • the fourth feeding branch feeds the fourth radiating unit to form an end-fired horizontally polarized field type.
  • the antenna structure provided by the embodiment of the present application can implement a dual-polarized vertical antenna and a dual-polarized end-fire antenna, so as to realize the polarization diversity of the antenna structure, which helps to improve transmission throughput and signal stability in weak signal areas , to meet the requirements of signal transmission.
  • the first radiator, the second radiator, the third radiator, and the fourth radiator are all rectangles with missing corners, and the first radiator, the second radiator, and the third radiator , The fourth radiator is centrosymmetric with respect to the central point.
  • Increasing the notch on the radiator can increase the electrical length of the radiator, and setting the four radiators to be centrally symmetrical is beneficial to improving the overall performance of the antenna structure.
  • Another aspect of the embodiments of the present application provides a packaged antenna, including a transceiver chip and the above-mentioned antenna structure, where the transceiver chip and the antenna structure are electrically connected and packaged in the same substrate.
  • the antenna structure can radiate electromagnetic waves according to the received electromagnetic signals, and/or send electromagnetic signals to the transceiver chip according to the received electromagnetic waves, thereby realizing wireless communication.
  • the packaged antenna provided in the embodiment of the present application has small area, large coverage, and antenna gain Big plus.
  • Another aspect of the embodiment of the present application provides a chip, including a radio frequency module and the above-mentioned antenna structure.
  • the antenna structure can be integrated with the radio frequency module in a chip to improve the performance of the chip.
  • Still another aspect of the embodiments of the present application provides an electronic device, including the above-mentioned antenna structure or the above-mentioned packaged antenna or the above-mentioned chip.
  • the electronic device provided by the embodiment of the present application can be applied to various antennas by using the antenna structure provided by the above-mentioned embodiment of the present application. It can increase the radiation pattern and improve the signal coverage and signal without increasing the occupied area of the antenna. quality.
  • the electronic device includes a front side and a back side arranged oppositely, and the front side and the back side are connected by a middle frame, and the middle frame includes a top, a right side, a bottom and a left side connected in sequence;
  • the number of antenna structures is Three, wherein one antenna structure is arranged on the back of the electronic device and the distance from the upper edge of the top does not exceed the first threshold, and the other two antenna structures are respectively arranged on the left side and the right side, and are respectively connected to the left side of the left side.
  • the distance between the edge and the right edge of the right portion is within a second threshold.
  • the three antenna structures are respectively placed on the top, left side and right side of the electronic device, and each antenna structure can perform independent beam forming and beam scanning, so a larger radiation coverage can be achieved. Moreover, placing the antenna structure on or near the side of the electronic device can effectively utilize the space of the electronic device and reduce the space occupied by the circuit board and other existing electronic devices inside the electronic device.
  • an electronic device including an antenna structure
  • the antenna structure can be operated as a vertical antenna and an end-fire antenna
  • the antenna structure includes a first radiating unit, a second radiating unit, and a third radiating unit; Wherein the first radiating unit and the second radiating unit are used as the radiator of the vertical antenna to radiate the electromagnetic wave of the vertical antenna, and the second radiating unit and the third radiating unit are used as the radiator of the end-fire antenna to radiate the electromagnetic wave of the end-fire antenna electromagnetic waves.
  • the antenna structure includes a ground plate to ground the vertical antenna and the end-fire antenna.
  • At least a part of the third radiation unit may be formed by a ground plate.
  • the antenna structure includes a substrate, the vertical antenna and the end-fire antenna are disposed on the substrate, the main radiation direction of the vertical antenna is the first radiation direction, and the main radiation direction of the end-fire antenna is the second radiation direction. direction.
  • the first radiation direction is a direction perpendicular to the substrate
  • the second radiation direction is a direction parallel to the substrate
  • the antenna structure when the vertical antenna radiates, the antenna structure works in the vertical mode, and when the end-fire radiates, the antenna structure works in the end-fire mode, wherein the antenna structure is between the vertical mode and the end-fire mode switch.
  • the antenna structure can be switched between the vertical mode and the end-fire mode through a switch.
  • the antenna structure can be switched between a vertical mode and an end-fire mode according to received signals.
  • both the vertical antenna and the end-fire antenna are dual-polarized antennas.
  • the vertical antenna includes a vertical vertical polarization field type and a vertical horizontal polarization field type, both of which can be operated simultaneously.
  • the endfire antenna includes an endfire vertical polarization pattern and an endfire horizontal polarization pattern, both of which can be operated simultaneously.
  • the embodiment of the present application provides an antenna structure, a packaged antenna, a chip and an electronic device.
  • the related technologies put together can greatly reduce the overall use area of the antenna structure, so that the antenna structure can be placed on the side of the electronic device.
  • the field pattern can greatly improve the antenna coverage angle and antenna gain.
  • FIG. 1 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 2 is an exploded view of an electronic device provided by an embodiment of the present application.
  • FIG. 3 is a communication system architecture of an electronic device provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a packaging structure of an antenna structure provided by an embodiment of the present application.
  • FIG. 5 is a schematic layout diagram of an antenna structure in an electronic device provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a packaging structure of an antenna unit of an antenna structure provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of an antenna unit of an antenna structure provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a vertical antenna in an antenna structure provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of an endfire antenna in an antenna structure provided by an embodiment of the present application.
  • FIG. 10 is a schematic plan view of an antenna structure provided by an embodiment of the present application.
  • FIG. 11 is a folded topology diagram of the planar aperture structure of the antenna structure provided by an embodiment of the present application.
  • FIG. 12 is a structural schematic diagram of another angle of the antenna structure provided by an embodiment of the present application.
  • FIG. 13 is a side view of an antenna structure provided by an embodiment of the present application.
  • FIG. 14 is a structural schematic diagram of another angle of the antenna structure provided by an embodiment of the present application.
  • FIG. 15 is a side view from another angle of the antenna structure provided by an embodiment of the present application.
  • Fig. 16 is a schematic structural diagram of a metal wall provided by an embodiment of the present application.
  • FIG. 17 is a schematic top view of an antenna structure provided by an embodiment of the present application.
  • FIG. 18 is a radiation gain pattern diagram of an antenna structure provided by an embodiment of the present application.
  • FIG. 19 is a cumulative function diagram of the antenna gain distribution of the antenna structure provided by an embodiment of the present application.
  • FIG. 20 is an antenna gain pattern diagram on the YZ plane of the antenna structure provided by an embodiment of the present application.
  • FIG. 21 is another structural schematic diagram of an antenna structure provided by an embodiment of the present application.
  • Fig. 22a is a diagram of the vertical and end-fired vertically polarized radiation gain patterns of the antenna structure provided in Fig. 21 in the low frequency band;
  • Fig. 22b is a diagram of the vertical and end-fired vertical polarization radiation gain patterns of the antenna structure provided in Fig. 21 in the high frequency band;
  • FIG. 23 is another structural schematic diagram of the antenna structure provided by an embodiment of the present application.
  • Fig. 24a is the vertical and end-fired horizontally polarized radiation gain pattern diagram of the antenna structure provided in Fig. 23 in the low frequency band;
  • Fig. 24b is a diagram of the vertical and end-fired horizontally polarized radiation gain patterns of the antenna structure provided in Fig. 23 in the high frequency band.
  • 100-electronic equipment 101-central processing unit chip; 102-low frequency baseband chip; 103-intermediate frequency baseband chip; 104-package antenna; - cover plate; 15 - PCB;
  • 200-antenna structure 20-substrate; 21-first radiating unit; 211-first radiating body; 212-second radiating body; 22-second radiating unit; 221-third radiating body; 222-fourth radiating body 23-the third radiator; 231-the fifth radiator; 232-the sixth radiator; 24-the fourth radiator; 241-the seventh radiator;
  • 30-grounding plate 31-the first feeding branch; 311-the first feeding part; 32-the second feeding branch; 321-connecting branch; 33-the third feeding branch; 331-the second feeding part; 34- The fourth feeding branch; 341-the first feeding structure; 342-the second feeding structure; 343-parasitic unit; 351-the first grounding unit; 352-the second grounding unit; 361-the third grounding unit; 362- The fourth grounding unit; SW1-the first switch; SW2-the second switch; SW3-the third switch; SW4-the fourth switch.
  • PCB printed circuit board
  • Coupling It can be understood as direct coupling and/or indirect coupling.
  • Coupling connection can be understood as direct coupling connection and/or indirect coupling connection.
  • Direct coupling can also be called “electrical connection”, and “indirect coupling” can be understood as two Conductors are electrically connected by means of separation/non-contact.
  • Indirect coupling can also be understood as capacitive coupling, for example, the equivalent capacitance is formed through the coupling between the gaps between two conductive parts to realize signal transmission.
  • the coupling phenomenon refers to the close cooperation and mutual influence between the input and output of two or more circuit elements or electrical networks, and through the interaction from one side to the other side The phenomenon of energy transfer.
  • connection Through the above “electrical connection” or “coupling connection”, two or more components are conducted or communicated to perform signal/energy transmission, which can be called connecting.
  • connection It can refer to a mechanical connection or a physical connection, that is, the connection between A and B can mean that there are fastening components (such as screws, bolts, rivets, etc.) between A and B, or that A and B are in contact with each other and A Difficult to separate from B.
  • fastening components such as screws, bolts, rivets, etc.
  • Relative setting The relative setting of A and B can refer to the setting of A and B face to face (opposite to, or face to face).
  • Aperture/Gap It can refer to a closed or semi-closed, open or semi-open space enclosed between conductors. It should be understood that an aperture can be a space filled with any dielectric/dielectric, including air-filled or vacuum-filled Space. In some embodiments, an aperture may refer to a space through which a radiated signal may pass.
  • Electrical length can refer to the physical length (that is, mechanical length or geometric length) multiplied by the transmission time of an electrical or electromagnetic signal in a medium and the signal required to pass the same distance as the physical length of the medium in free space Expressed as a ratio of time, the electrical length can satisfy the following formula:
  • L is the physical length
  • a is the transmission time of the electric or electromagnetic signal in the medium
  • b is the medium transmission time in free space.
  • the electrical length can also refer to the ratio of the physical length (i.e. mechanical length or geometric length) to the wavelength of the transmitted electromagnetic wave, and the electrical length can satisfy the following formula:
  • L is the physical length
  • is the wavelength of the electromagnetic wave.
  • the physical length of the radiator may be understood as ⁇ 10% of the electrical length of the radiator.
  • Wavelength or working wavelength, which may refer to the wavelength corresponding to the central frequency of the resonance frequency or the central frequency of the working frequency band supported by the antenna.
  • the working wavelength can be the wavelength calculated by using the frequency of 1955MHz.
  • the "operating wavelength” may also refer to the resonant frequency or the wavelength corresponding to the non-central frequency of the operating frequency band.
  • collinearity, coplanarity, symmetry (axisymmetric, or central symmetric, etc.), parallel, vertical, etc. mentioned in the embodiments of the present application are all aimed at the current technological level, rather than being absolutely strict in the mathematical sense.
  • a predetermined threshold for example, 1 mm, 0.5 m, or 0.1 mm
  • There may be a deviation smaller than a predetermined threshold for example, 1mm, 0.5m, or 0.1mm
  • a predetermined threshold for example, 1mm, 0.5m, or 0.1mm
  • a predetermined threshold for example, 1mm, 0.5m, or 0.1mm
  • a predetermined angle eg, ⁇ 5°, ⁇ 10°
  • the technical solutions provided by this application can be applied to electronic equipment using one or more of the following communication technologies: bluetooth (blue-tooth, BT) communication technology, global positioning system (global positioning system, GPS) communication technology, wireless fidelity ( Wireless fidelity, Wi-Fi) communication technology, global system for mobile communications (GSM) communication technology, wideband code division multiple access (WCDMA) communication technology, long term evolution (long term evolution, LTE) communication technology, 5G communication technology and other communication technologies in the future.
  • bluetooth blue-tooth, BT
  • global positioning system global positioning system, GPS
  • wireless fidelity Wireless fidelity, Wi-Fi
  • GSM global system for mobile communications
  • WCDMA wideband code division multiple access
  • LTE long term evolution
  • 5G communication technology 5G communication technology and other communication technologies in the future.
  • the electronic device in the embodiment of the present application may be a mobile phone, a tablet computer, a notebook computer, a smart home, a smart bracelet, a smart watch, a smart helmet, smart glasses, and the like.
  • the electronic device may also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), a Functional handheld devices, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, virtual reality/augmented reality/mixed reality devices, electronic devices in 5G networks or future evolution of public land mobile network (public land mobile network) , electronic equipment in the PLMN), etc., which are not limited in this embodiment of the present application.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • FIG. 1 is a schematic structural diagram of an electronic device provided by an embodiment of the present application
  • FIG. 2 is an exploded view of the electronic device provided by an embodiment of the present application.
  • FIG. 1 and FIG. 2 exemplarily show an electronic device provided by the present application, and the electronic device is a mobile phone for illustration.
  • the electronic device 100 may include: a middle frame (middle frame) 11, a display (display) 12, a rear cover (rear cover) 13, a cover (cover) 14 and a printed circuit board (printed circuit board, PCB) 15.
  • the display screen 12 and the rear cover 13 are respectively connected to two sides of the middle frame 11, and the three surround to form a storage space for accommodating the PCB 15 and other devices.
  • the display screen 12 may include a liquid crystal display panel (liquid crystal display, LCD), a light emitting diode (light emitting diode, LED) display panel or an organic light emitting semiconductor (organic light-emitting diode, OLED) display panel, etc. There is no limit.
  • liquid crystal display panel liquid crystal display, LCD
  • light emitting diode light emitting diode, LED
  • organic light emitting semiconductor organic light-emitting diode, OLED
  • the cover plate 14 can be arranged close to the display screen 12 , and can be mainly used for protecting and dustproofing the display screen 12 .
  • Cover plate 14 can be glass cover plate (cover glass), also can be replaced by the cover plate of other materials, such as ultra-thin glass material cover plate, PET (Polyethylene terephthalate, polyethylene terephthalate) material cover plate etc. .
  • the back cover 13 can be a back cover made of a metal material, or a back cover made of a non-conductive material, such as a glass back cover, a plastic back cover and other non-metallic back covers.
  • the middle frame 11 mainly plays a supporting role for the whole machine.
  • the PCB 15 can be arranged between the middle frame 11 and the rear cover 13 , or the PCB 15 can also be arranged between the middle frame 11 and the display screen 12 .
  • the PCB 15 can use a flame-resistant material (FR-4) dielectric board, or a Rogers (Rogers) dielectric board, or a mixed media board of Rogers and FR-4, and so on.
  • FR-4 is a code name for a flame-resistant material grade
  • Rogers dielectric board is a high-frequency board.
  • Various electronic components, such as radio frequency chips, can be carried on the PCB 15 .
  • a metal layer may be disposed on the PCB 15 .
  • the metal layer can be used for grounding of electronic components carried on the PCB 15 , and can also be used for grounding of other components, such as bracket antennas, frame antennas, etc.
  • the metal layer can be called a floor, or a ground plane, or a ground layer.
  • the metal layer can be formed by etching metal on the surface of any dielectric board in the PCB 15 .
  • the metal layer for grounding can be disposed on the side of the PCB 15 close to the middle frame 11 .
  • the edges of the PCB 15 can be considered as the edges of its ground plane.
  • the metal middle frame 11 can also be used for grounding the above components.
  • the electronic device 100 may also have other floors/ground planes/ground layers, which will not be repeated here.
  • the electronic device 100 may also include a battery (not shown in the figure).
  • the battery can be arranged between the middle frame 11 and the back cover 13 , or between the middle frame 11 and the display screen 12 .
  • the PCB 15 can be divided into a main board and a sub-board, the battery can be arranged between the main board and the sub-board, the main board can be arranged between the middle frame 11 and the upper edge of the battery, and the sub-board can be arranged in the middle between frame 11 and the lower edge of the battery.
  • the electronic device 100 may further include a frame 16, and the frame 16 may be formed of a conductive material such as metal.
  • the bezel 16 may be disposed between the display screen 12 and the rear cover 13 and extend circumferentially around the periphery of the electronic device 100 .
  • Bezel 16 may have four sides surrounding display screen 12 to help secure display screen 12 .
  • the frame 16 made of metal material can be directly used as the metal frame of the electronic device 100 to form the appearance of a metal frame, which is suitable for metal industrial design (ID).
  • the outer surface of the frame 16 can also be made of non-metallic material, such as a plastic frame, to form the appearance of a non-metal frame, which is suitable for a non-metal ID.
  • the middle frame 11 may include a frame 16, and the middle frame 11 including the frame 16 as an integral part may support the electronic devices in the whole machine.
  • the cover plate 14 and the rear cover 13 are respectively covered along the upper and lower edges of the frame to form a housing or housing of the electronic device.
  • the cover plate 14 , the rear cover 13 , the frame 16 and/or the middle frame 11 may be collectively referred to as a housing or a casing of the electronic device 100 .
  • shell or shell can be used to refer to any part or all of the cover plate 14, the rear cover 13, the frame 16 or the middle frame 11, or to refer to the cover plate 14, the rear cover 13, the frame 16 Or part or all of any combination in the middle frame 11.
  • the frame 16 may not be regarded as a part of the middle frame 11 .
  • the frame 16 can be connected with the middle frame 11 and integrally formed.
  • the frame 16 may include a protruding piece extending inwards to connect with the middle frame 11 , for example, by means of spring clips, screws, welding and the like.
  • the protruding part of the frame 16 can also be used to receive a feed signal, so that at least a part of the frame 16 acts as a radiator of the antenna to receive/transmit radio frequency signals.
  • the back cover 13 can be a back cover made of a metal material, or a back cover made of a non-conductive material, such as a glass back cover, a plastic back cover and other non-metallic back covers.
  • the antenna of the electronic device 100 can also be disposed inside the frame 16 .
  • the antenna radiator may be located in the electronic device 100 and arranged along the frame 16 .
  • the antenna radiator is arranged close to the frame 16 to minimize the volume occupied by the antenna radiator and to be closer to the outside of the electronic device 100 to achieve better signal transmission effect.
  • the arrangement of the antenna radiator close to the frame 16 means that the antenna radiator can be arranged close to the frame 16 or close to the frame 16 , for example, there can be a certain small gap between the antenna radiator and the frame 16 .
  • the antenna of the electronic device 100 can also be arranged in the casing, such as a bracket antenna, a millimeter wave antenna, etc., and the clearance of the antenna arranged in the casing can be defined by the middle frame, and/or frame, and/or rear cover, and/or display screen
  • the slits/openings on any one of them, or the non-conductive gaps/apertures formed between any of them, the clearance setting of the antenna can ensure the radiation performance of the antenna.
  • the clearance of the antenna may be a non-conductive area formed by any conductive components in the electronic device 100, and the antenna radiates signals to the external space through the non-conductive area.
  • the form of the antenna can be an antenna form based on a flexible main board (Flexible Printed Circuit, FPC), an antenna form based on laser direct forming (Laser-Direct-structuring, LDS) or a microstrip antenna (Microstrip Disk Antenna, MDA) and other antenna forms.
  • FPC Flexible Printed Circuit
  • LDS Laser-Direct-structuring
  • MDA microstrip antenna
  • the antenna may also adopt a transparent structure embedded in the screen of the electronic device 100 , so that the antenna is a transparent antenna unit embedded in the screen of the electronic device 100 .
  • FIG. 1 and FIG. 2 only schematically show some components included in the electronic device 100 , and the actual shape, actual size and actual configuration of these components are not limited by FIG. 1 .
  • the surface on which the display screen of the electronic device is located can be defined as the front (Front, +Z), the surface on which the back cover is located is the back (Back, -Z), and the surface on which the frame is located is the side.
  • the orientation of the electronic device has top (Top, +Y), bottom (Bottom, -Y), left side (Left, -X) and the right side (Right, +X).
  • FIG. 3 is a communication system architecture of an electronic device provided by an embodiment of the present application.
  • the electronic device 100 also includes a central processing unit (central processing unit, CPU) chip 101, a low-frequency baseband chip 102, an intermediate-frequency baseband chip 103, and an antenna-in-package (AIP) (also known as a substrate antenna) )104.
  • CPU central processing unit
  • AIP antenna-in-package
  • the packaged antenna 104 may include a transmitter and/or receiver (T/R) chip 105 and an antenna structure (antenna-in-module) 200, and the transceiver chip 105 is electrically connected to the antenna structure 200.
  • the transceiver chip 105 is used for sending and/or receiving electromagnetic wave signals to the antenna structure 200 .
  • the antenna structure 200 is used for radiating electromagnetic waves according to the received electromagnetic signals, and/or sending electromagnetic signals to the transceiver chip 105 according to the received electromagnetic waves, so as to realize wireless communication of the electronic device 100 .
  • the transceiver chip 105 may be a millimeter wave (mmW) transceiver chip.
  • mmW millimeter wave
  • the electronic device 100 is a mobile phone with a millimeter wave function, and the electronic device 100 can work in the millimeter wave frequency band.
  • the transceiver chip 105 may also be other radio frequency modules (radio frequency module, AF module) capable of transmitting and/or receiving radio frequency signals.
  • the low-frequency baseband chip 102 and the intermediate-frequency baseband chip 103 can be, for example, digital computing chips, and the millimeter-wave chip can be, for example, a digital-to-analog conversion chip. Due to the high operating frequency of the millimeter-wave chip (>20GHz), the RF link loss is large. , so after the millimeter-wave chip sends and receives the millimeter-wave signal, it can be down-frequency through the intermediate-frequency baseband chip 103 first, and the intermediate-frequency signal (5-11GHz) with relatively low travel loss is returned to the low-frequency baseband chip 102 ( ⁇ 2GHz) for digital processing. operation.
  • the IF baseband chip 103 and the antenna structure 200 can be integrated into the same module to form a millimeter wave module.
  • the low-frequency baseband chip 102 and the intermediate-frequency baseband chip 103 may be integrated into the same chip, for example, may be integrated into a millimeter wave module.
  • the low-frequency baseband chip 102 and the intermediate-frequency baseband chip 103 may be integrated into the same chip, and may be integrated into the radio frequency chip of the CPU chip 101 .
  • the embodiment of the present application does not specifically limit the technical implementation forms of the CPU chip 101 , the low-frequency baseband chip 102 , the intermediate-frequency baseband chip 103 , and the packaged antenna 104 .
  • the antenna-in-package 104 may be applicable to other frequency bands besides being applicable to the millimeter wave module, which is not limited in this embodiment of the present application.
  • the CPU chip 101 , the low frequency baseband chip 102 , the intermediate frequency baseband chip 103 and the packaged antenna 104 can all be mounted on the PCB 15 .
  • the CPU chip 101 can be mounted on the PCB 15, and the low-frequency baseband chip 102, the intermediate-frequency baseband chip 103 and the packaged antenna 104 can be mounted on a connecting board (not shown in the figure).
  • the connection board is electrically connected to the PCB 15, and the connection board can be a rigid circuit board or a flexible circuit board.
  • the number of low-frequency baseband chips 102 can also be 1 or 3 or more, and/or the number of intermediate-frequency baseband chips 103 can also be 1 or 3 or more, and/or, the package There may also be one antenna 104 or three or more antennas, and/or the low-frequency baseband chip 102 and the intermediate-frequency baseband chip 103 are integrated into one chip.
  • antenna 104 or three or more antennas, and/or the low-frequency baseband chip 102 and the intermediate-frequency baseband chip 103 are integrated into one chip.
  • the antenna structure 200 can be set alone without forming the packaged antenna 104 with the transceiver chip 105. At this time, the antenna structure 200 can be connected to the radio frequency chip through a signal cable or a flexible circuit board, so as to realize electromagnetic wave transmission. Signal sending and receiving.
  • the embodiment of the present application provides an antenna structure, which multiplexes and co-structures the partial structures of the vertical antenna (broadside antenna, BR Antenna) and the end-fire antenna (end-fire antenna, EF Antenna), so as to
  • the radiation pattern of the antenna structure can be the field pattern in the vertical BR direction or the field pattern in the end-fire EF direction.
  • the antenna structure under the field pattern in the vertical BR direction and/or the field pattern in the endfire EF direction may support dual-polarization.
  • FIG. 4 is a schematic diagram of a packaging structure of an antenna structure provided by an embodiment of the present application.
  • the antenna structure 200 may include a substrate 20 and multiple antenna structures disposed on the substrate 20 , for example, the figure includes 4 antenna units, and the 4 antenna units may be linearly arranged in a 1*4 structure.
  • the package of the antenna structure 200 can be formed by liquid crystal polymer (liquid crystal polymer, LCP) or heterogeneous polyimide (modified PI) and other flexible flexible board technology, or can be formed by multi-layer lamination (laminate) It can be formed by hard board processes such as circuit boards, or can be formed by packaging processes such as wafer-level fan-out packaging (fan-out wafer level package) or low temperature co-fired ceramic (LTCC).
  • LCP liquid crystal polymer
  • modified PI modified polyimide
  • laminate multi-layer lamination
  • It can be formed by hard board processes such as circuit boards, or can be formed by packaging processes such as wafer-level fan-out packaging (fan-out wafer level package) or low temperature co-fired ceramic (LTCC).
  • the substrate 20 may be a multilayer printed circuit board, each antenna unit may include a vertical antenna and an end-fire antenna, at least a part of the vertical antenna and the end-fire antenna may be embedded in the substrate 20, and the vertical The antenna and the endfire antenna may share part of the radiator and be formed in the same process as the substrate 20 , so as to simplify the forming process of the antenna structure 200 .
  • the main radiation direction of the vertical antenna is the first radiation direction
  • the main radiation direction of the endfire antenna is the second radiation direction
  • the first radiation direction is different from the second radiation direction.
  • the first radiation direction may be a direction perpendicular to the substrate 20 (shown by a solid arrow in the figure)
  • the second radiation direction may be a direction parallel to the substrate 20 (shown by a dotted arrow in the figure).
  • the first radiation direction may be the thickness direction of the substrate 20 (shown by the solid arrow in the figure)
  • the second radiation direction may be the width direction of the substrate 20 (shown by the dotted arrow in the figure).
  • a and B are parallel, which means that A and B are parallel or nearly parallel.
  • a and B are parallel, which means that the angle between A and B is between 0° and 10°.
  • a and B are perpendicular, which means that A and B are perpendicular or nearly perpendicular.
  • a and B are perpendicular, which means that the angle between A and B is between 80 degrees and 100 degrees.
  • FIG. 5 is a schematic layout diagram of an antenna structure in an electronic device provided by an embodiment of the present application.
  • three antenna structures 200 a , 200 b , and 200 c may be provided in the electronic device 100 , and each antenna structure 200 may include four antenna units.
  • the antenna structure 200a can be arranged on the back of the electronic device 100 (the substrate is parallel to the back of the electronic device 100), and close to the top of the electronic device 100, for example, the distance from the upper edge of the top of the middle frame is no more than a first Threshold, the first threshold can be less than 10mm, for example;
  • the antenna structure 200b can be set on the left side of the electronic device 100 (the substrate is parallel to the side wall of the electronic device), for example, embedded on the left side wall of the middle frame, or at a distance from the left side The left edge of the wall does not exceed the second threshold, and the second threshold can be, for example, 0.2mm-1mm;
  • the antenna structure 200c can be arranged on the right side of the electronic device 100 (the substrate is parallel to the side wall of the electronic device), for example, embedded in On the right side wall of the frame, or the distance from the right edge of the right side wall does not exceed the second threshold, and the second threshold may be, for example, 0.2mm-1mm.
  • the antenna structures 200a, 200b and 200c are arranged around the electronic device and are respectively responsible for transmitting/receiving millimeter wave signals in different directions.
  • the three antenna structures are placed on the top, left side and right side respectively, and each antenna structure can do independent beam forming (Beam forming) and beam scanning (Beam Scanning), so it can achieve a large radiation coverage scope.
  • Beam forming beam forming
  • Beam Scanning beam scanning
  • the number of antenna structures 200 in the electronic device 100 is not specifically limited, for example, it may be more than three.
  • the positions of the three antenna structures 200 are not specifically limited, and may not be limited to those shown in the figure.
  • the antenna structure 200 can be affixed to any position on the PCB 15 in the electronic device 100, or the antenna structure 200 can be integrally formed with the PCB 15, at this time, a part of the PCB 15 forms the antenna structure 200, or, the substrate 20 of the antenna structure 200 is a PCB 15 A part; the antenna structure 200 can be packaged on the PCB 15 , or the substrate 20 of the antenna structure 200 is distributed inside the electronic device 100 , located inside the middle frame 11 and electrically connected to the PCB 15 .
  • the elliptical radiation beam located near the antenna structure can represent the radiation gain of the antenna, wherein the ellipse with a dotted outline represents the radiation gain of the endfire antenna, and the ellipse without a dotted outline represents the vertical Radiation gain of the antenna.
  • the maximum radiation gain direction of the vertical antenna of the antenna structure 200a is Back (-Z).
  • the vertical antenna of the antenna structure 200a can perform beam scanning (Beam Steering) on the ZX plane.
  • the maximum radiation gain orientation of the endfire antenna of the antenna structure 200a is Top(+Y).
  • the endfire antenna of the antenna structure 200a can perform beam scanning on the XY plane; the maximum radiation gain of the vertical antenna of the antenna structure 200b is The radiation gain orientation is Left (-X).
  • the vertical antenna of the antenna structure 200b can perform beam scanning on the XY plane, and the maximum radiation gain orientation of the end-fire antenna of the antenna structure 200b is Front (+Z)
  • the endfire antenna of the antenna structure 200b can do beam scanning on the YZ plane; the maximum radiation gain of the vertical antenna of the antenna structure 200c is towards Right(+X), in one embodiment, the antenna structure 200c
  • the vertical antenna can do beam scanning on the XY plane, and the maximum radiation gain of the end-fire antenna of the antenna structure 200c is towards Front (+Z) in front of the screen.
  • the end-fire antenna of the antenna structure 200c can be on the YZ plane Do a beam scan.
  • different numbers and positions of the antenna structures 200 can be operated according to the received signals, so that the antenna structures can perform beam scanning, and/or switch between the vertical mode and the end-fire mode, so as to obtain the best good signal.
  • each antenna structure of the electronic device provided by the embodiment of the present application has a vertical antenna and an end-fire antenna, three antenna structures are provided, and its main radiation direction can realize Right(+X), Left(- Radiation coverage in five directions of X), Back(-Z), Front(+Z) and Top(+Y). It is not difficult to understand that when the three antenna structures in the electronic device are arranged in other positions, radiation coverage in more directions (for example, six directions) can be achieved. In the related art, if three antenna structures are provided in the electronic device, each antenna structure can be a vertical antenna or an end-fire antenna, and its main radiation direction can realize radiation coverage in three directions at most. Therefore, the electronic device provided by the embodiment of the present application can increase the radiation coverage area and improve the antenna gain.
  • the width W of the antenna structure 200 is limited by the side width (thickness) T of the electronic device 100 .
  • T may be smaller than 8mm, 6mm (or even smaller).
  • the width of the antenna structure is estimated to be not less than 5.5mm, and it will not be possible to place it as shown in 200b and 200c in Figure 5
  • the side of the electronic device 100 can only planarly occupy the area of the PCB 15 in the electronic device 100 , which is obviously not conducive to the arrangement of the internal space of the electronic device.
  • the embodiment of the present application provides an antenna structure.
  • the vertical antenna and the end-fire antenna are integrated into one antenna structure, by multiplexing and co-constructing the partial structures of the vertical antenna and the end-fire antenna, the corresponding Compared with the related technology of directly placing the vertical antenna and the end-fire antenna together, the overall usage area of the antenna structure can be greatly reduced.
  • FIG. 6 is a schematic diagram of a packaging structure of an antenna unit of an antenna structure provided by an embodiment of the present application.
  • the substrate 20 may include a top surface 201 and a bottom surface 202 , and the top surface 201 and the bottom surface 202 are disposed opposite to each other and may be parallel to each other.
  • a metal layer and a grounding plate 30 may be provided inside the substrate 20, the grounding plate 30 may be located between the top surface 201 and the bottom surface 202, the grounding plate 30 may be arranged parallel to the top surface 201 and the bottom surface 202, for example, the grounding plate 30 may be provided on the side close to the bottom surface 202 .
  • the top surface 201 , the bottom surface 202 , and the ground plane 30 can all be parallel to the XY plane.
  • the substrate 20 may be provided with multi-layer metal layers and multi-layer insulation layers, and the multi-layer metal layers and multi-layer insulation layers may be arranged/stacked at intervals along the Z-axis direction, and some metal layers may be connected through conductive connection holes and metal pillars.
  • the metal structure in the substrate 20 can be used as a radiation unit, a feeding stub or a grounding unit in the antenna structure 200 .
  • the thickness of the substrate 20 may be between 1mm-1.5mm, such as 1.09mm.
  • FIG. 7 is a schematic structural diagram of an antenna unit of an antenna structure provided by an embodiment of the present application.
  • an antenna structure 200 provided by an embodiment of the present application may include: a ground plate 30, a first radiating unit 21, a second radiating unit 22, a third radiating unit 23, a first feeding branch 31, and a second Two feeding stubs 32 .
  • the first radiating unit 21 and the ground plate 30 may be arranged at intervals along the Z axis and arranged oppositely
  • the first radiating unit 21 and the second radiating unit 22 may be arranged at intervals along the X axis
  • the first radiating unit 21 and the second radiating unit 21 may be arranged at intervals along the X axis.
  • the first gap C1 between the units 22 may extend along the Y axis, the third radiating unit 23 and the second radiating unit 22 may be arranged at intervals along the Z axis and oppositely arranged, the first radiating unit 21, the second radiating unit 22, the second radiating unit
  • the three radiating units 23 may be respectively coupled and connected to the ground plane 30 .
  • the antenna structure 200 provided in the embodiment of the present application may further include: a fourth radiation unit 24 .
  • the fourth radiating unit 24 may be disposed between the second radiating unit 22 and the third radiating unit 23 , and the fourth radiating unit 24 may be coupled to the ground plane 30 .
  • X axis, the Y axis and the Z axis in the embodiment of the present application are perpendicular to each other.
  • the relative positional qualifiers such as "arranged along the X axis" and “extended along the Y axis” mentioned in the embodiments of the present application are not absolute and strict definitions in the mathematical sense, and a small amount of deviation is allowed. For example, it may refer to being arranged along a direction approximately to the X-axis, and extending along a direction approximately to the Y-axis. The approximation here may be, for example, that the deviation angle is less than 10 degrees.
  • a and B are arranged at intervals along the X-axis
  • each of A and B is equal to
  • the effective center points are arranged at intervals along the X-axis, that is, the line connecting the equivalent center points of A and B is located on the X-axis with a certain distance.
  • “gap” can be equivalent to “narrow and long slit", and “gap extending along the Y-axis” can be understood as the length direction of the "narrow and long slit” is in the direction of the Y-axis.
  • the shape of the "gap” is not required, the width of the "gap” can be uniform or approximately uniform, and the edges constituting the “gap” can be straight lines or irregular curves, for example.
  • the first radiation unit 21 may include a first radiator 211 and a second radiator 212 arranged at intervals along the Y axis, and a second gap C2 between the first radiator 211 and the second radiator 212 can be extended along the X axis.
  • the second radiation unit 22 may include a third radiator 221 and a fourth radiator 222 arranged at intervals along the Y axis, and a third gap C3 between the third radiator 221 and the fourth radiator 222 can be extended along the X axis.
  • the third radiation unit 23 may include a fifth radiator 231 and a sixth radiator 232 arranged at intervals along the Y axis, and a fourth gap C4 between the fifth radiator 231 and the sixth radiator 232 can be extended along the X axis.
  • the fourth radiation unit 24 may include a seventh radiator 241 and an eighth radiator 242, the seventh radiator 241 may be disposed between the third radiator 221 and the fifth radiator 231, the eighth radiator The body 242 may be disposed between the fourth radiator 222 and the sixth radiator 232 .
  • the antenna structure 200 may further include: a first ground unit 351 , a second ground unit 352 , a third ground unit 361 , and a fourth ground unit 362 .
  • the first ground unit 351 may be connected between the first radiator 211 and the ground plate 30
  • the second ground unit 352 may be connected between the second radiator 212 and the ground plate 30
  • the third grounding unit 361 may be connected between the third radiator 221 and the grounding plate 30, the third grounding unit 361 may be connected to one end of the third radiator 221 facing the first radiator 211
  • the third The four grounding units 362 may be connected between the fourth radiator 222 and the grounding plate 30
  • the fourth grounding unit 362 may be connected to an end of the fourth radiator 222 facing the second radiator 212 .
  • the seventh radiator 241 may be connected to the third ground unit 361
  • the eighth radiator 242 may be connected to the fourth ground unit 362 .
  • the first feeding stub 31 may be disposed in a first aperture (not marked in the figure), and the first aperture may include a space between the first gap C1 and the ground plate 30 .
  • the first feeding stub 31 may be electrically connected to the feeding source.
  • the first feeding stub 31 is used to excite the first radiating unit 21 and the second radiating unit 22 to generate an electric field along the X-axis in the first aperture.
  • At least a part of the second feeding stub 32 may be disposed in a second aperture (not marked in the figure), and the second aperture may include a space between the second radiating unit 22 and the third radiating unit 23 .
  • the second feeding stub 32 can be electrically connected to the feeding source.
  • the second feeding stub 32 is used to excite the second radiating unit 22 and the third radiating unit 23 to generate an electric field along the Z axis in the second aperture.
  • the antenna structure 200 may further include: a third feeding stub 33 and a fourth feeding stub 34 .
  • At least a part of the third feeding stub 33 may be disposed in a third aperture (not marked in the figure), and the third aperture may include a space between the second gap C2 and the third gap C3 and the ground plate 30 .
  • the third feeding stub 33 may be electrically connected to the feeding source.
  • the third feeding stub 33 is used to excite the first radiating unit 21 and the second radiating unit 22 to generate an electric field along the Y axis in the third aperture.
  • the fourth feeding branch 34 may include a first feeding structure 341 and a second feeding structure 342, the first feeding structure 341 may be coupled to the seventh radiator 241, and the second feeding structure 342 may be connected to the eighth radiator 242 coupling connection.
  • the first feed structure 341 and the second feed structure 342 may be electrically connected to feed sources, respectively.
  • the fourth feeding stub 34 is used to excite the seventh radiator 241 and the eighth radiator 242 to generate an electric field along the Y axis.
  • aperture refers to a three-dimensional space structure, for example, "first aperture” not only includes the first gap C1 between the first radiation unit 21 and the second radiation unit 22, but also includes the first
  • the space on the side of the gap C1 facing the ground plate 30 may also include the space on the side of the first gap C1 facing away from the ground plate 30 .
  • the third radiating unit 23 may be connected to the ground plane 30 or formed by a part of the ground plane 30 . It should be understood that, in another embodiment, the third radiating unit 23 may be disposed above or below the ground plate 30 (the positive direction of the Z-axis in the figure is upward), and connected to the ground plate 30 through a ground stub. In the following embodiments of the present application, the third radiating unit 23 is used as a part of the ground plane 30 for description. In one embodiment, a partial area of one of the metal layers of the substrate (for example, a PCB board) (for example, a metal layer on the upper surface, or any one of the metal layers used as a ground plane) can be used as the third radiation Unit 23.
  • a partial area of one of the metal layers of the substrate for example, a PCB board
  • a metal layer on the upper surface, or any one of the metal layers used as a ground plane can be used as the third radiation Unit 23.
  • the antenna structure 200 provided by the above-mentioned embodiment shown in FIG. 7 integrates a vertical antenna and an end-fire antenna.
  • the antenna structure is split into a vertical antenna and an end-fire antenna below to better explain the advantages provided by the embodiment of the present application. How the antenna structure works.
  • FIG. 7 completely shows four feeding stubs, which are the feeding structures for the vertical antenna and the end-fire antenna respectively, but the solution contained in FIG. 7 is not limited to the four feeding stubs
  • An embodiment of may also include multiple embodiments of a combination of at least one feeder stub.
  • the vertical antenna may include a first feeding stub 31 and/or a third feeding stub 33 .
  • the endfire antenna may include a second feeding stub 32 and/or a fourth feeding stub 34 .
  • FIG. 7 completely shows the vertical polarization of the vertical antenna, the horizontal polarization of the vertical antenna, the vertical polarization of the end-fire antenna, and the horizontal polarization of the end-fire antenna, but the corresponding
  • the solution is not limited to an embodiment in which the dual polarization of the vertical antenna and the dual polarization of the endfire antenna are realized simultaneously.
  • the scheme corresponding to FIG. 7 can also be split into an embodiment of the vertical polarization of the vertical antenna and the horizontal polarization of the vertical antenna, or can be split into the vertical polarization of the end-fire antenna.
  • Fig. 8 provides the embodiment of the present application corresponding to Fig. 7, an embodiment of the split vertical antenna
  • Fig. 9 provides the embodiment of the present application corresponding to Fig. 7, an implementation of the split end-fire antenna example. It is not difficult to understand that an embodiment of the vertical antenna provided in FIG. 8 is not limited to an embodiment of the dual polarization of the vertical antenna, and an embodiment of the end-fire antenna provided in FIG. 9 is not limited to the dipole of the end-fire antenna An example of .
  • FIG. 8 is a schematic structural diagram of a vertical antenna in an antenna structure provided by an embodiment of the present application.
  • the vertical antenna provided by the embodiment of the present application may include a ground plate 30, a first radiating unit 21, a second radiating unit 22, a first grounding unit 351, a second grounding unit 352, and a third grounding unit 352. , the fourth grounding unit 354 , the first feeding stub 31 and the third feeding stub 33 .
  • the first radiation unit 21 and the second radiation unit 22 are main radiators of the vertical antenna.
  • the ground plate 30 of the vertical antenna can be used to form at least a part of the third radiating element 23 in the end-fire antenna.
  • the vertical antenna provided by one embodiment of the present application can be a magnetoelectric dipole (magneto electric dipole) antenna with dual polarization characteristics
  • the first feeding branch 31 is used to excite the first radiating element 21 and the second radiating element 22 generates an electric field along the X axis to excite the vertical antenna to generate vertically polarized radiation.
  • the third feeding branch 33 is used to excite the first radiating unit 21 and the second radiating unit 22 to generate an electric field along the Y axis, and to excite the vertical antenna to generate horizontally polarized radiation.
  • the vertical polarization direction mentioned here refers to the X-axis direction
  • the horizontal polarization direction refers to the Y-axis direction.
  • the first feeding stub 31 may extend along the X-axis, and the projection of the first end of the first feeding stub 31 on the XY plane may be located within the projection of the second gap C2 on the XY plane.
  • the projection of the second end of a feeding stub 31 on the XY plane may be located within the projection of the third gap C3 on the XY plane.
  • the first feeding branch 31 spans the first gap C1, and both ends of the first feeding branch 31 may be coupled and connected to the first radiation unit 21 and the second radiation unit 22 respectively.
  • the first feeding stub 31 can excite the first radiating unit 21 and the second radiating unit 22 to form vertically polarized radiation in the first aperture.
  • the first gap C1 may include a first sub-gap C11 and a second sub-gap C12, the first sub-gap C11 is located between the first radiator 211 and the third radiator 221, and the second sub-gap C12 is between Between the second radiator 212 and the fourth radiator 222, the third feeding branch 33 may extend along the Y axis, and the projection of the first end of the third feeding branch 33 on the XY plane may be located in the first sub-gap C11. Within the projection on the XY plane, the projection of the second end of the third feed stub 33 on the XY plane may be located within the projection of the second sub-gap C12 on the XY plane.
  • the third feeding branch 33 straddles the gap formed by the second gap C2 and the third gap C3, the first end of the third feeding branch 33 can be coupled with the first radiator 211 and the third radiator 221, the third feeding The second end of the electrical stub 33 may be coupled to the second radiator 212 and the fourth radiator 222 .
  • the third feeding stub 33 can excite the first radiating unit 21 and the second radiating unit 22 to form horizontally polarized radiation in the third aperture.
  • the first radiation unit 21 and the second radiation unit 22 may be arranged at intervals along the X axis.
  • both the first radiating unit 21 and the second radiating unit 22 are metal layers, and can be arranged in the same plane, for example, both parallel to the XY plane (a little deviation is allowed).
  • a metal layer of the substrate 20 can form the first radiation unit 21 and the second radiation unit 22 .
  • the first radiating unit 21 and the second radiating unit 22 may be formed in the same process as the metal layer inside the substrate 20 to simplify the manufacturing process.
  • the first feed branch 31 may be formed by a metal layer, and may be arranged in the same plane, for example, parallel to the XY plane.
  • the metal layer where the first feed branch 31 is located may be coplanar with the metal layer where the first radiation unit 21 and the second radiation unit 22 are located.
  • the third feed branch 33 may be formed by a metal layer, and may be arranged in the same plane, for example, parallel to the XY plane.
  • the third feed stub 33 and the first feed stub 31 may be disposed in different metal layers in the substrate 20 .
  • the first grounding unit 351 may be connected to the corner of the first radiator 211 close to the second radiator 212 and the third radiator 221, and the second grounding unit 352 may be connected to the second radiator 212. near the corners of the first radiator 211 and the fourth radiator 222 . Both the first grounding unit 351 and the second grounding unit 352 may extend along the Z axis, and are conductive connection hole structures.
  • the third grounding unit 361 may have a metal wall structure, and the metal wall may be connected to the side of the third radiator 221 close to the first radiator 211, and the fourth grounding unit 362 may have a metal wall structure , the metal wall may be connected to a side of the fourth radiator 222 close to the second radiator 212 .
  • the metal wall can extend along the Z axis, and is a conductive connection hole structure.
  • the width of the first gap C1 may be the same as that of the second gap C2 and the third gap C3.
  • the area and shape of the first radiation unit 21 and the second radiation unit 22 may be the same.
  • the first radiator 211 , the second radiator 212 , the third radiator 221 , and the fourth radiator 222 may have the same area and shape, and be symmetrical about the center.
  • the shapes of the first radiator 211, the second radiator 212, the third radiator 221, and the fourth radiator 222 are not specifically limited in this embodiment of the application, and these four radiators can be set as rectangles, or as shown in the figure A rectangle with missing corners as shown in .
  • the four radiators have the same size and shape, and can be set as a square with a square notch, and the distance between any two radiators is the same, and the four radiators form a whole with four corners with positive A large square with a notch in the direction. It should be understood that increasing the notch on the radiator can increase the electrical length of the radiator. It should be understood that a notch/recess or protrusion of any shape can be provided at any position of the radiator, which should not be used as a limitation to the present application.
  • FIG. 9 is a schematic structural diagram of an endfire antenna in an antenna structure provided by an embodiment of the present application.
  • the endfire antenna provided by the embodiment of the present application may include a ground plate 30, a second radiating unit 22, a third radiating unit 23, a fourth radiating unit 24, a third grounding unit 361, and a fourth grounding unit 362. , the second feeding branch 32 and the fourth feeding branch 34 .
  • the endfire antenna provided by one embodiment of the present application can be a magnetoelectric dipole (magneto electric dipole) antenna with dual polarization characteristics
  • the second feeding branch 32 is used to excite the second radiating element 22 and the third radiating element 23 generates an electric field along the Z axis, exciting the endfire antenna to produce vertically polarized radiation.
  • the fourth feeding branch 34 is used to excite the fourth radiating unit 24 to generate an electric field along the Y axis, and excite the endfire antenna to generate horizontally polarized radiation.
  • the vertical polarization direction mentioned here refers to the Z-axis direction
  • the horizontal polarization direction refers to the Y-axis direction.
  • the second feeding branch 32 may extend along the Z axis, and one end of the second feeding branch 32 is coupled to the second radiation unit 22 .
  • the second feeding branch 32 spans the second aperture, the first end of the second feeding branch 32 can be coupled to the third radiating unit 23, and the second end of the second feeding branch 32 can be connected to the second radiating unit 22 .
  • the second feeding stub 32 can excite the second radiating unit 22 and the third radiating unit 23 to form vertically polarized radiation in the second aperture.
  • the second feeder branch 32 can be a conductive connection hole structure in the substrate 20, which can be a solid metal column structure formed by filling the connection hole with a metal material, or can be formed by using a metal material to partially or completely cover the hole wall of the connection hole. formed metal layer. All the conductive connection holes herein can be understood in this way.
  • the second radiating unit 22 and the third radiating unit 23 may be two metal layers in different planes, for example, they may be arranged in parallel and facing each other. In one embodiment, both the second radiating unit 22 and the third radiating unit 23 may be parallel to the XY plane (a slight deviation is allowed).
  • the area and shape of the second radiation unit 22 and the third radiation unit 23 are the same. In one embodiment, the second radiating unit 22 and the third radiating unit 23 are arranged facing each other, for example, the orthographic projection of the third radiating unit 23 on the second radiating unit 22 completely covers the second radiating unit 22 . In other embodiments, the area and/or shape of the second radiating unit 22 and the third radiating unit 23 may also be different. In other embodiments, the second radiating unit 22 and the third radiating unit 23 may not completely face each other, for example, the upper second radiating unit 22 and the third radiating unit 23 may also partially face each other.
  • the fourth radiation unit 24 may include a seventh radiator 241 and an eighth radiator 242 arranged at intervals along the Y axis. In one embodiment, both the seventh radiator 241 and the eighth radiator 242 may be arranged perpendicular to the XY plane. .
  • the seventh radiator 241 and the eighth radiator 242 have the same area and shape, and may be mirror-symmetrical with respect to the third aperture.
  • the seventh radiator 241 and the eighth radiator 242 may be arranged perpendicular to the YZ plane, for example, the seventh radiator 241 and the eighth radiator 242 may be parallel and oppositely arranged.
  • the seventh radiator 241 and the eighth radiator 242 may be arranged at an included angle with respect to the YZ plane. For example, the seventh radiator 241 and the eighth radiator 242 may not be parallel.
  • the first end of the seventh radiator 241 is connected to the third ground unit 361, the second end of the seventh radiator 241 extends toward the side away from the eighth radiator 242, and the eighth radiator 241
  • the first end of the radiator 242 is connected to the fourth ground unit 362 , and the second end of the eighth radiator 242 extends toward a side away from the seventh radiator 241 . That is, from the direction X+ to X-, from the direction away from the first radiation unit 21 to the direction close to the first radiation unit 21, the distance between the seventh radiator 241 and the eighth radiator 242 in the Y direction can gradually decrease. Small.
  • the fourth feeding branch 34 may include a first feeding structure 341 and a second feeding structure 342, the end of the first feeding structure 341 is coupled to the seventh radiator 241, and the second feeding An end of the structure 342 is coupled to the eighth radiator 242 .
  • the first feed structure 341 and the second feed structure 342 can carry differential signals, carry currents with the same magnitude and opposite phases, and realize excitation through non-connected capacitive coupling.
  • the fourth feeding stub 34 can excite the seventh radiator 241 and the eighth radiator 242 to form horizontally polarized radiation.
  • the first feed structure 341 and the second feed structure 342 are overall metal wire structures, and may be formed from the same metal layer in the substrate 20 to simplify the manufacturing process.
  • the grounding structure of the second radiating unit 22 is a third grounding unit 361 and a fourth grounding unit 362 , which will not be repeated here.
  • the third radiating unit 23 can be a part of the grounding plate 30, which can realize direct grounding.
  • the seventh radiator 241 may be connected to the third grounding unit 361
  • the eighth radiator 242 may be connected to the fourth grounding unit 362 , so as to achieve indirect grounding of the fourth radiation unit 24 .
  • the vertical antenna and the end-fire antenna provided in the embodiment of the present application co-construct and multiplex the second radiating unit 22 , the third grounding unit 361 and the fourth grounding unit 362 .
  • the second radiating unit 22 can simultaneously serve as at least a part of the radiator of the vertical antenna and the end-fire antenna.
  • the third grounding unit 361 and the fourth grounding unit 362 can be used in the vertical antenna to disconnect from the grounding plate 30 (for example, by switching off) so that the second radiating unit 22 acts as a vertical
  • the radiator of the antenna radiates, and in the end-fire antenna, the third ground element 361 and the fourth ground element 362 can be connected to the ground plane (for example, realized by switching on) so that the second radiating element 22 is short-circuited to meet the requirements of the end-fire antenna. radiation boundary conditions.
  • the vertical antenna and the end-fire antenna can also reuse the third radiating unit 23, wherein the third radiating unit 23 can be used as a reference ground of the vertical antenna and at the same time as a radiator of the end-fire antenna. Therefore, the antenna structure provided by the embodiment of the present application can greatly reduce the integration area of the vertical antenna and the end-fire antenna while combining the functions of the vertical antenna and the end-fire antenna.
  • the antenna structure provided by the embodiment of the present application can implement a dual-polarized vertical antenna and a dual-polarized end-fire antenna, so as to realize the polarization diversity of the antenna structure 200, which helps to improve the transmission throughput and The signal stability in the weak signal area meets the requirements of signal transmission.
  • FIG. 10 is a schematic plan view of the antenna structure provided by an embodiment of the present application
  • FIG. 11 is a topological diagram of the folded planar aperture structure of the antenna structure provided by an embodiment of the present application.
  • FIG. 10 shows the radiation obtained by spreading the first radiation unit 21, the second radiation unit 22 and the third radiation unit 23 into a planar structure without considering the ground plate 30, the first ground unit 35 and the second ground unit 36.
  • Schematic diagram of the slots between the radiators, the slots between the radiators are the radiation apertures of the antenna structure 200 .
  • FIG. 11 is a schematic diagram of a three-dimensional radiation aperture structure obtained by folding the planar radiation aperture structure in FIG. 10 along the dotted line in FIG. 10 .
  • BR_V refers to the electric field distribution of the radiation aperture in the vertical polarization mode of the vertical antenna
  • BR_H refers to the electric field distribution of the radiation aperture in the horizontal polarization mode of the vertical antenna
  • EF_V refers to the vertical polarization of the endfire antenna
  • EF_H refers to the electric field distribution of the radiation aperture in the horizontal polarization mode of the endfire antenna.
  • the radiation aperture of BR_V can be considered as the above-mentioned first aperture
  • the radiation aperture of BR_H can be considered as the above-mentioned third aperture
  • the radiation aperture of EF_V can be considered as the above-mentioned second aperture
  • the radiation aperture of EF_H can be considered as including the third gap C3 and the space between the fourth gap C4. It should be noted that the radiation aperture of BR_H overlaps with the radiation aperture of EF_H in some areas.
  • the electric fields between BR_V and BR_H are orthogonal, so the dual-polarized vertical antennas are highly isolated and can be operated simultaneously; similarly, the electric fields between EF_V and EF_H are orthogonal, so the dual-polarized antennas
  • the radiating antennas are highly isolated and can be operated simultaneously.
  • the antenna structure provided by the embodiment of the present application multiplexes the vertical antenna and the second radiation unit in the end-fire antenna, and the antenna radiation pattern (Antenna Pattern Re-configurable) can be reconfigured through circuit control, so that The radiation pattern of the antenna structure may be a field pattern in the vertical direction or a field pattern in the end-fire direction.
  • the circuit control can be realized by adding a setting switch in the antenna structure 200 .
  • a first switch SW1 and a second switch SW2 may be provided in the antenna structure 200 , and the first switch SW1 may be connected between the third ground unit 361 and the ground plate 30 .
  • the first switch SW1 is located on a side of the third ground unit 361 away from the fourth radiator 222 .
  • the second switch SW2 may be connected between the fourth ground unit 362 and the ground plate 30 .
  • the second switch SW2 is located on a side of the fourth ground unit 362 away from the third radiator 221.
  • the first switch SW1 is used to control whether the third radiator 221 is grounded, the second switch SW2 is used to control whether the fourth radiator 222 is grounded, and the first switch SW1 and the second switch SW2 are used to control whether the second radiation unit 22 is grounded.
  • the second radiating unit 22 When the antenna structure 200 is in the end-fire mode, in order to forcefully satisfy the electric field minimum boundary condition of EF_V, the second radiating unit 22 is grounded by controlling the first switch SW1 and the second switch SW2 to be short-circuited (turn on), thereby creating The boundary condition of the minimum electric field on both sides of the EF_V radiation aperture; when the antenna structure 200 is in the vertical mode, the main radiation aperture returns to BR_V and BR_H by controlling the first switch SW1 and the second switch SW2 to turn off.
  • a third switch SW3 and a fourth switch SW4 may also be provided in the antenna structure 200 .
  • the third switch SW3 may be connected between the fifth radiator 231 and the sixth radiator 232 .
  • the third switch SW3 is located on a side of the third radiation unit 23 away from the first radiation unit 21 .
  • the fourth switch SW4 may be connected between the third radiator 221 and the fourth radiator 222 .
  • the third switch SW3 is located on a side of the second radiating unit 22 close to the first radiating unit 21 .
  • the third switch SW3 is used to control the short circuit or short circuit between the fifth radiator 231 and the sixth radiator 232
  • the fourth switch SW4 is used to control the short circuit or short circuit between the third radiator 221 and the fourth radiator 222 .
  • the third switch SW3 When the antenna structure 200 is in the vertical mode, the third switch SW3 is controlled to be short-circuited (turn on) and the fourth switch SW4 is turned off (turn off); when the antenna structure 200 is in the end-fire mode, the third switch SW3 is controlled to be turned off (turn off). ), the fourth switch SW4 is short-circuited (turn on), so as to achieve vertical and end-fire field operation.
  • the first switch SW1 , the second switch SW2 , the third switch SW3 and the fourth switch SW4 can be set at the same time, so as to improve the gain of the field switching and the operating bandwidth.
  • the switches usually have parasitic short-circuit resistance (Ron) and open-circuit capacitance (Coff), the third switch SW3 and the fourth switch SW4 are placed in the antenna mode In the area of large electric field, there is loading on the antenna mode.
  • the capacitance of the third switch SW3 and the fourth switch SW4 is ⁇ 10fF.
  • Fig. 12 is a structural schematic diagram of another angle of the antenna structure provided by an embodiment of the present application, wherein in order to facilitate understanding of the structure covered by the first radiator 211 in the figure, the first radiator 211 is hidden (such as a dotted line) .
  • the first end of the first feeding stub 31 is connected to the first feeding part 311 , and the first feeding part 311 may be located on a side of the first feeding stub 31 facing the ground plate 30 . On the side, the first feeding part 311 may extend along the Z axis and be connected to a feeding source (not shown in the figure).
  • the first feeding branch 31 is a vertically polarized feeding branch of the vertical antenna.
  • the first feeding part 311 can be electrically connected to the radio frequency port of the transceiver chip 105 to realize the connection with the feed source. Line and other feeder realization.
  • the first feeding branch 31 and the first feeding part 311 can be regarded as a " ⁇ " shape as a whole.
  • the first end of the third feeding branch 33 is connected to the second feeding part 331.
  • the second feeding part 331 may be located on the side of the third feeding branch 33 facing the ground plate 30.
  • the second feeding part 331 may extend along the Z axis. and connect the feed.
  • the third feeding branch 33 is a horizontally polarized feeding branch of the vertical antenna.
  • the second feeding part 331 can be electrically connected to the radio frequency port of the transceiver chip 105 to realize the connection with the feed source. Line and other feeder realization.
  • the third feeding branch 33 and the second feeding part 331 can be regarded as a " ⁇ " shape as a whole.
  • the first feeding branch 31 and the third feeding branch 33 are arranged orthogonally and are insulated from each other.
  • the first feeding branch 31 and the third feeding branch 33 can be arranged in different metal layers in the substrate 20, for example Specifically, the first feed branch 31 can be in the same metal layer as the first radiator 211, the second radiator 212, the third radiator 221, and the fourth radiator 222, so as to simplify the manufacturing process, and the third feed
  • the branch 33 may be located in another metal layer below the first feeding branch 31 (the positive direction of the Z-axis is defined as up, and the negative direction of the Z-axis is defined as down), and an insulating layer is arranged between the two metal layers.
  • first feed-in portion 311 and the second feed-in portion 331 are presented as columnar structures in the figure to facilitate intuitive understanding of the drawings. It should be understood that the first feed-in portion 311 and the second feed-in portion 331 may be a conductive connection hole structure in the substrate 20, which may be a solid metal column structure formed by filling the connection hole with a metal material, or may be a partial or The metal layer formed after completely covering the hole walls of the connection holes.
  • Fig. 13 is a side view of an antenna structure provided by an embodiment of the present application. 12 and 13, in a possible implementation manner, the first grounding unit 351 may include a first grounding segment 3511, a second grounding segment 3512 and a third grounding segment 3513 connected in sequence, the first grounding segment 3511 is connected to the first radiator 211, and the third ground segment 3513 is connected to the ground plate 30.
  • the first ground segment 3511 and the third ground segment 3513 can extend along the Z axis, which is a conductive connection hole structure, and the second ground segment 3512 can be extended along the XY axis.
  • the plane extends and is formed by part of the metal layer within the substrate 20 .
  • the first ground unit 351 as a whole includes three bent sections with a total electrical length of 1/4 ⁇ . By setting the first ground unit 351 as a multi-section bent structure, it is beneficial to reduce the gap between the first radiator 211 and the ground plate 30. height, thereby reducing the volume of the antenna structure 200 as a whole.
  • the position of the first ground unit 351 is not specifically limited in this application.
  • the first ground section 3511 may be connected to the corner of the first radiator 211 close to the second radiator 212 and the third radiator 221 , Orthographic projections of the second ground segment 3512 and the third ground segment 3513 on the first radiator 211 are located inside the first radiator 211 to prevent the second ground segment 3512 and the third ground segment 3513 from interfering with the first feeding part 311 .
  • first grounding unit 351 and the second grounding unit 352 can be arranged mirror-symmetrically with respect to the third aperture, and the structure of the second grounding unit 352 can be similar to that of the first grounding unit 351, also including three sections, in This will not be repeated here.
  • both the first grounding unit 351 and the second grounding unit 352 may be conductive connection hole structures extending along the Z-axis, and their total electrical length satisfies 1/4 ⁇ . At this time, Referring to the embodiments shown in FIG. 7 and FIG. 8 , neither the first grounding unit 351 nor the second grounding unit 352 has a bent section, which can simplify the design of the grounding structure.
  • FIG. 14 is a structural schematic diagram of another angle of the antenna structure provided by an embodiment of the present application, wherein in order to facilitate understanding of the structure covered by the fourth radiator 222 in the figure, the fourth radiator 222 is hidden (such as a dotted line) .
  • one end of the second feed branch 32 can be connected to the feed source (not marked in the figure), and the other end can be connected to the connection branch 321, and the connection branch 321 can be connected to the third radiator 221 and the fourth radiator.
  • the second feeding branch 32 is a vertically polarized feeding branch of the end-fire antenna, and the connecting branch 321 is used to realize direct feeding of the second feeding branch 32 and the second radiation unit 22 .
  • the second feeding stub 32 can be a conductive connection hole structure in the substrate 20, and the connecting stub 321 can be arranged in a metal layer in the substrate 20.
  • the connecting stub 321 can be connected to the first feeding stub 31, the first radiation
  • the body 211 , the second radiator 212 , the third radiator 221 and the fourth radiator 222 are in the same metal layer to simplify the manufacturing process.
  • the first feeding structure 341 may include a fourth feeding part 3411, a first connecting part 3412 and a fourth feeding part 3413 connected in sequence, the fourth feeding part 3411 is connected to the feed source, and the fourth feeding part The part 3413 is disposed on the side of the seventh radiator 241 facing away from the eighth radiator 242;
  • the second feeding structure 342 may include a fifth feeding part 3421, a second connecting part 3422 and a fifth feeding part 3423 connected in sequence , the fifth feeding part 3421 is connected to the feeding source, and the fifth feeding part 3423 is disposed on a side of the eighth radiator 242 facing away from the seventh radiator 241 .
  • the fourth feeding part 3411, the fourth feeding part 3413, the fifth feeding part 3421, and the fifth feeding part 3423 may extend along the X axis
  • the first connecting part 3412 and the second connecting part 3422 may extend along the Y axis.
  • the first feed structure 341 and the second feed structure 342 are overall metal wire structures, and may be formed from the same metal layer in the substrate 20 to simplify the manufacturing process.
  • the fourth feeding stub 34 is a horizontally polarized feeding stub of the end-fire antenna, and is a coupling capacitive excitation structure.
  • the fourth feeding branch 34 is arranged between the second radiating unit 22 and the third radiating unit 23, and the first feeding structure 341 and the second feeding structure 342 carry differential signals, carrying currents with the same magnitude and opposite phases, so as to Non-connected capacitive coupling enables excitation.
  • the fourth feeding branch 34 shown in this embodiment is excited near the fourth radiating unit 24, and the fourth radiating unit 24 is excited by coupling feeding, which can avoid the loss caused by impedance mismatch and is beneficial to improve the end-fire Radiation efficiency of the antenna. It should be understood that the adjustment of the differential characteristic impedance of the fourth feed branch 34 is realized by adjusting the line width and spacing of the first feed structure 341 and the second feed structure 342 .
  • the fourth feeding branch 34 also includes a parasitic unit 343, the parasitic unit 343 is coplanar with the first feeding structure 341 and the second feeding structure 342, and the parasitic unit 343 is arranged on the first feeding structure 341 and the second feeding structure 342 The side facing away from the seventh radiator 241 and the eighth radiator 242 is spaced apart from the first feeding structure 341 and the second feeding structure 342.
  • the parasitic unit 343 extends along the Y axis and connects to the first connecting part 3412 and the second connecting portion 3422 are arranged in parallel and at intervals.
  • the parasitic unit 343 , the first feed structure 341 and the second feed structure 342 are formed by the same metal layer in the substrate 20 to simplify the manufacturing process.
  • the parasitic unit 343 can strengthen the differential mode of the differential current carried by the first feed structure 341 and the second feed structure 342 , and suppress the common mode mode of the same direction current, so as to ensure that the horizontally polarized antenna mode of the endfire antenna is excited.
  • Fig. 15 is a side view from another angle of the antenna structure provided by an embodiment of the present application.
  • the third ground unit 361 may include a first ground wall 361a and a second ground wall 361b, and the first ground wall 361a and the second ground wall 361b are respectively connected to
  • the third radiator 221 is connected to the first location and the second location, and the first location and the second location are arranged at intervals on the third radiator 221 .
  • the first ground wall 361a is located on the side of the third radiator 221 close to the fourth radiator 222
  • the seventh radiator 241 is connected to the first ground wall 361a
  • the second ground wall 361b is connected to the ground plate 30
  • a first switch SW1 is connected between them.
  • the fourth ground unit 362 may include a third ground wall 362a and a fourth ground wall 362b, the third ground wall 362a and the fourth ground wall 362b are respectively connected to the fourth radiator 222 at the third position and the fourth position, and the third position and the fourth positions are arranged at intervals on the fourth radiator 222 .
  • the third ground wall 362a is located on the side of the fourth radiator 222 close to the third radiator 221
  • the eighth radiator 242 is connected to the third ground wall 362a
  • the fourth ground wall 362b is connected to the ground plate 30
  • a second switch SW2 is connected between them.
  • the third ground unit 361 may be a metal wall structure having a first hollow area 361c, and the metal wall may be divided into a first ground wall 361a and a second ground wall 361b by the first hollow area 361c.
  • the structure of the fourth grounding unit 362 can be the same as that of the third grounding unit 361, and the fourth grounding unit 362 can have a metal wall structure with a second hollow area 362c, and the metal wall can be divided into third by the second hollow area 362c.
  • the ground wall 362a and the fourth ground wall 362b are examples of the fourth grounding unit 362.
  • the hollow area is used to reduce unnecessary resonance, and the size of the hollow area is not specifically limited in the embodiment of the present application.
  • the width of the first ground wall 361a may be greater than the width of the second ground wall 361b, and the first switch SW1 may be connected to the second ground wall 361b.
  • the width of the third ground wall 362a may be greater than the width of the fourth ground wall 362b, and the second switch SW2 may be connected to the fourth ground wall 362b.
  • the third ground wall 362a may include a fourth ground section 3621, a fifth ground section 3622 and a sixth ground section 3623 connected in sequence, the fourth ground section 3621 is connected to the fourth radiator 222, and the sixth ground section 3623 is connected to the ground plate 30 , the fourth ground segment 3621 and the sixth ground segment 3623 may extend along the Z axis, which is a conductive connection hole structure, and the fifth ground segment 3622 may extend along the XY plane, and is formed by a part of the metal layer in the substrate 20 .
  • the third ground wall 362a includes three bent sections as a whole, and the total electrical length is 1/4 ⁇ . By setting the third ground wall 362a as a multi-section bent structure, it is beneficial to reduce the gap between the fourth radiator 222 and the ground plate 30. height, thereby reducing the volume of the antenna structure 200 as a whole.
  • first ground wall 361a may be the same as that of the third ground wall 362a, and it is arranged axially symmetrically with respect to the third aperture, and the structure of the first ground wall 361a will not be repeated here.
  • first ground wall 361a and the third ground wall 362a may be conductive connection hole structures extending along the Z axis, and the total electrical length thereof satisfies 1/4 ⁇ . Referring to the embodiments shown in FIGS. 7-9 , there is no bent section in the first grounding wall 361 a and the third grounding wall 362 a, which can simplify the structural design.
  • Fig. 16 is a schematic structural diagram of a metal wall provided by an embodiment of the present application.
  • the grounding walls 361a, 361b, 362a, 362b and the radiators 241, 242 are integrally formed of a metal wall structure, and the metal wall may be composed of a plurality of conductive connection holes. There may be intervals between the conductive connection holes, and a plurality of conductive connection holes may be connected through a metal layer.
  • the structure of each conductive connection hole may be a solid metal column structure formed by filling the connection hole with a metal material, or it may be a solid metal column structure formed by using a metal material. The metal layer formed after partially or completely covering the hole wall of the connection hole.
  • the metal wall structure may be a complete wall structure, and the complete wall structure may be a solid metal column structure formed by filling the elongated cavity with metal materials, or it may be a The metal layer is formed after partially or completely covering the inner wall of the elongated cavity with a metal material.
  • the antenna structure provided by the foregoing embodiment of the present application may support a millimeter wave frequency band, for example, a 5G millimeter wave frequency band.
  • a millimeter wave frequency band for example, a 5G millimeter wave frequency band.
  • the length and width of an antenna unit may be less than 4 mm, and the thickness may be less than 1.5 mm, for example.
  • FIG. 17 is a schematic top view of an antenna structure provided by an embodiment of the present application.
  • the distance H1 between the first radiating unit 21 and the ground plate 30 can be 0.9mm
  • the distance between the second radiating unit 22 and the ground plate 30 H2 can be 1.05mm
  • the length L1 of the first radiating unit 21 can be 3.5mm
  • the length L2 of the second radiating unit 22 can be 3.5mm
  • the six radiators can be squares with missing corners
  • the side length L3 of the square can be 1.55mm
  • the notch can be a square
  • the width L4 of the notch can be 0.4mm
  • the width of the first gap C1, the second gap C2, the third gap C3, and the fourth gap C4 can be the same
  • the gap width L5 can be 0.4mm.
  • the antenna structure 200 can be excited by using a polarized feeding stub or an end-fired dual-polarized feeding stub, and a radiation gain pattern of the antenna structure 200 can be obtained.
  • FIG. 18 is a radiation gain pattern diagram of an antenna structure provided by an embodiment of the present application.
  • the antenna gain in the direction is 7dB. It can be seen that the antenna structure 200 provided by the embodiment of the present application can significantly increase the coverage angle and antenna gain without increasing the antenna area by co-constructing the vertical antenna and the end-fire antenna.
  • FIG. 19 is a cumulative function graph of antenna gain distribution of an antenna structure provided by an embodiment of the present application.
  • A1 and A2 represent the antenna gain of the related technology with only a vertical antenna
  • B1 and B2 represent the specific antenna structure 200 applied to the electronic device 100 in this application and arranged according to the position in FIG. 5 .
  • A1 and B1 represent the frequency of -27GHZ
  • A2 and B2 represent the frequency of -40GHZ
  • 20% CDF is an important indicator for observing weak field strength under operator specifications
  • 50% CDF is an important indicator for observing weak field strength under 3GPP specifications .
  • the abscissas of A2 and B2 correspond to 5.3 and 7.5 respectively, that is, at the same frequency -40GHZ, the antenna gain of the millimeter wave mobile phone provided by the related technology is 5.3dB, and this application is 7.5dB, compared to an increase of 2.2dB; when the ordinate is 50%, A2 and B2 are at the same frequency -40GHZ, the antenna gain of the mobile phone millimeter wave provided by the related technology is 8.6dB, and the application is 9.2dB, compared with It has increased by 0.6dB.
  • Table 1 is the antenna gain data of the antenna structure provided by an embodiment of the present application
  • Table 2 is the data of the antenna coverage angle of the antenna structure provided by an embodiment of the present application.
  • the gain coverage angle of only vertical antennas in the related art is 120°.
  • This application can expand the coverage angle to 270° by switching the vertical and end-fire modes. Therefore, this application is compared with The gain of the related technology in the coverage angle is 150°.
  • the antenna structure 200 is a dual-polarization field-type switchable co-constructed vertical and end-fire antenna
  • the antenna structure 200 may include four radiating units 21-24, four feeding branches 31-34, and two switches SW1 and SW2. By switching the switches and matching the selection of the feeding branches, the antenna structure can realize dual Polarized vertical radiation pattern or dual polarized endfire radiation pattern.
  • Fig. 21 is a schematic diagram of another structure of the antenna structure provided by an embodiment of the present application.
  • the antenna structure 200 may be a vertically polarized dual-band antenna.
  • the antenna structure 200 may include three radiating elements 21-23, the first feeding branch 31, the second The feeding branch 33 only includes a vertical vertically polarized antenna and an end-fire vertically polarized antenna.
  • the vertical antenna can support both the low frequency band and the high frequency band, and the end-fire antenna can also support both the low frequency band and the high frequency band.
  • the structure and working principle of the vertical vertically polarized antenna and the end-fire vertically polarized antenna can refer to the above-mentioned description of the dual-polarized Changxing switchable co-configured vertical and end-fire antenna, and will not be repeated here.
  • Figure 22a is the vertical and end-fire vertical polarization radiation gain pattern of the antenna structure provided in Figure 21 in the low frequency band
  • Figure 22b is the vertical and end-fire vertical polarization of the antenna structure in Figure 21 in the high frequency band Radiation gain pattern diagram.
  • the low frequency band is 29.0 GHz
  • the high frequency band is 39.0 GHz.
  • the available switching gain is 5.5dB
  • the +X direction operating in the end-fire mode compared to operating in the vertical mode
  • a switching gain of 8.9dB can be obtained.
  • the available switching gain is 5.8dB
  • a switching gain of 6.2dB can be obtained.
  • Fig. 23 is a schematic diagram of another structure of the antenna structure provided by an embodiment of the present application.
  • the antenna structure 200 may be a horizontally polarized dual-band antenna.
  • the antenna structure 200 may include four radiating elements 21-24, the second feeding branch 32, the fourth The feeding branch 34 only includes a vertical horizontally polarized antenna and an end-fire horizontally polarized antenna.
  • the vertical antenna can support both the low frequency band and the high frequency band, and the end-fire antenna can also support both the low frequency band and the high frequency band.
  • the structure and working principle of the vertical horizontally polarized antenna and the end-fire horizontally polarized antenna can refer to the above-mentioned description of the dual-polarized Changxing switchable co-configured vertical and end-fire antenna, and will not be repeated here.
  • Figure 24a is the vertical and end-fire horizontal polarization radiation gain pattern diagram of the antenna structure provided in Figure 23 in the low frequency band
  • Figure 24b is the vertical and end-fire horizontal polarization of the antenna structure provided in Figure 23 in the high frequency band Radiation gain pattern diagram.
  • the low frequency band is 29.0 GHz
  • the high frequency band is 39.0 GHz.
  • operating in the end-fire mode can obtain a switching gain of 5dB compared to operating in the vertical mode.
  • the available switching gain is 7.0dB
  • a switching gain of 2.0dB can be obtained.
  • the antenna structure provided by the embodiment of the present application can be a co-configured vertical and end-fire antenna with dual polarization field type switchable, or it can be a vertically polarized dual-band antenna, or it can be a horizontally polarized dual-band antenna
  • the antenna in these three implementation manners, compared with only the vertical antenna or the end-fire antenna, significant antenna gain can be obtained.
  • the above-mentioned antenna structure provided by the embodiment of the present application multiplexes the vertical antenna and the second radiation unit in the end-fire antenna, and the antenna radiation pattern can be reconfigured through circuit control, so that the radiation pattern of the antenna structure can be vertical Direction or end-fire direction, and the antenna structure under the two radiation models supports dual polarization; compared with the related technology of only vertical antenna, the antenna structure provided by the embodiment of the present application does not increase the antenna area on the one hand, It can be placed on the side of the electronic device, on the other hand, it can improve the radiation gain and signal coverage angle.
  • the antenna structure provided by the embodiment of the present application can reduce the antenna area by at least 30% compared with the related technology in which the vertical antenna and the end-fire antenna are placed directly adjacent to each other.
  • the above-mentioned antenna structure 200 provided in the embodiment of the present application is a millimeter wave antenna module applied in a mobile phone. It should be understood that the antenna structure 200 provided in the embodiment of the present application may not be limited to be applied in a millimeter wave antenna module. Exemplarily, the antenna structure 200 provided by the embodiment of the present application can also be applied to base station antennas, Wi-Fi sharer antennas, head-mounted device antennas, space positioning antennas, UWB (Ultra Wideband, ultra-wideband) antennas, IOT (Internet of Things, Internet of Things) antennas, etc.
  • the antenna structure 200 provided by the embodiment of the present application can be applied in the base station antenna.
  • Each antenna unit in the base station antenna can be switched without increasing the original area by co-constructing vertical and end-fire switching. , increase the radiation pattern in the end-fire direction, effectively improve the signal coverage of the base station, or reduce the number of base station antennas.
  • the embodiment of the present application provides that the antenna structure 200 can be applied to ceiling-mounted and wall-mounted Wi-Fi sharer antennas.
  • the vertical antenna radiation can be compared with the Users connect, or switch to the end-fire direction, and form a mesh grid with other household IOT appliances and other Wi-Fi sharers, thereby improving indoor signal coverage.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Abstract

本申请实施例提供一种天线结构、封装天线、芯片和电子设备,天线结构包括接地板、三个辐射单元、两个馈电枝节;第一辐射单元和接地板沿Z轴间隔排布且相对设置,第一辐射单元和第二辐射单元沿X轴间隔排布,第一辐射单元和第二辐射单元之间的第一间隙沿Y轴延伸,第三辐射单元和第二辐射单元沿Z轴间隔排布且相对设置;第一馈电枝节的至少一部分设置在第一孔径内,第一孔径包括第一间隙与接地板之间的空间,第二馈电枝节的至少一部分设置在第二孔径内,第二孔径包括第二辐射单元和第三辐射单元之间的空间。本申请提供一种天线结构、封装天线、芯片和电子设备,通过复用、共构垂向天线及端射天线的部分天线结构,可以减少天线结构的面积。

Description

天线结构、封装天线、芯片和电子设备
本申请要求于2021年12月29日提交中国专利局、申请号为202111649196.3、申请名称为“天线结构、封装天线、芯片和电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种天线结构、封装天线、芯片和电子设备。
背景技术
天线作为发射和接收电磁波的装置,是电子设备的重要组成部分。相关技术中,为了增加电子设备内的天线的辐射覆盖,除了在电子设备内设置垂向天线(broadside antenna,BR Antenna)外,还可以设置端射天线(end-fire antenna,EF Antenna)。手机、平板电脑等电子设备的侧边厚度极小,垂向天线和端射天线各自独立设置,整体占据空间大,无法摆放在电子设备的侧边。
发明内容
本申请提供一种天线结构、封装天线、芯片和电子设备,通过复用、共构垂向天线及端射天线的部分天线结构,可以减少天线结构的面积。
本申请实施例一方面提供一种天线结构,包括:接地板、第一辐射单元、第二辐射单元、第三辐射单元、第一馈电枝节和第二馈电枝节;第一辐射单元和接地板沿虚拟的Z轴间隔排布且相对设置,第一辐射单元和第二辐射单元沿虚拟的X轴间隔排布,第一辐射单元和第二辐射单元之间的第一间隙沿虚拟的Y轴延伸,第三辐射单元和第二辐射单元沿虚拟的Z轴间隔排布且相对设置,第一辐射单元、第二辐射单元、第三辐射单元分别和接地板耦合连接;第一馈电枝节的至少一部分设置在第一孔径内,第一孔径包括第一间隙与接地板之间的空间,第二馈电枝节的至少一部分设置在第二孔径内,第二孔径包括第二辐射单元和第三辐射单元之间的空间;其中,X轴、Y轴和Z轴两两垂直。
本申请实施例提供一种天线结构,第一馈电枝节、第一辐射单元和第二辐射单元可以实现垂向天线的垂直极化,第二馈电枝节、第二辐射单元和第三辐射单元可以实现端射天线的垂直极化,通过将垂向天线和端射天线的部分结构进行复用和共构,以使天线结构的辐射场型可以为垂向方向的场型或者端射方向的场型,从而天线结构可以在较小的面积下达到较大的辐射覆盖范围,提升天线增益。
在一种可能的实施方式中,第一辐射单元包括沿Y轴间隔排布的第一辐射体和第二辐射体,第一辐射体和第二辐射体之间的第二间隙沿X轴延伸;第二辐射单元包括沿Y轴间隔排布的第三辐射体和第四辐射体,第三辐射体和第四辐射体之间的第三间隙沿X轴延伸;第三辐射单元包括沿Y轴间隔排布的第五辐射体和第六辐射体,第五辐射体和第六辐射体之间的第四间隙沿X轴延伸。
通过将各个辐射单元设置为通过间隙隔开的两部分,有利于馈电枝节的位置布置。
在一种可能的实施方式中,天线结构还包括第三馈电枝节,至少一部分第三馈电枝节设置在第三孔径内,第三孔径包括第二间隙和第三间隙与接地板之间的空间。
第三馈电枝节、第一辐射单元和第二辐射单元可以构成水平极化的垂向天线,以实现垂向天线的双极化,进一步增大天线结构的辐射覆盖范围,提升天线增益,且垂向天线的水平极化和垂直极化之间的电场正交,双极化垂向天线高隔离、可同时操作。
在一种可能的实施方式中,天线结构还包括第四辐射单元和第四馈电枝节;第四辐射单元设置在第三辐射单元和第二辐射单元之间且与接地板耦合连接,第四辐射单元包括第七辐射体和第八辐射体,第七辐射体设置于第三辐射体和第五辐射体之间,第八辐射体设置于第四辐射体和第六辐射体之间;第四馈电枝节包括第一馈电结构和第二馈电结构,第一馈电结构与第七辐射体耦合连接,第二馈电结构与第八辐射体耦合连接。
第四辐射单元和第四馈电枝节可以构成水平极化的端射天线,以实现端射天线的双极化,进一步增大天线结构的辐射覆盖范围,提升天线增益,且端射天线的水平极化和垂直极化之间的电场正交,双极化端射天线高隔离、可同时操作。
在一种可能的实施方式中,天线结构包括第一接地单元、第二接地单元、第三接地单元和第四接地单元;第一接地单元连接在第一辐射体和接地板之间,第二接地单元连接在第二辐射体和接地板之间,第三接地单元连接在第三辐射体和接地板之间,第三接地单元连接在第三辐射体的面向第一辐射体的一端,第四接地单元连接在第四辐射体和接地板之间,第四接地单元连接在第四辐射体的面向第二辐射体的一端,第七辐射体和第三接地单元连接,第八辐射体和第四接地单元连接。
第一辐射单元和第二辐射单元的四个辐射体,分别通过四个接地单元实现与接地板的连接,第四辐射单元的两个辐射体借助第二辐射单元对应的接地单元实现间接接地,从而可以实现接地结构的紧凑布置,提高空间利用率。
在一种可能的实施方式中,第三接地单元包括第一接地墙和第二接地墙,第一接地墙和第二接地墙分别与第三辐射体连接于第一位置和第二位置,第一位置和第二位置在第三辐射体上间隔排布,其中第一接地墙位于第三辐射体的靠近第四辐射体的一侧,第七辐射体和第一接地墙连接,第二接地墙和接地板之间连接有第一开关;第四接地单元包括第三接地墙和第四接地墙,第三接地墙和第四接地墙分别与第四辐射体连接于第三位置和第四位置,第三位置和第四位置在第四辐射体上间隔排布,其中第三接地墙位于第四辐射体的靠近第三辐射体的一侧,第八辐射体和第三接地墙连接,第四接地墙和接地板之间连接有第二开关。
第三接地单元和第四接地单元均设置为被镂空区隔开的两部分金属墙,以减少不必要的谐振,同时有利于设置第一开关和第二开关,使开关可以用来控制第二辐射单元是否接地,以切换垂向方向的场型或端射方向的场型。
当天线结构处于端射模式时,通过控制第一开关和第二开关短路,使第二辐射单元接地,以此创造端射天线垂直极化辐射孔径内两侧电场最小的边界条件;当天线结构处于垂向模式时,通过控制第一开关和第二开关断路,可以让主要的辐射孔径回到垂向天线。在一种可能的实施方式中,天线结构还包括第三开关和第四开关,第三开关连接在第五辐射体和第六辐射体之间,第三开关位于第三辐射单元的远离第一辐射单元的一端,第四开关连接在第三辐射体和第四辐射体之间,第四开关位于第二辐射单元的靠近第一辐射单元的 一端。
当天线结构处于垂向模式时,控制第三开关短路且第四开关断路;当天线结构处于端射模式时,控制第三开关断路,第四开关短路,以此达到垂向与端射的场型操作。
在一种可能的实施方式中,第七辐射体和第八辐射体均垂直于接地板设置,第七辐射体的第一端和第三接地单元连接,第七辐射体的第二端向着远离第八辐射体的一侧延伸,第八辐射体的第一端和第四接地单元连接,第八辐射体的第二端向着远离第七辐射体的一侧延伸。
这样设置,可以在尽量增加第七辐射体和第八辐射体之间的辐射孔径的同时,尽量减小第四辐射单元接地对垂向天线辐射场型的影响。
在一种可能的实施方式中,第一馈电枝节沿X轴延伸,第一馈电枝节的第一端在XY平面上的投影位于第二间隙在XY平面上的投影之内,第一馈电枝节的第二端在XY平面上的投影位于第三间隙在XY平面上的投影之内;第二馈电枝节沿Z轴延伸,第二馈电枝节的一端和第二辐射单元耦合连接。
第一馈电枝节可以横跨第一间隙,激励第一辐射单元和第二辐射单元在第一孔径内形成垂向天线的垂直极化辐射;第二馈电枝节可以在Z方向上横跨第二辐射单元和第三辐射单元之间的空间,激励第二辐射单元和第三辐射单元在第二孔径内形成端射天线的垂直极化辐射。
在一种可能的实施方式中,第一间隙包括第一子间隙和第二子间隙,第一子间隙处于第一辐射体和第三辐射体之间,第二子间隙处于第二辐射体和第四辐射体之间,第三馈电枝节沿Y轴延伸,第三馈电枝节的第一端在XY平面上的投影位于第一子间隙在XY平面上的投影之内,第三馈电枝节的第二端在XY平面上的投影位于第二子间隙在XY面上的投影之内。
第三馈电枝节可以横跨第二间隙和第三间隙连通的间隙,第三馈电枝节可以激励第一辐射单元、第二辐射单元在第三孔径内形成水平极化辐射。
在一种可能的实施方式中,第一接地单元包括依次连接的第一接地段、第二接地段和第三接地段,第一接地段连接第一辐射体,第三接地段连接接地板,第一接地段和第三接地段沿Z轴延伸,第二接地段沿XY平面延伸。
通过将接地单元设置为多段弯折结构,有利于在满足电长度的同时,降低辐射体和接地板之间的高度,从而减小天线结构整体的体积。
在一种可能的实施方式中,第三接地墙包括依次连接的第四接地段、第五接地段和第六接地段,第四接地段连接第四辐射体,第六接地段连接接地板,第四接地段和第六接地段沿Z轴延伸,第五接地段沿XY平面延伸。
通过将接地墙设置为多段弯折结构,有利于在满足电长度的同时,降低辐射体和接地板之间的高度,从而减小天线结构整体的体积。
在一种可能的实施方式中,第三辐射单元复用接地板的部分结构。
第三辐射单元可以为接地板的一部分,以减小天线结构的体积,同时,便于第三辐射单元的接地设计。
在一种可能的实施方式中,天线结构包括垂向天线和端射天线,垂向天线包括第一辐射单元、第二辐射单元、第一馈电枝节、第三馈电枝节和接地板,端射天线包括第二辐射 单元、第三辐射单元、第四辐射单元、第二馈电枝节、第四馈电枝节和接地板。
垂向天线和端射天线共构复用了第二辐射单元、第三接地单元和第四接地单元,第二辐射单元可以同时作为垂向天线和端射天线的辐射体的至少一部分,第三辐射单元可以作为垂向天线的参考地,同时作为端射天线的辐射体,因此本申请实施例提供的天线结构,在兼并了垂向天线和端射天线的功能的同时,可以大幅减少垂向天线与端射天线的整合面积。
在一种可能的实施方式中,垂向天线包括垂向垂直极化场型和垂向水平极化场型,第一馈电枝节为第一辐射单元、第二辐射单元馈电以构成垂向垂直极化场型,第三馈电枝节为第一辐射单元、第二辐射单元馈电以构成垂向水平极化场型;端射天线包括端射垂直极化场型和端射水平极化场型,第二馈电枝节为第二辐射单元、第三辐射单元馈电以构成端射垂直极化场型,第四馈电枝节为第四辐射单元馈电以构成端射水平极化场型。
本申请实施例提供的天线结构,可以实现双极化垂向天线和双极化端射天线,以实现天线结构的极化多样性,有助于提高传输吞吐量和弱信号区的信号稳定性,满足信号传输的要求。
在一种可能的实施方式中,第一辐射体、第二辐射体、第三辐射体、第四辐射体均为具有缺角的矩形,第一辐射体、第二辐射体、第三辐射体、第四辐射体关于中心点呈中心对称。
在辐射体上增加缺角可以增加辐射体的电长度,设置四个辐射体呈中心对称有利于提高天线结构整体的性能。
本申请实施例另一方面提供一种封装天线,包括收发芯片和上述天线结构,收发芯片和天线结构电连接并且封装在同一个基板内。
天线结构可以根据接收的电磁信号辐射电磁波,和/或,根据接收的电磁波向收发芯片发送电磁信号,从而实现无线通信,本申请实施例提供的封装天线,具有面积小、覆盖较大、天线增益大的优点。
本申请实施例另一方面提供一种芯片,包括射频模组和上述天线结构。
天线结构可以和射频模组集成在一个芯片内,以提高芯片的性能。
本申请实施例又一方面提供一种电子设备,包括上述天线结构或者上述封装天线或者上述芯片。
本申请实施例提供的电子设备,利用上述本申请实施例提供的天线结构,可以应用在多种天线中,可以在不增加天线占用面积的条件下,增加辐射场型,提升信号覆盖范围和信号质量。
在一种可能的实施方式中,电子设备包括相对设置的正面和背面,正面和背面通过中框连接,中框包括依次连接的顶部、右侧部、底部和左侧部;天线结构的数量为三个,其中一个天线结构设置在电子设备的背面且与顶部的上边缘距离不超过第一阈值,另两个天线结构分别设置在左侧部和右侧部,且分别与左侧部的左边缘和右侧部的右边缘距离不超过第二阈值内。
三个天线结构分别摆放在电子设备的顶部、左侧部和右侧部,且每个天线结构均可以做独立的波束成型以及波束扫描,因此可以达到较大的辐射覆盖范围。并且,将天线结构摆放在电子设备的侧边或者靠近侧边的位置,可以有效利用电子设备的空间,减少占用电 子设备内部的电路板及其它既有电子器件的空间。
本申请实施例又一方面提供一种电子设备,包括一种天线结构,天线结构可以作为垂向天线和端射天线操作,天线结构包括第一辐射单元、第二辐射单元、第三辐射单元;其中第一辐射单元和第二辐射单元作为垂向天线的辐射体,以辐射垂向天线的电磁波,且第二辐射单元和第三辐射单元作为端射天线的辐射体,以辐射端射天线的电磁波。
在一种可能的实施方式中,天线结构包括接地板,为垂向天线和端射天线接地。
在一种可能的实施方式中,第三辐射单元的至少一部分可以由接地板形成。
在一种可能的实施方式中,天线结构包括基板,垂向天线和端射天线设置于基板上,垂向天线的主辐射方向为第一辐射方向,端射天线的主辐射方向为第二辐射方向。
在一种可能的实施方式中,第一辐射方向为垂直于基板的方向,第二辐射方向为平行于基板的方向。
在一种可能的实施方式中,垂向天线辐射时,天线结构工作于垂向模式,端射辐射时,天线结构工作于端射模式,其中,天线结构在垂向模式和端射模式之间切换。
在一种可能的实施方式中,天线结构可以通过开关在垂向模式和端射模式之间切换。
在一种可能的实施方式中,天线结构可以根据接收到的信号在垂向模式和端射模式之间切换。
在一种可能的实施方式中,垂向天线和端射天线均为双极化天线。
在一种可能的实施方式中,垂向天线包括垂向垂直极化场型和垂向水平极化场型,二者可同时操作。
在一种可能的实施方式中,端射天线包括端射垂直极化场型和端射水平极化场型,二者可同时操作。
本申请实施例提供一种天线结构、封装天线、芯片和电子设备,通过将垂向天线和端射天线的部分结构进行复用和共构,相比于直接将垂向天线和端射天线摆放在一起的相关技术,可以大大降低天线结构整体的使用面积,使得天线结构可以摆放在电子设备的侧边,同时,相比于单独的垂向天线或端射天线来说,通过增加辐射场型,可以大大提升天线覆盖角和天线增益。
附图说明
图1为本申请一实施例提供的电子设备的结构示意图;
图2为本申请一实施例提供的电子设备的爆炸图;
图3为本申请一实施例提供的电子设备的通讯系统架构;
图4为本申请一实施例提供的天线结构的封装结构示意图;
图5为本申请一实施例提供的电子设备中天线结构的布局示意图;
图6为本申请一实施例提供的天线结构的一个天线单元的封装结构示意图;
图7为本申请一实施例提供的天线结构的一个天线单元的结构示意图;
图8为本申请一实施例提供的天线结构中的垂向天线的结构示意图;
图9为本申请一实施例提供的天线结构中的端射天线的结构示意图;
图10为本申请一实施例提供的天线结构的平面展开示意图;
图11为本申请一实施例提供的天线结构的平面孔径结构折叠后的拓谱图;
图12为本申请一实施例提供的天线结构的另一角度的结构示意图;
图13为本申请一实施例提供的天线结构的侧视图;
图14为本申请一实施例提供的天线结构的另一角度的结构示意图;
图15为本申请一实施例提供的天线结构的另一角度的侧视图;
图16为本申请一实施例提供的金属墙的结构示意图;
图17为本申请一实施例提供的天线结构的俯视示意图;
图18为本申请一实施例提供的天线结构的辐射增益方向图;
图19为本申请一实施例提供的天线结构的天线增益分布累积函数图;
图20为本申请一实施例提供的天线结构在YZ平面上的天线增益场型图;
图21为本申请一实施例提供的天线结构的另一种结构示意图;
图22a为图21提供的天线结构在低频带下的垂向与端射垂直极化辐射增益场型图;
图22b为图21提供的天线结构在高频带下的垂向与端射垂直极化辐射增益场型图;
图23为本申请一实施例提供的天线结构的另一种结构示意图;
图24a为图23提供的天线结构在低频带下的垂向与端射水平极化辐射增益场型图;
图24b为图23提供的天线结构在高频带下的垂向与端射水平极化辐射增益场型图。
附图说明:
100-电子设备;101-中央处理器芯片;102-低频基带芯片;103-中频基带芯片;104-封装天线;105-收发芯片;11-中框;12-显示屏;13-后盖;14-盖板;15-PCB;
200-天线结构;20-基板;21-第一辐射单元;211-第一辐射体;212-第二辐射体;22-第二辐射单元;221-第三辐射体;222-第四辐射体;23-第三辐射单元;231-第五辐射体;232-第六辐射体;24-第四辐射单元;241-第七辐射体;242-第八辐射体;
30-接地板;31-第一馈电枝节;311-第一馈入部;32-第二馈电枝节;321-连接枝节;33-第三馈电枝节;331-第二馈入部;34-第四馈电枝节;341-第一馈电结构;342-第二馈电结构;343-寄生单元;351-第一接地单元;352-第二接地单元;361-第三接地单元;362-第四接地单元;SW1-第一开关;SW2-第二开关;SW3-第三开关;SW4-第四开关。
具体实施方式
以下,对本申请实施例可能出现的术语进行解释。
电连接:可理解为元器件物理接触并电导通;也可理解为线路构造中不同元器件之间通过印制电路板(printed circuit board,PCB)铜箔或导线等可传输电信号的实体线路进行连接的形式。
耦合:可理解为直接耦合和/或间接耦合,“耦合连接”可理解为直接耦合连接和/或间接耦合连接,直接耦合又可以称为“电连接”,“间接耦合”可理解为两个导体通过隔空/不接触的方式电导通。“间接耦合”也可以理解为电容耦合,例如通过两个导电件间隔的间隙之间的耦合形成等效电容来实现信号传输。其中,本领域人员可以理解的是,耦合现象即指两个或两个以上的电路元件或电网络的输入与输出之间存在紧密配合与相互影响,并通过相互作用从一侧向另一侧传输能量的现象。
接通:通过以上“电连接”或“耦合连接”的方式使得两个或两个以上的元器件之间导通或连通来进行信号/能量传输,都可称为接通。
连接:可以指一种机械连接关系或物理连接关系,即A与B连接可以指,A与B之间存在紧固的构件(如螺钉、螺栓、铆钉等),或者A与B相互接触且A与B难以被分离。
相对设置:A与B相对设置可以是指A与B面对面(opposite to,或是face to face)设置。
孔径/间隙:可以是指导电体之间围成的封闭或半封闭,开放或半开放的空间,应可理解,孔径可以是填充有任意电介质/介电质的空间,包括空气填充或真空填充的空间。在一些实施例中,孔径可以是指辐射信号可以经过的空间。
电长度:电长度可以是指,物理长度(即机械长度或几何长度)乘以电或电磁信号在媒介中的传输时间与这一信号在自由空间中通过跟媒介物理长度一样的距离时所需的时间的比来表示,电长度可以满足以下公式:
Figure PCTCN2022137702-appb-000001
其中,L为物理长度,a为电或电磁信号在媒介中的传输时间,b为在自由空间中的中传输时间。
或者,电长度也可以是指物理长度(即机械长度或几何长度)与所传输电磁波的波长之比,电长度可以满足以下公式:
Figure PCTCN2022137702-appb-000002
其中,L为物理长度,λ为电磁波的波长。
在本申请的一些实施例中,辐射体的物理长度,可以理解为辐射体的电长度±10%。
波长:或者工作波长,可以是指谐振频率的中心频率对应的波长或者天线所支持的工作频段的中心频率。例如,假设B1上行频段(谐振频率为1920MHz至1980MHz)的中心频率为1955MHz,那工作波长可以为利用1955MHz这个频率计算出来的波长。不限于中心频率,“工作波长”也可以是指谐振频率或工作频段的非中心频率对应的波长。
本申请实施例中提及的共线、共面、对称(轴对称、或中心对称等)、平行、垂直等这类限定,均是针对当前工艺水平而言的,而不是数学意义上绝对严格的定义。共线的两个辐射枝节或者两个天线单元的边缘之间在线宽方向上可以存在小于预定阈值(例如1mm,0.5m,或0.1mm)的偏差。共面的两个辐射枝节或者两个天线单元的边缘之间在垂直于其共面平面的方向上可以存在小于预定阈值(例如1mm,0.5m,或0.1mm)的偏差。相互平行或垂直的两个天线单元之间可以存在预定角度(例如±5°,±10°)的偏差。
本申请提供的技术方案可以适用于采用以下一种或多种通信技术的电子设备:蓝牙(blue-tooth,BT)通信技术、全球定位系统(global positioning system,GPS)通信技术、无线保真(wireless fidelity,Wi-Fi)通信技术、全球移动通讯系统(global system for mobile communications,GSM)通信技术、宽频码分多址(wideband code division multiple access,WCDMA)通信技术、长期演进(long term evolution,LTE)通信技术、5G通信技术以及未来其他通信技术等。
本申请实施例中的电子设备可以是手机、平板电脑、笔记本电脑、智能家居、智能手环、智能手表、智能头盔、智能眼镜等。电子设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助手(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算 设备或连接到无线调制解调器的其它处理设备、车载设备、虚拟现实/增强现实/混合现实设备、5G网络中的电子设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的电子设备等,本申请实施例对此并不限定。
图1为本申请一实施例提供的电子设备的结构示意图,图2为本申请一实施例提供的电子设备的爆炸图。图1和图2示例性示出了本申请提供的电子设备,以电子设备为手机进行说明。
电子设备100可以包括:中框(middle frame)11、显示屏(display)12、后盖(rear cover)13、盖板(cover)14和印刷电路板(printed circuit board,PCB)15。显示屏12和后盖13分别连接在中框11的两侧,三者围设形成容置PCB15及其它器件的容置空间。
其中,显示屏12可以包括液晶显示面板(liquid crystal display,LCD),发光二极管(light emitting diode,LED)显示面板或者有机发光半导体(organic light-emitting diode,OLED)显示面板等,本申请对此并不做限制。
盖板14可以紧贴显示屏12设置,可主要用于对显示屏12起到保护、防尘作用。盖板14可以是玻璃盖板(cover glass),也可以被替换为其他材料的盖板,例如超薄玻璃材料盖板,PET(Polyethylene terephthalate,聚对苯二甲酸乙二酯)材料盖板等。后盖13可以是金属材料制成的后盖,也可以是非导电材料制成的后盖,如玻璃后盖、塑料后盖等非金属后盖。
中框11主要起整机的支撑作用,PCB15可以设于中框11与后盖13之间,或者,PCB15也可设于中框11与显示屏12之间。其中,PCB15可以采用耐燃材料(FR-4)介质板,也可以采用罗杰斯(Rogers)介质板,也可以采用Rogers和FR-4的混合介质板,等等。这里,FR-4是一种耐燃材料等级的代号,Rogers介质板是一种高频板。PCB15上可以承载多种电子元件,例如射频芯片等。
在一个实施例中,PCB15上可以设置一金属层。该金属层可用于PCB15上承载的电子元件接地,也可用于其他元件接地,例如支架天线、边框天线等,该金属层可以称为地板,或接地板,或接地层。在一个实施例中,该金属层可以通过在PCB15中的任意一层介质板的表面蚀刻金属形成。在一个实施例中,用于接地的该金属层可以设置在PCB15上靠近中框11的一侧。在一个实施例中,PCB15的边缘可以看作其接地层的边缘。在一个实施例中,金属中框11也可用于上述元件的接地。电子设备100还可以具有其他地板/接地板/接地层,此处不再赘述。
电子设备100还可以包括电池(图中未示出)。电池可以设于中框11与后盖13之间,或者可设于中框11与显示屏12之间。在一些实施例中,PCB15可以分为主板和子板,电池可以设于所述主板和所述子板之间,主板可以设置于中框11和电池的上边沿之间,子板可以设置于中框11和电池的下边沿之间。
电子设备100还可以包括边框16,边框16可以由金属等导电材料形成。边框16可以设于显示屏12和后盖13之间并绕电子设备100的外围周向延伸。边框16可以具有包围显示屏12的四个侧边,帮助固定显示屏12。在一种实现方式中,金属材料制成的边框16可以直接用作电子设备100的金属边框,形成金属边框的外观,适用于金属工业设计(industrial design,ID)。在另一种实现方式中,边框16的外表面还可以为非金属材料,例如塑料边框,形成非金属边框的外观,适用于非金属ID。
中框11可以包括边框16,包括边框16的中框11作为一体件,可以对整机中的电子器件起支撑作用。盖板14、后盖13分别沿边框的上下边沿盖合从而形成电子设备的外壳或壳体(housing)。在一个实施例中,盖板14、后盖13、边框16和/或中框11,可以统称为电子设备100的外壳或壳体。应可理解,“外壳或壳体”可以用于指代盖板14、后盖13、边框16或中框11中任一个的部分或全部,或者指代盖板14、后盖13、边框16或中框11中任意组合的部分或全部。
或者,可以不将边框16看作中框11的一部分。在一个实施例中,边框16可以和中框11连接并一体成型。在另一实施例中,边框16可以包括向内延伸的突出件,以与中框11相连,例如,通过弹片、螺丝、焊接等方式相连。边框16的突出件还可以用来接收馈电信号,使得边框16的至少一部分作为天线的辐射体收/发射频信号。作为辐射体的这一部分边框,与中框11之间可以存在间隙42,从而保证天线辐射体具有良好的辐射环境,使得天线具有良好的信号传输功能。
后盖13可以是金属材料制成的后盖,也可以是非导电材料制成的后盖,如玻璃后盖、塑料后盖等非金属后盖。
电子设备100的天线还可以设置于边框16内。当电子设备100的边框16为非导电材料时,天线辐射体可以位于电子设备100内并延边框16设置。例如,天线辐射体贴靠边框16设置,以尽量减小天线辐射体占用的体积,并更加的靠近电子设备100的外部,实现更好的信号传输效果。需要说明的是,天线辐射体贴靠边框16设置是指天线辐射体可以紧贴边框16设置,也可以为靠近边框16设置,例如天线辐射体与边框16之间能够具有一定的微小缝隙。
电子设备100的天线还可以设置于外壳内,例如支架天线、毫米波天线等,设置于壳体内的天线的净空可以由中框、和/或边框、和/或后盖、和/或显示屏中任一个上的开缝/开孔来得到,或者由任几个之间形成的非导电缝隙/孔径来得到,天线的净空设置可以保证天线的辐射性能。应可理解,天线的净空可以是由电子设备100内的任意导电元器件来形成的非导电区域,天线通过该非导电区域向外部空间辐射信号。在一个实施例中,天线的形式可以为基于柔性主板(Flexible Printed Circuit,FPC)的天线形式,基于激光直接成型(Laser-Direct-structuring,LDS)的天线形式或者微带天线(Microstrip Disk Antenna,MDA)等天线形式。在一个实施例中,天线也可采用嵌设于电子设备100的屏幕内部的透明结构,使得该天线为嵌设于电子设备100的屏幕内部的透明天线单元。
应理解,图1和图2仅示意性的示出了电子设备100包括的一些部件,这些部件的实际形状、实际大小和实际构造不受图1限定。
另外,为了便于说明,本申请中,可以定义电子设备的显示屏所在的面为正面(Front,+Z),后盖所在的面为背面(Back,-Z),边框所在的面为侧面,用户握持(通常是竖向并面对屏幕握持)电子设备时,电子设备所在的方位具有顶部(Top,+Y)、底部(Bottom,-Y)、左侧部(Left,-X)和右侧部(Right,+X)。
图3为本申请一实施例提供的电子设备的通讯系统架构。参考图3所示,电子设备100还包括中央处理器(central processing unit,CPU)芯片101、低频基带芯片102、中频基带芯片103和封装天线(antenna-in-package,AIP)(又称基板天线)104。
封装天线104可以包括收发(transmitter and/or receiver,T/R)芯片105和天线结构 (antenna-in-module)200,收发芯片105与天线结构200电连接。收发芯片105用以向天线结构200发送和/或接收电磁波信号。天线结构200用以根据接收的电磁信号辐射电磁波,和/或,根据接收的电磁波向收发芯片105发送电磁信号,从而实现电子设备100的无线通信。其中,收发芯片105可以为毫米波(millimeter wave,mmW)收发芯片。此时,电子设备100为具有毫米波功能的手机,电子设备100可以工作在毫米波频段。在其他一些实施例中,收发芯片105也可以为其他可以发射和/或接收射频信号的射频模组(radio frequency module,AF module)。
其中,低频基带芯片102和中频基带芯片103例如可以为数字运算芯片,毫米波芯片例如可以是数字与模拟转换的芯片,由于毫米波芯片操作频率高(>20GHz),导致射频链路差损大,因此在毫米波芯片收发毫米波信号后,可以先通过中频基带芯片103做降频,走差损相对较低的中频信号(5-11GHz)回到低频基带芯片102(<2GHz)芯片做数字运算。
在一种实施例中,中频基带芯片103可以和天线结构200集成在同一个模组中,构成毫米波模组。在一种实施例中,低频基带芯片102和中频基带芯片103可以集成在同一个芯片中,例如可以集成在毫米波模组中。在一种实施例中,低频基带芯片102和中频基带芯片103可以集成在同一个芯片中,并可以集成在CPU芯片101的射频芯片中。本申请实施例对CPU芯片101、低频基带芯片102、中频基带芯片103和封装天线104等在工艺上的实现形式不做具体限制。封装天线104除了可以适用于毫米波模组外,还可以适用于其他频段,本申请实施例对此不做限制。
中央处理器芯片101、低频基带芯片102、中频基带芯片103和封装天线104可以均安装于PCB15。或者,中央处理器芯片101可安装于PCB15,低频基带芯片102、中频基带芯片103和封装天线104可安装于连接板(图中未示出)。其中,连接板与PCB15电连接,连接板可为刚性电路板或者柔性电路板。
低频基带芯片102可以为2个,2个低频基带芯片102可均与中央处理器芯片101电连接。中频基带芯片103可以为2个,2个中频基带芯片103可均与一个低频基带芯片102电连接。封装天线104可以为3个,3个封装天线104可均与一个中频基带芯片103电连接。
在其他一些实施例中,低频基带芯片102也可以为1个或3个及3个以上,和/或,中频基带芯片103也可以为1个或3个及3个以上,和/或,封装天线104也可以为1个或3个及3个以上,和/或,低频基带芯片102和中频基带芯片103集成于一个芯片内。需要说明的是,本申请实施例中,“A和/或B”包括“A”、“B”以及“A和B”三种情况,后文中的相关描述可做相同理解。
在另一些实施例中,天线结构200可以单独设置,而并未与收发芯片105构成封装天线104,此时,天线结构200可以通过信号线缆或者柔性电路板等与射频芯片连接,从而实现电磁波信号的收发。
本申请实施例提供一种天线结构,将垂向天线(broadside antenna,BR Antenna)和端射天线(end-fire antenna,EF Antenna)的部分结构进行复用和共构(co-structure),以使天线结构的辐射场型可以为垂向BR方向的场型或者端射EF方向的场型。在本申请的一个实施例中,垂向BR方向的场型和/或端射EF方向的场型下天线结构可以支持双极化(Dual-polarization)。
图4为本申请一实施例提供的天线结构的封装结构示意图。参考图4所示,天线结构200可以包括基板20和设置在基板20上的多个天线结构,例如图中包括4个天线单元,4个天线单元可以沿着线性排列成1*4的结构。
天线结构200的封装可通过液晶高分子聚合物(liquid crystal polymer,LCP)或异质聚酰亚胺(modified PI)等可挠式软板工艺形成,或者,可通过多层压合(laminate)电路板等硬板工艺形成,或者,可通过晶圆级扇出式封装(fan-out wafer level package)或低温陶瓷共烧(low temperature co-fired ceramic,LTCC)等封装工艺形成。
示例性地,基板20可以为多层印刷电路板,每个天线单元均可以包括垂向天线和端射天线,垂向天线和端射天线的至少一部分可以嵌设在基板20的内部,垂向天线和端射天线可以共用部分辐射体,并与基板20在同一工艺下形成,以简化天线结构200的形成工艺。
应理解,垂向天线的主辐射方向为第一辐射方向,端射天线的主辐射方向为第二辐射方向,第一辐射方向与第二辐射方向不同。示例性地,第一辐射方向可以为垂直于基板20的方向(如图中实线箭头所示),第二辐射方向可以为平行于基板20的方向(如图中虚线箭头所示)。示例性地,第一辐射方向可以为基板20的厚度方向(如图中实线箭头所示),第二辐射方向可以为基板20的宽度方向(如图中虚线箭头所示)。
需要说明的是,本申请实施例中所提及的平行和垂直等关于相对位置关系的限定词,均是针对当前工艺水平而言的,而不是数学意义上绝对的严格的定义,允许存在少量偏差,近似于平行和近似于垂直均可以。例如,在一个实施例中,A与B平行,是指A与B之间平行或者近似于平行。在一个实施例中,A与B平行,是指A与B之间的夹角在0度~10度之间。在一个实施例中,A与B垂直,是指A与B之间垂直或者近似于垂直。在一个实施例中,A与B垂直,是指A与B之间的夹角在80度~100度之间。
图5为本申请一实施例提供的电子设备中天线结构的布局示意图。参考图5所示,本实施方式中,电子设备100中可以设置三个天线结构200a、200b、200c,每个天线结构200均可以包括四个天线单元。
在一种实施方式中,天线结构200a可以设于电子设备100的背面(基板平行于电子设备100的背面),并靠近电子设备100的顶部,例如距离中框顶部的上边缘距离不超过第一阈值,第一阈值例如可以小于10mm;天线结构200b可以设于电子设备100的左侧部(基板平行于电子设备的侧壁面),例如嵌设在中框的左侧壁上,或者距离左侧壁的左边缘不超过第二阈值,第二阈值例如可以处于0.2mm-1mm;天线结构200c可以设于电子设备100的右侧部(基板平行于电子设备的侧壁面),例如嵌设在中框的右侧壁上,或者距离右侧壁的右边缘不超过第二阈值,第二阈值例如可以处于0.2mm-1mm。
天线结构200a、200b和200c配置在电子设备的周围,分别用来负责不同方向的毫米波信号的发射/接收。三个天线结构分别摆放在顶部、左侧部和右侧部,且每个天线结构均可以做独立的波束成型(Beam forming)以及波束扫描(Beam Scanning),因此可以达到较大的辐射覆盖范围。并且,将天线结构摆放在电子设备的侧边或者靠近侧边的位置,可以有效利用电子设备的空间,减少占用电子设备内部的电路板及其它既有电子器件的空间。
另外,应理解,电子设备100中的天线结构200的数量不做具体限制,例如可以为三个以上。在电子设备100中设置三个天线结构200时,三个天线结构200的位置不做具体 限制,可以不局限于图中所示。天线结构200可以固接于电子设备100中的PCB15上的任意位置,或者,天线结构200可以与PCB15一体成型,此时,部分PCB15形成天线结构200,或者,天线结构200的基板20为PCB15的一部分;天线结构200可以封装于PCB15,或者,天线结构200的基板20分布于电子设备100的内部,位于中框11的内侧且与PCB15电连接。
应理解,图5中,位于天线结构附近的椭圆形的辐射波束可以代表天线的辐射增益,其中具有虚线外轮廓的椭圆形代表端射天线的辐射增益,不具有虚线外轮廓的椭圆代表垂向天线的辐射增益。天线结构200a的垂向天线的最大辐射增益朝向为Back(-Z),在一个实施例中,天线结构200a的垂向天线可以在ZX平面上做波束扫描(Beam Steering)。天线结构200a的端射天线的最大辐射增益朝向为Top(+Y),在一个实施例中,天线结构200a的端射天线可以在XY平面上做波束扫描;天线结构200b的垂向天线的最大辐射增益朝向为Left(-X),在一个实施例中,天线结构200b的垂向天线可以在XY平面上做波束扫描,天线结构200b的端射天线的最大辐射增益朝向为Front(+Z),在一个实施例中,天线结构200b的端射天线可以在YZ平面上做波束扫描;天线结构200c的垂向天线的最大辐射增益朝向Right(+X),在一个实施例中,天线结构200c的垂向天线可以在XY平面上做波束扫描,天线结构200c的端射天线的最大辐射增益朝向屏前Front(+Z),在一个实施例中,天线结构200c的端射天线可以在YZ平面上做波束扫描。
电子设备在使用过程中,可以根据接收到的信号,操作不同数量和不同位置的天线结构200,使天线结构做波束扫描,和/或在垂向模式和端射模式之间切换,以得到最佳信号。
可看出,本申请实施例提供的电子设备,由于每个天线结构均具有垂向天线和端射天线,因此设置三个天线结构,其主辐射方向可以实现Right(+X)、Left(-X)、Back(-Z)、Front(+Z)以及Top(+Y)五个方向的辐射覆盖。不难理解,当电子设备中的三个天线结构排布在其它位置时,可以实现更多方向(例如六个方向)的辐射覆盖。相关技术中,电子设备中若设置三个天线结构,每个天线结构可以为垂向天线或者端射天线,其主辐射方向最多可以实现三个方向的辐射覆盖。因此,本申请实施例提供的电子设备,可以增加辐射覆盖面积,提升天线增益。
另外,需要注意的是,为了将天线结构200摆放在电子设备100的侧边,天线结构200的宽度W受限于电子设备100的侧边宽度(厚度)T。随着电子设备100越来越轻薄化,T可以小于8mm,6mm(甚至更小)。假设直接将相关技术中的垂向天线和端射天线集成在同一个天线结构中,则该天线结构的宽度估计不小于5.5mm,将无法如图5中的200b和200c所示的摆放在电子设备100的侧边,只能平面占用电子设备100内的PCB15的面积,这显然不利于电子设备内部空间的排布。
基于此问题,本申请实施例提供一种天线结构,将垂向天线和端射天线集成在一个天线结构中时,通过将垂向天线和端射天线的部分结构进行复用和共构,相比于直接将垂向天线和端射天线摆放在一起的相关技术,可以大大降低天线结构整体的使用面积。
图6为本申请一实施例提供的天线结构的一个天线单元的封装结构示意图。参考图6所示,基板20可以包括顶面201和底面202,顶面201和底面202背向设置且可以互相平行。基板20的内部可以设置金属层以及接地板30,接地板30可以位于顶面201和底面202之间,接地板30可以与顶面201和底面202平行设置,示例性地,接地板30可以设 置在靠近底面202的一侧。
在一个实施例中,顶面201、底面202、接地板30均可以平行于XY平面。基板20内可以设置有多层金属层和多层绝缘层,多层金属层和多层绝缘层可以沿着Z轴方向间隔排布/堆叠,部分金属层之间可以通过导电连接孔、金属柱等方式实现连接导通,基板20内的金属结构可以用来作为天线结构200中的辐射单元、馈电枝节或接地单元。
示例性地,基板20的厚度可以处于1mm-1.5mm之间,例如可以为1.09mm。
图7为本申请一实施例提供的天线结构的一个天线单元的结构示意图。参考图7所示,本申请一实施例提供的天线结构200可以包括:接地板30、第一辐射单元21、第二辐射单元22、第三辐射单元23、第一馈电枝节31、和第二馈电枝节32。其中,第一辐射单元21可以和接地板30沿Z轴间隔排布且相对设置,第一辐射单元21和第二辐射单元22可以沿X轴间隔排布,第一辐射单元21和第二辐射单元22之间的第一间隙C1可以沿Y轴延伸,第三辐射单元23和第二辐射单元22可以沿Z轴间隔排布且相对设置,第一辐射单元21、第二辐射单元22、第三辐射单元23可以分别和接地板30耦合连接。
本申请实施例提供的天线结构200还可以包括:第四辐射单元24。第四辐射单元24可以设置在第二辐射单元22和第三辐射单元23之间,且第四辐射单元24可以和接地板30耦合连接。
应理解,本申请实施例中的X轴、Y轴和Z轴两两垂直。
应理解,本申请实施例中所提及的“沿X轴排布”、“沿Y轴延伸”等关于相对位置关系的限定词,不是数学意义上绝对的严格的定义,允许存在少量偏差,例如可以指沿着近似于X轴的方向排布,沿着近似于Y轴的方向延伸,此处的近似例如可以为偏差角小于10度。
应理解,本申请实施例中,“A和B沿X轴间隔排布”,可以理解为,在将A和B各自等效为方形或者圆形等中心对称图形后,A和B各自的等效中心点沿X轴间隔排布,即A和B的等效中心点的连线位于X轴上且间隔一定距离。
应理解,本申请实施例中,“间隙”可以等效为“狭长的缝隙”,“沿Y轴延伸的间隙”可以理解为“狭长的缝隙”的长度方向为Y轴方向,此处对“间隙”的形状不做要求,“间隙”的宽度可以均匀或者近似均匀,构成“间隙”的边缘例如可以为直线或者不规则的曲线。
在一个实施例中,第一辐射单元21可以包括沿Y轴间隔排布的第一辐射体211和第二辐射体212,第一辐射体211和第二辐射体212之间的第二间隙C2可以沿X轴延伸。在一个实施例中,第二辐射单元22可以包括沿Y轴间隔排布的第三辐射体221和第四辐射体222,第三辐射体221和第四辐射体222之间的第三间隙C3可以沿X轴延伸。在一个实施例中,第三辐射单元23可以包括沿Y轴间隔排布的第五辐射体231和第六辐射体232,第五辐射体231和第六辐射体232之间的第四间隙C4可以沿X轴延伸。在一个实施例中,第四辐射单元24可以包括第七辐射体241和第八辐射体242,第七辐射体241可以设置于第三辐射体221和第五辐射体231之间,第八辐射体242可以设置于第四辐射体222和第六辐射体232之间。
上述四个辐射单元和接地板30之间的耦合连接的实现形式可以有多种。在一个实施例中,天线结构200还可以包括:第一接地单元351、第二接地单元352、第三接地单元 361、第四接地单元362。
第一接地单元351可以连接在第一辐射体211和接地板30之间,第二接地单元352连接在第二辐射体212和接地板30之间。在一个实施例中,第三接地单元361可以连接在第三辐射体221和接地板30之间,第三接地单元361可以连接在第三辐射体221的面向第一辐射体211的一端,第四接地单元362可以连接在第四辐射体222和接地板30之间,第四接地单元362可以连接在第四辐射体222的面向第二辐射体212的一端。在一个实施例中,第七辐射体241可以和第三接地单元361连接,第八辐射体242可以和第四接地单元362连接。
在一个实施例中,第一馈电枝节31的至少一部分可以设置在第一孔径(图中未标记)内,第一孔径可以包括第一间隙C1与接地板30之间的空间。第一馈电枝节31可以和馈源电连接。在一个实施例中,第一馈电枝节31用于激励第一辐射单元21和第二辐射单元22在第一孔径内产生沿X轴的电场。
第二馈电枝节32的至少一部分可以设置在第二孔径(图中未标记)内,第二孔径可以包括第二辐射单元22和第三辐射单元23之间的空间。第二馈电枝节32可以和馈源电连接。在一个实施例中,第二馈电枝节32用于激励第二辐射单元22和第三辐射单元23在第二孔径内产生沿Z轴的电场。
在一个实施例中,天线结构200还可以包括:第三馈电枝节33、第四馈电枝节34。
第三馈电枝节33的至少一部分可以设置在第三孔径(图中未标记)内,第三孔径可以包括第二间隙C2和第三间隙C3与接地板30之间的空间。第三馈电枝节33可以和馈源电连接。在一个实施例中,第三馈电枝节33用于激励第一辐射单元21和第二辐射单元22在第三孔径内产生沿Y轴的电场。
第四馈电枝节34可以包括第一馈电结构341和第二馈电结构342,第一馈电结构341可以与第七辐射体241耦合连接,第二馈电结构342可以与第八辐射体242耦合连接。第一馈电结构341和第二馈电结构342可以分别与馈源电连接。在一个实施例中,第四馈电枝节34用于激励第七辐射体241和第八辐射体242之间产生沿Y轴的电场。
应理解,本申请实施例中,“孔径”指的是立体空间结构,例如“第一孔径”不仅包括第一辐射单元21和第二辐射单元22之间的第一间隙C1,还包括第一间隙C1的朝向接地板30一侧的空间,还可以包括第一间隙C1的背离接地板30一侧的空间。
在一个实施例中,第三辐射单元23可以和接地板30连接,或由接地板30的一部分结构形成。应可理解,在另一个实施例中,第三辐射单元23可以设置在接地板30的上方或者下方(图中Z轴正方向为上),并与接地板30通过接地枝节连接。本申请以下实施例中,以第三辐射单元23作为接地板30的一部分为实施例进行描述。在一个实施例中,基板(例如,PCB板)的其中一层金属层(例如位于上表面的一层金属层,或任意一层作为接地板的金属层)的部分区域,可以作为第三辐射单元23。
上述图7所示的实施例提供的天线结构200,集成了垂向天线和端射天线,下面将天线结构拆分为垂向天线和端射天线,以更好地解释本申请实施例提供的天线结构的工作原理。
应可理解,上述图7完整示出了四个馈电枝节,分别为用于垂向天线和端射天线的馈电结构,但是图7所包含的方案并不受限于四个馈电枝节的一个实施例,还可以包括其中 至少一个馈电枝节的组合的多个实施例。例如,垂向天线可以包括第一馈电枝节31和/或第三馈电枝节33。又例如,端射天线可以包括第二馈电枝节32和/或第四馈电枝节34。
应可理解,上述图7完整示出了垂向天线的垂直极化、垂向天线的水平极化、端射天线的垂直极化、端射天线的水平极化的方案,但是图7对应的方案并不受限于同时实现垂向天线双极化以及端射天线双极化的一个实施例。在本申请的一个实施例中,图7对应的方案还可以拆分出垂向天线的垂直极化以及垂向天线的水平极化的一个实施例,或者可以拆分出端射天线的垂直极化以及端射天线的水平极化的一个实施例,或者还可以拆分出垂向天线的垂直极化以及端射天线的垂直极化的一个实施例,或者还可以拆分出垂向天线的水平极化以及端射天线的水平极化的一个实施例,以及垂向天线的单极化的一个实施例、端射天线的单极化的一个实施例等。根据图7及其对应描述,可以得出这些实施例,这些实施例均应包含在本申请的范围内。
图8提供了与图7对应的本申请实施例,所拆分的垂向天线的一个实施例,图9提供了与图7对应的本申请实施例,所拆分的端射天线的一个实施例。不难理解,图8提供的垂向天线的一个实施例,并不限于垂向天线双极化的一个实施例,图9提供的端射天线的一个实施例,并不限于端射天线双极化的一个实施例。
图8为本申请一实施例提供的天线结构中的垂向天线的结构示意图。参考图8所示,本申请实施例提供的垂向天线可以包括接地板30、第一辐射单元21、第二辐射单元22、第一接地单元351、第二接地单元352、第三接地单元352、第四接地单元354、第一馈电枝节31和第三馈电枝节33。应理解,第一辐射单元21和第二辐射单元22为垂向天线的主要辐射体。在一个实施例中,垂向天线的接地板30可以用来形成端射天线中的第三辐射单元23的至少一部分。
本申请的一个实施例提供的垂向天线可以是具有双极化特性的磁电偶极子(magneto electric dipole)天线,第一馈电枝节31用于激励第一辐射单元21和第二辐射单元22产生沿X轴的电场,激励垂向天线产生垂直极化辐射。第三馈电枝节33用于激励第一辐射单元21和第二辐射单元22产生沿Y轴的电场,激励垂向天线产生水平极化辐射。应理解,此处提及的垂直极化方向指的是X轴方向,水平极化方向指的是Y轴方向。
在一个实施例中,第一馈电枝节31可以沿X轴延伸,第一馈电枝节31的第一端在XY平面上的投影可以位于第二间隙C2在XY平面上的投影之内,第一馈电枝节31的第二端在XY平面上的投影可以位于第三间隙C3在XY平面上的投影之内。第一馈电枝节31横跨第一间隙C1,第一馈电枝节31的两端可以分别和第一辐射单元21、第二辐射单元22耦合连接。在一个实施例中,第一馈电枝节31可以激励第一辐射单元21、第二辐射单元22在第一孔径内形成垂直极化辐射。
在一个实施例中,第一间隙C1可以包括第一子间隙C11和第二子间隙C12,第一子间隙C11处于第一辐射体211和第三辐射体221之间,第二子间隙C12处于第二辐射体212和第四辐射体222之间,第三馈电枝节33可以沿Y轴延伸,第三馈电枝节33的第一端在XY平面上的投影可以位于第一子间隙C11在XY平面上的投影之内,第三馈电枝节33的第二端在XY平面上的投影可以位于第二子间隙C12在XY面上的投影之内。第三馈电枝节33横跨第二间隙C2和第三间隙C3构成的间隙,第三馈电枝节33的第一端可以和第一辐射体211、第三辐射体221耦合连接,第三馈电枝节33的第二端可以和第二辐射体 212、第四辐射体222耦合连接。在一个实施例中,第三馈电枝节33可以激励第一辐射单元21、第二辐射单元22在第三孔径内形成水平极化辐射。
在一个实施例中,第一辐射单元21和第二辐射单元22可以沿X轴间隔排布。在一个实施例中,第一辐射单元21和第二辐射单元22均为金属层,可以设置在同一平面内,例如,均平行于XY平面(允许存在少许偏差)。在一个实施例中,基板20的一层金属层可以形成第一辐射单元21和第二辐射单元22。在一个实施例中,第一辐射单元21和第二辐射单元22可以与基板20内部的金属层在同一工艺下形成,以简化制备工艺。
第一馈电枝节31可以由金属层形成,可以设置在同一平面内,例如,平行于XY平面。示例性地,第一馈电枝节31所在的金属层可以和第一辐射单元21、第二辐射单元22所在的金属层共面。第三馈电枝节33可以由金属层形成,可以设置在同一平面内,例如,平行于XY平面。示例性地,第三馈电枝节33和第一馈电枝节31可以设置在基板20内的不同金属层中。
在一种实施例中,第一接地单元351可以连接在第一辐射体211的接近第二辐射体212和第三辐射体221的拐角处,第二接地单元352可以连接在第二辐射体212的接近第一辐射体211和第四辐射体222的拐角处。第一接地单元351和第二接地单元352均可以沿Z轴延伸,为导电连接孔结构。
在一种实施例中,第三接地单元361可以呈金属墙结构,该金属墙可以连接在第三辐射体221的靠近第一辐射体211的一侧,第四接地单元362可以呈金属墙结构,该金属墙可以连接在第四辐射体222的靠近第二辐射体212的一侧。该金属墙可以沿Z轴延伸,为导电连接孔结构。
在一种实施方式中,第一间隙C1的宽度和第二间隙C2、第三间隙C3的宽度可以相同。在一种实施方式中,第一辐射单元21和第二辐射单元22的面积和形状可以相同。在一种实施方式中,第一辐射体211、第二辐射体212、第三辐射体221、第四辐射体222的面积和形状可以相同,并呈中心对称。
第一辐射体211、第二辐射体212、第三辐射体221、第四辐射体222的形状在本申请实施例中不做具体限制,这四个辐射体均可以设置为矩形,或者如图中所示的具有缺角的矩形。在一种示例中,四个辐射体尺寸和形状相同,均可以设置为具有一个正方形缺角的正方形,任意两个辐射体之间的间距相同,四个辐射体整体上构成一个四角均具有正方向缺角的大正方形。应理解,辐射体上增加缺角可以增加辐射体的电长度。应理解,辐射体的任意位置都可以设置任意形状的缺角/凹进部或者突出部,其不应作为对本申请的限制。
图9为本申请一实施例提供的天线结构中的端射天线的结构示意图。参考图9所示,本申请实施例提供的端射天线可以包括接地板30、第二辐射单元22、第三辐射单元23、第四辐射单元24、第三接地单元361、第四接地单元362、第二馈电枝节32和第四馈电枝节34。
本申请的一个实施例提供的端射天线可以是具有双极化特性的磁电偶极子(magneto electric dipole)天线,第二馈电枝节32用于激励第二辐射单元22和第三辐射单元23产生沿Z轴的电场,激励端射天线产生垂直极化辐射。第四馈电枝节34用于激励第四辐射单元24产生沿Y轴的电场,激励端射天线产生水平极化辐射。应理解,此处提及的垂直极化方向指的是Z轴方向,水平极化方向指的是Y轴方向。
在一个实施例中,第二馈电枝节32可以沿Z轴延伸,第二馈电枝节32的一端和第二辐射单元22耦合连接。第二馈电枝节32横跨第二孔径,第二馈电枝节32的第一端可以和第三辐射单元23耦合连接,第二馈电枝节32的第二端可以和第二辐射单元22连接。在一个实施例中,第二馈电枝节32可以激励第二辐射单元22和第三辐射单元23在第二孔径内形成垂直极化辐射。
第二馈电枝节32可以为基板20内的导电连接孔结构,其可以为采用金属材料填充于连接孔形成的实心金属柱结构,也可以为采用金属材料部分或全部覆盖连接孔的孔壁之后形成的金属层。本文中的导电连接孔均可作此理解。
在一个实施例中,第二辐射单元22和第三辐射单元23可以为不同平面内的两个金属层,例如可以平行且相对设置。在一个实施例中,第二辐射单元22和第三辐射单元23均可以平行于XY平面(允许存在少许偏差)。
在一种实施方式中,第二辐射单元22和第三辐射单元23的面积和形状相同。在一个实施例中,第二辐射单元22和第三辐射单元23正对设置,例如,第三辐射单元23在第二辐射单元22的正投影完全覆盖第二辐射单元22。在另一些实施方式中,第二辐射单元22和第三辐射单元23的面积和/或形状也可以不相同。在另一些实施方式中,第二辐射单元22和第三辐射单元23也可以不完全正对,例如,上第二辐射单元22和第三辐射单元23也可以部分正对。
第四辐射单元24可以包括沿Y轴间隔排布的第七辐射体241和第八辐射体242,在一个实施例中,第七辐射体241和第八辐射体242均可以垂直于XY平面设置。
在一个实施例中,第七辐射体241和第八辐射体242的面积和形状相同,且可以相对于第三孔径呈镜像对称设计。在一种实施方式中,第七辐射体241和第八辐射体242可以垂直于YZ平面设置,例如,第七辐射体241和第八辐射体242可以呈平行且相对设置。在另一种实施方式中,第七辐射体241和第八辐射体242可以相对于YZ平面呈夹角设置。例如,第七辐射体241和第八辐射体242可以不平行。示例性地,如图中所示,第七辐射体241的第一端和第三接地单元361连接,第七辐射体241的第二端向着远离第八辐射体242的一侧延伸,第八辐射体242的第一端和第四接地单元362连接,第八辐射体242的第二端向着远离第七辐射体241的一侧延伸。也即,自X+至X-的方向,自远离第一辐射单元21的方向至靠近第一辐射单元21的方向,第七辐射体241和第八辐射体242在Y方向上的距离可以逐渐减小。
在一个实施例中,第四馈电枝节34可以包括第一馈电结构341和第二馈电结构342,第一馈电结构341的端部和第七辐射体241耦合连接,第二馈电结构342的端部和第八辐射体242耦合连接。在一个实施例中,第一馈电结构341和第二馈电结构342上可以搭载差分信号,承载大小相同且相位相反的电流,以非连接的电容性耦合实现激励。在一个实施例中,第四馈电枝节34可以激励第七辐射体241和第八辐射体242之间形成水平极化辐射。
第一馈电结构341和第二馈电结构342整体呈金属线结构,可以由基板20中的同一层金属层形成,以简化制备工艺。
本申请实施例提供的端射天线中,第二辐射单元22的接地结构为第三接地单元361和第四接地单元362,在此不再赘述。第三辐射单元23可以为接地板30的一部分,可实 现直接接地。第七辐射体241可以和第三接地单元361连接,第八辐射体242可以和第四接地单元362连接,从而实现第四辐射单元24的间接接地。
结合图8和图9不难看出,本申请实施例提供的垂向天线与端射天线,共构复用了第二辐射单元22、第三接地单元361和第四接地单元362。在一个实施例中,第二辐射单元22可以同时作为垂向天线与端射天线的辐射体的至少一部分。在一个实施例中,第三接地单元361和第四接地单元362可以在垂向天线中用来与接地板30断开连接(例如通过开关断开来实现)使得第二辐射单元22作为垂向天线的辐射体进行辐射,而在端射天线中第三接地单元361和第四接地单元362可以与接地板连接(例如通过开关接通来实现)使得第二辐射单元22短路以满足端射天线的辐射边界条件。在一个实施例中,垂向天线与端射天线还可以复用第三辐射单元23,其中,第三辐射单元23可以作为垂向天线的参考地,同时作为端射天线的辐射体。因此本申请实施例提供的天线结构,在兼并了垂向天线和端射天线的功能的同时,可以大幅减少垂向天线与端射天线的整合面积。
另外,本申请实施例提供的天线结构,可以实现双极化垂向天线和双极化端射天线,以实现天线结构200的极化多样性(polarization diversity),有助于提高传输吞吐量和弱信号区的信号稳定性,满足信号传输的要求。
图10为本申请一实施例提供的天线结构的平面展开示意图,图11为本申请一实施例提供的天线结构的平面孔径结构折叠后的拓谱图。应理解,图10为不考虑接地板30、第一接地单元35、第二接地单元36,仅将第一辐射单元21、第二辐射单元22、第三辐射单元23摊成平面结构得到的辐射体之间的槽孔示意图,辐射体之间的槽孔即天线结构200的辐射孔径。图11为将图10中平面的辐射孔径结构,沿着图10中的虚线做折叠后得到的立体的辐射孔径结构示意图。
其中,BR_V指的是垂向天线的垂直极化模式下的辐射孔径电场分布,BR_H指的是垂向天线的水平极化模式下的辐射孔径电场分布,EF_V指的是端射天线的垂直极化模式下的辐射孔径电场分布,EF_H指的是端射天线的水平极化模式下的辐射孔径电场分布。应理解,BR_V的辐射孔径可以认为是上述第一孔径,BR_H的辐射孔径可以认为是上述第三孔径,EF_V的辐射孔径可以认为是上述第二孔径,EF_H的辐射孔径可以认为包括第三间隙C3和第四间隙C4之间的空间。需要注意的是,BR_H的辐射孔径和EF_H的辐射孔径存在部分区域重合。
参考图10和图11所示,BR_V和BR_H之间的电场正交,所以双极化垂向天线高隔离、可同时操作;同样,EF_V、EF_H之间的电场正交,所以双极化端射天线高隔离、可同时操作。
需要说明的是,本申请实施例提供的天线结构将垂向天线和端射天线中的第二辐射单元进行复用,通过电路控制可以重构天线辐射场型(Antenna Pattern Re-configurable),使天线结构的辐射场型可以为垂向方向的场型或端射方向的场型。该电路控制的实现方式可以为在天线结构200内增加设置开关。
结合图7-图9,天线结构200内可以设置第一开关SW1和第二开关SW2,第一开关SW1可以连接在第三接地单元361和接地板30之间。在一个实施例中,第一开关SW1位于第三接地单元361的远离第四辐射体222的一侧。第二开关SW2可以连接在第四接地单元362和接地板30之间。在一个实施例中,第二开关SW2位于第四接地单元362的远 离第三辐射体221的一侧。
第一开关SW1用来控制第三辐射体221是否接地,第二开关SW2用来控制第四辐射体222是否接地,第一开关SW1和第二开关SW2用来控制第二辐射单元22是否接地。
当天线结构200处于端射模式时,为了强制满足EF_V的电场最小边界条件,因此会通过控制第一开关SW1和第二开关SW2短路(turn on),使第二辐射单元22接地,以此创造EF_V辐射孔径内两侧电场最小的边界条件;当天线结构200处于垂向模式时,通过控制第一开关SW1和第二开关SW2断路(turn off),让主要的辐射孔径回到BR_V、BR_H。
继续结合图7-图9,天线结构200内还可以设置第三开关SW3和第四开关SW4。第三开关SW3可以连接在第五辐射体231和第六辐射体232之间。在一个实施例中,第三开关SW3位于第三辐射单元23的远离第一辐射单元21的一侧。第四开关SW4可以连接在第三辐射体221和第四辐射体222之间。在一个实施例中,第三开关SW3位于第二辐射单元22的靠近第一辐射单元21的一侧。
第三开关SW3用来控制第五辐射体231和第六辐射体232之间的短路或短路,第四开关SW4用来控制第三辐射体221和第四辐射体222之间的短路或短路。
当天线结构200处于垂向模式时,控制第三开关SW3短路(turn on)且第四开关SW4断路(turn off);当天线结构200处于端射模式时,控制第三开关SW3断路(turn off),第四开关SW4短路(turn on),以此达到垂向与端射的场型操作。
本申请的实施例可以通过同时设置第一开关SW1、第二开关SW2、第三开关SW3和第四开关SW4,以提升场型切换收益与操作带宽。
在本申请的一个实施例中,应可理解,开关通常会带有寄生的短路时的电阻(Ron)以及断路时的电容(Coff),第三开关SW3和第四开关SW4放置在天线模式的大电场区域,对天线模式有加载。在一个实施例中第三开关SW3和第四开关SW4的电容≤10fF。
图12为本申请一实施例提供的天线结构的另一角度的结构示意图,其中为了便于理解图中被第一辐射体211遮挡的结构,对第一辐射体211做了隐藏处理(如虚线)。参考图12所示,本申请实施例中,第一馈电枝节31的第一端和第一馈入部311连接,第一馈入部311可以位于第一馈电枝节31的朝向接地板30的一侧,第一馈入部311可以沿Z轴延伸并连接馈源(图中未示出)。
第一馈电枝节31为垂向天线的垂直极化馈电枝节,第一馈入部311可以与收发芯片105的射频口电连接,以实现与馈源的连接,该电连接例如可以通过微带线等馈线实现。第一馈电枝节31和第一馈入部311整体可以视为“Γ”型。
第三馈电枝节33的第一端和第二馈入部331连接,第二馈入部331可以位于第三馈电枝节33的朝向接地板30的一侧,第二馈入部331可以沿Z轴延伸并连接馈源。
第三馈电枝节33为垂向天线的水平极化馈电枝节,第二馈入部331可以与收发芯片105的射频口电连接,以实现与馈源的连接,该电连接例如可以通过微带线等馈线实现。第三馈电枝节33和第二馈入部331整体可以视为“Γ”型。
第一馈电枝节31和第三馈电枝节33呈正交设置,且互相之间绝缘,第一馈电枝节31和第三馈电枝节33可以设置在基板20内的不同金属层中,示例性地,第一馈电枝节31可以与第一辐射体211、第二辐射体212、第三辐射体221、第四辐射体222处于同一层金属层中,以简化制备工艺,第三馈电枝节33则可以位于第一馈电枝节31下方(定义Z轴 正方向为上,Z轴负方向为下)的另一个金属层中,这两个金属层之间设置有绝缘层。
需要说明的是,第一馈入部311和第二馈入部331在图中呈现为柱状结构,以利于附图的直观理解。应理解,第一馈入部311和第二馈入部331可以为基板20内的导电连接孔结构,其可以为采用金属材料填充于连接孔形成的实心金属柱结构,也可以为采用金属材料部分或全部覆盖连接孔的孔壁之后形成的金属层。
图13为本申请一实施例提供的天线结构的侧视图。参考图12和图13所示,在一种可能的实施方式中,第一接地单元351可以包括依次连接的第一接地段3511、第二接地段3512和第三接地段3513,第一接地段3511连接第一辐射体211,第三接地段3513连接至接地板30,第一接地段3511和第三接地段3513可以沿Z轴延伸,为导电连接孔结构,第二接地段3512可以沿XY平面延伸,由基板20内的部分金属层形成。第一接地单元351整体包括折弯的三段,总的电长度为1/4λ,通过将第一接地单元351设置为多段弯折结构,有利于降低第一辐射体211和接地板30之间的高度,从而减小天线结构200整体的体积。
第一接地单元351的位置在本申请中不做具体限制,示例性地,第一接地段3511可以连接在第一辐射体211的接近第二辐射体212和第三辐射体221的拐角处,第二接地段3512和第三接地段3513在第一辐射体211上的正投影位于第一辐射体211内部,以避免第二接地段3512和第三接地段3513干涉到第一馈入部311。
另外,第一接地单元351和第二接地单元352的结构可以相对于第三孔径呈镜像对称设置,第二接地单元352的结构可以与第一接地单元351的结构相似,同样包括三段,在此不再赘述。
应理解,在另一种可能的实施方式中,第一接地单元351和第二接地单元352均可以为沿Z轴延伸的导电连接孔结构,其总的电长度满足1/4λ,此时,可以参考图7和图8中所示的实施方式,第一接地单元351和第二接地单元352均不存在弯折段,可以简化接地结构设计。
图14为本申请一实施例提供的天线结构的另一角度的结构示意图,其中为了便于理解图中被第四辐射体222遮挡的结构,对第四辐射体222做了隐藏处理(如虚线)。参考图14所示,第二馈电枝节32的一端可以和馈源连接(图中未标记),另一端可以和连接枝节321连接,连接枝节321可以连接在第三辐射体221和第四辐射体222之间。第二馈电枝节32为端射天线的垂直极化馈电枝节,连接枝节321用来实现第二馈电枝节32和第二辐射单元22的直接馈电。
第二馈电枝节32可以为基板20内的导电连接孔结构,连接枝节321可以设置在基板20内一个金属层中,示例性地,连接枝节321可以和第一馈电枝节31、第一辐射体211、第二辐射体212、第三辐射体221、第四辐射体222处于同一层金属层中,以简化制备工艺。
结合图9所示,第一馈电结构341可以包括依次连接的第四馈入部3411、第一连接部3412和第四馈电部3413,第四馈入部3411和馈源连接,第四馈电部3413设置在第七辐射体241的背向第八辐射体242的一侧;第二馈电结构342可以包括依次连接的第五馈入部3421、第二连接部3422和第五馈电部3423,第五馈入部3421和馈源连接,第五馈电部3423设置在第八辐射体242的背向第七辐射体241的一侧。
其中,第四馈入部3411、第四馈电部3413、第五馈入部3421、第五馈电部3423可以 沿X轴延伸,第一连接部3412和第二连接部3422可以沿Y轴延伸。第一馈电结构341和第二馈电结构342整体呈金属线结构,可以由基板20中的同一层金属层形成,以简化制备工艺。
第四馈电枝节34为端射天线的水平极化馈电枝节,且为耦合电容式激励结构。第四馈电枝节34设置在第二辐射单元22和第三辐射单元23之间,第一馈电结构341和第二馈电结构342上搭载差分信号,承载大小相同且相位相反的电流,以非连接的电容性耦合实现激励。本实施例所示第四馈电枝节34在靠近第四辐射单元24处进行激励,采用耦合式馈入的方式激励第四辐射单元24,可避免阻抗不匹配造成的损耗,有利于提升端射天线的辐射效率。应理解,通过调整第一馈电结构341和第二馈电结构342的线宽,以及间距,来实现对第四馈电枝节34的差分特征阻抗的调整。
第四馈电枝节34还包括寄生单元343,寄生单元343和第一馈电结构341和第二馈电结构342共面,寄生单元343设置在第一馈电结构341和第二馈电结构342的背向第七辐射体241和第八辐射体242的一侧,且与第一馈电结构341和第二馈电结构342间隔设置,寄生单元343沿Y轴延伸,并与第一连接部3412和第二连接部3422平行且间隔设置。
寄生单元343、第一馈电结构341和第二馈电结构342由基板20中的同一层金属层形成,以简化制备工艺。寄生单元343可以加强第一馈电结构341和第二馈电结构342承载的差分电流的差分模式,抑制同向电流的共模模式,以确保激励出端射天线的水平极化的天线模式。
图15为本申请一实施例提供的天线结构的另一角度的侧视图。参考图14和图15所示,在一种可能的实施方式中,第三接地单元361可以包括第一接地墙361a和第二接地墙361b,第一接地墙361a和第二接地墙361b分别与第三辐射体221连接于第一位置和第二位置,第一位置和第二位置在第三辐射体221上间隔排布。在一个实施例中,第一接地墙361a位于第三辐射体221的靠近第四辐射体222的一侧,第七辐射体241和第一接地墙361a连接,第二接地墙361b和接地板30之间连接有第一开关SW1。
第四接地单元362可以包括第三接地墙362a和第四接地墙362b,第三接地墙362a和第四接地墙362b分别与第四辐射体222连接于第三位置和第四位置,第三位置和第四位置在第四辐射体222上间隔排布。在一个实施例中,第三接地墙362a位于第四辐射体222的靠近第三辐射体221的一侧,第八辐射体242和第三接地墙362a连接,第四接地墙362b和接地板30之间连接有第二开关SW2。
第三接地单元361可以呈具有第一镂空区361c的金属墙结构,该金属墙可以被第一镂空区361c分为第一接地墙361a和第二接地墙361b。第四接地单元362的结构可以与第三接地单元361的结构相同,第四接地单元362可以呈具有第二镂空区362c的金属墙结构,该金属墙可以被第二镂空区362c分为第三接地墙362a和第四接地墙362b。
其中,镂空区用来减少不必要的谐振,镂空区的尺寸在本申请实施例中不做具体限制。第一接地墙361a的宽度可以大于第二接地墙361b的宽度,第一开关SW1可以连接在第二接地墙361b处。第三接地墙362a的宽度可以大于第四接地墙362b的宽度,第二开关SW2可以连接在第四接地墙362b处。
第三接地墙362a可以包括依次连接的第四接地段3621、第五接地段3622和第六接地段3623,第四接地段3621连接第四辐射体222,第六接地段3623连接至接地板30,第四 接地段3621和第六接地段3623可以沿Z轴延伸,为导电连接孔结构,第五接地段3622可以沿XY平面延伸,由基板20内的部分金属层形成。第三接地墙362a整体包括折弯的三段,总的电长度为1/4λ,通过将第三接地墙362a设置为多段弯折结构,有利于降低第四辐射体222和接地板30之间的高度,从而减小天线结构200整体的体积。
应理解,第一接地墙361a的结构可以与第三接地墙362a的结构相同,并相对于第三孔径呈轴对称设置,第一接地墙361a的结构在此不再赘述。
应理解,在另一种可能的实施方式中,第一接地墙361a和第三接地墙362a可以为沿Z轴延伸的导电连接孔结构,其总的电长度满足1/4λ,此时,可以参考图7-图9所示的实施方式,第一接地墙361a和第三接地墙362a不存在弯折段,可以简化结构设计。
图16为本申请一实施例提供的金属墙的结构示意图。参考图16所示,在一种可能的实施方式中,接地墙361a、361b、362a、362b以及辐射体241、242整体呈金属墙结构,该金属墙可以由多个导电连接孔构成,多个导电连接孔之间可以具有间隔,且多个导电连接孔可以通过金属层连通,每一个导电连接孔结构,可以为采用金属材料填充于连接孔形成的实心金属柱结构,也可以为采用金属材料部分或全部覆盖连接孔的孔壁之后形成的金属层。
在另一种可能的实施方式中,金属墙结构可以呈完整的墙体结构,该完整的墙体结构可以为采用金属材料填充于长条形腔体后形成的实心金属柱结构,也可以为采用金属材料部分或全部覆盖长条形腔体的内壁之后形成的金属层。
在一种实施例中,上述本申请实施例提供的天线结构,可以支持毫米波频段,例如5G毫米波频段。应用在手机等电子设备中的毫米波天线模组,一个天线单元的长度和宽度例如可以小于4mm,厚度可以小于1.5mm。
图17为本申请一实施例提供的天线结构的俯视示意图。参考图17及图13所示,在一种具体的实施方式中,第一辐射单元21和接地板30之间的距离H1可以为0.9mm,第二辐射单元22和接地板30之间的距离H2可以为1.05mm,第一辐射单元21的长度L1可以为3.5mm,第二辐射单元22的长度L2可以为3.5mm,六个辐射体均可以为缺角正方形,该正方形的边长L3可以为1.55mm,该缺角可以为正方形,缺角的宽度L4可以为0.4mm,第一间隙C1、第二间隙C2、第三间隙C3、第四间隙C4的宽度可以相同,间隙宽度L5可以为0.4mm。
将上述尺寸为3.5*3.5*1.05mm 3的天线单元,排列为图4所示的天线结构200,通过第一开关SW1和第二开关SW2的控制,选择开关短路或断路,搭配垂向双极化馈电枝节或端射双极化馈电枝节,激励天线结构200,可以得到天线结构200的辐射增益方向图。
图18为本申请一实施例提供的天线结构的辐射增益方向图。参考图18所示,BR代表垂向天线,最大增益朝向Theta=0°的垂向方向(对应图7中+Z方向),EF代表端射天线,最大增益是朝向Theta=90°的端射方向(对应图7中+X方向)。本申请实施例提供的天线结构,共构了垂向天线和端射天线,相比于仅具有垂向天线的相关技术来说,覆盖角大概增加了90°,在Theta=90°的端射方向上天线增益为7dB。由此可以看出,本申请实施例提供的天线结构200通过共构垂向天线和端射天线,可以达到不增加天线面积的同时,明显增加覆盖角和天线增益。
图19为本申请一实施例提供的天线结构的天线增益分布累积函数图。其中A1和A2 代表仅设置垂向天线的相关技术的天线增益,B1和B2代表本申请中将上述天线结构200应用在电子设备100中,并按照图5中的位置进行排布后得到的具体量化的天线增益。A1和B1代表-27GHZ的频率,A2和B2代表-40GHZ的频率,20%的CDF是营运商规格下观测弱场强的重要指标,50%的CDF是3GPP规格下观测弱场强的重要指标。参考图19所示,在纵坐标为20%时,A2和B2的横坐标分别对应5.3和7.5,即同一频率-40GHZ下,相关技术提供的手机毫米波的天线增益为5.3dB,本申请为7.5dB,相比提升了2.2dB;在纵坐标为50%时,A2和B2在同一频率-40GHZ下,相关技术提供的手机毫米波的天线增益为8.6dB,本申请为9.2dB,相比提升了0.6dB。
图20为本申请一实施例提供的天线结构在YZ平面上的天线增益场型图,其中Theta=0°的方向代表垂向方向,Theta=90°的方向代表端射方向,BR_V与BR_H分别代表垂向模式的垂直极化和水平极化辐射场型图,EF_V与EF_H分别端射模式的垂直极化和水平极化辐射场型图。表1为本申请一实施例提供的天线结构的天线增益数据,表2为本申请一实施例提供的天线结构的天线覆盖角度的数据。
参考图20、表1和表2所示,以垂直极化为例,当操作在垂向模式时,可得到+Z方向的增益是4.2dB,而操作在端射模式时,+Z方向仅-2.0dB,因此通过场型切换,在+Z方向,可以得到6.2dB的切换收益;同样地,当操作在垂向模式时,在+X方向的增益仅有-3.8dB,但如果切换到端射模式,可以得到2.9dB的增益,因此通过场型切换,在+X方向,可以得到6.7dB的切换收益。另外,以大于0dB增益角度范围观察,仅有垂向天线的相关技术的增益覆盖角度为120°,本申请通过切换垂向与端射模式可以拓展覆盖角度至270°,因此本申请相比于相关技术在覆盖角度上的收益是150°。
表1
Figure PCTCN2022137702-appb-000003
表2
Figure PCTCN2022137702-appb-000004
上述图18-图20为本申请实施例提供的天线结构200在一种实施方式下的效果,该实施方式下,天线结构200为双极化场型可切换的共构垂向与端射天线,此时,天线结构200可以包括四个辐射单元21-24,四个馈电枝节31-34,两个开关SW1和SW2,通过切换开关并配合馈电枝节的选择,可以使天线结构实现双极化的垂向辐射场型或者双极化的端射辐射场型。
图21为本申请一实施例提供的天线结构的另一种结构示意图。参考图21所示,在另一些实施方式中,天线结构200可以为垂直极化双频带天线,此时,天线结构200可以包括三个辐射单元21-23,第一馈电枝节31、第二馈电枝节33,仅包括垂向垂直极化天线和端射垂直极化天线,垂向天线可以同时支持低频带与高频带,端射天线也可以同时支持低 频带与高频带。其中,垂向垂直极化天线和端射垂直极化天线的结构和工作原理,可以参考上述双极化长兴可切换的共构垂向与端射天线的描述,在此不再赘述。
图22a为图21提供的天线结构在低频带下的垂向与端射垂直极化辐射增益场型图,图22b为图21提供的天线结构在高频带下的垂向与端射垂直极化辐射增益场型图。其中,低频带为29.0GHz,高频带为39.0GHz。低频带下,在+Z方向上,操作在垂向模式相比于操作在端射模式,可得到的切换收益是5.5dB,在+X方向上,操作在端射模式相比于操作在垂向模式,可以得到的8.9dB的切换收益。高频带下,在+Z方向上,操作在垂向模式相比于操作在端射模式,可得到的切换收益是5.8dB,在+X方向上,操作在端射模式相比于操作在端射模式,可以得到6.2dB的切换收益。
图23为本申请一实施例提供的天线结构的另一种结构示意图。参考图23所示,在另一些实施方式中,天线结构200可以为水平极化双频带天线,此时,天线结构200可以包括四个辐射单元21-24,第二馈电枝节32、第四馈电枝节34,仅包括垂向水平极化天线和端射水平极化天线,垂向天线可以同时支持低频带与高频带,端射天线也可以同时支持低频带与高频带。其中,垂向水平极化天线和端射水平极化天线的结构和工作原理,可以参考上述双极化长兴可切换的共构垂向与端射天线的描述,在此不再赘述。
图24a为图23提供的天线结构在低频带下的垂向与端射水平极化辐射增益场型图,图24b为图23提供的天线结构在高频带下的垂向与端射水平极化辐射增益场型图。其中,低频带为29.0GHz,高频带为39.0GHz。低频带下,在+X方向上,操作在端射模式相比于操作在垂向模式,可以得到的5dB的切换收益。高频带下,在+Z方向上,操作在垂向模式相比于操作在端射模式,可得到的切换收益是7.0dB,在+X方向上,操作在端射模式相比于操作在端射模式,可以得到2.0dB的切换收益。
总之,本申请实施例提供的天线结构,可以为双极化场型可切换的共构垂向与端射天线,或者,可以为垂直极化双频带天线,或者,可以为水平极化双频带天线,这三种实施方式下,相比于仅设置垂向天线或仅设置端射天线,皆可以得到明显的天线增益。
上述本申请实施例提供的天线结构,将垂向天线和端射天线中的第二辐射单元进行复用,通过电路控制可以重构天线辐射场型,使得天线结构的辐射场型可以为垂向方向或端射方向,且两种辐射模型下天线结构均支持双极化;本申请实施例提供的天线结构相比于仅设置垂向天线的相关技术来说,一方面,未增加天线面积,可以放置在电子设备的侧边,另一方面,可以提升辐射增益和信号覆盖角。本申请实施例提供的天线结构相比于仅将垂向天线和端射天线直接相邻摆放的相关技术来说,天线面积可以缩小至少30%。
上述本申请实施例提供的天线结构200为应用在手机中的毫米波天线模块,应理解,本申请实施例提供的天线结构200可以不限于应用在毫米波天线模块中。示例性地,本申请实施例提供的天线结构200还可以应用于基站天线、Wi-Fi分享器天线、头戴装置天线、空间定位天线、UWB(Ultra Wideband,超宽带)天线、IOT(Internet of Things,物联网)天线等。
在一种示例中,本申请实施例提供天线结构200可以应用在基站天线中,基站天线中的每个天线单元,通过共构垂向与端射切换,可以在不增加原有面积的条件下,增加端射方向的辐射场型,有效提升基站的信号覆盖范围,或是减少基站天线的数量。
在另一种示例中,本申请实施例提供天线结构200可以应用在吸顶式、贴壁式Wi-Fi 分享器天线中,通过共构垂向与端射切换,可以使垂向天线辐射与用户相连接,或是切换到端射方向,与其他家用IOT电器、其他Wi-Fi分享器组成网格mesh grid,从而可以提升室内信号覆盖。
以上描述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内;在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (20)

  1. 一种天线结构,其特征在于,包括:接地板、第一辐射单元、第二辐射单元、第三辐射单元、第一馈电枝节和第二馈电枝节;
    所述第一辐射单元和所述接地板沿虚拟的Z轴间隔排布且相对设置,所述第一辐射单元和所述第二辐射单元沿虚拟的X轴间隔排布,所述第一辐射单元和所述第二辐射单元之间的第一间隙沿虚拟的Y轴延伸,所述第三辐射单元和所述第二辐射单元沿虚拟的Z轴间隔排布且相对设置,所述第一辐射单元、第二辐射单元、第三辐射单元分别和所述接地板耦合连接;
    所述第一馈电枝节的至少一部分设置在第一孔径内,所述第一孔径包括所述第一间隙与所述接地板之间的空间,所述第二馈电枝节的至少一部分设置在第二孔径内,所述第二孔径包括所述第二辐射单元和所述第三辐射单元之间的空间;
    其中,所述X轴、所述Y轴和所述Z轴两两垂直。
  2. 根据权利要求1所述的天线结构,其特征在于,所述第一辐射单元包括沿Y轴间隔排布的第一辐射体和第二辐射体,所述第一辐射体和所述第二辐射体之间的第二间隙沿X轴延伸;所述第二辐射单元包括沿Y轴间隔排布的第三辐射体和第四辐射体,所述第三辐射体和所述第四辐射体之间的第三间隙沿X轴延伸;所述第三辐射单元包括沿Y轴间隔排布的第五辐射体和第六辐射体,所述第五辐射体和所述第六辐射体之间的第四间隙沿X轴延伸。
  3. 根据权利要求2所述的天线结构,其特征在于,所述天线结构还包括第三馈电枝节,至少一部分所述第三馈电枝节设置在第三孔径内,所述第三孔径包括所述第二间隙和所述第三间隙与接地板之间的空间。
  4. 根据权利要求3所述的天线结构,其特征在于,所述天线结构还包括第四辐射单元和第四馈电枝节;
    所述第四辐射单元设置在所述第三辐射单元和所述第二辐射单元之间且与接地板耦合连接,所述第四辐射单元包括第七辐射体和第八辐射体,所述第七辐射体设置于所述第三辐射体和所述第五辐射体之间,所述第八辐射体设置于所述第四辐射体和所述第六辐射体之间;
    所述第四馈电枝节包括第一馈电结构和第二馈电结构,所述第一馈电结构与所述第七辐射体耦合连接,所述第二馈电结构与所述第八辐射体耦合连接。
  5. 根据权利要求4所述的天线结构,其特征在于,所述天线结构包括第一接地单元、第二接地单元、第三接地单元和第四接地单元;
    所述第一接地单元连接在所述第一辐射体和所述接地板之间,所述第二接地单元连接在所述第二辐射体和所述接地板之间,
    所述第三接地单元连接在所述第三辐射体和所述接地板之间,所述第三接地单元连接在所述第三辐射体的面向所述第一辐射体的一端,所述第四接地单元连接在所述第四辐射体和所述接地板之间,所述第四接地单元连接在所述第四辐射体的面向所述第二辐射体的一端,所述第七辐射体和所述第三接地单元连接,所述第八辐射体和所述第四接地单元连接。
  6. 根据权利要求5所述的天线结构,其特征在于,所述第三接地单元包括第一接地 墙和第二接地墙,所述第一接地墙和所述第二接地墙分别与所述第三辐射体连接于第一位置和第二位置,所述第一位置和所述第二位置在所述第三辐射体上间隔排布,其中所述第一接地墙位于所述第三辐射体的靠近所述第四辐射体的一侧,所述第七辐射体和所述第一接地墙连接,所述第二接地墙和所述接地板之间连接有第一开关;
    所述第四接地单元包括第三接地墙和第四接地墙,所述第三接地墙和所述第四接地墙分别与所述第四辐射体连接于第三位置和第四位置,所述第三位置和所述第四位置在所述第四辐射体上间隔排布,其中所述第三接地墙位于所述第四辐射体的靠近所述第三辐射体的一侧,所述第八辐射体和所述第三接地墙连接,所述第四接地墙和所述接地板之间连接有第二开关。
  7. 根据权利要求2-6任一项所述的天线结构,其特征在于,所述天线结构还包括第三开关和第四开关,所述第三开关连接在所述第五辐射体和第六辐射体之间,所述第三开关位于所述第三辐射单元的远离所述第一辐射单元的一端,所述第四开关连接在所述第三辐射体和所述第四辐射体之间,所述第四开关位于所述第二辐射单元的靠近所述第一辐射单元的一端。
  8. 根据权利要求5所述的天线结构,其特征在于,所述第七辐射体和所述第八辐射体均垂直于所述接地板设置,所述第七辐射体的第一端和所述第三接地单元连接,所述第七辐射体的第二端向着远离所述第八辐射体的一侧延伸,所述第八辐射体的第一端和所述第四接地单元连接,所述第八辐射体的第二端向着远离所述第七辐射体的一侧延伸。
  9. 根据权利要求2-8任一项所述的天线结构,其特征在于,所述第一馈电枝节沿所述X轴延伸,所述第一馈电枝节的第一端在XY平面上的投影位于所述第二间隙在所述XY平面上的投影之内,所述第一馈电枝节的第二端在所述XY平面上的投影位于所述第三间隙在所述XY平面上的投影之内;
    所述第二馈电枝节沿所述Z轴延伸,所述第二馈电枝节的一端和所述第二辐射单元耦合连接。
  10. 根据权利要求3-6任一项所述的天线结构,其特征在于,所述第一间隙包括第一子间隙和第二子间隙,所述第一子间隙处于所述第一辐射体和所述第三辐射体之间,所述第二子间隙处于所述第二辐射体和所述第四辐射体之间,所述第三馈电枝节沿所述Y轴延伸,所述第三馈电枝节的第一端在XY平面上的投影位于所述第一子间隙在所述XY平面上的投影之内,所述第三馈电枝节的第二端在所述XY平面上的投影位于所述第二子间隙在所述XY面上的投影之内。
  11. 根据权利要求5或6所述的天线结构,其特征在于,所述第一接地单元包括依次连接的第一接地段、第二接地段和第三接地段,所述第一接地段连接所述第一辐射体,所述第三接地段连接所述接地板,所述第一接地段和所述第三接地段沿所述Z轴延伸,所述第二接地段沿XY平面延伸。
  12. 根据权利要求5或6所述的天线结构,其特征在于,所述第三接地墙包括依次连接的第四接地段、第五接地段和第六接地段,第四接地段连接所述第四辐射体,所述第六接地段连接所述接地板,所述第四接地段和所述第六接地段沿Z轴延伸,所述第五接地段沿XY平面延伸。
  13. 根据权利要求1-12任一项所述的天线结构,其特征在于,所述第三辐射单元复用 所述接地板的部分结构。
  14. 根据权利要求4-6任一项所述的天线结构,其特征在于,所述天线结构包括垂向天线和端射天线,所述垂向天线包括所述第一辐射单元、所述第二辐射单元、所述第一馈电枝节、所述第三馈电枝节和所述接地板,所述端射天线包括所述第二辐射单元、所述第三辐射单元、所述第四辐射单元、所述第二馈电枝节、所述第四馈电枝节和所述接地板。
  15. 根据权利要求14所述的天线结构,其特征在于,所述垂向天线包括垂向垂直极化场型和垂向水平极化场型,所述第一馈电枝节为所述第一辐射单元、第二辐射单元馈电以构成所述垂向垂直极化场型,所述第三馈电枝节为所述第一辐射单元、第二辐射单元馈电以构成所述垂向水平极化场型;
    所述端射天线包括端射垂直极化场型和端射水平极化场型,所述第二馈电枝节为所述第二辐射单元、第三辐射单元馈电以构成所述端射垂直极化场型,所述第四馈电枝节为所述第四辐射单元馈电以构成所述端射水平极化场型。
  16. 根据权利要求2-12任一项所述的天线结构,其特征在于,所述第一辐射体、所述第二辐射体、所述第三辐射体、所述第四辐射体均为具有缺角的矩形,所述第一辐射体、所述第二辐射体、所述第三辐射体、所述第四辐射体关于中心点呈中心对称。
  17. 一种封装天线,其特征在于,包括收发芯片和权利要求1-16任一项所述的天线结构,所述收发芯片和所述天线结构电连接并且封装在同一个基板内。
  18. 一种芯片,其特征在于,包括射频模组和权利要求1-16任一项所述的天线结构。
  19. 一种电子设备,其特征在于,包括权利要求1-16任一项所述的天线结构或者权利要求17所述的封装天线或者权利要求18所述的芯片。
  20. 根据权利要求19所述的电子设备,其特征在于,所述电子设备包括相对设置的正面和背面,所述正面和所述背面通过中框连接,所述中框包括依次连接的顶部、右侧部、底部和左侧部;
    所述天线结构的数量为三个,其中一个所述天线结构设置在所述电子设备的背面且与所述顶部的上边缘距离不超过第一阈值,另两个所述天线结构分别设置在所述左侧部和所述右侧部,且分别与所述左侧部的左边缘和所述右侧部的右边缘距离不超过第二阈值内。
PCT/CN2022/137702 2021-12-29 2022-12-08 天线结构、封装天线、芯片和电子设备 WO2023124887A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111649196.3A CN116417780A (zh) 2021-12-29 2021-12-29 天线结构、封装天线、芯片和电子设备
CN202111649196.3 2021-12-29

Publications (1)

Publication Number Publication Date
WO2023124887A1 true WO2023124887A1 (zh) 2023-07-06

Family

ID=86997637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/137702 WO2023124887A1 (zh) 2021-12-29 2022-12-08 天线结构、封装天线、芯片和电子设备

Country Status (2)

Country Link
CN (1) CN116417780A (zh)
WO (1) WO2023124887A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150070228A1 (en) * 2013-09-11 2015-03-12 International Business Machines Corporation Antenna-in-package structures with broadside and end-fire radiations
CN110534870A (zh) * 2018-05-24 2019-12-03 三星电子株式会社 相控阵天线模块和包括相控阵天线模块的通信设备
WO2020073643A1 (en) * 2018-10-10 2020-04-16 Huawei Technologies Co., Ltd. Wideband vertical polarized end-fire antenna
CN111326856A (zh) * 2020-02-24 2020-06-23 华南理工大学 一种基于准pifa天线的超低剖面端射垂直极化天线
US20200203801A1 (en) * 2018-12-19 2020-06-25 Samsung Electro-Mechanics Co., Ltd. Radio frequency filter module
CN112751193A (zh) * 2019-10-31 2021-05-04 Oppo广东移动通信有限公司 天线模组及电子设备
CN113594711A (zh) * 2020-04-30 2021-11-02 华为技术有限公司 垂直极化天线及电子设备
CN113678318A (zh) * 2019-05-31 2021-11-19 华为技术有限公司 一种封装天线装置及终端设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150070228A1 (en) * 2013-09-11 2015-03-12 International Business Machines Corporation Antenna-in-package structures with broadside and end-fire radiations
CN110534870A (zh) * 2018-05-24 2019-12-03 三星电子株式会社 相控阵天线模块和包括相控阵天线模块的通信设备
WO2020073643A1 (en) * 2018-10-10 2020-04-16 Huawei Technologies Co., Ltd. Wideband vertical polarized end-fire antenna
US20200203801A1 (en) * 2018-12-19 2020-06-25 Samsung Electro-Mechanics Co., Ltd. Radio frequency filter module
CN113678318A (zh) * 2019-05-31 2021-11-19 华为技术有限公司 一种封装天线装置及终端设备
CN112751193A (zh) * 2019-10-31 2021-05-04 Oppo广东移动通信有限公司 天线模组及电子设备
CN111326856A (zh) * 2020-02-24 2020-06-23 华南理工大学 一种基于准pifa天线的超低剖面端射垂直极化天线
CN113594711A (zh) * 2020-04-30 2021-11-02 华为技术有限公司 垂直极化天线及电子设备

Also Published As

Publication number Publication date
CN116417780A (zh) 2023-07-11

Similar Documents

Publication Publication Date Title
CN110137675B (zh) 一种天线单元及终端设备
US11539123B2 (en) Antenna system for a portable device
KR102566993B1 (ko) 안테나 모듈 및 이를 포함하는 rf 장치
CN111279548B (zh) 通信设备
JP2007533193A (ja) 2つのmemsスイッチ切替pifaを有する平面アンテナアセンブリ
WO2022179324A1 (zh) 天线装置、壳体及电子设备
WO2021104191A1 (zh) 天线单元及电子设备
US11258177B2 (en) Antenna unit, array antenna, and electronic device
US10770798B2 (en) Flex cable fed antenna system
KR20140117309A (ko) 평면형 안테나 장치 및 방법
CN112290193A (zh) 毫米波模组、电子设备及毫米波模组的调节方法
EP2628208B1 (en) Antenna pair for mimo/diversity operation in the lte/gsm bands
US20230291125A1 (en) Electronic Devices with Multiple Low Band Antennas
WO2022156550A1 (zh) 一种电子设备
CN114665251A (zh) 一种天线及终端
US20110227801A1 (en) High isolation multi-band antenna set incorporated with wireless fidelity antennas and worldwide interoperability for microwave access antennas
EP4340127A1 (en) Broadside antenna, package antenna, and communication device
WO2023124887A1 (zh) 天线结构、封装天线、芯片和电子设备
WO2022017220A1 (zh) 一种电子设备
CN114389005B (zh) 一种电子设备
CN110600858A (zh) 一种天线单元及终端设备
WO2023246690A1 (zh) 一种电子设备
WO2023274048A1 (zh) 天线装置及通信设备
US20230155303A1 (en) Dual-band dual-polarized antenna radiation device
WO2024041357A1 (zh) 一种天线系统及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22914142

Country of ref document: EP

Kind code of ref document: A1