WO2021022941A1 - 天线阵列及终端 - Google Patents

天线阵列及终端 Download PDF

Info

Publication number
WO2021022941A1
WO2021022941A1 PCT/CN2020/098857 CN2020098857W WO2021022941A1 WO 2021022941 A1 WO2021022941 A1 WO 2021022941A1 CN 2020098857 W CN2020098857 W CN 2020098857W WO 2021022941 A1 WO2021022941 A1 WO 2021022941A1
Authority
WO
WIPO (PCT)
Prior art keywords
slot
radiating
antenna array
antenna
array according
Prior art date
Application number
PCT/CN2020/098857
Other languages
English (en)
French (fr)
Inventor
严魁锡
周伟钊
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2021022941A1 publication Critical patent/WO2021022941A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart

Definitions

  • the embodiments of the present disclosure relate to the field of antenna technology, and in particular to an antenna array and a terminal.
  • antenna modules such as millimeter wave antenna modules
  • patch antenna Yagi-Uda antenna or dipole antenna.
  • Yagi-Uda antenna or dipole antenna These antenna elements are opposite to each other. It is difficult to achieve wide bandwidth. As a result, the working frequency band of the antenna often requires broadband multi-band and wide-band coverage, which brings great challenges to the design of the antenna module, and because it cannot meet the wide-band design, it will also affect the user's mobile roaming experience .
  • the embodiments of the present disclosure provide an antenna array and a terminal to solve the problem of narrow antenna bandwidth on the terminal in the related art.
  • an antenna array which includes a plurality of antenna elements arranged in a preset manner; wherein the antenna elements include:
  • a radiating unit built into the tank structure includes a pair of radiating plates, each of the radiating plates is a bent structure with a predetermined angle;
  • a slot-coupled feed structure includes: a metal plate disposed between the bottom of the slot structure and the radiation unit, the radiation unit is connected to the metal plate; wherein A gap is provided on the metal plate, and the gap is located between two radiating fins; a transmission line arranged between the groove bottom of the groove structure and the metal plate, and a groove bottom provided on the groove structure
  • the feeding probe is connected with the transmission line, and the transmission line is coupled with the radiation unit through the gap.
  • a terminal including the antenna array described above.
  • the radiating unit due to the structure of the radiating unit, it has a wide working bandwidth, coupled with the use of slot-coupled feeding to excite the radiating unit, and the radiation of the slot itself in the slot-coupled feeding structure, thereby realizing the antenna
  • the broadband design of the array meets the roaming needs of the frequency dimension.
  • FIG. 1 shows a schematic structural diagram of an antenna array provided by an embodiment of the present disclosure
  • Figure 2 shows an exploded view of an antenna unit provided by an embodiment of the present disclosure
  • Figure 3 shows a cross-sectional view of an antenna unit provided by an embodiment of the present disclosure
  • FIG. 4 shows a schematic diagram of a reflection coefficient curve provided by an embodiment of the present disclosure
  • FIGS. 5a to 5c show directional diagrams provided by embodiments of the present disclosure
  • FIG. 6 shows a schematic structural diagram of a terminal frame provided by an embodiment of the present disclosure.
  • an antenna array 100 is provided.
  • the antenna array 100 includes a plurality of antenna elements 101 arranged in a preset manner. There is a certain distance between each antenna element 101, and the distance can be determined according to the isolation between the antenna elements 101, the gain of the antenna array 100, the scanning angle and other antenna performance.
  • the antenna unit 101 in the antenna array 100 includes a slot structure 1011 with a preset shape, a radiating unit 1021 built in the slot structure 1011, and a slot coupling feed structure coupled with the radiating unit 1021.
  • the radiating unit 1021 includes a pair of radiating plates 10211, and the two radiating plates 10211 are arranged back to ensure that the antenna has a better directional pattern, wider bandwidth, and so on.
  • Each radiating sheet 10211 is a bent structure with a predetermined angle, and is generally L-shaped.
  • the size of the two radiating sheets 10211 may be the same or different, and the two radiating sheets 10211 may have the same size, shape and symmetrical arrangement.
  • the slot-coupled feeding structure includes: a metal plate 1031, a transmission line 1032, and a feeding probe 1033.
  • the metal plate 1031 is disposed between the groove bottom of the groove structure 1011 and the radiation unit 1021 and is connected to the radiation unit 1021.
  • the metal plate 1031 serves as the reflective floor of the radiation unit 1021, that is, as the ground of the radiation unit 1021.
  • the metal plate 1031 is provided with a gap 10311, and the gap 10311 is located between the two radiating plates 10211.
  • the transmission line 1032 is arranged between the groove bottom of the groove structure 1011 and the metal plate 1031.
  • the feeding probe 1033 is connected to the transmission line 1032 and is arranged on the bottom of the groove structure 1011. The feeding probe 1033 feeds the energy from the signal source to the transmission line 1032, and the transmission line 1032 is coupled with the radiation unit 1021 through the gap 10311, transmits the energy to the radiation unit 1021, and excites the radiation unit 1021.
  • the radiating unit due to the structure of the radiating unit, it has a wide working bandwidth, plus the slot coupling feeding mode realized by the slot coupling feeding coupling structure in the broadband feeding structure to excite the radiating unit and the slot coupling
  • the radiation of the slot in the feed structure realizes the broadband design of the antenna array and satisfies the roaming demand in the frequency dimension.
  • the radiation unit 1021 may include two pairs of radiation sheets 10211.
  • the radiation unit 1021 includes two pairs of radiation plates 10211, two slits 10311 are correspondingly opened on the metal plate 1031, and the two slits 10311 are arranged between the four radiation plates 10211 and cross each other.
  • Each slot 10311 corresponds to a pair of radiation sheets 10211.
  • the number of transmission lines 1032 is two and the number of feed probes 1033 is two.
  • Each transmission line 1032 is connected to a feed probe 1033, and each transmission line 1032 corresponds to a gap 10311.
  • the four radiation sheets 10211 are arranged symmetrically in pairs.
  • the preset shape of the groove structure described here may be a rectangular parallelepiped, a cylinder, or the like.
  • the shape of the trough structure is a rectangular parallelepiped.
  • the included angle between the length direction of the transmission line 1032 and the length direction of the slot 10311 is greater than or equal to a preset angle (the preset angle is greater than 0 degrees), that is, the included angle of the orthographic projection of the transmission line 1032 and the slot 10311 on the bottom of the slot is greater than or It is equal to the preset angle, and the preset angle is an angle that makes the coupling efficiency higher.
  • the angle between the length direction of the transmission line 1032 and the length direction of the slot 10311 may be 90 degrees.
  • the middle position of the orthographic projection of the transmission line 1032 at the bottom of the groove coincides with the middle position of the orthographic projection of the slot 10311 at the bottom of the groove to achieve a better coupling effect.
  • the transmission line 1032 is a 50 ohm microwave transmission line.
  • the antenna array 100 is a millimeter wave antenna array.
  • n257 26.5-29.5GHz
  • n258 (24.25-27.5GHz)
  • n261 (27.5-28.35GHz)
  • 39GHz-based n260 39GHz-based n260 (37.0-40.0GHz)
  • the tentative n259 (40.5-43.5GHz) frequency band.
  • the millimeter wave antenna in the related technology has a narrow bandwidth, and the current dual-frequency solution can only cover the two frequency bands of n260 and n261, which cannot meet the design requirements of broadband and affect the mobile roaming experience of users.
  • FIG. 4 it is a graph of the reflection coefficient of the antenna unit 101 in an embodiment of the disclosure.
  • the horizontal axis in the figure represents the frequency and the unit is GHz; the vertical axis represents the reflection coefficient and the unit is dB. In the lower right corner of the figure, the frequencies marked "1" to "6" and the corresponding reflection coefficients are shown.
  • the antenna unit 101 can range from 23GHz to 43.5GHz, and the bandwidth can meet the global mainstream 5G millimeter wave frequency bands that have been defined by 3GPP such as n257, n258, n260, n259, and n261, thereby enhancing users' mobile roaming Experience.
  • the material of the tank structure 1011 is metal or non-metal.
  • the tank structure 1011 is grounded.
  • both the inner sidewall and the bottom of the tank structure 1011 are provided with a metal layer, and the metal layer is grounded.
  • the metal layer provided at the bottom of the tank structure 1011 made of metal material or the tank structure 1011 made of non-metal material is used as the ground of the power feeding probe.
  • the material of the tank structure 1011 is non-metal, only a metal layer can be provided on the bottom of the tank structure 1011, and the metal layer can be grounded, and the inner sidewall of the tank structure 1011 can be No metal layer is provided, and the specific situation can be selected according to actual needs.
  • the slot structure 1011 is made of metal or the inner sidewall and the bottom of the slot are provided with a metal layer, the slot structure 1011 can be used as a reflector of the antenna unit 101 to improve the backward radiation of the radiating unit 1021. , So that the antenna unit 101 can obtain better gain and pattern.
  • the antenna unit 101 in the embodiment of the disclosure has directional patterns at operating frequencies of 28 GHz, 39 GHZ, and 42 GHz. It can be seen from these diagrams that the antenna unit 101 has better directional pattern characteristics.
  • the equivalent dielectric constant of the surrounding environment of the antenna module Due to the different dielectric constants of non-metallic materials such as the terminal shell and battery cover, and the presence of many devices (metal or magnetic materials) around the antenna module inside the terminal, the equivalent dielectric constant of the surrounding environment of the antenna module The difference causes the resonant frequency of the antenna module to shift, which makes it impossible to meet the initial resonant demand.
  • the antenna module is extremely susceptible to the influence of surrounding metal devices, such as metal frames, metal back covers, horns, speakers and other metal devices, resulting in a sharp drop in antenna performance.
  • the metal tank structure 1011 or the tank structure 1011 with a metal layer on the inner side wall and the bottom of the groove can also be used as a shielding device of the antenna, reducing the interference of surrounding devices on the antenna body and improving the stability of the antenna itself.
  • the tank structure 1011 is made of metal or the inner side wall of the tank structure 1011 is provided with a metal layer
  • the outer edge of the metal plate 1031 can be attached to the inner side wall of the tank structure 1011, so that the metal A shielding cavity is formed between the board 1031 and the tank structure 1011 to reduce external interference and improve anti-interference ability.
  • the radiating sheet 10211 includes a first radiating portion 102111 parallel to the bottom of the groove structure 1011 and a second radiating portion 102112 connected to the first radiating portion 102111.
  • the first radiating portion 102111 and the second radiating portion 102112 constitute a bent structure.
  • the first radiation portions 102111 of the two radiation sheets 10211 extend in opposite directions.
  • the second radiating portions 102112 in the two radiating sheets 10211 are separated by a predetermined distance.
  • the length direction of the slit 10311 on the metal plate 1031 is parallel to the second radiating portion 102112 to achieve a better coupling effect.
  • the gap 10311 on the metal plate 1031 is set at an intermediate position between the two radiating plates, and the vertical distance from the gap to the two second radiating portions is equal to achieve a better coupling effect.
  • one end of the first radiating portion 102111 is vertically connected to one end of the second radiating portion 102112, and the second radiating portion 102112 is perpendicular to the bottom of the groove structure 1011 to achieve a better coupling effect.
  • the first radiating part 102111 and the second radiating part 102112 are integrally formed, the forming process is simple, the production cost is low, and because of the integral forming, the structure is more stable and the radiation performance is better.
  • a first insulating medium 1041 serving as a carrier of the radiation unit 1021 is further provided in the tank structure 1011, and the radiation unit 1021 is embedded in the first insulating medium 1041.
  • the first insulating medium 1041 can be selected from a low-loss material, such as a dielectric material with a dielectric constant of 2.2 and a loss tangent of 0.0009. Among them, the smaller the loss tangent angle, the lower the loss of the dielectric material, which is more conducive to reducing antenna loss.
  • a second insulating medium 1051 as a carrier of the transmission line 1032 is also provided in the tank structure 1011, and the transmission line 1032 is embedded in the second insulating medium 1051, specifically embedded in the second insulating medium 1051.
  • the second insulating medium 1051 can be a low-loss material, such as a dielectric material with a dielectric constant of 2.2 and a loss tangent angle of 0.0009. Among them, the smaller the loss tangent angle, the lower the loss of the dielectric material, which is more conducive to reducing antenna loss.
  • the first insulating medium 1041 and the second insulating medium 1051 may be of the same material or different materials, and the specific conditions may be selected according to actual requirements.
  • the antenna array 100 may also be applied to wireless intercity networks (WMAN), wireless wide area networks (WWAN), wireless local area networks (WLAN), wireless personal networks (WPAN), Multiple input multiple output (MIMO), radio frequency identification (RFID), even near field communication (NFC), wireless charging (WPC), or FM and other wireless communication design and applications.
  • WMAN wireless intercity networks
  • WWAN wireless wide area networks
  • WLAN wireless local area networks
  • WPAN wireless personal networks
  • MIMO Multiple input multiple output
  • RFID radio frequency identification
  • NFC near field communication
  • WPC wireless charging
  • FM FM and other wireless communication design and applications.
  • the radiating unit 1021 in the embodiment of the present disclosure has a wide working bandwidth, and the slot 10311 coupling feed mode realized by the slot coupling feed structure in the broadband feed structure is used to stimulate The radiation unit 1021 and the slot 10311 in the slot-coupled feeding structure radiate itself, thereby realizing the broadband design of the antenna array 100 and meeting the roaming requirements of the frequency dimension.
  • a terminal including the antenna array 100 as described above.
  • the slot structure 1011 is formed on the outer surface of the frame 200 of the terminal, that is, the slot structure 1011 is opened on the frame 200 of the terminal, and the slot of the slot structure 1011 faces the outside of the terminal.
  • the current mainstream millimeter wave antenna design scheme mainly adopts antenna packaging (Antenna in package, AIP) technology and process, and integrates the antenna structure in a module. In practical applications, this antenna module is built into the terminal, so it will occupy the space of other antennas, resulting in a decrease in antenna performance, thereby affecting the user's wireless experience.
  • antenna packaging Antenna in package, AIP
  • the antenna array 100 is selected to be arranged on the frame of the terminal, so that the internal space of the terminal may not be occupied, which is beneficial to the miniaturization of the terminal. As shown in FIG. 6, the antenna array 100 can be arranged on any frame indicated by 201 to 204.
  • the frame provided with the slot structure 1011 is a metal frame, and the metal frame is a radiation unit of other antennas in the terminal.
  • the metal frame has been used as the radiating unit 300 of an antenna, and an antenna array of other antennas is arranged on it, the space occupation can be further reduced.
  • the frame 201, part of the frame 202, and part of the frame 204 constitute the radiation unit 300 of other antennas (such as 2G/3G/4G antennas).
  • the antenna array 100 in the present application can be arranged on the outer surface of the frame 201 to reduce the occupation of terminal space.
  • the antenna array 100 in the embodiment of the present disclosure may also be arranged inside the terminal, such as on the main board, on the middle frame, and so on.
  • the radiating unit 1021 due to the structure of the radiating unit 1021, it has a wide working bandwidth, and the slot 10311 coupling feeding mode realized by the slot coupling feeding structure in the broadband feeding structure is used to excite the radiating unit 1021, and The slot 10311 couples the radiation of the slot 10311 in the feeding coupling structure, thereby realizing the broadband design of the antenna array 100 and meeting the roaming requirements of the frequency dimension.
  • the antenna array 100 in the embodiment of the present disclosure is arranged on the frame of the terminal, which can also reduce the occupation of the internal space of the terminal by the antenna structure, which is beneficial to the miniaturization of the terminal.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the present disclosure, "a plurality of” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , Or integrated; it can be mechanically connected, or it can be electrically connected or can communicate with each other; it can be directly connected, or indirectly connected through an intermediate medium, it can be the internal communication of two components or the interaction of two components.
  • installed may be a fixed connection or a detachable connection , Or integrated; it can be mechanically connected, or it can be electrically connected or can communicate with each other; it can be directly connected, or indirectly connected through an intermediate medium, it can be the internal communication of two components or the interaction of two components.
  • the "above” or “below” of the first feature of the second feature may include the first and second features in direct contact, or may include the first and second features Not in direct contact but through other features between them.
  • “above”, “above” and “above” the second feature of the first feature include the first feature being directly above and obliquely above the second feature, or it simply means that the level of the first feature is higher than the second feature.
  • the “below”, “below” and “below” the first feature of the second feature include the first feature directly below and obliquely below the second feature, or it simply means that the first feature has a lower level than the second feature.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

本公开实施例提供了一种天线阵列及终端。该天线阵列包括按照预设方式排列的多个天线单元;其中,天线单元包括:预设形状的槽体结构;内置于槽体结构中的辐射单元;缝隙耦合馈电结构,缝隙耦合馈电结构包括:设置于槽体结构的槽底与辐射单元之间的金属板,辐射单元与金属板连接;设置于槽体结构的槽底与金属板之间的传输线以及设置于槽体结构的槽底上的馈电探针,馈电探针与传输线连接。

Description

天线阵列及终端
相关申请的交叉引用
本申请主张在2019年8月6日在中国提交的中国专利申请号No.201910721438.1的优先权,其全部内容通过引用包含于此。
技术领域
本公开实施例涉及天线技术领域,尤其涉及一种天线阵列及终端。
背景技术
相关技术中天线模组(如毫米波天线模组)的主要天线单元:贴片天线(patch antenna),八木宇田天线(Yagi-Uda)或者偶极子天线(dipole antenna),这些天线单元相对而言带宽很难实现很宽。而由此而天线的工作频段往往需求宽带多频、宽频覆盖的形式,这给天线模组的设计带来了很大的挑战,且由于不能满足宽频的设计,也会影响用户的移动漫游体验。
发明内容
本公开实施例提供了一种天线阵列及终端,以解决相关技术中终端上的天线带宽窄的问题。
为了解决上述技术问题,本公开采用如下技术方案:
第一方面,提供了一种天线阵列,包括按照预设方式排列的多个天线单元;其中,所述天线单元包括:
预设形状的槽体结构;
内置于所述槽体结构中的辐射单元,所述辐射单元包括一对辐射片,每一所述辐射片为一具有预设角度的弯折结构;
缝隙耦合馈电结构,所述缝隙耦合馈电结构包括:设置于所述槽体结构的槽底与所述辐射单元之间的金属板,所述辐射单元与所述金属板连接;其中,所述金属板上开设有一条缝隙,所述缝隙位于两个辐射片之间;设置于所述槽体结构的槽底与所述金属板之间的传输线以及设置于所述槽体结构的 槽底上的馈电探针,所述馈电探针与所述传输线连接,所述传输线通过所述缝隙与所述辐射单元耦合。
第二方面,提供了一种终端,包括如上所述的天线阵列。
本公开实施例中,由于辐射单元结构,具有较宽的工作带宽,再加上采用缝隙耦合馈电的方式来激励辐射单元,以及缝隙耦合馈电结构中的缝隙自身的辐射,从而实现了天线阵列的宽带设计,满足频率维度的漫游需求。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1表示本公开实施例提供的天线阵列的结构示意图;
图2表示本公开实施例提供的天线单元的爆炸图;
图3表示本公开实施例提供的天线单元的剖面图;
图4表示本公开实施例提供的反射系数的曲线示意图;
图5a至图5c表示本公开实施例提供的方向图;
图6表示本公开实施例提供的终端边框的结构示意图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
依据本公开实施例的一个方面,提供了一种天线阵列100。
如图1所示,该天线阵列100包括按照预设方式排列的多个天线单元101。每个天线单元101之间具有一定距离,该距离可根据天线单元101之间的隔 离度以及天线阵列100的增益、扫描角度等天线性能来确定。
如图1所示,天线阵列100中的天线单元101包括:预设形状的槽体结构1011、内置于槽体结构1011中的辐射单元1021以及与辐射单元1021相耦合的缝隙耦合馈电结构。
如图2所示,该辐射单元1021包括:一对辐射片10211,两个辐射片10211背向设置,以保证天线具有较好的方向图、较宽带宽等。每一辐射片10211为一具有预设角度的弯折结构,一般呈L形。两个辐射片10211的大小可相同也可不同,可选两个辐射片10211大小、形状相同且对称设置。
如图2和图3所示,该缝隙耦合馈电结构包括:金属板1031、传输线1032以及馈电探针1033。
金属板1031设置于槽体结构1011的槽底与辐射单元1021之间,且与辐射单元1021连接。该金属板1031作为辐射单元1021的反射地板,即作为辐射单元1021的地。该金属板1031上开设有一条缝隙10311,该缝隙10311位于两个辐射片10211之间。传输线1032设置于槽体结构1011的槽底与金属板1031之间。馈电探针1033与传输线1032连接,设置于槽体结构1011的槽底上。馈电探针1033将信号源发出的能量馈送至传输线1032,传输线1032通过缝隙10311与辐射单元1021相耦合,将能量传输至辐射单元1021,激励辐射单元1021。
本公开实施例中,由于辐射单元结构,具有较宽的工作带宽,再加上采用宽带馈电结构中的缝隙耦合馈电耦合结构实现的缝隙耦合馈电方式,来激励辐射单元,以及缝隙耦合馈电结构中的缝隙自身的辐射,从而实现了天线阵列的宽带设计,满足频率维度的漫游需求。
可选地,本公开实施例中,该辐射单元1021可以包括两对辐射片10211。当辐射单元1021包括两对辐射片10211时,金属板1031上相应的开设两条缝隙10311,两条缝隙10311设置于四个辐射片10211之间,且相互交叉。每一条缝隙10311对应一对辐射片10211。相应的,传输线1032的数量为两条和馈电探针1033的数量为两个,每条传输线1032与一馈电探针1033连接,每条传输线1032对应一条缝隙10311。较佳地,四个辐射片10211两两对称设置。
可选地,这里所述的槽体结构的预设形状可以是长方体、圆柱体等。在本公开实施例中,该槽体结构的形状为长方体。可选地,传输线1032的长度方向与缝隙10311的长度方向的夹角大于或等于预设角度(预设角度大于0度),即传输线1032与缝隙10311在槽底的正投影的夹角大于或等于预设角度,该预设角度为使耦合效率较高的角度,可选传输线1032的长度方向与缝隙10311的长度方向的夹角为90度。较佳的,传输线1032在槽底的正投影的中间位置与缝隙10311在槽底的正投影的中间位置重合,以达到更好的耦合效果。一般,该传输线1032为50欧姆的微波传输线。
可选地,该天线阵列100为毫米波天线阵列。
在目前规划的5G毫米波段有以28GHz为主的n257(26.5-29.5GHz)、n258(24.25-27.5GHz)、n261(27.5-28.35GHz)频段以及以39GHz为主的n260(37.0-40.0GHz)与暂定的n259(40.5-43.5GHz)频段。而相关技术中的毫米波天线带宽窄,目前的双频方案仅能够覆盖n260和n261这两个频段,不能满足宽频的设计需求,影响用户的移动漫游体验。
而由于本公开实施例提供的天线阵列100的辐射单元1021产生的谐振具有宽带特性,因此将本公开实施例提供的天线阵列100的结构方案,应用到毫米波天线中,将能够提高毫米波天线的带宽。如图4所示,为本公开实施例中的天线单元101的反射系数曲线图,图中的横轴表示频率,单位为GHz;纵轴表示反射系数,单位为dB。图中右下角了标注了“1”至“6”处的频率以及对应的反射系数。从图中可以看出,该天线单元101能够23GHz~43.5GHz的频率范围,带宽可以满足n257、n258、n260、n259、n261等3GPP已经定义的全球主流5G毫米波频段,从而提升用户的移动漫游体验。
可选地,该槽体结构1011的材质为金属或非金属。当该槽体结构1011的材质为金属时,该槽体结构1011接地。当该槽体结构1011的材质为非金属时,槽体结构1011的内侧壁和槽底均设置有金属层,该金属层接地。由金属材质构成的槽体结构1011或由非金属材质构成的槽体结构1011的槽底设置的金属层作为馈电探针的地。
当然可以理解的是,当该槽体结构1011的材质为非金属时,可以仅在槽体结构1011的槽底设置金属层,并使该金属层接地,而该槽体结构1011的 内侧壁可以不设置金属层,具体情况,可根据实际需求选择。
在本公开实施例中,由于槽体结构1011为金属或是内侧壁和槽底设置有金属层,因此,该槽体结构1011可以作为天线单元101的反射器,改善辐射单元1021的后向辐射,使得天线单元101能够获取较好的增益以及方向图。如图5a至图5c所示,分别为本公开实施例中的天线单元101在工作频率为28GHz,39GHZ,42GHz的方向图,由这些图可以看出,天线单元101具有较好方向图特性。
由于终端的外壳、电池盖等非金属材质的介电常数不同,以及设置在终端内部的天线模组周围存在诸多的器件(金属或磁性材料),使得天线模组周围环境的等效介电常数不同,因而造成天线模组的谐振频率发生偏移,导致无法满足最初的谐振需求。且天线模组极易受到周边金属器件的影响,如金属框、金属背盖、喇叭、扬声器等金属器件的影响,导致天线性能急剧下降。而金属材质的槽体结构1011或是内侧壁和槽底设置有金属层的槽体结构1011,还可以作为天线的屏蔽器件,降低周围器件对天线本体的干扰,提升天线自身的稳定性。
可选地,当槽体结构1011为金属材质或槽体结构1011的内侧壁设置有金属层时,可以使金属板1031的外边缘与槽体结构1011的内侧壁贴合连接,这样可以使金属板1031与槽体结构1011之间形成屏蔽腔,降低外界干扰,提高抗干扰能力。
可选地,如图2所示,该辐射片10211包括:与槽体结构1011的槽底相平行的第一辐射部102111和与该第一辐射部102111连接的第二辐射部102112。第一辐射部102111与第二辐射部102112构成弯折结构。两个辐射片10211中的第一辐射部102111向相反方向延伸。两个辐射片10211中的第二辐射部102112之间间隔预设距离。
可选地,金属板1031上的缝隙10311的长度方向与第二辐射部102112平行,以达到更好的耦合效果。
可选地,金属板1031上的缝隙10311设置与两个辐射片之间的中间位置,缝隙到两个第二辐射部的垂直距离相等,以达到更好的耦合效果。
较佳地,第一辐射部102111的一端与第二辐射部102112的一端垂直连 接,第二辐射部102112与槽体结构1011的槽底相垂直,以达到更好的耦合效果。
较佳地,第一辐射部102111与第二辐射部102112一体成型,成型工艺简单,生产成本低,且由于是一体成型,结构更加稳定,辐射性能更好。
可选地,如图2所示,槽体结构1011内还设置有作为辐射单元1021载体的第一绝缘介质1041,辐射单元1021嵌入于该第一绝缘介质1041内。较佳的,该第一绝缘介质1041可选低损耗材料,如介电常数为2.2,损耗正切角为0.0009的介质材料。其中,损耗正切角越小,介质材料的损耗越低,越有利于减小天线损耗。
可选地,如图2和图3所示,槽体结构1011内还设置有作为传输线1032载体的第二绝缘介质1051,传输线1032嵌入于第二绝缘介质1051内,具体为嵌入到第二绝缘介质1051的厚度方向的中间位置。较佳的,该第二绝缘介质1051可选低损耗材料,如介电常数为2.2,损耗正切角为0.0009的介质材料。其中,损耗正切角越小,介质材料的损耗越低,越有利于减小天线损耗。
本公开实施例中,第一绝缘介质1041与第二绝缘介质1051可以是相同的材质也可以是不同的材质,具体情况可根据实际需求选择。
可选地,本公开实施例提供的天线阵列100,还可应用于无线城际网路(WMAN)、无线广域网路(WWAN)、无线区域网路(WLAN)、无线个人网路(WPAN)、多输入多输出(MIMO)、射频识别(RFID),甚至是近场通信(NFC)、无线充电(WPC),或FM等无线通信设计与应用上。
综上所述,由于本公开实施例中的辐射单元1021结构,具有较宽的工作带宽,再加上采用宽带馈电结构中的缝隙耦合馈电结构实现的缝隙10311耦合馈电方式,来激励辐射单元1021,以及缝隙耦合馈电结构中的缝隙10311自身的辐射,从而实现了天线阵列100的宽带设计,满足频率维度的漫游需求。
依据本公开实施例的另一个方面,提供了一种终端,包括如上所述的天线阵列100。
可选地,槽体结构1011为在终端的边框200的外表面上开设形成的,即槽体结构1011开设于终端的边框200上,槽体结构1011的槽口朝向终端外 部。
对于终端而言,轻薄化、高频占比、小型化已经成为发展趋势,受限于空间尺寸,在如此狭小的空间内放置诸如摄像头、麦克风、电池、USB等诸多电子器件。这些元器件不仅占据了终端的内部空间,而且对天线的性能产生较大的影响,进而影响用户的无线体验。或是为了保证天线的空间二牺牲终端设备的整体尺寸,故而影响产品的整体市场竞争力。尤其是目前主流毫米波的天线设计方案主要是采用天线封装(Antenna in package,AIP)的技术与工艺,将天线结构集成在一个模块内。在实际应用中,便将此天线模块置入终端内部,故会占据了其他天线的空间,导致天线性能的下降,从而影响用户的无线体验。
而本公开实施例中,为了克服上述问题,则选择将天线阵列100设置在终端的边框上,这样则可以不占用终端的内部空间,有利于终端的小型化发展。如图6所示,天线阵列100可以设置在201至204所指示的任一边框上。
可选地,开设有槽体结构1011的边框为金属边框,且该金属边框为终端中的其他天线的辐射单元。
由于金属边框已作为一个天线的辐射单元300,在其上再设置其他天线的天线阵列,则可以进一步地降低对空间的占用。
如图6中矩形虚线内包含的部分所示,边框201、部分边框202和部分边框204组成其他天线(如2G/3G/4G天线)的辐射单元300。而本申请中的天线阵列100则可以设置边框201的外表面上,以减少对终端空间的占用。
当然可以理解的是,本公开实施例中的天线阵列100也可以设置在终端内部,如主板上、中框上等。
本公开实施例中,由于辐射单元1021结构,具有较宽的工作带宽,再加上采用宽带馈电结构中的缝隙耦合馈电结构实现的缝隙10311耦合馈电方式,来激励辐射单元1021,以及缝隙10311耦合馈电耦合结构中的缝隙10311自身的辐射,从而实现了天线阵列100的宽带设计,满足频率维度的漫游需求。另外,本公开实施例中的天线阵列100设置在终端的边框上,这样还可以减少天线结构对终端内部空间的占用,有利于终端的小型化发展。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长 度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或可以互相通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
在本公开中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
尽管已描述了本公开实施例的可选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括可选实施例以及落入本公开实施例范围的所有 变更和修改。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者终端设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者终端设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者终端设备中还存在另外的相同要素。
以上所述的是本公开的可选实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本公开所述的原理前提下还可以作出若干改进和润饰,这些改进和润饰也在本公开的保护范围内。

Claims (14)

  1. 一种天线阵列,包括按照预设方式排列的多个天线单元;其中,所述天线单元包括:
    预设形状的槽体结构;
    内置于所述槽体结构中的辐射单元,所述辐射单元包括一对辐射片,每一所述辐射片为一具有预设角度的弯折结构;
    缝隙耦合馈电结构,所述缝隙耦合馈电结构包括:设置于所述槽体结构的槽底与所述辐射单元之间的金属板,所述辐射单元与所述金属板连接;其中,所述金属板上开设有一条缝隙,所述缝隙位于两个辐射片之间;设置于所述槽体结构的槽底与所述金属板之间的传输线以及设置于所述槽体结构的槽底上的馈电探针,所述馈电探针与所述传输线连接,所述传输线通过所述缝隙与所述辐射单元耦合。
  2. 根据权利要求1所述的天线阵列,其中,所述传输线的长度方向与所述缝隙的长度方向的夹角大于或等于预设角度,所述预设角度大于0°。
  3. 根据权利要求1所述的天线阵列,其中,所述辐射片包括:
    与所述槽体结构的槽底相平行的第一辐射部;
    与所述第一辐射部连接的第二辐射部;
    其中,所述第一辐射部与所述第二辐射部构成弯折结构,两个所述第二辐射部之间间隔预设距离。
  4. 根据权利要求3所述的天线阵列,其中,所述缝隙的长度方向与所述第二辐射部平行。
  5. 根据权利要求4所述的天线阵列,其中,所述缝隙到两个所述第二辐射部的垂直距离相等。
  6. 根据权利要求3所述的天线阵列,其中,两个所述辐射片中的第一辐射部向相反方向延伸。
  7. 根据权利要求1所述的天线阵列,其中,所述槽体结构内还设置有第一绝缘介质,所述辐射单元嵌入于所述第一绝缘介质内。
  8. 根据权利要求1所述的天线阵列,其中,所述槽体结构内还设置有第 二绝缘介质,所述传输线嵌入于所述第二绝缘介质内。
  9. 根据权利要求1所述的天线阵列,其中,所述槽体结构的材质为金属,所述槽体结构接地。
  10. 根据权利要求1所述的天线阵列,其中,所述槽体结构的材质为非金属,所述槽体结构的内侧壁和底部均设置有金属层,所述金属层接地。
  11. 根据权利要求9或10所述的天线阵列,其中,所述金属板的外边缘与所述槽体结构的内侧壁贴合连接。
  12. 一种终端,包括如权利要求1至11任一项所述的天线阵列。
  13. 根据权利要求12所述的终端,其中,所述槽体结构开设于所述终端的边框上,所述槽体结构的槽口朝向终端外部。
  14. 根据权利要求13所述的终端,其中,开设有所述槽体结构的边框为金属边框,且所述金属边框为所述终端中的其他天线的辐射单元。
PCT/CN2020/098857 2019-08-06 2020-06-29 天线阵列及终端 WO2021022941A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910721438.1A CN110380213B (zh) 2019-08-06 2019-08-06 一种天线阵列及终端
CN201910721438.1 2019-08-06

Publications (1)

Publication Number Publication Date
WO2021022941A1 true WO2021022941A1 (zh) 2021-02-11

Family

ID=68258353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/098857 WO2021022941A1 (zh) 2019-08-06 2020-06-29 天线阵列及终端

Country Status (2)

Country Link
CN (1) CN110380213B (zh)
WO (1) WO2021022941A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114498017A (zh) * 2022-03-01 2022-05-13 东南大学 一种易加工的毫米波有源双极化天线
CN114678691A (zh) * 2022-03-03 2022-06-28 北京机电工程研究所 低剖面宽带共形天线单元及阵列

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110380213B (zh) * 2019-08-06 2021-09-03 维沃移动通信有限公司 一种天线阵列及终端
CN111162379B (zh) * 2019-12-31 2023-04-07 上海微波技术研究所(中国电子科技集团公司第五十研究所) 基于双层贴片天线的极化可调天线阵列
CN111430931B (zh) * 2020-04-01 2022-01-11 武汉虹信科技发展有限责任公司 用于宽频天线的辐射片及宽频天线
CN114976583B (zh) * 2021-02-26 2023-12-15 华为技术有限公司 毫米波天线、装置及电子设备
CN114759340A (zh) * 2022-04-22 2022-07-15 罗森伯格技术有限公司 天线振子单元及天线阵列

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100277261A1 (en) * 2008-04-09 2010-11-04 National Taiwan University Dual-band coupling device
CN103311653A (zh) * 2013-05-20 2013-09-18 华南理工大学 采用差分馈电和多层贴片结构小型化高隔离宽频带的天线
CN104752839A (zh) * 2015-04-28 2015-07-01 四川省韬光通信有限公司 一种高增益宽带耦合缝翼型微带天线
WO2017086855A1 (en) * 2015-11-17 2017-05-26 Gapwaves Ab A self-grounded surface mountable bowtie antenna arrangement, an antenna petal and a fabrication method
CN108695596A (zh) * 2018-05-07 2018-10-23 清华大学 基于非接触旋转耦合的可重构传感天线
CN108879091A (zh) * 2018-06-07 2018-11-23 南京理工大学 一种宽带圆极化微带阵列天线
CN110380213A (zh) * 2019-08-06 2019-10-25 维沃移动通信有限公司 一种天线阵列及终端

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103337696A (zh) * 2013-04-08 2013-10-02 中国人民解放军空军工程大学 变极化平板天线单元
CN104300203A (zh) * 2013-07-17 2015-01-21 电子科技大学 一种l波段微带馈电缝隙辐射的圆极化微带贴片天线
US9728858B2 (en) * 2014-04-24 2017-08-08 Apple Inc. Electronic devices with hybrid antennas
CN207677080U (zh) * 2017-12-30 2018-07-31 深圳市景程信息科技有限公司 宽带缝隙耦合圆极化天线
CN108933327A (zh) * 2018-06-08 2018-12-04 西安电子科技大学 一种改进的宽带微带天线单元

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100277261A1 (en) * 2008-04-09 2010-11-04 National Taiwan University Dual-band coupling device
CN103311653A (zh) * 2013-05-20 2013-09-18 华南理工大学 采用差分馈电和多层贴片结构小型化高隔离宽频带的天线
CN104752839A (zh) * 2015-04-28 2015-07-01 四川省韬光通信有限公司 一种高增益宽带耦合缝翼型微带天线
WO2017086855A1 (en) * 2015-11-17 2017-05-26 Gapwaves Ab A self-grounded surface mountable bowtie antenna arrangement, an antenna petal and a fabrication method
CN108695596A (zh) * 2018-05-07 2018-10-23 清华大学 基于非接触旋转耦合的可重构传感天线
CN108879091A (zh) * 2018-06-07 2018-11-23 南京理工大学 一种宽带圆极化微带阵列天线
CN110380213A (zh) * 2019-08-06 2019-10-25 维沃移动通信有限公司 一种天线阵列及终端

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114498017A (zh) * 2022-03-01 2022-05-13 东南大学 一种易加工的毫米波有源双极化天线
WO2023165634A1 (zh) * 2022-03-01 2023-09-07 东南大学 一种易加工的毫米波有源双极化天线
CN114498017B (zh) * 2022-03-01 2024-02-02 东南大学 一种易加工的毫米波有源双极化天线
CN114678691A (zh) * 2022-03-03 2022-06-28 北京机电工程研究所 低剖面宽带共形天线单元及阵列
CN114678691B (zh) * 2022-03-03 2024-01-05 北京机电工程研究所 低剖面宽带共形天线单元及阵列

Also Published As

Publication number Publication date
CN110380213A (zh) 2019-10-25
CN110380213B (zh) 2021-09-03

Similar Documents

Publication Publication Date Title
WO2021022941A1 (zh) 天线阵列及终端
US11387568B2 (en) Millimeter-wave antenna array element, array antenna, and communications product
EP4047746A1 (en) Antenna module and electronic device
US11322829B2 (en) Antenna assembly and electronic device
EP2996196B1 (en) Multi-antenna system and mobile terminal
TWI245454B (en) Low sidelobes dual band and broadband flat endfire antenna
US8907860B2 (en) Stand-alone multi-band antenna
WO2022179324A1 (zh) 天线装置、壳体及电子设备
CN112290193B (zh) 毫米波模组、电子设备及毫米波模组的调节方法
EP2541678B1 (en) Mobile communication antenna device and mobile communication terminal device
WO2022179596A1 (zh) 毫米波天线、装置及电子设备
WO2022083276A1 (zh) 天线阵列组件及电子设备
CN107248613B (zh) 一种高增益双频天线单元
CN109560387B (zh) 一种用于移动终端的毫米波双极化天线
CN109742515B (zh) 一种用于移动终端的毫米波圆极化天线
WO2006011459A1 (ja) パッチアンテナ及びパッチアンテナの製造方法
EP4266495A1 (en) Antenna assembly and electronic device
CN111430893B (zh) 电子设备
WO2023016184A1 (zh) 天线装置、壳体及电子设备
WO2022068548A1 (zh) 后盖及终端
WO2022089089A1 (zh) 一种天线及终端设备
WO2022017220A1 (zh) 一种电子设备
CN212434853U (zh) 一种馈电网络单元及应用该馈电网络单元的天线阵
CN111403901B (zh) 天线模组及电子设备
TWI481118B (zh) 雙頻天線及應用該雙頻天線之無線通訊裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20850791

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20850791

Country of ref document: EP

Kind code of ref document: A1