WO2021169709A1 - 吸波结构、天线组件及电子设备 - Google Patents

吸波结构、天线组件及电子设备 Download PDF

Info

Publication number
WO2021169709A1
WO2021169709A1 PCT/CN2021/073772 CN2021073772W WO2021169709A1 WO 2021169709 A1 WO2021169709 A1 WO 2021169709A1 CN 2021073772 W CN2021073772 W CN 2021073772W WO 2021169709 A1 WO2021169709 A1 WO 2021169709A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
wave absorbing
absorbing structure
wave
electronic device
Prior art date
Application number
PCT/CN2021/073772
Other languages
English (en)
French (fr)
Inventor
贾玉虎
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2021169709A1 publication Critical patent/WO2021169709A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems

Definitions

  • This application relates to the field of electronic equipment, and in particular to a wave absorbing structure, antenna assembly and electronic equipment.
  • the fifth-generation (5th-Generation, 5G) mobile communication is favored by users due to its high communication speed.
  • 5G mobile communication when using 5G mobile communication to transmit data, the transmission speed is hundreds of times faster than that of 4G mobile communication.
  • Millimeter wave signals are the main means to realize 5G mobile communications.
  • millimeter wave antennas when millimeter wave antennas are applied to electronic devices, millimeter wave antennas are susceptible to interference from other surrounding devices, including other antennas, resulting in poor signal quality. It can be seen that in the prior art, due to the influence of interference on the antenna, the communication performance of the electronic device including the antenna is poor.
  • the present application provides a wave absorbing structure, and the wave absorbing structure includes:
  • a bearing plate the bearing plate includes an end surface, a first bearing surface, and a second bearing surface.
  • the end surfaces are respectively connected to the first bearing surface and the second bearing surface.
  • the second bearing surface is arranged oppositely;
  • a first wave absorbing layer the first wave absorbing layer being carried on the first bearing surface
  • a conductive ground layer is embedded in the carrier board, and is arranged spaced apart from the first wave-absorbing layer;
  • the second wave absorbing layer, the second wave absorbing layer is carried on the second bearing surface, and is arranged at a distance from the conductive ground layer.
  • the present application also provides an antenna assembly, which includes:
  • the first antenna is used to send and receive the first electromagnetic wave signal
  • a second antenna the second antenna is spaced apart from the first antenna, and is used to transmit and receive a second electromagnetic wave signal
  • the wave absorbing structure is arranged between the first antenna and the second antenna.
  • This application also provides an electronic device, which includes:
  • Antenna module for sending and receiving electromagnetic wave signals
  • the wave-absorbing structure is arranged around a part of the periphery of the antenna module, and is arranged to avoid the transmitting and receiving surface of the antenna module for transmitting and receiving electromagnetic wave signals.
  • FIG. 1 is a schematic diagram of a three-dimensional structure of a wave absorbing structure provided in an embodiment of this application.
  • FIG. 2 is a top view of a wave absorbing structure provided by an embodiment of the application.
  • Fig. 3 is a schematic cross-sectional view taken along line I-I in Fig. 2 according to an embodiment.
  • FIG. 4 is a schematic diagram of a three-dimensional structure of a wave absorbing structure provided in another embodiment of the application.
  • FIG. 5 is a top view of a wave absorbing structure provided by another embodiment of the application.
  • Fig. 6 is a schematic cross-sectional view taken along line II-II in Fig. 5 according to an embodiment.
  • FIG. 7 is a schematic diagram of a three-dimensional structure of an antenna assembly provided in an embodiment of this application.
  • FIG. 8 is a top view of an antenna assembly provided by an embodiment of the application.
  • FIG. 9 is a schematic diagram of a three-dimensional structure of an antenna assembly provided in another embodiment of this application.
  • FIG. 10 is a top view of an antenna assembly provided by another embodiment of this application.
  • FIG. 11 is a circuit diagram of an antenna assembly provided by an embodiment of this application.
  • FIG. 12 is a circuit diagram of an antenna assembly provided by an embodiment of the application.
  • FIG. 13 is a simulation diagram of the frequency of the electromagnetic wave signal absorbed by the wave absorbing structure in the antenna module of the present application.
  • FIG. 14 is a simulation diagram of S11 and S21 in the antenna module and the antenna module of the application without the wave absorbing structure.
  • FIG. 15 is a schematic diagram of a three-dimensional structure of an electronic device provided by an embodiment of this application.
  • FIG. 16 is a schematic structural diagram of an antenna assembly and a middle frame in an electronic device provided by an embodiment of this application.
  • Fig. 17 is a cross-sectional view taken along line III-III in Fig. 16.
  • Fig. 18 is a top view of Fig. 16.
  • FIG. 19 is a schematic diagram of the assembly of the middle frame, the antenna module, and the wave absorbing structure in the electronic device.
  • Fig. 20 is a top view of Fig. 19.
  • Fig. 21 is a cross-sectional view taken along the line IV-IV in Fig. 19.
  • FIG. 22 is a schematic diagram of a part of the structure of an electronic device in another embodiment of this application.
  • Fig. 23 is a cross-sectional view taken along the line V-V of Fig. 22 in an embodiment.
  • FIG. 24 is a schematic cross-sectional view of an electronic device according to an embodiment of the application.
  • FIG. 25 is a schematic cross-sectional view of an electronic device according to another embodiment of the application.
  • FIG. 26 is a top view of an antenna assembly in an electronic device provided by an embodiment of the application.
  • An embodiment of the present application provides a wave absorbing structure, and the wave absorbing structure includes:
  • a bearing plate the bearing plate includes an end surface, a first bearing surface, and a second bearing surface.
  • the end surfaces are respectively connected to the first bearing surface and the second bearing surface.
  • the second bearing surface is arranged oppositely;
  • a first wave absorbing layer the first wave absorbing layer being carried on the first bearing surface
  • a conductive ground layer is embedded in the carrier board, and is arranged spaced apart from the first wave-absorbing layer;
  • the second wave absorbing layer, the second wave absorbing layer is carried on the second bearing surface, and is arranged at a distance from the conductive ground layer.
  • the first wave absorbing layer includes:
  • the first wave absorbing unit arranged periodically;
  • the second wave absorbing layer includes:
  • the second wave absorbing unit is periodically arranged, and the orthographic projection of the second wave absorbing unit on the first bearing surface at least partially overlaps the area where the first wave absorbing unit is located.
  • the first wave absorbing layer includes:
  • the first wave absorbing unit arranged periodically;
  • the second wave absorbing layer includes:
  • the second absorbing unit arranged periodically, the orthographic projection of the second absorbing unit on the first bearing surface falls on one of two or more adjacent first absorbing units on the first bearing surface The gap between.
  • the first wave absorbing unit is a conductive patch, and the shape of the first wave absorbing unit includes any one of a square, a rectangle, and a circle;
  • the second wave absorbing structure is a conductive patch, and the The shape of the second wave absorbing structure includes any one of a square, a rectangle, and a circle.
  • the size of the first wave absorbing unit is a first size range, wherein the first size range includes a first preset size, and the first preset size is equal to that absorbed by the first wave absorbing unit Half the wavelength of the first electromagnetic wave signal;
  • the size of the second wave absorbing unit is a second size range, wherein the second size range includes a second preset size, and the second preset size is equal to the first Half of the wavelength of the second electromagnetic wave signal absorbed by the second wave absorbing unit.
  • the period of the first wave absorbing unit is at least 2*1; the period of the second wave absorbing unit is at least 2*1.
  • Another embodiment of the present application further provides an antenna assembly, the antenna assembly includes:
  • the first antenna is used to send and receive the first electromagnetic wave signal
  • a second antenna the second antenna is spaced apart from the first antenna, and is used to transmit and receive a second electromagnetic wave signal
  • the wave absorbing structure is provided between the first antenna and the second antenna.
  • the antenna assembly further includes:
  • a substrate the substrate is used to carry the first antenna and the second antenna
  • the substrate includes a first surface, a second surface, and a third surface, the first surface and the second surface are disposed opposite to each other ,
  • the third surface connects the first surface and the second surface, and the third surface is used to carry the wave absorbing structure, the first antenna, and the second antenna;
  • the wave absorbing structure protrudes from at least one of the first surface and the second surface.
  • the wave absorbing structure is perpendicular to the substrate.
  • the first antenna includes a plurality of first radiating elements arranged in an array along a preset direction;
  • the second antenna includes a plurality of second radiating units arranged in an array along a preset direction, wherein the second radiating unit and the first radiating unit are respectively electrically connected to different radio frequency transceivers through different radio frequency front-end modules;
  • the wave absorbing structure is arranged between the first antenna and the second antenna along a predetermined direction, and is perpendicular to the plane where the first radiating unit and the second radiating unit are located.
  • the first antenna includes a plurality of first radiating elements arranged in an array along a preset direction;
  • the second antenna includes a plurality of second radiating units arranged in an array along a preset direction, wherein the second radiating unit and the first radiating unit are electrically connected to the same radio frequency transceiver;
  • the wave absorbing structure is arranged between the first antenna and the second antenna along a predetermined direction, and is perpendicular to the plane where the first radiating unit and the second radiating unit are located.
  • Another embodiment of the present application further provides an electronic device, wherein the electronic device includes a middle frame and the antenna assembly as described in any of the previous embodiments, and the wave absorbing structure in the antenna assembly is disposed on the middle frame. middle.
  • the middle frame includes a conductive plate and an insulating part
  • the conductive plate has a gap penetrating two opposite surfaces of the conductive plate, at least part of the insulating part is formed in the gap, and the wave absorbing structure It is arranged in the insulating part.
  • the conductive plate includes a conductive plate body and a conductive frame connected to the periphery of the conductive plate body and bent and connected to the conductive plate body, and the gap is opened on the conductive frame and the conductive plate body,
  • the insulating part is at least partially disposed in the gap, and the wave absorbing structure is disposed in the insulating part.
  • Another embodiment of the present application further provides an electronic device, wherein the electronic device includes:
  • Antenna module for sending and receiving electromagnetic wave signals
  • the wave absorbing structure is arranged around a part of the periphery of the antenna module, and is arranged to avoid the transmitting and receiving surface of the antenna module for receiving and transmitting electromagnetic wave signals.
  • the electronic device includes:
  • a middle frame, the middle frame is used to support the antenna module and the wave absorbing structure
  • the transmitting and receiving surface of the antenna module for transmitting and receiving electromagnetic wave signals is away from the middle frame;
  • the wave absorbing structure is surrounded by a hollow frame body, the frame body has an opening, the frame body is used for accommodating the antenna module, and the transmitting and receiving surface of the antenna module faces the opening.
  • the middle frame includes a conductive plate and an insulating part
  • the conductive plate has a gap penetrating two opposite surfaces of the conductive plate, at least part of the insulating part is formed in the gap, and the wave absorbing structure Fixed to the insulating part.
  • the electronic device further includes:
  • the cover plate covers the opening and is connected to the frame body, and the cover plate is used to transmit the electromagnetic wave signal.
  • the transceiving surface faces away from the middle frame, one end of the frame body away from the middle frame forms the opening, and the cover plate faces away from the middle frame.
  • the electronic device includes a battery cover
  • the battery cover includes a back plate and a frame that is bent and connected to the back plate to form an accommodating space, the accommodating space is used for accommodating the middle frame, the transceiver Face the frame.
  • FIG. 1 is a schematic diagram of a three-dimensional structure of a wave absorbing structure provided in an embodiment of this application
  • FIG. 2 is a top view of a wave absorbing structure provided in an embodiment of this application
  • It is a schematic cross-sectional view along line II in FIG. 2 of an embodiment.
  • the wave absorbing structure 100 includes: a carrier plate 110, a first wave absorbing layer 120, a conductive ground layer 130, and a second wave absorbing layer 140.
  • the supporting board 110 includes an end surface 111, a first supporting surface 112, and a second supporting surface 113.
  • the end surface 111 is connected to the first bearing surface 112 and the second bearing surface 113 respectively, and the first bearing surface 112 and the second bearing surface 113 are disposed opposite to each other.
  • the first wave absorbing layer 120 is carried on the first carrying surface 112.
  • the conductive ground layer 130 is embedded in the carrier board 110 and is spaced apart from the first wave absorbing layer 120.
  • the second wave absorbing layer 140 is carried on the second carrying surface 113 and is spaced apart from the conductive ground layer 130.
  • the carrier plate 110 is an insulating substrate, and the materials of the first wave absorbing layer 120, the conductive ground layer 130, and the second wave absorbing layer 140 are conductive.
  • the material of the first wave absorbing layer 120 may be, but is not limited to, a metal or non-metal conductive material.
  • the material of the conductive ground layer 130 may be, but is not limited to, a metal or non-metal conductive material
  • the material of the second wave absorbing layer 140 may be, but is not limited to, a metal or non-metal conductive material.
  • the first wave absorbing layer 120 When the wave absorbing structure 100 is applied to a scene that absorbs electromagnetic wave signals sent and received by an antenna, for example, the first wave absorbing layer 120 is disposed adjacent to the antenna, and the first wave absorbing layer 120 is located on the antenna. Outside the transmitting and receiving surface of electromagnetic wave signals.
  • the first wave-absorbing layer 120 is excited by the electromagnetic wave signal sent and received by the antenna to generate a first current, and the conductive ground layer 130 induces a first induced current in a direction opposite to the first current.
  • the current and the first induced current achieve electromagnetic resonance.
  • the wave impedance of the wave absorbing structure 100 that realizes electromagnetic resonance matches the wave impedance of the electromagnetic wave signal, so that the wave impedance of the wave absorbing structure 100 for the electromagnetic wave signal is zero, and the transmission is zero.
  • the energy of the electromagnetic wave signal incident on the wave absorbing structure 100 is absorbed by the wave absorbing structure 100, so as to prevent the electromagnetic wave signal transmitted and received by the antenna from passing through the wave absorbing structure 100.
  • the effect of the influence of the remaining devices when the second wave absorbing layer 140 is disposed adjacent to the antenna, and the second wave absorbing structure 100 is located outside the transmitting and receiving surface of the antenna for transmitting and receiving electromagnetic waves.
  • the second absorbing layer 140 is excited by the electromagnetic wave signal sent and received by the antenna to generate a second current signal, and the conductive ground layer 130 induces a second induced current in the opposite direction to the second current.
  • the current and the second induced current achieve electromagnetic resonance.
  • the impedance of the wave-absorbing structure 100 that realizes electromagnetic resonance matches the impedance of the electromagnetic wave signal, so that the reflection of the wave-absorbing structure 100 for the electromagnetic wave signal is zero, and the transmission is zero.
  • the energy of the electromagnetic wave signal incident on the wave absorbing structure 100 is absorbed by the wave absorbing structure 100, so as to prevent the electromagnetic wave signal transmitted and received by the antenna from passing through the wave absorbing structure 100.
  • the effect of the influence of the remaining devices are examples of the wave signal incident on the wave absorbing structure 100.
  • the wave absorbing structure 100 When the wave absorbing structure 100 is applied to the first antenna 200 (see FIG. 7 and FIG. 8) and the second antenna 300 (see FIG. 7 and FIG. 8) arranged at intervals, the wave absorbing structure 100 can absorb the incident light
  • the first electromagnetic wave signal of the wave absorbing structure 100 prevents the first electromagnetic wave signal from penetrating the wave absorbing structure 100 and being transmitted to the second antenna 300 to cause interference to the second antenna 300; accordingly, the wave absorbing structure
  • the structure 100 can absorb the second electromagnetic wave signal incident on the wave absorbing structure 100, so as to prevent the second electromagnetic wave signal from penetrating the wave absorbing structure 100 and being transmitted to the first antenna 200. 200 causes interference.
  • the wave absorbing structure 100 can isolate the first antenna 200 and the second antenna 300 to avoid interference between the first antenna 200 and the second antenna 300.
  • the absorbing structure 100 functions to isolate the spatial field coupling between the first antenna 200 and the second antenna 300, which greatly improves the coupling between the first antenna 200 and the second antenna 300.
  • the isolation reduces the envelope correlation coefficient (ECC) of the first antenna 200 and the second antenna 300.
  • ECC envelope correlation coefficient
  • the wave absorbing structure 100 will not affect the standing wave frequency of the first electromagnetic wave signal radiated to or received from the other places by the first antenna 200, and will not cause the standing wave frequency of the first electromagnetic wave signal.
  • the absorbing structure 100 will not affect the standing wave frequency of the second electromagnetic wave signal received by the second antenna 300 radiated to or received from other places, and will not cause the first electromagnetic wave signal The deviation of the standing wave frequency.
  • the first wave absorbing layer 120 includes: first wave absorbing units 121 arranged periodically.
  • the second wave absorbing layer 140 includes: second wave absorbing units 141 periodically arranged.
  • the orthographic projection of the second wave absorbing unit 141 on the first bearing surface 112 at least partially overlaps with the area where the first wave absorbing unit 121 is located.
  • the first wave absorbing unit 121 may be a conductive patch
  • the second wave absorbing unit 141 may be a conductive patch.
  • the shape of the first wave absorbing unit 121 and the shape of the second wave absorbing unit 141 may be the same or different.
  • the shape of the first absorbing unit 121 includes any one of a square, a rectangle, and a circle;
  • the second absorbing structure 100 is a conductive patch, and the shape of the second absorbing structure 100 includes a square and a rectangle. Any one of, round.
  • the second wave absorbing unit 141 and the orthographic projection on the first bearing surface 112 at least partially overlap the area where the first wave absorbing unit 121 is located.
  • the orthographic projection on the first bearing surface 112 is completely and falls within the range where the first absorbing unit 121 is located; or, the orthographic projection of the second absorbing structure 100 on the first bearing surface 112 and the The area where the first wave absorbing structure 100 is located completely overlaps; or, the orthographic projection of the second wave absorbing unit 141 on the first bearing surface 112 partially overlaps the area where the first wave absorbing structure 100 is located.
  • FIG. 4 is a schematic diagram of a three-dimensional structure of a wave absorbing structure provided in another embodiment of this application
  • FIG. 5 is a top view of a wave absorbing structure provided in another embodiment of this application
  • Fig. 6 is a schematic cross-sectional view taken along line II-II in Fig. 5 according to an embodiment.
  • the first wave absorbing layer 120 includes: first wave absorbing units 121 arranged periodically.
  • the second wave absorbing layer 140 includes: second wave absorbing units 141 periodically arranged.
  • the orthographic projection of the second wave absorbing unit 141 on the first bearing surface 112 falls within the gap between two or more adjacent first wave absorbing units 121 on the first bearing surface 112.
  • the first wave absorbing unit 121 may be a conductive patch
  • the second wave absorbing unit 141 may be a conductive patch.
  • the shape of the first wave absorbing unit 121 and the shape of the second wave absorbing unit 141 may be the same or different.
  • the shape of the first wave absorbing unit 121 includes any one of a square, a rectangle, and a circle; the second wave absorbing unit 141 is a conductive patch, and the shape of the second wave absorbing unit 141 includes a square or a rectangle. Any one of, round.
  • the orthographic projection of the second absorbing unit 141 on the first bearing surface 112 falls within the gap between two or more adjacent first absorbing units 121 on the first bearing surface 112, including :
  • the area of the gap is larger than the area of the second absorbing unit 141, the orthographic projection of the second absorbing unit 141 on the first bearing surface 112 falls into the gap and the side of the orthographic projection is The sides of the gap partially overlap; or, the area of the gap is equal to the area of the second wave absorbing unit 141, and the orthographic projection of the second wave absorbing unit 141 on the first bearing surface 112 falls into the gap And the side of the orthographic projection completely overlaps the side of the gap; or, the area of the gap is larger than the area of the second absorbing unit 141, and the second absorbing unit 141 is mounted on the first carrier
  • the orthographic projection on the surface 112 falls into the gap and there is a distance between the side of the orthographic projection and the side of the gap.
  • the size of the first absorbing unit 121 is a first size range, wherein the first size range includes a first preset size, and the first preset size is equal to the first size range.
  • the size of the first absorbing unit 121 refers to the side length of the square; for the rectangular first absorbing unit 121, the size of the first absorbing unit 121 The size refers to the length of the long side of the rectangle; for the circular first absorbing unit 121, the size of the first absorbing unit 121 refers to the diameter of the circle.
  • the size of the second absorbing unit 141 refers to the side length of the square; for the rectangular second absorbing unit 141, the second absorbing unit 141 The size of the unit 141 refers to the length of the long side of the rectangle; for the circular second absorbing unit 141, the size of the second absorbing unit 141 refers to the diameter of the circle.
  • the period of the first wave absorbing unit 121 is at least 2*1; the period of the second wave absorbing unit 141 is at least 2*1.
  • FIG. 7 is a schematic diagram of a three-dimensional structure of an antenna assembly provided in an embodiment of this application
  • FIG. 8 is a top view of an antenna assembly provided in an embodiment of this application.
  • the antenna assembly 10 includes: a first antenna 200, a second antenna 300, and the wave absorbing structure 100 provided in any of the foregoing embodiments.
  • the first antenna 200 is used to transmit and receive a first electromagnetic wave signal.
  • the second antenna 300 is spaced apart from the first antenna 200, and is used to transmit and receive a second electromagnetic wave signal.
  • the wave absorbing structure 100 is arranged between the first antenna 200 and the second antenna 300. In this embodiment, only the wave absorbing structure 100 introduced in the previous embodiment is taken as an example for schematic diagram.
  • the first electromagnetic wave signal may be, but not limited to, an electromagnetic wave signal in the millimeter wave frequency band or an electromagnetic wave signal in the terahertz frequency band.
  • 5G new radio mainly uses two frequency bands: FR1 frequency band and FR2 frequency band.
  • the frequency range of the FR1 frequency band is 450MHz to 6GHz, which is also called the sub-6GHz frequency band;
  • the frequency range of the FR2 frequency band is 24.25GHz to 52.6GHz, which belongs to the millimeter wave (mm Wave) frequency band.
  • the second electromagnetic wave signal may be, but not limited to, an electromagnetic wave signal in the millimeter wave frequency band or an electromagnetic wave signal in the terahertz frequency band.
  • the first absorbing layer 120 in the absorbing structure 100 is adjacent to the first antenna 200 compared to the second absorbing layer 140, and the second absorbing layer 140 is relatively
  • the second antenna 300 is adjacent to the second wave absorbing layer 140.
  • the first wave absorbing layer 120 When the wave absorbing structure 100 is applied to a scene that absorbs the first electromagnetic wave signal transmitted and received by the first antenna 200, the first wave absorbing layer 120 is disposed adjacent to the first antenna 200, and the first wave absorbing layer 120 It is located outside the transmitting and receiving surface of the first antenna 200 for transmitting and receiving the first electromagnetic wave signal.
  • the so-called transmitting and receiving surface refers to the surface on which the antenna receives and transmits (also referred to as radiating) electromagnetic wave signals.
  • the transmitting and receiving surface is the radiating aperture surface of the antenna.
  • the first absorbing layer 120 is excited by the first electromagnetic wave signal sent and received by the first antenna 200 to generate a first current, and the conductive ground layer 130 in the absorbing structure 100 induces a direction opposite to the first current
  • the first induced current, the first current and the first induced current achieve electromagnetic resonance.
  • the wave impedance of the wave absorbing structure 100 that realizes electromagnetic resonance matches the wave impedance of the first electromagnetic wave signal, so that the reflection of the wave absorbing structure 100 to the first electromagnetic wave signal is zero, and the transmission is zero.
  • the energy of the first electromagnetic wave signal incident to the wave absorbing structure 100 is absorbed by the wave absorbing structure 100, thereby avoiding the first electromagnetic wave signal transmitted and received by the first antenna 200 from passing through The effect of the wave absorbing structure 100 on other devices.
  • the second wave absorbing layer 140 when the second wave absorbing layer 140 is disposed adjacent to the second antenna 300, and the second wave absorbing structure 100 is located outside the receiving and receiving surface of the second antenna 300 for receiving and transmitting the second electromagnetic wave signal.
  • the second absorbing layer 140 is excited by the electromagnetic wave signal sent and received by the second antenna 300 to generate a second current signal, and the conductive ground layer 130 induces a second induced current in the opposite direction to the second current, so The second current and the second induced current achieve electromagnetic resonance.
  • the impedance of the wave-absorbing structure 100 that realizes electromagnetic resonance matches the impedance of the second electromagnetic wave signal, so that the reflection of the wave-absorbing structure 100 for the second electromagnetic wave signal is zero, and the transmission is zero.
  • the energy of the second electromagnetic wave signal incident to the wave absorbing structure 100 is absorbed by the wave absorbing structure 100, thereby avoiding the second electromagnetic wave signal transmitted and received by the second antenna 300 from passing through The effect of the wave absorbing structure 100 on other devices.
  • the absorbing structure 100 When the absorbing structure 100 is applied to the first antenna 200 and the second antenna 300 arranged at intervals, the absorbing structure 100 can absorb the first electromagnetic wave signal incident on the absorbing structure 100 to prevent the first antenna An electromagnetic wave signal penetrates the absorbing structure 100 and is transmitted to the second antenna 300 to cause interference to the second antenna 300; accordingly, the absorbing structure 100 can absorb the second electromagnetic wave incident on the absorbing structure 100 Signal to prevent the second electromagnetic wave signal from penetrating the wave absorbing structure 100 and being transmitted to the first antenna 200 to cause interference to the first antenna 200. It can be seen that the wave absorbing structure 100 can isolate the first antenna 200 and the second antenna 300 to avoid interference between the first antenna 200 and the second antenna 300.
  • the absorbing structure 100 functions to isolate the spatial field coupling between the first antenna 200 and the second antenna 300, which greatly improves the coupling between the first antenna 200 and the second antenna 300.
  • the isolation reduces the envelope correlation coefficient (ECC) of the first antenna 200 and the second antenna 300, and improves the communication effect of the antenna assembly 10.
  • ECC envelope correlation coefficient
  • the wave absorbing structure 100 will not affect the standing wave frequency of the first electromagnetic wave signal radiated to or received from the other places by the first antenna 200, and will not cause the standing wave frequency of the first electromagnetic wave signal.
  • the absorbing structure 100 will not affect the standing wave frequency of the second electromagnetic wave signal received by the second antenna 300 radiated to or received from other places, and will not cause the first electromagnetic wave signal The deviation of the standing wave frequency.
  • the distance between the absorbing structure 100 and the first antenna 200 is equal to the distance between the absorbing structure 100 and the second antenna 300; in another embodiment, the absorbing structure 100 is The distance between the wave structure 100 and the first antenna 200 is greater than the distance between the wave absorbing structure 100 and the second antenna 300; in another embodiment, the distance between the wave absorbing structure 100 and the first antenna 200 The distance is smaller than the distance between the wave absorbing structure 100 and the second antenna 300.
  • FIG. 9 is a schematic diagram of a three-dimensional structure of an antenna assembly provided in another embodiment of this application
  • FIG. 10 is a top view of an antenna assembly provided in another embodiment of this application.
  • the antenna assembly 10 provided in this embodiment has basically the same structure as the antenna assembly 10 provided in the previous embodiment. The difference is that in this embodiment, the antenna assembly 10 further includes a substrate 400, which is used for Carry the first antenna 200 and the second antenna 300.
  • the substrate 400 includes a first surface 410, a second surface 420, and a third surface 430.
  • the first surface 410 is disposed opposite to the second surface 420, and the third surface 430 is connected to the first surface 410.
  • the second surface 420 and the third surface 430 are used to carry the wave absorbing structure 100, the first antenna 200 and the second antenna 300.
  • the wave absorbing structure 100 protrudes from at least one of the first surface 410 and the second surface 420.
  • the material of the substrate 400 is an insulating material.
  • the absorbing structure 100 protruding from at least one of the first surface 410 and the second surface 420 includes: the absorbing structure 100 protruding from the first surface 410 and not protruding from the first surface 410 Two surfaces 420; the absorbing structure 100 protrudes from the second surface 420, but does not protrude from the first surface 410; the absorbing structure 100 protrudes from the first surface 410 and protrudes from the first surface Two surface 420.
  • the wave absorbing structure 100 protrudes from the first surface 410 and protrudes from the second surface 420 for illustration.
  • the absorbing structure 100 protrudes from at least one of the first surface 410 and the second surface 420, which can improve the effect of the absorbing structure 100 on the first antenna 200 and the second surface.
  • the isolation effect between the antennas 300 improves the isolation between the first antenna 200 and the second antenna 300, reduces the ECC of the first antenna 200 and the second antenna 300, and improves the antenna assembly 10's communication effect.
  • the first surface 410 protrudes from the wave absorbing structure 100; or, the second surface 420 protrudes from the wave absorbing structure 100; or, the first surface 410 protrudes from the wave absorbing structure 100; Both the surface 410 and the second surface 420 protrude from the wave absorbing structure 100.
  • the antenna assembly 10 in these embodiments can also improve the isolation between the first antenna 200 and the second antenna 300, and improve the antenna assembly. 10's communication effect.
  • the wave absorbing structure 100 is perpendicular to the substrate 400.
  • the wave absorbing structure 100 can further reduce the coupling between the spatial field and the near field of the first antenna 200 and the second antenna 300, and improve the The isolation of the first antenna 200 and the second antenna 300 will be described later in conjunction with simulation results.
  • FIG. 11 is a circuit diagram of an antenna assembly provided by an embodiment of this application.
  • the first antenna 200 and the second antenna 300 belong to different antenna modules.
  • the first antenna 200 and the second antenna 300 belong to different antenna modules, in other words, the first antenna 200 belongs to the antenna module 60a, and the second antenna 200 belongs to the antenna module.
  • Group 60b The first antenna 200 and the second antenna 300 are respectively connected to different radio frequency front-end modules, and the first antenna 200 and the second antenna 300 are respectively connected to different radio frequencies through different radio frequency front-end modules. transceiver.
  • the first antenna 200 is electrically connected to the first radio frequency front-end module 30a to the first radio frequency transceiver 20a
  • the second antenna 300 is electrically connected to the second radio frequency front-end module 30b to the first radio frequency transceiver 20a
  • Two radio frequency transceiver 20b Two radio frequency transceiver 20b.
  • the first radio frequency transceiver 20a is configured to convert a first baseband signal into a first radio frequency signal
  • the first radio frequency front-end module 30a is used to perform filtering, frequency conversion, and other processing of the first radio frequency signal and output to the first antenna 200
  • the first antenna 200 is used to convert the first radio frequency signal after receiving and processing into a first electromagnetic wave signal
  • the second radio frequency transceiver 20b is used to convert the second baseband signal into a second radio frequency signal
  • the second radio frequency front-end module 30b is used to perform filtering, frequency conversion and other processing on the second radio frequency signal before outputting to the second radio frequency signal.
  • Two antennas 300, the second antenna 300 is used to convert the second radio frequency signal after receiving and processing into a second electromagnetic wave signal.
  • FIG. 12 is a circuit diagram of an antenna assembly provided by an embodiment of this application.
  • the first antenna 200 and the second antenna 300 belong to different units in the same antenna group.
  • the first antenna 200 and the second antenna 300 are electrically connected to the same radio frequency transceiver 20.
  • the first antenna 200 and the second antenna 300 may be electrically connected to the same RF front-end module 30, or may be electrically connected to different units.
  • the RF front-end module 30 electrically connected to the first antenna 200 and the RF front-end module 30 electrically connected to the second antenna 300 are both connected to the same RF transceiver 20.
  • the functions of the radio frequency front-end module 30 and the radio frequency transceiver 20 please refer to the foregoing description, and will not be repeated here.
  • the wave absorbing structure 100 in the antenna assembly 10 When the wave absorbing structure 100 in the antenna assembly 10 is applied to different first antenna 200 and the second antenna 300 in the same antenna module, the wave absorbing structure 100 can add the first antenna 200 and The isolation of the ports between the second antennas 300.
  • FIG. 13 is a simulation diagram of the frequency of the electromagnetic wave signal absorbed by the wave-absorbing structure in the antenna module of the present application
  • FIG. 14 is the antenna module and the antenna module of the present application without the wave-absorbing structure S11 and S21 simulation diagrams.
  • the abscissa is the frequency
  • the unit is GHz
  • the ordinate is the reflection coefficient
  • the unit is dB. It can be seen from FIG. 13 that the center frequency of the electromagnetic wave signal that can be absorbed by the wave absorbing structure is 28 GHz.
  • Fig. 13 the center frequency of the electromagnetic wave signal that can be absorbed by the wave absorbing structure
  • the abscissa is frequency, the unit is GHz, and the ordinate is the reflection coefficient or coupling coefficient, the unit is dB.
  • curve 1 is a schematic diagram of the S11 curve in the antenna module without the absorbing structure
  • curve 2 is a schematic diagram of the S11 of the antenna module
  • curve 3 is a schematic diagram of the S21 curve in the antenna module without the absorbing structure
  • curve 4 is S21 diagram of the antenna module.
  • S11 represents the reflection coefficient
  • S21 represents the coupling coefficient. It can be seen from Figure 14 that the value at the midpoint 1 of the curve 3 is (28, -14.319).
  • the frequency of the electromagnetic wave signal at the midpoint 1 of the curve 3 is 28GHz
  • the gain is -14.319dB
  • the value at the midpoint 2 of the curve 4 is (28, -19.745), in other words, the frequency of the electromagnetic wave signal at the curve 4 is 28GHz, and the gain is -19.745dB, that is, the point 2
  • the gain of is smaller than the gain at point 1. It can be seen that the coupling coefficient S21 of the antenna module 10 including the wave absorbing structure 100 is reduced, that is, the antenna module 10 including the wave absorbing structure 100 can reduce the interference between the first antenna 200 and the second antenna 300 Isolation.
  • the application also provides an electronic device 1.
  • the electronic device 1 can be, but is not limited to, any device with a communication function. For example: tablet computers, mobile phones, e-readers, remote controls, personal computers (Personal Computer, PC), notebook computers, in-vehicle devices, Internet TVs, wearable devices and other smart devices with communication functions.
  • the electronic device 1 of the present application will be introduced below in conjunction with the aforementioned wave absorbing structure 100 and antenna assembly 10. Please refer to FIG. 15, FIG. 16, FIG. 17, and FIG. 18.
  • FIG. 15 is a schematic diagram of a three-dimensional structure of an electronic device provided by an embodiment of this application; Fig. 17 is a cross-sectional view along the line III-III in Fig. 16; Fig. 18 is a top view of Fig. 16.
  • the electronic device 1 includes a middle frame 50 and the antenna assembly 10 described in any one of the foregoing embodiments, and the wave absorbing structure 100 in the antenna assembly 10 is disposed in the middle frame 50.
  • the middle frame 50 includes a conductive plate 510 and an insulating portion 520, the conductive plate 510 is connected to the insulating portion 520, and the wave absorbing structure 100 is disposed in the insulating portion 520.
  • the wave absorbing structure 100 may be fixed in the insulating portion 520 by injection molding or the like.
  • the conductive plate 510 is provided with a gap 5121 penetrating the two opposite surfaces of the conductive plate 510, and at least part of the insulating portion 520 is formed (for example, by an injection molding process) in the gap 5121.
  • the wave absorbing structure 100 is disposed in the insulating portion 520.
  • the conductive plate 510 includes a conductive plate body 511 and a conductive frame 512 connected to the periphery of the conductive plate body 511 and connected to the conductive plate body 511 by bending.
  • the gap 5121 is opened on the conductive frame 512 and the conductive plate body 511.
  • the insulating portion 520 is at least partially disposed in the gap 5121, and the wave absorbing structure 100 is disposed in the insulating portion 520.
  • a partial arrangement of the insulating portion 520 and the gap 5121 are taken as an example for illustration.
  • Figure 19 is an assembly schematic diagram of the middle frame, antenna module, and wave absorbing structure in the electronic device;
  • Figure 20 is a top view of Figure 19;
  • 21 is a cross-sectional view taken along the line IV-IV in FIG. 19.
  • the electronic device 1 includes an antenna module 60 and the wave absorbing structure 100 described in any of the previous embodiments.
  • the antenna module 60 is used for transmitting and receiving electromagnetic wave signals.
  • the wave absorbing structure 100 is arranged around a part of the periphery of the antenna module 60 and is arranged to avoid the transmitting and receiving surface of the antenna module 60 for transmitting and receiving electromagnetic signals.
  • the electronic device 1 further includes: a middle frame 50 for supporting the antenna assembly 10 and the wave absorbing structure 100.
  • the transmitting and receiving surface of the antenna module 60 for transmitting and receiving electromagnetic wave signals is away from the middle frame 50.
  • the wave absorbing structure 100 is surrounded by a hollow frame body, the frame body has an opening 100a, the frame body is used for accommodating the antenna module 60, and the transmitting and receiving surface of the antenna module 60 faces the opening 100a.
  • the first wave absorbing layer 120 or the second wave absorbing layer 140 faces the antenna module 60.
  • the middle frame 50 includes a conductive plate 510 and an insulating portion 520, the conductive plate 510 is connected to the insulating portion 520, and the wave absorbing structure 100 is fixed to the insulating portion 520.
  • the wave absorbing structure 100 When the wave absorbing structure 100 is fixed to the insulating portion 520, it may be formed in the insulating portion 520 through an injection molding process.
  • the conductive plate 510 is provided with a gap 5121 penetrating two opposite surfaces of the conductive plate 510, the insulating portion 520 is formed in the gap 5121 through an injection molding process, and the wave absorbing The structure 100 is disposed in the insulating part 520.
  • the conductive plate 510 includes a conductive plate body 511 and a conductive frame 512 connected to the periphery of the conductive plate body 511 and connected to the conductive plate body 511 by bending.
  • the gap 5121 is opened on the conductive frame 512 and the conductive plate body 511.
  • the insulating portion 520 is at least partially disposed in the gap 5121, and the wave absorbing structure 100 is disposed in the insulating portion 520.
  • FIG. 22 is a partial structural diagram of an electronic device in another embodiment of this application
  • FIG. 23 is a cross-sectional view of FIG. 22 along the line V-V in an embodiment.
  • the electronic device 1 further includes a cover plate 80 that covers the opening 100a and is connected to the frame body, and the cover plate 80 is used to transmit the electromagnetic waves. Signal.
  • the material of the cover plate 80 may be the same as the material of the carrier plate 110 of the wave absorbing structure 100, and the cover plate 80 may be integrally extended from the carrier plate 110 of the wave absorbing structure 100 And formed. It is understandable that, in other embodiments, the material of the cover plate 80 may also be different from the material of the carrier plate 110 in the wave absorbing structure 100. Since the transmitting and receiving surface of the antenna module 60 faces the opening 100a, and the cover plate 80 covers the opening 100a, when the cover plate 80 covers the opening 100a, the cover plate 80 covers the opening 100a. On the transceiver surface of the antenna module 60, the cover plate 80 can transmit the electromagnetic wave signal without affecting the communication performance of the antenna module 60.
  • cover plate 80 covers the opening 100a, external dust or moisture can be prevented from entering the antenna module 60 through the opening 100a.
  • the transceiver surface faces away from the middle frame 50, one end of the frame body away from the middle frame 50 forms the opening 100a, and the cover plate 80 faces away from The middle frame 50.
  • the transmitting and receiving surface of the antenna module 60 is parallel or approximately parallel to the middle frame 50. Since the antenna module 60 is usually a rectangular parallelepiped or an approximately rectangular parallelepiped structure, the transmitting and receiving surface of the antenna module 60 is usually located on the surface where the length and the width are located. In this embodiment, the transmitting and receiving surface of the antenna module 60 is away from the middle frame 50, so that the middle frame 50 and the antenna module 60 have a smaller size in the stacking direction, thereby helping to reduce the The thickness of the antenna module 60.
  • the first wave absorbing layer 120 or the second wave absorbing layer 140 faces the antenna module 60.
  • FIG. 24 is a schematic cross-sectional view of an electronic device according to an embodiment of this application.
  • the electronic device 1 further includes a battery cover 90.
  • the battery cover 90 includes a back plate 910 and a frame 920 that is bent and connected to the back plate 910 to form an accommodating space 90a.
  • the accommodating space 90a is used for accommodating When the middle frame 50 is set, the transceiver surface faces the backplane 910. When the transceiving surface faces the backplane 910, the antenna module 60 transmits and receives electromagnetic wave signals through the backplane 910.
  • the electronic device 1 further includes a screen 210, which is a component for the electronic device 1 to display content such as images, text, and videos.
  • the screen 210 may only have a display function, or may be integrated with display and touch functions.
  • the screen 210 is disposed on a side of the middle frame 50 away from the back plate 910.
  • FIG. 25 is a schematic cross-sectional view of an electronic device according to another embodiment of the present application.
  • the electronic device 1 includes a battery cover 90
  • the battery cover 90 includes a back plate 910 and a frame 920 connected to the back plate 910 by bending to form an accommodating space 90a.
  • the accommodating space 90 a is used for accommodating the middle frame 50
  • the transmitting and receiving surface faces the frame 920.
  • the transmitting and receiving surface faces the frame 920, so that the antenna module 60 can transmit and receive electromagnetic wave signals through the frame 920.
  • the electronic device 1 further includes a screen 210, which is a component for the electronic device 1 to display content such as images, text, and videos.
  • the screen 210 may only have a display function, or may be integrated with display and touch functions.
  • the screen 210 is arranged on a side of the middle frame 50 away from the back plate 910.
  • FIG. 26 is an antenna assembly in an electronic device provided by an embodiment of the application. Top view.
  • the first antenna 200 includes a plurality of first radiating units 201 arranged in an array along a preset direction.
  • the second antenna 300 includes a plurality of second radiating units 301 arranged in an array along a preset direction D, wherein the second radiating unit 301 and the first radiating unit 201 respectively pass through different radio frequency front-end modules Electrically connect different radio frequency transceivers.
  • the wave absorbing structure 100 is arranged between the first antenna 200 and the second antenna 300 along a predetermined direction, and is perpendicular to the plane where the first radiating unit 201 and the second radiating unit 301 are located .
  • the first antenna 200 and the second antenna 300 belong to different antennas. Module.
  • a wave absorbing structure 100 is provided between the first radiating unit 201 of the first antenna 200 and the second radiating unit 301 of the second antenna 300, which can lift the first antenna 200. And the isolation of the second antenna 300.
  • the first antenna 200 and the second antenna 300 belong to different antenna units in the same antenna group.
  • the first antenna 200 includes a plurality of first radiating units 201 arranged in an array along a preset direction.
  • the second antenna 300 includes a plurality of second radiating units 301 arranged in an array along a preset direction, wherein the second radiating unit 301 and the first radiating unit 201 are electrically connected to the same radio frequency transceiver.
  • the absorbing structure 100 is arranged between the first antenna 200 and the second antenna 300 along a predetermined direction, and is perpendicular to the first radiating unit 201 and the second radiating unit 301 The plane on which it is located.
  • first antenna 200, the second antenna 300 and the antenna module 60 in the background technology of the present application and the various embodiments of the present application may be antennas supporting 5G communication, they should not be understood as a limitation of the present application.
  • first antenna 200 and the second antenna 300 and the antenna module 60 can be antennas supporting other protocol communication, which are not limited herein.

Landscapes

  • Aerials With Secondary Devices (AREA)

Abstract

本申请提供了一种吸波结构、天线组件、及电子设备。所述吸波结构包括:承载板、第一吸波层、导电地层、及第二吸波层。所述承载板包括端面、第一承载面、及第二承载面,所述端面分别连接于所述第一承载面及所述第二承载面,所述第一承载面与所述第二承载面相对设置。所述第一吸波层承载于所述第一承载面;所述导电地层内嵌于所述承载板,且与所述第一吸波层间隔设置;所述第二吸波层承载于所述第二承载面,且与所述导电地层间隔设置。本申请的吸波结构应用于天线组件时,可提高天线组件中第一天线及第二天线的隔离度,提升天线组件的通信效果。

Description

吸波结构、天线组件及电子设备 技术领域
本申请涉及电子设备领域,尤其涉及一种吸波结构、天线组件及电子设备。
背景技术
随着移动通信技术的发展,传统的第四代(4th-Generation,4G)移动通信已经不能够满足人们的要求。第五代(5th-Generation,5G)移动通信由于具有较高的通信速度,可而备受用户青睐。比如,利用5G移动通信传输数据时的传输速度比4G移动通信传输数据的速度快数百倍。毫米波信号是实现5G移动通信的主要手段,然而,当毫米波天线应用于电子设备时,毫米波天线容易受到周围其他器件包括其他天线的干扰,从而导致信号质量较差。由此可见,现有技术中,由于天线受到干扰的影响,导致包括天线的电子设备的通信性能较差。
发明内容
本申请提供一种吸波结构,所述吸波结构包括:
承载板,所述承载板包括端面、第一承载面、及第二承载面,所述端面分别连接于所述第一承载面及所述第二承载面,所述第一承载面与所述第二承载面相对设置;
第一吸波层,所述第一吸波层承载于所述第一承载面;
导电地层,所述导电地层内嵌于所述承载板,且与所述第一吸波层间隔设置;
第二吸波层,所述第二吸波层承载于所述第二承载面,且与所述导电地层间隔设置。
本申请还提供一种天线组件,所述天线组件包括:
第一天线,用于收发第一电磁波信号;
第二天线,所述第二天线与所述第一天线间隔设置,用于收发第二电磁波信号;以及
前面所述的吸波结构,所述吸波结构设在于所述第一天线及所述第二天线之间。
本申请还提供了一种电子设备,所述电子设备包括:
天线模组,用于收发电磁波信号;以及
前面所述的吸波结构,所述吸波结构围设在所述天线模组的部分周缘,且避开所述天线模组收发电磁波信号的收发面设置。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一实施方式中提供的吸波结构的立体结构示意图。
图2为本申请一实施方式提供的吸波结构的俯视图。
图3为一实施方式的图2中沿I-I线的剖面示意图。
图4为本申请另一实施方式中提供的吸波结构的立体结构示意图。
图5为本申请另一实施方式提供的吸波结构的俯视图。
图6为一实施方式的图5中沿II-II线的剖面示意图。
图7为本申请一实施方式中提供的天线组件的立体结构示意图。
图8为本申请一实施方式提供的天线组件的俯视图。
图9为本申请另一实施方式中提供的天线组件的立体结构示意图。
图10为本申请另一实施方式提供的天线组件的俯视图。
图11为本申请一实施方式提供的天线组件的电路图。
图12为本申请一实施方式提供的天线组件的电路图。
图13为本申请天线模组中的吸波结构吸收的电磁波信号的频率的仿真图。
图14为本申请天线模组及天线模组中去掉吸波结构的S11及S21仿真图。
图15为本申请一实施方式提供的电子设备的立体结构示意图。
图16为本申请一实施方式提供的电子设备中天线组件与中框的结构示意图。
图17为图16中沿III-III线的剖视图。
图18为图16的俯视图。
图19为电子设备中的中框、天线模组、及吸波结构的组装示意图。
图20为图19的俯视图。
图21为图19中沿着IV-IV线的剖视图。
图22为本申请另一实施方式中电子设备的部分结构示意图。
图23为一实施方式的图22沿V-V线的剖视图。
图24为本申请一实施方式的电子设备剖面示意图。
图25为本申请另一实施方式的电子设备剖面示意图。
图26为本申请一实施方式提供的电子设备中的天线组件的俯视图。
具体实施方式
本申请一实施方式提供一种吸波结构,所述吸波结构包括:
承载板,所述承载板包括端面、第一承载面、及第二承载面,所述端面分别连接于所述第一承载面及所述第二承载面,所述第一承载面与所述第二承载面相对设置;
第一吸波层,所述第一吸波层承载于所述第一承载面;
导电地层,所述导电地层内嵌于所述承载板,且与所述第一吸波层间隔设置;
第二吸波层,所述第二吸波层承载于所述第二承载面,且与所述导电地层间隔设置。
其中,所述第一吸波层包括:
周期性排布的第一吸波单元;
所述第二吸波层包括:
周期性排布的第二吸波单元,所述第二吸波单元在所述第一承载面上的正投影与所述第一吸波单元所在的区域至少部分重叠。
其中,所述第一吸波层包括:
周期性排布的第一吸波单元;
所述第二吸波层包括:
周期性排布的第二吸波单元,所述第二吸波单元在所述第一承载面上的正投影落在第一承载面上相邻的两个或多个第一吸波单元之间的间隙内。
其中,所述第一吸波单元为导电贴片,所述第一吸波单元的形状包括正方形、矩形、圆形中的任意一种;所述第二吸波结构为导电贴片,所述第二吸波结构的形状包括正方形、矩形、圆形中的任意一种。
其中,所述第一吸波单元的尺寸为第一尺寸范围,其中,所述第一尺寸范围包括第一预设尺寸,所述第一预设尺寸等于所述第一吸波单元所吸收的第一电磁波信号的波长的一半;所述第二吸波单元的尺寸为第二尺寸范围,其中,所述第二尺寸范围包括第二预设尺寸,所述第二预设尺寸等于所述第二吸波单元所吸收的第二电磁波信号的波长的一半。
其中,所述第一吸波单元的周期至少为2*1;所述第二吸波单元的周期至少为2*1。
本申请另一实施方式还提供一种天线组件,所述天线组件包括:
第一天线,用于收发第一电磁波信号;
第二天线,所述第二天线与所述第一天线间隔设置,用于收发第二电磁波信号;以及
如前任意实施方式所述的吸波结构,所述吸波结构设在于所述第一天线及所述第二天线之间。
其中,所述天线组件还包括:
基板,所述基板用于承载所述第一天线及所述第二天线,所述基板包括第一表面、第二表面、及第三表面,所述第一表面与所述第二表面相对设置,所述第三表面连接所述第一表面与所述第二表面,且所述第三表面用于承载所述吸波结构、所述第一天线及所述第二天线;
所述吸波结构,凸出于所述第一表面及所述第二表面中的至少一个。
其中,所述吸波结构垂直于所述基板。
其中,所述第一天线包括沿预设方向阵列排布的多个第一辐射单元;
第二天线包括沿着预设方向阵列排布的多个第二辐射单元,其中,所述第二辐射单元与所述第一辐射单元分别通过不同的射频前端模块电连接不同的射频收发器;
所述吸波结构沿着预设方向设置于所述第一天线及所述第二天线之间,且垂直于所述第一辐射单元及所述第二辐射单元所在的平面。
其中,所述第一天线包括沿着预设方向阵列排布的多个第一辐射单元;
所述第二天线包括沿着预设方向阵列排布的多个第二辐射单元,其中,所述第二辐射单元与所述第一辐射单元电连接至同一射频收发器;
所述吸波结构沿着预设方向设置于所述所述第一天线及所述第二天线之间,且垂直于所述第一辐射单元及所述第二辐射单元所在的平面。
本申请另一实施方式还提供一种电子设备,其中,所述电子设备包括中框、以及如前面任意实施方式所述的天线组件,所述天线组件中的吸波结构设置于所述中框中。
其中,所述中框包括导电板及绝缘部,所述导电板具有贯穿所述导电板相对的两个表面的缝隙,所述绝缘部的至少部分形成在所述缝隙内,所述吸波结构设置于所述绝缘部中。
其中,所述导电板包括导电板本体以及连接在所述导电板本体周缘且与所述导电板本体弯折相连的导电边框,所述缝隙开设在所述导电边框及所述导电板本体上,所述绝缘部至少部分设置于所述缝隙中,且所述吸波结构设置于所述绝缘部中。
本申请又一实施方式还提供一种电子设备,其中,所述电子设备包括:
天线模组,用于收发电磁波信号;以及
如前面任意实施方式所述的吸波结构,所述吸波结构围设在所述天线模组的部分周缘,且避开所述天线模组收发电磁波信号的收发面设置。
其中,所述电子设备包括:
中框,所述中框用于支撑所述天线模组及所述吸波结构;
所述天线模组收发电磁波信号的收发面背离所述中框;
所述吸波结构围设成中空的框体,所述框体具有开口,所述框体用于收容所述天线模组,且所述天线模组的收发面朝向所述开口。
其中,所述中框包括导电板及绝缘部,所述导电板具有贯穿所述导电板相对的两个表面的缝隙,所述绝缘部的至少部分形成在所述缝隙内,所述吸波结构固定于所述绝缘部。
其中,所述电子设备还包括:
覆盖板,所述覆盖板覆盖所述开口,且与所述框体相连,所述覆盖板用于透过所述电磁波信号。
其中,所述收发面背离所述中框,所述框体背离所述中框的一端形成所述开口,所述覆盖板背离所述中框。
其中,所述电子设备包括电池盖,所述电池盖包括背板及与所述背板弯折相连的边框,以形成容置空间,所述容置空间用于容置中框,所述收发面朝向所述边框。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
请一并参阅图1、图2及图3,图1为本申请一实施方式中提供的吸波结构的立体结构示意图;图2为本申请一实施方式提供的吸波结构的俯视图;图3为一实施方式的图2中沿I-I线的剖面示意图。所述吸波结构100包括:承载板110、第一吸波层120、导电地层130、及第二吸波层140。所述承载板110包括端面111、第一承载面112、及第二承载面113。所述端面111分别连接于所述第一承载面112及所述第二承载面113,所述第一承载面112与所述第二承载面113相对设置。所述第一吸波层120承载于所述第一承载面112。所述导电地层130内嵌于所述承载板110,且与所述第一吸波层120间隔设置。述第二吸波层140承载于所述第二承载面113,且与所述导电地层130间隔设置。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。
所述承载板110为绝缘基板,所述第一吸波层120、所述导电地层130、及所述第二吸波层140的材质为导电的。所述第一吸波层120的材质可以为但不仅限于为金属或者非金属导电材料。相应地,所述导电地层130的材质可以为但不仅限于为金属或者非金属导电材料,所述第二吸波层140的材质可以为但不仅限于为金属或者非金属导电材料。
当所述吸波结构100应用于吸收天线收发的电磁波信号的场景时,举例而言,所述第一吸波层120邻近所述天线设置,且所述第一吸波层120位于所述天线收发电磁波信号的收发面之外。所述第一吸波层120被所述天线收发的电磁波信号所激励而产生第一电流,且所述导电地层130感应出与所述第一电流反方向的第一感应电流,所述第一电流与所述第一感应电流实现电磁共振。实现电磁共振的所述吸波结构100的波阻抗与所述电磁波信号的波阻抗匹配,使得所述吸波结构100对于所述电磁波信号的反射为0,透射为0。换而言之,入射至所述吸波结构100的所述电磁波信号的能量被所述吸波结构100所吸收,从而达到了避免所述天线收发的电磁波信号穿过所述吸波结构100对其余的器件的影响的效果。相应地,当所述第二吸波层140邻近所述天线设置,且所述第二吸波结构100位于所述天线收发电磁波信号的收发面之外。所述第二吸波层140被所述天线收发的电磁波信号所激励产生第二电流信号,且所述导电地层130感应出与所述第二电流反方向的第二感应电流,所述第二电流与所述第二感应电流实现电磁共振。实现电磁共振的所述吸波结构100的阻抗与所述电磁波信号的阻抗匹配,使得所述吸波结构100对于所述电磁波信号的反射为0,透射为0。换而言之,入射至所述吸波结构100的所述电磁波信号的能量被所述吸波结构100所吸收,从而达到了避免所述天线收发的电磁波信号穿过所述吸波结构100对其余的器件的影响的效果。
当所述吸波结构100应用于间隔设置的第一天线200(见图7及图8)及第二天线300(见图7及图8)时,所述吸波结构100可吸收入射至所述吸波结构100的第一电磁波信号,以防止所述第一电磁波信号穿透所述吸波结构100被传输至第二天线300而对第二天线300造成干扰;相应地,所述吸波结构100可吸收入射至所述吸波结构100的第二电磁波信号,以防止所述第二电磁波信号穿透所述吸波结构100被传输至所述第一天线200而对所述第一天线200造成干扰。由此可见,所述吸波结构100可隔离所述第一天线200及所述第二天线300,以避免所述第一天线200及所述第二天线300之间的干扰。换而言之,所述吸波结构100起到了隔离所述第一天线200及所述第二天线300之间的空间场耦合,极大地提高了第一天线200及第二天线300之间的隔离度,降低了第一天线200及第二天线300的包络相关系数(ECC)。提升了所述第一天线200及所述第二天线300所应用的天线组件10的通信效果。
进一步地,所述吸波结构100不会对所述第一天线200辐射至其余地方或者自其余地方接收的第一电磁波信号的驻波频率产生影响,不会导致第一电磁波信号的驻波频率的偏移;相应地,所述吸波结构100不会对所述第二天线300辐射至其余地方或者自其余地方接收的第二电磁波信号的驻波频率产生影响,不会导致第一电磁波信号的驻波频率的偏移。
在一种实施方式中,所述第一吸波层120包括:周期性排布的第一吸波单元121。所述第二吸波层140包括:周期性排布的第二吸波单元141。所述第二吸波单元141在所述第一承载面112上的正投影与所述第一吸波单元121所在的区域至少部分重叠。
在本实施方式中,所述第一吸波单元121可以为导电贴片,所述第二吸波单元141可以为导电贴片。所述第一吸波单元121的形状与所述第二吸波单元141的形状可以相同,也可以不同。所述第一吸波单元121的形状包括正方形、矩形、圆形中的任意一种;所述第二吸波结构100为导电贴片,所述第二吸波结构100的形状包括正方形、矩形、圆形中的任意一种。
所述第二吸波单元141与在所述第一承载面112上的正投影与所述第一吸波单元121所在的区域至少部分重叠包括:所述第二吸波单元141与在所述第一承载面112上的正投影完全与落在所述第一吸波单元121所在的范围内;或者,所述第二吸波结构100在所述第一承载面112上的正投影与所述第一吸波结构100所在区域完全重叠;或者,所述第二吸波单元141在所述第一承载面112上的正投影与所述第一吸波结构100所在的区域部分重叠。
请一并参阅图4、图5及图6,图4为本申请另一实施方式中提供的吸波结构的立体结构示意图;图5为本申请另一实施方式提供的吸波结构的俯视图;图6为一实施方式的图5中沿II-II线的剖面示意图。在本实施方式中,所述第一吸波层120包括:周期性排布的第一吸波单元121。所述第二吸波层140包括:周期性排布的第二吸波单元141。所述第二吸波单元141在所述第一承载面112上的正投影落在第一承载面112上相邻的两个或多个第一吸波单元121之间的间隙内。
在本实施方式中,所述第一吸波单元121可以为导电贴片,所述第二吸波单元141可以为导电贴片。所述第一吸波单元121的形状与所述第二吸波单元141的形状可以相同,也可以不同。所述第一吸波单元121的形状包括正方形、矩形、圆形中的任意一种;所述第二吸波单元141为导电贴片,所述第二吸波单元141的形状包括正方形、矩形、圆形中的任意一种。
所述第二吸波单元141在所述第一承载面112上的正投影落在所述第一承载面112上相邻的两个或多个第一吸波单元121之间的间隙内包括:所述间隙的面积大于所述第二吸波单元141的面积,所述第二吸波单元141在所述第一承载面112上的正投影落入间隙内且所述正投影的边与所述间隙的边部分重叠;或者,所述间隙的面积等于所述第二吸波单元141的面积,所述第二吸波单元141在所述第一承载面112上的正投影落入间隙内且所述正投影的边与所述间隙的边完全重叠;或者,所述间隙的面积大于所述第二吸波单元141的面积,所述第二吸波单元141在所述第一承载面112上的正投影落入间隙内且所述正投影的边与所述间隙的边之间存在距离。
在一种实施方式中,所述第一吸波单元121的尺寸为第一尺寸范围,其中,所述第一尺寸范围包括第一预设尺寸,所述第一预设尺寸等于所述第一吸波单元121所吸收的第一电磁波信号的波长的一半;所述第二吸波单元141的尺寸为第二尺寸范围,其中,所述第二尺寸范围包括第二预设尺寸,所述第二预设尺寸等于所述第二吸波单元141所吸收的第二电磁波信号的波长的一半。
对于正方形的第一吸波单元121而言,所述第一吸波单元121的尺寸是指正方形的边长;对于长方形的第一吸波单元121而言,所述第一吸波单元121的尺寸是指长方形的长边的边长;对于圆形的第一吸波单元121而言,所述第一吸波单元121的尺寸是指圆形的直径。相应地,对于正方形的第二吸波单元141而言,所述第二吸波单元141的尺寸是指正方形的边长;对于长方形的第二吸波单元141而言,所述第二吸波单元141的尺寸是指长方形的长边的边长;对于圆形的第二吸波单元141而言,所述第二吸波单元141的尺寸是指圆形的直径。
在一种实施方式中,所述第一吸波单元121的周期至少为2*1;所述第二吸波单元141的周期至少为2*1。
本申请还提供了一种天线组件10,下面结合前面介绍的吸波结构100对本申请的天线组件10进行介绍。请一并参阅图7及图8,图7为本申请一实施方式中提供的天线组件的立体结构示意图;图8为本申请一实施方式提供的天线组件的俯视图。
所述天线组件10包括:第一天线200、第二天线300、以及前面任意实施方式提供的吸波结构100。所述第一天线200,用于收发第一电磁波信号。所述第二天线300与所述第一天线200间隔设置,用于收发第二电磁波信号。所述吸波结构100设在于所述第一天线200及所述第二天线300之间。在本实施方式中,仅以前面一种实施方式介绍的吸波结构100为例进行示意图。
所述第一电磁波信号可以为但不仅限于为毫米波频段的电磁波信号或者太赫兹频段的电磁波信号。目前,在第五代移动通信技术(5th generation wireless systems,5G)中,根据3GPP TS 38.101协议的规定,5G新空口(new radio,NR)主要使用两段频率:FR1频段和FR2频段。其中,FR1频段的频率范围是450MHz~6GHz,又叫sub-6GHz频段;FR2频段的频率范围是24.25GHz~52.6GHz,属于毫米波(mm Wave)频段。3GPP Release 15版本规范了目前5G毫米波频段包括:n257(26.5~29.5GHz),n258(24.25~27.5GHz),n261(27.5~28.35GHz)和n260(37~40GHz)。相应地,所述第二电磁波信号可以为但不仅限于为毫米波频段的电磁波信号或者太赫兹频段的电磁波信号。
在一种实施方式中,所述吸波结构100中的第一吸波层120相较于所述第二吸波层140邻近所述第一天线200,所述第二吸波层140相较于所述第二吸波层140邻近所述第二天线300。
当所述吸波结构100应用于吸收第一天线200收发的第一电磁波信号的场景时,所述第一吸波层120邻近所述第一天线200设置,且所述第一吸波层120位于所述第一天线200收发第一电磁波信号的收发面之外。所谓收发面,是指所述天线接收和发射(也称为辐射)电磁波信号的面。当所述天线用于辐射电磁波信号时,所述收发面为天线的辐射孔径面。所述第一吸波层120被所述第一天线200收发的第一电磁波信号所激励产生第一电流,且所述吸波结构100中的导电地层130感应出与所述第一电流反方向的第一感应电流,所述第一电流与所述第一感应电流实现电磁共振。实现电磁共振的所述吸波结构100的波阻抗与所述第一电磁波信号的波阻抗匹配,使得所述吸波结构100对于所述第一电磁波信号的反射为0,透射为0。换而言之,入射至所述吸波结构100的所述第一电磁波信号的能量被所述吸波结构100所吸收,从而达到了避免所述第一天线200收发的第一电磁波信号穿过所述吸波结构100对其余的器件的影响的效果。相应地,当所述第二吸波层140邻近所述第二天线300设置,且所述第二吸波结构100位于所述第二天线300收发第二电磁波信号的收发面之外。所述第二吸波层140被所述第二天线300收发的电磁波信号所激励产生第二电流信号,且所述导电地层130感应出与所述第二电流反方向的第二感应电流,所述第二电流与所述第二感应电流实现电磁共振。实现电磁共振的所述吸波结构100的阻抗与所述第二电磁波信号的阻抗匹配,使得所述吸波结构100对于所述第二电磁波信号的反射为0,透射为0。换而言之,入射至所述吸波结构100的所述第二电磁波信号的能量被所述吸波结构100所吸收,从而达到了避免所述第二天线300收发的第二电磁波信号穿过所述吸波结构100对其余的器件的影响的效果。
当所述吸波结构100应用于间隔设置的第一天线200及第二天线300时,所述吸波结构100可吸收入射至所述吸波结构100的第一电磁波信号,以防止所述第一电磁波信号穿透所述吸波结构100被传输至第二天线300而对第二天线300造成干扰;相应地,所述吸波结构100可吸收入射至所述吸波结构100的第二电磁波信号,以防止所述第二电磁波信号穿透所述吸波结构100被传输至所述第一天线200而对所述第一天线200造成干扰。由此可见,所述吸波结构100可隔离所述第一天线200及所述第二天线300,以避免所述第一天线200及所述第二天线300之间的干扰。换而言之,所述吸波结构100起到了隔离所述第一天线200及所述第二天线300之间的空间场耦合,极大地提高了第一天线200及第二天线300之间的隔离度,降低了第一天线200及第二天线300的包络相关系数(ECC),提升了所述天线组件10的通信效果。
进一步地,所述吸波结构100不会对所述第一天线200辐射至其余地方或者自其余地方接收的第一电磁波信号的驻波频率产生影响,不会导致第一电磁波信号的驻波频率的偏移;相应地,所述吸波结构 100不会对所述第二天线300辐射至其余地方或者自其余地方接收的第二电磁波信号的驻波频率产生影响,不会导致第一电磁波信号的驻波频率的偏移。
在一种实施方式中,所述吸波结构100距离所述第一天线200的距离等于所述吸波结构100距离所述第二天线300的距离;在另一种实施方式中,所述吸波结构100距离所述第一天线200的距离大于所述吸波结构100距离所述第二天线300的距离;在又一实施方式中,所述吸波结构100距离所述第一天线200的距离小于所述吸波结构100距离所述第二天线300的距离。
下面结合前面介绍的吸波结构100对本申请的天线组件10进行介绍。请一并参阅图9及图10,图9为本申请另一实施方式中提供的天线组件的立体结构示意图;图10为本申请另一实施方式提供的天线组件的俯视图。本实施方式提供的天线组件10与上一实施方式提供的天线组件10的结构基本相同,不同之处在于,在本实施方式中所述天线组件10还包括:基板400,所述基板400用于承载所述第一天线200及所述第二天线300。所述基板400包括第一表面410、第二表面420、及第三表面430,所述第一表面410与所述第二表面420相对设置,所述第三表面430连接所述第一表面410与所述第二表面420,且所述第三表面430用于承载所述吸波结构100、所述第一天线200及所述第二天线300。所述吸波结构100凸出于所述第一表面410及所述第二表面420中的至少一个。
所述基板400的材质为绝缘材质。所述吸波结构100凸出于所述第一表面410及所述第二表面420中的至少一个包括:所述吸波结构100凸出所述第一表面410,且未凸出所述第二表面420;所述吸波结构100凸出所述第二表面420,且未凸出所述第一表面410;所述吸波结构100凸出所述第一表面410且凸出所述第二表面420。在本实施方式的示意中,以所述吸波结构100凸出所述第一表面410且凸出所述第二表面420为例进行示意。
本实施方式中所述吸波结构100凸出于所述第一表面410及所述第二表面420中的至少一个可提升所述吸波结构100对所述第一天线200及所述第二天线300之间的隔离效果,提升所述第一天线200及所述第二天线300之间的隔离度,降低所述第一天线200及所述第二天线300的ECC,提升所述天线组件10的通信效果。
可以理解地,在一实施方式中,所述第一表面410凸出于所述吸波结构100;或者,所述第二表面420凸出于所述吸波结构100;或者,所述第一表面410及所述第二表面420均凸出于所述吸波结构100。此时,相较于未设置吸波结构100的天线组件10而言,这些实施方式中的天线组件10也可以起到提升第一天线200及第二天线300之间的隔离度,提升天线组件10的通信效果。
在一种实施方式中,所述吸波结构100垂直于所述基板400。当所述吸波结构100垂直于所述基板400时,所述吸波结构100可进一步减小所述第一天线200及所述第二天线300件的空间场和近场的耦合,提升所述第一天线200及所述第二天线300件的隔离度,稍后将结合仿真结果进行说明。
在一种实施方式中,请参阅图11,图11为本申请一实施方式提供的天线组件的电路图。所述第一天线200及所述第二天线300属于不同的天线模组。
具体地,所述第一天线200及所述第二天线300属于不同的天线模组时,换而言之,所述第一天线200属于天线模组60a,所述第二天线200属于天线模组60b时:所述第一天线200及所述第二天线300分别连接不同的射频前端模块,且所述第一天线200与所述第二天线300分别通过不同的射频前端模块连接不同的射频收发器。举例而言,所述第一天线200电连接所述第一射频前端模块30a至所述第一射频收发器20a;所述第二天线300电连接所述第二射频前端模块30b至所述第二射频收发器20b。以所述第一天线200及所述第二天线300均为发射天线为例,所述第一射频收发器20a用于将第一基带信号转换为第一射频信号,所述第一射频前端模块30a用于将第一射频信号进行滤波、变频等处理之后输出至第一天线200,所述第一天线200用于将接收处理之后的第一射频信号转换为第一电磁波信号。相应地,所述第二射频收发器20b用于将第二基带信号转换为第二射频信号,所述第二射频前端模块30b用于将第二射频信号进行滤波、变频等处理之后输出至第二天线300,所述第二天线300用于将接收处理之后的第二射频信号转换为第二电磁波信号。
在一种实施方式中,请参阅图12,图12为本申请一实施方式提供的天线组件的电路图。所述第一 天线200及所述第二天线300属于同一天线组中的不同的单元。
具体地,所述第一天线200及所述第二天线300电连接同一射频收发器20。所述第一天线200及所述第二天使属于同一天线组中不同的单元时,所述第一天线200及所述第二天线300可电连接同一个射频前端模块30,也可电连接不同的射频前端模块30,但是,所述第一天线200电连接的射频前端模块30及所述第二天线300电连接的射频前端模块30均连接同一射频收发器20。关于所述射频前端模块30及射频收发器20的功能请参阅前面描述,在此不再赘述。
当所述天线组件10中的吸波结构100应用于属于同一天线模组中不同的第一天线200及所述第二天线300时,所述吸波结构100可增加所述第一天线200及所述第二天线300间的端口的隔离度。
下面结合仿真图,对本申请提供的天线组件10进行说明。请一并参阅图13及图14,图13为本申请天线模组中的吸波结构吸收的电磁波信号的频率的仿真图;图14为本申请天线模组及天线模组中去掉吸波结构的S11及S21仿真图。在图13中,横坐标为频率,单位是GHz,纵坐标为反射系数,单位是dB。由图13可见,所述吸波结构所能吸收的电磁波信号的中心频率为28GHz。在图14中,横坐标为频率,单位是GHz,纵坐标为反射系数或耦合系数,单位是dB。在图14中,曲线①为天线模组中去掉吸波结构的S11曲线示意图,曲线②为天线模组的S11示意图,曲线③为天线模组中去掉吸波结构的S21曲线示意图,曲线④为天线模组的S21示意图。其中,S11表示反射系数,S21表示耦合系数,由图14可见,曲线③中点1处的值为(28,-14.319)换而言之,曲线③中点1处的电磁波信号的频率为28GHz,增益为-14.319dB;曲线④中点2处的值为(28,-19.745),换而言之,曲线④处的电磁波信号的频率为28GHz,增益为-19.745dB,即,点2处的增益小于点1处的增益。由此可见,包括吸波结构100的天线模组10的耦合系数S21降低,即,包括吸波结构100的天线模组10可降低所述第一天线200及所述第二天线300之间的隔离度。
本申请还提供了一种电子设备1。所述电子设备1可以为但不仅限于为任何具备通信功能的设备。例如:平板电脑、手机、电子阅读器、遥控器、个人计算机(Personal Computer,PC)、笔记本电脑、车载设备、网络电视、可穿戴设备等具有通信功能的智能设备。下面结合前面描述的吸波结构100及天线组件10对本申请的电子设备1进行介绍。请一并参阅图15、图16、图17及图18,图15为本申请一实施方式提供的电子设备的立体结构示意图;图16为本申请一实施方式提供的电子设备中天线组件与中框的结构示意图;图17为图16中沿III-III线的剖视图;图18为图16的俯视图。所述电子设备1包括中框50、以及前面任意一实施方式所述的天线组件10,所述天线组件10中的吸波结构100设置于所述中框50中。
在一实施方式中,所述中框50包括导电板510及绝缘部520,所述导电板510与所述绝缘部520相连,所述吸波结构100设置于所述绝缘部520中。
具体地,所述吸波结构100可通过注塑等方式注固定于所述绝缘部520中。
具体地,在一实施方式中,所述导电板510开设有贯穿所述导电板510相对两个表面的缝隙5121,所述绝缘部520的至少部分形成(比如,通过注塑工艺)在所述缝隙5121内,所述吸波结构100设置在所述绝缘部520内。
在本实施方式中,所述导电板510包括导电板本体511以及连接在所述导电板本体511周缘且与所述导电板本体511弯折相连的导电边框512。所述缝隙5121开设于所述导电边框512及所述导电板本体511上。所述绝缘部520至少部分设置于所述缝隙5121中,且所述吸波结构100设置于所述绝缘部520中。在本实施方式的示意图中以所述绝缘部520的部分设置与所述缝隙5121中为例进行示意。
下面结合图15,并请一并参阅图19、图20及图21,图19为电子设备中的中框、天线模组、及吸波结构的组装示意图;图20为图19的俯视图;图21为图19中沿着IV-IV线的剖视图。所述电子设备1包括:天线模组60、及如前面任意实施方式介绍的吸波结构100。所述天线模组60,用于收发电磁波信号。所述吸波结构100围设在所述天线模组60的部分周缘,且避开所述天线模组60收发电磁波信号的收发面设置。
在一种实施方式中,所述电子设备1还包括:中框50,所述中框50用于支撑所述天线组件10及所 述吸波结构100。所述天线模组60收发电磁波信号的收发面背离所述中框50。所述吸波结构100围设成中空的框体,所述框体具有开口100a,所述框体用于收容所述天线模组60,且所述天线模组60的收发面朝向所述开口100a。
在一种实施方式中,所述第一吸波层120或者所述第二吸波层140朝向所述天线模组60。
在一种实施方式中,所述中框50包括导电板510及绝缘部520,所述导电板510与所述绝缘部520相连,所述吸波结构100固定于所述绝缘部520。
所述吸波结构100固定于所述绝缘部520时,可以通过注塑工艺形成在所述绝缘部520中。
具体地,在一实施方式中,所述导电板510开设有贯穿所述导电板510相对两个表面的缝隙5121,所述绝缘部520通过注塑工艺形成在所述缝隙5121内,所述吸波结构100设置在所述绝缘部520内。
在本实施方式中,所述导电板510包括导电板本体511以及连接在所述导电板本体511周缘且与所述导电板本体511弯折相连的导电边框512。所述缝隙5121开设于所述导电边框512及所述导电板本体511上。所述绝缘部520至少部分设置于所述缝隙5121中,且所述吸波结构100设置于所述绝缘部520中。
请一并参阅图22及图23,图22为本申请另一实施方式中电子设备的部分结构示意图;图23为一实施方式的图22沿V-V线的剖视图。在本种实施方式中,所述电子设备1还包括:覆盖板80,所述覆盖板80覆盖所述开口100a,且与所述框体相连,所述覆盖板80用于透过所述电磁波信号。
在一实施方式中,所述覆盖板80的材质可以为所述吸波结构100中承载板110的材质相同,所述覆盖板80可以为由所述吸波结构100中的承载板110一体延伸而形成。可以理解地,在其他实施方式中,所述覆盖板80的材质也可以和所述吸波结构100中承载板110的材质不同。由于所述天线模组60的收发面朝向所述开口100a,而所述覆盖板80覆盖所述开口100a,因此,所述覆盖板80覆盖所述开口100a时,所述覆盖板80覆盖所述天线模组60的收发面,所述覆盖板80可透过所述电磁波信号,不会对所述天线模组60的通信性能造成影响。
此外,由于所述覆盖板80覆盖所述开口100a,可避免外界灰尘或者水分通过所述开口100a进入到所述天线模组60中。
在一种实施方式中,所述的电子设备1中,所述收发面背离所述中框50,所述框体背离所述中框50的一端形成所述开口100a,所述覆盖板80背离所述中框50。换而言之,在本实施方式中,所述天线模组60的收发面平行或者近似平行于所述中框50。由于所述天线模组60通常为长方体或者近似长方体的结构,而所述天线模组60的收发面通常位于长度和宽度所在的面。本实施方式中,所述天线模组60的收发面背离所述中框50,使得所述中框50与所述天线模组60在层叠方向上具有较小的尺寸,从而有利于降低所述天线模组60的厚度。
在一种实施方式中,所述第一吸波层120或者所述第二吸波层140朝向所述天线模组60。
在一种实施方式中,请一并参阅图24,图24为本申请一实施方式的电子设备剖面示意图。所述电子设备1还包括电池盖90,所述电池盖90包括背板910及与所述背板910弯折相连的边框920,以形成容置空间90a,所述容置空间90a用于容置所述中框50,所述收发面朝向所述背板910。当所述收发面朝向所述背板910时,所述天线模组60通过所述背板910收发电磁波信号。
所述电子设备1还包括屏幕210,所述屏幕210为所述电子设备1显示图像、文字、视频等内容的部件。所述屏幕210可仅仅具有显示功能,也可集成有显示及触控功能。所述屏幕210设置于所述中框50背离所述背板910的一侧。
请一并参阅图25,25为本申请另一实施方式的电子设备剖面示意图。在一种实施方式中,所述电子设备1包括电池盖90,所述电池盖90包括背板910及与所述背板910弯折相连的边框920,以形成容置空间90a,所述容置空间90a用于容置所述中框50,所述收发面朝向所述边框920。在本实施方式中,所述收发面朝向所述边框920,可使得所述天线模组60通过所述边框920收发电磁波信号。
所述电子设备1还包括屏幕210,所述屏幕210为所述电子设备1显示图像、文字、视频等内容的部件。所述屏幕210可仅仅具有显示功能,也可集成有显示及触控功能。所述屏幕210设置于所述中框 50背离所述背板910的一侧。
下面结合前面介绍的天线模组对申请电子设备中的天线模组进行介绍,请一并参阅图11及其相关描述以及图26,图26为本申请一实施方式提供的电子设备中的天线组件的俯视图。在本实施方式中,所述第一天线200包括沿着预设方向阵列排布的多个第一辐射单元201。所述第二天线300包括沿着预设方向D阵列排布的多个第二辐射单元301,其中,所述第二辐射单301元与所述第一辐射单元201分别通过不同的射频前端模块电连接不同的射频收发器。所述吸波结构100沿着预设方向设置于所述第一天线200及所述第二天线300之间,且垂直于所述第一辐射单元201及所述第二辐射单元301所在的平面。
由于所述第一辐射单元201及所述第二辐射单元301分别通过不同的射频前端模块电连接不同的射频收发器,因此,所述第一天线200及所述第二天线300属于不同的天线模组。本实施方式提供的电子设备1中在第一天线200的第一辐射单元201与所述第二天线300的第二辐射单元301之间设置了吸波结构100,可以提升所述第一天线200及所述第二天线300的隔离度。
下面结合图12及其相关描述以及图26,所述第一天线200及所述第二天线300属于同一天线组中不同的天线单元。
所述第一天线200包括沿着预设方向阵列排布的多个第一辐射单元201。
所述第二天线300包括沿着预设方向阵列排布的多个第二辐射单元301,其中,所述第二辐射单元301与所述第一辐射单元201电连接至同一射频收发器。
所述吸波结100构沿着预设方向设置于所述所述第一天线200及所述第二天线300之间,且垂直于所述第一辐射单元201及所述第二辐射单元301所在的平面。
可以理解地,虽然本案背景技术以及本申请各个实施例中的第一天线200及第二天线300以及天线模组60可以为支持5G通信的天线,但是并不应当理解为对本申请的限定,本申请中第一天线200及第二天线300以及天线模组60可以为支持其他协议通信的天线,在此不做限定。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型,这些改进和润饰也视为本申请的保护范围。

Claims (20)

  1. 一种吸波结构,其特征在于,所述吸波结构包括:
    承载板,所述承载板包括端面、第一承载面、及第二承载面,所述端面分别连接于所述第一承载面及所述第二承载面,所述第一承载面与所述第二承载面相对设置;
    第一吸波层,所述第一吸波层承载于所述第一承载面;
    导电地层,所述导电地层内嵌于所述承载板,且与所述第一吸波层间隔设置;
    第二吸波层,所述第二吸波层承载于所述第二承载面,且与所述导电地层间隔设置。
  2. 如权利要求1所述的吸波结构,其特征在于,
    所述第一吸波层包括:
    周期性排布的第一吸波单元;
    所述第二吸波层包括:
    周期性排布的第二吸波单元,所述第二吸波单元在所述第一承载面上的正投影与所述第一吸波单元所在的区域至少部分重叠。
  3. 如权利要求2所述的吸波结构,其特征在于,
    所述第一吸波层包括:
    周期性排布的第一吸波单元;
    所述第二吸波层包括:
    周期性排布的第二吸波单元,所述第二吸波单元在所述第一承载面上的正投影落在第一承载面上相邻的两个或多个第一吸波单元之间的间隙内。
  4. 如权利要求2或3所述的吸波结构,其特征在于,所述第一吸波单元为导电贴片,所述第一吸波单元的形状包括正方形、矩形、圆形中的任意一种;所述第二吸波结构为导电贴片,所述第二吸波结构的形状包括正方形、矩形、圆形中的任意一种。
  5. 如权利要求4所述的吸波结构,其特征在于,所述第一吸波单元的尺寸为第一尺寸范围,其中,所述第一尺寸范围包括第一预设尺寸,所述第一预设尺寸等于所述第一吸波单元所吸收的第一电磁波信号的波长的一半;所述第二吸波单元的尺寸为第二尺寸范围,其中,所述第二尺寸范围包括第二预设尺寸,所述第二预设尺寸等于所述第二吸波单元所吸收的第二电磁波信号的波长的一半。
  6. 如权利要求2或3所述的吸波结构,其特征在于,所述第一吸波单元的周期至少为2*1;所述第二吸波单元的周期至少为2*1。
  7. 一种天线组件,其特征在于,所述天线组件包括:
    第一天线,用于收发第一电磁波信号;
    第二天线,所述第二天线与所述第一天线间隔设置,用于收发第二电磁波信号;以及
    如权利要求1~6任意一项所述的吸波结构,所述吸波结构设在于所述第一天线及所述第二天线之间。
  8. 如权利要求7所述的天线组件,其特征在于,所述天线组件还包括:
    基板,所述基板用于承载所述第一天线及所述第二天线,所述基板包括第一表面、第二表面、及第三表面,所述第一表面与所述第二表面相对设置,所述第三表面连接所述第一表面与所述第二表面,且所述第三表面用于承载所述吸波结构、所述第一天线及所述第二天线;
    所述吸波结构,凸出于所述第一表面及所述第二表面中的至少一个。
  9. 如权利要求8所述的天线组件,其特征在于,所述吸波结构垂直于所述基板。
  10. 如权利要求7所述的天线组件,其特征在于,
    所述第一天线包括沿预设方向阵列排布的多个第一辐射单元;
    第二天线包括沿着预设方向阵列排布的多个第二辐射单元,其中,所述第二辐射单元与所述第一辐射单元分别通过不同的射频前端模块电连接不同的射频收发器;
    所述吸波结构沿着预设方向设置于所述第一天线及所述第二天线之间,且垂直于所述第一辐射单元 及所述第二辐射单元所在的平面。
  11. 如权利要求7所述的天线组件,其特征在于,
    所述第一天线包括沿着预设方向阵列排布的多个第一辐射单元;
    所述第二天线包括沿着预设方向阵列排布的多个第二辐射单元,其中,所述第二辐射单元与所述第一辐射单元电连接至同一射频收发器;
    所述吸波结构沿着预设方向设置于所述所述第一天线及所述第二天线之间,且垂直于所述第一辐射单元及所述第二辐射单元所在的平面。
  12. 一种电子设备,其特征在于,所述电子设备包括中框、以及如权利要求7~10任意一项所述的天线组件,所述天线组件中的吸波结构设置于所述中框中。
  13. 如权利要求12所述的电子设备,其特征在于,所述中框包括导电板及绝缘部,所述导电板具有贯穿所述导电板相对的两个表面的缝隙,所述绝缘部的至少部分形成在所述缝隙内,所述吸波结构设置于所述绝缘部中。
  14. 如权利要求13所述的电子设备,其特征在于,所述导电板包括导电板本体以及连接在所述导电板本体周缘且与所述导电板本体弯折相连的导电边框,所述缝隙开设在所述导电边框及所述导电板本体上,所述绝缘部至少部分设置于所述缝隙中,且所述吸波结构设置于所述绝缘部中。
  15. 一种电子设备,其特征在于,所述电子设备包括:
    天线模组,用于收发电磁波信号;以及
    如权利要求1~6任意一项所述的吸波结构,所述吸波结构围设在所述天线模组的部分周缘,且避开所述天线模组收发电磁波信号的收发面设置。
  16. 如权利要求15所述的电子设备,其特征在于,所述电子设备包括:
    中框,所述中框用于支撑所述天线模组及所述吸波结构;
    所述天线模组收发电磁波信号的收发面背离所述中框;
    所述吸波结构围设成中空的框体,所述框体具有开口,所述框体用于收容所述天线模组,且所述天线模组的收发面朝向所述开口。
  17. 如权利要求16所述的电子设备,其特征在于,
    所述中框包括导电板及绝缘部,所述导电板具有贯穿所述导电板相对的两个表面的缝隙,所述绝缘部的至少部分形成在所述缝隙内,所述吸波结构固定于所述绝缘部。
  18. 如权利要求16所述的电子设备,其特征在于,所述电子设备还包括:
    覆盖板,所述覆盖板覆盖所述开口,且与所述框体相连,所述覆盖板用于透过所述电磁波信号。
  19. 如权利要求18所述的电子设备,其特征在于,所述收发面背离所述中框,所述框体背离所述中框的一端形成所述开口,所述覆盖板背离所述中框。
  20. 如权利要求16~18任意一项所述的电子设备,其特征在于,所述电子设备包括电池盖,所述电池盖包括背板及与所述背板弯折相连的边框,以形成容置空间,所述容置空间用于容置中框,所述收发面朝向所述边框。
PCT/CN2021/073772 2020-02-27 2021-01-26 吸波结构、天线组件及电子设备 WO2021169709A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010126636.6A CN111446550B (zh) 2020-02-27 2020-02-27 吸波结构、天线组件及电子设备
CN202010126636.6 2020-02-27

Publications (1)

Publication Number Publication Date
WO2021169709A1 true WO2021169709A1 (zh) 2021-09-02

Family

ID=71650995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/073772 WO2021169709A1 (zh) 2020-02-27 2021-01-26 吸波结构、天线组件及电子设备

Country Status (2)

Country Link
CN (1) CN111446550B (zh)
WO (1) WO2021169709A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111446550B (zh) * 2020-02-27 2022-02-01 Oppo广东移动通信有限公司 吸波结构、天线组件及电子设备
CN114285919B (zh) * 2020-09-27 2023-06-09 华为技术有限公司 一种电子设备
CN113437464B (zh) * 2021-08-27 2021-11-23 成都雷电微晶科技有限公司 工作于w波段的双波导/多波导通道结构及tr模块
CN114447568A (zh) * 2022-02-25 2022-05-06 维沃移动通信有限公司 天线组件和电子设备
CN115693088B (zh) * 2022-11-11 2023-12-22 长沙理工大学 基于三维异形吸波结构的天线阵列

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103427166A (zh) * 2013-08-25 2013-12-04 南京理工大学 基于折叠偶极子的宽带微波吸收体
CN107706529A (zh) * 2016-08-08 2018-02-16 华为技术有限公司 一种去耦组件、多天线系统及终端
US10050348B2 (en) * 2013-01-30 2018-08-14 Denso Corporation Antenna device
CN108879079A (zh) * 2018-06-22 2018-11-23 西安交通大学 一种基于电磁吸波体的高隔离度阵列天线
CN109075441A (zh) * 2016-03-08 2018-12-21 新生组织网络有限公司 天线阵列组件
CN110504541A (zh) * 2019-08-27 2019-11-26 南京邮电大学 一种用于降低mimo天线耦合度的电磁超材料结构
CN111446550A (zh) * 2020-02-27 2020-07-24 Oppo广东移动通信有限公司 吸波结构、天线组件及电子设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008245132A (ja) * 2007-03-28 2008-10-09 Toshiba Corp 無線装置
CN105811118B (zh) * 2016-03-16 2019-08-20 深圳光启高等理工研究院 一种天线

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10050348B2 (en) * 2013-01-30 2018-08-14 Denso Corporation Antenna device
CN103427166A (zh) * 2013-08-25 2013-12-04 南京理工大学 基于折叠偶极子的宽带微波吸收体
CN109075441A (zh) * 2016-03-08 2018-12-21 新生组织网络有限公司 天线阵列组件
CN107706529A (zh) * 2016-08-08 2018-02-16 华为技术有限公司 一种去耦组件、多天线系统及终端
CN108879079A (zh) * 2018-06-22 2018-11-23 西安交通大学 一种基于电磁吸波体的高隔离度阵列天线
CN110504541A (zh) * 2019-08-27 2019-11-26 南京邮电大学 一种用于降低mimo天线耦合度的电磁超材料结构
CN111446550A (zh) * 2020-02-27 2020-07-24 Oppo广东移动通信有限公司 吸波结构、天线组件及电子设备

Also Published As

Publication number Publication date
CN111446550A (zh) 2020-07-24
CN111446550B (zh) 2022-02-01

Similar Documents

Publication Publication Date Title
WO2021169709A1 (zh) 吸波结构、天线组件及电子设备
WO2021083027A1 (zh) 天线模组及电子设备
WO2021082967A1 (zh) 天线模组及电子设备
WO2020233476A1 (zh) 天线单元及终端设备
WO2020233478A1 (zh) 天线单元及终端设备
WO2021104191A1 (zh) 天线单元及电子设备
US11201394B2 (en) Antenna device and electronic device
WO2021000705A1 (zh) 天线装置及电子设备
US20220085493A1 (en) Housing assembly, antenna device, and electronic device
WO2021109769A1 (zh) 壳体组件、天线装置及电子设备
CN111276792B (zh) 电子设备
WO2021249045A1 (zh) 毫米波天线模组和电子设备
EP3905441A1 (en) Antenna structure and high-frequency multi-band wireless communication terminal
WO2021083214A1 (zh) 天线单元及电子设备
WO2022083276A1 (zh) 天线阵列组件及电子设备
WO2022121764A1 (zh) 一种显示模组及电子设备
WO2020259281A1 (zh) 天线模组、电子设备及电子设备的天线频段调节方法
WO2020233518A1 (zh) 天线单元和电子设备
US20220094041A1 (en) Housing assembly, antenna device, and electronic device
WO2022042414A1 (zh) 电子设备
WO2021083222A1 (zh) 天线单元及电子设备
WO2021083217A1 (zh) 天线单元及电子设备
WO2021083213A1 (zh) 天线单元及电子设备
WO2021000732A1 (zh) 壳体组件、天线组件及电子设备
WO2021083219A1 (zh) 天线单元及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21760852

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21760852

Country of ref document: EP

Kind code of ref document: A1