WO2021000705A1 - 天线装置及电子设备 - Google Patents

天线装置及电子设备 Download PDF

Info

Publication number
WO2021000705A1
WO2021000705A1 PCT/CN2020/095215 CN2020095215W WO2021000705A1 WO 2021000705 A1 WO2021000705 A1 WO 2021000705A1 CN 2020095215 W CN2020095215 W CN 2020095215W WO 2021000705 A1 WO2021000705 A1 WO 2021000705A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
decoupling
radio frequency
signal
dielectric substrate
Prior art date
Application number
PCT/CN2020/095215
Other languages
English (en)
French (fr)
Inventor
贾玉虎
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2021000705A1 publication Critical patent/WO2021000705A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems

Definitions

  • This application relates to the field of electronic technology, and in particular to an antenna device and electronic equipment.
  • Millimeter wave has the characteristics of high carrier frequency and large bandwidth, and it is the main means to realize 5G ultra-high data transmission rate. Since the millimeter wave antenna is sensitive to the environment, for the whole millimeter wave antenna array, the coverage structure above the antenna array needs to be optimized to achieve better system radiation performance.
  • An embodiment of the present application provides an antenna device, including:
  • An antenna module includes a plurality of antenna radiators arranged in an array, each of the antenna radiators is formed with at least one feed port, between the feed ports of two adjacent antenna radiators Forming a first coupled signal;
  • a dielectric substrate, the dielectric substrate is arranged on one side of the antenna module at intervals, and a decoupling structure is provided on the dielectric substrate, and the orthographic projection of the decoupling structure on the dielectric substrate covers the antenna module Orthographic projection on the dielectric substrate;
  • the decoupling structure includes one or more decoupling array layers, and the decoupling array layer has a first resonance characteristic for the radio frequency signal of the preset frequency band sent and received by the antenna module, and the first resonance characteristic is used for A decoupling signal is generated, and the decoupling signal is used to cancel the first coupling signal to increase the isolation between the feeding ports of the two adjacent antenna radiators.
  • An embodiment of the present application also provides an electronic device.
  • the electronic device includes a main board and the antenna device provided in any of the above embodiments.
  • the antenna module is electrically connected to the main board, and the antenna radiator is used in the Under the control of the main board, radio frequency signals are sent and received through the dielectric substrate and the decoupling structure.
  • FIG. 1 is a schematic structural diagram of an antenna device provided by an embodiment of the present application.
  • Fig. 2 is a schematic structural diagram of an axonometric view of the antenna device provided in Fig. 1.
  • FIG. 3 is a schematic structural diagram of another antenna device provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of another antenna device provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of another antenna device provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of another antenna device provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another antenna device provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another antenna device provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a top view of an antenna module provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another antenna module provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of another electronic device provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of yet another electronic device provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of another electronic device provided by an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of still another electronic device provided by an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of a protective case applied to an electronic device according to an embodiment of the present application.
  • FIG. 17 is an antenna standing wave curve diagram of an antenna module under a dielectric substrate with integrated decoupling structure, free space, and a dielectric substrate without decoupling structure.
  • FIG. 18 is a graph of the antenna gain of the antenna module under the decoupling structure, free space, and non-decoupling structure dielectric substrate of the integrated decoupling structure.
  • FIG. 19 is a graph of the isolation degree of the antenna module under the decoupling structure, free space, and non-decoupling structure dielectric substrate of the integrated decoupling structure.
  • An embodiment of the present application provides an antenna device, including:
  • An antenna module includes a plurality of antenna radiators arranged in an array, each of the antenna radiators is formed with at least one feed port, between the feed ports of two adjacent antenna radiators Forming a first coupled signal;
  • a dielectric substrate, the dielectric substrate is arranged on one side of the antenna module at intervals, and a decoupling structure is provided on the dielectric substrate, and the orthographic projection of the decoupling structure on the dielectric substrate covers the antenna module Orthographic projection on the dielectric substrate;
  • the decoupling structure includes one or more decoupling array layers, and the decoupling array layer has a first resonance characteristic for the radio frequency signal of the preset frequency band sent and received by the antenna module, and the first resonance characteristic is used for A decoupling signal is generated, and the decoupling signal is used to cancel the first coupling signal to increase the isolation between the feeding ports of the two adjacent antenna radiators.
  • the decoupling array layer has a second resonance characteristic for the radio frequency signal of the preset frequency band sent and received by the antenna module, and the second resonance characteristic is used to generate a second resonance for the radio frequency signal of the preset frequency band, In order to increase the transmittance of the dielectric substrate to the radio frequency signal of the preset frequency band where the decoupling structure is provided.
  • the radio frequency signal of the preset frequency band has a first transmittance to the dielectric substrate
  • the dielectric substrate has a second transmittance at a position where the decoupling structure is provided, and the second transmittance Greater than the first transmittance
  • the decoupling signal and the first coupling signal have the same amplitude and opposite phase.
  • the decoupling structure when the amplitude of the first coupling signal is less than or equal to the preset threshold, the decoupling structure is located within the radiation direction range of the radio frequency signal of the preset frequency band sent and received by the antenna module, so that the The decoupling signal generated by the decoupling structure cancels the first coupling signal.
  • the main lobe direction of the antenna module for sending and receiving radio frequency signals of the preset frequency band is perpendicular to the plane where the decoupling structure is located, and the radiation direction range includes at least the main lobe direction and an acute angle with the main lobe direction The range of directions.
  • the plane on which the decoupling structure is located forms an acute angle with the main lobe direction of the antenna module for transmitting and receiving radio frequency signals of the preset frequency band, so that The decoupling signal generated by the decoupling structure cancels the first coupling signal.
  • the dielectric substrate provided with the coupling structure has a reflection signal for the radio frequency signal of the preset frequency band, and the amplitude of the reflection signal is less than or equal to a preset threshold.
  • the difference between the decoupling signal and the first coupling signal is The phase is opposite.
  • the decoupling structure has a decoupling array layer, and the decoupling array layer includes a plurality of decoupling units, and the decoupling units are grid-shaped patches.
  • the several decoupling units are distributed in an array.
  • the decoupling structure includes a carrier film layer and a first array layer and a second array layer located on both sides of the carrier film layer, and the first array layer has a first reflection coefficient for a radio frequency signal of a preset frequency band , And having a first transmission coefficient for radio frequency signals of a preset frequency band, the second array layer has a second reflection coefficient for radio frequency signals of a preset frequency band, and has a second transmission coefficient for radio frequency signals of a preset frequency band , The first reflection coefficient is different from the second reflection coefficient, and the first transmission coefficient is different from the second transmission coefficient.
  • the first array layer is disposed adjacent to the dielectric substrate relative to the second array layer, the first array layer has through holes, and at least part of the second array layer is on the first array layer.
  • the orthographic projection is located in the through hole.
  • the first array layer is disposed adjacent to the dielectric substrate relative to the second array layer, the first array layer has a first through hole, the second array layer has a second through hole, and at least part of it
  • the orthographic projection of the second array layer on the carrier film layer and the orthographic projection of at least part of the first array layer on the carrier film layer are arranged in a staggered arrangement.
  • the radial size of the first through hole is greater than the radial size of the second through hole.
  • the antenna module includes a first antenna radiator and a second antenna radiator arranged at intervals, the distance between the first antenna radiator and the decoupling structure is a first distance, and the second antenna radiator The distance between the antenna radiator and the decoupling structure is a second distance, and the first distance is equal to the second distance.
  • the antenna module further includes an antenna radiator, a substrate, and a radio frequency chip
  • the antenna radiator is located on the surface of the substrate adjacent to the decoupling structure
  • the radio frequency chip is located on the substrate away from the decoupling structure
  • the antenna device further includes a radio frequency wire for electrically connecting the radio frequency chip and the antenna radiator.
  • the embodiment of the present application also provides an electronic device.
  • the electronic device includes a main board and the antenna device provided in the foregoing embodiment of the present application.
  • the antenna module is electrically connected to the main board, and the antenna radiator is used for Under the control of the main board, radio frequency signals are sent and received through the medium substrate and the decoupling structure.
  • the electronic device further includes a battery cover
  • the battery cover constitutes the dielectric substrate
  • the material of the battery cover is any one or more of plastic, glass, sapphire and ceramic.
  • the battery cover includes a back plate and a side plate surrounding the back plate, the side plate is located within a preset direction range of the antenna radiator for transmitting and receiving radio frequency signals, and the decoupling structure is located on the side plate surface On one side of the antenna radiator, the side plate constitutes the dielectric substrate.
  • the battery cover includes a back plate and a side plate surrounding the back plate, the back plate is located within a preset direction range of the antenna radiator for transmitting and receiving radio frequency signals, and the decoupling structure is located on the surface of the back plate On one side of the antenna radiator, the back plate constitutes the dielectric substrate.
  • the electronic device further includes a screen, and the screen constitutes the medium substrate.
  • the protective cover of the electronic device when the protective cover of the electronic device is located within the preset direction range of the antenna radiator for transmitting and receiving radio frequency signals, the protective cover of the electronic device constitutes the dielectric substrate.
  • the antenna device 10 provided by the embodiment of the present application includes an antenna module 100 and a dielectric substrate 200.
  • the antenna module 100 includes a plurality of antenna radiators 110 arranged in an array.
  • the antenna radiator 110 is formed with at least one feed port 111, and a first coupling signal is formed between the feed ports 111 of two adjacent antenna radiators 110;
  • the dielectric substrate 200 is arranged on the antenna module at intervals 100 side, and the dielectric substrate 200 is provided with a decoupling structure 210, the orthographic projection of the decoupling structure 210 on the dielectric substrate 200 covers the front of the antenna module 100 on the dielectric substrate 200 Projection;
  • the decoupling structure 210 includes one or more decoupling array layers 220, the decoupling array layer 220 has a first resonance characteristic for the radio frequency signal of the preset frequency band received and received by the antenna module 100, the The first resonance characteristic is used to generate a decoupling signal, and the decoupling signal is used to cancel the first coupling signal to increase the isolation between the feeding ports
  • the isolation refers to interference suppression measures taken to minimize the influence of various interferences on the antenna radiator 110.
  • the antenna module 100 and the decoupling structure 210 are spaced apart, and the antenna module 100 is located on the side of the decoupling structure 210 away from the dielectric substrate 200.
  • the antenna module 100 may include one antenna radiator 110, or may be an antenna array formed by multiple antenna radiators 110.
  • the antenna module 100 may be a 2 ⁇ 2 antenna array, may be a 2 ⁇ 4 antenna array, or may be a 4 ⁇ 4 antenna array.
  • the antenna module 100 includes multiple antenna radiators 110, the multiple antenna radiators 110 can work in the same frequency band, and the multiple antenna radiators 110 can also work in different frequency bands. When multiple antenna radiators 110 also work In different frequency bands, it helps to expand the frequency range of the antenna module 100.
  • each antenna radiator 110 has at least one feeding port 111, and a first coupling signal is formed between two adjacent feeding ports 111, and the first coupling signal can make the adjacent antenna radiator 110 emit
  • the radio frequency signals are coupled to each other, that is, after the first signal emitted by the first antenna is reflected by the decoupling structure 210 and the dielectric substrate 200, part of the first signal will be received by the second antenna, which may cause the antenna module 100 to have a frequency shift
  • the problem is not conducive to the normal operation of the antenna module 100. For this reason, it is necessary to cancel the first coupling signal to ensure that the antenna module 100 has a stable radiation effect.
  • the decoupling structure 210 is at least partially located within a preset direction range of the antenna radiator 110 for sending and receiving radio frequency signals, so that the radio frequency signals sent and received by the antenna radiator 110 generate secondary resonance.
  • the first resonance characteristic of the decoupling structure 210 can cause the radio frequency signal to resonate and have the first resonance characteristic, thereby improving antenna radiation
  • the transmittance of the radio frequency signal transmitted and received by the body 110, that is, the existence of the decoupling structure 210 enables the radiation efficiency of the corresponding frequency band of the antenna radiator 110 to be improved.
  • the first resonance characteristic is also used to generate a decoupling signal, and the decoupling signal is used to cancel the first coupling signal, so as to increase the isolation between the feed ports 111 of the two adjacent antenna radiators 110 Therefore, the mutual coupling between two adjacent antenna radiators 110 is reduced.
  • the antenna radiator 110 is located on the side of the decoupling structure 210 away from the dielectric substrate 200, and the radio frequency signal matched by the decoupling structure 210 penetrates the dielectric substrate 200 and faces away from the dielectric substrate 200. The direction of the antenna radiator 110 radiates.
  • the radio frequency signal generated by the antenna radiator 110 reaches the surface of the decoupling structure 210, since the decoupling structure 210 has the first resonance characteristic, the radio frequency signal can resonate, thereby increasing the transmittance of the radio frequency signal.
  • the dielectric substrate 200 can be made to have stronger penetration of radio frequency signals, that is, the radiation gain of the antenna radiator 110 can be improved by adopting this arrangement, and the performance of the antenna radiator 110 can be enhanced.
  • the feed port of the two adjacent antenna radiators 110 may be added The isolation between the two antenna radiators 110 reduces the mutual coupling between the feed ports 111 of the two adjacent antenna radiators 110.
  • the antenna module 100 includes a first antenna radiator 120 and a second antenna radiator 130.
  • the first antenna radiator 120 has a first feed port 111a, and the first feed port is used to feed the An antenna radiator 120 is fed with a first current signal, and the first current signal is used to excite the first antenna radiator 120 to resonate in a first frequency band to send and receive radio frequency signals in the first frequency band.
  • the second antenna radiator 130 has a second feeding port 111b, and the second feeding port 111b is used for feeding a second current signal to the second antenna radiator 130, and the second current signal is used for The second antenna radiator 130 is excited to resonate in the second frequency band, and a first coupling signal is formed between the first feeding port 111a and the second feeding port 111b.
  • the decoupling signal generated by the decoupling array layer 220 is used to cancel the first coupling signal, thereby increasing the isolation between the first feeding port 111a and the second feeding port 111b, thereby reducing the first antenna radiator
  • the mutual coupling between 120 and the second antenna radiator 130 reduces the frequency offset problem of the antenna module 100 and ensures the stable operation of the antenna module 100.
  • the first frequency band may be a high frequency signal
  • the second frequency band may be a low frequency signal
  • the first frequency band can be a low frequency signal
  • the second frequency band can be a high frequency signal
  • 5G mainly uses two frequency bands: FR1 frequency band and FR2 frequency band.
  • the frequency range of FR1 band is 450MHz ⁇ 6GHz, also called sub-6GHz band; the frequency range of FR2 band is 24.25GHz ⁇ 52.6GHz, usually called millimeter wave (mm Wave).
  • the 3GPP version 15 specifies the current 5G millimeter wave frequency bands as follows: n257 (26.5-29.5GHz), n258 (24.25-27.5GHz), n261 (27.5-28.35GHz) and n260 (37-40GHz).
  • the first frequency band may be a frequency band covered by n257, and in this case, the second frequency band may be a frequency band covered by n258, n260, and n261.
  • the decoupling array layer 220 has a second resonance characteristic for the radio frequency signal of the preset frequency band sent and received by the antenna module 100, and the second resonance characteristic is used to affect the frequency of the preset frequency band.
  • the radio frequency signal generates a secondary resonance to increase the transmittance of the dielectric substrate 200 to the radio frequency signal of the preset frequency band at the position where the decoupling structure 210 is provided.
  • the decoupling array layer 220 is also used to make the radio frequency signal of the preset frequency band have dual polarization characteristics.
  • the preset frequency band includes at least the 3GPP millimeter wave full frequency band.
  • the radio frequency signal of the preset frequency band has a first transmittance to the dielectric substrate 200, and the dielectric substrate 200 has a second transmittance at a position where the decoupling structure 210 is provided.
  • the second transmittance is greater than the first transmittance.
  • the radio frequency signal can penetrate the dielectric substrate 200 and the decoupling structure 210, and the radio frequency signal can be a millimeter wave signal.
  • the decoupling structure 210 is located on one side of the dielectric substrate 200.
  • the decoupling structure 210 includes a decoupling array layer 220, which has a first resonance characteristic at a predetermined frequency band, and is used to cause the radio frequency signal to resonate, so that the radio frequency signal has a higher transmittance. That is, the dielectric substrate 200 in the corresponding area of the decoupling structure 210 has the second transmittance to the radio frequency signal of the preset frequency band, and satisfies that the second transmittance is greater than the first transmittance.
  • the resonance characteristics generated by the decoupling array layer 220 make the radio frequency signal have a higher transmittance in the corresponding area of the decoupling structure 210.
  • the decoupling structure 210 is located within the radiation direction range of the antenna radiator 110, the radiation gain of the antenna radiator 110 can be improved.
  • the decoupling signal and the first coupling signal have the same amplitude and opposite phase.
  • the decoupling signal and the first coupling signal are both radio frequency signals with amplitude and phase.
  • the decoupling signal and the first coupling signal are When the phases are opposite, the decoupling signal and the first coupling signal can be completely cancelled out, that is, due to the existence of the decoupling structure 210, the decoupling structure 210 generates the decoupling signal for the radio frequency signal and the adjacent two antenna radiators.
  • the first coupling signal between the feed ports 111 of the 110 can be completely cancelled, which can improve the isolation between the feed ports 111 of the two adjacent antenna radiators 110, thereby reducing the distance between the two adjacent antenna radiators 110
  • the resulting mutual coupling avoids frequency deviation of the antenna module 100 and ensures that the antenna module 100 is in a stable working frequency band.
  • the decoupling structure 210 when the amplitude of the first coupling signal is less than or equal to the preset threshold, the decoupling structure 210 is located in the radiation direction of the radio frequency signal of the preset frequency band received and received by the antenna module 100 Within the range, so that the decoupling signal generated by the decoupling structure 210 cancels the first coupling signal.
  • the decoupling structure 210 is located within the radiation direction range of the radio frequency signal of the predetermined frequency band transmitted and received by the antenna module 100 means that the beam used by the antenna module 100 to transmit and receive the radio frequency signal will pass through all the radio signals at a certain angle
  • the plane where the decoupling structure 210 is located is described.
  • the decoupling structure 210 needs to be disposed within the radiation direction range of the radio frequency signal received and received by the antenna module 100.
  • the decoupling signal and the first A coupling signal cancellation condition can improve the isolation between the feed ports 111 of two adjacent antenna radiators 110, thereby reducing the mutual coupling between two adjacent antenna radiators 110, and avoiding the antenna module 100 Generate a frequency offset to ensure that the antenna module 100 is in a stable working frequency band.
  • the preset threshold may be -10dB.
  • the main lobe direction of the antenna module 100 for transmitting and receiving radio frequency signals of the preset frequency band is perpendicular to the plane where the decoupling structure 210 is located, and the radiation direction range includes at least the main lobe direction and the main lobe direction.
  • the direction forms an acute range of directions.
  • the decoupling signal can be better connected
  • the first coupling signal is cancelled, so that the isolation between adjacent antenna radiators 110 can be improved, and the mutual coupling between adjacent antenna radiators 110 can be reduced.
  • the plane where the decoupling structure 210 is located and the antenna module 100 transmit and receive radio frequency signals of a preset frequency band.
  • the direction of the main lobe forms an acute angle, so that the decoupling signal generated by the decoupling structure 210 cancels the first coupling signal.
  • the amplitude of the first coupled signal is greater than the preset threshold, it indicates that the isolation between the feed ports 111 of the two adjacent antenna radiators 110 is poor, that is, the two adjacent antennas are at this time
  • the radiators 110 are prone to mutual coupling.
  • the plane where the decoupling structure 210 is located forms an acute angle with the main lobe direction of the antenna module 100 for transmitting and receiving radio frequency signals of a preset frequency band, or forms an approximate right angle, it can reduce Two adjacent antenna radiators 110 are mutually coupled.
  • the dielectric substrate 200 provided with the coupling structure 210 has a reflected signal of the radio frequency signal of the preset frequency band, and the amplitude of the reflected signal is The value is less than or equal to the preset threshold. That is, when the amplitude of the first coupling signal is small, the decoupling structure 210 is designed so that the reflection coefficient S11 of the antenna device 10 in the 0 degree and large angle directions is less than or equal to -10 dB.
  • the first coupling signal and the decoupling signal can meet the phase opposite condition.
  • the decoupling signal and the first coupling signal can be made Cancellation can improve the isolation between the feed ports 111 of two adjacent antenna radiators 110, thereby reducing the mutual coupling between two adjacent antenna radiators 110, and avoiding frequency offset of the antenna module 100 , To ensure that the antenna module 100 is in a stable working frequency band.
  • the decoupling signal and the first The phase of the coupled signal is opposite.
  • the antenna device 10 includes a carrier film layer 211, the carrier film layer 211 is used to carry the decoupling structure 210, the decoupling structure 210 has a decoupling array layer 220, the The decoupling array layer 220 includes a plurality of decoupling units 221, and the decoupling units 221 are grid-shaped patches.
  • the decoupling array layer 220 includes a plurality of decoupling units 221 arranged in an array, the decoupling unit 221 is made of conductive material, and the decoupling unit 221 has a frequency range in the preset frequency band.
  • the decoupling unit 221 may be made of metal material.
  • the multiple decoupling units 221 are arranged in an array so that the radio frequency signal of the preset frequency band has dual-frequency dual-polarization resonance characteristics. Even if the radio frequency signal has multiple working frequency bands, and has multiple radiation directions.
  • the decoupling structure 210 includes a decoupling array layer 220 disposed on the carrier film layer 211 to increase the frequency of the radio frequency signal of the preset frequency band. Transmittance.
  • the decoupling array layer 220 has a single-layer structure, and the decoupling array layer 220 may be connected to the carrier film layer 211 through an adhesive 222, and the adhesive 222 may be a glue.
  • the decoupling array layer 220 has resonance characteristics for the radio frequency signal of the preset frequency band, which can cause the radio frequency signal of the preset frequency band to resonate, thereby making the radio frequency signal of the preset frequency band have a higher transmittance.
  • the orthographic projection of the decoupling structure 210 on the dielectric substrate 200 completely covers the dielectric substrate 200. That is, the carrier film layer 211 covers the entire dielectric substrate 200, and the decoupling structure 210 is carried on the carrier film layer 211 and is arranged corresponding to the entire area of the dielectric substrate 200. That is, all areas of the dielectric substrate 200 have high transmittance to radio frequency signals of a preset frequency band.
  • the orthographic projection of the decoupling structure 210 on the dielectric substrate 200 completely covers the dielectric substrate 200, It helps to reduce the complexity of the preparation process of the dielectric substrate 200.
  • the orthographic projection of the decoupling structure 210 on the dielectric substrate 200 covers a part of the area of the dielectric substrate 200. At this time, the area covered by the decoupling structure 210 is smaller than the area of the dielectric substrate 200.
  • the coupling structure 210 is arranged corresponding to a local area of the dielectric substrate 200. Therefore, different areas of the dielectric substrate 200 can exhibit different transmittances for the radio frequency signals of the preset frequency band, and the transmittance of the dielectric substrate 200 for the radio frequency signals of the preset frequency band can be flexibly configured.
  • the plurality of decoupling units 221 are arranged in an array, which can make the resonance characteristics of the decoupling unit 221 more balanced, so that the decoupling signal generated by the decoupling unit 221 has a higher consistency.
  • the signal can be produced in batches to cancel the first coupled signal, which helps to improve the isolation between adjacent antenna radiators 110 and reduce the mutual coupling between adjacent antenna radiators 110.
  • the decoupling structure 210 includes a carrier film layer 211, and a first array layer 212 and a second array layer 213 located on both sides of the carrier film layer 211.
  • the second array layer 213 has the second reflection coefficient of the radio frequency signal of the preset frequency band, and has the For a second transmission coefficient of a radio frequency signal of a preset frequency band, the first reflection coefficient is different from the second reflection coefficient, and the first transmission coefficient is different from the second transmission coefficient.
  • the first array layer 212 and the second array layer 213 have different reflection and transmission coefficients, and the radio frequency signals reaching the first array layer 212 and the second array layer 213 exhibit different reflection and transmission. characteristic.
  • the decoupling structure 210 includes a first array layer 212 and a second array layer 213 arranged at intervals.
  • the first array layer 212 and the second array layer 213 are both arranged on the carrier film layer 211, and the An array layer 212 and the second array layer 213 are respectively located on opposite sides of the carrier film layer 211, and the first array layer 212 is disposed adjacent to the dielectric substrate 200 relative to the second array layer 213.
  • the first array layer 212 is located between the dielectric substrate 200 and the carrier film layer 211, and the second array layer 213 is located on a side of the carrier film layer 211 away from the first array layer 212. side. At least one of the first array layer 212 and the second array layer 213 has a resonance characteristic for a radio frequency signal of a preset frequency band. In an embodiment, the first array layer 212 has resonance characteristics for the radio frequency signal of the preset frequency band, which can cause the radio frequency signal of the preset frequency band to resonate, thereby increasing the transmittance of the radio frequency signal of the preset frequency band.
  • the second array layer 213 has resonance characteristics for the radio frequency signal of the preset frequency band, which can cause the radio frequency signal of the preset frequency band to resonate, thereby increasing the transmittance of the radio frequency signal of the preset frequency band.
  • both the first array layer 212 and the second array layer 213 have resonance characteristics for the radio frequency signal of the preset frequency band, which can cause the radio frequency signal of the preset frequency band to resonate, thereby increasing the radio frequency signal of the preset frequency band. The transmittance.
  • the projection of the first array layer 212 on the carrier film layer 211 and the projection of the second array layer 213 on the carrier film layer 211 at least partially do not overlap. That is, the first array layer 212 and the second array layer 213 are completely misaligned in the thickness direction, or the first array layer 212 and the second array layer 213 are partially misaligned in the thickness direction, which can reduce the first array
  • the resonance characteristics of the layer 212 and the second array layer 213 cause mutual interference, which helps the radio frequency signal to pass through the dielectric substrate 200 more stably.
  • the first array layer 212 is disposed adjacent to the dielectric substrate 200 relative to the second array layer 213, the first array layer 212 has through holes 212a, and at least part of the second array layer The orthographic projection of 213 on the first array layer 212 is located in the through hole 212a.
  • the through hole 212a is circular, oval, square, triangle, rectangle, hexagon, ring, cross or Jerusalem cross.
  • the first array layer 212 has through holes 212a, and the size of the through holes 212a is larger than the outline size of the second array layer 213, and the projection of the second array layer 213 on the first array layer 212 is completely Fall into the through hole 212a.
  • the radio frequency signal of the preset frequency band can be transmitted through the through hole 212a on the first array layer 212 after the resonance of the second array layer 213, thereby reducing the resonance of the first array layer 212 to the second array layer 213.
  • the interference of the radio frequency signal after the action helps to maintain the stable transmission of the radio frequency signal.
  • the first array layer 212 and the second array layer 213 cooperate with each other to perform spatial impedance matching on the radio frequency signal of the preset frequency band, and can realize the adjustment of the frequency of the radio frequency signal.
  • the first array layer 212 is disposed adjacent to the dielectric substrate 200 relative to the second array layer 213, the first array layer 212 has a first through hole 212b, and the second array layer 213 has a second through hole 212c, and the orthographic projection of at least part of the second array layer 213 on the carrier film layer 211 is misaligned with the orthographic projection of at least part of the first array layer 212 on the carrier film layer 211 Arrangement.
  • the decoupling array layer 220 includes a first array layer 212 and a second array layer 213.
  • the first array layer 212 has a first through hole 212b
  • the second array layer 213 has a second through hole 212c.
  • the first array layer 212 and the second array layer 213 are both located within the preset direction range of the antenna radiator 110 for transmitting and receiving radio frequency signals, and the size of the first through hole 212b is the same as that of the second through hole 212c When the size of the antenna radiator 110 is different, the bandwidth of the radio frequency signal emitted by the antenna radiator 110 after passing through the first through hole 212b and the bandwidth of the radio frequency signal emitted by the antenna radiator 110 passing through the second through hole 212c different.
  • the radio frequency signal emitted by the antenna radiator 110 passes through the first through hole.
  • the bandwidth behind the hole 212b is greater than the bandwidth of the radio frequency signal emitted by the antenna radiator 110 after passing through the second through hole 212c. That is, the bandwidth of the radio frequency signal after passing through the first through hole 212b and the second through hole 212c is positively correlated with the radial size of the first through hole 212b and the second through hole 212c.
  • the bandwidth after the radio frequency signal passes through the first through hole 212b is greater than the bandwidth after the radio frequency signal passes through the second through hole 212c.
  • the antenna module 100 includes a first antenna radiator 120 and a second antenna radiator 130 arranged at intervals, and the distance between the first antenna radiator 120 and the decoupling structure 210 Is a first distance d1, and the distance between the second antenna radiator 130 and the decoupling structure 210 is a second distance d2, and the first distance d1 is equal to the second distance d2.
  • the first antenna radiator 120 may transmit and receive presets.
  • the relative positional relationship between the main lobe direction of the radio frequency signal of the frequency band and the decoupling structure 210, and the relative positional relationship between the main lobe direction of the second antenna radiator 130 to transmit and receive the radio frequency signal of the preset frequency band and the decoupling structure 210 Keeping the same, at this time, the coupling structure and the dielectric substrate 200 cooperate with each other to make it easier to cancel the decoupling signal and the first coupling signal, thereby reducing the mutual coupling between adjacent antenna radiators 110.
  • the distance between the antenna module 100 and the decoupling structure 210 can be kept uniform, which helps to reduce the thickness of the antenna device 10.
  • the antenna module 100 further includes a substrate 120 and a radio frequency chip 130.
  • the antenna radiator 110 is located on the surface of the substrate 120 adjacent to the decoupling structure 210.
  • the radio frequency chip 130 Located on the surface of the substrate 120 away from the decoupling structure 210, the antenna device 10 further includes a radio frequency line 140 for electrically connecting the radio frequency chip 130 and the antenna radiator 110.
  • the substrate 120 may be a multi-layer PCB board prepared by a high density interconnect (High Density Inverter, HDI) process.
  • the radio frequency chip 130 is located on a side of the substrate 120 away from the antenna radiator 110.
  • the antenna radiator 110 has at least one feed port, and the feed port is used to receive radio frequency signals from the radio frequency chip 130, so as to generate radio frequency signals of different frequency bands.
  • the antenna radiator 110 has a first feeding port 111 and a second feeding port 112, and the first feeding port 111 and the second feeding port 112 are respectively along the antenna
  • the two adjacent sides of the radiator 110 are arranged and centered relative to the corresponding sides.
  • the first feed port 111 can feed a first current in a first polarization
  • the second feed port 112 can feed a second current in a second polarization direction.
  • the polarization directions of the first current and the second current are mutually positive.
  • the first current and the second current have different frequencies, so that two resonant modes with different frequencies and orthogonal to each other are excited on the antenna radiator 110 to achieve dual-frequency dual-polarization radio frequency signal transmission and reception.
  • locating the antenna radiator 110 on the surface of the substrate 120 adjacent to the decoupling structure 210 can facilitate the transmission of the radio frequency signal generated by the antenna radiator 110 in the direction of the decoupling structure 210, due to the decoupling structure 210 has resonance characteristics. After the resonance of the decoupling structure 210, the radio frequency signal has stronger penetrability, which can enhance the radiation gain of the antenna radiator 110. Moreover, the radio frequency chip 130 is located on the surface of the substrate 120 away from the decoupling structure 210, which can reduce unnecessary interference of the radio frequency chip 130 on the decoupling structure 210, which helps to ensure that the resonance characteristics of the decoupling structure 210 are relatively high. Stability, thereby ensuring that the radiation characteristics of the antenna radiator 110 are relatively stable.
  • the substrate 120 has a limiting hole 120a, the radio frequency line 140 is received in the limiting hole 120a, one end of the radio frequency line 140 is electrically connected to the antenna radiator 110, and the other end is electrically connected to the antenna radiator 110.
  • the radio frequency chip 130, the radio frequency signal generated by the radio frequency chip 130 is transmitted to the antenna radiator 110 through the radio frequency line 140.
  • a limit hole 120a needs to be opened on the substrate 120, and the radio frequency line 140 is arranged in the limit hole 120a to connect the antenna radiator 110 and the radio frequency chip 130 An electrical connection is made to transmit the radio frequency signal on the radio frequency chip 130 to the antenna radiator 110, and then the antenna radiator 110 generates the radio frequency signal according to the radio frequency signal.
  • the substrate 120 has a plurality of metallized via holes 120 b, and the via holes 120 b are arranged around the antenna radiator 110 to isolate two adjacent antenna radiators 110.
  • the substrate 120 has a plurality of metalized via holes 120 b uniformly arranged, and the metalized via holes 120 b surround the antenna radiator 110.
  • the function of the metalized via 120b is to realize isolation and decoupling in the antenna module 100. That is, due to the existence of the metalized via 120b, it is possible to prevent radiation interference between two adjacent antenna radiators 110 due to mutual coupling, and to ensure that the antenna radiator 110 is in a stable working state.
  • the antenna device 10 further includes a feed layer 150, the antenna radiator 110 is located on the surface of the substrate 120 adjacent to the decoupling structure 210, and the radio frequency chip 130 is located away from the substrate 120.
  • the feed ground layer 150 is located between the substrate 120 and the radio frequency chip 130, the feed ground layer 150 constitutes the ground pole of the antenna radiator 110, and the feed ground layer 150 has a gap 150a, a feeder trace 160 is provided between the radio frequency chip 130 and the feeder layer 150, the feeder trace 160 is electrically connected to the radio frequency chip 130, and the feeder trace 160 is connected to the feeder
  • the projection on the ground layer 150 is at least partially located in the slot 150a, and the feeder trace 160 couples and feeds the antenna radiator 110 through the slot 150a.
  • the radio frequency chip 130 has an output terminal 130a, which is used to generate radio frequency signals.
  • the radio frequency signals generated by the radio frequency chip 130 are transmitted to the feeder trace 160. Since the feeder trace 160 is arranged corresponding to the gap 150a on the feeder layer 150, Therefore, the feeder trace 160 can transmit the received radio frequency signal through the slot 150a to the feed port on the antenna radiator 110 in a coupling manner, and the antenna radiator 110 can be coupled to the radio frequency signal from the feeder trace 160 to generate RF signal of preset frequency band.
  • the feed ground layer 150 constitutes the ground pole of the antenna radiator 110, and the antenna radiator 110 and the feed ground layer 150 are not directly electrically connected, but the antenna radiator 110 is grounded by coupling.
  • the projection of the feeding wire 160 on the feeding ground layer 150 is at least partially located in the slot 150a, so that the feeding wire 160 can couple and feed the antenna radiator 110 through the slot 150a.
  • the electronic device 1 includes a main board 20 and the antenna device 10 provided in any of the above embodiments, the antenna module 100 is electrically connected to the main board 20, and the antenna radiator 110 is used in all Under the control of the main board 20, radio frequency signals are sent and received through the dielectric substrate 200 and the decoupling structure 210.
  • the electronic device 1 may be any device with communication and storage functions.
  • tablet computers mobile phones, e-readers, remote controls, personal computers (PC), notebook computers, in-vehicle devices, Internet TVs, wearable devices and other smart devices with network functions.
  • PC personal computers
  • the main board 20 may be a PCB board of the electronic device 1.
  • a receiving space A is formed between the main board 20 and the dielectric substrate 200, the antenna module 100 is located in the receiving space A, and the antenna module 100 is electrically connected to the main board 20.
  • the antenna module 100 may include one antenna radiator 110 or multiple antenna radiators 110.
  • the antenna module 100 may be formed by an array of multiple antenna radiators 110.
  • the antenna radiator 110 can transmit and receive radio frequency signals through the dielectric substrate 200.
  • the decoupling structure 210 has resonance characteristics, the radio frequency signal can generate resonance characteristics to enhance the penetration of the radio frequency signal.
  • the radio frequency signal has a higher transmittance when passing through the dielectric substrate 200.
  • the electronic device 1 further includes a battery cover 30, the battery cover 30 constitutes the dielectric substrate 200, the material of the battery cover 30 is any one of plastic, glass, sapphire and ceramic or Many kinds.
  • the battery cover 30 in the structural arrangement of the electronic device 1, at least part of the structure of the battery cover 30 is located within the preset direction range of the antenna radiator 110 for transmitting and receiving radio frequency signals. Therefore, the battery cover 30 will also affect the radiation characteristics of the antenna radiator 110. influences. For this reason, in this embodiment, using the battery cover 30 as the dielectric substrate 200 can make the antenna radiator 110 have stable radiation performance in the structural arrangement of the electronic device 1. Meanwhile, the battery cover 30 is made of a wave-transmitting material, and the material of the battery cover 30 can be plastic, glass, sapphire, ceramic, etc., or a combination of the above materials.
  • the battery cover 30 includes a back plate 31 and a side plate 32 surrounding the back plate 31.
  • the side plate 32 is located within the preset direction range of the antenna radiator 110 for receiving and transmitting radio frequency signals.
  • the decoupling structure 210 is located on the side of the side plate 32 facing the antenna radiator 110, and the side plate 32 constitutes the dielectric substrate 200.
  • the side plate 32 can be used to perform spatial impedance matching on the radio frequency signals transmitted and received by the antenna radiator 110.
  • the side plate 32 is used as a medium.
  • a decoupling structure 210 is provided on the side of the side plate 32 facing the antenna radiator 110.
  • the decoupling structure 210 has a resonance characteristic for a radio frequency signal of a preset frequency band, and can cause the radio frequency signal to have a resonance characteristic. In this way, the radio frequency signals sent and received by the antenna radiator 110 can be transmitted through the side plate 32.
  • the side plate 32 is used as the dielectric substrate 200 to perform spatial impedance matching on the antenna radiator 110, and the structural arrangement of the antenna radiator 110 in the overall environment of the electronic device 1 is fully considered, so that the antenna radiator 110 can be ensured in the overall environment. Radiation effects in the environment.
  • the battery cover 30 includes a back plate 31 and a side plate 32 surrounding the back plate 31.
  • the back plate 31 is located within the preset direction range of the antenna radiator 110 for receiving and transmitting radio frequency signals.
  • the decoupling structure 210 is located on the side of the back plate 31 facing the antenna radiator 110, and the back plate 31 constitutes the dielectric substrate 200.
  • the back plate 31 may be used to perform spatial impedance matching on the radio frequency signals transmitted and received by the antenna radiator 110.
  • the back plate 31 is used as the medium.
  • a decoupling structure 210 is provided on the side of the back plate 31 facing the antenna radiator 110.
  • the decoupling structure 210 has a resonance characteristic for a radio frequency signal of a preset frequency band, and can cause the radio frequency signal to have a resonance characteristic. In this way, the radio frequency signals sent and received by the antenna radiator 110 can be transmitted through the backplane 31.
  • the backplane 31 is used as the dielectric substrate 200 to perform spatial impedance matching on the antenna radiator 110, and the structural arrangement of the antenna radiator 110 in the overall environment of the electronic device 1 is fully considered, so as to ensure that the antenna radiator 110 is in the overall environment. Radiation effects in the environment.
  • the electronic device 1 further includes a screen 40, and the screen 40 constitutes the dielectric substrate 200.
  • the screen 40 may be used to perform spatial impedance matching on the radio frequency signals sent and received by the antenna radiator 110.
  • the screen 40 is used as the dielectric substrate 200.
  • the side of the screen 40 facing the antenna radiator 110 is provided with a decoupling structure 210.
  • the decoupling structure 210 has a resonance characteristic for a radio frequency signal of a preset frequency band, and can make the radio frequency signal have a resonance characteristic. In this way, the radio frequency signals sent and received by the antenna radiator 110 can be transmitted through the screen 40.
  • the screen 40 is used as the dielectric substrate 200 for the spatial impedance matching of the antenna radiator 110, and the structural arrangement of the antenna radiator 110 in the overall environment of the electronic device 1 is fully considered, so as to ensure that the antenna radiator 110 is in the overall environment Radiation effect in.
  • the protective cover 50 of the electronic device 1 when the protective cover 50 of the electronic device 1 is located within the preset direction range of the antenna radiator 110 for transmitting and receiving radio frequency signals, the protective cover 50 of the electronic device 1 constitutes the dielectric substrate 200.
  • the protective cover 50 may be used to perform spatial impedance matching on the radio frequency signals transmitted and received by the antenna radiator 110.
  • the protective cover 50 is used as the dielectric substrate 200.
  • a decoupling structure 210 is provided on the side of the protective cover 50 facing the antenna radiator 110.
  • the decoupling structure 210 has a resonance characteristic for a radio frequency signal of a preset frequency band, and can cause the radio frequency signal to have a resonance characteristic. In this way, the radio frequency signals sent and received by the antenna radiator 110 can be transmitted through the protective cover 50.
  • the protective cover 50 is used as the dielectric substrate 200 to perform spatial impedance matching on the antenna radiator 110, and the structural arrangement of the antenna radiator 110 in the use environment of the electronic device 1 is fully considered, so that the antenna radiator 110 can be used in the whole machine. Radiation effects in the environment.
  • FIG. 17 is an antenna standing wave curve diagram of an antenna module under a dielectric substrate with integrated decoupling structure, free space, and a dielectric substrate without decoupling structure.
  • FIG. 18 is a graph of the antenna gain of the antenna module under the decoupling structure, free space, and non-decoupling structure dielectric substrate of the integrated decoupling structure.
  • FIG. 19 is a graph of the isolation degree of the antenna module under the decoupling structure, free space, and non-decoupling structure dielectric substrate of the integrated decoupling structure.
  • curve 1 is the antenna standing wave curve of the antenna module in free space.
  • Curve 2 is the antenna standing wave curve diagram of the antenna module under the dielectric substrate without decoupling structure.
  • Curve 3 is the antenna standing wave curve diagram of the antenna module under the dielectric substrate with decoupling structure. For the return loss below -10dB and the frequency range of 26.6GHz-29.8GHz, the return loss of curve 3 is the smallest, indicating that the decoupling structure provides partial reflection and improves the S-parameter of the feed port of the antenna radiator.
  • curve 1 is the antenna gain curve of the antenna module in free space.
  • Curve 2 is the antenna gain curve diagram of the antenna module under the dielectric substrate without decoupling structure.
  • Curve 3 is the antenna gain curve diagram of the antenna module under the dielectric substrate with decoupling structure.
  • the radiation gain of the antenna module corresponding to curve 3 is the largest. Due to the decoupling structure, the dielectric substrate has a small reflection coefficient, which reduces the material loading effect of the dielectric substrate to the greatest extent, improves the antenna pattern, and maximizes the antenna radiation gain.
  • the curve 1 is the isolation curve between the antenna feed ports of the antenna module in free space.
  • Curve 2 is the isolation curve of the antenna module between the antenna feed ports under the dielectric substrate without decoupling structure.
  • Curve 3 is the isolation curve of the antenna module between the antenna feed ports under the dielectric substrate with decoupling structure. It can be seen from the figure that in the frequency range of 25.5GHz-29.7GHz, the radiation gain of the antenna module corresponding to curve 3 is the largest. Due to the decoupling structure, the dielectric substrate has a smaller reflection coefficient, which reduces the material loading effect of the dielectric substrate to the greatest extent, improves the antenna pattern, and maximizes the antenna radiation gain.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请实施例提供一种天线装置及电子设备。天线装置包括:天线模组,天线模组包括多个天线辐射体,天线辐射体具有馈电端口,相邻的两个天线辐射体的馈电端口之间形成第一耦合信号;介质基板,介质基板与天线模组间隔,且介质基板上设置有解耦结构,解耦结构在介质基板上的正投影覆盖天线模组在介质基板上的正投影;解耦结构包括解耦阵列层,解耦阵列层对于天线模组收发的预设频段的射频信号具有第一谐振特性,第一谐振特性用于产生解耦合信号,解耦合信号用于抵消第一耦合信号,以增加相邻的两个天线辐射体的馈电端口之间的隔离度。本申请实施例提供的天线模组可以降低相邻两个天线辐射体之间的互相耦合。

Description

天线装置及电子设备 技术领域
本申请涉及电子技术领域,尤其涉及一种天线装置及电子设备。
背景技术
毫米波具有高载频、大带宽的特性,是实现5G超高数据传输速率的主要手段。由于毫米波天线对于环境较敏感,因此对于整机毫米波天线阵列,需要对天线阵列上方的覆盖结构进行优化,以达到更佳的系统辐射性能。
发明内容
本申请实施例提供一种天线装置,包括:
天线模组,所述天线模组包括多个阵列设置的天线辐射体,每一个所述天线辐射体形成有至少一个馈电端口,相邻的两个所述天线辐射体的馈电端口之间形成第一耦合信号;
介质基板,所述介质基板间隔设置于所述天线模组一侧,且所述介质基板上设置有解耦结构,所述解耦结构在所述介质基板上的正投影覆盖所述天线模组在所述介质基板上的正投影;
所述解耦结构包括一层或多层解耦阵列层,所述解耦阵列层对于所述天线模组收发的预设频段的射频信号具有第一谐振特性,所述第一谐振特性用于产生解耦合信号,所述解耦合信号用于抵消所述第一耦合信号,以增加相邻的两个所述天线辐射体的馈电端口之间的隔离度。
本申请实施例还提供一种电子设备,所述电子设备包括主板和上任意实施例提供的天线装置,所述天线模组与所述主板电性连接,所述天线辐射体用于在所述主板的控制下透过所述介质基板和所述解耦结构收发射频信号。
附图说明
为了更清楚地说明本申请实施方式的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种天线装置的结构示意图。
图2是图1中提供的天线装置的轴测视图的结构示意图。
图3是本申请实施例提供的另一种天线装置的结构示意图。
图4是本申请实施例提供的又一种天线装置的结构示意图。
图5是本申请实施例提供的又一种天线装置的结构示意图。
图6是本申请实施例提供的又一种天线装置的结构示意图。
图7是本申请实施例提供的又一种天线装置的结构示意图。
图8是本申请实施例提供的又一种天线装置的结构示意图。
图9是本申请实施例提供的一种天线模组的俯视图的结构示意图。
图10是本申请实施例提供的又一种天线模组的结构示意图。
图11是本申请实施例提供的一种电子设备的结构示意图。
图12是本申请实施例提供的另一种电子设备的结构示意图。
图13是本申请实施例提供的又一种电子设备的结构示意图。
图14是本申请实施例提供的又一种电子设备的结构示意图。
图15是本申请实施例提供的又一种电子设备的结构示意图。
图16是本申请实施例提供的一种保护套应用于电子设备的结构示意图。
图17是天线模组在集成解耦结构的介质基板、自由空间、无解耦结构介质基板下的天线驻波曲线图。
图18是天线模组在集成解耦结构的解耦结构、自由空间、无解耦结构介质基板下的天线增益曲线图。
图19是天线模组在集成解耦结构的解耦结构、自由空间、无解耦结构介质基板下的隔离度曲线图。
具体实施方式
下面将结合本申请实施方式中的附图,对本申请实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式仅仅是本申请一部分实施方式,而不是全部的实施方式。基于本申请中的实施方式,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施方式,都属于本申请保护的范围。
本申请实施例提供了一种天线装置,包括:
天线模组,所述天线模组包括多个阵列设置的天线辐射体,每一个所述天线辐射体形成有至少一个馈电端口,相邻的两个所述天线辐射体的馈电端口之间形成第一耦合信号;
介质基板,所述介质基板间隔设置于所述天线模组一侧,且所述介质基板上设置有解耦结构,所述解耦结构在所述介质基板上的正投影覆盖所述天线模组在所述介质基板上的正投影;
所述解耦结构包括一层或多层解耦阵列层,所述解耦阵列层对于所述天线模组收发的预设频段的射频信号具有第一谐振特性,所述第一谐振特性用于产生解耦合信号,所述解耦合信号用于抵消所述第一耦合信号,以增加相邻的两个所述天线辐射体的馈电端口之间的隔离度。
其中,所述解耦阵列层对于所述天线模组收发的预设频段的射频信号具有第二谐振特性,所述第二谐振特性用于对所述预设频段的射频信号产生二次谐振,以增加所述介质基板在设置有所述解耦结构所在位置对所述预设频段的射频信号的透过率。
其中,所述预设频段的射频信号对所述介质基板具有第一透过率,所述介质基板在设置有所述解耦结构的位置具有第二透过率,所述第二透过率大于所述第一透过率。
其中,所述解耦合信号与所述第一耦合信号的幅值相同,相位相反。
其中,在所述第一耦合信号的幅值小于或者等于预设阈值的情况下,所述解耦结构位于所述天线模组收发预设频段的射频信号的辐射方向范围内,以使得所述解耦结构产生的所述解耦合信号抵消所述第一耦合信号。
其中,所述天线模组收发预设频段的射频信号的主瓣方向与所述解耦结构所在平面保持垂直,所述辐射方向范围至少包括所述主瓣方向及与所述主瓣方向形成锐角的方向范围。
其中,在所述第一耦合信号的幅值大于预设阈值的情况下,所述解耦结构所在的平面与所述天线模组收发预设频段的射频信号的主瓣方向形成锐角,以使得所述解耦结构产生的所述解耦合信号抵消所述第一耦合信号。
其中,在所述辐射方向范围内,设置有所述耦合结构的所述介质基板具有对所述预设频段的射频信号的反射信号,且所述反射信号的幅值小于或者等于预设阈值。
其中,当所述天线模组和所述解耦结构之间的距离小于所述预设频段的射频信号的波长的四分之一倍时,所述解耦合信号与所述第一耦合信号的相位相反。
其中,所述解耦结构具有一层解耦阵列层,所述解耦阵列层包括若干个解耦单元,所述解耦单元为栅格状贴片。
其中,所述若干个解耦单元呈阵列分布。
其中,所述解耦结构包括承载膜层以及位于所述承载膜层两侧的第一阵列层和第二阵列层,所述第一阵列层具有对预设频段的射频信号的第一反射系数,且具有对预设频段的射频信号的第一透射系数,所述第二阵列层具有对预设频段的射频信号的第二反射系数,且具有对预设频段的射频信号的第二透射系数,所述第一反射系数与所述第二反射系数不同,且所述第一透射系数与所述第二透射系数不同。
其中,所述第一阵列层相对于所述第二阵列层邻近所述介质基板设置,所述第一阵列层具有通孔,至少部分所述第二阵列层在所述第一阵列层上的正投影位于所述通孔内。
其中,所述第一阵列层相对于所述第二阵列层邻近所述介质基板设置,所述第一阵列层具有第一通孔,所述第二阵列层具有第二通孔,至少部分所述第二阵列层在所述承载膜层上的正投影与至少部分所述第一阵列层在所述承载膜层上的正投影错位排布。
其中,所述第一通孔的径向尺寸大于所述第二通孔的径向尺寸。
其中,所述天线模组包括间隔排布的第一天线辐射体和第二天线辐射体,所述第一天线辐射体与所述解耦结构之间的距离为第一距离,所述第二天线辐射体与所述解耦结构之间的距离为第二距离,所述第一距离与所述第二距离相等。
其中,所述天线模组还包括天线辐射体、基板和射频芯片,所述天线辐射体位于所述基板邻近所述解耦结构的表面,所述射频芯片位于所述基板背离所述解耦结构的表面,所述天线装置还包括射频线,所述射频线用于将所述射频芯片和所述天线辐射体电连接。
本申请实施例还提供了一种电子设备,所述电子设备包括主板和本申请上述实施例提供的天线装置,所述天线模组与所述主板电性连接,所述天线辐射体用于在所述主板的控制下透过所述介质基板和所述解耦结构收发射频信号。
其中,所述电子设备还包括电池盖,所述电池盖构成所述介质基板,所述电池盖的材质为塑料、玻璃、蓝宝石和陶瓷中的任意一种或者多种。
其中,所述电池盖包括背板和环绕所述背板的侧板,所述侧板位于所述天线辐射体收发射频信号的预设方向范围内,所述解耦结构位于所述侧板面对所述天线辐射体的一侧,所述侧板构成所述介质基板。
其中,所述电池盖包括背板和环绕所述背板的侧板,所述背板位于所述天线辐射体收发射频信号的预设方向范围内,所述解耦结构位于所述背板面对所述天线辐射体的一侧,所述背板构成所述介质基板。
其中,所述电子设备还包括屏幕,所述屏幕构成所述介质基板。
其中,当所述电子设备的保护套位于所述天线辐射体收发射频信号的预设方向范围内时,所述电子设备的保护套构成所述介质基板。
请一并参阅图1和图2,本申请实施例提供的天线装置10包括天线模组100和介质基板200,所述天线模组100包括多个阵列设置的天线辐射体110,每一个所述天线辐射体110形成有至少一个馈电端口111,相邻的两个所述天线辐射体110的馈电端口111之间形成第一耦合信号;所述介质基板200间隔设置于所述天线模组100一侧,且所述介质基板200上设置有解耦结构210,所述解耦结构210在所述介质基板200上的正投影覆盖所述天线模组100在所述介质基板200上的正投影;所述解耦结构210包括一层或多层解耦阵列层220,所述解耦阵列层220对于所述天线模组100收发的预设频段的射频信号具有第一谐振特性,所述第一谐振特性用于产生解耦合信号,所述解耦合信号用于抵消所述第一耦合信号,以增加相邻的两个所述天线辐射体110的馈电端口111之间的隔离度。
其中,隔离度是指为了尽量减少各种干扰对天线辐射体110的影响所采取的抑制干扰措施。
在本实施方式中,所述天线模组100与解耦结构210间隔设置,且天线模组100位于解耦结构210背离介质基板200的一侧。所述天线模组100可以包括一个天线辐射体110,也可以是多个天线辐射体110形成的天线阵列。所述天线模组100可以为2×2的天线阵列,可以为2×4的天线阵列,也可以为4×4的天线阵列。当天线模组100包括多个天线辐射体110时,多个天线辐射体110可以工作于同一频段,多个天线辐射体110也可以工作于不同的频段,当多个天线辐射体110也可以工作于不同的频段时,有助于扩大天线模组100的频段范围。进一步的,每个天线辐射体110具有至少一个馈电端口111,相邻两个馈电端口111之间形成第一耦合信号,所述第一耦合信号可以使得相邻的天线辐射体110发出的射频信号产生相互的耦合,即第一天线发出的第一信号经过解耦结构210以及介质基板200反射后,部分第一信号会被第二天线接收,从而可能使得天线模组100出现频率偏移的问题,不利于天线模组100的正常工作。为此,需要将第一耦合信号抵消,以确保天线模组100具有稳定的辐射效果。
进一步的,所述解耦结构210至少部分位于所述天线辐射体110收发射频信号的预设方向范围内,以使得所述天线辐射体110收发的射频信号产生二次谐振。当解耦结构210位于天线辐射体110收发射频信号的预设方向范围内时,解耦结构210所具有的第一谐振特性可以使得射频信号产生谐振,并具有第一谐振特性,进而提高天线辐射体110收发的射频信号的透过率,即解耦结构210的存在使得天线辐射体110的对应频段的辐射效率得以提高。且第一谐振特性还用于产生解耦合信号,所述解耦合信号用于抵消所述第一耦合信号,以增加相邻的两个所述天线辐射体110的馈电端口111之间的隔离度,从而降低相邻两个天线辐射体110之间的互相耦合。
更进一步的,所述天线辐射体110位于所述解耦结构210背离所述介质基板200的一侧,经由所述解耦结构210匹配后的射频信号穿透所述介质基板200朝向背离所述天线辐射体110的方向辐射。
具体的,天线辐射体110产生的射频信号到达解耦结构210的表面时,由于解耦结构210具有第一谐振特性,可以使得射频信号产生谐振,进而提高了射频信号的透过率。由此,便可以使得介质基板200对射频信号具有更强的穿透性,即采用这种排布方式可以提高天线辐射体110的辐射增益,使得天线辐射体110性能增强。当解耦结构210产生的解耦合信号与相邻天线辐射体110的馈电端口111之间形成的第一耦合信号抵消时,可以增加相邻的两个所述天线辐射体110的馈电端口111之间的隔离度,降低相邻的两个所述天线辐射体110的馈电端口111之间的互相耦合。
所述天线模组100包括第一天线辐射体120和第二天线辐射体130,所述第一天线辐射体120具有第一馈电端口111a,所述第一馈电端口用于向所述第一天线辐射体120馈入第一电流信号,所述第一电流信号用于激发所述第一天线辐射体120在第一频段谐振,以收发第一频段的射频信号。所述第二天线辐射体130具有第二馈电端口111b,所述第二馈电端口111b用于向所述第二天线辐射体130馈入第二电流信号,所述第二电流信号用于激发所述第二天线辐射体130在第二频段谐振,第一馈电端口111a和第二馈电端口111b之间形成第一耦合信号。所述解耦阵列层220产生的所述解耦合信号用于抵消第一耦合信号,从而增加第一馈电端口111a和第二馈电端口111b之间的隔离度,进而降低第一天线辐射体120和第二天线辐射体130之间的相互耦合,减少天线模组100出现频率偏移的问题,以确保天线模组100的稳定工作。
其中,第一频段可以为高频信号,第二频段可以为低频信号。同样,第一频段可以为 低频信号,第二频段可以为高频信号。
根据3GPP TS 38.101协议的规定,5G主要使用两段频率:FR1频段和FR2频段。FR1频段的频率范围是450MHz~6GHz,又叫sub-6GHz频段;FR2频段的频率范围是24.25GHz~52.6GHz,通常叫它毫米波(mm Wave)。3GPP 15版本规范了目前5G毫米波频段如下:n257(26.5~29.5GHz),n258(24.25~27.5GHz),n261(27.5~28.35GHz)和n260(37~40GHz)。第一频段可以为n257覆盖的频段,此时,第二频段可以为n258、n260和n261覆盖的频段。
在一种实施方式中,所述解耦阵列层220对于所述天线模组100收发的预设频段的射频信号具有第二谐振特性,所述第二谐振特性用于对所述预设频段的射频信号产生二次谐振,以增加所述介质基板200在设置有所述解耦结构210所在位置对所述预设频段的射频信号的透过率。
其中,所述解耦阵列层220还用于使得预设频段的射频信号具有双极化特性。所述预设频段至少包括3GPP毫米波全频段。
在另一种实施方式中,所述预设频段的射频信号对所述介质基板200具有第一透过率,所述介质基板200在设置有所述解耦结构210的位置具有第二透过率,所述第二透过率大于所述第一透过率。
其中,射频信号可以穿透所述介质基板200和所述解耦结构210,射频信号可以为毫米波信号。所述解耦结构210位于介质基板200的一侧。所述解耦结构210包括解耦阵列层220,所述解耦阵列层220在预设频段下具有第一谐振特性,用于使得射频信号产生谐振,使得射频信号具有更高的透过率,即介质基板200在解耦结构210的对应区域内,对预设频段的射频信号具有第二透过率,且满足第二透过率大于第一透过率。也就是说,经过解耦阵列层220产生的谐振特性使得射频信号在解耦结构210的对应区域具有更高的透过率。当所述解耦结构210位于天线辐射体110的辐射方向范围内时,可以提高天线辐射体110的辐射增益。
在一种实施方式中,所述解耦合信号与所述第一耦合信号的幅值相同,相位相反。
具体的,解耦合信号和第一耦合信号均为射频信号,具有幅值和相位,当解耦合信号的幅值与第一耦合信号的幅值大小相等,且解耦合信号和第一耦合信号的相位相反时,解耦合信号和第一耦合信号可以完全抵消掉,也就是说,由于解耦结构210的存在,使得解耦结构210针对射频信号产生的解耦合信号与相邻两个天线辐射体110的馈电端口111之间的第一耦合信号可以完全抵消,可以提高相邻两个天线辐射体110的馈电端口111之间的隔离度,从而降低相邻两个天线辐射体110之间产生的相互耦合,避免天线模组100产生频率偏移,确保天线模组100处于稳定的工作频段。
在一种实施方式中,在所述第一耦合信号的幅值小于或者等于预设阈值的情况下,所述解耦结构210位于所述天线模组100收发预设频段的射频信号的辐射方向范围内,以使得所述解耦结构210产生的所述解耦合信号抵消所述第一耦合信号。
其中,所述解耦结构210位于所述天线模组100收发预设频段的射频信号的辐射方向范围内是指天线模组100用于收发所述射频信号的波束会以一定的角度穿过所述解耦结构210所在的平面。
具体的,当第一耦合信号的幅值大小小于或者等于预设阈值时,需要将解耦结构210设置于天线模组100收发射频信号的辐射方向范围内,此时,满足解耦合信号与第一耦合信号抵消的条件,可以提高相邻两个天线辐射体110的馈电端口111之间的隔离度,从而降低相邻两个天线辐射体110之间产生的相互耦合,避免天线模组100产生频率偏移,确保天线模组100处于稳定的工作频段。其中,预设阈值可以为-10dB。
进一步的,所述天线模组100收发预设频段的射频信号的主瓣方向与所述解耦结构210 所在平面保持垂直,所述辐射方向范围至少包括所述主瓣方向及与所述主瓣方向形成锐角的方向范围。
当天线模组100收发射频信号的主瓣方向垂直于解耦结构210所在平面,且天线模组100收发射频信号的主瓣方向垂直于介质基板200所在平面时,可以较好将解耦合信号与第一耦合信号进行抵消,如此便可以提高相邻天线辐射体110之间的隔离度,降低相邻天线辐射体110之间产生互相耦合的情况。
在另一种实施方式中,在所述第一耦合信号的幅值大于预设阈值的情况下,所述解耦结构210所在的平面与所述天线模组100收发预设频段的射频信号的主瓣方向形成锐角,以使得所述解耦结构210产生的所述解耦合信号抵消所述第一耦合信号。
具体的,当第一耦合信号的幅值大于预设阈值时,表明相邻两个天线辐射体110的馈电端口111之间的隔离度很差,也就是说,此时相邻两个天线辐射体110之间容易产生相互的耦合,当所述解耦结构210所在平面与所述天线模组100收发预设频段的射频信号的主瓣方向形成锐角,或者形成近似的直角时,可以降低相邻两个天线辐射体110之间产生相互的耦合。
在又一种实施方式中,在所述辐射方向范围内,设置有所述耦合结构210的所述介质基板200具有对所述预设频段的射频信号的反射信号,且所述反射信号的幅值小于或者等于预设阈值。即在第一耦合信号幅值较小的情况下,设计解耦结构210使得天线装置10在0度和大角度方向的反射系数S11小于或等于-10dB。
具体的,通过调节天线模组100与介质基板200之间的距离Gap,可以使得第一耦合信号与解耦合信号之间满足相位相反的条件,为此,可以使得解耦合信号与第一耦合信号进行抵消,可以提高相邻两个天线辐射体110的馈电端口111之间的隔离度,从而降低相邻两个天线辐射体110之间产生的相互耦合,避免天线模组100产生频率偏移,确保天线模组100处于稳定的工作频段。
进一步的,当所述天线模组100和所述解耦结构210之间的距离小于所述预设频段的射频信号的波长的四分之一倍时,所述解耦合信号与所述第一耦合信号的相位相反。
请继续参阅图3,所述天线装置10包括承载膜层211,所述承载膜层211用于承载所述解耦结构210,所述解耦结构210具有一层解耦阵列层220,所述解耦阵列层220包括若干个解耦单元221,所述解耦单元221为栅格状贴片。
在一种实施方式中,所述解耦阵列层220包括多个阵列设置的解耦单元221,所述解耦单元221由导电材料制成,所述解耦单元221具有在所述预设频段内的双频双极化谐振特性。
其中,解耦单元221可以为金属材质。多个解耦单元221阵列排布,以使得预设频段的射频信号具有双频双极化的谐振特性。即使得射频信号具有多个工作频段,且具有多个辐射方向。
在一种实施方式中,所述解耦结构210包括一层解耦阵列层220,所述解耦阵列层220设置于所述承载膜层211,以增大所述预设频段的射频信号的透过率。
具体的,所述解耦阵列层220为单层结构,所述解耦阵列层220可以通过粘接件222连接于所述承载膜层211,所述粘接件222可以为胶体。所述解耦阵列层220具有对预设频段的射频信号的谐振特性,可以使得预设频段的射频信号产生谐振,进而使得预设频段的射频信号具有更高的透过率。
进一步的,在一种实施方式中,所述解耦结构210在所述介质基板200上的正投影完全覆盖所述介质基板200。即承载膜层211覆盖整个介质基板200,且解耦结构210承载于所述承载膜层211,并对应介质基板200的完全区域设置。即介质基板200的全部区域对预 设频段的射频信号均具有较高的透过率,同时,由于所述解耦结构210在所述介质基板200上的正投影完全覆盖所述介质基板200,有助于降低介质基板200制备工艺的复杂程度。
在另一种实施方式中,所述解耦结构210在所述介质基板200上的正投影覆盖介质基板200的部分区域,此时,解耦结构210覆盖的面积小于介质基板200的面积,解耦结构210对应介质基板200的局部区域设置。从而可以使得介质基板200的不同区域针对预设频段的射频信号呈现出不同的透过率,可以对介质基板200针对预设频段的射频信号的透过率进行灵活的配置。
进一步的,所述若干个解耦单元221呈阵列分布,可以使得解耦单元221具有的谐振特性较为均衡,使得解耦单元221产生的解耦合信号具有较高的一致性,此时,解耦合信号可以批量化与第一耦合信号产生抵消,有助于提高相邻天线辐射体110之间的隔离度,减少相邻天线辐射体110之间的相互耦合。
请继续参阅图4,所述解耦结构210包括承载膜层211以及位于所述承载膜层211两侧的第一阵列层212和第二阵列层213,所述第一阵列层212具有对预设频段的射频信号的第一反射系数,且具有对预设频段的射频信号的第一透射系数,所述第二阵列层213具有对预设频段的射频信号的第二反射系数,且具有对预设频段的射频信号的第二透射系数,所述第一反射系数与所述第二反射系数不同,且所述第一透射系数与所述第二透射系数不同。
也就是说,在本实施方式中,第一阵列层212和第二阵列层213具有不同的反射以及透射系数,射频信号到达第一阵列层212和第二阵列层213呈现出不同的反射以及透射特性。
所述解耦结构210包括间隔设置的第一阵列层212和第二阵列层213,所述第一阵列层212和所述第二阵列层213均设置于所述承载膜层211,所述第一阵列层212和所述第二阵列层213分别位于所述承载膜层211相对的两侧,且所述第一阵列层212相对于所述第二阵列层213邻近所述介质基板200设置。
具体的,所述第一阵列层212位于所述介质基板200和所述承载膜层211之间,所述第二阵列层213位于所述承载膜层211背离所述第一阵列层212的一侧。所述第一阵列层212和所述第二阵列层213中的至少一个具有对预设频段的射频信号的谐振特性。在一种实施方式中,第一阵列层212对预设频段的射频信号具有谐振特性,可以使得预设频段的射频信号产生谐振,进而提高预设频段的射频信号的透过率。在另一种实施方式中,第二阵列层213对预设频段的射频信号具有谐振特性,可以使得预设频段的射频信号产生谐振,进而提高预设频段的射频信号的透过率。在又一种实施方式中,第一阵列层212和第二阵列层213对预设频段的射频信号均具有谐振特性,可以使得预设频段的射频信号产生谐振,进而提高预设频段的射频信号的透过率。
在一种实施方式中,所述第一阵列层212在所述承载膜层211上的投影和所述第二阵列层213在所述承载膜层211上的投影至少部分不重叠。即第一阵列层212和第二阵列层213在厚度方向上完全错位排布,或者,第一阵列层212和第二阵列层213在厚度方向上部分结构错位排布,可以减小第一阵列层212和第二阵列层213的谐振特性产生相互的干扰,有助于射频信号更加稳定的透过介质基板200。
请继续参阅图5,所述第一阵列层212相对于所述第二阵列层213邻近所述介质基板200设置,所述第一阵列层212具有通孔212a,至少部分所述第二阵列层213在所述第一阵列层212上的正投影位于所述通孔212a内。
其中,所述通孔212a为圆形、椭圆形、正方形、三角形、长方形、六边形、环形、十字形或者耶路撒冷十字形。
在本实施方式中,所述第一阵列层212具有通孔212a,且通孔212a的尺寸大于第二阵列层213的轮廓尺寸,且第二阵列层213在第一阵列层212上的投影完全落入到所述通孔212a内。此时,预设频段的射频信号经过第二阵列层213的谐振作用后可以穿过第一阵列层212上的通孔212a传输,从而减少第一阵列层212对经过第二阵列层213的谐振作用后的射频信号的干扰,有助于维持射频信号的稳定传输。且第一阵列层212和第二阵列层213相互配合可以对预设频段的射频信号进行空间阻抗匹配,可以实现对射频信号的频率进行调节。
请继续参阅图6,所述第一阵列层212相对于所述第二阵列层213邻近所述介质基板200设置,所述第一阵列层212具有第一通孔212b,所述第二阵列层213具有第二通孔212c,至少部分所述第二阵列层213在所述承载膜层211上的正投影与至少部分所述第一阵列层212在所述承载膜层211上的正投影错位排布。
所述解耦阵列层220包括第一阵列层212和第二阵列层213,所述第一阵列层212具有第一通孔212b,所述第二阵列层213具有第二通孔212c,当所述第一阵列层212和所述第二阵列层213均位于所述天线辐射体110收发射频信号的预设方向范围内,且所述第一通孔212b的尺寸与所述第二通孔212c的尺寸不同时,所述天线辐射体110发出的射频信号穿过所述第一通孔212b后的带宽与所述天线辐射体110发出的射频信号穿过所述第二通孔212c后的带宽不同。
在一种实施方式中,当所述第一通孔212b的径向尺寸大于所述第二通孔212c的径向尺寸时,所述天线辐射体110发出的射频信号穿过所述第一通孔212b后的带宽大于所述天线辐射体110发出的射频信号穿过所述第二通孔212c后的带宽。也就是说,射频信号穿过第一通孔212b和第二通孔212c后的带宽与第一通孔212b以及第二通孔212c的径向尺寸呈正相关。当第一通孔212b的经常尺寸大于第二通孔212c的径向尺寸时,射频信号穿过第一通孔212b后的带宽大于射频信号穿过第二通孔212c后的带宽,由此,通过控制第一阵列层212上的第一通孔212b的径向尺寸以及第二阵列层213上的第二通孔212c的径向尺寸的大小,就可以对射频信号的带宽进行调节,可以使得射频信号覆盖5G全频段。
请继续参阅图7,所述天线模组100包括间隔排布的第一天线辐射体120和第二天线辐射体130,所述第一天线辐射体120与所述解耦结构210之间的距离为第一距离d1,所述第二天线辐射体130与所述解耦结构210之间的距离为第二距离d2,所述第一距离d1与所述第二距离d2相等。
具体的,当第一天线辐射体120和解耦结构210之间的距离与第二天线辐射体130和解耦结构210之间的距离保持一致时,可以使得第一天线辐射体120收发预设频段的射频信号的主瓣方向与解耦结构210之间的相对位置关系,且使得第二天线辐射体130收发预设频段的射频信号的主瓣方向与解耦结构210之间的相对位置关系保持一致,此时,耦合结构和介质基板200相互配合更容易使得解耦合信号与第一耦合信号抵消,从而降低相邻天线辐射体110之间的相互耦合。此外,当第一距离与第二距离保持一致时,可以使得天线模组100与解耦结构210之间的距离保持均匀一致,有助于减小天线装置10的厚度。
请继续参阅图8和图9,所述天线模组100还包括基板120和射频芯片130,所述天线辐射体110位于所述基板120邻近所述解耦结构210的表面,所述射频芯片130位于所述基板120背离所述解耦结构210的表面,所述天线装置10还包括射频线140,所述射频线140用于将所述射频芯片130和所述天线辐射体110电连接。
其中,所述基板120可以为多层PCB板采用高密度互联(High Density Inverter,HDI)工艺制备而成。所述射频芯片130位于所述基板120背离所述天线辐射体110的一侧。所述天线辐射体110具有至少一个馈电端口,所述馈电端口用于接收来自射频芯片130的射 频信号,从而可以产生不同频段的射频信号。如图9所示,在一种实施方式中,所述天线辐射体110具有第一馈电端口111和第二馈电端口112,第一馈电端口111和第二馈电端口112分别沿天线辐射体110相邻的两个侧边设置,并相对于对应的侧边居中。第一馈电端口111可以馈入第一极化的第一电流,第二馈电端口112可以馈入第二极化方向的第二电流,第一电流和第二电流的极化方向相互正交,且第一电流和第二电流具有不同的频率,从而在所述天线辐射体110上激励出频率不同且相互正交的两个谐振模式,以实现双频双极化射频信号的收发。
进一步的,将所述天线辐射体110位于所述基板120邻近所述解耦结构210的表面,可以便于天线辐射体110产生的射频信号朝向所述解耦结构210的方向传输,由于解耦结构210具有谐振特性,经过解耦结构210的谐振之后,射频信号具有更强的穿透性,可以增强天线辐射体110的辐射增益。且所述射频芯片130位于所述基板120背离所述解耦结构210的表面,可以减小射频芯片130对解耦结构210产生不必要的干扰,有助于确保解耦结构210的谐振特性较为稳定,进而保证天线辐射体110的辐射特征较为稳定。
所述基板120上具有限位孔120a,所述射频线140收容于所述限位孔120a内,所述射频线140的一端电连接于所述天线辐射体110,另一端电连接于所述射频芯片130,所述射频芯片130产生的射频信号通过所述射频线140传输至所述天线辐射体110。
具体的,为了将射频芯片130与天线辐射体110进行电连接,需要在基板120上开设限位孔120a,通过在限位孔120a内设置射频线140,以将天线辐射体110和射频芯片130进行电连接,从而将射频芯片130上的射频信号传输至天线辐射体110,然后再由天线辐射体110根据射频信号产生射频信号。
所述基板120上具有多个金属化过孔120b,所述过孔120b环绕所述天线辐射体110设置,以对相邻两个所述天线辐射体110进行隔离。
其中,基板120上具有若干个均匀排布的金属化的过孔120b,金属化的过孔120b环绕在天线辐射体110的周围。其中,金属化的过孔120b的作用是在天线模组100中实现隔离去耦。即由于金属化的过孔120b的存在,可以阻止相邻两个天线辐射体110之间因相互耦合而产生辐射干扰,确保天线辐射体110处于稳定的工作状态。
请继续参阅图10,所述天线装置10还包括馈地层150,所述天线辐射体110位于所述基板120邻近所述解耦结构210的表面,所述射频芯片130位于所述基板120背离所述解耦结构210的表面,所述馈地层150位于所述基板120和所述射频芯片130之间,所述馈地层150构成所述天线辐射体110的地极,所述馈地层150具有缝隙150a,所述射频芯片130和所述馈地层150之间设置有馈电走线160,所述馈电走线160与所述射频芯片130电连接,所述馈电走线160在所述馈地层150上的投影至少部分位于所述缝隙150a内,所述馈电走线160通过所述缝隙150a对所述天线辐射体110进行耦合馈电。
射频芯片130具有输出端130a,所述输出端130a用于产生射频信号,射频芯片130产生的射频信号传输至馈电走线160,由于馈电走线160对应馈地层150上的缝隙150a设置,因此,馈电走线160可将接收到的射频信号通过缝隙150a以耦合的方式传输至天线辐射体110上的馈电端口,天线辐射体110耦合到来自馈电走线160的射频信号可产生预设频段的射频信号。
进一步的,馈地层150构成天线辐射体110的地极,天线辐射体110与馈地层150不用直接电连接,而是通过耦合的方式将天线辐射体110接地。馈电走线160在所述馈地层150上的投影至少部分位于缝隙150a内,以便于馈电走线160通过缝隙150a对天线辐射体110进行耦合馈电。
请继续参阅图11,所述电子设备1包括主板20和如上任意实施例提供的天线装置10, 所述天线模组100与所述主板20电性连接,所述天线辐射体110用于在所述主板20的控制下透过所述介质基板200和所述解耦结构210收发射频信号。
其中,所述电子设备1可以是任何具备通信和存储功能的设备。例如:平板电脑、手机、电子阅读器、遥控器、个人计算机(Personl Computer,PC)、笔记本电脑、车载设备、网络电视、可穿戴设备等具有网络功能的智能设备。
其中,所述主板20可以为电子设备1的PCB板。所述主板20和所述介质基板200之间形成收容空间A,所述天线模组100位于所述收容空间A内,且所述天线模组100电连接于所述主板20。所述天线模组100可以包括一个天线辐射体110,也可以包括多个天线辐射体110,所述天线模组100可以为多个天线辐射体110阵列形成。在所述主板20的控制下,所述天线辐射体110可以透过所述介质基板200收发射频信号。且由于解耦结构210具有谐振特性,可以使得射频信号产生谐振特性,以增强射频信号的穿透性,射频信号在穿过介质基板200时具有更高的透过率。
请继续参阅图12,所述电子设备1还包括电池盖30,所述电池盖30构成所述介质基板200,所述电池盖30的材质为塑料、玻璃、蓝宝石和陶瓷中的任意一种或者多种。
具体的,在电子设备1的结构排布中,电池盖30至少部分结构位于天线辐射体110收发射频信号的预设方向范围内,因此,电池盖30也会对天线辐射体110的辐射特性产生影响。为此,本实施方式中,将电池盖30作为介质基板200,可以使得天线辐射体110在电子设备1的结构排布中具有稳定的辐射性能。同时,电池盖30采用透波材质制成,电池盖30的材质可以为塑料、玻璃、蓝宝石和陶瓷等,还可以为上述材质的相互组合。
请继续参阅图13,所述电池盖30包括背板31和环绕所述背板31的侧板32,所述侧板32位于所述天线辐射体110收发射频信号的预设方向范围内,所述解耦结构210位于所述侧板32面对所述天线辐射体110的一侧,所述侧板32构成所述介质基板200。
具体的,当所述天线辐射体110朝向所述电池盖30的侧板32时,可以采用侧板32对天线辐射体110收发的射频信号进行空间阻抗匹配,此时,将侧板32作为介质基板200。侧板32面对天线辐射体110的一侧设置有解耦结构210,解耦结构210具有对预设频段的射频信号的谐振特性,可以使得射频信号产生谐振特性。如此,天线辐射体110收发的射频信号可以透过侧板32进行传输。将侧板32作为介质基板200对天线辐射体110进行空间阻抗匹配,充分考虑了天线辐射体110在电子设备1的整机环境中的结构排布,如此便可以保证天线辐射体110在整机环境中的辐射效果。
请继续参阅图14,所述电池盖30包括背板31和环绕所述背板31的侧板32,所述背板31位于所述天线辐射体110收发射频信号的预设方向范围内,所述解耦结构210位于所述背板31面对所述天线辐射体110的一侧,所述背板31构成所述介质基板200。
具体的,当所述天线辐射体110朝向所述电池盖30的背板31时,可以采用背板31对天线辐射体110收发的射频信号进行空间阻抗匹配,此时,将背板31作为介质基板200。背板31面对天线辐射体110的一侧设置有解耦结构210,解耦结构210具有对预设频段的射频信号的谐振特性,可以使得射频信号产生谐振特性。如此,天线辐射体110收发的射频信号可以透过背板31进行传输。将背板31作为介质基板200对天线辐射体110进行空间阻抗匹配,充分考虑了天线辐射体110在电子设备1的整机环境中的结构排布,如此便可以保证天线辐射体110在整机环境中的辐射效果。
请继续参阅图15,所述电子设备1还包括屏幕40,所述屏幕40构成所述介质基板200。
具体的,当所述天线辐射体110朝向所述屏幕40时,可以采用屏幕40对天线辐射体110收发的射频信号进行空间阻抗匹配,此时,将屏幕40作为介质基板200。屏幕40面对天线辐射体110的一侧设置有解耦结构210,解耦结构210具有对预设频段的射频信号的谐 振特性,可以使得射频信号产生谐振特性。如此,天线辐射体110收发的射频信号可以透过屏幕40进行传输。将屏幕40作为介质基板200对天线辐射体110进行空间阻抗匹配,充分考虑了天线辐射体110在电子设备1的整机环境中的结构排布,如此便可以保证天线辐射体110在整机环境中的辐射效果。
请继续参阅图16,当所述电子设备1的保护套50位于所述天线辐射体110收发射频信号的预设方向范围内时,所述电子设备1的保护套50构成所述介质基板200。
具体的,当所述天线辐射体110朝向所述保护套50时,可以采用保护套50对天线辐射体110收发的射频信号进行空间阻抗匹配,此时,将保护套50作为介质基板200。保护套50面对天线辐射体110的一侧设置有解耦结构210,解耦结构210具有对预设频段的射频信号的谐振特性,可以使得射频信号产生谐振特性。如此,天线辐射体110收发的射频信号可以透过保护套50进行传输。将保护套50作为介质基板200对天线辐射体110进行空间阻抗匹配,充分考虑了天线辐射体110在电子设备1的使用环境中的结构排布,如此便可以保证天线辐射体110在整机使用环境中的辐射效果。
请继续参阅图17、图18和图19,图17是天线模组在集成解耦结构的介质基板、自由空间、无解耦结构介质基板下的天线驻波曲线图。图18是天线模组在集成解耦结构的解耦结构、自由空间、无解耦结构介质基板下的天线增益曲线图。图19是天线模组在集成解耦结构的解耦结构、自由空间、无解耦结构介质基板下的隔离度曲线图。
根据图17,曲线①是天线模组在自由空间下的天线驻波曲线图。曲线②是天线模组在无解耦结构介质基板下的天线驻波曲线图。曲线③是天线模组在有解耦结构介质基板下的天线驻波曲线图。针对回波损耗在-10dB以下,频率范围26.6GHz-29.8GHz时,曲线③的回波损耗最小,说明解耦结构提供部分反射,改善了天线辐射体的馈电端口的S参数。
根据图18,曲线①是天线模组在自由空间下的天线增益曲线图。曲线②是天线模组在无解耦结构介质基板下的天线增益曲线图。曲线③是天线模组在有解耦结构介质基板下的天线增益曲线图。从图中可以看出,在频率范围25.5GHz-29.7GHz范围内,曲线③对应的天线模组的辐射增益最大。由于解耦结构使得介质基板具有较小的反射系数,最大程度缓解了介质基板的材料加载效应,改善了天线方向图,从而使得天线辐射增益达到最大。
根据图19,曲线①是天线模组在自由空间下的天线馈电端口之间的隔离度曲线图。曲线②是天线模组在无解耦结构介质基板下的天线馈电端口之间的隔离度曲线图。曲线③是天线模组在有解耦结构介质基板下的天线馈电端口之间的隔离度曲线图。从图中可以看出,在频率范围25.5GHz-29.7GHz范围内,曲线③对应的天线模组的辐射增益最大。由于解耦结构使得介质基板具有较小的反射系数,最大程度缓解了介质基板的材料加载效应,改善了天线方向图,从而使得天线辐射增益达到最大。
以上对本申请实施例进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (23)

  1. 一种天线装置,其特征在于,包括:
    天线模组,所述天线模组包括多个阵列设置的天线辐射体,每一个所述天线辐射体形成有至少一个馈电端口,相邻的两个所述天线辐射体的馈电端口之间形成第一耦合信号;
    介质基板,所述介质基板间隔设置于所述天线模组一侧,且所述介质基板上设置有解耦结构,所述解耦结构在所述介质基板上的正投影覆盖所述天线模组在所述介质基板上的正投影;
    所述解耦结构包括一层或多层解耦阵列层,所述解耦阵列层对于所述天线模组收发的预设频段的射频信号具有第一谐振特性,所述第一谐振特性用于产生解耦合信号,所述解耦合信号用于抵消所述第一耦合信号,以增加相邻的两个所述天线辐射体的馈电端口之间的隔离度。
  2. 如权利要求1所述的天线装置,其特征在于,所述解耦阵列层对于所述天线模组收发的预设频段的射频信号具有第二谐振特性,所述第二谐振特性用于对所述预设频段的射频信号产生二次谐振,以增加所述介质基板在设置有所述解耦结构所在位置对所述预设频段的射频信号的透过率。
  3. 如权利要求1所述的天线装置,其特征在于,所述预设频段的射频信号对所述介质基板具有第一透过率,所述介质基板在设置有所述解耦结构的位置具有第二透过率,所述第二透过率大于所述第一透过率。
  4. 如权利要求1所述的天线装置,其特征在于,所述解耦合信号与所述第一耦合信号的幅值相同,相位相反。
  5. 如权利要求1所述的天线装置,其特征在于,在所述第一耦合信号的幅值小于或者等于预设阈值的情况下,所述解耦结构位于所述天线模组收发预设频段的射频信号的辐射方向范围内,以使得所述解耦结构产生的所述解耦合信号抵消所述第一耦合信号。
  6. 如权利要求5所述的天线装置,其特征在于,所述天线模组收发预设频段的射频信号的主瓣方向与所述解耦结构所在平面保持垂直,所述辐射方向范围至少包括所述主瓣方向及与所述主瓣方向形成锐角的方向范围。
  7. 如权利要求1所述的天线装置,其特征在于,在所述第一耦合信号的幅值大于预设阈值的情况下,所述解耦结构所在的平面与所述天线模组收发预设频段的射频信号的主瓣方向形成锐角,以使得所述解耦结构产生的所述解耦合信号抵消所述第一耦合信号。
  8. 如权利要求5所述的天线装置,其特征在于,在所述辐射方向范围内,设置有所述耦合结构的所述介质基板具有对所述预设频段的射频信号的反射信号,且所述反射信号的幅值小于或者等于预设阈值。
  9. 如权利要求8所述的天线装置,其特征在于,当所述天线模组和所述解耦结构之间的距离小于所述预设频段的射频信号的波长的四分之一倍时,所述解耦合信号与所述第一耦合信号的相位相反。
  10. 如权利要求1所述的天线装置,其特征在于,所述解耦结构具有一层解耦阵列层,所述解耦阵列层包括若干个解耦单元,所述解耦单元为栅格状贴片。
  11. 如权利要求10所述的天线装置,其特征在于,所述若干个解耦单元呈阵列分布。
  12. 如权利要求1所述的天线装置,其特征在于,所述解耦结构包括承载膜层以及位于所述承载膜层两侧的第一阵列层和第二阵列层,所述第一阵列层具有对预设频段的射频信号的第一反射系数,且具有对预设频段的射频信号的第一透射系数,所述第二阵列层具有对预设频段的射频信号的第二反射系数,且具有对预设频段的射频信号的第二透射系数,所述第一反射系数与所述第二反射系数不同,且所述第一透射系数与所述第二透射系数不同。
  13. 如权利要求12所述的天线装置,其特征在于,所述第一阵列层相对于所述第二阵列层邻近所述介质基板设置,所述第一阵列层具有通孔,至少部分所述第二阵列层在所述第一阵列层上的正投影位于所述通孔内。
  14. 如权利要求12所述的天线装置,其特征在于,所述第一阵列层相对于所述第二阵列层邻近所述介质基板设置,所述第一阵列层具有第一通孔,所述第二阵列层具有第二通孔,至少部分所述第二阵列层在所述承载膜层上的正投影与至少部分所述第一阵列层在所述承载膜层上的正投影错位排布。
  15. 如权利要求14所述的天线装置,其特征在于,所述第一通孔的径向尺寸大于所述第二通孔的径向尺寸。
  16. 如权利要求1-15任意一项所述的天线装置,其特征在于,所述天线模组包括间隔排布的第一天线辐射体和第二天线辐射体,所述第一天线辐射体与所述解耦结构之间的距离为第一距离,所述第二天线辐射体与所述解耦结构之间的距离为第二距离,所述第一距离与所述第二距离相等。
  17. 如权利要求1所述的天线装置,其特征在于,所述天线模组还包括天线辐射体、基板和射频芯片,所述天线辐射体位于所述基板邻近所述解耦结构的表面,所述射频芯片位于所述基板背离所述解耦结构的表面,所述天线装置还包括射频线,所述射频线用于将所述射频芯片和所述天线辐射体电连接。
  18. 一种电子设备,其特征在于,所述电子设备包括主板和如权利要求1-17任意一项所述的天线装置,所述天线模组与所述主板电性连接,所述天线辐射体用于在所述主板的控制下透过所述介质基板和所述解耦结构收发射频信号。
  19. 如权利要求18所述的电子设备,其特征在于,所述电子设备还包括电池盖,所述电池盖构成所述介质基板,所述电池盖的材质为塑料、玻璃、蓝宝石和陶瓷中的任意一种或者多种。
  20. 如权利要求19所述的电子设备,其特征在于,所述电池盖包括背板和环绕所述背板的侧板,所述侧板位于所述天线辐射体收发射频信号的预设方向范围内,所述解耦结构位于所述侧板面对所述天线辐射体的一侧,所述侧板构成所述介质基板。
  21. 如权利要求19所述的电子设备,其特征在于,所述电池盖包括背板和环绕所述背板的侧板,所述背板位于所述天线辐射体收发射频信号的预设方向范围内,所述解耦结构位于所述背板面对所述天线辐射体的一侧,所述背板构成所述介质基板。
  22. 如权利要求18所述的电子设备,其特征在于,所述电子设备还包括屏幕,所述屏幕构成所述介质基板。
  23. 如权利要求18所述的电子设备,其特征在于,当所述电子设备的保护套位于所述天线辐射体收发射频信号的预设方向范围内时,所述电子设备的保护套构成所述介质基板。
PCT/CN2020/095215 2019-06-30 2020-06-09 天线装置及电子设备 WO2021000705A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910582145.X 2019-06-30
CN201910582145.XA CN112234344B (zh) 2019-06-30 2019-06-30 天线装置及电子设备

Publications (1)

Publication Number Publication Date
WO2021000705A1 true WO2021000705A1 (zh) 2021-01-07

Family

ID=74100617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/095215 WO2021000705A1 (zh) 2019-06-30 2020-06-09 天线装置及电子设备

Country Status (2)

Country Link
CN (1) CN112234344B (zh)
WO (1) WO2021000705A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113067121A (zh) * 2021-03-24 2021-07-02 Oppo广东移动通信有限公司 电子设备
CN113437521A (zh) * 2021-06-30 2021-09-24 Oppo广东移动通信有限公司 天线模组及通信设备
CN113552539A (zh) * 2021-06-22 2021-10-26 珠海市海米软件技术有限公司 一种提高毫米波雷达收发隔离度的谐振电磁解耦构件
CN113571909A (zh) * 2021-06-30 2021-10-29 上海中航光电子有限公司 天线单元、天线装置以及电子设备
CN113809553A (zh) * 2021-09-01 2021-12-17 深圳大学 波导透射阵列天线及其制造方法
CN114976606A (zh) * 2021-02-24 2022-08-30 华为技术有限公司 天线和通信装置
CN116544670A (zh) * 2023-07-07 2023-08-04 深圳市鑫龙通信技术有限公司 一种5g天线单元、天线阵列及天线系统
CN113552539B (zh) * 2021-06-22 2024-06-04 珠海市海米软件技术有限公司 一种提高毫米波雷达收发隔离度的谐振电磁解耦构件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130335286A1 (en) * 2012-06-18 2013-12-19 I-Shan Chen Decoupling Circuit and Antenna Device
CN204375977U (zh) * 2015-01-16 2015-06-03 中兴通讯股份有限公司 一种多输入多输出天线系统
CN104701625A (zh) * 2015-03-16 2015-06-10 酷派软件技术(深圳)有限公司 具备解耦合功能的天线组件、解耦合方法和解耦合系统
CN205543238U (zh) * 2016-03-25 2016-08-31 广东欧珀移动通信有限公司 一种双天线结构和移动终端
CN107706528A (zh) * 2016-08-08 2018-02-16 华为技术有限公司 天线系统
CN109149108A (zh) * 2018-09-05 2019-01-04 武汉虹信通信技术有限责任公司 一种去耦装置及mimo天线

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10381712B2 (en) * 2016-01-20 2019-08-13 Hewlett-Packard Development Company, L.P. Dual-band wireless LAN antenna
JP6766180B2 (ja) * 2016-05-26 2020-10-07 ザ チャイニーズ ユニバーシティー オブ ホンコンThe Chinese University Of Hongkong アンテナアレイ内の相互結合を低減するための装置および方法
CN106410396A (zh) * 2016-10-26 2017-02-15 华南理工大学 一种高低频滤波阵子交织排列的紧凑型多波束天线阵列
CN106876894A (zh) * 2017-01-18 2017-06-20 华为机器有限公司 一种阵列天线及通讯器件
US10931004B2 (en) * 2017-09-22 2021-02-23 Duke University Enhanced MIMO communication systems using reconfigurable metasurface antennas and methods of using same
CN107910642A (zh) * 2017-12-07 2018-04-13 厦门大学 一种具有解耦结构的二维波导缝隙阵列天线及其设计方法
CN109713448A (zh) * 2019-01-18 2019-05-03 清华大学 一种用于改善双极化阵列天线隔离度的解耦结构及带有该结构的天线

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130335286A1 (en) * 2012-06-18 2013-12-19 I-Shan Chen Decoupling Circuit and Antenna Device
CN204375977U (zh) * 2015-01-16 2015-06-03 中兴通讯股份有限公司 一种多输入多输出天线系统
CN104701625A (zh) * 2015-03-16 2015-06-10 酷派软件技术(深圳)有限公司 具备解耦合功能的天线组件、解耦合方法和解耦合系统
CN205543238U (zh) * 2016-03-25 2016-08-31 广东欧珀移动通信有限公司 一种双天线结构和移动终端
CN107706528A (zh) * 2016-08-08 2018-02-16 华为技术有限公司 天线系统
CN109149108A (zh) * 2018-09-05 2019-01-04 武汉虹信通信技术有限责任公司 一种去耦装置及mimo天线

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114976606B (zh) * 2021-02-24 2023-08-22 华为技术有限公司 天线和通信装置
CN114976606A (zh) * 2021-02-24 2022-08-30 华为技术有限公司 天线和通信装置
CN113067121B (zh) * 2021-03-24 2023-12-22 Oppo广东移动通信有限公司 电子设备
CN113067121A (zh) * 2021-03-24 2021-07-02 Oppo广东移动通信有限公司 电子设备
CN113552539A (zh) * 2021-06-22 2021-10-26 珠海市海米软件技术有限公司 一种提高毫米波雷达收发隔离度的谐振电磁解耦构件
CN113552539B (zh) * 2021-06-22 2024-06-04 珠海市海米软件技术有限公司 一种提高毫米波雷达收发隔离度的谐振电磁解耦构件
CN113571909A (zh) * 2021-06-30 2021-10-29 上海中航光电子有限公司 天线单元、天线装置以及电子设备
CN113437521B (zh) * 2021-06-30 2023-05-26 Oppo广东移动通信有限公司 天线模组及通信设备
CN113437521A (zh) * 2021-06-30 2021-09-24 Oppo广东移动通信有限公司 天线模组及通信设备
CN113571909B (zh) * 2021-06-30 2024-02-09 上海中航光电子有限公司 天线单元、天线装置以及电子设备
CN113809553A (zh) * 2021-09-01 2021-12-17 深圳大学 波导透射阵列天线及其制造方法
CN113809553B (zh) * 2021-09-01 2022-08-19 深圳大学 波导透射阵列天线及其制造方法
CN116544670A (zh) * 2023-07-07 2023-08-04 深圳市鑫龙通信技术有限公司 一种5g天线单元、天线阵列及天线系统
CN116544670B (zh) * 2023-07-07 2023-09-08 深圳市鑫龙通信技术有限公司 一种5g天线单元、天线阵列及天线系统

Also Published As

Publication number Publication date
CN112234344B (zh) 2022-03-15
CN112234344A (zh) 2021-01-15

Similar Documents

Publication Publication Date Title
WO2021000705A1 (zh) 天线装置及电子设备
WO2021082968A1 (zh) 天线模组及电子设备
WO2020233478A1 (zh) 天线单元及终端设备
US9871297B2 (en) Patch antenna element
WO2021104191A1 (zh) 天线单元及电子设备
CN112290193B (zh) 毫米波模组、电子设备及毫米波模组的调节方法
WO2018133427A1 (zh) 具有双极化性能的孔径耦合馈电的宽带贴片天线
US11201394B2 (en) Antenna device and electronic device
US20220085493A1 (en) Housing assembly, antenna device, and electronic device
WO2021109769A1 (zh) 壳体组件、天线装置及电子设备
WO2021083214A1 (zh) 天线单元及电子设备
CN111864362A (zh) 天线模组及电子设备
WO2021083223A1 (zh) 天线单元及电子设备
WO2020259281A1 (zh) 天线模组、电子设备及电子设备的天线频段调节方法
US20220094041A1 (en) Housing assembly, antenna device, and electronic device
WO2021212277A1 (zh) 双频双极化天线
WO2023138324A1 (zh) 一种天线结构、电子设备及无线网络系统
WO2021083212A1 (zh) 天线单元及电子设备
WO2021082852A1 (zh) 天线模组及电子设备
WO2021083213A1 (zh) 天线单元及电子设备
WO2021083220A1 (zh) 天线单元及电子设备
WO2021083219A1 (zh) 天线单元及电子设备
CN115882223A (zh) 双频双圆极化天线和天线系统
KR20150032992A (ko) 그라운드 패치 구조를 이용한 마이크로스트립 안테나
WO2024114283A1 (zh) 一种天线结构和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20834803

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20834803

Country of ref document: EP

Kind code of ref document: A1