WO2020262537A1 - マレイミド樹脂組成物、プリプレグ、積層板、樹脂フィルム、多層プリント配線板及び半導体パッケージ - Google Patents

マレイミド樹脂組成物、プリプレグ、積層板、樹脂フィルム、多層プリント配線板及び半導体パッケージ Download PDF

Info

Publication number
WO2020262537A1
WO2020262537A1 PCT/JP2020/025028 JP2020025028W WO2020262537A1 WO 2020262537 A1 WO2020262537 A1 WO 2020262537A1 JP 2020025028 W JP2020025028 W JP 2020025028W WO 2020262537 A1 WO2020262537 A1 WO 2020262537A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
group
resin composition
maleimide
vinyl group
Prior art date
Application number
PCT/JP2020/025028
Other languages
English (en)
French (fr)
Inventor
彩 笠原
智彦 小竹
大輔 藤本
Original Assignee
昭和電工マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工マテリアルズ株式会社 filed Critical 昭和電工マテリアルズ株式会社
Priority to JP2021527732A priority Critical patent/JP7484909B2/ja
Priority to CN202080045119.4A priority patent/CN113993951A/zh
Priority to KR1020217041639A priority patent/KR20220025731A/ko
Priority to EP20832667.8A priority patent/EP3992239A4/en
Priority to US17/621,498 priority patent/US20220363850A1/en
Publication of WO2020262537A1 publication Critical patent/WO2020262537A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/06Butadiene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/36Amides or imides
    • C08F222/40Imides, e.g. cyclic imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F285/00Macromolecular compounds obtained by polymerising monomers on to preformed graft polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F287/00Macromolecular compounds obtained by polymerising monomers on to block polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3415Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L45/00Compositions of homopolymers or copolymers of compounds having no unsaturated aliphatic radicals in side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic or in a heterocyclic ring system; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/145Organic substrates, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49822Multilayer substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0296Conductive pattern lay-out details not covered by sub groups H05K1/02 - H05K1/0295
    • H05K1/0298Multilayer circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • B32B2260/023Two or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2345/00Characterised by the use of homopolymers or copolymers of compounds having no unsaturated aliphatic radicals in side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic or in a heterocyclic ring system; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2351/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2351/04Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2415/00Characterised by the use of rubber derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2447/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2453/00Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2453/02Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers of vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0145Polyester, e.g. polyethylene terephthalate [PET], polyethylene naphthalate [PEN]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0154Polyimide

Definitions

  • the present invention relates to a maleimide resin composition, a prepreg, a laminated board, a resin film, a multilayer printed wiring board, and a semiconductor package.
  • thermoplastic polymer having excellent high frequency characteristics has been used for a printed wiring board that requires low transmission loss.
  • thermoplastic polymer for example, those having no polar group in the molecule such as polyphenylene ether and polybutadiene are effective for low dielectric loss tangent.
  • these thermoplastic polymers have low compatibility with other resins, and there is a problem that they are inferior in handleability, such as separation from other components when they are made into a resin composition.
  • Patent Document 1 describes an inorganic filler (A) and an N-substituted maleimide as an object of providing a thermosetting resin composition having a low dielectric tangent, low thermal expansion, and excellent wire embedding property and flatness.
  • a technique for blending a polybutadiene-based elastomer is disclosed.
  • Patent Document 1 has improved the compatibility of the thermoplastic polymer and also has excellent dielectric properties in the high frequency band.
  • substrate materials have been required to be applied to fifth-generation mobile communication system (5G) antennas that use radio waves in the frequency band exceeding 6 GHz and millimeter-wave radars that use radio waves in the frequency band of 30 to 300 GHz.
  • 5G fifth-generation mobile communication system
  • Patent Document 1 achieves further improvement in dielectric properties while maintaining good properties. It was difficult to do.
  • the present invention is a maleimide resin composition having good heat resistance and low thermal expansion property, which exhibits excellent dielectric properties in a high frequency band of 10 GHz or higher, and has excellent handleability.
  • An object of the present invention is to provide a prepreg, a laminated board, a resin film, a multilayer printed wiring board, and a semiconductor package using the maleimide resin composition.
  • the present invention relates to the following [1] to [15].
  • [1] (A) One or more selected from the group consisting of maleimide compounds having two or more N-substituted maleimide groups and derivatives thereof, and (B) Containing with a modified conjugated diene polymer,
  • the component (B) is a maleimide resin composition obtained by modifying a conjugated diene polymer having a vinyl group in the side chain (b1) with a maleimide compound having two or more N-substituted maleimide groups (b2). ..
  • the component (B) has the substituent (x) and the vinyl group (y) in the side chain, and the substituent (x) contained in one molecule. [2] or [3] above, wherein the ratio [x / (x + y)] of the number of the substituents (x) to the total number of the vinyl groups (y) is 0.01 to 0.5.
  • the maleimide resin composition according to. [5] The maleimide resin composition according to any one of the above [1] to [4], wherein the number average molecular weight of the component (B) is 700 to 6,000.
  • [6] The maleimide resin composition according to any one of [1] to [5] above, wherein the component (b1) is polybutadiene having a 1,2-vinyl group.
  • the content of the structural unit having a 1,2-vinyl group is 50 mol% or more with respect to all the structural units derived from butadiene constituting the polybutadiene having a 1,2-vinyl group.
  • Step 1 A step of reacting (b1) a conjugated diene polymer having a vinyl group in the side chain with (b2) a maleimide compound having two or more N-substituted maleimide groups to obtain (B) a modified conjugated diene polymer.
  • Step 2 A step of mixing (A) one or more selected from the group consisting of a maleimide compound having two or more N-substituted maleimide groups and a derivative thereof, and (B) a modified conjugated diene polymer.
  • a maleimide resin composition having good heat resistance and low thermal expansion properties, yet exhibiting excellent dielectric properties in a high frequency band of 10 GHz or higher, and having excellent handleability, the maleimide resin composition. It is possible to provide a prepreg, a laminated board, a resin film, a multilayer printed wiring board, and a semiconductor package using the above.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
  • the lower limit value and the upper limit value of the numerical range are arbitrarily combined with the lower limit value or the upper limit value of the other numerical range, respectively.
  • one type may be used alone or two or more types may be used in combination unless otherwise specified.
  • the content of each component in the composition is the total amount of the plurality of substances present in the composition unless otherwise specified, when a plurality of substances corresponding to each component are present in the composition. Means.
  • the present invention also includes aspects in which the items described in the present specification are arbitrarily combined.
  • the maleimide resin composition of the present embodiment may be simply abbreviated as a resin composition.
  • A One or more selected from the group consisting of a maleimide compound having two or more N-substituted maleimide groups and a derivative thereof [hereinafter, may be simply abbreviated as the maleimide compound (A) or the component (A).
  • B Modified Conjugated Diene Polymer [Hereinafter, it may be abbreviated as a modified conjugated diene polymer (B) or a component (B).
  • the component (B) may be abbreviated as a conjugated diene polymer having a vinyl group in the side chain (b1) [hereinafter, simply a diene polymer (b1) or a component (b1)).
  • (B2) Maleimide compound having two or more N-substituted maleimide groups [hereinafter, may be simply abbreviated as the maleimide compound (b2) or (b2) component. ] Is a maleimide resin composition that is modified with.
  • the maleimide resin composition of the present embodiment has good heat resistance and low thermal expansion property, it exhibits excellent dielectric properties in a high frequency band of 10 GHz or higher, and the reason why it is excellent in handling is not clear. It is inferred as. Conjugated diene polymers are effective in reducing dielectric loss tangent because they do not contain polar groups in the molecule, but they are inferior in compatibility with maleimide compounds and therefore inferior in handleability such as separation. On the other hand, if an oxygen atom or the like is introduced into the conjugated diene polymer in order to improve this, the effect of reducing the dielectric loss tangent becomes small.
  • the maleimide resin composition of the present embodiment employs a conjugated diene polymer having a vinyl group in the side chain, and the vinyl group is reacted with the maleimide compound for modification in advance to couple the polymer.
  • the compatibility between the diene polymer and the maleimide compound used as the main agent thereafter is improved.
  • the maleimide resin composition of the present embodiment becomes excellent in handleability. Further, this resin composition is not only excellent in compatibility, but also excellent in heat resistance and coefficient of thermal expansion, and the dielectric loss tangent is unexpectedly reduced.
  • the conjugated diene polymer is compatible with the maleimide compound to sufficiently exert the effect of reducing the dielectric tangent, and the N-substitution introduced into the conjugated diene polymer by the maleimide compound for modification. It is presumed that the maleimide group reacted well with the maleimide compound used as the main agent thereafter, thereby improving the curability of the entire resin composition.
  • each component will be described in detail in order.
  • the maleimide compound (A) is one or more selected from the group consisting of a maleimide compound having two or more N-substituted maleimide groups and a derivative thereof.
  • the above-mentioned “derivative of a maleimide compound having two or more N-substituted maleimide groups” includes an addition reaction between the above-mentioned maleimide compound having two or more N-substituted maleimide groups and an amine compound such as a diamine compound (a2) described later. Things can be mentioned.
  • the component (A) one type may be used alone, or two or more types may be used in combination.
  • the maleimide compound (A) is selected from the viewpoints of compatibility with other resins, adhesiveness with conductors, and dielectric properties.
  • Maleimide compound (a1) having two or more N-substituted maleimide groups [Hereinafter, it may be simply abbreviated as the maleimide compound (a1) or (a1) component. ]
  • a polyaminobismaleimide compound having a structural unit derived from the maleimide compound (a1) and a structural unit derived from the diamine compound (a2) [hereinafter, abbreviated as a polyaminobismaleimide compound (A1) or (A1) component. Sometimes. ]
  • One or more selected from the group consisting of is preferable.
  • (Maleimide compound (a1)) Specific examples of the component (a1) are not particularly limited as long as it is a maleimide compound having two or more N-substituted maleimide groups, but bis (4-maleimidephenyl) methane, bis (4-maleimidephenyl) ether, and bis ( 4-maleimidephenyl) sulfone, 3,3'-dimethyl-5,5'-diethyl-4,4'-diphenylmethanebismaleimide, 4-methyl-1,3-phenylenebismaleimide, m-phenylenebismaleimide, 2, 2-Bis [4- (4-maleimidephenoxy) phenyl]
  • Aromatic maleimide compounds having two N-substituted maleimide groups in the molecule such as propane; three in the molecule such as polyphenylmethane maleimide and biphenylaralkyl-type maleimide
  • aromatic maleimide compounds and molecules having two N-substituted maleimide groups in the molecule from the viewpoints of compatibility with other resins, adhesion to conductors, heat resistance, low thermal expansion, and mechanical properties.
  • An aromatic polymaleimide compound having three or more N-substituted maleimide groups in the molecule is preferable, an aromatic polymaleimide compound having three or more N-substituted maleimide groups in the molecule is more preferable, and a biphenylaralkyl-type maleimide is further preferable.
  • the component (a1) one type may be used alone, or two or more types may be used in combination.
  • a bismaleimide compound represented by the following general formula (a1-1) is preferable.
  • X a1 is a divalent organic group.
  • X a1 in the general formula (a1-1) is a divalent organic group and corresponds to the residue of the component (a1).
  • the residue of the component (a1) refers to the structure of the portion obtained by removing the N-substituted maleimide group from the component (a1).
  • the divalent organic group represented by X a1 the group represented by the following general formulas (a1-2), (a1-3), (a1-4), (a1-5) or (a1-6) is used. Can be mentioned.
  • R a1 is, .P1 an aliphatic hydrocarbon group, or a halogen atom having 1-5 carbon atoms is an integer of 0-4. * Represents a binding site.
  • Examples of the aliphatic hydrocarbon group having 1 to 5 carbon atoms represented by Ra1 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group and an n-pentyl group. Can be mentioned.
  • the aliphatic hydrocarbon group may be an aliphatic hydrocarbon group having 1 to 3 carbon atoms or a methyl group.
  • Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • p1 is an integer of 0 to 4, and from the viewpoint of availability, it may be an integer of 0 to 2, 0 or 1, or 0. When p1 is an integer of 2 or more, the plurality of Ra1s may be the same or different.
  • R a2 and R a3 are independently aliphatic hydrocarbon groups or halogen atoms having 1 to 5 carbon atoms.
  • X a2 is an alkylene group having 1 to 5 carbon atoms and 2 to 5 carbon atoms.
  • P2 and p3 are respectively. Independently, it is an integer from 0 to 4. * Represents the binding site.
  • the aliphatic hydrocarbon group having 1 to 5 carbon atoms and the halogen atom represented by R a2 and Ra 3 are the same as those in the case of Ra 1 .
  • the aliphatic hydrocarbon group may be an aliphatic hydrocarbon group having 1 to 3 carbon atoms, a methyl group, an ethyl group, or an ethyl group.
  • the alkylene group having a carbon number of 1 to 5 X a2 represents, methylene group, 1,2-dimethylene group, a 1,3-trimethylene group, 1,4-tetramethylene group, 1,5-pentamethylene group and the like Be done.
  • the alkylene group may be an alkylene group having 1 to 3 carbon atoms from the viewpoint of compatibility with other resins, adhesiveness with a conductor, heat resistance, low thermal expansion property, and mechanical properties, and may be a methylene group. It may be.
  • X a2 may be an alkylene group having 1 to 5 carbon atoms or an alkylidene group having 2 to 5 carbon atoms.
  • p2 and p3 are independently integers of 0 to 4, and from the viewpoint of availability, both may be integers of 0 to 2 and may be 0 or 2.
  • p2 or p3 is an integer of 2 or more, the plurality of Ra2s or Ra3s may be the same or different from each other.
  • the divalent group represented by the general formula (a1-3-1) represented by X a2 is as follows.
  • R a4 and R a5 are independently aliphatic hydrocarbon groups or halogen atoms having 1 to 5 carbon atoms.
  • X a3 is an alkylene group having 1 to 5 carbon atoms and 2 to 5 carbon atoms. It is an alkylidene group, an ether group, a sulfide group, a sulfonyl group, a carbonyloxy group, a keto group or a single bond.
  • P4 and p5 are independently integers of 0 to 4. * Indicates a bond site.
  • Aliphatic hydrocarbon group having 1 to 5 carbon atoms R a4 and R a5 are represented, as the halogen atom, is described as in the case of R a1.
  • Examples of the alkylene group having 1 to 5 carbon atoms and the alkylidene group having 2 to 5 carbon atoms represented by X a3 include the same alkylene group having 1 to 5 carbon atoms and the alkylidene group having 2 to 5 carbon atoms represented by X a2. Be done.
  • X a3 an alkylidene group having 2 to 5 carbon atoms may be selected from the above options.
  • p4 and p5 are each independently an integer of 0 to 4, and from the viewpoint of availability, both may be an integer of 0 to 2, 0 or 1, and 0. You may.
  • p4 or p5 is an integer of 2 or more, the plurality of Ra4s or Ra5s may be the same or different from each other.
  • p6 may be an integer of 0 to 5 or an integer of 0 to 3.
  • R a6 and R a7 are each independently a hydrogen atom or an aliphatic hydrocarbon group having 1 to 5 carbon atoms.
  • P8 is an integer of 1 to 8. * Represents a bond site.
  • R a6 and R a7 examples of the aliphatic hydrocarbon group having 1 to 5 carbon atoms R a6 and R a7 represent, is described as in the case of R a1.
  • p8 is an integer of 1 to 8, and may be an integer of 1 to 3, or may be 1.
  • the plurality of Ra 6s or Ra 7s may be the same or different from each other.
  • the polyaminobismaleimide compound (A1) is a polyaminobismaleimide compound having a structural unit derived from the maleimide compound (a1) and a structural unit derived from the diamine compound (a2).
  • the component (A1) one type may be used alone, or two or more types may be used in combination.
  • Examples of the structural unit derived from the component (a1) include one or more selected from the group consisting of a group represented by the following general formula (a1-7) and a group represented by the following general formula (a1-8). Be done.
  • X a1 is a divalent organic group, and * indicates the bonding position to other structures.
  • the description of X a1 in the general formula (a1-7) and the general formula (a1-8) is the same as the description of X a1 in the general formula (a1-1).
  • the total content of the structural units derived from the component (a1) in the polyaminobismaleimide compound (A1) is preferably 5 to 95% by mass, more preferably 30 to 93% by mass, still more preferably 60 to 90% by mass, particularly. It is preferably 75 to 90% by mass.
  • the content of the structural unit derived from the component (a1) is within the above range, the dielectric property in the high frequency band of 10 GHz band or higher tends to be better, and good film handling property tends to be obtained.
  • the component (a2) is not particularly limited as long as it is a compound having two amino groups.
  • As the component (a2) 4,4'-diaminodiphenylmethane, 4,4'-diamino-3,3'-dimethyldiphenylmethane, 4,4'-diamino-3,3'-diethyldiphenylmethane, 4,4'- Diaminodiphenyl ether, 4,4'-diaminodiphenylsulfone, 3,3′-diaminodiphenylsulfone, 4,4′-diaminodiphenylketone, 4,4′-diaminobiphenyl, 3,3′-dimethyl-4,4′- Diaminobiphenyl, 2,2'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dihydroxybenzene, 2,2-bis (3-amino-4-hydroxyphenyl) propane, 3,3'-dimethyl- 5,
  • 4,4'-diaminodiphenylmethane and 4,4'-diamino are excellent from the viewpoint of solubility in an organic solvent, reactivity with the component (a1), and heat resistance.
  • component (a2) 3,3'-dimethyl-5,5'-diethyl-4,4'-diaminodiphenylmethane is preferable from the viewpoint of excellent dielectric properties and low water absorption.
  • the component (a2) is preferably 2,2-bis [4- (4-aminophenoxy) phenyl] propane from the viewpoint of excellent mechanical properties such as high adhesiveness to a conductor, elongation, and breaking strength.
  • the component (a2) Is preferably 4,4'-[1,3-phenylenebis (1-methylethylidene)] bisaniline and 4,4'-[1,4-phenylenebis (1-methylethylidene)] bisaniline.
  • the structural unit derived from the component (a2) for example, one or more selected from the group consisting of a group represented by the following general formula (a2-1) and a group represented by the following general formula (a2-2). Can be mentioned.
  • X a4 is a divalent organic group, and * indicates the bonding position to other structures.
  • X a4 in the general formulas (a2-1) and (a2-2) is a divalent organic group and corresponds to the residue of the component (a2).
  • the residue of the component (a2) refers to the structure of the portion of the component (a2) excluding the functional group provided for binding, that is, the amino group.
  • X a4 in the general formula (a2-1) and the general formula (a2-2) is a divalent group represented by the following general formula (a2-3).
  • R a11 and R a12 are independently aliphatic hydrocarbon groups having 1 to 5 carbon atoms, alkoxy groups having 1 to 5 carbon atoms, hydroxyl groups or halogen atoms.
  • X a5 has 1 carbon atom.
  • P8 and p9 are independently integers of 0 to 4. * Represents a binding site.
  • R a13 and R a14 are independently aliphatic hydrocarbon groups or halogen atoms having 1 to 5 carbon atoms.
  • X a6 is an alkylene group having 1 to 5 carbon atoms and 2 to 5 carbon atoms. Alkylidene group, m-phenylenediisopropyridene group, p-phenylenediisopropyridene group, ether group, sulfide group, sulfonyl group, carbonyloxy group, keto group or single bond.
  • P10 and p11 are 0 independently of each other. It is an integer of ⁇ 4. * represents the binding site.
  • R a15 is an aliphatic hydrocarbon group or a halogen atom having 1 to 5 carbon atoms independently.
  • X a7 and X a8 are independently alkylene groups having 1 to 5 carbon atoms and carbon atoms, respectively. 2 to 5 alkylidene group, ether group, sulfide group, sulfonyl group, carbonyloxy group, keto group or single bond.
  • P12 is an integer of 0 to 4. * Indicates the bond site.
  • the hydrocarbon group or a halogen atom include the same R a1 in the formula (a1-2).
  • the aliphatic hydrocarbon group may be an aliphatic hydrocarbon group having 1 to 3 carbon atoms, or may be a methyl group or an ethyl group.
  • the number of carbon atoms represented by X a5 in the general formula (a2-3), X a6 in the general formula (a2-3-1), and X a7 and X a8 in the general formula (a2-3-2) is 1.
  • the alkylene group to 5 and the alkylidene group having 2 to 5 carbon atoms will be described in the same manner as in the case of X a2 in the general formula (a1-3).
  • P8 and p9 in the above general formula (a2-3) are independently integers of 0 to 4, and from the viewpoint of availability, both may be integers of 0 to 2 or 0 or. It may be 2.
  • the plurality of Ra 11s or Ra 12s may be the same or different from each other.
  • P10 and p11 in the above general formula (a2-3-1) are independently integers of 0 to 4, and from the viewpoint of availability, both may be integers of 0 to 2. It may be 0 or 1, or it may be 0.
  • P12 in the above general formula (a2-3-2) is an integer of 0 to 4, and may be an integer of 0 to 2 or 0 from the viewpoint of availability.
  • the plurality of Ra 15s may be the same or different from each other.
  • the total content of the structural units derived from the component (a2) in the polyaminobismaleimide compound (A1) is preferably 5 to 95% by mass, more preferably 7 to 70% by mass, still more preferably 10 to 40% by mass, particularly. It is preferably 10 to 25% by mass.
  • the total content of the structural units derived from the component (a2) is within the above range, excellent dielectric properties and better heat resistance, flame retardancy and glass transition temperature tend to be obtained.
  • the content ratio of the structural unit derived from the component (a1) in the polyaminobismaleimide compound (A1) to the structural unit derived from the component (a2) is -NH of the component (a2) in the polyaminobismaleimide compound (A1).
  • the content ratio is such that the equivalent ratio (Ta2 / Ta1) is preferably 0.05 to 10, more preferably 1 to 5.
  • the polyaminobismaleimide compound (A1) is represented by the following general formula (a2-4) from the viewpoint of dielectric properties, solubility in an organic solvent, high adhesiveness to a conductor, moldability of a resin film, and the like. It is preferable to contain a polyaminobismaleimide compound.
  • the component (A1) can be produced, for example, by reacting the component (a1) and the component (a2) in an organic solvent.
  • a reaction catalyst can be used if necessary.
  • the reaction catalyst is not particularly limited, but is an acidic catalyst such as p-toluenesulfonic acid; amines such as triethylamine, pyridine and tributylamine; imidazoles such as methylimidazole and phenylimidazole; phosphorus catalysts such as triphenylphosphine and the like. Can be mentioned.
  • the amount of the reaction catalyst to be blended is not particularly limited, but for example, 0.01 to 5 parts by mass may be used with respect to 100 parts by mass of the total amount of the components (a1) and (a2).
  • the above polyaminobismaleimide compound is obtained by charging a predetermined amount of the component (a1), the component (a2), and if necessary other components into a synthesis pot, and carrying out a Michael addition reaction between the component (a1) and the component (a2).
  • the reaction conditions in this step are not particularly limited, but for example, the reaction temperature is preferably 50 to 160 ° C., and the reaction time is 1 to 10 from the viewpoint of workability such as reaction rate and suppression of gelation during the reaction. Time is preferred.
  • the solid content concentration and the solution viscosity of the reaction raw material can be adjusted by adding or concentrating the organic solvent.
  • the solid content concentration of the reaction raw material is not particularly limited, but is, for example, preferably 10 to 90% by mass, and more preferably 20 to 80% by mass.
  • the reaction rate does not become too slow, which tends to be advantageous in terms of production cost.
  • the solid content concentration of the reaction raw material is 90% by mass or less, better solubility is obtained, stirring efficiency is improved, and gelation tends to be difficult.
  • the number average molecular weight of the polyaminobismaleimide compound (A1) is not particularly limited, but is preferably 400 to 10,000, more preferably 500 to 5,000, still more preferably 600 to 2,000, and particularly preferably 700 to 1. , 500.
  • the number average molecular weight in the present specification means a value measured in terms of polystyrene by gel permeation chromatography (GPC), and can be specifically measured by the method described in Examples.
  • the modified conjugated diene polymer (B) is obtained by modifying a conjugated diene polymer having a vinyl group in the (b1) side chain with a maleimide compound having two or more (b2) N-substituted maleimide groups.
  • a maleimide compound having two or more (b2) N-substituted maleimide groups As the component (B), one type may be used alone, or two or more types may be used in combination.
  • the component (b1) is not particularly limited as long as it is a conjugated diene polymer having a vinyl group in the side chain, but a conjugated diene polymer having a plurality of vinyl groups in the side chain is preferable. From the viewpoint of dielectric properties and heat resistance, the number of vinyl groups (b1) contained in one molecule is preferably 3 or more, more preferably 5 or more, still more preferably 10 or more. As the component (b1), one type may be used alone, or two or more types may be used in combination.
  • the conjugated diene polymer means a polymer of a conjugated diene compound.
  • the conjugated diene compound include 1,3-butadiene, isoprene, 1,3-pentadiene, 2,3-dimethyl-1,3-butadiene, 2-phenyl-1,3-butadiene, 1,3-hexadiene and the like. Be done.
  • the conjugated diene polymer may be a polymer of one kind of conjugated diene compound, or may be a polymer of two or more kinds of conjugated diene compounds.
  • the conjugated diene polymer may be a copolymer of one or more kinds of conjugated diene compounds and one or more kinds of monomers other than the conjugated diene compounds.
  • the polymerization mode in that case is not particularly limited, and may be any of random polymerization, block polymerization, and graft polymerization.
  • the component (b1) include polybutadiene having a 1,2-vinyl group, a butadiene-styrene copolymer having a 1,2-vinyl group, and polyisoprene having a 1,2-vinyl group.
  • polybutadiene having a 1,2-vinyl group and a butadiene-styrene copolymer having a 1,2-vinyl group are preferable from the viewpoint of dielectric properties and heat resistance, and polybutadiene having a 1,2-vinyl group is preferable. More preferred.
  • the polybutadiene having a 1,2-vinyl group a butadiene homopolymer having a 1,2-vinyl group is preferable.
  • the butadiene-derived 1,2-vinyl group contained in the component (b1) is a vinyl group contained in the butadiene-derived structural unit represented by the following formula (b1-1).
  • the component (b1) is a polybutadiene having a 1,2-vinyl group
  • a structural unit having a 1,2-vinyl group is used with respect to all the structural units derived from butadiene constituting the polybutadiene (the above general formula (b1-1)).
  • ) Content may be abbreviated as vinyl group content.
  • the vinyl group content may be 100 mol% or less.
  • the polybutadiene having a 1,2-vinyl group is preferably a 1,2-polybutadiene homopolymer.
  • the number average molecular weight of the component (b1) is preferably 400 to 2,500, more preferably 500 to 2,000, and further, from the viewpoint of compatibility with other resins, dielectric properties, low thermal expansion, and heat resistance. It is preferably 600 to 1,800, and particularly preferably 700 to 1,500.
  • the component (b2) may be any maleimide compound having two or more N-substituted maleimide groups, and those listed as the above-mentioned maleimide compound (A) can be used.
  • As the component (b2) one type may be used alone, or two or more types may be used in combination.
  • component (b2) from the viewpoint of solubility in an organic solvent and suppression of gelation during the reaction, compatibility of the obtained component (B) with other resins, dielectric properties, and low thermal expansion property From the viewpoint of heat resistance, an aromatic bismaleimide compound substituted with an aliphatic hydrocarbon group is preferable, and a compound represented by the following general formula (b2-1) is more preferable.
  • R b1 and R b2 are independently aliphatic hydrocarbon groups having 1 to 5 carbon atoms.
  • X b1 is an alkylene group having 1 to 5 carbon atoms and an alkylidene group having 2 to 5 carbon atoms.
  • Q1 and q2 are independently, respectively. It is an integer of 0 to 4, and q1 + q2 is an integer of 1 or more.
  • Examples of the aliphatic hydrocarbon group having 1 to 5 carbon atoms represented by R b1 and R b2 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group and an n-. Examples include pentyl groups.
  • an aliphatic hydrocarbon group having 1 to 3 carbon atoms is preferable, and an alkyl group having 1 to 3 carbon atoms is preferable from the viewpoint of compatibility with other resins and suppression of gelation during the reaction. Is more preferable, and an ethyl group and a methyl group are further preferable.
  • Examples of the alkylene group having 1 to 5 carbon atoms represented by X b1 include a methylene group, a 1,2-dimethylene group, a 1,3-trimethylene group, a 1,4-tetramethylene group, a 1,5-pentamethylene group and the like. Be done.
  • As the alkylene group an alkylene group having 1 to 3 carbon atoms is preferable, and a methylene group is more preferable.
  • Examples of the alkylidene group having 2 to 5 carbon atoms represented by X b1 include an ethylidene group, a propylidene group, an isopropylidene group, a butylidene group, an isobutylidene group, a pentylidene group and an isopentylidene group.
  • q1 and q2 are independently integers of 0 to 4, and q1 + q2 are integers of 1 or more. From the viewpoint of availability, compatibility with other resins, and suppression of gelation during the reaction, an integer of 0 to 2 is preferable, 1 or 2 is more preferable, and 2 is even more preferable.
  • the divalent group represented by the general formula (b2-1-1) represented by X b1 is as follows.
  • R b3 and R b4 are independently aliphatic hydrocarbon groups or halogen atoms having 1 to 5 carbon atoms.
  • X b2 is an alkylene group having 1 to 5 carbon atoms and 2 to 5 carbon atoms. It is an alkylidene group, an ether group, a sulfide group, a sulfonyl group, a carbonyloxy group, a keto group or a single bond.
  • Q3 and q4 are independently integers of 0 to 4. * Indicates a bond site.
  • the aliphatic hydrocarbon group having 1 to 5 carbon atoms and the halogen atom represented by R b3 and R b4 will be described in the same manner as in the case of R b1 .
  • Examples of the alkylene group having 1 to 5 carbon atoms and the alkylidene group having 2 to 5 carbon atoms represented by X b2 are the same as the alkylene group having 1 to 5 carbon atoms and the alkylidene group having 2 to 5 carbon atoms represented by X b1.
  • Each of q3 and q4 is an integer of 0 to 4 independently, and from the viewpoint of availability, each of them may be an integer of 0 to 2, 0 or 1, or 0. You may. If q3 or q4 is an integer of 2 or more, plural R b3 s or R b4 each other may each be the same or different.
  • Examples of the compound represented by the above general formula (b2-1) include 3,3'-dimethyl-5,5'-diethyl-4,4'-diphenylmethanebismaleimide and 4-methyl-1,3-phenylenebismaleimide. And so on. Among these, from the viewpoint of solubility in an organic solvent and suppression of gelation during the reaction, and from the viewpoint of compatibility of the obtained component (B) with other resins, dielectric properties, low thermal expansion and heat resistance. 3,3'-dimethyl-5,5'-diethyl-4,4'-diphenylmethanebismaleimide is preferable.
  • the method for reacting the component (b1) and the component (b2) is not particularly limited.
  • the component (b1), the component (b2), the reaction catalyst and the organic solvent are charged in a predetermined amount in the reaction vessel, and if necessary.
  • the component (B) can be obtained by reacting with heating, heat retention, stirring and the like.
  • the reaction conditions in this step can be appropriately adjusted according to the type of raw material used, etc., but the reaction temperature is preferably 70 to 120 ° C. from the viewpoint of workability and suppression of gelation during the reaction.
  • the temperature is preferably 80 to 110 ° C., more preferably 85 to 105 ° C.
  • the reaction time is preferably 0.5 to 15 hours, more preferably 1 to 10 hours, still more preferably 3 to 7 hours.
  • the organic solvent used in the above reaction is not particularly limited, but is limited to alcohols such as methanol, ethanol, butanol, butyl cellosolve, ethylene glycol monomethyl ether and propylene glycol monomethyl ether; ketones such as acetone, methyl ethyl acetate, methyl isobutyl ketone and cyclohexanone; Aromatic hydrocarbons such as toluene, xylene, mesityrene; esters such as methoxyethyl acetate, ethoxyethyl acetate, butoxyethyl acetate, ethyl acetate; N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2- Examples thereof include nitrogen-containing compounds such as pyrrolidone. One of these may be used alone, or two or more thereof may be used in combination. Among these, toluene is preferable from the viewpoint of resin solubility.
  • the total content (solid content concentration) of the components (b1) and (b2) in the reaction solution is not particularly limited, but is preferably 10 to 70% by mass, more preferably. It is 15 to 60% by mass, more preferably 20 to 50% by mass.
  • the reaction rate does not become too slow, which tends to be more advantageous in terms of production cost.
  • the total content is 70% by mass or less, better solubility can be obtained, the solution viscosity is low, the stirring efficiency is good, and gelation tends to be further suppressed.
  • reaction catalyst those listed as the curing accelerator (F) described later can be used. Among these, organic peroxides are preferable, and ⁇ , ⁇ '-bis (t-butylperoxy) diisopropylbenzene is more preferable from the viewpoint of obtaining sufficient reactivity while suppressing gelation during the reaction. ..
  • One type of reaction catalyst may be used alone, or two or more types may be used in combination.
  • the amount of the reaction catalyst used is not particularly limited, but is preferably 0.01 to 1.2 parts by mass, more preferably 0.03 to 1 part by mass with respect to 100 parts by mass of the total amount of the components (b1) and (b2). It is 0.0 parts by mass, more preferably 0.05 to 0.8 parts by mass.
  • the blending amount of the component (b1) and the component (b2) in carrying out the above reaction is (b1) from the viewpoint of compatibility with the other resin of the obtained component (B) and suppression of gelation during the reaction.
  • the number of moles of side chain vinyl groups in the component to (M v), the ratio (M m / M v) of (b2) the number of moles of N- substituted maleimide group component having (M m) preferably 0.01
  • the amount is ⁇ 0.5, more preferably 0.02 to 0.4, still more preferably 0.04 to 0.3.
  • the vinyl group of the component (b1) in the side chain reacts with the N-substituted maleimide group of the component (b2) to produce the component (B).
  • the obtained component (B) has a substituent (x) formed by reacting the vinyl group of the component (b1) and the N-substituted maleimide group of the component (b2) in the side chain. ..
  • the substituent (x) has the following general formula (B-11) or (B-) as a structure derived from the component (b2) from the viewpoint of compatibility with other resins, dielectric properties, low thermal expansion and heat resistance. It is preferable that the group contains the structure represented by 12).
  • X B1 is a divalent organic group
  • * B1 is a site where the component (b1) is bonded to a carbon atom derived from a vinyl group in the side chain.
  • * B2 is a other atom. It is the part that binds.
  • the substituent (x) the following general formula (B-21) or the following general formula (B-21) or the structure derived from the component (b2) can be used from the viewpoint of compatibility with other resins, dielectric properties, low thermal expansion and heat resistance. It is more preferable that the group contains the structure represented by (B-22).
  • the component (B) preferably has a substituent (x) and a vinyl group (y) in the side chain.
  • the ratio [x / (x + y)] of the number of substituents (x) to the total number of substituents (x) and vinyl groups (y) contained in one molecule is compatible with other resins. From the viewpoint of properties, dielectric properties, low thermal expansion and heat resistance, it is preferably 0.01 to 0.5, more preferably 0.02 to 0.4, and even more preferably 0.04 to 0.3.
  • the content ratio [x / (x + y)] of the substituent (x) may be referred to as “vinyl group modification rate”.
  • the vinyl group (y) is preferably a 1,2-vinyl group contained in a structural unit derived from butadiene.
  • the number average molecular weight of the component (B) is not particularly limited, but is preferably 700 to 6,000, more preferably 800 to 800, from the viewpoint of compatibility with other resins, dielectric properties, low thermal expansion and heat resistance. It is 5,000, more preferably 900 to 4,500, and particularly preferably 1,000 to 4,000.
  • the content of the component (A) is not particularly limited, but from the viewpoint of dielectric properties and moldability, it is preferable with respect to 100 parts by mass of the total resin components in the resin composition. It is 10 to 90 parts by mass, more preferably 20 to 80 parts by mass, still more preferably 30 to 70 parts by mass, and particularly preferably 35 to 60 parts by mass.
  • the content of the component (B) is not particularly limited, but from the viewpoints of compatibility with other resins, dielectric properties, low thermal expansion and heat resistance, the resin composition thereof.
  • the "resin component” refers to the component (A), the component (B), and the component (C) arbitrarily used. That is, when the resin composition does not contain the component (C), the “resin component” refers to the component (A) and the component (B), and when the resin composition contains the component (C), " The "resin component” includes a component (A), a component (B), and a component (C).
  • the content ratio [(A) / (B)] of the component (A) to the component (B) is not particularly limited, but from the viewpoints of compatibility with other resins, dielectric properties, low thermal expansion and heat resistance. Therefore, on a mass basis, it is preferably more than 1.0, more preferably 1.5 to 5.0, still more preferably 1.8 to 4.5, still more preferably 2.0 to 4.0, and particularly preferably. It is 2.2 to 3.5, most preferably 2.5 to 3.0.
  • the content ratio [(A) / (B)] is more than 1.0, excellent dielectric properties tend to be obtained in the high frequency band of 10 GHz band or more, and when it is 5.0 or less, heat resistance tends to be obtained. , Moldability and processability tend to be excellent.
  • the resin composition of the present embodiment may further contain other components.
  • the other components for example, the thermoplastic elastomer (C) other than the component (B) [hereinafter, may be abbreviated as the other thermoplastic elastomer (C) or (C) component. ], Inorganic filler (D) [Hereinafter, it may be abbreviated as the component (D). ], Flame Retardant (E) [Hereinafter, it may be abbreviated as the component (E). ] And the curing accelerator (F) [hereinafter, may be abbreviated as the component (F). ], One or more selected from the group consisting of. By containing these, various characteristics when the laminated board is formed can be further improved.
  • the resin composition of the present embodiment contains one or more selected from the group consisting of the component (C), the component (D), the component (E) and the component (F) according to the desired performance. It does not have to be.
  • these components will be described in detail.
  • thermoplastic elastomers examples include polyphenylene ethers and styrene-based thermoplastic elastomers. Among these, styrene-based heat tends to be good because it has good dielectric properties, moldability, adhesiveness to conductors, solder heat resistance, glass transition temperature, coefficient of thermal expansion and flame retardancy, and these tend to be well-balanced. Plastic elastomers are preferred.
  • the component (C) is not particularly limited as long as it is a thermoplastic elastomer having a structural unit derived from a styrene compound, and has a structural unit derived from styrene represented by the following general formula (c-1). May be good.
  • R c1 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
  • R c2 is an alkyl group having 1 to 5 carbon atoms
  • K is an integer of 0 to 5).
  • Examples of the alkyl group having 1 to 5 carbon atoms represented by R c1 and R c2 include a methyl group, an ethyl group, an n-propyl group and the like, and an alkyl group having 1 to 3 carbon atoms may be used. There may be. k may be an integer of 0 to 2, may be 0 or 1, and may be 0.
  • Examples of the structural unit other than the structural unit derived from the styrene compound (C) include a structural unit derived from butadiene, a structural unit derived from isoprene, a structural unit derived from maleic acid, a structural unit derived from maleic anhydride, and the like. ..
  • the component (C) one type may be used alone, or two or more types may be used in combination.
  • the structural unit derived from butadiene and the structural unit derived from isoprene may be hydrogenated. When hydrogenated, the structural unit derived from butadiene is a structural unit in which ethylene units and butylene units are mixed, and the structural unit derived from isoprene is a structural unit in which ethylene units and propylene units are mixed.
  • the components (C) include styrene-butadiene-styrene block copolymer hydrogenated additives (SEBS, SBBS) and styrene from the viewpoints of dielectric properties, adhesion to conductors, heat resistance, glass transition temperature and thermal expansion coefficient.
  • SEBS styrene-butadiene-styrene block copolymer hydrogenated additives
  • SEPS isoprene-styrene block copolymer
  • SMA styrene-maleic anhydride copolymer
  • a styrene-butadiene-styrene block copolymer is preferable.
  • SEBS hydrogenated products
  • SEPS styrene-isoprene-styrene block copolymers
  • SEBS hydrogenated products of styrene-butadiene-styrene block copolymers
  • the content of structural units derived from styrene [hereinafter, may be abbreviated as styrene content. ] Is preferably 5 to 80% by mass, more preferably 10 to 75% by mass, and further preferably 15 to 70% by mass from the viewpoints of dielectric properties, adhesion to conductors, heat resistance, glass transition temperature and coefficient of thermal expansion. %, Especially preferably 20 to 50% by mass.
  • the melt flow rate (MFR) of SEBS is not particularly limited, but may be 0.1 to 20 g / 10 min and 0.5 to 15 g under the measurement conditions of 230 ° C. and a load of 2.16 kgf (21.2 N). It may be / 10min.
  • SEBS commercial products include Tough Tech (registered trademark) H series and M series manufactured by Asahi Kasei Corporation, Septon (registered trademark) series manufactured by Kuraray Co., Ltd., and Clayton (registered trademark) G polymer series manufactured by Clayton Polymer Japan Co., Ltd. And so on.
  • the weight average molecular weight (Mw) of the component (C) is not particularly limited, but is preferably 12,000 to 1,000,000, more preferably 30,000 to 500,000, still more preferably 50,000 to 120, 000, particularly preferably 70,000 to 100,000.
  • the weight average molecular weight (Mw) is measured by gel permeation chromatography (GPC) in terms of polystyrene.
  • the content of the component (C) is determined from the viewpoints of dielectric properties, adhesion to a conductor, heat resistance, glass transition temperature and coefficient of thermal expansion.
  • the content of the component (C) is 5 parts by mass or more, the dielectric properties and moisture absorption resistance tend to be better, and when it is 60 parts by mass or less, heat resistance, moldability, processability and difficulty The flammability tends to be better.
  • the component (D) is not particularly limited, but silica, alumina, titanium oxide, mica, beryllia, barium titanate, potassium titanate, strontium titanate, calcium titanate, aluminum carbonate, magnesium hydroxide, aluminum hydroxide, Examples thereof include aluminum silicate, calcium carbonate, calcium silicate, magnesium silicate, silicon nitride, boron nitride, clay (baked clay, etc.), talc, aluminum borate, silicon carbide and the like. One of these may be used alone, or two or more thereof may be used in combination.
  • silica, alumina, mica, and talc are preferable, silica and alumina are more preferable, and silica is further preferable, from the viewpoints of coefficient of thermal expansion, elastic modulus, heat resistance, and flame retardancy.
  • examples of silica include precipitated silica manufactured by a wet method and having a high water content, and dry silica manufactured by a dry method and containing almost no bound water or the like. Further, as dry method silica, there is a difference in the manufacturing method. Examples thereof include crushed silica, fumed silica, and fused silica (molten spherical silica).
  • the shape and particle size of the inorganic filler (D) are not particularly limited, but for example, the particle size is preferably 0.01 to 20 ⁇ m, more preferably 0.1 to 10 ⁇ m, still more preferably 0.2 to 1 ⁇ m, and particularly. It is preferably 0.3 to 0.8 ⁇ m.
  • the particle size refers to the average particle size, and is the particle size of a point corresponding to a volume of 50% when the cumulative frequency distribution curve based on the particle size is obtained with the total volume of the particles as 100%.
  • the particle size of the inorganic filler (D) can be measured by a particle size distribution measuring device or the like using a laser diffraction / scattering method.
  • the content of the component (D) in the resin composition is not particularly limited, but has a coefficient of thermal expansion, an elastic modulus, heat resistance and flame retardancy. From the viewpoint, it is preferably 5 to 70% by mass, more preferably 15 to 65% by mass, still more preferably 20 to 60% by mass, particularly preferably 30 to 55% by mass, and most preferably 40 to 50% by mass.
  • a coupling agent is used in combination as necessary for the purpose of improving the dispersibility of the component (D) and the adhesion between the component (D) and the organic component in the resin composition.
  • the coupling agent is not particularly limited, and for example, a silane coupling agent or a titanate coupling agent can be appropriately selected and used.
  • One type of coupling agent may be used alone, or two or more types may be used in combination.
  • the amount of the coupling agent used is not particularly limited, and may be, for example, 0.1 to 5 parts by mass or 0.5 to 3 parts by mass with respect to 100 parts by mass of the component (D). ..
  • a so-called integral blend treatment method may be used in which the component (D) is blended in the resin composition and then the coupling agent is added, but the coupling agent is previously coupled to the inorganic filler.
  • a method using an inorganic filler in which the agent is surface-treated by dry or wet is preferable. By adopting this method, the features of the component (D) can be expressed more effectively.
  • the component (D) is used as a slurry in which the component (D) is previously dispersed in an organic solvent, if necessary, for the purpose of improving the dispersibility of the component (D) in the resin composition.
  • the organic solvent used for slurrying the component (D) is not particularly limited, but for example, the organic solvent exemplified in the above-mentioned production step of the component (A1) can be applied. Among these, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone are preferable from the viewpoint of dispersibility.
  • the solid content (nonvolatile content) concentration of the slurry is not particularly limited, but is, for example, 50 to 80% by mass and 60 to 80% by mass from the viewpoint of sedimentation and dispersibility of the inorganic filler (D). There may be.
  • the flame retardant (E) By including the flame retardant (E) in the resin composition of the present embodiment, the flame retardancy of the resin composition tends to be improved.
  • the component (E) include phosphorus-based flame retardants, metal hydrates, halogen-based flame retardants, and the like, and from the viewpoint of environmental problems, phosphorus-based flame retardants and metal hydrates may be used.
  • the flame retardant (E) one type may be used alone, or two or more types may be used in combination. Further, a flame retardant aid may be contained if necessary.
  • the phosphorus-based flame retardant is not particularly limited as long as it contains a phosphorus atom among those generally used as a flame retardant, and may be an inorganic phosphorus-based flame retardant or an organic-based flame retardant. It may be a phosphorus flame retardant.
  • the phosphorus-based flame retardant preferably does not contain a halogen atom from the viewpoint of environmental problems.
  • the phosphorus-based flame retardant may be an organic phosphorus-based flame retardant from the viewpoints of dielectric properties, adhesiveness to a conductor, heat resistance, glass transition temperature, coefficient of thermal expansion, and flame retardancy.
  • Examples of the inorganic phosphorus-based flame retardant include red phosphorus; ammonium phosphate such as monoammonium phosphate, diammonium phosphate, triammonium phosphate, and ammonium polyphosphate; and inorganic nitrogen-containing phosphorus compounds such as phosphoric acid amide; phosphorus. Acid; phosphine oxide and the like.
  • Examples of the organic phosphorus-based flame retardant include aromatic phosphoric acid ester, mono-substituted phosphonic acid diester, 2-substituted phosphinic acid ester, metal salt of 2-substituted phosphinic acid, organic nitrogen-containing phosphorus compound, and cyclic organic phosphorus compound. Be done.
  • aromatic phosphoric acid ester compounds and metal salts of disubstituted phosphinic acid are preferable.
  • the metal salt may be any of a lithium salt, a sodium salt, a potassium salt, a calcium salt, a magnesium salt, an aluminum salt, a titanium salt, and a zinc salt, and may be an aluminum salt.
  • aromatic phosphoric acid esters are preferable.
  • Aromatic phosphates include triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyldiphenyl phosphate, cresildi-2,6-xylenyl phosphate, resorcinolbis (diphenyl phosphate), 1,3-phenylene. Examples thereof include bis (di-2,6-xylenyl phosphate), bisphenol A-bis (diphenyl phosphate), and 1,3-phenylene bis (diphenyl phosphate).
  • Examples of the monosubstituted phosphonic acid diester include divinyl phenylphosphonate, diallyl phenylphosphonate, and bis (1-butenyl) phenylphosphonate.
  • Examples of the disubstituted phosphinic acid ester include phenyl diphenylphosphinate and methyl diphenylphosphinate.
  • Examples of the metal salt of disubstituted phosphinic acid include a metal salt of dialkylphosphinic acid, a metal salt of diallylphosphinic acid, a metal salt of divinylphosphinic acid, and a metal salt of diarylphosphinic acid.
  • These metal salts may be any one of lithium salt, sodium salt, potassium salt, calcium salt, magnesium salt, aluminum salt, titanium salt and zinc salt, and may be aluminum salt.
  • organic nitrogen-containing phosphorus compound include phosphazene compounds such as bis (2-allylphenoxy) phosphazene and dicredylphosphazene; melamine phosphate; melamine pyrophosphate; melamine polyphosphate; and melam polyphosphate.
  • cyclic organic phosphorus compound 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, 10- (2,5-dihydroxyphenyl) -9,10-dihydro-9-oxa-10-
  • phosphaphenanthrene-10-oxide metal salts of aromatic phosphoric acid ester and disubstituted phosphinic acid are preferable, and aluminum salts of 1,3-phenylene bis (di-2,6-xylenyl phosphate) and dialkylphosphinic acid are preferable.
  • metal hydrate examples include aluminum hydroxide hydrate and magnesium hydroxide hydrate. One of these may be used alone, or two or more thereof may be used in combination.
  • the metal hydroxide may also correspond to an inorganic filler, but if it is a material that can impart flame retardancy, it is classified as a flame retardant.
  • -Halogen flame retardant- Examples of the halogen-based flame retardant include chlorine-based flame retardants and brominated flame retardants. Examples of the chlorine-based flame retardant include chlorinated paraffin and the like.
  • the content of the phosphorus-based flame retardant in the resin composition is not particularly limited.
  • the content of the phosphorus-based flame retardant in the resin composition is preferably 0.2 to 20 parts by mass, more preferably 1 to 15 parts by mass, and further preferably 5 to 12 parts by mass in terms of phosphorus atom. Is.
  • the content of the component (E) in terms of phosphorus atom is 0.2 parts by mass or more, better flame retardancy tends to be obtained, and when it is 20 parts by mass or less, better moldability. High adhesion to conductors, excellent heat resistance and high glass transition temperature tend to be obtained.
  • the component (F) includes an acidic catalyst such as p-toluenesulfonic acid; an amine compound such as triethylamine, pyridine and tributylamine; methylimidazole, phenylimidazole and isocyanate masked imidazole (for example, hexamethylenediisocyanate resin and 2-ethyl-4).
  • an acidic catalyst such as p-toluenesulfonic acid
  • an amine compound such as triethylamine, pyridine and tributylamine
  • methylimidazole, phenylimidazole and isocyanate masked imidazole for example, hexamethylenediisocyanate resin and 2-ethyl-4.
  • -Imidazole compounds such as methylimidazole addition reactants, etc.
  • tertiary amine compounds such as methylimidazole addition reactants, etc.
  • quaternary ammonium compounds such as triphenylphosphine
  • dicumyl peroxide 2,5-dimethyl-2,5- Bis (t-butylperoxy) hexin-3,2,5-dimethyl-2,5-bis (t-butylperoxy) hexane, t-butylperoxyisopropyl monocarbonate, ⁇ , ⁇ '-bis (t- Butyl peroxy)
  • Organic peroxides such as diisopropylbenzene; carboxylates such as manganese, cobalt and zinc can be mentioned.
  • imidazole compounds, organic peroxides, and carboxylates may be used from the viewpoints of heat resistance, glass transition temperature, and storage stability, and from the viewpoints of heat resistance, glass transition temperature, elastic coefficient, and coefficient of thermal expansion. Therefore, the imidazole compound may be used in combination with an organic peroxide or a carboxylate. Further, ⁇ , ⁇ '-bis (t-butylperoxy) diisopropylbenzene may be selected among the organic peroxides, and manganese naphthenate may be selected among the carboxylates.
  • the content of the component (F) is not particularly limited, but is preferable with respect to, for example, 100 parts by mass of the total resin components in the resin composition. Is 0.01 to 10 parts by mass, more preferably 0.05 to 8 parts by mass, still more preferably 0.1 to 6 parts by mass, and particularly preferably 0.5 to 5 parts by mass.
  • the content of the component (F) is in the above range, better heat resistance and storage stability tend to be obtained.
  • the resin composition of the present embodiment further includes, if necessary, a thermoplastic resin other than the above components, a resin material such as an elastomer, an antioxidant, a heat stabilizer, an antistatic agent, an ultraviolet absorber, and a pigment. , Coloring agent, lubricant and the like can be appropriately selected and contained. One of these may be used alone, or two or more thereof may be used in combination. The amount of these used is not particularly limited, and may be used within a range that does not impair the effects of the present invention.
  • the resin composition of the present embodiment may contain an organic solvent from the viewpoint of facilitating handling by diluting and from the viewpoint of facilitating the production of a prepreg described later.
  • the resin composition containing an organic solvent may be generally referred to as a resin varnish or a varnish.
  • the organic solvent is not particularly limited, but is an alcohol solvent such as ethanol, propanol, butanol, methyl cellosolve, butyl cellosolve, and propylene glycol monomethyl ether; a ketone solvent such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; Ether-based solvent; Aromatic solvent such as toluene, xylene, mesitylene; Nitrogen atom-containing solvent such as dimethylformamide, dimethylacetamide, N-methylpyrrolidone; Sulfur atom-containing solvent such as dimethylsulfoxide; And so on.
  • an alcohol solvent such as ethanol, propanol, butanol, methyl cellosolve, butyl cellosolve, and propylene glycol monomethyl ether
  • a ketone solvent such as acetone, methyl ethyl ketone, methyl isobutyl ketone
  • an alcohol solvent, a ketone solvent, and a nitrogen atom-containing solvent are preferable, a ketone solvent is more preferable, acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone are further preferable, and methyl ethyl ketone is particularly preferable.
  • the organic solvent one type may be used alone, or two or more types may be used in combination.
  • the solid content concentration thereof is, for example, 30 to 90% by mass, 35 to 80% by mass, or 40 to 60% by mass. May be good.
  • the handleability is facilitated, the impregnation property into the base material and the appearance of the produced prepreg are good, and the solid resin in the prepreg described later is used.
  • the component concentration tends to be easily adjusted, and the production of a prepreg having a desired thickness tends to be easier.
  • the resin composition of the present embodiment can be produced by mixing the component (A), the component (B), and other components used in combination as necessary by a known method. At this time, each component may be dissolved or dispersed with stirring. Conditions such as mixing order, temperature, and time are not particularly limited, and may be arbitrarily set according to the type of raw material and the like.
  • the resin composition of the present embodiment has good compatibility and tends not to generate precipitates even if left for one day. Further, in a mode having better compatibility, precipitation tends not to occur even if left for one week (however, phase separation may occur), and in a mode having further excellent compatibility, there is a tendency that no precipitate is formed. Even if left for a week, there is a tendency that even phase separation does not occur.
  • the dielectric constant (Dk) of the cured product of the resin composition of the present embodiment is preferably 3.0 or less, more preferably. It is 2.9 or less, more preferably 2.8 or less.
  • the dielectric loss tangent (Df) of the cured product of the resin composition of the present embodiment is preferably 0.0050 or less, more preferably 0.0050 or less. It is 0.0040 or less, more preferably 0.0030 or less, particularly preferably 0.0025 or less, and most preferably 0.0020 or less.
  • the dielectric constant (Dk) and the dielectric loss tangent (Df) are values based on the cavity resonator perturbation method, and more specifically, they are values measured by the method described in Examples. Further, in the present specification, the term "dielectric constant" means the relative permittivity.
  • the method for producing a maleimide resin composition of the present embodiment is a method for producing a maleimide resin composition, which comprises the following steps 1 and 2.
  • Step 1 A step of reacting (b1) a conjugated diene polymer having a vinyl group in the side chain with (b2) a maleimide compound having two or more N-substituted maleimide groups to obtain (B) a modified conjugated diene polymer.
  • Step 2 (A) Mixing one or more selected from the group consisting of maleimide compounds having two or more N-substituted maleimide groups and derivatives thereof, and (B) modified conjugated diene polymer. Reaction in step 1.
  • the preferred conditions for the above are as described in the description of the component (B).
  • the mixing in the step 2 may be carried out using a known stirrer or the like.
  • the components (A) and (B) are put into the above-mentioned organic solvent and stirred at room temperature or heating to mix. Is preferable.
  • the heating temperature at the time of mixing is, for example, 30 to 100 ° C, preferably 40 to 90 ° C.
  • the concentration of the component (A) and the component (B) in the mixed solution at the time of mixing is in a suitable range of the solid content concentration of the resin composition when the resin composition of the present embodiment contains an organic solvent as described above. Is the same as.
  • the prepreg of the present embodiment is a prepreg containing the maleimide resin composition of the present embodiment.
  • the prepreg of the present embodiment contains, for example, the resin composition of the present embodiment and a sheet-shaped fiber reinforced base material.
  • the prepreg is formed by using the resin composition of the present embodiment and the sheet-shaped fiber reinforced base material.
  • the resin composition of the present embodiment is impregnated or coated on the sheet-shaped fiber reinforced base material and dried. It can be obtained by letting it.
  • the prepreg of the present embodiment can be produced by heating and drying in a drying oven at a temperature of 80 to 200 ° C. for 1 to 30 minutes and semi-curing (B-stage). it can.
  • the amount of the resin composition used can be determined so that the solid content concentration derived from the resin composition in the prepreg after drying is 30 to 90% by mass. By setting the solid content concentration in the above range, better moldability tends to be obtained when the laminated plate is formed.
  • the sheet-shaped fiber reinforced base material of the prepreg known materials used for various laminated plates for electrical insulating materials are used.
  • the material of the sheet-shaped fiber reinforcing base material include inorganic fibers such as E glass, D glass, S glass, and Q glass; organic fibers such as polyimide, polyester, and tetrafluoroethylene; and a mixture thereof.
  • These sheet-shaped fiber reinforced base materials have shapes such as woven fabrics, non-woven fabrics, robinks, chopped strand mats, and surfaced mats.
  • the thickness of the sheet-shaped fiber reinforced base material is not particularly limited, but for example, one having a thickness of 0.02 to 0.5 mm can be used.
  • the sheet-shaped fiber reinforced base material is surface-treated with a coupling agent or the like from the viewpoints of impregnation property of the resin composition, heat resistance when formed into a laminated board, hygroscopicity resistance, and processability, and mechanically. Can be used after the fiber opening treatment.
  • the hot melt method or solvent method can be adopted as a method for impregnating or coating the sheet-shaped fiber reinforced base material with the resin composition.
  • the hot melt method is a method in which the resin composition does not contain an organic solvent, and (1) a coating paper having good peelability from the resin composition is once coated and then laminated on a sheet-shaped fiber reinforced base material.
  • the solvent method the resin composition is impregnated with an organic solvent, the sheet-shaped fiber reinforced base material is immersed in the obtained resin composition, the resin composition is impregnated with the sheet-shaped fiber reinforced base material, and then It is a method of drying.
  • the resin film of the present embodiment is a resin film containing the resin composition of the present embodiment.
  • the resin film of the present embodiment can be produced, for example, by applying a resin composition containing an organic solvent, that is, a resin varnish, to a support and heat-drying the support.
  • a resin composition containing an organic solvent that is, a resin varnish
  • a support a polyolefin film such as polyethylene, polypropylene, and polyvinyl chloride
  • PET polyethylene terephthalate
  • polyethylene naphthalate various plastic films such as a polycarbonate film and a polyimide film, etc.
  • a metal foil such as a copper foil or an aluminum foil, a paper pattern, or the like may be used.
  • the support may be subjected to surface treatment such as matte treatment and corona treatment.
  • the support may be subjected to a mold release treatment with a silicone resin-based mold release agent, an alkyd resin-based mold release agent, a fluororesin-based mold release agent, or the like.
  • the thickness of the support is not particularly limited, but is preferably 10 to 150 ⁇ m, more preferably 25 to 50 ⁇ m.
  • the method of applying the resin varnish to the support is not particularly limited, and a coating device known to those skilled in the art such as a comma coater, a bar coater, a kiss coater, a roll coater, a gravure coater, and a die coater can be used. These coating devices may be appropriately selected depending on the film thickness.
  • the drying temperature and drying time may be appropriately determined according to the amount of the organic solvent used, the boiling point of the organic solvent used, and the like. For example, in the case of a resin varnish containing an organic solvent of about 40 to 60% by mass, the drying temperature and the drying time may be determined.
  • a resin film can be suitably formed by drying at 50 to 150 ° C. for about 3 to 10 minutes.
  • the laminated board of the present embodiment is a laminated board containing the prepreg and the metal foil of the present embodiment.
  • the laminated plate of the present embodiment is, for example, arranged with metal foil on one side or both sides of one prepreg of the present embodiment, or on one side or both sides of a prepreg obtained by stacking two or more prepregs of the present embodiment. It can be produced by arranging a metal foil and then heat-press molding.
  • a laminated board having a metal foil is sometimes referred to as a metal-clad laminated board.
  • the metal of the metal foil is not particularly limited as long as it is used for electrical insulating materials, but from the viewpoint of conductivity, copper, gold, silver, nickel, platinum, molybdenum, ruthenium, aluminum, tungsten, iron, titanium. , Chromium, or an alloy containing one or more of these metal elements, preferably copper and aluminum, and more preferably copper.
  • the conditions for heat-press molding are not particularly limited, but for example, the temperature can be 100 to 300 ° C., the pressure can be 0.2 to 10 MPa, and the time can be 0.1 to 5 hours. Further, for the heat and pressure molding, a method of holding the vacuum state for 0.5 to 5 hours by using a vacuum press or the like can be adopted.
  • the multilayer printed wiring board of the present embodiment contains one or more selected from the group consisting of the prepreg of the present embodiment, the resin film of the present embodiment, and the laminated board of the present embodiment.
  • the multilayer printed wiring board of the present embodiment is drilled by a known method using one or more selected from the group consisting of the prepreg of the present embodiment, the resin film of the present embodiment, and the laminated board of the present embodiment. It can be manufactured by performing circuit forming processing such as processing, metal plating processing, etching of metal foil, and multi-layer bonding processing.
  • the semiconductor package of this embodiment is formed by mounting a semiconductor on a printed wiring board of this embodiment.
  • the semiconductor package of this embodiment can be manufactured by mounting a semiconductor chip, a memory, or the like at a predetermined position on the printed wiring board of this embodiment.
  • the resin composition, prepreg, laminated board, resin film, multilayer printed wiring board and semiconductor package of the present embodiment can be suitably used for electronic devices that handle high frequency signals of 10 GHz or more.
  • the multilayer printed wiring board is useful as a multilayer printed wiring board for millimeter-wave radar.
  • the number average molecular weight was measured by the following procedure. (Measurement method of number average molecular weight) The number average molecular weight was converted from the calibration curve using standard polystyrene by gel permeation chromatography (GPC).
  • the calibration curve is standard polystyrene: TSK standard POLYSTYRENE (Type; A-2500, A-5000, F-1, F-2, F-4, F-10, F-20, F-40) [manufactured by Tosoh Corporation, Product name] was used for approximation by a cubic equation.
  • the measurement conditions of GPC are shown below.
  • HLC-8320GPC Detector Ultraviolet absorption detector UV-8320 [manufactured by Tosoh Corporation]
  • Eluent Tetrahydrofuran Sample concentration: 10 mg / 5 mL Injection volume: 25 ⁇ L Flow rate: 1.00 mL / min Measurement temperature: 40 ° C
  • the vinyl group modification rate of the conjugated diene polymer is determined by the same method as above for the solution containing the components (b1) and (b2) before the start of the reaction and the solution containing the modified conjugated diene polymer obtained after the reaction.
  • the rate of decrease in the peak area derived from the (b2) component before and after the reaction that is, (peak area derived from the (b2) component before the reaction-peak area derived from the (b2) component after the reaction) ⁇ 100 / (before the reaction) (B2) Component-derived peak area).
  • This resin film was peeled off from the PET film and then pulverized to obtain a resin powder.
  • the above resin powder was put into a Teflon (registered trademark) sheet die-cut to a size of 1 mm in thickness ⁇ 50 mm in length ⁇ 35 mm in width, and a low profile copper foil (Furukawa Electric Industry Co., Ltd.) having a thickness of 18 ⁇ m was placed above and below the sheet.
  • a company-made product, trade name: BF-ANP18 is placed so that the M surface is in contact with the charged resin powder, and heat-press molded under the conditions of a temperature of 230 ° C., a pressure of 2.0 MPa, and a time of 120 minutes to form a resin composition.
  • the object was cured to prepare a resin plate with double-sided copper foil (resin plate thickness: 1 mm).
  • the coefficient of thermal expansion (plate thickness direction, temperature range: 30 to 120 ° C.) and glass transition temperature (Tg) are determined by using a 5 mm square test piece obtained by etching the copper foil on both sides of a resin plate with double-sided copper foil. It was measured by a measuring device (TMA) [manufactured by TA Instruments Japan Co., Ltd., Q400 (model number)] in accordance with the IPC (The Institute for Interconnecting and Packaging Electronic Circuits) standard.
  • TMA measuring device [manufactured by TA Instruments Japan Co., Ltd., Q400 (model number)] in accordance with the IPC (The Institute for Interconnecting and Packaging Electronic Circuits) standard.
  • the resin compositions obtained in Examples 1 to 5 of this embodiment have good compatibility, and the cured product prepared using these has good compatibility. It has excellent heat resistance and low thermal expansion, and has excellent dielectric properties in the high frequency band of 10 GHz.
  • Comparative Examples 1 and 2 have low compatibility and insufficient dielectric properties in the high frequency band of 10 GHz band. Further, in Comparative Example 3, the dielectric characteristics in the high frequency band of 10 GHz band are insufficient.
  • the resin composition of the present invention has good compatibility, and the laminated board produced from the resin composition is particularly excellent in heat resistance and dielectric properties in a high frequency band of 10 GHz or higher, so that the frequency exceeds 6 GHz. It is useful for 5th generation mobile communication system (5G) antennas in which radio waves in the band are used and multi-layer printed wiring boards used in millimeter-wave radars in which radio waves in the frequency band of 30 to 300 GHz are used.
  • 5G 5th generation mobile communication system

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

(A)N-置換マレイミド基を2個以上有するマレイミド化合物及びその誘導体からなる群から選択される1種以上と、(B)変性共役ジエンポリマーと、を含有し、前記(B)成分が、(b1)側鎖にビニル基を有する共役ジエンポリマーを、(b2)N-置換マレイミド基を2個以上有するマレイミド化合物で変性してなるものである、マレイミド樹脂組成物、該マレイミド樹脂組成物を用いたプリプレグ、積層板、樹脂フィルム、多層プリント配線板及び半導体パッケージに関する。

Description

マレイミド樹脂組成物、プリプレグ、積層板、樹脂フィルム、多層プリント配線板及び半導体パッケージ
 本発明は、マレイミド樹脂組成物、プリプレグ、積層板、樹脂フィルム、多層プリント配線板及び半導体パッケージに関する。
 携帯電話に代表される移動体通信機器、その基地局装置、サーバー、ルーター等のネットワークインフラ機器、大型コンピュータなどでは、使用する信号の高速化及び大容量化が年々進んでいる。これに伴い、これらの電子機器に搭載されるプリント配線板には高周波化対応が必要となり、伝送損失の低減を可能とする高周波数帯における誘電特性(低誘電率及び低誘電正接;以下、高周波特性と称することがある。)に優れる基板材料が求められている。近年、このような高周波信号を扱うアプリケーションとして、上述した電子機器のほかに、ITS分野(自動車、交通システム関連)及び室内の近距離通信分野でも高周波無線信号を扱う新規システムの実用化又は実用計画が進んでおり、今後、これらの機器に搭載するプリント配線板に対しても、低伝送損失基板材料がさらに要求されると予想される。
 従来、低伝送損失が要求されるプリント配線板には、高周波特性に優れる熱可塑性ポリマーが使用されてきた。熱可塑性ポリマーとしては、例えば、ポリフェニレンエーテル、ポリブタジエン等の分子内に極性基を有しないものが低誘電正接化に有効である。しかしながら、これらの熱可塑性ポリマーは他の樹脂との相容性が低く、樹脂組成物にした際に他の成分との分離が生じる等、取り扱い性に劣る問題がある。
 熱可塑性ポリマーの相容性を改善する方法として、熱可塑性ポリマーを変性する方法が検討されている。
 特許文献1には、誘電正接が低く、低熱膨張であり、配線の埋め込み性及び平坦性に優れる熱硬化性樹脂組成物を提供することを課題として、無機充填材(A)、N-置換マレイミド基を少なくとも2個有するマレイミド化合物(a1)由来の構造単位とジアミン化合物(a2)由来の構造単位とを有するポリイミド化合物(B)を含有する熱硬化性樹脂組成物において、酸無水物で変性されているポリブタジエン系エラストマーを配合する技術が開示されている。
特開2018-012747号公報
 特許文献1に記載の樹脂組成物は、熱可塑性ポリマーの相容性を改善しつつ、高周波数帯における誘電特性にも優れる結果となっている。しかしながら、近年、基板材料は、6GHzを超える周波数帯の電波が使用される第五世代移動通信システム(5G)アンテナ及び30~300GHzの周波数帯の電波が使用されるミリ波レーダーへの適用が要求されている。そのためには、10GHz帯以上における誘電特性がより一層改善された樹脂組成物の開発が必要であるが、特許文献1の技術では、諸特性を良好に保ったまま更なる誘電特性の向上を達成することが困難であった。
 本発明は、このような現状に鑑み、良好な耐熱性及び低熱膨張性を有しながらも、10GHz帯以上の高周波数帯において優れた誘電特性を発現する、取り扱い性に優れるマレイミド樹脂組成物、該マレイミド樹脂組成物を用いたプリプレグ、積層板、樹脂フィルム、多層プリント配線板及び半導体パッケージを提供することを課題とする。
 本発明者等は上記の課題を解決すべく検討を進めた結果、下記の本発明により当該課題を解決できることを見出した。
 すなわち、本発明は、下記[1]~[15]に関する。
[1](A)N-置換マレイミド基を2個以上有するマレイミド化合物及びその誘導体からなる群から選択される1種以上と、
 (B)変性共役ジエンポリマーと、を含有し、
 前記(B)成分が、(b1)側鎖にビニル基を有する共役ジエンポリマーを、(b2)N-置換マレイミド基を2個以上有するマレイミド化合物で変性してなるものである、マレイミド樹脂組成物。
[2]前記(B)成分が、側鎖に、前記(b1)成分が有するビニル基と、前記(b2)成分が有するN-置換マレイミド基と、が反応してなる置換基(x)を有する、上記[1]に記載のマレイミド樹脂組成物。
[3]前記置換基(x)が、前記(b2)成分由来の構造として、下記一般式(B-11)又は(B-12)で表される構造を含む基である、上記[2]に記載のマレイミド樹脂組成物。
Figure JPOXMLDOC01-appb-C000002

(式中、XB1は、2価の有機基であり、*B1は、前記(b1)成分が側鎖に有するビニル基由来の炭素原子に結合する部位である。*B2は、他の原子に結合する部位である。)[4]前記(B)成分が、側鎖に、前記置換基(x)とビニル基(y)とを有し、1分子中に有する前記置換基(x)と前記ビニル基(y)との合計数に対する、前記置換基(x)の数の比率[x/(x+y)]が、0.01~0.5である、上記[2]又は[3]に記載のマレイミド樹脂組成物。
[5]前記(B)成分の数平均分子量が、700~6,000である、上記[1]~[4]のいずれかに記載のマレイミド樹脂組成物。
[6]前記(b1)成分が、1,2-ビニル基を有するポリブタジエンである、上記[1]~[5]のいずれかに記載のマレイミド樹脂組成物。
[7]前記1,2-ビニル基を有するポリブタジエンを構成するブタジエン由来の全構造単位に対して、1,2-ビニル基を有する構造単位の含有量が、50モル%以上である、上記[6]に記載のマレイミド樹脂組成物。
[8]前記(b2)成分が、脂肪族炭化水素基で置換された芳香族ビスマレイミド化合物である、上記[1]~[7]のいずれかに記載のマレイミド樹脂組成物。
[9]前記(A)成分と前記(B)成分との含有量比[(A)/(B)]が、質量基準で、1.0超である、上記[1]~[8]のいずれかに記載のマレイミド樹脂組成物。
[10]上記[1]~[9]のいずれかに記載のマレイミド樹脂組成物を含有してなるプリプレグ。
[11]上記[10]に記載のプリプレグと金属箔とを含有してなる積層板。
[12]上記[1]~[9]のいずれかに記載のマレイミド樹脂組成物を含有してなる樹脂フィルム。
[13]上記[10]に記載のプリプレグ、上記[11]に記載の積層板及び上記[12]に記載の樹脂フィルムからなる群から選択される1種以上を含有してなる多層プリント配線板。
[14]上記[13]に記載の多層プリント配線板に半導体素子を搭載してなる半導体パッケージ。
[15]上記[1]~[9]のいずれかに記載のマレイミド樹脂組成物を製造する方法であって、下記工程1及び2を含む、マレイミド樹脂組成物の製造方法。
 工程1:(b1)側鎖にビニル基を有する共役ジエンポリマーと、(b2)N-置換マレイミド基を2個以上有するマレイミド化合物と、を反応させて、(B)変性共役ジエンポリマーを得る工程
 工程2:(A)N-置換マレイミド基を2個以上有するマレイミド化合物及びその誘導体からなる群から選択される1種以上と、(B)変性共役ジエンポリマーと、を混合する工程
 本発明によれば、良好な耐熱性及び低熱膨張性を有しながらも、10GHz帯以上の高周波数帯において優れた誘電特性を発現する、取り扱い性に優れるマレイミド樹脂組成物、該マレイミド樹脂組成物を用いたプリプレグ、積層板、樹脂フィルム、多層プリント配線板及び半導体パッケージを提供することができる。
 本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。また、数値範囲の下限値及び上限値は、それぞれ他の数値範囲の下限値又は上限値と任意に組み合わせられる。
 また、本明細書に例示する各成分及び材料は、特に断らない限り、1種を単独で使用してもよいし、2種以上を併用してもよい。本明細書において、組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
 本明細書における記載事項を任意に組み合わせた態様も本発明に含まれる。
[マレイミド樹脂組成物]
 本実施形態のマレイミド樹脂組成物[以下、単に樹脂組成物と略称することがある。]は、
 (A)N-置換マレイミド基を2個以上有するマレイミド化合物及びその誘導体からなる群から選択される1種以上[以下、単にマレイミド化合物(A)又は(A)成分と略称することがある。]と、
 (B)変性共役ジエンポリマー[以下、変性共役ジエンポリマー(B)又は(B)成分と略称することがある。]と、を含有し、
 前記(B)成分が、(b1)側鎖にビニル基を有する共役ジエンポリマー[以下、単にジエン系ポリマー(b1)又は(b1)成分と略称することがある。]を、
 (b2)N-置換マレイミド基を2個以上有するマレイミド化合物[以下、単にマレイミド化合物(b2)又は(b2)成分と略称することがある。]で変性してなるものである、マレイミド樹脂組成物である。
 本実施形態のマレイミド樹脂組成物が、良好な耐熱性及び低熱膨張性を有しながらも、10GHz帯以上の高周波数帯において優れた誘電特性を発現し、取り扱いに優れる理由については定かでないが次のように推測される。
 共役ジエンポリマーは分子内に極性を有する基を含まないことから誘電正接の低減に有効である一方、マレイミド化合物との相容性に劣るため、分離が生じるなど取り扱い性に劣る。一方、これを改善するために共役ジエンポリマーに酸素原子等を導入すると誘電正接の低減効果が小さくなる。これに対して、本実施形態のマレイミド樹脂組成物は、共役ジエンポリマーとして側鎖にビニル基を有するものを採用し、該ビニル基と変性用のマレイミド化合物とを事前に反応させることで、共役ジエンポリマーと、その後の主剤として用いるマレイミド化合物との相容性を改善したものである。これによって、本実施形態のマレイミド樹脂組成物は、取り扱い性に優れたものとなる。
 さらに、この樹脂組成物は単に相容性に優れるのみならず、耐熱性、熱膨張係数に優れ、誘電正接が予想外にも低減されたものとなる。これは、共役ジエンポリマーがマレイミド化合物と相容することにより誘電正接の低減効果が十分に発揮されるようになったことに加え、変性用のマレイミド化合物によって共役ジエンポリマーに導入されたN-置換マレイミド基が、その後の主剤として用いるマレイミド化合物と良好に反応することによって、樹脂組成物全体の硬化性が向上したことによると推測される。
 以下、各成分について順に詳述する。
<マレイミド化合物(A)>
 マレイミド化合物(A)は、N-置換マレイミド基を2個以上有するマレイミド化合物及びその誘導体からなる群から選択される1種以上である。
 上記「N-置換マレイミド基を2個以上有するマレイミド化合物の誘導体」としては、上記N-置換マレイミド基を2個以上有するマレイミド化合物と、後述するジアミン化合物(a2)等のアミン化合物との付加反応物などが挙げられる。
 (A)成分は、1種を単独で用いても、2種以上を併用してもよい。
 マレイミド化合物(A)としては、他の樹脂との相容性、導体との接着性及び誘電特性の観点から、
(i)N-置換マレイミド基を2個以上有するマレイミド化合物(a1)[以下、単にマレイミド化合物(a1)又は(a1)成分と略称することがある。]、及び
(ii)マレイミド化合物(a1)由来の構造単位とジアミン化合物(a2)由来の構造単位とを有するポリアミノビスマレイミド化合物[以下、ポリアミノビスマレイミド化合物(A1)又は(A1)成分と略称することがある。]
 からなる群から選択される1種以上が好ましい。
(マレイミド化合物(a1))
 (a1)成分の具体例としては、N-置換マレイミド基を2個以上有するマレイミド化合物であれば特に限定されないが、ビス(4-マレイミドフェニル)メタン、ビス(4-マレイミドフェニル)エーテル、ビス(4-マレイミドフェニル)スルホン、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド、4-メチル-1,3-フェニレンビスマレイミド、m-フェニレンビスマレイミド、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパン等の分子内に2つのN-置換マレイミド基を有する芳香族マレイミド化合物;ポリフェニルメタンマレイミド、ビフェニルアラルキル型マレイミド等の分子内に3つ以上のN-置換マレイミド基を有する芳香族ポリマレイミド化合物;1,6-ビスマレイミド-(2,2,4-トリメチル)ヘキサン、ピロリン酸バインダ型長鎖アルキルビスマレイミド等の脂肪族マレイミド化合物などが挙げられる。これらの中でも、他の樹脂との相容性、導体との接着性、耐熱性、低熱膨張性及び機械特性の観点から、分子内に2つのN-置換マレイミド基を有する芳香族マレイミド化合物、分子内に3つ以上のN-置換マレイミド基を有する芳香族ポリマレイミド化合物が好ましく、分子内に3つ以上のN-置換マレイミド基を有する芳香族ポリマレイミド化合物がより好ましく、ビフェニルアラルキル型マレイミドがさらに好ましい。
 (a1)成分は、1種を単独で用いても、2種以上を併用してもよい。
 (a1)成分としては、下記一般式(a1-1)で表されるビスマレイミド化合物が好ましい。
Figure JPOXMLDOC01-appb-C000003

(式中、Xa1は2価の有機基である。)
 上記一般式(a1-1)中のXa1は2価の有機基であり、(a1)成分の残基に相当する。なお、(a1)成分の残基とは、(a1)成分からN-置換マレイミド基を除いた部分の構造をいう。
 Xa1が表す2価の有機基としては、下記一般式(a1-2)、(a1-3)、(a1-4)、(a1-5)又は(a1-6)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000004

(式中、Ra1は、炭素数1~5の脂肪族炭化水素基又はハロゲン原子である。p1は0~4の整数である。*は結合部位を表す。)
 Ra1が表す炭素数1~5の脂肪族炭化水素基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基等が挙げられる。該脂肪族炭化水素基としては、炭素数1~3の脂肪族炭化水素基であってもよく、メチル基であってもよい。
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 p1は0~4の整数であり、入手容易性の観点から、0~2の整数であってもよく、0又は1であってもよく、0であってもよい。p1が2以上の整数である場合、複数のRa1同士は同一であっても異なっていてもよい。
Figure JPOXMLDOC01-appb-C000005

(式中、Ra2及びRa3は、各々独立に、炭素数1~5の脂肪族炭化水素基又はハロゲン原子である。Xa2は炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基、エーテル基、スルフィド基、スルホニル基、カルボニルオキシ基、ケト基、単結合、又は下記一般式(a1-3-1)で表される2価の基である。p2及びp3は、各々独立に、0~4の整数である。*は結合部位を表す。)
 Ra2及びRa3が表す炭素数1~5の脂肪族炭化水素基、ハロゲン原子としては、Ra1の場合と同じものが挙げられる。該脂肪族炭化水素基としては、炭素数1~3の脂肪族炭化水素基であってもよく、メチル基、エチル基であってもよく、エチル基であってもよい。
 Xa2が表す炭素数1~5のアルキレン基としては、メチレン基、1,2-ジメチレン基、1,3-トリメチレン基、1,4-テトラメチレン基、1,5-ペンタメチレン基等が挙げられる。該アルキレン基としては、他の樹脂との相容性、導体との接着性、耐熱性、低熱膨張性及び機械特性の観点から、炭素数1~3のアルキレン基であってもよく、メチレン基であってもよい。
 Xa2が表す炭素数2~5のアルキリデン基としては、エチリデン基、プロピリデン基、イソプロピリデン基、ブチリデン基、イソブチリデン基、ペンチリデン基、イソペンチリデン基等が挙げられる。これらの中でも、他の樹脂との相容性、導体との接着性、耐熱性、低熱膨張性及び機械特性の観点から、イソプロピリデン基であってもよい。
 Xa2としては、上記選択肢の中でも、炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基であってもよい。
 p2及びp3は、各々独立に、0~4の整数であり、入手容易性の観点から、いずれも、0~2の整数であってもよく、0又は2であってもよい。p2又はp3が2以上の整数である場合、複数のRa2同士又はRa3同士は、それぞれ同一であっても異なっていてもよい。
 なお、Xa2が表す一般式(a1-3-1)で表される2価の基は以下のとおりである。
Figure JPOXMLDOC01-appb-C000006

(式中、Ra4及びRa5は、各々独立に、炭素数1~5の脂肪族炭化水素基又はハロゲン原子である。Xa3は炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基、エーテル基、スルフィド基、スルホニル基、カルボニルオキシ基、ケト基又は単結合である。p4及びp5は、各々独立に、0~4の整数である。*は結合部位を表す。)
 Ra4及びRa5が表す炭素数1~5の脂肪族炭化水素基、ハロゲン原子としては、Ra1の場合と同様に説明される。
 Xa3が表す炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基としては、Xa2が表す炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基と同じものが挙げられる。
 Xa3としては、上記選択肢の中から、炭素数2~5のアルキリデン基を選択してもよい。
 p4及びp5は、各々独立に、0~4の整数であり、入手容易性の観点から、いずれも、0~2の整数であってもよく、0又は1であってもよく、0であってもよい。p4又はp5が2以上の整数である場合、複数のRa4同士又はRa5同士は、それぞれ同一であっても異なっていてもよい。
Figure JPOXMLDOC01-appb-C000007

(式中、p6は0~10の整数である。*は結合部位を表す。)
 p6は、入手容易性の観点から、0~5の整数であってもよく、0~3の整数であってもよい。
Figure JPOXMLDOC01-appb-C000008

(式中、p7は0~5の数である。*は結合部位を表す。)
Figure JPOXMLDOC01-appb-C000009

(式中、Ra6及びRa7は、各々独立に、水素原子又は炭素数1~5の脂肪族炭化水素基である。p8は1~8の整数である。*は結合部位を表す。)
 Ra6及びRa7が表す炭素数1~5の脂肪族炭化水素基としては、Ra1の場合と同様に説明される。
 p8は1~8の整数であり、1~3の整数であってもよく、1であってもよい。
 p8が2以上の整数である場合、複数のRa6同士又はRa7同士は、それぞれ同一であっても異なっていてもよい。
(ポリアミノビスマレイミド化合物(A1))
 ポリアミノビスマレイミド化合物(A1)は、マレイミド化合物(a1)由来の構造単位とジアミン化合物(a2)由来の構造単位とを有するポリアミノビスマレイミド化合物である。(A1)成分は、1種を単独で用いても、2種以上を併用してもよい。
 (a1)成分由来の構造単位としては、下記一般式(a1-7)で表される基及び下記一般式(a1-8)で表される基からなる群から選択される1種以上が挙げられる。
Figure JPOXMLDOC01-appb-C000010

(式中、Xa1は2価の有機基であり、*は他の構造への結合位置を示す。)
 上記一般式(a1-7)及び一般式(a1-8)中のXa1についての説明は、上記一般式(a1-1)中のXa1についての説明と同じである。
 ポリアミノビスマレイミド化合物(A1)中における(a1)成分由来の構造単位の合計含有量は、好ましくは5~95質量%、より好ましくは30~93質量%、さらに好ましくは60~90質量%、特に好ましくは75~90質量%である。(a1)成分由来の構造単位の含有量が上記範囲内であると、10GHz帯以上の高周波数帯における誘電特性がより良好となり、且つ、良好なフィルムハンドリング性が得られる傾向にある。
 (a2)成分は、アミノ基を2個有する化合物であれば、特に限定されない。
 (a2)成分としては、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノ-3,3’-ジメチルジフェニルメタン、4,4’-ジアミノ-3,3’-ジエチルジフェニルメタン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルケトン、4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジヒドロキシベンジジン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジアミノジフェニルメタン、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、1,3-ビス〔1-[4-(4-アミノフェノキシ)フェニル]-1-メチルエチル〕ベンゼン、1,4-ビス〔1-[4-(4-アミノフェノキシ)フェニル]-1-メチルエチル〕ベンゼン、4,4’-[1,3-フェニレンビス(1-メチルエチリデン)]ビスアニリン、4,4’-[1,4-フェニレンビス(1-メチルエチリデン)]ビスアニリン、3,3’-[1,3-フェニレンビス(1-メチルエチリデン)]ビスアニリン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、9,9-ビス(4-アミノフェニル)フルオレン等が挙げられる。
 (a2)成分は、1種を単独で用いても、2種以上を併用してもよい。
 これらの中でも、(a2)成分としては、有機溶媒への溶解性、(a1)成分との反応性、及び耐熱性に優れるという観点から、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノ-3,3’-ジメチルジフェニルメタン、4,4’-ジアミノ-3,3’-ジエチルジフェニルメタン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、4,4’-[1,3-フェニレンビス(1-メチルエチリデン)]ビスアニリン、及び4,4’-[1,4-フェニレンビス(1-メチルエチリデン)]ビスアニリンが好ましい。また、(a2)成分は、誘電特性及び低吸水性に優れるという観点からは、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジアミノジフェニルメタンが好ましい。また、(a2)成分は、導体との高接着性、伸び、破断強度等の機械特性に優れる観点からは、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパンが好ましい。さらに、上記の有機溶媒への溶解性、合成時の反応性、耐熱性、導体との高接着性に優れることに加えて、誘電特性及び低吸湿性に優れるという観点からは、(a2)成分は、4,4’-[1,3-フェニレンビス(1-メチルエチリデン)]ビスアニリン、4,4’-[1,4-フェニレンビス(1-メチルエチリデン)]ビスアニリンが好ましい。
 (a2)成分由来の構造単位としては、例えば、下記一般式(a2-1)で表される基及び下記一般式(a2-2)で表される基からなる群から選択される1種以上が挙げられる。
Figure JPOXMLDOC01-appb-C000011

(式中、Xa4は2価の有機基であり、*は他の構造への結合位置を示す。)
 上記一般式(a2-1)及び(a2-2)中のXa4は2価の有機基であり、(a2)成分の残基に相当する。なお、(a2)成分の残基とは、(a2)成分から結合に供された官能基、つまりアミノ基を除いた部分の構造をいう。
 上記一般式(a2-1)及び上記一般式(a2-2)中のXa4は、下記一般式(a2-3)で表される2価の基であることが好ましい。
Figure JPOXMLDOC01-appb-C000012

(式中、Ra11及びRa12は、各々独立に、炭素数1~5の脂肪族炭化水素基、炭素数1~5のアルコキシ基、水酸基又はハロゲン原子である。Xa5は、炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基、エーテル基、スルフィド基、スルホニル基、カルボニルオキシ基、ケト基、フルオレニレン基、単結合、又は下記一般式(a2-3-1)もしくは(a2-3-2)で表される2価の基である。p8及びp9は、各々独立に、0~4の整数である。*は結合部位を表す。)
Figure JPOXMLDOC01-appb-C000013

(式中、Ra13及びRa14は、各々独立に、炭素数1~5の脂肪族炭化水素基又はハロゲン原子である。Xa6は炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基、m-フェニレンジイソプロピリデン基、p-フェニレンジイソプロピリデン基、エーテル基、スルフィド基、スルホニル基、カルボニルオキシ基、ケト基又は単結合である。p10及びp11は、各々独立に、0~4の整数である。*は結合部位を表す。)
Figure JPOXMLDOC01-appb-C000014

(式中、Ra15は、各々独立に、炭素数1~5の脂肪族炭化水素基又はハロゲン原子である。Xa7及びXa8は各々独立に、炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基、エーテル基、スルフィド基、スルホニル基、カルボニルオキシ基、ケト基又は単結合である。p12は0~4の整数である。*は結合部位を表す。)
 上記一般式(a2-3)、(a2-3-1)又は(a2-3-2)中のRa11、Ra12、Ra13、Ra14及びRa15が表す炭素数1~5の脂肪族炭化水素基又はハロゲン原子としては、上記一般式(a1-2)中のRa1と同じものが挙げられる。該脂肪族炭化水素基としては、炭素数1~3の脂肪族炭化水素基であってもよく、メチル基、エチル基であってもよい。
 上記一般式(a2-3)中のXa5、上記一般式(a2-3-1)中のXa6並びに上記一般式(a2-3-2)中のXa7及びXa8が表す炭素数1~5のアルキレン基及び炭素数2~5のアルキリデン基としては、上記一般式(a1-3)中のXa2の場合と同様に説明される。
 上記一般式(a2-3)中のp8及びp9は、各々独立に、0~4の整数であり、入手容易性の観点から、いずれも、0~2の整数であってもよく、0又は2であってもよい。p8又はp9が2以上の整数である場合、複数のRa11同士又はRa12同士は、それぞれ同一であっても異なっていてもよい。
 上記一般式(a2-3-1)中のp10及びp11は、各々独立に、0~4の整数であり、入手容易性の観点から、いずれも、0~2の整数であってもよく、0又は1であってもよく、0であってもよい。p10又はp11が2以上の整数である場合、複数のRa13同士又はRa14同士は、それぞれ同一であっても異なっていてもよい。
 上記一般式(a2-3-2)中のp12は、0~4の整数であり、入手容易性の観点から、0~2の整数であってもよく、0であってもよい。p12が2以上の整数である場合、複数のRa15同士は、それぞれ同一であっても異なっていてもよい。
 ポリアミノビスマレイミド化合物(A1)中における(a2)成分由来の構造単位の合計含有量は、好ましくは5~95質量%、より好ましくは7~70質量%、さらに好ましくは10~40質量%、特に好ましくは10~25質量%である。(a2)成分由来の構造単位の合計含有量が上記範囲内であると、誘電特性に優れ、且つより良好な耐熱性、難燃性及びガラス転移温度が得られる傾向にある。
 ポリアミノビスマレイミド化合物(A1)中における(a1)成分由来の構造単位と、(a2)成分由来の構造単位との含有比率は、ポリアミノビスマレイミド化合物(A1)中における、(a2)成分の-NH基由来の基(-NHも含む)の合計当量(Ta2)と、(a1)成分のN-置換マレイミド基由来の基(N-置換マレイミド基も含む)の合計当量(Ta1)との当量比(Ta2/Ta1)が、好ましくは0.05~10、より好ましくは1~5となる含有比率である。当量比(Ta2/Ta1)が上記範囲内であると、誘電特性に優れ、且つより良好な耐熱性、難燃性及びガラス転移温度が得られる傾向にある。
 ポリアミノビスマレイミド化合物(A1)は、誘電特性の観点、並びに有機溶媒への溶解性、導体との高接着性及び樹脂フィルムの成形性等の観点から、下記一般式(a2-4)で表されるポリアミノビスマレイミド化合物を含有することが好ましい。
Figure JPOXMLDOC01-appb-C000015

(式中、Xa1及びXa4は、上記で説明したとおりである。)
(ポリアミノビスマレイミド化合物(A1)の製造方法)
 (A1)成分は、例えば、(a1)成分と(a2)成分とを有機溶媒中で反応させることで製造することができる。
 (a1)成分と(a2)成分とを反応させてポリアミノビスマレイミド化合物(A1)を製造する際には、必要に応じて反応触媒を使用することもできる。
 反応触媒としては、特に限定されないが、p-トルエンスルホン酸等の酸性触媒;トリエチルアミン、ピリジン、トリブチルアミン等のアミン類;メチルイミダゾール、フェニルイミダゾール等のイミダゾール類;トリフェニルホスフィン等のリン系触媒などが挙げられる。これらは1種を単独で使用してもよいし、2種以上を併用してもよい。
 また、反応触媒の配合量は、特に限定されないが、例えば、(a1)成分及び(a2)成分の合計量100質量部に対して、0.01~5質量部使用すればよい。
 (a1)成分、(a2)成分、必要によりその他の成分を合成釜に所定量仕込み、(a1)成分と(a2)成分とをマイケル付加反応させることにより、上記ポリアミノビスマレイミド化合物が得られる。この工程での反応条件としては、特に限定されないが、例えば、反応速度等の作業性、反応中のゲル化抑制などの観点から、反応温度は50~160℃が好ましく、反応時間は1~10時間が好ましい。
 また、この工程では有機溶媒を追加又は濃縮して反応原料の固形分濃度及び溶液粘度を調整することができる。反応原料の固形分濃度は、特に限定されないが、例えば、好ましくは10~90質量%、より好ましくは20~80質量%である。反応原料の固形分濃度が10質量%以上であると、反応速度が遅くなりすぎず、製造コストの面で有利となる傾向にある。また、反応原料の固形分濃度が90質量%以下であると、より良好な溶解性が得られ、撹拌効率が良くなり、ゲル化し難い傾向にある。
 ポリアミノビスマレイミド化合物(A1)の数平均分子量は、特に限定されないが、好ましくは400~10,000、より好ましくは500~5,000、さらに好ましくは600~2,000、特に好ましくは700~1,500である。
 本明細書中における数平均分子量は、ゲル浸透クロマトグラフィー(GPC)によりポリスチレン換算にて測定される値を意味し、具体的には実施例に記載の方法によって測定することができる。
<変性共役ジエンポリマー(B)>
 変性共役ジエンポリマー(B)は、(b1)側鎖にビニル基を有する共役ジエンポリマーを、(b2)N-置換マレイミド基を2個以上有するマレイミド化合物で変性してなるものである。
 (B)成分は1種を単独で用いても、2種以上を併用してもよい。
((b1)側鎖にビニル基を有する共役ジエンポリマー)
 (b1)成分は側鎖にビニル基を有する共役ジエンポリマーであれば特に限定されないが、側鎖に複数のビニル基を有する共役ジエンポリマーであることが好ましい。
 (b1)成分が1分子中に有するビニル基の数は、誘電特性及び耐熱性の観点から、好ましくは3個以上、より好ましくは5個以上、さらに好ましくは10個以上である。
 (b1)成分は1種を単独で用いても、2種以上を併用してもよい。
 本明細書中、共役ジエンポリマーとは、共役ジエン化合物の重合体を意味する。
 共役ジエン化合物としては、1,3-ブタジエン、イソプレン、1,3-ペンタジエン、2,3-ジメチル-1,3-ブタジエン、2-フェニル-1,3-ブタジエン、1,3-ヘキサジエン等が挙げられる。
 共役ジエンポリマーは、1種の共役ジエン化合物の重合体であってもよく、2種以上の共役ジエン化合物の重合体であってもよい。
 また、共役ジエンポリマーは、1種以上の共役ジエン化合物と、1種以上の共役ジエン化合物以外のモノマーと、を共重合させたものであってもよい。その場合の重合様式は特に限定されず、ランダム重合、ブロック重合、グラフト重合のいずれであってもよい。
 (b1)成分の具体例としては、1,2-ビニル基を有するポリブタジエン、1,2-ビニル基を有するブタジエン-スチレン共重合体、1,2-ビニル基を有するポリイソプレン等が挙げられる。これらの中でも、誘電特性及び耐熱性の観点から、1,2-ビニル基を有するポリブタジエン、1,2-ビニル基を有するブタジエン-スチレン共重合体が好ましく、1,2-ビニル基を有するポリブタジエンがより好ましい。また、1,2-ビニル基を有するポリブタジエンとしては、1,2-ビニル基を有するブタジエンホモポリマーが好ましい。
 (b1)成分が有するブタジエン由来の1,2-ビニル基とは、下記式(b1-1)で表されるブタジエン由来の構造単位に含まれるビニル基である。
Figure JPOXMLDOC01-appb-C000016
 (b1)成分が1,2-ビニル基を有するポリブタジエンである場合、ポリブタジエンを構成するブタジエン由来の全構造単位に対して、1,2-ビニル基を有する構造単位(上記一般式(b1-1)で表される構造単位)の含有量[以下、ビニル基含有率と略称することがある。]は、他の樹脂との相容性、誘電特性、低熱膨張性及び耐熱性の観点から、好ましくは50モル%以上、より好ましくは60モル%以上、さらに好ましくは70モル%以上、特に好ましくは80モル%以上、最も好ましくは85モル%以上である。また、ビニル基含有率は、100モル%以下であってもよい。
 同様の観点から、1,2-ビニル基を有するポリブタジエンは、1,2-ポリブタジエンホモポリマーであることが好ましい。
 (b1)成分の数平均分子量は、他の樹脂との相容性、誘電特性、低熱膨張性及び耐熱性の観点から、好ましくは400~2,500、より好ましくは500~2,000、さらに好ましくは600~1,800、特に好ましくは700~1,500である。
((b2)N-置換マレイミド基を2個以上有するマレイミド化合物)
 (b2)成分は、N-置換マレイミド基を2個以上有するマレイミド化合物であればよく、上記したマレイミド化合物(A)として挙げられたものを使用することができる。
 (b2)成分は、1種を単独で用いてもよいし、2種以上を併用してもよい。
 これらの中でも、(b2)成分としては、有機溶媒への溶解性及び反応中のゲル化抑制の観点、並びに得られる(B)成分の他の樹脂との相容性、誘電特性、低熱膨張性及び耐熱性の観点から、脂肪族炭化水素基で置換された芳香族ビスマレイミド化合物が好ましく、下記一般式(b2-1)で表される化合物がより好ましい。
Figure JPOXMLDOC01-appb-C000017

(式中、Rb1及びRb2は、各々独立に、炭素数1~5の脂肪族炭化水素基である。Xb1は炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基、エーテル基、スルフィド基、スルホニル基、カルボニルオキシ基、ケト基、単結合、又は下記一般式(b2-1-1)で表される2価の基である。q1及びq2は、各々独立に、0~4の整数であり、q1+q2は1以上の整数である。)
 Rb1及びRb2が表す炭素数1~5の脂肪族炭化水素基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基等が挙げられる。該脂肪族炭化水素基としては、他の樹脂との相容性及び反応中のゲル化抑制の観点から、炭素数1~3の脂肪族炭化水素基が好ましく、炭素数1~3のアルキル基がより好ましく、エチル基、メチル基がさらに好ましい。
 Xb1が表す炭素数1~5のアルキレン基としては、メチレン基、1,2-ジメチレン基、1,3-トリメチレン基、1,4-テトラメチレン基、1,5-ペンタメチレン基等が挙げられる。該アルキレン基としては、炭素数1~3のアルキレン基が好ましく、メチレン基がより好ましい。
 Xb1が表す炭素数2~5のアルキリデン基としては、エチリデン基、プロピリデン基、イソプロピリデン基、ブチリデン基、イソブチリデン基、ペンチリデン基、イソペンチリデン基等が挙げられる。
 q1及びq2は、各々独立に、0~4の整数であり、q1+q2は1以上の整数である。入手容易性、他の樹脂との相容性及び反応中のゲル化抑制の観点から、いずれも、0~2の整数が好ましく、1又は2がより好ましく、2がさらに好ましい。q1又はq2が2以上の整数である場合、複数のRb1同士又はRb2同士は、それぞれ同一であっても異なっていてもよい。
 なお、Xb1が表す一般式(b2-1-1)で表される2価の基は以下のとおりである。
Figure JPOXMLDOC01-appb-C000018

(式中、Rb3及びRb4は、各々独立に、炭素数1~5の脂肪族炭化水素基又はハロゲン原子である。Xb2は炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基、エーテル基、スルフィド基、スルホニル基、カルボニルオキシ基、ケト基又は単結合である。q3及びq4は、各々独立に、0~4の整数である。*は結合部位を表す。)
 Rb3及びRb4が表す炭素数1~5の脂肪族炭化水素基、ハロゲン原子としては、Rb1の場合と同様に説明される。
 Xb2が表す炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基としては、Xb1が表す炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基と同じものが挙げられる。
 q3及びq4は、各々独立に、0~4の整数であり、入手容易性の観点から、いずれも、0~2の整数であってもよく、0又は1であってもよく、0であってもよい。q3又はq4が2以上の整数である場合、複数のRb3同士又はRb4同士は、それぞれ同一であっても異なっていてもよい。
 上記一般式(b2-1)で表される化合物としては、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド、4-メチル-1,3-フェニレンビスマレイミド等が挙げられる。これらの中でも、有機溶媒への溶解性及び反応中のゲル化抑制の観点、並びに得られる(B)成分の他の樹脂との相容性、誘電特性、低熱膨張性及び耐熱性の観点から、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミドが好ましい。
(反応条件)
 (b1)成分と(b2)成分とを反応させる方法は特に限定されず、例えば、(b1)成分、(b2)成分、反応触媒及び有機溶媒を所定量、反応容器に仕込み、必要に応じて、加熱、保温、撹拌等しながら反応させることによって(B)成分を得ることができる。この工程での反応条件は、使用する原料の種類等に応じて適宜調整することができるが、作業性及び反応中のゲル化抑制の観点から、反応温度は、好ましくは70~120℃、より好ましくは80~110℃、さらに好ましくは85~105℃であり、反応時間は、好ましくは0.5~15時間、より好ましくは1~10時間、さらに好ましくは3~7時間である。
 上記反応で使用される有機溶媒としては、特に限定されないが、メタノール、エタノール、ブタノール、ブチルセロソルブ、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル等のアルコール;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン;トルエン、キシレン、メシチレン等の芳香族炭化水素;メトキシエチルアセテート、エトキシエチルアセテート、ブトキシエチルアセテート、酢酸エチル等のエステル;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等の含窒素化合物などが挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。これらの中でも、樹脂溶解性の観点から、トルエンが好ましい。
 上記反応を有機溶媒中で行う場合、反応溶液中における(b1)成分及び(b2)成分の合計含有量(固形分濃度)は、特に限定されないが、好ましくは10~70質量%、より好ましくは15~60質量%、さらに好ましくは20~50質量%である。上記合計含有量が10質量%以上であると、反応速度が遅くなりすぎず、製造コストの面でより有利な傾向にある。また、上記合計含有量が70質量%以下であると、より良好な溶解性が得られると共に、溶液粘度が低く撹拌効率がよく、ゲル化することをより抑制できる傾向にある。
 反応触媒としては、後述する硬化促進剤(F)として挙げられるものを使用することができる。これらの中でも、反応中のゲル化を抑制しつつ、十分な反応性が得られるという観点から、有機過酸化物が好ましく、α,α’-ビス(t-ブチルパーオキシ)ジイソプロピルベンゼンがより好ましい。
 反応触媒は1種を単独で用いてもよく、2種以上を併用してもよい。
 反応触媒の使用量は、特に限定されないが、(b1)成分及び(b2)成分の総量100質量部に対して、好ましくは0.01~1.2質量部、より好ましくは0.03~1.0質量部、さらに好ましくは0.05~0.8質量部である。
 上記反応を行う際における、(b1)成分及び(b2)成分の配合量は、得られる(B)成分の他の樹脂との相容性及び反応中のゲル化抑制の観点から、(b1)成分が有する側鎖ビニル基のモル数(M)に対する(b2)成分が有するN-置換マレイミド基のモル数(M)の比率(M/M)が、好ましくは0.01~0.5、より好ましくは0.02~0.4、さらに好ましくは0.04~0.3となる量である。
 上記の反応によって、(b1)成分が側鎖に有するビニル基の少なくとも一部が、(b2)成分が有するN-置換マレイミド基と反応して、(B)成分が製造される。
 得られる(B)成分は、側鎖に、(b1)成分が有するビニル基と、(b2)成分が有するN-置換マレイミド基と、が反応してなる置換基(x)を有するものとなる。
 置換基(x)は、他の樹脂との相容性、誘電特性、低熱膨張性及び耐熱性の観点から、(b2)成分由来の構造として、下記一般式(B-11)又は(B-12)で表される構造を含む基であることが好ましい。
Figure JPOXMLDOC01-appb-C000019

(式中、XB1は、2価の有機基であり、*B1は、(b1)成分が側鎖に有するビニル基由来の炭素原子に結合する部位である。*B2は、他の原子に結合する部位である。)
 上記一般式(B-11)及び(B-12)中のXB1についての説明は、上記一般式(a1-1)中のXa1についての説明と同じである。
 また、置換基(x)としては、他の樹脂との相容性、誘電特性、低熱膨張性及び耐熱性の観点から、(b2)成分由来の構造として、下記一般式(B-21)又は(B-22)で表される構造を含む基であることがより好ましい。
Figure JPOXMLDOC01-appb-C000020

(式中、Rb1、b2、Xb1、q1及びq2についての説明は、上記一般式(b2-1)における説明の通りである。*B1及び*B2についての説明は、上記一般式(B-11)及び(B-12)における説明の通りである。)
 (B)成分は、側鎖に、置換基(x)とビニル基(y)とを有することが好ましい。その場合、1分子中に有する置換基(x)とビニル基(y)との合計数に対する、置換基(x)の数の比率[x/(x+y)]は、他の樹脂との相容性、誘電特性、低熱膨張性及び耐熱性の観点から、好ましくは0.01~0.5、より好ましくは0.02~0.4、さらに好ましくは0.04~0.3である。
 なお、以下の説明において、上記置換基(x)の含有比率[x/(x+y)]を「ビニル基変性率」と称することがある。
 ビニル基(y)は、ブタジエン由来の構造単位が有する1,2-ビニル基であることが好ましい。
 (B)成分の数平均分子量は、特に限定されないが、他の樹脂との相容性、誘電特性、低熱膨張性及び耐熱性の観点から、好ましくは700~6,000、より好ましくは800~5,000、さらに好ましくは900~4,500、特に好ましくは1,000~4,000である。
<(A)成分及び(B)成分の含有量、並びにそれらの含有割合>
 本実施形態の樹脂組成物において、(A)成分の含有量は、特に限定されないが、誘電特性及び成形性の観点から、樹脂組成物中の樹脂成分の総和100質量部に対して、好ましくは10~90質量部、より好ましくは20~80質量部、さらに好ましくは30~70質量部、特に好ましくは35~60質量部である。
 本実施形態の樹脂組成物において、(B)成分の含有量は、特に限定されないが、他の樹脂との相容性、誘電特性、低熱膨張性及び耐熱性の観点から、樹脂組成物中の樹脂成分の総和100質量部に対して、好ましくは1~50質量部、より好ましくは5~40質量部、さらに好ましくは10~30質量部、特に好ましくは15~25質量部である。
 ここで、本明細書において、「樹脂成分」とは、(A)成分、(B)成分、さらに、任意に使用する(C)成分のことを指す。つまり、樹脂組成物が(C)成分を含有しない場合には、「樹脂成分」は(A)成分及び(B)成分を指し、樹脂組成物が(C)成分を含有する場合には、「樹脂成分」には、(A)成分、(B)成分及び(C)成分が含まれる。
 (A)成分と(B)成分との含有量比[(A)/(B)]は、特に限定されないが、他の樹脂との相容性、誘電特性、低熱膨張性及び耐熱性の観点から、質量基準で、好ましくは1.0超、より好ましくは1.5~5.0、さらに好ましくは1.8~4.5、よりさらに好ましくは2.0~4.0、特に好ましくは2.2~3.5、最も好ましくは2.5~3.0である。含有量比[(A)/(B)]が1.0超であると、10GHz帯以上の高周波数帯において優れた誘電特性が得られる傾向にあり、5.0以下であると、耐熱性、成形性及び加工性が優れる傾向にある。
<その他の成分>
 本実施形態の樹脂組成物は、さらにその他の成分を含有してなるものであってもよい。その他の成分としては、例えば、(B)成分以外の熱可塑性エラストマー(C)[以下、その他の熱可塑性エラストマー(C)又は(C)成分と略称することがある。]、無機充填材(D)[以下、(D)成分と略称することがある。]、難燃剤(E)[以下、(E)成分と略称することがある。]及び硬化促進剤(F)[以下、(F)成分と略称することがある。]からなる群から選択される1種以上が挙げられる。これらを含有させることにより、積層板とした際の諸特性をさらに向上させることができる。
 ただし、本実施形態の樹脂組成物は、所望する性能に応じて、(C)成分、(D)成分、(E)成分及び(F)成分からなる群から選択される1種以上を含有しなくてもよい。
 以下、これらの成分について詳述する。
(その他の熱可塑性エラストマー(C))
 その他の熱可塑性エラストマー(C)としては、ポリフェニレンエーテル、スチレン系熱可塑性エラストマー等が挙げられる。これらの中でも、誘電特性、成形性、導体との接着性、はんだ耐熱性、ガラス転移温度、熱膨張係数及び難燃性において良好となり、これらのバランスが良くなる傾向にあることから、スチレン系熱可塑性エラストマーが好ましい。
 (C)成分としては、スチレン系化合物由来の構造単位を有する熱可塑性エラストマーであれば特に制限はなく、下記一般式(c-1)で表されるスチレン由来の構造単位を有するものであってもよい。
Figure JPOXMLDOC01-appb-C000021

(式中、Rc1は水素原子又は炭素数1~5のアルキル基であり、Rc2は、炭素数1~5のアルキル基である。kは、0~5の整数である。)
 Rc1及びRc2が表す炭素数1~5のアルキル基としては、メチル基、エチル基、n-プロピル基等が挙げられ、炭素数1~3のアルキル基であってもよく、メチル基であってもよい。
 kは、0~2の整数であってもよく、0又は1であってもよく、0であってもよい。
 (C)成分が有するスチレン系化合物由来の構造単位以外の構造単位としては、ブタジエン由来の構造単位、イソプレン由来の構造単位、マレイン酸由来の構造単位、無水マレイン酸由来の構造単位等が挙げられる。
 (C)成分は、1種を単独で用いてもよいし、2種以上を併用してもよい。
 上記ブタジエン由来の構造単位及び上記イソプレン由来の構造単位は、水素添加されていてもよい。水素添加されている場合、ブタジエン由来の構造単位はエチレン単位とブチレン単位とが混合した構造単位となり、イソプレン由来の構造単位はエチレン単位とプロピレン単位とが混合した構造単位となる。
 (C)成分としては、誘電特性、導体との接着性、耐熱性、ガラス転移温度及び熱膨張係数の観点から、スチレン-ブタジエン-スチレンブロック共重合体の水素添加物(SEBS、SBBS)、スチレン-イソプレン-スチレンブロック共重合体の水素添加物(SEPS)及びスチレン-無水マレイン酸共重合体(SMA)からなる群から選択される1種以上が好ましく、スチレン-ブタジエン-スチレンブロック共重合体の水素添加物(SEBS)及びスチレン-イソプレン-スチレンブロック共重合体の水素添加物(SEPS)からなる群から選択される1種以上がより好ましく、スチレン-ブタジエン-スチレンブロック共重合体の水素添加物(SEBS)がさらに好ましい。
 上記SEBSにおいて、スチレン由来の構造単位の含有率[以下、スチレン含有率と略称することがある。]は、誘電特性、導体との接着性、耐熱性、ガラス転移温度及び熱膨張係数の観点から、好ましくは5~80質量%、より好ましくは10~75質量%、さらに好ましくは15~70質量%、特に好ましくは20~50質量%である。SEBSのメルトフローレート(MFR)は、特に限定されないが、230℃、荷重2.16kgf(21.2N)の測定条件では、0.1~20g/10minであってもよく、0.5~15g/10minであってもよい。
 SEBSの市販品としては、旭化成株式会社製のタフテック(登録商標)Hシリーズ、Mシリーズ、株式会社クラレ製のセプトン(登録商標)シリーズ、クレイトンポリマージャパン株式会社製のクレイトン(登録商標)Gポリマーシリーズ等が挙げられる。
 (C)成分の重量平均分子量(Mw)は、特に限定されないが、好ましくは12,000~1,000,000、より好ましくは30,000~500,000、さらに好ましくは50,000~120,000、特に好ましくは70,000~100,000である。重量平均分子量(Mw)は、ゲル浸透クロマトグラフィー(GPC)によりポリスチレン換算にて測定される。
 本実施形態の樹脂組成物が(C)成分を含有する場合、(C)成分の含有量は、誘電特性、導体との接着性、耐熱性、ガラス転移温度及び熱膨張係数の観点から、(A)~(C)成分の総和100質量部に対して、好ましくは5~60質量部、より好ましくは10~55質量部、さらに好ましくは15~50質量部、特に好ましくは20~45質量部、最も好ましくは25~40質量部である。(C)成分の上記含有量が5質量部以上であると、誘電特性及び耐吸湿性がより良好となる傾向にあり、60質量部以下であると、耐熱性、成形性、加工性及び難燃性がより良好となる傾向にある。
(無機充填材(D))
 本実施形態の樹脂組成物に無機充填材(D)を含有させることで、熱膨張係数、弾性率、耐熱性及び難燃性を向上させることができる傾向にある。
 (D)成分としては、特に限定されないが、シリカ、アルミナ、酸化チタン、マイカ、ベリリア、チタン酸バリウム、チタン酸カリウム、チタン酸ストロンチウム、チタン酸カルシウム、炭酸アルミニウム、水酸化マグネシウム、水酸化アルミニウム、ケイ酸アルミニウム、炭酸カルシウム、ケイ酸カルシウム、ケイ酸マグネシウム、窒化ケイ素、窒化ホウ素、クレー(焼成クレー等)、タルク、ホウ酸アルミニウム、炭化ケイ素等が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。これらの中でも、熱膨張係数、弾性率、耐熱性及び難燃性の観点から、シリカ、アルミナ、マイカ、タルクが好ましく、シリカ、アルミナがより好ましく、シリカがさらに好ましい。シリカとしては、例えば、湿式法で製造され含水率の高い沈降シリカと、乾式法で製造され結合水等をほとんど含まない乾式法シリカが挙げられ、乾式法シリカとしては、さらに、製造法の違いにより、破砕シリカ、フュームドシリカ、溶融シリカ(溶融球状シリカ)等が挙げられる。
 無機充填材(D)の形状及び粒径は、特に限定されないが、例えば、粒径は、好ましくは0.01~20μm、より好ましくは0.1~10μm、さらに好ましく0.2~1μm、特に好ましくは0.3~0.8μmである。ここで、粒径とは、平均粒子径を指し、粒子の全体積を100%として粒子径による累積度数分布曲線を求めたとき、体積50%に相当する点の粒子径のことである。無機充填材(D)の粒径は、レーザ回折散乱法を用いた粒度分布測定装置等で測定することができる。
 本実施形態の樹脂組成物が(D)成分を含有する場合、樹脂組成物中における(D)成分の含有量は、特に限定されないが、熱膨張係数、弾性率、耐熱性及び難燃性の観点から、好ましくは5~70質量%、より好ましくは15~65質量%、さらに好ましくは20~60質量%、特に好ましくは30~55質量%、最も好ましくは40~50質量%である。
 また、(D)成分を用いる場合、(D)成分の分散性及び(D)成分と樹脂組成物中の有機成分との密着性を向上させる目的で、必要に応じ、カップリング剤を併用してもよい。該カップリング剤としては特に限定されるものではなく、例えば、シランカップリング剤又はチタネートカップリング剤を適宜選択して用いることができる。カップリング剤は1種を単独で用いてもよく、2種以上を併用してもよい。また、カップリング剤の使用量も特に限定されるものではなく、例えば、(D)成分100質量部に対して0.1~5質量部としてもよく、0.5~3質量部としてもよい。この範囲であれば、諸特性の低下が少なく、上記の(D)成分の使用による特長を効果的に発揮できる傾向にある。
 なお、カップリング剤を用いる場合、樹脂組成物中に(D)成分を配合した後、カップリング剤を添加する、いわゆるインテグラルブレンド処理方式であってもよいが、予め無機充填材にカップリング剤を乾式又は湿式で表面処理した無機充填材を使用する方式が好ましい。この方法を採用することで、より効果的に(D)成分の特長を発現できる。
 本実施形態において(D)成分を用いる場合、(D)成分の樹脂組成物への分散性を向上させる目的で、必要に応じ、(D)成分を予め有機溶媒中に分散させたスラリーとして用いることができる。(D)成分をスラリー化する際に使用される有機溶媒は、特に限定されないが、例えば、上述した(A1)成分の製造工程で例示した有機溶媒が適用できる。これらの中でも、分散性の観点から、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンが好ましい。また、スラリーの固形分(不揮発分)濃度は、特に限定されないが、無機充填材(D)の沈降性及び分散性の観点から、例えば、50~80質量%であり、60~80質量%であってもよい。
(難燃剤(E))
 本実施形態の樹脂組成物に難燃剤(E)を含有させることで、樹脂組成物の難燃性を向上させることができる傾向にある。
 (E)成分としては、リン系難燃剤、金属水和物、ハロゲン系難燃剤等が挙げられ、環境問題の観点から、リン系難燃剤及び金属水和物であってもよい。難燃剤(E)は、1種を単独で用いてもよく、2種以上を併用してもよい。さらに、必要に応じて難燃助剤を含有させてもよい。
-リン系難燃剤-
 リン系難燃剤としては、一般的に難燃剤として使用されるもののうち、リン原子を含有するものであれば特に限定されず、無機系のリン系難燃剤であってもよいし、有機系のリン系難燃剤であってもよい。なお、リン系難燃剤は、環境問題の観点から、ハロゲン原子を含有しないものが好ましい。リン系難燃剤は、誘電特性、導体との接着性、耐熱性、ガラス転移温度、熱膨張係数及び難燃性の観点からは、有機系のリン系難燃剤であってもよい。
 無機系のリン系難燃剤としては、赤リン;リン酸一アンモニウム、リン酸二アンモニウム、リン酸三アンモニウム、ポリリン酸アンモニウム等のリン酸アンモニウム;リン酸アミド等の無機系含窒素リン化合物;リン酸;ホスフィンオキシドなどが挙げられる。
 有機系のリン系難燃剤としては、芳香族リン酸エステル、1置換ホスホン酸ジエステル、2置換ホスフィン酸エステル、2置換ホスフィン酸の金属塩、有機系含窒素リン化合物、環状有機リン化合物等が挙げられる。これらの中でも、芳香族リン酸エステル化合物、2置換ホスフィン酸の金属塩が好ましい。ここで、金属塩としては、リチウム塩、ナトリウム塩、カリウム塩、カルシウム塩、マグネシウム塩、アルミニウム塩、チタン塩、亜鉛塩のいずれかであってもよく、アルミニウム塩であってもよい。また、有機系のリン系難燃剤の中では、芳香族リン酸エステルが好ましい。
 芳香族リン酸エステルとしては、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルジフェニルホスフェート、クレジルジ-2,6-キシレニルホスフェート、レゾルシノールビス(ジフェニルホスフェート)、1,3-フェニレンビス(ジ-2,6-キシレニルホスフェート)、ビスフェノールA-ビス(ジフェニルホスフェート)、1,3-フェニレンビス(ジフェニルホスフェート)等が挙げられる。
 1置換ホスホン酸ジエステルとしては、フェニルホスホン酸ジビニル、フェニルホスホン酸ジアリル、フェニルホスホン酸ビス(1-ブテニル)等が挙げられる。
 2置換ホスフィン酸エステルとしては、ジフェニルホスフィン酸フェニル、ジフェニルホスフィン酸メチル等が挙げられる。
 2置換ホスフィン酸の金属塩としては、ジアルキルホスフィン酸の金属塩、ジアリルホスフィン酸の金属塩、ジビニルホスフィン酸の金属塩、ジアリールホスフィン酸の金属塩等が挙げられる。これら金属塩は、リチウム塩、ナトリウム塩、カリウム塩、カルシウム塩、マグネシウム塩、アルミニウム塩、チタン塩、亜鉛塩のいずれかであってもよく、アルミニウム塩であってもよい。
 有機系含窒素リン化合物としては、ビス(2-アリルフェノキシ)ホスファゼン、ジクレジルホスファゼン等のホスファゼン化合物;リン酸メラミン;ピロリン酸メラミン;ポリリン酸メラミン;ポリリン酸メラムなどが挙げられる。
 環状有機リン化合物としては、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキシド、10-(2,5-ジヒドロキシフェニル)-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキシド等が挙げられる。
 これらの中でも、芳香族リン酸エステル、2置換ホスフィン酸の金属塩が好ましく、1,3-フェニレンビス(ジ-2,6-キシレニルホスフェート)及びジアルキルホスフィン酸のアルミニウム塩が好ましい。
-金属水和物-
 金属水和物としては、水酸化アルミニウムの水和物、水酸化マグネシウムの水和物等が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。該金属水酸化物は無機充填材にも該当し得るが、難燃性を付与し得る材料の場合には難燃剤に分類する。
-ハロゲン系難燃剤-
 ハロゲン系難燃剤としては、塩素系難燃剤、臭素系難燃剤等が挙げられる。塩素系難燃剤としては、例えば、塩素化パラフィン等が挙げられる。
 本実施形態の樹脂組成物が(E)成分を含有する場合、(E)成分としてリン系難燃剤を用いるときは、樹脂組成物中のリン系難燃剤の含有量は、特に限定されないが、例えば、樹脂組成物中の樹脂成分の総和100質量部に対して、リン原子換算で、好ましくは0.2~20質量部、より好ましくは1~15質量部、さらに好ましくは5~12質量部である。(E)成分のリン原子換算での含有量が0.2質量部以上であると、より良好な難燃性が得られる傾向にあり、20質量部以下であると、より良好な成形性、導体との高接着性、優れた耐熱性及び高ガラス転移温度が得られる傾向にある。
(硬化促進剤(F))
 本実施形態の樹脂組成物に硬化促進剤(F)を含有させることで、樹脂組成物の硬化性を向上させ、誘電特性、耐熱性、導体との接着性、弾性率及びガラス転移温度を向上させることができる傾向にある。
 (F)成分としては、p-トルエンスルホン酸等の酸性触媒;トリエチルアミン、ピリジン、トリブチルアミン等のアミン化合物;メチルイミダゾール、フェニルイミダゾール、イソシアネートマスクイミダゾール(例えば、ヘキサメチレンジイソシアネート樹脂と2-エチル-4-メチルイミダゾールの付加反応物等)等のイミダゾール化合物;第3級アミン化合物;第4級アンモニウム化合物;トリフェニルホスフィン等のリン系化合物;ジクミルパーオキサイド、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキシン-3、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン、t-ブチルパーオキシイソプロピルモノカーボネート、α,α’-ビス(t-ブチルパーオキシ)ジイソプロピルベンゼン等の有機過酸化物;マンガン、コバルト、亜鉛等のカルボン酸塩などが挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。これらの中でも、耐熱性、ガラス転移温度及び保存安定性の観点から、イミダゾール化合物、有機過酸化物、カルボン酸塩であってもよく、耐熱性、ガラス転移温度、弾性率及び熱膨張係数の観点から、イミダゾール化合物と、有機過酸化物又はカルボン酸塩とを併用してもよい。また、有機過酸化物の中では、α,α’-ビス(t-ブチルパーオキシ)ジイソプロピルベンゼンを選択してもよく、カルボン酸塩の中では、ナフテン酸マンガンを選択してもよい。
 本実施形態の樹脂組成物が(F)成分を含有する場合、(F)成分の含有量は、特に限定されないが、例えば、樹脂組成物中の樹脂成分の総和100質量部に対して、好ましくは0.01~10質量部、より好ましくは0.05~8質量部、さらに好ましくは0.1~6質量部、特に好ましくは0.5~5質量部である。(F)成分の含有量が上記範囲であると、より良好な耐熱性及び保存安定性が得られる傾向にある。
 本実施形態の樹脂組成物には、さらに必要に応じて、上記各成分以外の熱可塑性樹脂、エラストマー等の樹脂材料、並びに、酸化防止剤、熱安定剤、帯電防止剤、紫外線吸収剤、顔料、着色剤、滑剤等を適宜選択して含有させることができる。これらは1種を単独で使用してもよく、2種以上を併用してもよい。また、これらの使用量は特に限定されるものではなく、本発明の効果を阻害しない範囲で使用すればよい。
(有機溶媒)
 本実施形態の樹脂組成物は、希釈することによって取り扱いを容易にするという観点及び後述するプリプレグを製造し易くする観点から、有機溶媒を含有させてもよい。有機溶媒を含有させた樹脂組成物は、一般的に、樹脂ワニス又はワニスと称されることがある。
 該有機溶媒としては、特に限定されないが、エタノール、プロパノール、ブタノール、メチルセロソルブ、ブチルセロソルブ、プロピレングリコールモノメチルエーテル等のアルコール系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒;テトラヒドロフラン等のエーテル系溶媒;トルエン、キシレン、メシチレン等の芳香族系溶媒;ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等の窒素原子含有溶媒;ジメチルスルホキシド等の硫黄原子含有溶媒;γ-ブチロラクトン等のエステル系溶媒などが挙げられる。
 これらの中でも、溶解性の観点から、アルコール系溶媒、ケトン系溶媒、窒素原子含有溶媒が好ましく、ケトン系溶媒がより好ましく、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンがさらに好ましく、メチルエチルケトンが特に好ましい。
 有機溶媒は、1種を単独で用いてもよく、2種以上を併用してもよい。
 本実施形態の樹脂組成物が有機溶媒を含有する場合、その固形分濃度は、例えば、30~90質量%であり、35~80質量%であってもよく、40~60質量%であってもよい。固形分濃度が上記の範囲内である樹脂組成物を用いることで、取り扱い性が容易となり、さらに基材への含浸性及び製造されるプリプレグの外観が良好で、後述するプリプレグ中の樹脂の固形分濃度の調整が容易となり、所望の厚さを有するプリプレグの製造がより容易となる傾向にある。
 本実施形態の樹脂組成物は、(A)成分及び(B)成分、必要に応じて併用されるその他の成分を公知の方法で混合することで製造することができる。この際、各成分は撹拌しながら溶解又は分散させてもよい。混合順序、温度、時間等の条件は、特に限定されず、原料の種類等に応じて任意に設定すればよい。
 本実施形態の樹脂組成物は相容性が良好であり、1日放置しても析出物は生じない傾向にある。また、より相容性が優れた態様においては、1週間放置しても析出物が生じない(但し、相分離することはある。)傾向にあり、さらに相容性が優れた態様においては、1週間放置しても、相分離さえしない傾向にある。
 本実施形態の樹脂組成物の硬化物(ガラスクロス等の繊維基材を含まない積層体及び樹脂フィルムの硬化物)の10GHzにおける誘電率(Dk)は、好ましくは3.0以下、より好ましくは2.9以下、さらに好ましくは2.8以下である。上記誘電率(Dk)は小さい程好ましく、その下限値に特に制限はないが、他の物性とのバランスを考慮して、例えば、2.4以上であってもよく、2.5以上であってもよい。
 本実施形態の樹脂組成物の硬化物(ガラスクロス等の繊維基材を含まない積層体及び樹脂フィルムの硬化物)の10GHzにおける誘電正接(Df)は、好ましくは0.0050以下、より好ましくは0.0040以下、さらに好ましくは0.0030以下、特に好ましくは0.0025以下、最も好ましくは0.0020以下である。上記誘電正接(Df)は小さい程好ましく、その下限値に特に制限はないが、他の物性とのバランスを考慮して、例えば、0.0010以上であってもよく、0.0015以上であってもよい。
 なお、誘電率(Dk)及び誘電正接(Df)は、空洞共振器摂動法に準拠した値であり、より詳細には、実施例に記載する方法によって測定された値である。また、本明細書において、単に誘電率というとき、比誘電率を意味する。
[マレイミド樹脂組成物の製造方法]
 本実施形態のマレイミド樹脂組成物の製造方法は、下記工程1及び2を含む、マレイミド樹脂組成物の製造方法である。
 工程1:(b1)側鎖にビニル基を有する共役ジエンポリマーと、(b2)N-置換マレイミド基を2個以上有するマレイミド化合物と、を反応させて、(B)変性共役ジエンポリマーを得る工程
 工程2:(A)N-置換マレイミド基を2個以上有するマレイミド化合物及びその誘導体からなる群から選択される1種以上と、(B)変性共役ジエンポリマーと、を混合する工程
 工程1における反応の好適な条件は、(B)成分についての説明で記載した通りである。
 工程2における混合は、公知の撹拌機等を用いて行えばよく、例えば、(A)成分、(B)成分を上記した有機溶媒に投入して、室温又は加熱下で撹拌して混合することが好ましい。混合する際の加熱温度は、例えば、30~100℃であり、好ましくは40~90℃である。
 混合時の(A)成分及び(B)成分の混合溶液中の濃度は、上記した、本実施形態の樹脂組成物が有機溶媒を含有する場合における、樹脂組成物の固形分濃度の好適な範囲と同じである。
[プリプレグ]
 本実施形態のプリプレグは、本実施形態のマレイミド樹脂組成物を含有してなるプリプレグである。
 本実施形態のプリプレグは、例えば、本実施形態の樹脂組成物とシート状繊維補強基材とを含有してなるものである。該プリプレグは、本実施形態の樹脂組成物とシート状繊維補強基材とを用いて形成され、例えば、本実施形態の樹脂組成物を、シート状繊維補強基材に含浸又は塗工し、乾燥させることによって得ることができる。より具体的には、例えば、乾燥炉中で通常、80~200℃の温度で、1~30分間加熱乾燥し、半硬化(Bステージ化)させることにより本実施形態のプリプレグを製造することができる。樹脂組成物の使用量は、乾燥後のプリプレグ中の樹脂組成物由来の固形分濃度が30~90質量%となるように決定することができる。固形分濃度を上記範囲とすることで、積層板とした際により良好な成形性が得られる傾向にある。
 プリプレグのシート状繊維補強基材としては、各種の電気絶縁材料用積層板に用いられている公知のものが用いられる。シート状繊維補強基材の材質としては、Eガラス、Dガラス、Sガラス、Qガラス等の無機物繊維;ポリイミド、ポリエステル、テトラフルオロエチレン等の有機繊維;これらの混合物などが挙げられる。これらのシート状繊維補強基材は、織布、不織布、ロービンク、チョップドストランドマット、サーフェシングマット等の形状を有する。
 シート状繊維補強基材の厚さは、特に限定されないが、例えば、0.02~0.5mmのものを用いることができる。
 また、シート状繊維補強基材は、樹脂組成物の含浸性、積層板とした際の耐熱性、耐吸湿性、及び加工性の観点から、カップリング剤等で表面処理したもの、及び機械的に開繊処理を施したものを使用できる。
 樹脂組成物をシート状繊維補強基材に含浸又は塗工させる方法としては、次のホットメルト法又はソルベント法を採用できる。
 ホットメルト法は、樹脂組成物に有機溶媒を含有させず、(1)該樹脂組成物との剥離性の良い塗工紙に一旦コーティングし、それをシート状繊維補強基材にラミネートする方法、又は(2)ダイコーターによりシート状繊維補強基材に直接塗工する方法である。
 一方、ソルベント法は、樹脂組成物に有機溶媒を含有させ、得られた樹脂組成物にシート状繊維補強基材を浸漬して、樹脂組成物をシート状繊維補強基材に含浸させ、その後、乾燥させる方法である。
[樹脂フィルム]
 本実施形態の樹脂フィルムは、本実施形態の樹脂組成物を含有してなる樹脂フィルムである。
 本実施形態の樹脂フィルムは、例えば、有機溶媒を含有する樹脂組成物、つまり樹脂ワニスを支持体へ塗布し、加熱乾燥させることによって製造することができる。
 支持体としては、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等のポリオレフィンのフィルム;ポリエチレンテレフタレート(以下、「PET」ともいう)、ポリエチレンナフタレート等のポリエステルのフィルム;ポリカーボネートフィルム、ポリイミドフィルム等の各種プラスチックフィルムなどが挙げられる。また、支持体として、銅箔、アルミニウム箔等の金属箔、離型紙などを使用してもよい。支持体には、マット処理、コロナ処理等の表面処理が施してあってもよい。また、支持体には、シリコーン樹脂系離型剤、アルキッド樹脂系離型剤、フッ素樹脂系離型剤等による離型処理が施してあってもよい。
 支持体の厚さは、特に限定されないが、好ましくは10~150μm、より好ましくは25~50μmである。
 支持体に樹脂ワニスを塗布する方法は、特に限定されず、コンマコーター、バーコーター、キスコーター、ロールコーター、グラビアコーター、ダイコーター等の当業者に公知の塗工装置を用いることができる。これらの塗工装置は、膜厚によって、適宜選択すればよい。
 乾燥温度及び乾燥時間は、有機溶媒の使用量、及び使用する有機溶媒の沸点等に応じて適宜決定すればよいが、例えば、40~60質量%程度の有機溶媒を含有する樹脂ワニスの場合、50~150℃で3~10分間程度乾燥させることにより、樹脂フィルムを好適に形成することができる。
[積層板]
 本実施形態の積層板は、本実施形態のプリプレグと金属箔とを含有してなる積層板である。
 本実施形態の積層板は、例えば、本実施形態のプリプレグ1枚の片面もしくは両面に金属箔を配置するか、又は本実施形態のプリプレグを2枚以上を重ねて得られるプリプレグの片面もしくは両面に金属箔を配置し、次いで加熱加圧成形することによって製造することができる。金属箔を有する積層板は、金属張積層板と称されることもある。
 金属箔の金属としては、電気絶縁材料用途で用いられるものであれば特に限定されないが、導電性の観点から、銅、金、銀、ニッケル、白金、モリブデン、ルテニウム、アルミニウム、タングステン、鉄、チタン、クロム、又はこれらの金属元素を1種以上含有する合金であってもよく、銅、アルミニウムが好ましく、銅がより好ましい。
 加熱加圧成形の条件は、特に限定されないが、例えば、温度が100~300℃、圧力が0.2~10MPa、時間が0.1~5時間の範囲で実施することができる。また、加熱加圧成形は、真空プレス等を用いて真空状態を0.5~5時間保持する方法を採用できる。
[多層プリント配線板]
 本実施形態の多層プリント配線板は、本実施形態のプリプレグ、本実施形態の樹脂フィルム及び本実施形態の積層板からなる群から選択される1種以上を含有してなるものである。本実施形態の多層プリント配線板は、本実施形態のプリプレグ、本実施形態の樹脂フィルム及び本実施形態の積層板からなる群から選択される1種以上を用いて、公知の方法によって、穴開け加工、金属めっき加工、金属箔のエッチング等による回路形成加工及び多層化接着加工を行うことによって製造することができる。
[半導体パッケージ]
 本実施形態の半導体パッケージは、本実施形態のプリント配線板に半導体を搭載してなるものである。本実施形態の半導体パッケージは、本実施形態のプリント配線板の所定の位置に半導体チップ、メモリ等を搭載して製造することができる。
 本実施形態の樹脂組成物、プリプレグ、積層板、樹脂フィルム、多層プリント配線板及び半導体パッケージは、10GHz以上の高周波信号を扱う電子機器に好適に用いることができる。特に、多層プリント配線板は、ミリ波レーダー用多層プリント配線板として有用である。
 以上、本発明の好適な実施形態を説明したが、これらは本発明の説明のための例示であり、本発明の範囲をこれらの実施形態にのみ限定する趣旨ではない。本発明は、その要旨を逸脱しない範囲で、上記実施形態とは異なる種々の態様で実施することができる。
 以下、実施例を挙げて、本発明を具体的に説明する。ただし、本発明は以下の実施例に限定されるものではない。
 なお、各例において、数平均分子量は以下の手順で測定した。
(数平均分子量の測定方法)
 数平均分子量はゲルパーミエーションクロマトグラフィー(GPC)により、標準ポリスチレンを用いた検量線から換算した。検量線は、標準ポリスチレン:TSKstandard POLYSTYRENE(Type;A-2500、A-5000、F-1、F-2、F-4、F-10、F-20、F-40)[東ソー株式会社製、商品名]を用いて3次式で近似した。GPCの測定条件を、以下に示す。
 装置:高速GPC装置 HLC-8320GPC
 検出器:紫外吸光検出器 UV-8320[東ソー株式会社製]
 カラム:ガードカラム;TSK Guardcolumn SuperHZ-L+カラム;TSKgel SuperHZM-N+TSKgel SuperHZM-M+TSKgel SuperH-RC(すべて東ソー株式会社製、商品名)
 カラムサイズ:4.6×20mm(ガードカラム)、4.6×150mm(カラム)、6.0×150mm(リファレンスカラム)
溶離液:テトラヒドロフラン
試料濃度:10mg/5mL
注入量:25μL
流量:1.00mL/分
測定温度:40℃
(ビニル基変性率の測定)
 共役ジエンポリマーのビニル基変性率は、反応開始前の(b1)成分及び(b2)成分を含む溶液と、反応後に得られた変性共役ジエンポリマーを含む溶液について、上記と同様の方法によりGPCを測定し、反応前後における(b2)成分に由来するピーク面積の減少率、すなわち、(反応前の(b2)成分由来ピーク面積-反応後の(b2)成分由来ピーク面積)×100/(反応前の(b2)成分由来ピーク面積)として求めた。
[変性共役ジエンポリマーの製造]
製造例1~5
 温度計、還流冷却管及び撹拌装置を備えた加熱及び冷却可能な容積2Lのガラス製フラスコ容器に、表1に示す量の(b1)成分、(b2)成分、反応触媒及び有機溶媒を投入し、窒素雰囲気下、90~100℃で5時間、撹拌しながら反応させて、変性共役ジエンポリマーB-1~5の溶液(固形分濃度:35質量%)を得た。得られた変性共役ジエンポリマーのビニル基変性率及び数平均分子量を表1に示す。
Figure JPOXMLDOC01-appb-T000022
 なお、表1に記載の各成分の詳細は以下の通りである。
[(b1)成分]
・ポリブタジエンb1-1:1,2-ポリブタジエンホモポリマー、数平均分子量=1,200、ビニル基含有率=85%以上
・ポリブタジエンb1-2:1,2-ポリブタジエンホモポリマー、数平均分子量=3,200、ビニル基含有率=92%以上
[(b2)成分]
・ビスマレイミド化合物b2-1:3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド
・ビスマレイミド化合物b2-2:2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパン
[マレイミド樹脂組成物の調製]
実施例1~5、比較例1~3
 表2に記載の各成分を所定量の硬化促進剤と共に表2に記載の配合量(単位:質量部)に従って室温又は50~80℃で加熱しながら撹拌及び混合して、固形分(不揮発分)濃度約50質量%の樹脂組成物を調製した。
 各例で得た樹脂組成物を、厚さ38μmのPETフィルム(帝人株式会社製、商品名:G2-38)に塗工した後、170℃で5分間加熱乾燥して、Bステージ状態の樹脂フィルムを作製した。この樹脂フィルムをPETフィルムから剥離した後、粉砕して樹脂粉末とした。次いで、厚さ1mm×長さ50mm×幅35mmのサイズに型抜きしたテフロン(登録商標)シートに上記の樹脂粉末を投入し、その上下に、厚さ18μmのロープロファイル銅箔(古河電気工業株式会社製、商品名:BF-ANP18)を、M面が投入した樹脂粉末に接するように配置し、温度230℃、圧力2.0MPa、時間120分間の条件で加熱加圧成形して、樹脂組成物を硬化させて、両面銅箔付き樹脂板(樹脂板の厚さ:1mm)を作製した。
[評価・測定方法]
 上記実施例及び比較例で得られた樹脂組成物及び両面銅箔付き樹脂板を用いて、下記方法に従って各測定及び評価を行った。結果を表2に示す。
(1.樹脂組成物の相容性の評価)
 各例で得た樹脂組成物を目視で観察して、相容性(巨視的(マクロ)な相分離及び析出物の有無)を以下の基準に従い評価した。
 A:1週間以上放置しても、巨視的(マクロ)な相分離及び析出物がなかった。
 B:1日放置しても変化はなかったが、3日以上放置したところ、析出物はないが、巨視的(マクロ)な相分離がやや生じていた。
 C:1日放置したところ、析出物はないが、巨視的(マクロ)な相分離が生じていた。
 D:1日放置後、析出物が確認された。
(2.樹脂板の誘電特性(誘電率及び誘電正接)の評価)
 各例で得た両面銅箔付き樹脂板を銅エッチング液である過硫酸アンモニウム(三菱ガス化学株式会社製)10質量%溶液に浸漬することにより銅箔を取り除いた評価基板から、2mm×50mmの評価基板を作製した。
 該評価基板を空洞共振器摂動法に準拠して、10GHz帯で誘電率(Dk)及び誘電正接(Df)を測定した。
(3.熱膨張率及びガラス転移温度の測定方法)
 熱膨張係数(板厚方向、温度範囲:30~120℃)とガラス転移温度(Tg)は、両面銅箔付き樹脂板の両面の銅箔をエッチングした5mm角の試験片を用いて、熱機械測定装置(TMA)[ティー・エイ・インスツルメント・ジャパン株式会社製、Q400(型番)]により、IPC(The Institute for Interconnecting and Packaging Electronic Circuits)規格に準拠して測定した。
Figure JPOXMLDOC01-appb-T000023
 なお、表2における各材料は、以下のとおりである。
[(A)成分]
 ビスマレイミド化合物A-1:ビフェニルアラルキル型マレイミド(MIR-3000、日本化薬株式会社製)
 ビスマレイミド化合物A-2:3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド
[(B)成分]
 変性共役ジエンポリマーB-1~B-5:製造例1~5で得た変性共役ジエンポリマー
[(B’)成分]
 ポリブタジエンB’-1:上記ポリブタジエンb1-1
 ポリブタジエンB’-2:無水マレイン酸変性ポリブタジエン
[(C)成分]
 SEBS:スチレン-エチレン-ブチレン-スチレン共重合体
[(D)成分]
 球状シリカ:平均粒径0.5μm
[(E)成分]
 トリスジエチルホスフィン酸アルミニウム
 表2に示された結果から明らかなように、本実施形態の実施例1~5で得られた樹脂組成物においては、相容性が良好であり、これらを用いて作製した硬化物は、耐熱性及び低熱膨張性に優れ、10GHz帯の高周波数帯における誘電特性に優れている。
 一方、比較例1及び2は、相容性が低く、10GHz帯の高周波数帯における誘電特性も不十分である。また、比較例3は、10GHz帯の高周波数帯における誘電特性が不十分である。
 本発明の樹脂組成物は相容性が良好であり、該樹脂組成物から作製される積層板は、特に、耐熱性及び10GHz帯以上の高周波数帯における誘電特性に優れるため、6GHzを超える周波数帯の電波が使用される第五世代移動通信システム(5G)アンテナ及び30~300GHzの周波数帯の電波が使用されるミリ波レーダーに利用される多層プリント配線板に有用である。

 

Claims (15)

  1.  (A)N-置換マレイミド基を2個以上有するマレイミド化合物及びその誘導体からなる群から選択される1種以上と、
     (B)変性共役ジエンポリマーと、を含有し、
     前記(B)成分が、(b1)側鎖にビニル基を有する共役ジエンポリマーを、(b2)N-置換マレイミド基を2個以上有するマレイミド化合物で変性してなるものである、マレイミド樹脂組成物。
  2.  前記(B)成分が、側鎖に、前記(b1)成分が有するビニル基と、前記(b2)成分が有するN-置換マレイミド基と、が反応してなる置換基(x)を有する、請求項1に記載のマレイミド樹脂組成物。
  3.  前記置換基(x)が、前記(b2)成分由来の構造として、下記一般式(B-11)又は(B-12)で表される構造を含む基である、請求項2に記載のマレイミド樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001

    (式中、XB1は、2価の有機基であり、*B1は、前記(b1)成分が側鎖に有するビニル基由来の炭素原子に結合する部位である。*B2は、他の原子に結合する部位である。)
  4.  前記(B)成分が、側鎖に、前記置換基(x)とビニル基(y)とを有し、1分子中に有する前記置換基(x)と前記ビニル基(y)との合計数に対する、前記置換基(x)の数の比率[x/(x+y)]が、0.01~0.5である、請求項2又は3に記載のマレイミド樹脂組成物。
  5.  前記(B)成分の数平均分子量が、700~6,000である、請求項1~4のいずれか1項に記載のマレイミド樹脂組成物。
  6.  前記(b1)成分が、1,2-ビニル基を有するポリブタジエンである、請求項1~5のいずれか1項に記載のマレイミド樹脂組成物。
  7.  前記1,2-ビニル基を有するポリブタジエンを構成するブタジエン由来の全構造単位に対して、1,2-ビニル基を有する構造単位の含有量が、50モル%以上である、請求項6に記載のマレイミド樹脂組成物。
  8.  前記(b2)成分が、脂肪族炭化水素基で置換された芳香族ビスマレイミド化合物である、請求項1~7のいずれか1項に記載のマレイミド樹脂組成物。
  9.  前記(A)成分と前記(B)成分との含有量比[(A)/(B)]が、質量基準で、1.0超である、請求項1~8のいずれか1項に記載のマレイミド樹脂組成物。
  10.  請求項1~9のいずれか1項に記載のマレイミド樹脂組成物を含有してなるプリプレグ。
  11.  請求項10に記載のプリプレグと金属箔とを含有してなる積層板。
  12.  請求項1~9のいずれか1項に記載のマレイミド樹脂組成物を含有してなる樹脂フィルム。
  13.  請求項10に記載のプリプレグ、請求項11に記載の積層板及び請求項12に記載の樹脂フィルムからなる群から選択される1種以上を含有してなる多層プリント配線板。
  14.  請求項13に記載の多層プリント配線板に半導体素子を搭載してなる半導体パッケージ。
  15.  請求項1~9のいずれか1項に記載のマレイミド樹脂組成物を製造する方法であって、下記工程1及び2を含む、マレイミド樹脂組成物の製造方法。
     工程1:(b1)側鎖にビニル基を有する共役ジエンポリマーと、(b2)N-置換マレイミド基を2個以上有するマレイミド化合物と、を反応させて、(B)変性共役ジエンポリマーを得る工程
     工程2:(A)N-置換マレイミド基を2個以上有するマレイミド化合物及びその誘導体からなる群から選択される1種以上と、(B)変性共役ジエンポリマーと、を混合する工程

     
PCT/JP2020/025028 2019-06-25 2020-06-25 マレイミド樹脂組成物、プリプレグ、積層板、樹脂フィルム、多層プリント配線板及び半導体パッケージ WO2020262537A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021527732A JP7484909B2 (ja) 2019-06-25 2020-06-25 マレイミド樹脂組成物、プリプレグ、積層板、樹脂フィルム、多層プリント配線板及び半導体パッケージ
CN202080045119.4A CN113993951A (zh) 2019-06-25 2020-06-25 马来酰亚胺树脂组合物、预浸料、层叠板、树脂膜、多层印刷线路板及半导体封装体
KR1020217041639A KR20220025731A (ko) 2019-06-25 2020-06-25 말레이미드 수지 조성물, 프리프레그, 적층판, 수지 필름, 다층 프린트 배선판 및 반도체 패키지
EP20832667.8A EP3992239A4 (en) 2019-06-25 2020-06-25 COMPOSITION OF MALEIMIDE RESIN, PREPREG, LAMINATED CARDBOARD, RESIN FILM, MULTI-LAYER PRINTED WIRING BOARD, AND SEMICONDUCTOR HOUSING
US17/621,498 US20220363850A1 (en) 2019-06-25 2020-06-25 Maleimide Resin Composition, Prepreg, Laminated Board, Resin Film, Multilayer Printed Wiring Board, and Semiconductor Package

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019117606 2019-06-25
JP2019-117606 2019-06-25

Publications (1)

Publication Number Publication Date
WO2020262537A1 true WO2020262537A1 (ja) 2020-12-30

Family

ID=74060659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/025028 WO2020262537A1 (ja) 2019-06-25 2020-06-25 マレイミド樹脂組成物、プリプレグ、積層板、樹脂フィルム、多層プリント配線板及び半導体パッケージ

Country Status (7)

Country Link
US (1) US20220363850A1 (ja)
EP (1) EP3992239A4 (ja)
JP (1) JP7484909B2 (ja)
KR (1) KR20220025731A (ja)
CN (1) CN113993951A (ja)
TW (1) TW202108634A (ja)
WO (1) WO2020262537A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022102782A1 (ja) * 2020-11-16 2022-05-19 昭和電工マテリアルズ株式会社 マレイミド樹脂組成物、プリプレグ、積層板、樹脂フィルム、プリント配線板及び半導体パッケージ
EP4245517A4 (en) * 2020-11-16 2024-04-17 Resonac Corp MALEIMIDE RESIN COMPOSITION, PREPREG, RESIN FILM, LAMINATED BOARD, PRINTED CIRCUIT BOARD AND SEMICONDUCTOR PACKAGE

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022102781A1 (ja) * 2020-11-16 2022-05-19 昭和電工マテリアルズ株式会社 マレイミド樹脂組成物、プリプレグ、積層板、樹脂フィルム、プリント配線板及び半導体パッケージ

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827703A (ja) * 1981-08-12 1983-02-18 Ube Ind Ltd 熱融着剤の製造法
JPH06192322A (ja) * 1992-10-28 1994-07-12 Nippon Soda Co Ltd 変性共役ジエン系樹脂の製造方法
JP2013189644A (ja) * 2006-10-26 2013-09-26 Hitachi Chemical Co Ltd 印刷配線板用樹脂組成物並びにこれを用いた樹脂ワニス,プリプレグ及び金属張積層板
JP2014084413A (ja) * 2012-10-24 2014-05-12 Hitachi Metals Ltd 架橋ゴム組成物及びそれを用いたゴムケーブル
JP2016135859A (ja) * 2015-01-16 2016-07-28 日立化成株式会社 熱硬化性樹脂組成物、層間絶縁用樹脂フィルム、接着補助層付き層間絶縁用樹脂フィルム、及びプリント配線板
JP2016166261A (ja) * 2015-03-09 2016-09-15 日本ゼオン株式会社 共役ジエン系重合体

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06192478A (ja) * 1992-10-28 1994-07-12 Nippon Soda Co Ltd 硬化性樹脂組成物並びにそれを用いたプリプレグ、積層板及び成形材料
KR102466876B1 (ko) * 2015-04-30 2022-11-11 쇼와덴코머티리얼즈가부시끼가이샤 수지 조성물, 프리프레그, 적층판 및 다층 프린트 배선판
JP2018012747A (ja) 2016-07-19 2018-01-25 日立化成株式会社 熱硬化性樹脂組成物、層間絶縁用樹脂フィルム、複合フィルム、プリント配線板及びその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827703A (ja) * 1981-08-12 1983-02-18 Ube Ind Ltd 熱融着剤の製造法
JPH06192322A (ja) * 1992-10-28 1994-07-12 Nippon Soda Co Ltd 変性共役ジエン系樹脂の製造方法
JP2013189644A (ja) * 2006-10-26 2013-09-26 Hitachi Chemical Co Ltd 印刷配線板用樹脂組成物並びにこれを用いた樹脂ワニス,プリプレグ及び金属張積層板
JP2014084413A (ja) * 2012-10-24 2014-05-12 Hitachi Metals Ltd 架橋ゴム組成物及びそれを用いたゴムケーブル
JP2016135859A (ja) * 2015-01-16 2016-07-28 日立化成株式会社 熱硬化性樹脂組成物、層間絶縁用樹脂フィルム、接着補助層付き層間絶縁用樹脂フィルム、及びプリント配線板
JP2016166261A (ja) * 2015-03-09 2016-09-15 日本ゼオン株式会社 共役ジエン系重合体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3992239A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022102782A1 (ja) * 2020-11-16 2022-05-19 昭和電工マテリアルズ株式会社 マレイミド樹脂組成物、プリプレグ、積層板、樹脂フィルム、プリント配線板及び半導体パッケージ
EP4245517A4 (en) * 2020-11-16 2024-04-17 Resonac Corp MALEIMIDE RESIN COMPOSITION, PREPREG, RESIN FILM, LAMINATED BOARD, PRINTED CIRCUIT BOARD AND SEMICONDUCTOR PACKAGE

Also Published As

Publication number Publication date
EP3992239A4 (en) 2022-07-27
JP7484909B2 (ja) 2024-05-16
CN113993951A (zh) 2022-01-28
JPWO2020262537A1 (ja) 2020-12-30
KR20220025731A (ko) 2022-03-03
TW202108634A (zh) 2021-03-01
US20220363850A1 (en) 2022-11-17
EP3992239A1 (en) 2022-05-04

Similar Documents

Publication Publication Date Title
JP6079930B2 (ja) N−置換マレイミド基を有するポリフェニレンエーテル誘導体、並びにそれを用いた熱硬化性樹脂組成物、樹脂ワニス、プリプレグ、金属張積層板、及び多層プリント配線板
JPWO2020096036A1 (ja) 樹脂組成物、プリプレグ、積層板、樹脂フィルム、多層プリント配線板及びミリ波レーダー用多層プリント配線板
JP7484909B2 (ja) マレイミド樹脂組成物、プリプレグ、積層板、樹脂フィルム、多層プリント配線板及び半導体パッケージ
JP7272068B2 (ja) 樹脂組成物、プリプレグ、積層板、多層プリント配線板及び半導体パッケージ
JP2021138849A (ja) 樹脂組成物、プリプレグ、積層板、樹脂フィルム、プリント配線板、半導体パッケージ及び樹脂組成物の製造方法
JP2021187889A (ja) 熱硬化性樹脂組成物、プリプレグ、積層板、多層プリント配線板及び半導体パッケージ
JP2020169274A (ja) 樹脂組成物、プリプレグ、積層板、多層プリント配線板及び半導体パッケージ
JPWO2020095422A1 (ja) 樹脂組成物、樹脂組成物の硬化物、プリプレグ、積層板、樹脂フィルム、多層プリント配線板、ミリ波レーダー用多層プリント配線板及びポリフェニレンエーテル誘導体
WO2020204175A1 (ja) 樹脂組成物、プリプレグ、積層板、多層プリント配線板及び半導体パッケージ
WO2022102781A1 (ja) マレイミド樹脂組成物、プリプレグ、積層板、樹脂フィルム、プリント配線板及び半導体パッケージ
WO2022102782A1 (ja) マレイミド樹脂組成物、プリプレグ、積層板、樹脂フィルム、プリント配線板及び半導体パッケージ
WO2022131151A1 (ja) 熱硬化性樹脂組成物の相容性評価方法、熱硬化性樹脂組成物、プリプレグ、樹脂フィルム、積層板、多層プリント配線板及び半導体パッケージ
WO2022145377A1 (ja) 樹脂組成物、プリプレグ、積層板、樹脂フィルム、プリント配線板及び半導体パッケージ
JP2021176926A (ja) 樹脂組成物、プリプレグ、積層板、樹脂フィルム、多層プリント配線板及び半導体パッケージ
JP2020169276A (ja) 樹脂組成物、プリプレグ、積層板、多層プリント配線板及び半導体パッケージ
WO2022102780A1 (ja) マレイミド樹脂組成物、プリプレグ、樹脂フィルム、積層板、プリント配線板及び半導体パッケージ
WO2022075221A1 (ja) 樹脂組成物、樹脂付き金属箔、プリプレグ、積層板、多層プリント配線板及び半導体パッケージ
JP2021187888A (ja) 樹脂組成物、プリプレグ、積層板、樹脂フィルム、プリント配線板、半導体パッケージ、樹脂組成物の製造方法及びプリント配線板用プレポリマー
JP2020169277A (ja) 樹脂組成物、プリプレグ、積層板、多層プリント配線板及び半導体パッケージ
WO2023163086A1 (ja) 樹脂組成物、プリプレグ、積層板、樹脂フィルム、プリント配線板及び半導体パッケージ
JP2022061729A (ja) 樹脂組成物、樹脂付き金属箔、プリプレグ、積層板、多層プリント配線板及び半導体パッケージ
JP2022166670A (ja) 樹脂組成物、樹脂フィルム、樹脂付き金属箔、プリプレグ、積層板、多層プリント配線板及び半導体パッケージ
JP2020169275A (ja) 樹脂組成物、プリプレグ、積層板、多層プリント配線板及び半導体パッケージ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20832667

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021527732

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020832667

Country of ref document: EP

Effective date: 20220125