WO2022075221A1 - 樹脂組成物、樹脂付き金属箔、プリプレグ、積層板、多層プリント配線板及び半導体パッケージ - Google Patents

樹脂組成物、樹脂付き金属箔、プリプレグ、積層板、多層プリント配線板及び半導体パッケージ Download PDF

Info

Publication number
WO2022075221A1
WO2022075221A1 PCT/JP2021/036452 JP2021036452W WO2022075221A1 WO 2022075221 A1 WO2022075221 A1 WO 2022075221A1 JP 2021036452 W JP2021036452 W JP 2021036452W WO 2022075221 A1 WO2022075221 A1 WO 2022075221A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
resin composition
resin
component
mass
Prior art date
Application number
PCT/JP2021/036452
Other languages
English (en)
French (fr)
Inventor
栞 田端
淳生 染川
圭芸 日▲高▼
俊希 藤井
貴大 瀧
友和 嶌田
幸雄 中村
Original Assignee
昭和電工マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工マテリアルズ株式会社 filed Critical 昭和電工マテリアルズ株式会社
Priority to CN202180068068.1A priority Critical patent/CN116323195A/zh
Priority to JP2022555443A priority patent/JPWO2022075221A1/ja
Priority to KR1020237011469A priority patent/KR20230084492A/ko
Publication of WO2022075221A1 publication Critical patent/WO2022075221A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/082Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising vinyl resins; comprising acrylic resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/04Layered products comprising a layer of synthetic resin as impregnant, bonding, or embedding substance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3415Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits

Definitions

  • the present disclosure relates to a resin composition, a metal leaf with a resin, a prepreg, a laminated board, a multilayer printed wiring board, and a semiconductor package.
  • a polyphenylene ether (PPE) -based resin has been used as a thermoplastic polymer having excellent high-frequency characteristics.
  • PPE polyphenylene ether
  • a resin composition containing a polyphenylene ether and an epoxy resin see, for example, Patent Document 1
  • a resin composition containing a polyphenylene ether and a cyanate resin see, for example, Patent Document 2 and the like are known.
  • dielectrics in the 10 GHz band and above which can also be used for fifth-generation mobile communication system (5G) antennas that use radio waves in the frequency band above 6 GHz and millimeter-wave radars that use radio waves in the frequency band of 30 to 300 GHz.
  • 5G fifth-generation mobile communication system
  • the development of a resin composition having further improved characteristics (low dielectric constant and low dielectric loss tangent; hereinafter may be referred to as high frequency characteristics) is eagerly desired. That is, it is desired that the resin composition has even better high frequency characteristics than the conventional ones.
  • a metal leaf with a resin having a layer of the resin composition on the metal foil may be used for manufacturing a metal-clad laminate, and the metal leaf with the resin is usually cut by a cutting machine to adjust the size. And use it.
  • the resin powder may adhere to the blade of the cutting machine (hereinafter, also referred to as a slit blade) due to the powder falling off at the end of the metal leaf with resin.
  • a slit blade When the slit blade is contaminated in this way, there are problems that waviness and resin cracking occur on the cut surface, and that the resin adhering to the slit blade falls onto the metal leaf with resin, contaminating the product. be.
  • the present disclosure is a resin composition which exhibits excellent dielectric properties in a high frequency band of 10 GHz band or higher and suppresses powder falling off at an end when a metal leaf with a resin is cut. It is an object of the present invention to provide a metal leaf with a resin, a prepreg, a laminated board, a multilayer printed wiring board, and a semiconductor package using a resin composition.
  • the present disclosure includes the following [1] to [18].
  • [1] A resin composition containing a polyphenylene ether derivative (A) and a fluororesin filler (B).
  • [2] The resin composition according to the above [1], wherein the component (A) has an ethylenically unsaturated bond-containing group at the molecular terminal.
  • [3] The resin composition according to the above [1] or [2], wherein the ethylenically unsaturated bond-containing group contained in the component (A) is a (meth) acrylic group.
  • [4] The resin composition according to any one of the above [1] to [3], wherein the weight average molecular weight (Mw) of the component (A) is 500 to 7,000.
  • the component (B) is a polytetrafluoroethylene (PTFE) filler, a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA) filler, a tetrafluoroethylene-hexafluoropropylene copolymer (FEP) filler, and the like.
  • Composition Composition.
  • thermosetting resins selected from the group consisting of epoxy resins, cyanate resins and maleimide compounds.
  • Composition [10] The structural unit and the primary amino group derived from the maleimide compound (c1) containing the maleimide compound as the component (C) and having at least two N-substituted maleimide groups.
  • the resin composition according to the above [9] which is a modified maleimide compound having a structural unit derived from the amine compound (c2) having.
  • the resin composition according to the above [10] wherein the modified maleimide compound is a compound represented by the following general formula (C-1).
  • X c1 and X c2 are each independently divalent organic group.
  • the contents ratio [(A) / (C)] of the component (A) to the component (C) is 5/95 to 80/20 by mass ratio, the above [9] to [11].
  • the resin composition according to. [14] A metal leaf with a resin having a layer of the resin composition according to any one of the above [1] to [13] on the metal foil.
  • Multilayer printing comprising (i) the metal leaf with resin according to the above [14], (ii) the prepreg according to the above [15], or (iii) the laminated board according to the above [16].
  • Wiring board. A semiconductor package including the multilayer printed wiring board according to the above [17] and a semiconductor element.
  • a resin composition that exhibits excellent dielectric properties in a high frequency band of 10 GHz or higher and that suppresses powder falling off at the edges when cutting a metal leaf with a resin, and a resin using the resin composition.
  • metal leaf with metal leaf prepreg, laminated board, multilayer printed wiring board and semiconductor package.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples. Further, the lower limit value and the upper limit value of the numerical range are arbitrarily combined with the lower limit value or the upper limit value of another numerical range. In the notation of the numerical range "AA to BB", the numerical values AA and BB at both ends are included in the numerical range as the lower limit value and the upper limit value, respectively. Further, as for each component and material exemplified in this specification, one kind may be used alone or two or more kinds may be used in combination unless otherwise specified.
  • the content of each component in the composition is the total amount of the plurality of substances present in the composition when a plurality of substances corresponding to each component are present in the composition, unless otherwise specified. Means. Any combination of the items described in the present specification is also included in the present disclosure and the present embodiment.
  • the "resin component” is defined as all components other than the inorganic compounds such as the inorganic filler described later and the flame retardant and the flame retardant aid among the solid contents constituting the resin composition. do.
  • the solid content in the present embodiment means a component in the resin composition other than a volatile substance such as water and a solvent described later. That is, the solid content includes liquid, starch syrup-like or wax-like substances at room temperature around 25 ° C., and does not necessarily mean that it is solid.
  • the resin composition of the present embodiment is abbreviated as a polyphenylene ether derivative (A) [hereinafter, may be abbreviated as "(A) component”] and a fluororesin filler (B) [hereinafter, "(B) component”. ], A resin composition containing.
  • the resin composition of the present embodiment is preferably a thermosetting resin composition.
  • the total content of the component (A) and the component (B) is preferably 15% by mass or more, more preferably 20% by mass or more, based on the solid content of the resin composition. , More preferably 30% by mass.
  • the upper limit of the total content of the component (A) and the component (B) is not particularly limited, and may be 100% by mass or 90% by mass or less with respect to the solid content of the resin composition. It may be 80% by mass or less, or 65% by mass or less.
  • each component contained in the resin composition of the present embodiment will be described.
  • the polyphenylene ether derivative (A) is not particularly limited, and a known polyphenylene ether derivative, for example, one having a structural unit represented by the general formula (A-2) described later can be used.
  • the polyphenylene ether derivative (A) is unsaturated at the molecular end from the viewpoint of high frequency characteristics and compatibility with the thermosetting resin (C) and the thermoplastic elastomer (D) used as needed.
  • a polyphenylene ether derivative having a saturated bond-containing group is preferable, and a polyphenylene ether derivative having an ethylenically unsaturated bond-containing group at both ends of the molecule is more preferable.
  • the "ethylenically unsaturated bond-containing group” means a substituent containing a carbon-carbon double bond capable of an addition reaction, and does not include a double bond of an aromatic ring. do.
  • the polyphenylene ether derivative (A) one type may be used alone, or two or more types may be used in combination.
  • Examples of the ethylenically unsaturated bond-containing group include unsaturated aliphatic hydrocarbon groups such as vinyl group, allyl group, 1-methylallyl group, isopropenyl group, 2-butenyl group, 3-butenyl group and styryl group; Examples thereof include a maleimide group, a group containing a heteroatom such as a group represented by the following general formula (A-1) and an ethylenically unsaturated bond.
  • the group represented by the following general formula (A-1) is preferable from the viewpoint of high frequency characteristics and adhesiveness to the conductor.
  • Ra1 indicates a hydrogen atom or an alkyl group having 1 to 20 carbon atoms. * Indicates a bond position.
  • the alkyl group having 1 to 20 carbon atoms indicated by Ra1 may be any of a linear alkyl group, a branched chain alkyl group or a cyclic alkyl group, and is preferably a linear alkyl group.
  • the number of carbon atoms of the alkyl group is preferably 1 to 10, more preferably 1 to 5, further preferably 1 to 3, and particularly preferably 1.
  • alkyl group examples include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a decyl group, a pentadecyl group, a hexadecyl group, a heptadecyl group and the like.
  • Methyl group is preferred.
  • the group represented by the general formula (A-1) is a (meth) acrylic group [that is, R a1 in the general formula (A-1) is a hydrogen atom from the viewpoint of high frequency characteristics and adhesion to a conductor. Or a group that is a methyl group], and more preferably a methacrylic group.
  • the "(meth) acrylic group” means an acrylic group or a methacrylic group.
  • a maleimide group, a group represented by the above general formula (A-1), and the like have a partially unsaturated aliphatic hydrocarbon group, but the group as a whole is viewed.
  • a group that cannot be said to be an unsaturated aliphatic hydrocarbon group at the time is not included in the above-mentioned "unsaturated aliphatic hydrocarbon group”.
  • the number of ethylenically unsaturated bond-containing groups contained in one molecule of the polyphenylene ether derivative (A) is not particularly limited, but is preferably 2 to 5, more preferably 2 to 3, and even more preferably 2.
  • the number of ethylenically unsaturated bond-containing groups is equal to or higher than the above lower limit, excellent high-frequency characteristics and good compatibility with the thermosetting resin (C) and the thermoplastic elastomer (D) described later tend to be obtained. It is in.
  • the number of ethylenically unsaturated bond-containing groups is not more than the above upper limit, excellent fluidity and moldability tend to be obtained.
  • the polyphenylene ether derivative (A) preferably has an ethylenically unsaturated bond-containing group at the molecular end, and further has an ethylenically unsaturated bond-containing group other than the molecular end. However, it is more preferable to have an ethylenically unsaturated bond-containing group only at the end of the molecule.
  • the polyphenylene ether derivative (A) is preferably a polyphenylene ether having a methacrylic group at the molecular terminal, and more preferably a polyphenylene ether having a methacrylic group at both ends of the molecule.
  • the methacrylic group may be bonded to an oxygen atom, that is, it may be a methacryloyloxy group.
  • the polyphenylene ether derivative (A) has a phenylene ether bond, and preferably has a structural unit represented by the following general formula (A-2).
  • R a2 represents an aliphatic hydrocarbon group or a halogen atom having 1 to 5 carbon atoms.
  • N a1 represents an integer of 0 to 4).
  • Examples of the aliphatic hydrocarbon group having 1 to 5 carbon atoms represented by Ra2 in the general formula (A-2) include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group and an isobutyl group. Examples include a group, a t-butyl group, an n-pentyl group and the like.
  • As the aliphatic hydrocarbon group an aliphatic hydrocarbon group having 1 to 3 carbon atoms is preferable, an alkyl group having 1 to 3 carbon atoms is more preferable, and a methyl group is further preferable.
  • n a1 represents an integer of 0 to 4, preferably 1 or 2, more preferably 2.
  • n a1 is 1 or 2
  • n a1 is an integer of 2 or more
  • the plurality of Ra2 may be the same or different from each other.
  • the structural unit represented by the general formula (A-2) is preferably a structural unit represented by the following general formula (A-2').
  • the polyphenylene ether derivative (A) is preferably a compound represented by the following general formula (A-3) from the viewpoint of high frequency characteristics and adhesiveness to a conductor.
  • R a2 and n a1 are as described in the above general formula (A-2).
  • R a3 and R a4 are independently aliphatic hydrocarbon groups or halogens having 1 to 5 carbon atoms. Atoms are indicated.
  • N a2 and n a3 each independently indicate an integer of 0 to 4.
  • n a4 and n a5 each independently indicate an integer of 0 to 20, and the sum of n a4 and n a5 is. It is an integer of 1 to 30.
  • X a1 has an alkylene group having 1 to 5 carbon atoms, an alkylidene group having 2 to 5 carbon atoms, an ether group, a sulfide group, a sulfonyl group, a carbonyloxy group, a keto group or a single bond.
  • Y a1 and Y a2 each independently indicate the above ethylenically unsaturated bond-containing group.
  • n a2 and n a3 indicate an integer of 0 to 4, preferably an integer of 0 to 3, preferably 2 or 3.
  • n a2 is an integer of 2 or more
  • the plurality of Ra3s may be the same or different from each other.
  • n a3 is an integer of 2 or more
  • the plurality of Ra4s may be the same or different from each other.
  • n a4 and n a5 indicate an integer of 0 to 20, preferably an integer of 1 to 20, more preferably an integer of 2 to 15, and even more preferably an integer of 3 to 10.
  • n a4 or na 5 is an integer of 2 or more
  • the plurality of na 1s may be the same or different.
  • the sum of n a4 and n a5 is an integer of 1 to 30, preferably an integer of 2 to 25, more preferably an integer of 5 to 20, and even more preferably an integer of 7 to 15.
  • Examples of the alkylene group having 1 to 5 carbon atoms represented by Xa1 in the general formula (A-3) include a methylene group, a 1,2-dimethylene group, a 1,3-trimethylene group and a 1,4-tetramethylene group. Groups, 1,5-pentamethylene groups and the like can be mentioned.
  • Examples of the alkylidene group having 2 to 5 carbon atoms indicated by Xa1 include an ethylidene group, a propyridene group, an isopropylidene group, a butylidene group, an isobutylidene group, a pentylidene group, and an isopentylidene group.
  • an isopropylidene group is preferable from the viewpoint of high frequency characteristics and adhesiveness to a conductor.
  • the preferred embodiments of the ethylenically unsaturated bond-containing group shown by Ya1 and Ya2 are as described above.
  • the compound represented by the general formula (A-3) is preferably a compound represented by the following general formula (A-4) from the viewpoint of high frequency characteristics and adhesiveness to a conductor.
  • n a4 and n a5 are as described in the above general formula (A-3).
  • R a5 and R a6 each independently represent a hydrogen atom or a methyl group.
  • X a2 is methylene. Indicates a group or an isopropylidene group.
  • the weight average molecular weight (Mw) of the polyphenylene ether derivative (A) is not particularly limited, but is preferably 500 to 7,000, more preferably 800 to 5,000, still more preferably 1,000 to 3,000, and 1, 200-2500 is particularly preferable.
  • the weight average molecular weight (Mw) of the component (A) is at least the above lower limit value, a cured product having excellent dielectric properties of polyphenylene ether and excellent heat resistance tends to be obtained.
  • the weight average molecular weight (Mw) of the component (A) is not more than the above upper limit value, excellent moldability tends to be obtained.
  • the weight average molecular weight is a value converted from a calibration curve using standard polystyrene by gel permeation chromatography (GPC), and is more specifically obtained by the measurement method described in Examples. The value.
  • the method for synthesizing the polyphenylene ether derivative (A) known methods for synthesizing polyphenylene ether and modification methods can be applied, and the method is not particularly limited.
  • the content of the polyphenylene ether derivative (A) in the resin composition of the present embodiment is not particularly limited, but is preferably 1 to 80 parts by mass and 1 to 45 parts by mass with respect to 100 parts by mass of the total resin components. More preferably, 1 to 20 parts by mass is further preferable, and 2 to 10 parts by mass is particularly preferable.
  • the content of the component (A) is at least the above lower limit value, more excellent high frequency characteristics and low hygroscopicity tend to be obtained.
  • the content of the component (A) is not more than the above upper limit value, more excellent heat resistance, moldability and processability tend to be obtained.
  • the resin composition of the present embodiment can obtain excellent high-frequency characteristics and effectively suppress powder falling off at the edges when the metal leaf with resin is cut. The effect is remarkably exhibited by combining the component (A) and the component (B).
  • the fluororesin filler (B) in the resin composition the effect of improving the high frequency characteristics and the effect of suppressing powder falling off at the end when cutting the resin-attached metal foil are greater than when the fluororesin itself is contained in the resin composition.
  • the shape of the fluororesin filler (B) include particles, powders, needles, columns, plates, and flakes. Among these, particulate matter is preferable.
  • the fluororesin filler (B) a slurry mixed with an organic solvent may be used.
  • the organic solvent include ketone compounds such as acetone, methyl ethyl ketone, methyl isobutyl ketone (MIBK), and cyclohexanone.
  • One type of the fluororesin filler (B) may be used alone, or two or more types may be used in combination.
  • fluororesin filler (B) examples include polytetrafluoroethylene (PTFE) filler, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA) filler, and tetrafluoroethylene-hexafluoropropylene copolymer (FEP) filler. , Tetrafluoroethylene-ethylene copolymer (ETFE) filler, polychlorotrifluoroethylene (PCTFE) filler and the like.
  • the PTFE filler is preferable as the fluororesin filler (B) from the viewpoint of high frequency characteristics and suppression of powder falling off at the edges when cutting the metal leaf with resin.
  • the surface of the fluororesin filler (B) may be coated with an inorganic filler.
  • the average particle size of the fluororesin filler (B) is preferably 0.1 to 10 ⁇ m, more preferably 0.2 to 5 ⁇ m, still more preferably 0.5 to 4.0 ⁇ m, and particularly preferably 1.5 to 4.0 ⁇ m. Is.
  • the average particle size can be calculated, for example, by measuring the laser diffraction particle size distribution, and the same applies hereinafter.
  • the content of the fluororesin filler (B) is preferably 1% by mass or more and less than 50% by mass, more preferably 1 to 45% by mass, still more preferably 1 to 40% by mass, based on the solid content of the resin composition. Particularly preferably, it is 5 to 40% by mass, may be 15 to 40% by mass, or may be 25 to 40% by mass.
  • the content of the fluororesin filler (B) is 1% by mass or more with respect to the solid content of the resin composition, sufficient high frequency characteristics tend to be obtained.
  • the content of the fluororesin filler (B) is less than 50% by mass with respect to the solid content of the resin composition, it is possible to suppress a decrease in adhesion to the metal foil and the organic component in the resin composition, and the heat resistance is high. There is a tendency to avoid a decrease in the property and the peeling strength of the copper foil.
  • a cup may be used, if necessary, from the viewpoint of improving the dispersibility of the fluororesin filler (B) and the adhesion between the fluororesin filler (B) and the organic component in the resin composition.
  • a ring agent may be used in combination.
  • the coupling agent include a silane coupling agent, a titanate coupling agent and the like.
  • One type of coupling agent may be used alone, or two or more types may be used in combination.
  • the treatment method may be a so-called integral blend treatment method in which the fluororesin filler (B) is mixed in the resin composition and then the coupling agent is added, but it is a dry method in advance.
  • a method using a wet inorganic filler surface-treated with a coupling agent is preferable.
  • the features of the fluororesin filler (B) can be more effectively expressed.
  • the fluororesin filler (B) may be used as a slurry previously dispersed in an organic solvent, if necessary.
  • the resin composition of the present embodiment further preferably contains one or more thermosetting resins (C) selected from the group consisting of epoxy resins, cyanate resins and maleimide compounds.
  • the thermosetting resin (C) preferably contains a maleimide compound from the viewpoints of high frequency characteristics, insulation reliability, adhesiveness to a conductor, and flame retardancy.
  • the thermosetting resin (C) one type may be used alone, or two or more types may be used in combination.
  • the epoxy resin is preferably an epoxy resin having two or more epoxy groups in one molecule.
  • the epoxy resin is classified into a glycidyl ether type epoxy resin, a glycidyl amine type epoxy resin, a glycidyl ester type epoxy resin, and the like.
  • glycidyl ether type epoxy resin is preferable.
  • Epoxy resins are classified into various epoxy resins according to the difference in the main skeleton, and in each of the above types of epoxy resins, bisphenol type epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, and bisphenol S type epoxy resin are further classified.
  • Epoxy resin alicyclic epoxy resin such as dicyclopentadiene type epoxy resin; aliphatic chain epoxy resin; phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolak type epoxy resin, bisphenol F novolak type epoxy resin, Novolak type epoxy resin such as phenol aralkylnovolak type epoxy resin, biphenyl aralkylnovolak type epoxy resin; stillben type epoxy resin; naftol novolak type epoxy resin, naphthalene skeleton-containing epoxy resin such as naphthol aralkyl type epoxy resin; biphenyl type epoxy resin; Xylylene type epoxy resin; classified into dihydroanthracene type epoxy resin and the like.
  • a curing agent, a curing aid, or the like of the epoxy resin may be used in combination, if necessary.
  • cyanate resin examples include 2,2-bis (4-cyanatophenyl) propane, bis (4-cyanatophenyl) ethane, bis (3,5-dimethyl-4-cyanatophenyl) methane, and 2,2. -Bis (4-cyanatophenyl) -1,1,1,3,3,3-hexafluoropropane, ⁇ , ⁇ '-bis (4-cyanatophenyl) -m-diisopropylbenzene, phenol-added dicyclopentadiene Examples thereof include a cyanate ester compound of a polymer, a phenol novolac type cyanate ester compound, and a cresol novolak type cyanate ester compound. When a cyanate resin is used, a curing agent, a curing aid, or the like of the cyanate resin may be used in combination, if necessary.
  • the maleimide compound may be abbreviated as a maleimide compound (c1) having two or more N-substituted maleimide groups [hereinafter, simply “maleimide compound (c1)” or “component (c1)”. ] And one or more selected from the group consisting of derivatives thereof.
  • maleimide compound (c1) or “component (c1)”.
  • derivatives include an addition reaction product of a maleimide compound having two or more N-substituted maleimide groups and an amine compound such as a diamine compound described later.
  • the maleimide compound (c1) is not particularly limited as long as it is a maleimide compound having two or more N-substituted maleimide groups.
  • Specific examples of the maleimide compound (c1) include, for example, bis (4-maleimidephenyl) methane, polyphenylmethane maleimide, bis (4-maleimidephenyl) ether, bis (4-maleimidephenyl) sulfone, 3,3'-.
  • Aromatic maleimide compounds such as phenyl] propane; aliphatic maleimide compounds such as 1,6-bismaleimide- (2,2,4-trimethyl) hexane and pyrrolylonic acid binder-type long-chain alkylbismaleimide can be mentioned.
  • the maleimide compound (c1) is preferably an aromatic maleimide compound, more preferably an aromatic bismaleimide compound, and 2,2-bis [4- (4). -Maleimide phenoxy) phenyl] propane, 3,3'-dimethyl-5,5'-diethyl-4,4'-diphenylmethanebismaleimide is more preferred.
  • maleimide compound (c1) a compound represented by the following general formula (C1-1) is preferable.
  • X c1 represents a divalent organic group.
  • the divalent organic group represented by X c1 in the general formula (C1-1) is represented by the following general formulas (C1-2), (C1-3), (C1-4) or (C1-5). The groups to be given are mentioned.
  • R c1 indicates an aliphatic hydrocarbon group or a halogen atom having 1 to 5 carbon atoms.
  • n c1 indicates an integer of 0 to 4. * Indicates a bond position.
  • Examples of the aliphatic hydrocarbon group having 1 to 5 carbon atoms indicated by R c1 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group and an n-pentyl group. Group etc. can be mentioned.
  • As the aliphatic hydrocarbon group an aliphatic hydrocarbon group having 1 to 3 carbon atoms is preferable, and a methyl group is more preferable.
  • n c1 represents an integer of 0 to 4, and from the viewpoint of availability, an integer of 0 to 2 is preferable, and 0 is more preferable. When n c1 is an integer of 2 or more, the plurality of R c1s may be the same or different.
  • R c2 and R c3 independently represent an aliphatic hydrocarbon group or a halogen atom having 1 to 5 carbon atoms.
  • X c2 is an alkylene group having 1 to 5 carbon atoms and 2 to 5 carbon atoms.
  • An alkylidene group, an ether group, a sulfide group, a sulfonyl group, a carbonyloxy group, a keto group, a single bond, or a divalent group represented by the following general formula (C1-3-1) is shown.
  • n c2 and n c3 are shown. , Each independently indicates an integer from 0 to 4. * Indicates the connection position.
  • the description of the aliphatic hydrocarbon group having 1 to 5 carbon atoms represented by R c2 and R c3 is about the aliphatic hydrocarbon group having 1 to 5 carbon atoms represented by R c1 in the above general formula (C1-2). Same as the description.
  • Examples of the alkylene group having 1 to 5 carbon atoms indicated by X c2 include a methylene group, a 1,2-dimethylene group, a 1,3-trimethylene group, a 1,4-tetramethylene group, a 1,5-pentamethylene group and the like. Can be mentioned.
  • As the alkylene group an alkylene group having 1 to 3 carbon atoms is preferable, and a methylene group is more preferable.
  • Examples of the alkylidene group having 2 to 5 carbon atoms indicated by X c2 include an ethylidene group, a propyridene group, an isopropylidene group, a butylidene group, an isobutylidene group, a pentylidene group and an isopentylidene group.
  • an isopropylidene group is preferable.
  • n c2 and n c3 represent an integer of 0 to 4, and from the viewpoint of availability, an integer of 0 to 2 is preferable, and 0 or 2 is more preferable.
  • n c2 is an integer of 2 or more
  • the plurality of R c2s may be the same or different from each other.
  • n c3 is an integer of 2 or more
  • the plurality of R c3s may be the same or different from each other.
  • the divalent group represented by the general formula (C1-3-1) represented by X c2 is as follows.
  • R c4 and R c5 each independently represent an aliphatic hydrocarbon group or a halogen atom having 1 to 5 carbon atoms.
  • X c3 is an alkylene group having 1 to 5 carbon atoms and 2 to 5 carbon atoms.
  • N c4 and n c5 each independently indicate an integer of 0 to 4. * Indicates a bond position. .
  • the description of the aliphatic hydrocarbon group having 1 to 5 carbon atoms represented by R c4 and R c5 is about the aliphatic hydrocarbon group having 1 to 5 carbon atoms represented by R c1 in the above general formula (C1-2). Same as the description.
  • the alkylene group having 1 to 5 carbon atoms and the alkylidene group having 2 to 5 carbon atoms represented by X c3 the alkylene group having 1 to 5 carbon atoms and 2 carbon atoms represented by X c2 in the above general formula (C1-3).
  • the same as the alkylidene group of ⁇ 5 can be mentioned.
  • an isopropylidene group is preferable from the viewpoints of high frequency characteristics, adhesion to a conductor, heat resistance, glass transition temperature and coefficient of thermal expansion.
  • an alkylidene group having 2 to 5 carbon atoms is preferable, and an isopropylidene group is more preferable.
  • n c4 and n c5 represent an integer of 0 to 4, and from the viewpoint of availability, an integer of 0 to 2 is preferable, and 0 is more preferable.
  • the plurality of R c4s may be the same or different from each other.
  • n c5 is an integer of 2 or more, the plurality of R c5s may be the same or different from each other.
  • n c6 indicates an integer from 1 to 10. * Indicates a coupling position.
  • n c6 an integer of 1 to 5 is preferable, and an integer of 1 to 3 is more preferable, from the viewpoint of availability.
  • R c6 and R c7 each independently represent a hydrogen atom or an aliphatic hydrocarbon group having 1 to 5 carbon atoms.
  • n c7 represents an integer of 1 to 8; * indicates a bond position. .
  • n c7 indicates an integer of 1 to 8, preferably an integer of 1 to 3, and more preferably 1.
  • n c7 is an integer of 2 or more, the plurality of R c6s may be the same or different from each other, and the plurality of R c7s may be the same or different from each other. May be.
  • X c1 in the above general formula (C1-1) is a divalent group represented by any of the following formulas (X c1-1) to (X c1 -3 ) from the viewpoint of high frequency characteristics. Is preferable, and it is more preferable that it is a divalent group represented by the following formula (X c1 -3).
  • a derivative of the maleimide compound (c1) is preferable from the viewpoints of solubility in an organic solvent, compatibility, adhesion to a conductor, and high frequency characteristics.
  • the derivative of the maleimide compound (c1) includes a structural unit derived from the maleimide compound (c1) and an amine compound (c2) having a primary amino group [hereinafter, "amine compound (c2)” or “(c2) component”. May be abbreviated as. ]
  • Derived structural unit and the modified maleimide compound (X) [hereinafter, may be abbreviated as "modified maleimide compound (X)" or "(X) component”. ] Is preferable.
  • the resin composition of the present embodiment contains the maleimide compound as the component (C), and the maleimide compound has at least two N-substituted maleimide groups, and is a structural unit derived from the maleimide compound (c1).
  • a modified maleimide compound having a primary amino group and a structural unit derived from the amine compound (c2) is preferable.
  • the structural unit derived from the component (c1) and the structural unit derived from the component (c2) contained in the modified maleimide compound (X) may be one kind or a combination of two or more kinds. good.
  • the modified maleimide compound (X) contains a structure represented by the following formula (C-1), which is formed by an addition reaction between a maleimide group contained in the component (c1) and a primary amino group contained in the component (c2). It is preferably a compound. (* Indicates the position of connection to other structures.)
  • the structural unit derived from the component (c1) for example, one or more selected from the group consisting of a group represented by the following general formula (C1-6) and a group represented by the following general formula (C1-7). Can be mentioned.
  • the content of the structural unit derived from the component (c1) in the modified maleimide compound (X) is not particularly limited, but is preferably 50 to 95% by mass, more preferably 70 to 92% by mass, and further preferably 85 to 90% by mass. preferable.
  • the content of the structural unit derived from the component (c1) is within the above range, the high frequency characteristics tend to be better and good film handling properties tend to be obtained.
  • the amine compound (c2) is preferably a compound having two or more amino groups, and more preferably a diamine compound having two amino groups.
  • Examples of the amine compound (c2) include 4,4'-diaminodiphenylmethane, 4,4'-diamino-3,3'-dimethyldiphenylmethane, 3,3'-diethyl-4,4'-diaminodiphenylmethane, 4, 4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 4,4'-diaminodiphenylketone, 4,4'-diaminobiphenyl, 3,3'-dimethyl-4, 4'-Diaminobiphenyl, 2,2'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dihydroxybenzidine, 2,2-bis (3-amin
  • the component (c2) includes 4,4'-diaminodiphenylmethane and 4,4'-diamino from the viewpoint of excellent solubility in an organic solvent, reactivity with the component (c1), and heat resistance.
  • the component (c2) is selected as a component.
  • 4,4'-[1,3-phenylenebis (1-methylethylidene)] bisaniline and 4,4'-[1,4-phenylenebis (1-methylethylidene)] bisaniline are preferable.
  • amine compound (c2) a compound represented by the following general formula (C2-1) is preferable.
  • X c4 represents a divalent organic group.
  • the component (c2) is an aromatic diamine compound in which X c4 in the general formula (C2-1) is a divalent group represented by the following general formula (C2-2) [hereinafter, “aromatic diamine compound”. (C2-2) ”may be abbreviated. ] Is preferably contained.
  • R c11 and R c12 each independently represent an aliphatic hydrocarbon group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, a hydroxyl group or a halogen atom.
  • X c5 has 1 carbon atom.
  • n c8 and n c9 each independently indicate an integer of 0 to 4. * Indicates a binding position.
  • Examples of the aliphatic hydrocarbon group having 1 to 5 carbon atoms represented by R c11 and R c12 in the above general formula (C2-2) include a methyl group, an ethyl group, an n-propyl group, an isopropyl group and n-butyl. Examples thereof include a group, an isobutyl group, a t-butyl group, an n-pentyl group and the like.
  • Examples of the alkylene group having 1 to 5 carbon atoms indicated by X c5 include a methylene group, a 1,2-dimethylene group, a 1,3-trimethylene group, a 1,4-tetramethylene group, a 1,5-pentamethylene group and the like.
  • Examples of the alkylidene group having 2 to 5 carbon atoms indicated by X c5 include an ethylidene group, a propyridene group, an isopropylidene group, a butylidene group, an isobutylidene group, a pentylidene group and an isopentylidene group.
  • n c8 and n c9 represent an integer of 0 to 4, and 0 or 1 is preferable from the viewpoint of availability.
  • n c8 or n c9 is an integer of 2 or more
  • the plurality of R c11s or the plurality of R c12s may be the same or different from each other.
  • the divalent group represented by the general formula (C2-2-1) represented by X c5 in the general formula (C2-2) is as follows.
  • R c13 and R c14 each independently represent an aliphatic hydrocarbon group or a halogen atom having 1 to 5 carbon atoms.
  • X c6 is an alkylene group having 1 to 5 carbon atoms and 2 to 5 carbon atoms. Alkylidene group, m-phenylenediisopropylidene group, p-phenylenediisopropyridene group, ether group, sulfide group, sulfonyl group, carbonyloxy group, keto group or single bond.
  • n c10 and n c11 are independent of each other. , Indicates an integer from 0 to 4. * Indicates the coupling position.
  • the description of the aliphatic hydrocarbon group having 1 to 5 carbon atoms represented by R c13 and R c14 in the general formula (C2-2-1) is described in R c11 and R c12 in the general formula (C2-2). Is the same as the description of the aliphatic hydrocarbon group having 1 to 5 carbon atoms shown in.
  • the description of the alkylene group having 1 to 5 carbon atoms and the alkylidene group having 2 to 5 carbon atoms represented by X c6 describes the alkylene group having 1 to 5 carbon atoms represented by X c5 in the above general formula (C2-2) and carbon. It is the same as the description about the alkylidene group of the number 2-5.
  • n c10 and n c11 represent an integer of 0 to 4, and from the viewpoint of availability, an integer of 0 to 2 is preferable, and 0 is more preferable.
  • n c10 is an integer of 2 or more
  • the plurality of R c13s may be the same or different from each other.
  • n c11 is an integer of 2 or more
  • the plurality of R c14s may be the same or different from each other.
  • the divalent group represented by the general formula (C2-2-2) represented by X c5 in the general formula (C2-2) is as follows.
  • R c15 represents an aliphatic hydrocarbon group or a halogen atom having 1 to 5 carbon atoms.
  • X c7 and X c8 are independently alkylene groups having 1 to 5 carbon atoms and 2 to 5 carbon atoms, respectively. Indicates an alkylidene group, an ether group, a sulfide group, a sulfonyl group, a carbonyloxy group, a keto group or a single bond.
  • N c12 indicates an integer of 0 to 4. * Indicates a bond position.
  • the description of the aliphatic hydrocarbon group having 1 to 5 carbon atoms represented by R c15 in the general formula (C2-2-2) is the carbon represented by R c11 and R c12 in the general formula (C2-2). It is the same as the description about the aliphatic hydrocarbon group of the number 1-5.
  • Examples of the alkylene group having 1 to 5 carbon atoms represented by X c7 and X c8 and the alkylidene group having 2 to 5 carbon atoms include the alkylene group having 1 to 5 carbon atoms represented by X c5 in the above general formula (C2-2). The same as the alkylidene group having 2 to 5 carbon atoms is exemplified.
  • X c7 and X c8 are preferably an alkylidene group having 2 to 5 carbon atoms, and more preferably an iropropylidene group.
  • n c12 represents an integer of 0 to 4, and from the viewpoint of availability, an integer of 0 to 2 is preferable, and 0 is more preferable.
  • the plurality of R c15s may be the same or different.
  • the component (c2) is an amine-modified siloxane compound in which X c4 in the general formula (C2-1) is a divalent group containing a structural unit represented by the following general formula (C2-3). It may be contained, and X c4 in the above general formula (C2-1) is a terminal amine-modified siloxane compound which is a divalent group represented by the following general formula (C2-4) [hereinafter, "terminal amine modification”. It may be abbreviated as "siloxane compound (C2-4)”. ] May be contained.
  • R c16 and R c17 each independently represent an alkyl group, a phenyl group or a substituted phenyl group having 1 to 5 carbon atoms. * Indicates a bond position.
  • R c16 and R c17 are the same as those in the above general formula (C2-3), and R c18 and R c19 are each independently an alkyl group having 1 to 5 carbon atoms, a phenyl group or a group. Substituent phenyl groups are indicated.
  • X c9 and X c10 each independently indicate a divalent organic group, n c13 indicates an integer of 2 to 100, and * indicates a bond position.
  • Examples of the alkyl group having 1 to 5 carbon atoms represented by R c16 to R c19 in the above general formulas (C2-3) and (C2-4) include a methyl group, an ethyl group, an n-propyl group and an isopropyl group. Examples thereof include an n-butyl group, an isobutyl group, a t-butyl group and an n-pentyl group.
  • As the alkyl group an alkyl group having 1 to 3 carbon atoms is preferable, and a methyl group is more preferable.
  • Examples of the substituent having the phenyl group in the substituted phenyl group indicated by R c16 to R c19 include an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, and an alkynyl group having 2 to 5 carbon atoms. Can be mentioned.
  • Examples of the alkyl group having 1 to 5 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, an n-pentyl group and the like.
  • Examples of the alkenyl group having 2 to 5 carbon atoms include a vinyl group and an allyl group.
  • Examples of the alkynyl group having 2 to 5 carbon atoms include an ethynyl group and a propargyl group.
  • Examples of the divalent organic group indicated by X c9 and X c10 include an alkylene group, an alkenylene group, an alkynylene group, an arylene group, —O— or a divalent linking group in which these are combined.
  • Examples of the alkylene group include an alkylene group having 1 to 10 carbon atoms such as a methylene group, an ethylene group and a propylene group.
  • Examples of the alkenylene group include an alkenylene group having 2 to 10 carbon atoms.
  • Examples of the alkynylene group include an alkynylene group having 2 to 10 carbon atoms.
  • Examples of the arylene group include an arylene group having 6 to 20 carbon atoms such as a phenylene group and a naphthylene group.
  • X c9 and X c10 an alkylene group and an arylene group are preferable, and an alkylene group is more preferable.
  • n c13 indicates an integer of 2 to 100, preferably an integer of 2 to 50, more preferably an integer of 3 to 40, and even more preferably an integer of 5 to 30.
  • the plurality of R c16s or the plurality of R c17s may be the same or different from each other.
  • X c4 is the same as X c4 in the above general formula (C2-1), and * indicates the bonding position to other structures.
  • the content of the structural unit derived from the component (c2) in the modified maleimide compound (X) is not particularly limited, but is preferably 5 to 50% by mass, more preferably 8 to 30% by mass, and further preferably 10 to 15% by mass. preferable. (C2) When the content of the structural unit derived from the component is within the above range, there is a tendency that excellent high frequency characteristics and better heat resistance, flame retardancy and glass transition temperature can be obtained.
  • the total content of the structural unit derived from the component (c1) and the structural unit derived from the component (c2) in the modified maleimide compound (X) is not particularly limited, but is preferably 80% by mass or more, more preferably 90% by mass or more. It is more preferably 95% by mass or more, and particularly preferably 100% by mass (that is, one consisting only of the structural unit derived from the (c1) component and the structural unit derived from the (c2) component).
  • the content ratio of the structural unit derived from the component (c1) and the structural unit derived from the component (c2) in the modified maleimide compound (X) is not particularly limited, but the group derived from the -NH 2 group of the component (c2) (
  • the equivalent ratio (Ta1 / Ta2) of the total equivalent (Ta1) of the maleimide group-derived group (including the maleimide group) derived from the component (c1) to the total equivalent (Ta2) of (including NH2 ) is preferable.
  • the content ratio is 0.05 to 10, more preferably 1 to 5.
  • the maleimide compound preferably contains a compound represented by the following general formula (C-2) from the viewpoints of high frequency characteristics, insulation reliability, solubility in an organic solvent, adhesion to a conductor, moldability, and the like. ..
  • the component (X) can be produced, for example, by reacting the component (c1) and the component (c2) in an organic solvent. Specifically, a predetermined amount of the (c1) component, the (c2) component, and other components if necessary are charged into the reactor, and the (c1) component and the (c2) component are subjected to a Michael addition reaction [hereinafter referred to as "pre-reaction”. May be referred to. ], A modified maleimide compound (X) can be obtained.
  • the reaction conditions are not particularly limited, but the reaction temperature is preferably 50 to 160 ° C. and the reaction time is preferably 1 to 10 hours from the viewpoint of obtaining good reactivity and workability while suppressing gelation.
  • a reaction catalyst may be used if necessary.
  • the reaction catalyst include acidic catalysts such as p-toluenesulfonic acid; amines such as triethylamine, pyridine and tributylamine; imidazoles such as methylimidazole and phenylimidazole; and phosphorus catalysts such as triphenylphosphine. .. One of these may be used alone, or two or more thereof may be used in combination.
  • the amount of the reaction catalyst to be blended is not particularly limited, but is, for example, 0.01 to 5 parts by mass with respect to 100 parts by mass of the total amount of the component (c1) and the component (c2).
  • an organic solvent may be added or concentrated as necessary to adjust the solid content concentration of the reaction raw material and the viscosity of the reaction solution.
  • the solid content concentration of the reaction raw material is not particularly limited, but is preferably 10 to 90% by mass, more preferably 20 to 80% by mass.
  • a sufficient reaction rate can be obtained, which tends to be advantageous in terms of production cost, and when it is at least the above upper limit value, better solubility can be obtained. Therefore, the stirring efficiency is improved and gelation tends to be difficult.
  • the weight average molecular weight (Mw) of the modified maleimide compound (X) is not particularly limited, but is preferably 400 to 10,000, more preferably 1,000 to 5,000, still more preferably 1,500 to 4,000. 2,000 to 3,000 are particularly preferable.
  • the content thereof is not particularly limited, but from the viewpoint of high frequency characteristics, heat resistance and moldability, the total amount of the resin components is 100 parts by mass. On the other hand, 5 to 80 parts by mass is preferable, 5 to 60 parts by mass is more preferable, 10 to 50 parts by mass is further preferable, and 15 to 40 parts by mass is particularly preferable.
  • the content ratio [(A) / (C)] of the polyphenylene ether derivative (A) and the thermosetting resin (C) is particularly high.
  • the mass ratio is preferably 5/95 to 80/20, more preferably 6/94 to 60/40, still more preferably 8/92 to 40/60, and particularly preferably 10/90 to 20/80. ..
  • the content ratio [(A) / (C)] is 5/95 or more, more excellent high frequency characteristics and low hygroscopicity tend to be obtained.
  • the content ratio [(A) / (C)] is 80/20 or less, more excellent heat resistance, moldability and processability tend to be obtained.
  • the resin composition of the present embodiment further preferably contains one or more selected from the group consisting of the thermoplastic elastomer (D), the curing accelerator (E) and the inorganic filler (F). Next, each of these components will be described.
  • thermoplastic elastomer (D) By containing the thermoplastic elastomer (D), the resin composition of the present embodiment tends to have a good balance between high frequency characteristics, moldability, adhesiveness to conductors, solder heat resistance, glass transition temperature and coefficient of thermal expansion. It is in.
  • thermoplastic elastomer (D) one type may be used alone, or two or more types may be used in combination.
  • thermoplastic elastomer (D) examples include thermoplastic elastomers having a structural unit represented by the following general formula (D-1), and the structural unit derived from styrene (that is, R in the following general formula (D-1)). It is preferable that the thermoplastic elastomer has a (structural unit in which d1 is a hydrogen atom and n d1 is 0) (hereinafter, may be referred to as a styrene-based thermoplastic elastomer).
  • R d1 indicates a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
  • R d2 indicates an alkyl group having 1 to 5 carbon atoms
  • n d1 indicates an integer of 0 to 5
  • Examples of the alkyl group having 1 to 5 carbon atoms indicated by R d1 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, an n-pentyl group and the like. Can be mentioned.
  • a hydrogen atom is preferable.
  • Examples of the alkyl group having 1 to 5 carbon atoms indicated by R d2 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, an n-pentyl group and the like. Can be mentioned.
  • the alkyl group is preferably an alkyl group having 1 to 3 carbon atoms, and more preferably a methyl group.
  • n d1 indicates an integer of 0 to 5, preferably an integer of 0 to 2, and more preferably 0. When n d1 is an integer of 2 or more, the plurality of R d1s may be the same or different.
  • Examples of the structural unit other than the structural unit derived from the compound of the thermoplastic elastomer (D) include a structural unit derived from butadiene, a structural unit derived from isoprene, a structural unit derived from maleic acid, a structural unit derived from maleic anhydride, and the like. ..
  • the structural unit derived from butadiene and the structural unit derived from isoprene are preferably hydrogenated.
  • the structural unit derived from butadiene is a structural unit in which ethylene units and butylene units are mixed
  • the structural unit derived from isoprene is a structural unit in which ethylene units and propylene units are mixed.
  • thermoplastic elastomer (D) examples include hydrogenated styrene-based additives such as a hydrogenated additive of a styrene-butadiene-styrene block copolymer (SBS) and a hydrogenated additive of a styrene-isoprene-styrene block copolymer (SIS).
  • SBS styrene-butadiene-styrene block copolymer
  • SIS styrene-isoprene-styrene block copolymer
  • thermoplastic elastomers examples include thermoplastic elastomers.
  • SBS styrene-butadiene-styrene block copolymer
  • Examples of the hydrogenated styrene-butadiene-styrene block copolymer include a styrene-ethylene-butylene-styrene copolymer (SEBS) obtained by completely hydrogenating a carbon-carbon double bond in a butadiene block. ) And styrene-butadiene-butylene-styrene (SBBS) formed by partially hydrogenating the carbon-carbon double bond at the 1,2-bonding site in the butadiene block.
  • SEBS styrene-butadiene-butylene-styrene
  • the complete hydrogenation in SEBS is usually 90% or more, 95% or more, 99% or more, and substantially the total carbon-carbon double bond. It may be 100%.
  • the partial hydrogenation rate in SBBS is, for example, 60 to 85% with respect to the total carbon-carbon double bond.
  • the content of structural units derived from styrene [hereinafter, may be abbreviated as "styrene content”. ] Is not particularly limited, but is preferably 5 to 80% by mass, more preferably 10 to 70% by mass, and 15 to 15 to 70% by mass, from the viewpoints of high frequency characteristics, adhesion to conductors, heat resistance, glass transition temperature and coefficient of thermal expansion. 60% by mass is more preferable, and 20 to 50% by mass is particularly preferable.
  • the melt flow rate (MFR) of SEBS is not particularly limited, but is preferably 0.1 to 20 g / 10 min, more preferably 1 to 15 g / 10 min under the measurement conditions of 230 ° C. and a load of 2.16 kgf (21.2 N). 2 to 10 g / 10 min is more preferable, and 3 to 7 g / 10 min is particularly preferable.
  • the styrene content is not particularly limited, but is preferably 40 to 80% by mass, preferably 50 to 75% by mass, from the viewpoints of high frequency characteristics, adhesion to conductors, heat resistance, glass transition temperature and thermal expansion coefficient. More preferably, 55 to 75% by mass is further preferable.
  • the MFR of SBBS is not particularly limited, but is preferably 0.1 to 10 g / 10 min, more preferably 0.5 to 8 g / 10 min, and 1 to 1 to 10 min under the measurement conditions of 190 ° C. and a load of 2.16 kgf (21.2 N). 6 g / 10 min is more preferable.
  • the thermoplastic elastomer (D) may be acid-modified with maleic anhydride or the like.
  • the acid value of the acid-modified thermoplastic elastomer (D) is not particularly limited, but is preferably 2 to 20 mgCH 3 ONa / g, more preferably 5 to 15 mgCH 3 ONa / g, and further preferably 7 to 13 mgCH 3 ONa / g. preferable.
  • the content thereof is not particularly limited, but is preferably 2 to 40 parts by mass with respect to 100 parts by mass of the total resin components, and 5 to 5 to 40 parts by mass. 30 parts by mass is more preferable, 8 to 25 parts by mass is further preferable, and 10 to 20 parts by mass is particularly preferable.
  • the content of the thermoplastic elastomer (D) is at least the above lower limit value, more excellent high frequency characteristics and moisture absorption resistance tend to be obtained.
  • the content of the thermoplastic elastomer (D) is not more than the above upper limit value, good heat resistance, moldability and processability tend to be obtained.
  • the resin composition of the present embodiment has improved curability, and more excellent high frequency characteristics, heat resistance, adhesion to a conductor, elastic modulus and glass transition temperature can be obtained. Tend to be.
  • a suitable curing accelerator (E) may be appropriately selected according to the type of the thermosetting resin (C) component to be used.
  • the curing accelerator (E) one type may be used alone, or two or more types may be used in combination.
  • Examples of the component (E) include an amine-based curing accelerator, an imidazole-based curing accelerator, a phosphorus-based curing accelerator, an organic metal salt, an acidic catalyst, and an organic peroxide.
  • the imidazole-based curing accelerator is not classified as an amine-based curing accelerator.
  • Examples of the amine-based curing accelerator include amine compounds having primary to tertiary amines such as triethylamine, pyridine, tributylamine, and dicyandiamide; and quaternary ammonium compounds.
  • Examples of the imidazole-based curing accelerator include imidazoles such as methylimidazole, phenylimidazole, 2-undecylimidazole, and isocyanate masked imidazole (for example, an addition reaction product of hexamethylene diisocyanate resin and 2-ethyl-4-methylimidazole). Examples include compounds.
  • Examples of the phosphorus-based curing accelerator include tertiary phosphine such as triphenylphosphine; and a quaternary phosphonium compound such as a tri-n-butylphosphine addition reaction product of p-benzoquinone.
  • Examples of the organic metal salt include carboxylates such as manganese, cobalt and zinc.
  • Examples of the acidic catalyst include p-toluenesulfonic acid and the like.
  • Examples of the organic peroxide include dicumyl peroxide, 2,5-dimethyl-2,5-bis (t-butylperoxy) hexine-3,2,5-dimethyl-2,5-bis (t-). Examples thereof include butylperoxy) hexane, t-butylperoxyisopropyl monocarbonate, ⁇ , ⁇ '-di (t-butylperoxy) diisopropylbenzene and the like.
  • amine-based curing accelerators imidazole-based curing accelerators, and phosphorus-based curing accelerators are selected from the viewpoints of obtaining better high-frequency characteristics, heat resistance, adhesiveness to conductors, elastic modulus, and glass transition temperature.
  • dicyandiamide, an imidazole-based curing accelerator, and a quaternary phosphonium compound are more preferable, and it is further preferable to use these in combination.
  • an organic peroxide may be used in combination, but it is preferable that the organic peroxide is not contained from the viewpoint of the physical properties of the cured product.
  • composition of the present embodiment contains the curing accelerator (E)
  • the content thereof is not particularly limited, but is 0.01 to 10 parts by mass with respect to 100 parts by mass of the thermosetting resin (C). Is preferable, 0.05 to 5 parts by mass is more preferable, 0.1 to 5 parts by mass is further preferable, and 0.5 to 4 parts by mass is particularly preferable.
  • the content of the curing accelerator (E) is within the above range, better high frequency characteristics, heat resistance, storage stability and moldability tend to be obtained.
  • the resin composition of the present embodiment tends to obtain more excellent low thermal expansion property, high elastic modulus, heat resistance and flame retardancy.
  • the inorganic filler (F) one type may be used alone, or two or more types may be used in combination.
  • Examples of the inorganic filler (F) include silica, alumina, titanium oxide, mica, verilia, barium titanate, potassium titanate, strontium titanate, calcium titanate, aluminum carbonate, magnesium hydroxide, aluminum hydroxide, and silicate.
  • Examples thereof include aluminum oxide, calcium carbonate, calcium silicate, magnesium silicate, silicon nitride, boron nitride, clay (baked clay and the like), talc, aluminum borate, silicon carbide and the like.
  • silica, alumina, mica, and talc are preferable, silica and alumina are more preferable, and silica is further preferable as the inorganic filler (F) from the viewpoints of coefficient of thermal expansion, elastic modulus, heat resistance, and flame retardancy.
  • silica include precipitated silica manufactured by a wet method and having a high water content, and dry silica manufactured by a dry method and containing almost no bound water or the like.
  • the dry silica include crushed silica, fumed silica, fused silica (molten spherical silica), and the like, depending on the manufacturing method. Among these, molten spherical silica is preferable as the inorganic filler (F).
  • the average particle size of the inorganic filler (F) is not particularly limited, but is preferably 0.01 to 20 ⁇ m, more preferably 0.1 to 10 ⁇ m, further preferably 0.2 to 1 ⁇ m, and even more preferably 0.3 to 0.8 ⁇ m. Is particularly preferable.
  • the content thereof is not particularly limited, but from the viewpoint of the coefficient of thermal expansion, elastic modulus, heat resistance and flame retardancy, the content thereof is relative to the solid content.
  • 1 to 30% by mass is preferable, 1 to 25% by mass is more preferable, 1 to 20% by mass is further preferable, 2 to 15% by mass is further preferable, and 2 to 8% by mass is particularly preferable.
  • the inorganic filler (F) When the inorganic filler (F) is used, a cup is used, if necessary, for the purpose of improving the dispersibility of the inorganic filler (F) and the adhesion between the inorganic filler (F) and the organic component in the resin composition.
  • a ring agent may be used in combination.
  • the coupling agent include a silane coupling agent, a titanate coupling agent and the like.
  • One type of coupling agent may be used alone, or two or more types may be used in combination.
  • the treatment method may be a so-called integral blend treatment method in which the inorganic filler (F) is mixed in the resin composition and then the coupling agent is added, but it is a dry method in advance.
  • the inorganic filler (F) may be used as a slurry previously dispersed in an organic solvent, if necessary.
  • the resin composition of the present embodiment contains at least one selected from the group consisting of a flame retardant, a flame retardant aid and an adhesion improver, if necessary, as long as the effects of the present embodiment are not impaired. May be.
  • a flame retardant a flame retardant aid
  • an adhesion improver if necessary, as long as the effects of the present embodiment are not impaired. May be.
  • one type may be used alone, or two or more types may be used in combination.
  • the resin composition of this embodiment may not contain these components.
  • the flame retardant examples include an inorganic phosphorus-based flame retardant; an organic phosphorus-based flame retardant; a hydrate of aluminum hydroxide, a metal hydrate such as a hydrate of magnesium hydroxide, and the like.
  • the metal hydroxide may also correspond to an inorganic filler, but if it is a material that can impart flame retardancy, it is classified as a flame retardant.
  • the inorganic phosphorus-based flame retardant include red phosphorus; ammonium phosphate such as monoammonium phosphate, diammonium phosphate, triammonium phosphate, and ammonium polyphosphate; and inorganic nitrogen-containing phosphorus compounds such as phosphate amide.
  • Phosphoric acid phosphine oxide and the like.
  • organic phosphorus-based flame retardant include aromatic phosphoric acid esters, phosphonic acid diesters and phosphinic acid esters; metal salts of phosphinic acid, organic nitrogen-containing phosphorus compounds, cyclic organic phosphorus compounds and the like.
  • metal salt include lithium salt, sodium salt, potassium salt, calcium salt, magnesium salt, aluminum salt, titanium salt, zinc salt and the like.
  • the content thereof is not particularly limited, but is, for example, 0.1 part by mass or more and 1 part by mass with respect to 100 parts by mass of the total resin components. It may be more than or equal to 5 parts by mass, may be 10 parts by mass or more, may be 40 parts by mass or less, may be 30 parts by mass or less, and may be 25. It may be 20 parts by mass or less, or may be 20 parts by mass or less. Further, the resin composition of the present embodiment does not have to contain a flame retardant.
  • flame-retardant aid examples include inorganic flame-retardant aids such as antimony trioxide and zinc molybdate.
  • the content of the flame retardant aid is not particularly limited, but is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the total resin components, and 0. More preferably, 1 to 10 parts by mass.
  • the content of the flame retardant aid is within the above range, better chemical resistance tends to be obtained.
  • the resin composition of the present embodiment does not have to contain a flame retardant aid.
  • adhesion improver examples include triazine derivatives, nitrogen-containing compounds such as carbodiimide, and the like.
  • the content thereof is not particularly limited, but is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the total resin components, and 0. More preferably, 1 to 10 parts by mass.
  • the content of the adhesion improver is within the above range, better copper foil peeling strength tends to be obtained. Further, the resin composition of the present embodiment does not have to contain an adhesion improver.
  • the resin composition of the present embodiment may be a varnish-like resin composition containing an organic solvent from the viewpoint of facilitating handling and the prepreg described later.
  • the organic solvent include alcohol solvents such as ethanol, propanol, butanol, methyl cellosolve, butyl cellosolve, and propylene glycol monomethyl ether; ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; and ether solvents such as tetrahydrofuran; Aromatic solvents such as toluene, xylene and mesitylen; nitrogen atom-containing solvents such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone; sulfur atom-containing solvents such as dimethylsulfoxide; ester solvents such as ⁇ -butyrolactone and the like can be mentioned. ..
  • One type of these organic solvents may be used alone,
  • the content thereof is not particularly limited, but the solid content concentration of the resin composition of the present embodiment is preferably 30 to 90% by mass, preferably 40. An amount of about 80% by mass is more preferable, and an amount of 40 to 60% by mass is further preferable.
  • the content of the organic solvent is within the above range, the handleability of the resin composition becomes easy, the impregnation property into the base material and the appearance of the produced prepreg become good. Further, the solid content concentration of the resin in the prepreg, which will be described later, tends to be easily adjusted, and the production of the prepreg having a desired thickness tends to be easier.
  • the resin composition of the present embodiment is a resin material other than the above-mentioned components, a coupling agent, an antioxidant, a heat stabilizer, and an antistatic agent, if necessary, as long as the effects of the present embodiment are not impaired.
  • a coupling agent an antioxidant, a heat stabilizer, and an antistatic agent, if necessary, as long as the effects of the present embodiment are not impaired.
  • One or more selected from the group consisting of UV absorbers, pigments, colorants and lubricants [hereinafter, may be abbreviated as "other components”. ] May be contained.
  • one type may be used alone, or two or more types may be used in combination.
  • the resin composition of this embodiment may not contain these components.
  • the content thereof is not particularly limited, but is, for example, 0.01 part by mass or more with respect to 100 parts by mass of the total resin components. Further, it may be 10 parts by mass or less, 5 parts by mass or less, or 1 part by mass or less. Further, the total content of the component (A), the component (B), the component (C), the component (D) and the component (E) in the resin component contained in the resin composition of the present embodiment is not particularly limited. With respect to 100 parts by mass of the total resin components, 80 parts by mass or more is preferable, 90 parts by mass or more is more preferable, and 95 parts by mass or more is further preferable (however, all include 100 parts by mass).
  • the dielectric constant (Dk) at 10 GHz when the resin composition of the present embodiment is used as a test piece by the method described in Examples described later is not particularly limited, but is preferably 3.0 or less, preferably 2.7 or less. More preferably, 2.5 or less is further preferable.
  • the dielectric loss tangent (Df) at 10 GHz when the resin composition of the present embodiment is used as a test piece by the method described in Examples described later is not particularly limited, but is preferably 0.0045 or less, preferably 0.0040 or less. More preferably, 0.0035 or less is further preferable.
  • the dielectric constant (Dk) and the dielectric loss tangent (Df) are values based on the cavity resonator perturbation method, and more specifically, they are values measured by the method described in Examples. Further, in the present specification, the term "dielectric constant" simply means the relative permittivity.
  • the resin composition of the present embodiment can be produced by mixing the component (A), the component (B) and an optional component used in combination as necessary by a known method. At this time, each component may be dissolved or dispersed while stirring in the above organic solvent. Conditions such as mixing order, temperature, and time are not particularly limited and can be arbitrarily set.
  • the resin-attached metal foil of the present embodiment has a layer of the resin composition of the present embodiment on the metal foil.
  • the metal leaf with resin can be produced by applying the resin composition of the present embodiment on the metal leaf and semi-curing (B-stage) the resin composition in a drying oven. ..
  • the drying conditions are not particularly limited, but the drying temperature is preferably 80 to 180 ° C, more preferably 110 to 160 ° C.
  • the coating method is not particularly limited, and for example, a known coating machine such as a die coater, a comma coater, a bar coater, a kiss coater, or a roll coater can be used.
  • Examples of the metal foil of the metal foil with resin include copper foil, aluminum foil, and the like, but other metal foils can also be used. Among these, copper foil is preferable.
  • the prepreg of the present embodiment is a prepreg containing the resin composition of the present embodiment and a sheet-shaped fiber reinforced base material.
  • the expression "contains the resin composition and the sheet-shaped fiber reinforced base material” includes the case where the resin composition and the sheet-shaped fiber reinforced base material are contained as they are and the case where the components in the resin composition are contained. It also includes a case where the resin composition and the sheet-like fiber reinforced base material which have reacted at least partially are contained.
  • the prepreg can be formed by using the resin composition of the present embodiment and the sheet-shaped fiber reinforced base material. For example, the resin composition of the present embodiment is impregnated or coated on the sheet-shaped fiber reinforced base material.
  • B-stage is to be in the state of B-stage as defined in JIS K6900 (1994).
  • the solid content derived from the resin composition in the prepreg of the present embodiment is not particularly limited, but is preferably 30 to 90% by mass, more preferably 35 to 80% by mass, still more preferably 40 to 70% by mass, and 45. ⁇ 60% by mass is particularly preferable. When the solid content derived from the resin composition in the prepreg is within the above range, better moldability tends to be obtained when the laminated plate is formed.
  • the sheet-like fiber reinforced base material of the prepreg known ones used for laminated boards for various electric insulating materials are used.
  • the material of the sheet-shaped fiber reinforcing base material include inorganic fibers such as E glass, D glass, S glass, and Q glass; organic fibers such as polyimide, polyester, and tetrafluoroethylene; and a mixture thereof.
  • These sheet-shaped fiber reinforced base materials have shapes such as woven fabrics, non-woven fabrics, robinks, chopped strand mats, and surfaced mats.
  • the thickness of the sheet-shaped fiber reinforced base material is not particularly limited, and for example, one having a thickness of 0.02 to 0.5 mm can be used.
  • the hot melt method or solvent method can be adopted as a method for impregnating or coating the sheet-shaped fiber reinforced base material with the resin composition.
  • the hot melt method is a method in which the resin composition does not contain an organic solvent, and (1) the resin composition is once coated on coated paper having good peelability and laminated on a sheet-shaped fiber reinforced base material. Or (2) a method of directly coating the sheet-shaped fiber reinforced base material with a die coater.
  • the solvent method the resin composition contains an organic solvent, the sheet-shaped fiber reinforced base material is immersed in the obtained resin composition, the resin composition is impregnated into the sheet-shaped fiber reinforced base material, and then the sheet-shaped fiber reinforced base material is impregnated. It is a method of drying.
  • the laminated board of the present embodiment is a laminated board containing (i) the metal leaf with resin of the present embodiment or (ii) the prepreg and the metal leaf of the present embodiment.
  • the laminated plate of the present embodiment is formed by heat-press molding one sheet of the resin-attached metal foil of the present embodiment, or by arranging two resin-attached metal foils so that the metal leaf is the outer layer and then heat-pressing molding. By doing so, a laminated board can be obtained. Further, the metal foil is arranged on one side or both sides of one prepreg of the present embodiment, or the metal foil is arranged on one side or both sides of two or more prepregs of the present embodiment, and then heat and pressure molding is performed.
  • a laminated board having a metal foil is sometimes referred to as a metal-clad laminated board.
  • the metal of the metal foil is not particularly limited as long as it is used for electrical insulating materials, but from the viewpoint of conductivity, copper, gold, silver, nickel, platinum, molybdenum, ruthenium, aluminum, tungsten, iron, and titanium. , Chromium, or an alloy containing one or more of these metal elements, preferably copper and aluminum, and more preferably copper.
  • the resin sheet is C-staged.
  • the laminated board of the present embodiment has a C-staged prepreg
  • the metal-clad laminated board of the present embodiment is a C-staged metal leaf with resin or C-staged. It has a prepreg and a metal leaf.
  • C-stage is to be in the state of C-stage as defined in JIS K6900 (1994).
  • the multilayer printed wiring board of the present embodiment contains (i) a metal leaf with a resin of the present embodiment, (ii) a prepreg of the present embodiment, or (iii) a laminated board of the present embodiment.
  • the multilayer printed wiring board of the present embodiment does not necessarily contain the above (i) to (iii) as they are.
  • a circuit is formed by drilling, metal plating, etching of metal foil, or the like. It is also included when it is contained in a processed state.
  • the multilayer printed wiring board of the present embodiment uses the metal foil with resin, the prepreg, or the laminated board of the present embodiment by a known method, such as drilling, metal plating, and circuit forming by etching the metal foil. It can be manufactured by performing multi-layer processing.
  • the semiconductor package of this embodiment includes the multilayer printed wiring board of this embodiment and a semiconductor element.
  • the semiconductor package of the present embodiment is formed by mounting a semiconductor element on the multilayer printed wiring board of the present embodiment.
  • a semiconductor element such as a semiconductor chip or a memory is mounted at a predetermined position on the multilayer printed wiring board of the present embodiment by a known method, and the semiconductor element is sealed with a sealing resin or the like.
  • the weight average molecular weight (Mw) was measured by the following method. It was converted from the calibration curve using standard polystyrene by gel permeation chromatography (GPC).
  • the calibration curve is standard polystyrene: TSKstandard POLYSTYRENE (Type; A-2500, A-5000, F-1, F-2, F-4, F-10, F-20, F-40) [manufactured by Tosoh Corporation, Product name] was used for approximation by a cubic equation.
  • the measurement conditions of GPC are shown below.
  • modified maleimide compound (X1) -containing liquid having a solid content concentration of 65% by mass.
  • the weight average molecular weight (Mw) of the obtained modified maleimide resin (X1) was about 2,700.
  • the resin composition obtained in each example was applied to a copper foil (MT18FL1.5, manufactured by Mitsui Mining & Smelting Co., Ltd.) having a thickness of 0.0195 mm by a coating machine, and then heated and dried at 120 ° C. for 3 minutes. , A copper foil with a resin having a coating thickness of 25 ⁇ m was prepared. (Manufacturing of laminated board and resin plate) Further, the resin composition was applied to a PET film having a thickness of 0.050 mm by a coating machine, and then heated and dried at 120 ° C. for 3 minutes to prepare a PET film with a resin having a coating thickness of 25 ⁇ m.
  • the resin surfaces of the PET film with resin were laminated by vacuum pressure laminating (temperature 110 ° C., pressure 0.5 MPa). Further, the PET film on one side was peeled off, the peeled surfaces were stuck together, and laminated until the resin thickness became 325 ⁇ m.
  • the double-sided PET of this PET film with resin having a thickness of 325 ⁇ m is peeled off, and a low profile copper foil (BF-ANP18, Rz: 1.5 ⁇ m on the M surface, manufactured by CIRCUIT FOIL) having a thickness of 18 ⁇ m is placed above and below the resin.
  • the M surface was laminated so as to be in contact with the resin, and this laminated body was placed in a mold having a thickness of 300 ⁇ m.
  • a double-sided copper-clad laminate was produced by heat-press molding under the conditions of a temperature of 230 ° C., a pressure of 3.0 MPa, and a time of 90 minutes.
  • the outer layer copper foil of this double-sided copper-clad laminate was removed by immersing it in a copper etching solution (10% by mass solution of ammonium persulfate, manufactured by Mitsubishi Gas Chemical Company, Inc.) to prepare a resin plate having a thickness of 300 ⁇ m.
  • the resin plate produced in each example was cut into pieces having a length of 60 mm and a width of 2 mm, and the dielectric constant and the dielectric loss tangent were measured by the cavity resonator perturbation method.
  • D-1 Maleic anhydride-modified hydrogenated styrene-based thermoplastic elastomer (maleic anhydride-modified SEBS), acid value 10 mgCH 3 ONa / g, styrene content 30%, MFR 5.0 g / 10 min (MFR measurement conditions: Measured at 230 ° C.
  • the resin-containing copper foils and laminated plates of Examples 1 to 5 produced using the resin composition of the present embodiment are the resin-containing copper foils and laminated plates of Comparative Examples 1 and 2. It can be seen that the high frequency characteristics are superior to those of the laminated plate, and that the powder falling off at the end is suppressed when the metal foil with resin is cut.
  • Example 5 and Comparative Example 1 by using the component (A) and the component (B) in combination, the effect of improving the dielectric constant (Dk) and the powder at the end when cutting the metal leaf with resin are obtained. It can be seen that the effect of suppressing the drop is remarkable.
  • the resin composition of the present embodiment exhibits excellent dielectric properties in a high frequency band of 10 GHz band or higher, and suppresses powder falling off at the end when the metal leaf with resin is cut.
  • Metal leaf with resin, prepreg, laminated board, multilayer printed wiring board, semiconductor package and the like obtained by using the resin composition are suitable for electronic component applications dealing with high frequency signals.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)

Abstract

ポリフェニレンエーテル誘導体(A)と、フッ素樹脂フィラー(B)と、を含有する樹脂組成物を提供する。さらに、当該樹脂組成物を用いた、樹脂付き金属箔、プリプレグ、積層板、多層プリント配線板及び半導体パッケージを提供する。

Description

樹脂組成物、樹脂付き金属箔、プリプレグ、積層板、多層プリント配線板及び半導体パッケージ
 本開示は、樹脂組成物、樹脂付き金属箔、プリプレグ、積層板、多層プリント配線板及び半導体パッケージに関する。
 携帯電話に代表される移動体通信機器、その基地局装置、サーバー、ルーター等のネットワークインフラ機器、大型コンピュータなどでは、使用する信号の高速化及び大容量化が年々進んでいる。これに伴い、これらの電子機器に搭載されるプリント配線板には高周波化対応が必要となり、伝送損失の低減を可能とする高周波数帯における誘電特性に優れる基板材料が求められている。近年、このような高周波信号を扱うアプリケーションとして、上述した電子機器のほかに、ITS分野(自動車、交通システム関連)及び室内の近距離通信分野でも高周波無線信号を扱う新規システムの実施計画及び実用化が進んでいる。したがって、今後、これらの機器に搭載するプリント配線板に対しても、低伝送損失基板材料が要求されると予想される。
 従来、高周波特性に優れる熱可塑性ポリマーとしては、ポリフェニレンエーテル(PPE)系樹脂が使用されてきた。例えば、ポリフェニレンエーテルとエポキシ樹脂を含有する樹脂組成物(例えば、特許文献1参照)、ポリフェニレンエーテルとシアネート樹脂とを含有する樹脂組成物(例えば、特許文献2参照)等が知られている。
特開昭58-069046号公報 特公昭61-018937号公報
 近年は、6GHzを超える周波数帯の電波が使用される第五世代移動通信システム(5G)アンテナ及び30~300GHzの周波数帯の電波が使用されるミリ波レーダーにも利用可能な10GHz帯以上における誘電特性(低誘電率及び低誘電正接;以下、高周波特性と称することがある)がさらに改善された樹脂組成物の開発が切望されている。すなわち、樹脂組成物には、従来よりも一層優れた高周波特性を有することが望まれている。
 さらに、樹脂組成物の層を金属箔上に有する樹脂付き金属箔を金属張積層板の製造に用いることがあるが、この樹脂付き金属箔は、通常、サイズを調整するために切断機で切断して使用する。このとき、樹脂付き金属箔の端部の粉落ちが原因で切断機の刃(以下、スリット刃とも称する。)に樹脂粉が付着することがある。このようにスリット刃が汚染されることで、切断面における波うち及び樹脂割れが発生したり、スリット刃に付着した樹脂が樹脂付き金属箔へ落下することで製品が汚染されたりするという問題がある。
 本開示は、このような現状に鑑み、10GHz帯以上の高周波数帯において優れた誘電特性を発現し、且つ、樹脂付き金属箔の切断時に端部の粉落ちが抑制される樹脂組成物、該樹脂組成物を用いた樹脂付き金属箔、プリプレグ、積層板、多層プリント配線板及び半導体パッケージを提供することを目的とする。
 本発明者らは、上記目的を達成するために鋭意研究を重ねた結果、本開示によって前記目的を達成し得ることを見出した。
 本開示は、下記[1]~[18]を含む。
[1]ポリフェニレンエーテル誘導体(A)と、フッ素樹脂フィラー(B)と、を含有する樹脂組成物。
[2]前記(A)成分が、分子末端にエチレン性不飽和結合含有基を有する、上記[1]に記載の樹脂組成物。
[3]前記(A)成分が有する前記エチレン性不飽和結合含有基が、(メタ)アクリル基である、上記[1]又は[2]に記載の樹脂組成物。
[4]前記(A)成分の重量平均分子量(Mw)が、500~7,000である、上記[1]~[3]のいずれかに記載の樹脂組成物。
[5]前記(B)成分が、ポリテトラフルオロエチレン(PTFE)フィラー、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)フィラー、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)フィラー、テトラフルオロエチレン-エチレン共重合体(ETFE)フィラー及びポリクロロトリフルオロエチレン(PCTFE)フィラーからなる群から選択される少なくとも1種である、上記[1]~[4]のいずれかに記載の樹脂組成物。
[6]前記(B)成分の平均粒子径が0.1~10μmである、上記[1]~[5]のいずれかに記載の樹脂組成物。
[7]前記(B)成分の含有量が、樹脂組成物の固形分に対して1質量%以上50質量%未満である、上記[1]~[6]のいずれかに記載の樹脂組成物。
[8]前記(B)成分の含有量が、樹脂組成物の固形分に対して1~40質量%である、上記[1]~[7]のいずれかに記載の樹脂組成物。
[9]さらに、エポキシ樹脂、シアネート樹脂及びマレイミド化合物からなる群から選択される1種以上の熱硬化性樹脂(C)を含有する、上記[1]~[8]のいずれかに記載の樹脂組成物。
[10]前記(C)成分として前記マレイミド化合物を含有し、且つ、該マレイミド化合物が、N-置換マレイミド基を少なくとも2個以上有するマレイミド化合物(c1)由来の構造単位と第1級アミノ基を有するアミン化合物(c2)由来の構造単位と、を有する変性マレイミド化合物である、上記[9]に記載の樹脂組成物。
[11]前記変性マレイミド化合物が、下記一般式(C-1)で表される化合物である、上記[10]に記載の樹脂組成物。
Figure JPOXMLDOC01-appb-C000002

(式中、Xc1及びXc2は、各々独立に、2価の有機基である。)
[12]前記(A)成分と前記(C)成分との含有割合[(A)/(C)]が、質量比で、5/95~80/20である、上記[9]~[11]のいずれかに記載の樹脂組成物。
[13]さらに、熱可塑性エラストマー(D)、硬化促進剤(E)及び無機充填材(F)からなる群から選択される1種以上を含有する、上記[1]~[12]のいずれかに記載の樹脂組成物。
[14]上記[1]~[13]のいずれかに記載の樹脂組成物の層を金属箔上に有する、樹脂付き金属箔。
[15]上記[1]~[13]のいずれかに記載の樹脂組成物とシート状繊維補強基材とを含有してなるプリプレグ。
[16](i)上記[14]に記載の樹脂付き金属箔又は(ii)上記[15]に記載のプリプレグ及び金属箔、を含有してなる積層板。
[17](i)上記[14]に記載の樹脂付き金属箔、(ii)上記[15]に記載のプリプレグ又は(iii)上記[16]に記載の積層板、を含有してなる多層プリント配線板。
[18]上記[17]に記載の多層プリント配線板と、半導体素子と、を含む半導体パッケージ。
 本開示により、10GHz帯以上の高周波数帯において優れた誘電特性を発現し、且つ、樹脂付き金属箔の切断時に端部の粉落ちが抑制される樹脂組成物、該樹脂組成物を用いた樹脂付き金属箔、プリプレグ、積層板、多層プリント配線板及び半導体パッケージを提供することができる。
実施例及び比較例における樹脂付き銅箔切断時の端部粉落ちの評価時に使用した切断機が有するスリット刃の写真である。 実施例及び比較例において、樹脂付き銅箔切断時の端部粉落ちの評価が「A」の場合のスリット刃の様子を示す模式図である。 実施例及び比較例において、樹脂付き銅箔切断時の端部粉落ちの評価が「C」の場合のスリット刃の様子を示す模式図である。
 本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。また、数値範囲の下限値及び上限値は、それぞれ他の数値範囲の下限値又は上限値と任意に組み合わせられる。数値範囲「AA~BB」という表記においては、両端の数値AA及びBBがそれぞれ下限値及び上限値として数値範囲に含まれる。
 また、本明細書に例示する各成分及び材料は、特に断らない限り、1種を単独で使用してもよいし、2種以上を併用してもよい。本明細書において、組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
 本明細書における記載事項を任意に組み合わせた態様も本開示及び本実施形態に含まれる。
 なお、本実施形態において、「樹脂成分」とは、樹脂組成物を構成する固形分のうち、後述する無機充填材等の無機化合物並びに難燃剤及び難燃助剤を除く、すべての成分と定義する。
 また、本実施形態における固形分とは、水分、後述する溶媒等の揮発する物質以外の樹脂組成物中の成分のことをいう。すなわち、固形分は、25℃付近の室温で液状、水飴状又はワックス状のものも含み、必ずしも固体であることを意味するものではない。
[樹脂組成物]
 本実施形態の樹脂組成物は、ポリフェニレンエーテル誘導体(A)[以下、「(A)成分」と略称することがある]と、フッ素樹脂フィラー(B)[以下、「(B)成分」と略称することがある]と、を含有する樹脂組成物である。本実施形態の樹脂組成物は、熱硬化性樹脂組成物であることが好ましい。
 本実施形態の樹脂組成物において、前記(A)成分及び前記(B)成分の合計含有量は、樹脂組成物の固形分に対して、好ましくは15質量%以上、より好ましくは20質量%以上、さらに好ましくは30質量%である。前記(A)成分及び前記(B)成分の合計含有量の上限に特に制限はなく、樹脂組成物の固形分に対して、100質量%であってもよいし、90質量%以下であってもよく、80質量%以下であってもよく、65質量%以下であってもよい。
 以下、本実施形態の樹脂組成物に含有される各成分について説明する。
<ポリフェニレンエーテル誘導体(A)>
 ポリフェニレンエーテル誘導体(A)としては、特に制限されず、公知のポリフェニレンエーテル誘導体、例えば後述する一般式(A-2)で表される構造単位を有するものを用いることができる。特に、高周波特性の観点並びに必要に応じて使用する熱硬化性樹脂(C)及び熱可塑性エラストマー(D)との相容性の観点から、ポリフェニレンエーテル誘導体(A)は、分子末端にエチレン性不飽和結合含有基を有するポリフェニレンエーテル誘導体であることが好ましく、分子の両末端にエチレン性不飽和結合含有基を有するポリフェニレンエーテル誘導体であることがより好ましい。
 なお、本明細書において、「エチレン性不飽和結合含有基」とは、付加反応が可能な炭素-炭素二重結合を含有する置換基を意味し、芳香環の二重結合は含まないものとする。
 ポリフェニレンエーテル誘導体(A)は、1種類を単独で用いてもよいし、2種類以上を併用してもよい。
 前記エチレン性不飽和結合含有基としては、例えば、ビニル基、アリル基、1-メチルアリル基、イソプロペニル基、2-ブテニル基、3-ブテニル基、スチリル基等の不飽和脂肪族炭化水素基;マレイミド基、下記一般式(A-1)で表される基等のヘテロ原子とエチレン性不飽和結合とを含む基などが挙げられる。これらの中でも、高周波特性及び導体との接着性の観点から、下記一般式(A-1)で表される基が好ましい。
Figure JPOXMLDOC01-appb-C000003

(式中、Ra1は、水素原子又は炭素数1~20のアルキル基を示す。*は結合位置を示す。)
 Ra1が示す炭素数1~20のアルキル基は、直鎖状アルキル基、分岐鎖状アルキル基又は環状アルキル基のいずれであってもよく、直鎖状アルキル基であることが好ましい。
 上記アルキル基の炭素数は、1~10が好ましく、1~5がより好ましく、1~3がさらに好ましく、1が特に好ましい。
 アルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基等が挙げられ、これらの中でも、メチル基が好ましい。
 上記一般式(A-1)で表される基は、高周波特性及び導体との接着性の観点から、(メタ)アクリル基[すなわち、上記一般式(A-1)におけるRa1が、水素原子又はメチル基である基]であることが好ましく、メタクリル基であることがより好ましい。なお、本実施形態において、「(メタ)アクリル基」とは、アクリル基又はメタクリル基を意味する。
 なお、本明細書において、マレイミド基、上記一般式(A-1)で表される基等のように、一部に不飽和脂肪族炭化水素基を有しているが、その基全体として見たときに不飽和脂肪族炭化水素基とは言えない基は、上記「不飽和脂肪族炭化水素基」に含まれないものとする。
 ポリフェニレンエーテル誘導体(A)が1分子中に有するエチレン性不飽和結合含有基の数は、特に限定されないが、2~5個が好ましく、2~3個がより好ましく、2個がさらに好ましい。エチレン性不飽和結合含有基の数が上記下限値以上であると、優れた高周波特性並びに後述する熱硬化性樹脂(C)及び熱可塑性エラストマー(D)との良好な相容性が得られる傾向にある。一方、エチレン性不飽和結合含有基の数が上記上限値以下であると、優れた流動性及び成形性が得られる傾向にある。
 ポリフェニレンエーテル誘導体(A)は、前述の通り、エチレン性不飽和結合含有基を分子末端に有していることが好ましく、さらに、分子末端以外にもエチレン性不飽和結合含有基を有していてもよいが、分子末端のみにエチレン性不飽和結合含有基を有することがより好ましい。ポリフェニレンエーテル誘導体(A)は、分子末端にメタクリル基を有するポリフェニレンエーテルであることが好ましく、分子の両末端にメタクリル基を有するポリフェニレンエーテルであることがより好ましい。前記メタクリル基は、酸素原子と結合していてもよく、つまり、メタクリロイルオキシ基であってもよい。
 ポリフェニレンエーテル誘導体(A)は、フェニレンエーテル結合を有するものであり、下記一般式(A-2)で表される構造単位を有することが好ましい。
Figure JPOXMLDOC01-appb-C000004

(式中、Ra2は、炭素数1~5の脂肪族炭化水素基又はハロゲン原子を示す。na1は、0~4の整数を示す。)
 上記一般式(A-2)中のRa2が示す炭素数1~5の脂肪族炭化水素基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基等が挙げられる。該脂肪族炭化水素基としては、炭素数1~3の脂肪族炭化水素基が好ましく、炭素数1~3のアルキル基がより好ましく、メチル基がさらに好ましい。
 na1は0~4の整数を示し、1又は2が好ましく、2であることがより好ましい。なお、na1が1又は2である場合、Ra2はベンゼン環上のオルト位(但し、酸素原子の置換位置を基準とする。)に置換していることが好ましい。また、na1が2以上の整数である場合、複数のRa2同士は同一であってもよいし、異なっていてもよい。
 上記一般式(A-2)で表される構造単位は、下記一般式(A-2’)で表される構造単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000005
 ポリフェニレンエーテル誘導体(A)は、高周波特性及び導体との接着性の観点から、下記一般式(A-3)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000006

(式中、Ra2及びna1は、上記一般式(A-2)における説明の通りである。Ra3及びRa4は、各々独立に、炭素数1~5の脂肪族炭化水素基又はハロゲン原子を示す。na2及びna3は、各々独立に、0~4の整数を示す。na4及びna5は、各々独立に、0~20の整数を示し、na4及びna5の合計は、1~30の整数である。Xa1は、炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基、エーテル基、スルフィド基、スルホニル基、カルボニルオキシ基、ケト基又は単結合を示す。Ya1及びYa2は、各々独立に、上記エチレン性不飽和結合含有基を示す。)
 上記一般式(A-3)中のRa3及びRa4が示す炭素数1~5の脂肪族炭化水素基についての説明は、上記一般式(A-2)中のRa2が示す炭素数1~5の脂肪族炭化水素基についての説明と同じである。
 na2及びna3は、0~4の整数を示し、0~3の整数が好ましく、2又は3が好ましい。na2が2以上の整数である場合、複数のRa3同士は、それぞれ同一であってもよいし、異なっていてもよい。na3が2以上の整数である場合、複数のRa4同士は、それぞれ同一であってもよいし、異なっていてもよい。
 na4及びna5は、0~20の整数を示し、1~20の整数が好ましく、2~15の整数がより好ましく、3~10の整数がさらに好ましい。na4又はna5が2以上の整数である場合、複数のna1同士は、同一であってもよいし、異なっていてもよい。
 na4及びna5の合計は、1~30の整数であり、2~25の整数が好ましく、5~20の整数がより好ましく、7~15の整数がさらに好ましい。
 上記一般式(A-3)中のXa1が示す炭素数1~5のアルキレン基としては、例えば、メチレン基、1,2-ジメチレン基、1,3-トリメチレン基、1,4-テトラメチレン基、1,5-ペンタメチレン基等が挙げられる。
 Xa1が示す炭素数2~5のアルキリデン基としては、例えば、エチリデン基、プロピリデン基、イソプロピリデン基、ブチリデン基、イソブチリデン基、ペンチリデン基、イソペンチリデン基等が挙げられる。
 Xa1が示す基の中でも、高周波特性及び導体との接着性の観点から、イソプロピリデン基が好ましい。
 Ya1及びYa2が示すエチレン性不飽和結合含有基の好ましい態様については上記した通りである。
 上記一般式(A-3)で表される化合物は、高周波特性及び導体との接着性の観点から、下記一般式(A-4)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000007

(式中、na4及びna5は、上記一般式(A-3)における説明の通りである。Ra5及びRa6は、各々独立に、水素原子又はメチル基を示す。Xa2は、メチレン基又はイソプロピリデン基を示す。)
〔ポリフェニレンエーテル誘導体(A)の重量平均分子量(Mw)〕
 ポリフェニレンエーテル誘導体(A)の重量平均分子量(Mw)は、特に限定されないが、500~7,000が好ましく、800~5,000がより好ましく、1,000~3,000がさらに好ましく、1,200~2,500が特に好ましい。(A)成分の重量平均分子量(Mw)が上記下限値以上であると、ポリフェニレンエーテルの優れた誘電特性を有し、且つ耐熱性に優れる硬化物が得られる傾向にある。(A)成分の重量平均分子量(Mw)が上記上限値以下であると、優れた成形性が得られる傾向にある。
 なお、本明細書において、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により、標準ポリスチレンを用いた検量線から換算した値であり、より詳細には実施例に記載の測定方法により求めた値である。
 ポリフェニレンエーテル誘導体(A)の合成方法は、公知のポリフェニレンエーテルの合成方法及び変性方法を適用することができ、特に限定されるものではない。
((A)成分の含有量)
 本実施形態の樹脂組成物中におけるポリフェニレンエーテル誘導体(A)の含有量は、特に限定されないが、樹脂成分の総和100質量部に対して、1~80質量部が好ましく、1~45質量部がより好ましく、1~20質量部がさらに好ましく、2~10質量部が特に好ましい。(A)成分の含有量が上記下限値以上であると、より優れた高周波特性及び低吸湿性が得られる傾向にある。(A)成分の含有量が上記上限値以下であると、より優れた耐熱性、成形性及び加工性が得られる傾向にある。
<フッ素樹脂フィラー(B)>
 本実施形態の樹脂組成物は、フッ素樹脂フィラー(B)を含有することにより、優れた高周波特性が得られると共に、樹脂付き金属箔の切断時に端部の粉落ちが効果的に抑制される。当該効果は、前記(A)成分と(B)成分とを組み合わせることで顕著に発現する。樹脂組成物へフッ素樹脂そのものを含有させる場合よりも、フッ素樹脂フィラー(B)を含有させることで高周波特性の改善効果及び樹脂付き金属箔の切断時に端部の粉落ち抑制効果が大きくなる。
 フッ素樹脂フィラー(B)の形状としては、例えば、粒子状、粉末状、針状、柱状、板状、燐片状等が挙げられる。これらの中でも、粒子状が好ましい。
 フッ素樹脂フィラー(B)は、有機溶剤と混合されたスラリーを用いてもよい。前記有機溶剤としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン(MIBK)、シクロヘキサノン等のケトン化合物などが挙げられる。
 フッ素樹脂フィラー(B)は、1種類を単独で用いてもよいし、2種類以上を併用してもよい。
 フッ素樹脂フィラー(B)としては、例えば、ポリテトラフルオロエチレン(PTFE)フィラー、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)フィラー、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)フィラー、テトラフルオロエチレン-エチレン共重合体(ETFE)フィラー、ポリクロロトリフルオロエチレン(PCTFE)フィラー等が挙げられる。これらの中でも、高周波特性及び樹脂付き金属箔の切断時に端部の粉落ち抑制の観点から、フッ素樹脂フィラー(B)としては、PTFEフィラーが好ましい。また、フッ素樹脂フィラー(B)の表面は、無機充填剤で被覆されていてもよい。
 フッ素樹脂フィラー(B)の平均粒子径は、好ましくは0.1~10μm、より好ましくは0.2~5μm、さらに好ましくは0.5~4.0μm、特に好ましくは1.5~4.0μmである。ここで、平均粒子径は、例えば、レーザー回折粒度分布測定より算出することができ、以下同様である。
((B)成分の含有量)
 フッ素樹脂フィラー(B)の含有量は、樹脂組成物の固形分に対して、好ましくは1質量%以上50質量%未満、より好ましくは1~45質量%、さらに好ましくは1~40質量%、特に好ましくは5~40質量%であり、15~40質量%であってもよいし、25~40質量%であってもよい。フッ素樹脂フィラー(B)の含有量が樹脂組成物の固形分に対して1質量%以上であれば、充分な高周波特性が得られる傾向にある。一方、フッ素樹脂フィラー(B)の含有量が樹脂組成物の固形分に対して50質量%未満であれば、金属箔及び樹脂組成物中の有機成分との密着性の低下を抑制でき、耐熱性及び銅箔引きはがし強さが低下するのを避けられる傾向にある。
 フッ素樹脂フィラー(B)を用いる場合、フッ素樹脂フィラー(B)の分散性及びフッ素樹脂フィラー(B)と樹脂組成物中の有機成分との密着性を向上させる観点から、必要に応じて、カップリング剤を併用してもよい。カップリング剤としては、例えば、シランカップリング剤、チタネートカップリング剤等が挙げられる。カップリング剤は1種類を単独で用いてもよく、2種類以上を併用してもよい。
 カップリング剤を用いる場合、その処理方式は、樹脂組成物中にフッ素樹脂フィラー(B)を配合した後、カップリング剤を添加する、いわゆるインテグラルブレンド処理方式であってもよいが、予め乾式又は湿式でカップリング剤によって表面処理した無機充填材を使用する方式が好ましい。後者の方式を採用することで、より効果的にフッ素樹脂フィラー(B)の特長を発現させることができる。
 また、フッ素樹脂フィラー(B)は、必要に応じて、予め有機溶媒中に分散させたスラリーとして用いてもよい。
<熱硬化性樹脂(C)>
 本実施形態の樹脂組成物は、さらに、エポキシ樹脂、シアネート樹脂及びマレイミド化合物からなる群から選択される1種以上の熱硬化性樹脂(C)を含有することが好ましい。これらの中でも、高周波特性、絶縁信頼性、導体との接着性及び難燃性の観点から、熱硬化性樹脂(C)は、マレイミド化合物を含有することが好ましい。
 熱硬化性樹脂(C)は、1種類を単独で用いてもよいし、2種類以上を併用してもよい。
(エポキシ樹脂)
 エポキシ樹脂としては、1分子中に2個以上のエポキシ基を有するエポキシ樹脂であることが好ましい。ここで、エポキシ樹脂は、グリシジルエーテルタイプのエポキシ樹脂、グリシジルアミンタイプのエポキシ樹脂、グリシジルエステルタイプのエポキシ樹脂等に分類される。これらの中でも、グリシジルエーテルタイプのエポキシ樹脂が好ましい。
 エポキシ樹脂は、主骨格の違いによっても種々のエポキシ樹脂に分類され、上記それぞれのタイプのエポキシ樹脂において、さらに、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂等のビスフェノール型エポキシ樹脂;ジシクロペンタジエン型エポキシ樹脂等の脂環式エポキシ樹脂;脂肪族鎖状エポキシ樹脂;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂、フェノールアラルキルノボラック型エポキシ樹脂、ビフェニルアラルキルノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;スチルベン型エポキシ樹脂;ナフトールノボラック型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂等のナフタレン骨格含有型エポキシ樹脂;ビフェニル型エポキシ樹脂;キシリレン型エポキシ樹脂;ジヒドロアントラセン型エポキシ樹脂などに分類される。
 エポキシ樹脂を用いる場合、必要に応じて、エポキシ樹脂の硬化剤、硬化助剤等を併用してもよい。
(シアネート樹脂)
 シアネート樹脂としては、例えば、2,2-ビス(4-シアナトフェニル)プロパン、ビス(4-シアナトフェニル)エタン、ビス(3,5-ジメチル-4-シアナトフェニル)メタン、2,2-ビス(4-シアナトフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、α,α’-ビス(4-シアナトフェニル)-m-ジイソプロピルベンゼン、フェノール付加ジシクロペンタジエン重合体のシアネートエステル化合物、フェノールノボラック型シアネートエステル化合物、クレゾールノボラック型シアネートエステル化合物等が挙げられる。
 シアネート樹脂を用いる場合、必要に応じて、シアネート樹脂の硬化剤、硬化助剤等を併用してもよい。
(マレイミド化合物)
 マレイミド化合物としては、N-置換マレイミド基を2個以上有するマレイミド化合物(c1)[以下、単に「マレイミド化合物(c1)」又は「(c1)成分」と略称することがある。]及びその誘導体からなる群から選択される1種以上であることが好ましい。
 なお、上記「その誘導体」としては、N-置換マレイミド基を2個以上有するマレイミド化合物と、後述するジアミン化合物等のアミン化合物との付加反応物などが挙げられる。
 マレイミド化合物(c1)としては、N-置換マレイミド基を2個以上有するマレイミド化合物であれば特に限定されない。マレイミド化合物(c1)の具体例としては、例えば、ビス(4-マレイミドフェニル)メタン、ポリフェニルメタンマレイミド、ビス(4-マレイミドフェニル)エーテル、ビス(4-マレイミドフェニル)スルホン、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド、4-メチル-1,3-フェニレンビスマレイミド、m-フェニレンビスマレイミド、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパン等の芳香族マレイミド化合物;1,6-ビスマレイミド-(2,2,4-トリメチル)ヘキサン、ピロリロン酸バインダ型長鎖アルキルビスマレイミド等の脂肪族マレイミド化合物などが挙げられる。これらの中でも、導体との接着性及び機械特性の観点から、マレイミド化合物(c1)としては、芳香族マレイミド化合物が好ましく、芳香族ビスマレイミド化合物がより好ましく、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパン、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミドがさらに好ましい。
 マレイミド化合物(c1)としては、下記一般式(C1-1)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000008

(式中、Xc1は2価の有機基を示す。)
 上記一般式(C1-1)中のXc1が示す2価の有機基としては、下記一般式(C1-2)、(C1-3)、(C1-4)又は(C1-5)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000009

(式中、Rc1は、炭素数1~5の脂肪族炭化水素基又はハロゲン原子を示す。nc1は、0~4の整数を示す。*は結合位置を示す。)
 Rc1が示す炭素数1~5の脂肪族炭化水素基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基等が挙げられる。該脂肪族炭化水素基としては、炭素数1~3の脂肪族炭化水素基が好ましく、メチル基がより好ましい。
 nc1は0~4の整数を示し、入手容易性の観点から、0~2の整数が好ましく、0であることがより好ましい。nc1が2以上の整数である場合、複数のRc1同士は同一であってもよいし、異なっていてもよい。
Figure JPOXMLDOC01-appb-C000010

(式中、Rc2及びRc3は、各々独立に、炭素数1~5の脂肪族炭化水素基又はハロゲン原子を示す。Xc2は炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基、エーテル基、スルフィド基、スルホニル基、カルボニルオキシ基、ケト基、単結合、又は下記一般式(C1-3-1)で表される2価の基を示す。nc2及びnc3は、各々独立に、0~4の整数を示す。*は結合位置を示す。)
 Rc2及びRc3が示す炭素数1~5の脂肪族炭化水素基についての説明は、上記一般式(C1-2)中のRc1が示す炭素数1~5の脂肪族炭化水素基についての説明と同じである。
 Xc2が示す炭素数1~5のアルキレン基としては、例えば、メチレン基、1,2-ジメチレン基、1,3-トリメチレン基、1,4-テトラメチレン基、1,5-ペンタメチレン基等が挙げられる。該アルキレン基としては、炭素数1~3のアルキレン基が好ましく、メチレン基がより好ましい。
 Xc2が示す炭素数2~5のアルキリデン基としては、例えば、エチリデン基、プロピリデン基、イソプロピリデン基、ブチリデン基、イソブチリデン基、ペンチリデン基、イソペンチリデン基等が挙げられる。該アルキリデン基としては、イソプロピリデン基が好ましい。
 nc2及びnc3は、0~4の整数を示し、入手容易性の観点から、0~2の整数が好ましく、0又は2がより好ましい。nc2が2以上の整数である場合、複数のRc2同士は、それぞれ同一であってもよいし、異なっていてもよい。nc3が2以上の整数である場合、複数のRc3同士は、それぞれ同一であってもよいし、異なっていてもよい。
 Xc2が示す一般式(C1-3-1)で表される2価の基は以下の通りである。
Figure JPOXMLDOC01-appb-C000011

(式中、Rc4及びRc5は、各々独立に、炭素数1~5の脂肪族炭化水素基又はハロゲン原子を示す。Xc3は、炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基、エーテル基、スルフィド基、スルホニル基、カルボニルオキシ基、ケト基又は単結合を示す。nc4及びnc5は、各々独立に、0~4の整数を示す。*は結合位置を示す。)
 Rc4及びRc5が示す炭素数1~5の脂肪族炭化水素基についての説明は、上記一般式(C1-2)中のRc1が示す炭素数1~5の脂肪族炭化水素基についての説明と同じである。
 Xc3が示す炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基としては、上記一般式(C1-3)中のXc2が示す炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基と同じものが挙げられる。これらの中でも、高周波特性、導体との接着性、耐熱性、ガラス転移温度及び熱膨張係数の観点から、イソプロピリデン基が好ましい。
 Xc3が示す基の中でも、炭素数2~5のアルキリデン基が好ましく、イソプロピリデン基がより好ましい。
 nc4及びnc5は0~4の整数を示し、入手容易性の観点から、0~2の整数が好ましく、0であることがより好ましい。nc4が2以上の整数である場合、複数のRc4同士は、それぞれ同一であってもよいし、異なっていてもよい。nc5が2以上の整数である場合、複数のRc5同士は、それぞれ同一であってもよいし、異なっていてもよい。
Figure JPOXMLDOC01-appb-C000012

(式中、nc6は、1~10の整数を示す。*は結合位置を示す。)
 nc6は、入手容易性の観点から、1~5の整数が好ましく、1~3の整数がより好ましい。
Figure JPOXMLDOC01-appb-C000013

(式中、Rc6及びRc7は、各々独立に、水素原子又は炭素数1~5の脂肪族炭化水素基を示す。nc7は、1~8の整数を示す。*は結合位置を示す。)
 Rc6及びRc7が示す炭素数1~5の脂肪族炭化水素基についての説明は、上記一般式(C1-2)中のRc1が示す炭素数1~5の脂肪族炭化水素基についての説明と同じである。
 nc7は1~8の整数を示し、1~3の整数が好ましく、1であることがより好ましい。
 nc7が2以上の整数である場合、複数のRc6同士、それぞれ同一であってもよいし、異なっていてもよく、複数のRc7同士は、それぞれ同一であってもよいし、異なっていてもよい。
 上記一般式(C1-1)中のXc1としては、高周波特性の観点から、下記式(Xc1-1)~(Xc1-3)のいずれかで表される2価の基であることが好ましく、下記式(Xc1-3)で表される2価の基であることがより好ましい。
Figure JPOXMLDOC01-appb-C000014

(式中、*は、マレイミド基中の窒素原子との結合位置を示す。)
 マレイミド化合物としては、有機溶媒への溶解性、相容性、導体との接着性及び高周波特性の観点から、マレイミド化合物(c1)の誘導体が好ましい。
 マレイミド化合物(c1)の誘導体としては、マレイミド化合物(c1)由来の構造単位と、第1級アミノ基を有するアミン化合物(c2)[以下、「アミン化合物(c2)」又は「(c2)成分」と略称することがある。]由来の構造単位と、を有する変性マレイミド化合物(X)[以下、「変性マレイミド化合物(X)」又は「(X)成分」と略称することがある。]であることが好ましい。
 つまり、本実施形態の樹脂組成物は、(C)成分として前記マレイミド化合物を含有し、且つ、該マレイミド化合物が、N-置換マレイミド基を少なくとも2個以上有するマレイミド化合物(c1)由来の構造単位と第1級アミノ基を有するアミン化合物(c2)由来の構造単位と、を有する変性マレイミド化合物である態様が好ましい。
 なお、変性マレイミド化合物(X)に含まれる(c1)成分由来の構造単位及び(c2)成分由来の構造単位は、各々について、1種類であってもよく、2種類以上の組み合わせであってもよい。
 変性マレイミド化合物(X)は、(c1)成分が有するマレイミド基と(c2)成分が有する第1級アミノ基とが付加反応してなる、下記式(C-1)で表される構造を含む化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000015

(*は他の構造への結合位置を示す。)
 (c1)成分由来の構造単位としては、例えば、下記一般式(C1-6)で表される基及び下記一般式(C1-7)で表される基からなる群から選択される1種以上が挙げられる。
Figure JPOXMLDOC01-appb-C000016

(式中、Xc1は上記一般式(C1-1)中のXc1と同じであり、*は他の構造への結合位置を示す。)
 変性マレイミド化合物(X)中における(c1)成分由来の構造単位の含有量は、特に限定されないが、50~95質量%が好ましく、70~92質量%がより好ましく、85~90質量%がさらに好ましい。(c1)成分由来の構造単位の含有量が上記範囲内であると、高周波特性がより良好となり、且つ、良好なフィルムハンドリング性が得られる傾向にある。
 アミン化合物(c2)は、アミノ基を2個以上有する化合物が好ましく、アミノ基を2個有するジアミン化合物がより好ましい。
 アミン化合物(c2)としては、例えば、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノ-3,3’-ジメチルジフェニルメタン、3,3’-ジエチル-4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルケトン、4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジヒドロキシベンジジン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジアミノジフェニルメタン、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、1,3-ビス〔1-[4-(4-アミノフェノキシ)フェニル]-1-メチルエチル〕ベンゼン、1,4-ビス〔1-[4-(4-アミノフェノキシ)フェニル]-1-メチルエチル〕ベンゼン、4,4’-[1,3-フェニレンビス(1-メチルエチリデン)]ビスアニリン、4,4’-[1,4-フェニレンビス(1-メチルエチリデン)]ビスアニリン、3,3’-[1,3-フェニレンビス(1-メチルエチリデン)]ビスアニリン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、9,9-ビス(4-アミノフェニル)フルオレン等の芳香族ジアミン化合物;第1級アミノ基を有するアミン変性シロキサン化合物などが挙げられる。
 これらの中でも、(c2)成分としては、有機溶媒への溶解性、(c1)成分との反応性、及び耐熱性に優れるという観点から、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノ-3,3’-ジメチルジフェニルメタン、3,3’-ジエチル-4,4’-ジアミノジフェニルメタン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、4,4’-[1,3-フェニレンビス(1-メチルエチリデン)]ビスアニリン、及び4,4’-[1,4-フェニレンビス(1-メチルエチリデン)]ビスアニリンが好ましい。また、高周波特性及び低吸水性に優れるという観点からは、(c2)成分としては、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジアミノジフェニルメタンが好ましい。また、導体との接着性、伸び、破断強度等の機械特性に優れるという観点からは、(c2)成分としては、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパンが好ましい。さらに、有機溶媒への溶解性、合成時の反応性、耐熱性、導体との接着性に優れることに加えて、高周波特性及び低吸湿性に優れるという観点からは、(c2)成分としては、4,4’-[1,3-フェニレンビス(1-メチルエチリデン)]ビスアニリン、4,4’-[1,4-フェニレンビス(1-メチルエチリデン)]ビスアニリンが好ましい。
 アミン化合物(c2)としては、下記一般式(C2-1)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000017

(式中、Xc4は2価の有機基を示す。)
 (c2)成分は、上記一般式(C2-1)中のXc4が、下記一般式(C2-2)で表される2価の基である芳香族ジアミン化合物[以下、「芳香族ジアミン化合物(C2-2)」と略称することがある。]を含有することが好ましい。
Figure JPOXMLDOC01-appb-C000018

(式中、Rc11及びRc12は、各々独立に、炭素数1~5の脂肪族炭化水素基、炭素数1~5のアルコキシ基、水酸基又はハロゲン原子を示す。Xc5は、炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基、エーテル基、スルフィド基、スルホニル基、カルボニルオキシ基、ケト基、フルオレニレン基、単結合、又は下記一般式(C2-2-1)若しくは(C2-2-2)で表される2価の基を示す。nc8及びnc9は、各々独立に、0~4の整数を示す。*は結合位置を示す。)
 上記一般式(C2-2)中のRc11及びRc12が示す炭素数1~5の脂肪族炭化水素基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基等が挙げられる。
 Xc5が示す炭素数1~5のアルキレン基としては、例えば、メチレン基、1,2-ジメチレン基、1,3-トリメチレン基、1,4-テトラメチレン基、1,5-ペンタメチレン基等が挙げられる。
 Xc5が示す炭素数2~5のアルキリデン基としては、例えば、エチリデン基、プロピリデン基、イソプロピリデン基、ブチリデン基、イソブチリデン基、ペンチリデン基、イソペンチリデン基等が挙げられる。
 nc8及びnc9は、0~4の整数を示し、入手容易性の観点から、0又は1が好ましい。nc8又はnc9が2以上の整数である場合、複数のRc11同士又は複数のRc12同士は、それぞれ同一であってもよいし、異なっていてもよい。
 上記一般式(C2-2)中のXc5が示す一般式(C2-2-1)で表される2価の基は以下の通りである。
Figure JPOXMLDOC01-appb-C000019

(式中、Rc13及びRc14は、各々独立に、炭素数1~5の脂肪族炭化水素基又はハロゲン原子を示す。Xc6は炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基、m-フェニレンジイソプロピリデン基、p-フェニレンジイソプロピリデン基、エーテル基、スルフィド基、スルホニル基、カルボニルオキシ基、ケト基又は単結合を示す。nc10及びnc11は、各々独立に、0~4の整数を示す。*は結合位置を示す。)
 上記一般式(C2-2-1)中のRc13及びRc14が示す炭素数1~5の脂肪族炭化水素基についての説明は、上記一般式(C2-2)中のRc11及びRc12が示す炭素数1~5の脂肪族炭化水素基についての説明と同じである。
 Xc6が示す炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基についての説明は、上記一般式(C2-2)中のXc5が示す炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基についての説明と同じである。
 nc10及びnc11は0~4の整数を示し、入手容易性の観点から、0~2の整数が好ましく、0であることがより好ましい。nc10が2以上の整数である場合、複数のRc13同士は、それぞれ同一であってもよいし、異なっていてもよい。nc11が2以上の整数である場合、複数のRc14同士は、それぞれ同一であってもよいし、異なっていてもよい。
 上記一般式(C2-2)中のXc5が示す一般式(C2-2-2)で表される2価の基は以下の通りである。
Figure JPOXMLDOC01-appb-C000020

(式中、Rc15は、炭素数1~5の脂肪族炭化水素基又はハロゲン原子を示す。Xc7及びXc8は、各々独立に、炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基、エーテル基、スルフィド基、スルホニル基、カルボニルオキシ基、ケト基又は単結合を示す。nc12は、0~4の整数を示す。*は結合位置を示す。)
 上記一般式(C2-2-2)中のRc15が示す炭素数1~5の脂肪族炭化水素基についての説明は、上記一般式(C2-2)中のRc11及びRc12が示す炭素数1~5の脂肪族炭化水素基についての説明と同じである。
 Xc7及びXc8が示す炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基としては、上記一般式(C2-2)中のXc5が示す炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基と同じものが例示される。これらの中でも、Xc7及びXc8としては、炭素数2~5のアルキリデン基であることが好ましく、イロプロピリデン基であることがより好ましい。
 nc12は0~4の整数を示し、入手容易性の観点から、0~2の整数が好ましく、0であることがより好ましい。nc12が2以上の整数である場合、複数のRc15同士は同一であってもよいし、異なっていてもよい。
 また、(c2)成分は、上記一般式(C2-1)中のXc4が、下記一般式(C2-3)で表される構造単位を含有する2価の基であるアミン変性シロキサン化合物を含有してもよく、上記一般式(C2-1)中のXc4が、下記一般式(C2-4)で表される2価の基である末端アミン変性シロキサン化合物[以下、「末端アミン変性シロキサン化合物(C2-4)」と略称することがある。]を含有してもよい。
Figure JPOXMLDOC01-appb-C000021

(式中、Rc16及びRc17は、各々独立に、炭素数1~5のアルキル基、フェニル基又は置換フェニル基を表す。*は結合位置を示す。)
Figure JPOXMLDOC01-appb-C000022

(式中、Rc16及びRc17は、上記一般式(C2-3)中のものと同じであり、Rc18及びRc19は、各々独立に、炭素数1~5のアルキル基、フェニル基又は置換フェニル基を示す。Xc9及びXc10は、各々独立に、2価の有機基を示し、nc13は、2~100の整数を示す。*は結合位置を示す。)
 上記一般式(C2-3)及び(C2-4)中のRc16~Rc19が示す炭素数1~5のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基等が挙げられる。該アルキル基としては、炭素数1~3のアルキル基が好ましく、メチル基がより好ましい。
 Rc16~Rc19が示す置換フェニル基におけるフェニル基が有する置換基としては、例えば、炭素数1~5のアルキル基、炭素数2~5のアルケニル基、炭素数2~5のアルキニル基等が挙げられる。該炭素数1~5のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基等が挙げられる。該炭素数2~5のアルケニル基としては、例えば、ビニル基、アリル基等が挙げられる。該炭素数2~5のアルキニル基としては、例えば、エチニル基、プロパルギル基等が挙げられる。
 Xc9及びXc10が示す2価の有機基としては、例えば、アルキレン基、アルケニレン基、アルキニレン基、アリーレン基、-O-又はこれらが組み合わされた2価の連結基等が挙げられる。該アルキレン基としては、例えば、メチレン基、エチレン基、プロピレン基等の炭素数1~10のアルキレン基が挙げられる。該アルケニレン基としては、炭素数2~10のアルケニレン基が挙げられる。該アルキニレン基としては、炭素数2~10のアルキニレン基が挙げられる。該アリーレン基としては、例えば、フェニレン基、ナフチレン基等の炭素数6~20のアリーレン基が挙げられる。
 これらの中でも、Xc9及びXc10としては、アルキレン基、アリーレン基が好ましく、アルキレン基がより好ましい。
 nc13は、2~100の整数を示し、2~50の整数が好ましく、3~40の整数がより好ましく、5~30の整数がさらに好ましい。nc13が2以上の整数である場合、複数のRc16同士又は複数のRc17同士は、それぞれ同一であってもよいし、異なっていてもよい。
 (c2)成分由来の構造単位としては、例えば、下記一般式(C2-5)で表される基及び下記一般式(C2-6)で表される基からなる群から選択される1種以上が挙げられる。
Figure JPOXMLDOC01-appb-C000023

(式中、Xc4は上記一般式(C2-1)中のXc4と同じであり、*は他の構造への結合位置を示す。)
 変性マレイミド化合物(X)中における(c2)成分由来の構造単位の含有量は、特に限定されないが、5~50質量%が好ましく、8~30質量%がより好ましく、10~15質量%がさらに好ましい。(c2)成分由来の構造単位の含有量が上記範囲内であると、高周波特性に優れ、且つより良好な耐熱性、難燃性及びガラス転移温度が得られる傾向にある。
 変性マレイミド化合物(X)中における(c1)成分由来の構造単位と、(c2)成分由来の構造単位の合計含有量は、特に限定されないが、80質量%以上が好ましく、90質量%以上がより好ましく、95質量%以上がさらに好ましく、100質量%(すなわち、(c1)成分由来の構造単位及び(c2)成分由来の構造単位のみからなるもの)であることが特に好ましい。
 変性マレイミド化合物(X)中における(c1)成分由来の構造単位と、(c2)成分由来の構造単位との含有比率は、特に限定されないが、(c2)成分の-NH基由来の基(-NHも含む)の合計当量(Ta2)に対する、(c1)成分に由来するマレイミド基由来の基(マレイミド基も含む)の合計当量(Ta1)の当量比(Ta1/Ta2)が、好ましくは0.05~10、より好ましくは1~5となる含有比率である。当量比(Ta1/Ta2)が上記範囲内であると、高周波特性に優れ、且つより良好な耐熱性、難燃性及びガラス転移温度が得られる傾向にある。
 マレイミド化合物は、高周波特性、絶縁信頼性、有機溶媒への溶解性、導体との接着性、成形性等の観点から、下記一般式(C-2)で表される化合物を含有することが好ましい。
Figure JPOXMLDOC01-appb-C000024

(式中、Xc1及びXc4は、上記一般式(c1-1)及び(c2-1)における説明の通りである。)
(変性マレイミド化合物(X)の製造方法)
 (X)成分は、例えば、(c1)成分と(c2)成分とを有機溶媒中で反応させることで製造することができる。
 具体的には、(c1)成分、(c2)成分、必要によりその他の成分を反応器に所定量仕込み、(c1)成分と(c2)成分とをマイケル付加反応[以下、「プレ反応」と称することがある。]を行うことにより、変性マレイミド化合物(X)が得られる。
 反応条件は特に限定されないが、ゲル化を抑制しつつ、良好な反応性及び作業性が得られるという観点からは、反応温度は50~160℃、反応時間は1~10時間が好ましい。
 プレ反応では、必要に応じて反応触媒を使用してもよい。反応触媒としては、例えば、p-トルエンスルホン酸等の酸性触媒;トリエチルアミン、ピリジン、トリブチルアミン等のアミン類;メチルイミダゾール、フェニルイミダゾール等のイミダゾール類;トリフェニルホスフィン等のリン系触媒などが挙げられる。これらは1種類を単独で用いてもよいし、2種類以上を併用してもよい。また、反応触媒の配合量に特に制限はないが、(c1)成分及び(c2)成分の合計量100質量部に対して、例えば、0.01~5質量部である。
 また、プレ反応では、必要に応じて有機溶媒を追加又は濃縮して反応原料の固形分濃度及び反応液粘度を調整してもよい。反応原料の固形分濃度は、特に限定されないが、10~90質量%が好ましく、20~80質量%がより好ましい。反応原料の固形分濃度が上記下限値以上であると、十分な反応速度が得られ、製造コストの面で有利となる傾向にあり、上記上限値以下であると、より良好な溶解性が得られ、撹拌効率が良くなり、ゲル化し難くなる傾向にある。
 変性マレイミド化合物(X)の重量平均分子量(Mw)は、特に限定されないが、400~10,000が好ましく、1,000~5,000がより好ましく、1,500~4,000がさらに好ましく、2,000~3,000が特に好ましい。
((C)成分の含有量)
 本実施形態の樹脂組成物が熱硬化性樹脂(C)を含有する場合、その含有量は、特に限定されないが、高周波特性、耐熱性及び成形性の観点から、樹脂成分の総和100質量部に対して、5~80質量部が好ましく、5~60質量部がより好ましく、10~50質量部がさらに好ましく、15~40質量部が特に好ましい。
 本実施形態の樹脂組成物が熱硬化性樹脂(C)を含有する場合、ポリフェニレンエーテル誘導体(A)と熱硬化性樹脂(C)との含有割合[(A)/(C)]は、特に限定されないが、質量比で、5/95~80/20が好ましく、6/94~60/40がより好ましく、8/92~40/60がさらに好ましく、10/90~20/80が特に好ましい。上記含有割合[(A)/(C)]が5/95以上であると、より優れた高周波特性及び低吸湿性が得られる傾向にある。上記含有割合[(A)/(C)]が80/20以下であると、より優れた耐熱性、成形性及び加工性が得られる傾向にある。
 本実施形態の樹脂組成物は、さらに、熱可塑性エラストマー(D)、硬化促進剤(E)及び無機充填材(F)からなる群から選択される1種以上を含有することが好ましい。次にこれらの各成分について説明する。
<熱可塑性エラストマー(D)>
 本実施形態の樹脂組成物は、熱可塑性エラストマー(D)を含有することにより、高周波特性、成形性、導体との接着性、はんだ耐熱性、ガラス転移温度及び熱膨張係数のバランスが良くなる傾向にある。
 熱可塑性エラストマー(D)は、1種類を単独で用いてもよいし、2種類以上を併用してもよい。
 熱可塑性エラストマー(D)としては、下記一般式(D-1)で表される構造単位を有する熱可塑性エラストマーが挙げられ、スチレン由来の構造単位(すなわち、下記一般式(D-1)においてRd1が水素原子であり、nd1が0である構造単位)を有する熱可塑性エラストマー(以下、スチレン系熱可塑性エラストマーと称することがある)であることが好ましい。
Figure JPOXMLDOC01-appb-C000025

(式中、Rd1は、水素原子又は炭素数1~5のアルキル基を示し、Rd2は、炭素数1~5のアルキル基を示す。nd1は、0~5の整数を示す。)
 Rd1が示す炭素数1~5のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基等が挙げられる。
 Rd1が示す基の中でも、水素原子が好ましい。
 Rd2が示す炭素数1~5のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基等が挙げられる。該アルキル基は、炭素数1~3のアルキル基が好ましく、メチル基がより好ましい。
 nd1は、0~5の整数を示し、0~2の整数が好ましく、0であることがより好ましい。
 nd1が2以上の整数である場合、複数のRd1同士は同一であってもよいし、異なっていてもよい。
 熱可塑性エラストマー(D)が有する化合物由来の構造単位以外の構造単位としては、ブタジエン由来の構造単位、イソプレン由来の構造単位、マレイン酸由来の構造単位、無水マレイン酸由来の構造単位等が挙げられる。
 上記ブタジエン由来の構造単位及び上記イソプレン由来の構造単位は、水素添加されていることが好ましい。水素添加されている場合、ブタジエン由来の構造単位はエチレン単位とブチレン単位とが混合した構造単位となり、イソプレン由来の構造単位はエチレン単位とプロピレン単位とが混合した構造単位となる。
 熱可塑性エラストマー(D)としては、例えば、スチレン-ブタジエン-スチレンブロック共重合体(SBS)の水素添加物、スチレン-イソプレン-スチレンブロック共重合体(SIS)の水素添加物等の水添スチレン系熱可塑性エラストマーなどが挙げられる。これらの中でも、高周波特性、導体との接着性、耐熱性、ガラス転移温度及び熱膨張係数の観点から、スチレン-ブタジエン-スチレンブロック共重合体(SBS)の水素添加物が好ましい。
 スチレン-ブタジエン-スチレンブロック共重合体(SBS)の水素添加物としては、例えば、ブタジエンブロック中の炭素-炭素二重結合を完全水添してなるスチレン-エチレン-ブチレン-スチレン共重合体(SEBS)と、ブタジエンブロック中の1,2-結合部位の炭素-炭素二重結合を部分水添してなるスチレン-ブタジエン-ブチレン-スチレン(SBBS)が挙げられる。なお、SEBSにおける完全水添とは、通常、全体の炭素-炭素二重結合に対して90%以上であり、95%以上であってもよく、99%以上であってもよく、実質的に100%であってもよい。また、SBBSにおける部分水添率は、例えば、全体の炭素-炭素二重結合に対して60~85%である。
 SEBSにおいて、スチレン由来の構造単位の含有率[以下、「スチレン含有率」と略称することがある。]は、特に限定されないが、高周波特性、導体との接着性、耐熱性、ガラス転移温度及び熱膨張係数の観点から、5~80質量%が好ましく、10~70質量%がより好ましく、15~60質量%がさらに好ましく、20~50質量%が特に好ましい。
 SEBSのメルトフローレート(MFR)は、特に限定されないが、230℃、荷重2.16kgf(21.2N)の測定条件において、0.1~20g/10minが好ましく、1~15g/10minがより好ましく、2~10g/10minがさらに好ましく、3~7g/10minが特に好ましい。
 SBBSにおいて、スチレン含有率は、特に限定されないが、高周波特性、導体との接着性、耐熱性、ガラス転移温度及び熱膨張係数の観点から、40~80質量%が好ましく、50~75質量%がより好ましく、55~75質量%がさらに好ましい。
 SBBSのMFRは、特に限定されないが、190℃、荷重2.16kgf(21.2N)の測定条件において、0.1~10g/10minが好ましく、0.5~8g/10minがより好ましく、1~6g/10minがさらに好ましい。
 熱可塑性エラストマー(D)は、無水マレイン酸等によって酸変性されたものであってもよい。酸変性された熱可塑性エラストマー(D)の酸価は、特に限定されないが、2~20mgCHONa/gが好ましく、5~15mgCHONa/gがより好ましく、7~13mgCHONa/gがさらに好ましい。
((D)成分の含有量)
 本実施形態の樹脂組成物が熱可塑性エラストマー(D)を含有する場合、その含有量は、特に限定されないが、樹脂成分の総和100質量部に対して、2~40質量部が好ましく、5~30質量部がより好ましく、8~25質量部がさらに好ましく、10~20質量部が特に好ましい。熱可塑性エラストマー(D)の含有量が上記下限値以上であると、より優れた高周波特性及び耐吸湿性が得られる傾向にある。熱可塑性エラストマー(D)の含有量が上記上限値以下であると、良好な耐熱性、成形性及び加工性が得られる傾向にある。
<硬化促進剤(E)>
 本実施形態の樹脂組成物は、硬化促進剤(E)を含有することにより、硬化性が向上し、より優れた高周波特性、耐熱性、導体との接着性、弾性率及びガラス転移温度が得られる傾向にある。
 本実施形態の樹脂組成物が硬化促進剤(E)を含有する場合、使用する熱硬化性樹脂(C)成分の種類に合わせて好適な硬化促進剤(E)を適宜選択すればよい。
 硬化促進剤(E)は、1種類を単独で用いてもよいし、2種類以上を併用してもよい。
 (E)成分としては、例えば、アミン系硬化促進剤、イミダゾール系硬化促進剤、リン系硬化促進剤、有機金属塩、酸性触媒、有機過酸化物等が挙げられる。なお、本実施形態において、イミダゾール系硬化促進剤は、アミン系硬化促進剤に分類しないものとする。
 アミン系硬化促進剤としては、例えば、トリエチルアミン、ピリジン、トリブチルアミン、ジシアンジアミド等の第1級~第3級アミンを有するアミン化合物;第4級アンモニウム化合物などが挙げられる。
 イミダゾール系硬化促進剤としては、例えば、メチルイミダゾール、フェニルイミダゾール、2-ウンデシルイミダゾール、イソシアネートマスクイミダゾール(例えば、ヘキサメチレンジイソシアネート樹脂と2-エチル-4-メチルイミダゾールの付加反応物等)等のイミダゾール化合物が挙げられる。
 リン系硬化促進剤としては、例えば、トリフェニルホスフィン等の第3級ホスフィン;p-ベンゾキノンのトリ-n-ブチルホスフィン付加反応物等の第4級ホスホニウム化合物などが挙げられる。
 有機金属塩としては、例えば、マンガン、コバルト、亜鉛等のカルボン酸塩などが挙げられる。
 酸性触媒としては、例えば、p-トルエンスルホン酸等が挙げられる。
 有機過酸化物としては、例えば、ジクミルパーオキサイド、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキシン-3,2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン、t-ブチルパーオキシイソプロピルモノカーボネート、α,α’-ジ(t-ブチルパーオキシ)ジイソプロピルベンゼン等が挙げられる。
 これらの中でも、より優れた高周波特性、耐熱性、導体との接着性、弾性率及びガラス転移温度が得られるという観点から、アミン系硬化促進剤、イミダゾール系硬化促進剤、リン系硬化促進剤が好ましく、ジシアンジアミド、イミダゾール系硬化促進剤、第4級ホスホニウム化合物がより好ましく、これらを併用することがさらに好ましい。このとき、有機過酸化物も併用してもよいが、硬化物の物性の観点から、有機過酸化物を含有しないことが好ましい。
((E)成分の含有量)
 本実施形態の樹脂組成物が硬化促進剤(E)を含有する場合、その含有量は、特に限定されないが、熱硬化性樹脂(C)100質量部に対して、0.01~10質量部が好ましく、0.05~5質量部がより好ましく、0.1~5質量部がさらに好ましく、0.5~4質量部が特に好ましい。硬化促進剤(E)の含有量が上記範囲内であると、より良好な高周波特性、耐熱性、保存安定性及び成形性が得られる傾向にある。
<無機充填材(F)>
 本実施形態の樹脂組成物は、無機充填材(F)を含有することにより、より優れた低熱膨張性、高弾性率性、耐熱性及び難燃性が得られる傾向にある。
 無機充填材(F)は、1種類を単独で用いてもよいし、2種類以上を併用してもよい。
 無機充填材(F)としては、例えば、シリカ、アルミナ、酸化チタン、マイカ、ベリリア、チタン酸バリウム、チタン酸カリウム、チタン酸ストロンチウム、チタン酸カルシウム、炭酸アルミニウム、水酸化マグネシウム、水酸化アルミニウム、ケイ酸アルミニウム、炭酸カルシウム、ケイ酸カルシウム、ケイ酸マグネシウム、窒化ケイ素、窒化ホウ素、クレー(焼成クレー等)、タルク、ホウ酸アルミニウム、炭化ケイ素等が挙げられる。これらの中でも、熱膨張係数、弾性率、耐熱性及び難燃性の観点から、無機充填材(F)としては、シリカ、アルミナ、マイカ、タルクが好ましく、シリカ、アルミナがより好ましく、シリカがさらに好ましい。シリカとしては、例えば、湿式法で製造され含水率の高い沈降シリカと、乾式法で製造され結合水等をほとんど含まない乾式法シリカが挙げられる。乾式法シリカとしては、製造法の違いにより、破砕シリカ、フュームドシリカ、溶融シリカ(溶融球状シリカ)等が挙げられる。これらの中でも、無機充填材(F)としては、溶融球状シリカが好ましい。
 無機充填材(F)の平均粒子径は、特に限定されないが、0.01~20μmが好ましく、0.1~10μmがより好ましく、0.2~1μmがさらに好ましく、0.3~0.8μmが特に好ましい。
 本実施形態の樹脂組成物が無機充填材(F)を含有する場合、その含有量は、特に限定されないが、熱膨張係数、弾性率、耐熱性及び難燃性の観点から、固形分に対して、1~30質量%が好ましく、1~25質量%がより好ましく、1~20質量%がさらに好ましく、2~15質量%がよりさらに好ましく、2~8質量%が特に好ましい。
 無機充填材(F)を用いる場合、無機充填材(F)の分散性及び無機充填材(F)と樹脂組成物中の有機成分との密着性を向上させる目的で、必要に応じて、カップリング剤を併用してもよい。カップリング剤としては、例えば、シランカップリング剤、チタネートカップリング剤等が挙げられる。カップリング剤は1種類を単独で用いてもよく、2種類以上を併用してもよい。
 カップリング剤を用いる場合、その処理方式は、樹脂組成物中に無機充填材(F)を配合した後、カップリング剤を添加する、いわゆるインテグラルブレンド処理方式であってもよいが、予め乾式又は湿式でカップリング剤によって表面処理した無機充填材を使用する方式が好ましい。この方式を採用することで、より効果的に無機充填材(F)の特長を発現させることができる。
 また、無機充填材(F)は、必要に応じて、予め有機溶媒中に分散させたスラリーとして用いてもよい。
<難燃剤、難燃助剤、密着性向上剤>
 本実施形態の樹脂組成物は、本実施形態の効果を損なわない範囲で、必要に応じて、難燃剤、難燃助剤及び密着性向上剤からなる群から選択される1種以上を含有していてもよい。これらの成分は、各々について、1種類を単独で用いてもよいし、2種類以上を併用してもよい。また、本実施形態の樹脂組成物は、これらの成分を含有しないものであってもよい。
(難燃剤)
 難燃剤としては、例えば、無機系のリン系難燃剤;有機系のリン系難燃剤;水酸化アルミニウムの水和物、水酸化マグネシウムの水和物等の金属水和物などが挙げられる。なお、金属水酸化物は無機充填材にも該当し得るが、難燃性を付与し得る材料の場合には難燃剤に分類する。
 無機系のリン系難燃剤としては、例えば、赤リン;リン酸一アンモニウム、リン酸二アンモニウム、リン酸三アンモニウム、ポリリン酸アンモニウム等のリン酸アンモニウム;リン酸アミド等の無機系含窒素リン化合物;リン酸;ホスフィンオキシドなどが挙げられる。
 有機系のリン系難燃剤としては、例えば、芳香族リン酸エステル、ホスホン酸ジエステル及びホスフィン酸エステル;ホスフィン酸の金属塩、有機系含窒素リン化合物、環状有機リン化合物等が挙げられる。ここで、「金属塩」としては、例えば、リチウム塩、ナトリウム塩、カリウム塩、カルシウム塩、マグネシウム塩、アルミニウム塩、チタン塩、亜鉛塩等が挙げられる。
(難燃剤の含有量)
 本実施形態の樹脂組成物が難燃剤を含有する場合、その含有量は、特に限定されないが、樹脂成分の総和100質量部に対して、例えば、0.1質量部以上であり、1質量部以上であってもよく、5質量部以上であってもよく、10質量部以上であってもよく、また、40質量部以下であってもよく、30質量部以下であってもよく、25質量部以下であってもよく、20質量部以下であってもよい。また、本実施形態の樹脂組成物は難燃剤を含有していなくてもよい。
(難燃助剤)
 難燃助剤としては、例えば、三酸化アンチモン、モリブデン酸亜鉛等の無機系難燃助剤などが挙げられる。
 本実施形態の樹脂組成物が難燃助剤を含有する場合、その含有量は、特に限定されないが、樹脂成分の総和100質量部に対して、0.1~20質量部が好ましく、0.1~10質量部がより好ましい。難燃助剤の含有量が上記範囲内であると、より良好な耐薬品性が得られる傾向にある。また、本実施形態の樹脂組成物は難燃助剤を含有していなくてもよい。
(密着性向上剤)
 密着性向上剤としては、例えば、トリアジン誘導体、カルボジイミド等の含窒素化合物などが挙げられる。
 本実施形態の樹脂組成物が密着性向上剤を含有する場合、その含有量は、特に限定されないが、樹脂成分の総和100質量部に対して、0.1~20質量部が好ましく、0.1~10質量部がより好ましい。密着性向上剤の含有量が上記範囲内であると、より良好な銅箔引きはがし強度が得られる傾向にある。また、本実施形態の樹脂組成物は密着性向上剤を含有していなくてもよい。
<有機溶媒>
 本実施形態の樹脂組成物は、取り扱いを容易にするという観点及び後述するプリプレグを製造し易くする観点から、有機溶媒を含有するワニス状の樹脂組成物であってもよい。
 有機溶媒としては、例えば、エタノール、プロパノール、ブタノール、メチルセロソルブ、ブチルセロソルブ、プロピレングリコールモノメチルエーテル等のアルコール系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒;テトラヒドロフラン等のエーテル系溶媒;トルエン、キシレン、メシチレン等の芳香族系溶媒;ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等の窒素原子含有溶媒;ジメチルスルホキシド等の硫黄原子含有溶媒;γ-ブチロラクトン等のエステル系溶媒などが挙げられる。これらの有機溶媒は、1種類を単独で用いてもよいし、2種類以上を併用してもよい。
 本実施形態の樹脂組成物が有機溶媒を含有する場合、その含有量は、特に限定されないが、本実施形態の樹脂組成物の固形分濃度が、30~90質量%となる量が好ましく、40~80質量%となる量がより好ましく、40~60質量%となる量がさらに好ましい。有機溶媒の含有量が上記範囲内であると、樹脂組成物の取り扱い性が容易となり、基材への含浸性及び製造されるプリプレグの外観が良好となる。さらに、後述するプリプレグ中の樹脂の固形分濃度の調整が容易となり、所望の厚みを有するプリプレグの製造がより容易となる傾向にある。
<その他の成分>
 さらに、本実施形態の樹脂組成物は、本実施形態の効果を損なわない範囲で、必要に応じて、上記各成分以外の樹脂材料、カップリング剤、酸化防止剤、熱安定剤、帯電防止剤、紫外線吸収剤、顔料、着色剤及び滑剤からなる群から選択される1種以上[以下、「その他の成分」と略称することがある。]を含有していてもよい。これらの成分は、各々について、1種類を単独で用いてもよいし、2種類以上を併用してもよい。また、本実施形態の樹脂組成物は、これらの成分を含有しないものであってもよい。
 本実施形態の樹脂組成物が上記その他の成分を含有する場合、その各々の含有量は、特に限定されないが、樹脂成分の総和100質量部に対して、例えば、0.01質量部以上であり、また、10質量部以下であってもよく、5質量部以下であってもよく、1質量部以下であってもよい。
 また、本実施形態の樹脂組成物が含有する樹脂成分中における(A)成分、(B)成分、(C)成分、(D)成分及び(E)成分の合計含有量は、特に限定されないが、樹脂成分の総和100質量部に対して、80質量部以上が好ましく、90質量部以上がより好ましく、95質量部以上がさらに好ましい(但し、いずれも100質量部を含む。)。
<誘電特性(高周波特性)>
 本実施形態の樹脂組成物を、後述する実施例に記載の方法によって試験片とした際の10GHzにおける誘電率(Dk)は、特に限定されないが、3.0以下が好ましく、2.7以下がより好ましく、2.5以下がさらに好ましい。上記誘電率(Dk)は小さい程好ましく、その下限値に特に制限はないが、他の物性とのバランスを考慮して、例えば、2.0以上であってもよく、2.3以上であってもよい。
 本実施形態の樹脂組成物を、後述する実施例に記載の方法によって試験片とした際の10GHzにおける誘電正接(Df)は、特に限定されないが、0.0045以下が好ましく、0.0040以下がより好ましく、0.0035以下がさらに好ましい。上記誘電正接(Df)は小さい程好ましく、その下限値に特に制限はないが、他の物性とのバランスを考慮して、例えば、0.0020以上であってもよく、0.0025以上であってもよい。
 なお、誘電率(Dk)及び誘電正接(Df)は、空洞共振器摂動法に準拠した値であり、より詳細には、実施例に記載の方法によって測定された値である。また、本明細書において、単に誘電率というとき、比誘電率を意味する。
 本実施形態の樹脂組成物は、(A)成分、(B)成分及び必要に応じて併用される任意成分を公知の方法で混合することで製造することができる。この際、各成分は、上記有機溶媒中で撹拌しながら溶解又は分散させてもよい。混合順序、温度、時間等の条件は、特に限定されず任意に設定することができる。
[樹脂付き金属箔]
 本実施形態の樹脂付き金属箔は、本実施形態の樹脂組成物の層を金属箔上に有するものである。
 該樹脂付き金属箔は、具体的には、本実施形態の樹脂組成物を金属箔上に塗布し、乾燥炉中で樹脂組成物を半硬化(Bステージ化)させることにより製造することができる。乾燥条件は、特に限定されないが、乾燥温度は、好ましくは80~180℃、より好ましくは110~160℃である。塗工する方法に特に制限はなく、例えば、ダイコーター、コンマコーター、バーコーター、キスコーター、ロールコーター等の公知の塗工機を用いることができる。
 樹脂付き金属箔の金属箔としては、例えば、銅箔、アルミニウム箔等が挙げられるが、その他の金属箔を使用することもできる。これらの中でも、銅箔が好ましい。
[プリプレグ]
 本実施形態のプリプレグは、本実施形態の樹脂組成物とシート状繊維補強基材とを含有してなるプリプレグである。ここで、「樹脂組成物とシート状繊維補強基材とを含有してなる」という表現には、樹脂組成物とシート状繊維補強基材をそのまま含有する場合と、樹脂組成物中の成分の少なくとも一部が反応した樹脂組成物とシート状繊維補強基材とを含有する場合も含まれる。
 該プリプレグは、本実施形態の樹脂組成物とシート状繊維補強基材とを用いて形成することができ、例えば、本実施形態の樹脂組成物を、シート状繊維補強基材に含浸又は塗工し、乾燥炉中で、80~200℃の温度で1~30分間加熱乾燥し、樹脂組成物を半硬化(B-ステージ化)させることにより製造することができる。ここで、本明細書においてB-ステージ化とは、JIS K6900(1994年)にて定義されるB-ステージの状態にすることである。
 本実施形態のプリプレグ中における樹脂組成物由来の固形分含有量は、特に限定されないが、30~90質量%が好ましく、35~80質量%がより好ましく、40~70質量%がさらに好ましく、45~60質量%が特に好ましい。プリプレグ中における樹脂組成物由来の固形分含有量が上記範囲内であると、積層板とした際により良好な成形性が得られる傾向にある。
 プリプレグのシート状繊維補強基材としては、各種の電気絶縁材料用積層板に用いられている公知のものが用いられる。シート状繊維補強基材の材質としては、例えば、Eガラス、Dガラス、Sガラス、Qガラス等の無機物繊維;ポリイミド、ポリエステル、テトラフルオロエチレン等の有機繊維;これらの混合物などが挙げられる。これらのシート状繊維補強基材は、例えば、織布、不織布、ロービンク、チョップドストランドマット、サーフェシングマット等の形状を有する。また、シート状繊維補強基材の厚みは特に制限されず、例えば、0.02~0.5mmのものを用いることができる。また、樹脂組成物の含浸性、積層板とした際の耐熱性、耐吸湿性及び加工性の観点から、カップリング剤等で表面処理したもの、機械的に開繊処理を施したもの等を使用できる。
 樹脂組成物をシート状繊維補強基材に含浸又は塗工させる方法としては、次のホットメルト法又はソルベント法を採用できる。
 ホットメルト法は、樹脂組成物に有機溶媒を含有させず、(1)該樹脂組成物との剥離性の良い塗工紙に一旦塗工し、それをシート状繊維補強基材にラミネートする方法、又は(2)ダイコーターによりシート状繊維補強基材に直接塗工する方法である。
 一方、ソルベント法は、樹脂組成物に有機溶媒を含有させ、得られた樹脂組成物にシート状繊維補強基材を浸漬して、樹脂組成物をシート状繊維補強基材に含浸させ、その後、乾燥させる方法である。
[積層板]
 本実施形態の積層板は、(i)本実施形態の樹脂付き金属箔又は(ii)本実施形態のプリプレグ及び金属箔、を含有してなる積層板である。
 本実施形態の積層板は、本実施形態の樹脂付き金属箔1枚を加熱加圧成形するか、又は樹脂付き金属箔2枚を金属箔が外層となるように配置してから加熱加圧成形することによって積層板を得ることができる。また、本実施形態のプリプレグ1枚の片面若しくは両面に金属箔を配置するか、又は本実施形態のプリプレグを2枚以上重ねたものの片面若しくは両面に金属箔を配置し、次いで加熱加圧成形することによって積層板を得ることもできる。金属箔を有する積層板は、金属張積層板と称されることもある。
 金属箔の金属としては、電気絶縁材料用途で用いられるものであれば特に制限されないが、導電性の観点から、銅、金、銀、ニッケル、白金、モリブデン、ルテニウム、アルミニウム、タングステン、鉄、チタン、クロム、又はこれらの金属元素を1種以上含有する合金であってもよく、銅、アルミニウムが好ましく、銅がより好ましい。
 なお、本実施形態の積層板、金属張り積層板において、前記樹脂シートはC-ステージ化されている。換言すると、本実施形態の積層板は、C-ステージ化されたプリプレグを有しており、本実施形態の金属張り積層板は、C-ステージ化された樹脂付き金属箔、又はC-ステージ化されたプリプレグと金属箔とを有するものである。ここで、本明細書においてC-ステージ化とは、JIS K6900(1994年)にて定義されるC-ステージの状態にすることである。
[多層プリント配線板]
 本実施形態の多層プリント配線板は、(i)本実施形態の樹脂付き金属箔、(ii)本実施形態のプリプレグ又は(iii)本実施形態の積層板、を含有してなるものである。本実施形態の多層プリント配線板は、前記(i)~(iii)を必ずしもそのまま含有する必要はなく、例えば、(iii)に、穴開け加工、金属めっき加工、金属箔のエッチング等による回路形成加工などが施された状態で含有する場合も含まれる。
 本実施形態の多層プリント配線板は、本実施形態の樹脂付き金属箔、プリプレグ又は積層板を用いて、公知の方法によって、穴開け加工、金属めっき加工、金属箔のエッチング等による回路形成加工及び多層化加工を行うことによって製造することができる。
[半導体パッケージ]
 本実施形態の半導体パッケージは、本実施形態の多層プリント配線板と、半導体素子と、を含むものである。換言すると、本実施形態の半導体パッケージは、本実施形態の多層プリント配線板に半導体素子を搭載してなるものである。
 本実施形態の半導体パッケージは、例えば、本実施形態の多層プリント配線板の所定の位置に半導体チップ、メモリ等の半導体素子を公知の方法によって搭載し、封止樹脂等によって半導体素子を封止することによって製造できる。
 以上、本開示の好適な実施形態を説明したが、これらは本開示の説明のための一例であり、本開示の範囲をこれらの実施形態にのみ限定する趣旨ではない。本開示は、その要旨を逸脱しない範囲で、上記実施形態とは異なる種々の態様で実施することも含む。
 以下、実施例を挙げて本実施形態を具体的に説明する。ただし、本実施形態は以下の実施例に限定されるものではない。
 なお、各例において、重量平均分子量(Mw)は以下の方法によって測定した。
 ゲルパーミエーションクロマトグラフィー(GPC)により、標準ポリスチレンを用いた検量線から換算した。検量線は、標準ポリスチレン:TSKstandard POLYSTYRENE(Type;A-2500、A-5000、F-1、F-2、F-4、F-10、F-20、F-40)[東ソー株式会社製、商品名]を用いて3次式で近似した。GPCの測定条件を、以下に示す。
装置:
 ポンプ:L-6200型[株式会社日立ハイテクノロジーズ製]
 検出器:L-3300型RI[株式会社日立ハイテクノロジーズ製]
 カラムオーブン:L-655A-52[株式会社日立ハイテクノロジーズ製]
 カラム:ガードカラム;「TSK Guardcolumn HHR-L」+カラム;「TSKgel G4000HHR」+「TSKgel G2000HHR」(すべて東ソー株式会社製、商品名)
 カラムサイズ:6.0×40mm(ガードカラム)、7.8×300mm(カラム)
溶離液:テトラヒドロフラン
試料濃度:30mg/5mL
注入量:20μL
流量:1.00mL/分
測定温度:40℃
[製造例1:変性マレイミド化合物(X1)の製造]
 温度計、撹拌装置、還流冷却管付き水分定量器の付いた加熱及び冷却可能な容積5リットルの反応容器に、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパン100質量部と、3,3’-ジエチル-4,4’-ジアミノジフェニルメタン13.5質量部と、プロピレングリコールモノメチルエーテル171質量部と、を投入し、還流させながら2時間反応させた。これを還流温度にて3時間かけて濃縮し、固形分濃度が65質量%の変性マレイミド化合物(X1)含有液を製造した。得られた変性マレイミド樹脂(X1)の重量平均分子量(Mw)は、約2,700であった。
[実施例1~5、比較例1~2]
(樹脂組成物の調製)
 表1に記載の各成分を表1に記載の配合組成に従って、トルエン58質量部及びメチルイソブチルケトン10質量部と共に、室温で撹拌及び混合して、固形分濃度45~55質量%の樹脂組成物を調製した。なお、各実施例及び比較例においてフィラー含有量を統一するために、フッ素樹脂フィラー(B)の含有量と無機充填材(F)の含有量の合計が等しくなるように調整されている。
(樹脂付き銅箔の作製)
 各例で得た樹脂組成物を、厚さ0.0195mmの銅箔(MT18FL1.5、三井金属鉱業株式会社製)に塗工機によって塗工した後、120℃で3分間加熱乾燥することで、塗布厚さ25μmの樹脂付き銅箔を作製した。
(積層板の作製及び樹脂版の作製)
 また、該樹脂組成物を、厚さ0.050mmのPETフィルムに塗工機により塗工した後、120℃で3分間加熱乾燥することで、塗布厚さ25μmの樹脂付きPETフィルムを作製した。この樹脂付きPETフィルムの樹脂面同士を、真空加圧ラミネート(温度110℃、圧力0.5MPa)で張り合わせた。さらに、片面のPETフィルムを剥離して、剥離面同士を張り合わせ、樹脂厚さが325μmとなるまで積層した。この樹脂厚さ325μmの樹脂付きPETフィルムの両面PETを剥離し、樹脂の上下に、厚さ18μmのロープロファイル銅箔(BF-ANP18、M面のRz:1.5μm、CIRCUIT FOIL社製)を、M面が樹脂に接するように積層し、この積層体を厚さ300μmの型枠に配置した。次いで、温度230℃、圧力3.0MPa、時間90分間の条件で加熱加圧成形して、両面銅張積層板を作製した。この両面銅張積層板の外層銅箔を、銅エッチング液(過硫酸アンモニウムの10質量%溶液、三菱ガス化学株式会社製)に浸漬することにより除去し、厚さ300μmの樹脂板を作製した。
[評価方法]
 下記方法に従って各測定及び評価を行った。結果を表1に示す。
(1.誘電特性(高周波特性)の測定)
 各例で作製した樹脂板を、長さ60mm、幅2mmに切り出したものを試験片として、空洞共振器摂動法により誘電率及び誘電正接を測定した。測定器にはアジレントテクノロジー社製のベクトル型ネットワークアナライザ「N5227A」、空洞共振器には株式会社関東電子応用開発製の「CP129」(10GHz帯共振器)、測定プログラムには「CPMA-V2」をそれぞれ使用した。測定は、周波数10GHz、測定温度25℃の条件下で行った。
(2.樹脂付き銅箔切断時の端部粉落ちの評価)
 各例で作製した樹脂付き銅箔を切断機「リファインドスリッターW-650」(スリット刃のサイズ;98mm×66mm、厚み;2mm、図1参照、ソルテック工業株式会社製)で切断した際に、スリット刃に付着した樹脂粉量を目視で観察した。スリット刃への樹脂粉付着量がほとんどない場合(図2参照)を「A」、スリット刃への樹脂粉付着量が多い場合(図3参照)を「C」と判断した。
Figure JPOXMLDOC01-appb-T000026
 表1における各材料の略号等は、以下の通りである。
[(A)成分:ポリフェニレンエーテル誘導体]
・A-1:分子末端(両末端)にメタクリル基を有するポリフェニレンエーテル(重量平均分子量(Mw);1,700)。前記一般式(A-4)で表される化合物に相当する。
[(B)成分:フッ素樹脂フィラー]
・B-1:PTFEフィラー;粒子状、平均粒子径:3μm
[(C)成分:熱硬化性樹脂]
・C-1:製造例1で調製した変性マレイミド化合物(X1)
[(D)成分:熱可塑性エラストマー]
・D-1:、無水マレイン酸変性水添スチレン系熱可塑性エラストマー(無水マレイン酸変性SEBS)、酸価10mgCHONa/g、スチレン含有率30%、MFR5.0g/10min(MFRの測定条件:ISO1133に準拠して、230℃、荷重2.16kgにて測定した。)
[(E)成分:硬化促進剤]
・E-1:p-ベンゾキノンのトリ-n-ブチルホスフィン付加反応物
・E-2:2-ウンデシルイミダゾール
・E-3:ジシアンジアミド
[(F)成分:無機充填材]
・F-1:球状溶融シリカ:平均粒子径0.5μm、メチルイソブチルケトン70質量%スラリー
[難燃剤]
・4,4’-ビフェノール-ビス(ジ-2,6-キシレニルホスフェート)、融点:184℃、平均粒子径1.5μm、下記構造式参照
Figure JPOXMLDOC01-appb-C000027
 表1に示した結果から明らかなように、本実施形態の樹脂組成物を用いて作製した実施例1~5の樹脂付き銅箔及び積層板は、比較例1~2の樹脂付き銅箔及び積層板よりも、高周波特性に優れており、且つ、樹脂付き金属箔の切断時に端部の粉落ちが抑制されたことが分かる。特に、実施例5と比較例1との対比から、(A)成分と(B)成分とを併用することによって、誘電率(Dk)の向上効果と樹脂付き金属箔の切断時に端部の粉落ちの抑制効果が顕著になることが分かる。
 本実施形態の樹脂組成物は、10GHz帯以上の高周波数帯において優れた誘電特性を発現するものであり、且つ、樹脂付き金属箔の切断時に端部の粉落ちが抑制されるものであるため、該樹脂組成物を用いて得られる樹脂付き金属箔、プリプレグ、積層板、多層プリント配線板、半導体パッケージ等は、高周波信号を扱う電子部品用途に好適である。
 

Claims (18)

  1.  ポリフェニレンエーテル誘導体(A)と、フッ素樹脂フィラー(B)と、を含有する樹脂組成物。
  2.  前記(A)成分が、分子末端にエチレン性不飽和結合含有基を有する、請求項1に記載の樹脂組成物。
  3.  前記(A)成分が有する前記エチレン性不飽和結合含有基が、(メタ)アクリル基である、請求項1又は2に記載の樹脂組成物。
  4.  前記(A)成分の重量平均分子量(Mw)が、500~7,000である、請求項1~3のいずれか1項に記載の樹脂組成物。
  5.  前記(B)成分が、ポリテトラフルオロエチレン(PTFE)フィラー、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)フィラー、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)フィラー、テトラフルオロエチレン-エチレン共重合体(ETFE)フィラー及びポリクロロトリフルオロエチレン(PCTFE)フィラーからなる群から選択される少なくとも1種である、請求項1~4のいずれか1項に記載の樹脂組成物。
  6.  前記(B)成分の平均粒子径が0.1~10μmである、請求項1~5のいずれか1項に記載の樹脂組成物。
  7.  前記(B)成分の含有量が、樹脂組成物の固形分に対して1質量%以上50質量%未満である、請求項1~6のいずれか1項に記載の樹脂組成物。
  8.  前記(B)成分の含有量が、樹脂組成物の固形分に対して1~40質量%である、請求項1~7のいずれか1項に記載の樹脂組成物。
  9.  さらに、エポキシ樹脂、シアネート樹脂及びマレイミド化合物からなる群から選択される1種以上の熱硬化性樹脂(C)を含有する、請求項1~8のいずれか1項に記載の樹脂組成物。
  10.  前記(C)成分として前記マレイミド化合物を含有し、且つ、該マレイミド化合物が、N-置換マレイミド基を少なくとも2個以上有するマレイミド化合物(c1)由来の構造単位と第1級アミノ基を有するアミン化合物(c2)由来の構造単位と、を有する変性マレイミド化合物である、請求項9に記載の樹脂組成物。
  11.  前記変性マレイミド化合物が、下記一般式(C-1)で表される化合物である、請求項10に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001

    (式中、Xc1及びXc2は、各々独立に、2価の有機基である。)
  12.  前記(A)成分と前記(C)成分との含有割合[(A)/(C)]が、質量比で、5/95~80/20である、請求項9~11のいずれか1項に記載の樹脂組成物。
  13.  さらに、熱可塑性エラストマー(D)、硬化促進剤(E)及び無機充填材(F)からなる群から選択される1種以上を含有する、請求項1~12のいずれか1項に記載の樹脂組成物。
  14.  請求項1~13のいずれか1項に記載の樹脂組成物の層を金属箔上に有する、樹脂付き金属箔。
  15.  請求項1~13のいずれか1項に記載の樹脂組成物とシート状繊維補強基材とを含有してなるプリプレグ。
  16.  (i)請求項14に記載の樹脂付き金属箔又は(ii)請求項15に記載のプリプレグ及び金属箔、を含有してなる積層板。
  17.  (i)請求項14に記載の樹脂付き金属箔、(ii)請求項15に記載のプリプレグ又は(iii)請求項16に記載の積層板、を含有してなる多層プリント配線板。
  18.  請求項17に記載の多層プリント配線板と、半導体素子と、を含む半導体パッケージ。
PCT/JP2021/036452 2020-10-07 2021-10-01 樹脂組成物、樹脂付き金属箔、プリプレグ、積層板、多層プリント配線板及び半導体パッケージ WO2022075221A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180068068.1A CN116323195A (zh) 2020-10-07 2021-10-01 树脂组合物、带树脂的金属箔、预浸料、层叠板、多层印刷布线板和半导体封装体
JP2022555443A JPWO2022075221A1 (ja) 2020-10-07 2021-10-01
KR1020237011469A KR20230084492A (ko) 2020-10-07 2021-10-01 수지 조성물, 수지 부착 금속박, 프리프레그, 적층판, 다층 프린트 배선판 및 반도체 패키지

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020169715 2020-10-07
JP2020-169715 2020-10-07

Publications (1)

Publication Number Publication Date
WO2022075221A1 true WO2022075221A1 (ja) 2022-04-14

Family

ID=81126854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/036452 WO2022075221A1 (ja) 2020-10-07 2021-10-01 樹脂組成物、樹脂付き金属箔、プリプレグ、積層板、多層プリント配線板及び半導体パッケージ

Country Status (5)

Country Link
JP (1) JPWO2022075221A1 (ja)
KR (1) KR20230084492A (ja)
CN (1) CN116323195A (ja)
TW (1) TW202227554A (ja)
WO (1) WO2022075221A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016089137A (ja) * 2014-11-11 2016-05-23 ナミックス株式会社 樹脂組成物、それを用いた絶縁フィルムおよび半導体装置
JP2017075270A (ja) * 2015-10-16 2017-04-20 三菱瓦斯化学株式会社 プリプレグ
WO2019172342A1 (ja) * 2018-03-06 2019-09-12 日立化成株式会社 プリプレグ、積層板、多層プリント配線板、半導体パッケージ及び樹脂組成物、並びに、プリプレグ、積層板及び多層プリント配線板の製造方法
CN111471144A (zh) * 2020-03-27 2020-07-31 顺德职业技术学院 丙烯酸改性低介电含氟聚苯醚混合胶及其制备的5g覆铜板
JP2021138944A (ja) * 2020-02-28 2021-09-16 イノックス・アドバンスト・マテリアルズ・カンパニー・リミテッドINNOX Advanced Materials Co., Ltd. 接着フィルム、これを含む接着フィルム付き積層体、及びこれを含む金属箔積層体

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5869046A (ja) 1981-10-21 1983-04-25 旭化成株式会社 積層板及びその成形法
JPS6118937A (ja) 1984-07-06 1986-01-27 Mitsubishi Electric Corp 工業用テレビカメラの照明装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016089137A (ja) * 2014-11-11 2016-05-23 ナミックス株式会社 樹脂組成物、それを用いた絶縁フィルムおよび半導体装置
JP2017075270A (ja) * 2015-10-16 2017-04-20 三菱瓦斯化学株式会社 プリプレグ
WO2019172342A1 (ja) * 2018-03-06 2019-09-12 日立化成株式会社 プリプレグ、積層板、多層プリント配線板、半導体パッケージ及び樹脂組成物、並びに、プリプレグ、積層板及び多層プリント配線板の製造方法
JP2021138944A (ja) * 2020-02-28 2021-09-16 イノックス・アドバンスト・マテリアルズ・カンパニー・リミテッドINNOX Advanced Materials Co., Ltd. 接着フィルム、これを含む接着フィルム付き積層体、及びこれを含む金属箔積層体
CN111471144A (zh) * 2020-03-27 2020-07-31 顺德职业技术学院 丙烯酸改性低介电含氟聚苯醚混合胶及其制备的5g覆铜板

Also Published As

Publication number Publication date
CN116323195A (zh) 2023-06-23
KR20230084492A (ko) 2023-06-13
JPWO2022075221A1 (ja) 2022-04-14
TW202227554A (zh) 2022-07-16

Similar Documents

Publication Publication Date Title
TWI775544B (zh) 印刷配線板用的樹脂組成物、帶樹脂層支撐體、預浸體、積層板、多層印刷配線板及其應用、毫米波雷達用印刷配線板
JP6705447B2 (ja) 樹脂組成物、プリプレグ、積層板及び多層プリント配線板
JP6705446B2 (ja) 熱硬化性樹脂組成物、プリプレグ、積層板及び多層プリント配線板
JP7272068B2 (ja) 樹脂組成物、プリプレグ、積層板、多層プリント配線板及び半導体パッケージ
JP7484909B2 (ja) マレイミド樹脂組成物、プリプレグ、積層板、樹脂フィルム、多層プリント配線板及び半導体パッケージ
JP2021187889A (ja) 熱硬化性樹脂組成物、プリプレグ、積層板、多層プリント配線板及び半導体パッケージ
JP2020169274A (ja) 樹脂組成物、プリプレグ、積層板、多層プリント配線板及び半導体パッケージ
JP7298623B2 (ja) 樹脂組成物、樹脂組成物の硬化物、プリプレグ、積層板、樹脂フィルム、多層プリント配線板、ミリ波レーダー用多層プリント配線板及びポリフェニレンエーテル誘導体
JP2021138849A (ja) 樹脂組成物、プリプレグ、積層板、樹脂フィルム、プリント配線板、半導体パッケージ及び樹脂組成物の製造方法
JP7480777B2 (ja) 樹脂組成物、プリプレグ、積層板、多層プリント配線板及び半導体パッケージ
WO2022102781A1 (ja) マレイミド樹脂組成物、プリプレグ、積層板、樹脂フィルム、プリント配線板及び半導体パッケージ
WO2022075221A1 (ja) 樹脂組成物、樹脂付き金属箔、プリプレグ、積層板、多層プリント配線板及び半導体パッケージ
WO2022145377A1 (ja) 樹脂組成物、プリプレグ、積層板、樹脂フィルム、プリント配線板及び半導体パッケージ
TW202229442A (zh) 馬來醯亞胺樹脂組成物、預浸體、積層板、樹脂薄膜、印刷線路板及半導體封裝體
JP2020169276A (ja) 樹脂組成物、プリプレグ、積層板、多層プリント配線板及び半導体パッケージ
JP2022061729A (ja) 樹脂組成物、樹脂付き金属箔、プリプレグ、積層板、多層プリント配線板及び半導体パッケージ
TWI840547B (zh) 樹脂組成物、預浸體、積層板、多層印刷線路板及半導體封裝體
JP2020169275A (ja) 樹脂組成物、プリプレグ、積層板、多層プリント配線板及び半導体パッケージ
JP2020169277A (ja) 樹脂組成物、プリプレグ、積層板、多層プリント配線板及び半導体パッケージ
JP2021187888A (ja) 樹脂組成物、プリプレグ、積層板、樹脂フィルム、プリント配線板、半導体パッケージ、樹脂組成物の製造方法及びプリント配線板用プレポリマー
WO2022102780A1 (ja) マレイミド樹脂組成物、プリプレグ、樹脂フィルム、積層板、プリント配線板及び半導体パッケージ
JP2023013224A (ja) アンテナモジュール用積層板の製造方法、アンテナ装置の製造方法、アンテナモジュールの製造方法及び通信装置の製造方法
JP2022166670A (ja) 樹脂組成物、樹脂フィルム、樹脂付き金属箔、プリプレグ、積層板、多層プリント配線板及び半導体パッケージ
TW202323438A (zh) 樹脂組成物、預浸體、積層板、樹脂薄膜、印刷線路板及半導體封裝體
JP2022122542A (ja) マレイミド樹脂組成物、プリプレグ、樹脂フィルム、積層板、多層プリント配線板及び半導体パッケージ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21877520

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022555443

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21877520

Country of ref document: EP

Kind code of ref document: A1