WO2020262319A1 - 硫化カルボニルの製造方法 - Google Patents
硫化カルボニルの製造方法 Download PDFInfo
- Publication number
- WO2020262319A1 WO2020262319A1 PCT/JP2020/024447 JP2020024447W WO2020262319A1 WO 2020262319 A1 WO2020262319 A1 WO 2020262319A1 JP 2020024447 W JP2020024447 W JP 2020024447W WO 2020262319 A1 WO2020262319 A1 WO 2020262319A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- raw material
- gas
- carbonyl sulfide
- conversion rate
- discharge
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/70—Compounds containing carbon and sulfur, e.g. thiophosgene
- C01B32/77—Carbon oxysulfide
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B3/00—Electrolytic production of organic compounds
- C25B3/01—Products
- C25B3/07—Oxygen containing compounds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C305/00—Esters of sulfuric acids
- C07C305/02—Esters of sulfuric acids having oxygen atoms of sulfate groups bound to acyclic carbon atoms of a carbon skeleton
- C07C305/14—Esters of sulfuric acids having oxygen atoms of sulfate groups bound to acyclic carbon atoms of a carbon skeleton being acyclic and unsaturated
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B15/00—Operating or servicing cells
- C25B15/04—Regulation of the inter-electrode distance
Definitions
- the present invention relates to a method for producing carbonyl sulfide.
- Carbonyl sulfide is known as a gas useful for etching carbon hard masks and the like in the semiconductor manufacturing process.
- Patent Documents 1 and 2 As a method for producing carbonyl sulfide in the gas phase, carbon dioxide gas and carbon disulfide are reacted in the presence of a catalyst (Patent Documents 1 and 2), and sulfur and carbon monoxide are reacted in the presence of a catalyst. A method (Patent Document 3) is known.
- an object of the present invention is to provide a production method capable of producing carbonyl sulfide by a vapor phase distribution method without using a catalyst.
- the present inventor has made diligent studies in order to achieve the above object, discharges a predetermined raw material gas in a continuously flowing state, and then continuously discharges it to the outside of the discharge region to obtain carbonyl sulfide. We found that and completed the present invention.
- An object of the present invention is to solve the above problems advantageously, and the present invention includes CS 2 and a starting material consisting of at least one selected from the group consisting of CO 2 , CO, O 2 and O 3.
- the present invention relates to a method for producing carbonyl sulfide, which comprises discharging a raw material gas in a continuously flowing state and then continuously discharging it outside the discharge region.
- the raw material gas is discharged in a continuously flowing state to be selected from the group consisting of CS 2 contained in the raw material gas and CO 2 , CO, O 2 and O 3.
- the active species are recombined to produce carbonyl sulfide.
- COS carbonyl sulfide
- the starting material consists of CS 2 and at least one selected from the group consisting of CO 2 , CO, O 2 and O 3 .
- an active species consisting of a CS active species, a CO active species, and oxygen alone, which can be precursors of COS.
- COS can be produced without using a catalyst, which is advantageous.
- the raw material gas can be discharged by supplying electric power of 0.3 kW or more, and the raw material gas can be discharged between the electrodes having a distance between the electrodes of 1 cm or more. These are advantageous in that they can stably convert active species that can be precursors of COS.
- the ratio of the volume of CS 2 to the total volume of at least one selected from the group consisting of CO 2 , CO, O 2 and O 3 is preferably 0.02 or more. By setting this range, COS can be sufficiently obtained.
- the ratio of the volume of CS 2 to the volume of the raw material gas is preferably 0.02 or more and 0.3 or less. By setting this range, COS can be sufficiently obtained.
- carbonyl sulfide can be produced by a vapor phase flow method without using a catalyst.
- the production method of the present invention can avoid a situation such as a decrease in yield due to a decrease in catalyst activity, and can continuously produce carbonyl sulfide.
- the source gas contains CS 2 and a starting material consisting of at least one selected from the group consisting of CO 2 , CO, O 2 and O 3 .
- the combination of CS 2 and CO 2 is more preferable from the viewpoint of efficiently obtaining COS, and the combination of CS 2 and O 2 is more preferable from the viewpoint of the balance between the raw material conversion rate and the selectivity.
- the ratio of the volume of CS 2 to the total volume of at least one selected from the group consisting of CO 2 , CO, O 2 and O 3 is preferably 0.02 or more. From the viewpoint of COS selectivity, 0.3 or more is more preferable. The volume ratio is preferably 35 or less. Within this range, a good selectivity can be obtained while maintaining the raw material conversion rate.
- the raw material gas may contain an inert gas.
- the inert gas By including the inert gas, a stable discharge can be easily obtained.
- the inert gas include N 2 , He, Ne, Ar, Xe, Kr and the like, with N 2 , Ar and He being preferred, and N 2 and Ar being more preferred.
- the inert gas may be used alone or in combination of two or more.
- the content ratio of the inert gas in the raw material gas can be 99.9% by volume or less, preferably 99% by volume or less.
- the content ratio of the inert gas may be 0% by volume.
- the raw material gas may contain impurities inevitably mixed from the surrounding environment in addition to the starting material and any inert gas.
- impurities include water.
- the source gas can consist of starting material and unavoidable impurities.
- the ratio of the volume of CS 2 to the raw material gas is preferably 0.02 or more.
- the volume ratio is preferably 0.3 or less. Within this range, COS can be sufficiently obtained.
- the raw material gas may contain a starting material and an arbitrary inert gas when discharged.
- a starting material and an arbitrary inert gas are separately supplied as gases to a gas phase flow reactor having a discharge mechanism (hereinafter, also simply referred to as “gas phase flow reactor”). It may be used as a raw material gas, or may be supplied as a raw material gas by supplying all of the gas as a raw material gas, or may be supplied as a raw material gas by supplying a part of the gas as a raw material gas separately from the remaining gas. Good.
- the starting material is a gas or liquid in the standard state, respectively.
- the starting material can be supplied to the gas phase flow reactor as a gas without providing a separate vaporization chamber or the like, but the liquid is vaporized in a separately provided vaporization chamber and then the gas phase flow reaction. It is preferable to supply the vessel.
- the supply can be continuous.
- the supply flow rate can be controlled by using a mass flow controller or the like.
- the starting material can be vaporized by introducing the starting material in a liquid state into a vaporization chamber maintained at a temperature and pressure at which the starting material is sufficiently vaporized.
- the temperature and pressure of the vaporization chamber are preferably maintained at a temperature and pressure at which the starting material can be instantly vaporized.
- the starting material can be continuously introduced into the vaporization chamber as a liquid, instantly vaporized in the vaporization chamber, and continuously supplied as a gas to the gas phase flow reactor. it can.
- the starting material When the starting material is in a solid state, it may be heated to a liquid and then introduced into the vaporization chamber, or it may be directly sublimated in the vaporization chamber and continuously supplied as a gas to the gas phase flow reactor.
- the supply flow rate is controlled by controlling the gas vaporized in the vaporization chamber with a mass flow controller or the like, or when the starting material is continuously introduced into the vaporization chamber in a liquid state, the liquid mass flow controller or the like. It can be done by controlling with.
- the vaporized starting material When the vaporized starting material is introduced into the gas phase flow reactor, it may be diluted with an inert gas or the like.
- the space velocity at which circulating raw material gas to the gas phase flow reactor is not particularly limited, preferably 0.01H -1 or more, more preferably 0.1 h -1 or more, more preferably 0.3h -1 or Further, 100,000 h -1 or less is preferable, 50,000 h -1 or less is more preferable, and 10000 h -1 or less is further preferable.
- 100,000 h -1 or less is preferable
- 50,000 h -1 or less is more preferable
- 10000 h -1 or less is further preferable.
- the raw material gas is discharged in the gas phase flow reactor to generate an active species that can be a precursor of COS from the raw material gas.
- the discharge can be generated by supplying electric power to the discharge mechanism of the gas phase flow reactor.
- the discharge can be generated between the electrodes installed in the gas phase flow reactor by supplying the electric power.
- the power supply when causing discharge is preferably 0.3 kW or more. Within this range, the discharge is stable and the target substance can be efficiently produced.
- the power supply is preferably 100 kW or less. Within this range, clogging of the reaction tube due to sooting of the raw material gas can be avoided, and the target substance can be stably produced.
- the power supply is more preferably 0.5 kW or more, and more preferably 60 kW or less.
- the electric discharge can be generated between the electrodes, and in the present invention, the distance between the electrodes is preferably 1 cm or more. Further, the distance between the electrodes is preferably 100 cm or less. Within this range, stable discharge can be performed.
- a method of discharging the raw material gas a method having an electrode for applying a voltage for causing discharge can be used.
- high frequency discharge, microwave discharge, dielectric barrier discharge, glow discharge, arc discharge, corona discharge, etc. Method can be used.
- High-frequency discharge, glow discharge, and arc discharge are preferable from the viewpoint of discharge stability and gas processing amount.
- the pressure (absolute pressure) at the time of discharge is not particularly limited as long as the raw material gas can be discharged in the discharge method used, and is preferably 1 PaA or more, more preferably 5 PaA or more, and preferably 1 MPaA or less. , 0.5 MPaA or less is more preferable. When the pressure (absolute pressure) is within the above range, the target substance can be efficiently produced.
- the discharge region refers to a space in which the raw material gas is discharged.
- the discharge region is a space where discharge occurs between the electrodes. Discharging out of the discharge region means going out of the space.
- the discharged gas may be discharged to the outside of the discharge region, discharged from the gas phase flow reactor, and then further introduced into a heat exchanger to be cooled.
- the method of the heat exchanger is not particularly limited, and examples thereof include air cooling and water cooling. Since the product after cooling may contain a substance other than carbonyl sulfide, carbonyl sulfide may be separated and purified by an optional separation and purification step. Examples of the separation / purification method include distillation, absorption with a solution, membrane separation, and the like.
- Example 1 A metal gas phase flow reaction tube (CS 2 , CO 2 as a starting material and Ar as an inert gas, with a parallel plate type capable of high frequency discharge at a flow rate of 70 sccm, 2 sccm, 228 sccm, respectively, installed inside. It was introduced at a frequency of 60 MHz, a capacity of 35 L, and a distance between electrodes of 3.5 cm).
- the mixed gas was discharged at a supply power of 500 W while maintaining the mixed gas at 10 PaA (absolute pressure). Gas was continuously released from the reaction tube and collected in an aluminum bag.
- GC-MS mass spectrometric gas chromatography
- Example 2 This is the same as in Example 1 except that the flow rates of CS 2 , CO 2 , and Ar are changed to 50 sccm, 10 sccm, and 240 sccm, respectively.
- the results are shown in Table 1.
- the raw material conversion rate in this example is the molar conversion rate of CO 2 obtained from the area value of each component of GC-MS.
- Example 3 The same as in Example 2 except that the flow rates of CS 2 and Ar were changed to 30 sccm and 260 sccm, respectively.
- the results are shown in Table 1.
- the raw material conversion rate in this example is the molar conversion rate of CO 2 obtained from the area value of each component of GC-MS.
- Example 4 The same as in Example 2 except that the flow rates of CS 2 and Ar were changed to 10 sccm and 280 sccm, respectively. The results are shown in Table 1.
- the raw material conversion rate in this example is the molar conversion rate of CS 2 obtained from the area value of each component of GC-MS.
- Example 5 The same as in Example 4 except that the flow rates of CO 2 and Ar were changed to 30 sccm and 260 sccm, respectively.
- the results are shown in Table 1.
- the raw material conversion rate in this example is the molar conversion rate of CS 2 obtained from the area value of each component of GC-MS.
- Example 6 The same as in Example 4 except that the flow rates of CO 2 and Ar were changed to 100 sccm and 190 sccm, respectively.
- the results are shown in Table 1.
- the raw material conversion rate in this example is the molar conversion rate of CS 2 obtained from the area value of each component of GC-MS.
- Example 7 This is the same as in Example 3 except that Ar is changed to N 2 .
- the results are shown in Table 1.
- the raw material conversion rate in this example is the molar conversion rate of CO 2 obtained from the area value of each component of GC-MS.
- Example 8 This is the same as in Example 5 except that Ar is changed to N 2 .
- the results are shown in Table 1.
- the raw material conversion rate in this example is the molar conversion rate of CS 2 obtained from the area value of each component of GC-MS.
- Example 9 The flow rates of CS 2 and CO 2 are 70 sccm and 230 sccm, respectively, and the same as in Example 1 except that an inert gas is not used. The results are shown in Table 1.
- the raw material conversion rate in this example is the molar conversion rate of CS 2 obtained from the area value of each component of GC-MS.
- Example 10 This is the same as in the ninth embodiment except that the power supply is changed to 2000 W.
- the results are shown in Table 1.
- the raw material conversion rate in this example is the molar conversion rate of CS 2 obtained from the area value of each component of GC-MS.
- Example 11 The same as in Example 9 except that the flow rates of CS 2 and CO 2 were changed to 5 sccm and 295 sccm, respectively. The results are shown in Table 1.
- the raw material conversion rate in this example is the molar conversion rate of CS 2 obtained from the area value of each component of GC-MS.
- Example 12 This is the same as in Example 2 except that CO 2 is changed to O 2 .
- the results are shown in Table 2.
- the raw material conversion rate in this example is the molar conversion rate of O 2 obtained from the area value of each component of GC-MS.
- Example 13 This is the same as in Example 3 except that CO 2 is changed to O 2 .
- the results are shown in Table 2.
- the raw material conversion rate in this example is the molar conversion rate of O 2 obtained from the area value of each component of GC-MS.
- Example 14 This is the same as in Example 4 except that CO 2 is changed to O 2 .
- the results are shown in Table 2.
- the raw material conversion rate in this example is the molar conversion rate of CS 2 obtained from the area value of each component of GC-MS.
- Example 15 This is the same as in Example 2 except that CO 2 is changed to CO.
- the results are shown in Table 3.
- the raw material conversion rate in this example is the molar conversion rate of CO obtained from the area value of each component of GC-MS.
- Example 16 This is the same as in Example 4 except that CO 2 is changed to CO.
- the results are shown in Table 3.
- the raw material conversion rate in this example is the molar conversion rate of CS 2 obtained from the area value of each component of GC-MS.
- Example 17 This is the same as in Example 5 except that CO 2 is changed to CO.
- the results are shown in Table 3.
- the raw material conversion rate in this example is the molar conversion rate of CS 2 obtained from the area value of each component of GC-MS.
- carbonyl sulfide can be produced by a vapor phase flow method without using a catalyst.
- the production method of the present invention can avoid a situation such as a decrease in yield due to a decrease in catalyst activity, and can continuously produce carbonyl sulfide, and has high industrial applicability.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
原料ガスは、CS2と、CO2、CO、O2及びO3からなる群より選ばれる少なくとも1種とからなる出発物質を含む。効率的にCOSが得られる点から、CS2とCO2との組み合わせがより好ましく、CS2とO2との組み合わせは、原料転化率及び選択率のバランスの点からより好ましい。
気相流通反応器中で原料ガスを放電させて、原料ガスからCOSの前駆体となり得る活性種を生成させる。放電は、気相流通反応器の放電機構に電力を供給して発生させることができ、例えば、電力の供給によって気相流通反応器内に設置した電極間で放電を発生させることができる。
放電させた原料ガスを、放電領域から連続的に放出することで、生成した活性種が再結合し、目的物質である硫化カルボニルが生成する。連続的な放出は、原料ガスの連続的な流通に対応する空間速度で行うことができる。
ここで、放電領域とは、原料ガスの放電を起こさせる空間をいう。例えば、放電機構として平行平板型電極を備えた気相流通反応器の場合、電極間の放電が発生する空間である。放電領域外に放出とは、上記空間の中から外に出ることをいう。
出発物質としてCS2、CO2及び不活性ガスとしてArを用い、それぞれ70sccm、2sccm、228sccmの流量で、高周波放電が可能な平行平板型を内部に取り付けた、金属製の気相流通反応管(周波数60MHz、容量35L、電極間距離3.5cm)に導入した。
CS2、CO2、Arの流量をそれぞれ50sccm、10sccm、240sccmに変更したこと以外は、実施例1と同様である。結果を表1に示す。本実施例における原料転化率は、GC-MSの各成分の面積値から求めたCO2のモル転化率である。
CS2、Arの流量をそれぞれ30sccm、260sccmに変更したこと以外は、実施例2と同様である。結果を表1に示す。本実施例における原料転化率は、GC-MSの各成分の面積値から求めたCO2のモル転化率である。
CS2、Arの流量をそれぞれ10sccm、280sccmに変更したこと以外は、実施例2と同様である。結果を表1に示す。本実施例における原料転化率は、GC-MSの各成分の面積値から求めたCS2のモル転化率である。
CO2、Arの流量をそれぞれ30sccm、260sccmに変更したこと以外は、実施例4と同様である。結果を表1に示す。本実施例における原料転化率は、GC-MSの各成分の面積値から求めたCS2のモル転化率である。
CO2、Arの流量をそれぞれ100sccm、190sccmに変更したこと以外は、実施例4と同様である。結果を表1に示す。本実施例における原料転化率は、GC-MSの各成分の面積値から求めたCS2のモル転化率である。
ArをN2に変更したこと以外は、実施例3と同様である。結果を表1に示す。本実施例における原料転化率は、GC-MSの各成分の面積値から求めたCO2のモル転化率である。
ArをN2に変更したこと以外は、実施例5と同様である。結果を表1に示す。本実施例における原料転化率は、GC-MSの各成分の面積値から求めたCS2のモル転化率である。
CS2、CO2の流量をそれぞれ70sccm、230sccmとし、不活性ガスを用いないこと以外は、実施例1と同様である。結果を表1に示す。本実施例における原料転化率は、GC-MSの各成分の面積値から求めたCS2のモル転化率である。
供給電力を2000Wに変更したこと以外は、実施例9と同様である。結果を表1に示す。本実施例における原料転化率は、GC-MSの各成分の面積値から求めたCS2のモル転化率である。
CS2、CO2の流量をそれぞれ5sccm、295sccmに変更したこと以外は、実施例9と同様である。結果を表1に示す。本実施例における原料転化率は、GC-MSの各成分の面積値から求めたCS2のモル転化率である。
CO2をO2に変更したこと以外は、実施例2と同様である。結果を表2に示す。本実施例における原料転化率は、GC-MSの各成分の面積値から求めたO2のモル転化率である。
CO2をO2に変更したこと以外は、実施例3と同様である。結果を表2に示す。本実施例における原料転化率は、GC-MSの各成分の面積値から求めたO2のモル転化率である。
CO2をO2に変更したこと以外は、実施例4と同様である。結果を表2に示す。本実施例における原料転化率は、GC-MSの各成分の面積値から求めたCS2のモル転化率である。
CO2をCOに変更したこと以外は、実施例2と同様である。結果を表3に示す。本実施例における原料転化率は、GC-MSの各成分の面積値から求めたCOのモル転化率である。
CO2をCOに変更したこと以外は、実施例4と同様である。結果を表3に示す。本実施例における原料転化率は、GC-MSの各成分の面積値から求めたCS2のモル転化率である。
CO2をCOに変更したこと以外は、実施例5と同様である。結果を表3に示す。本実施例における原料転化率は、GC-MSの各成分の面積値から求めたCS2のモル転化率である。
Claims (6)
- CS2と、CO2、CO、O2及びO3からなる群より選ばれる少なくとも1種とからなる出発物質を含む原料ガスを、連続的に流通させた状態で放電させ、次いで放電領域外に放出することを含む、硫化カルボニルの製造方法。
- 触媒を用いない、請求項1記載の硫化カルボニルの製造方法。
- 前記原料ガスの放電を起こす際に0.3kW以上の電力を供給する、請求項1又は2に記載の硫化カルボニルの製造方法
- 前記原料ガスを1cm以上の電極間距離を有する電極間で放電させる、請求項1~3のいずれか一項に記載の硫化カルボニルの製造方法
- 前記CO2、CO、O2及びO3からなる群より選ばれる少なくとも1種の体積の合計に対し、前記CS2の体積の比が0.02以上である、請求項1~4のいずれか一項に記載の硫化カルボニルの製造方法。
- 前記原料ガスの体積に対し、前記CS2の体積の比が0.02以上0.3以下である、請求項1~5のいずれか一項に記載の硫化カルボニルの製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20831279.3A EP3992146A4 (en) | 2019-06-27 | 2020-06-22 | PROCESS FOR THE PRODUCTION OF CARBONYLSULPHIDE |
KR1020217041219A KR20220030938A (ko) | 2019-06-27 | 2020-06-22 | 황화카르보닐의 제조 방법 |
JP2021526984A JPWO2020262319A1 (ja) | 2019-06-27 | 2020-06-22 | |
US17/596,626 US20220341044A1 (en) | 2019-06-27 | 2020-06-22 | Method of producing carbonyl sulfide |
CN202080034998.0A CN113811510A (zh) | 2019-06-27 | 2020-06-22 | 硫化羰的制造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-119959 | 2019-06-27 | ||
JP2019119959 | 2019-06-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020262319A1 true WO2020262319A1 (ja) | 2020-12-30 |
Family
ID=74060163
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/024447 WO2020262319A1 (ja) | 2019-06-27 | 2020-06-22 | 硫化カルボニルの製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20220341044A1 (ja) |
EP (1) | EP3992146A4 (ja) |
JP (1) | JPWO2020262319A1 (ja) |
KR (1) | KR20220030938A (ja) |
CN (1) | CN113811510A (ja) |
TW (1) | TWI843866B (ja) |
WO (1) | WO2020262319A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024070744A1 (ja) * | 2022-09-28 | 2024-04-04 | 日本ゼオン株式会社 | 硫化カルボニルの製造方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3409399A (en) | 1964-03-18 | 1968-11-05 | Thiokol Chemical Corp | Process for the preparation of carbonyl sulfide |
JPS52131993A (en) | 1976-04-28 | 1977-11-05 | Ihara Chem Ind Co Ltd | Production of carbonyl sulfide |
JPS615409B2 (ja) * | 1979-08-20 | 1986-02-18 | Ihara Chemical Ind Co | |
WO2004089824A1 (en) * | 2003-04-10 | 2004-10-21 | Winston David Fink | The manufacture of carbonyl sulphide |
WO2012144441A1 (ja) * | 2011-04-18 | 2012-10-26 | 昭和電工株式会社 | 硫化カルボニルの製造方法 |
US20120289439A1 (en) * | 2010-01-07 | 2012-11-15 | Carolus Matthias Anna Maria Mesters | Process for the manufacture of sulphide compounds |
JP2012224494A (ja) * | 2011-04-18 | 2012-11-15 | Showa Denko Kk | 硫化カルボニルの製造方法 |
JP2014020812A (ja) * | 2012-07-13 | 2014-02-03 | Taiyo Nippon Sanso Corp | ガス中の硫黄化合物の酸化方法及び硫黄化合物の分析装置 |
JP2018519414A (ja) * | 2015-04-16 | 2018-07-19 | サウジ アラビアン オイル カンパニーSaudi Arabian Oil Company | 二酸化炭素および硫化水素を共処理する方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4740632Y1 (ja) | 1969-05-30 | 1972-12-08 | ||
CN101289186B (zh) * | 2008-05-24 | 2011-06-15 | 孔庆然 | 一种生产二硫化碳的方法 |
KR100938435B1 (ko) * | 2009-06-15 | 2010-01-25 | (주)원익머트리얼즈 | 황화카보닐의 합성방법 및 합성반응장치 |
WO2011047179A2 (en) * | 2009-10-14 | 2011-04-21 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Plasma ashing compounds and methods of use |
CN101811698B (zh) * | 2009-12-24 | 2012-01-25 | 上海百金化工集团有限公司 | 一种生产二硫化碳的方法 |
CN108147411A (zh) * | 2017-04-14 | 2018-06-12 | 阳城县瑞兴化工有限公司 | 一种以碳氧化合物为原料制备二硫化碳的方法 |
CN108786665B (zh) * | 2018-05-25 | 2024-09-17 | 福建久策气体股份有限公司 | 羰基硫制备装置及使用方法 |
-
2020
- 2020-06-22 KR KR1020217041219A patent/KR20220030938A/ko active Search and Examination
- 2020-06-22 EP EP20831279.3A patent/EP3992146A4/en active Pending
- 2020-06-22 CN CN202080034998.0A patent/CN113811510A/zh active Pending
- 2020-06-22 WO PCT/JP2020/024447 patent/WO2020262319A1/ja active Application Filing
- 2020-06-22 US US17/596,626 patent/US20220341044A1/en not_active Abandoned
- 2020-06-22 JP JP2021526984A patent/JPWO2020262319A1/ja active Pending
- 2020-06-24 TW TW109121538A patent/TWI843866B/zh active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3409399A (en) | 1964-03-18 | 1968-11-05 | Thiokol Chemical Corp | Process for the preparation of carbonyl sulfide |
JPS52131993A (en) | 1976-04-28 | 1977-11-05 | Ihara Chem Ind Co Ltd | Production of carbonyl sulfide |
JPS615409B2 (ja) * | 1979-08-20 | 1986-02-18 | Ihara Chemical Ind Co | |
WO2004089824A1 (en) * | 2003-04-10 | 2004-10-21 | Winston David Fink | The manufacture of carbonyl sulphide |
US20120289439A1 (en) * | 2010-01-07 | 2012-11-15 | Carolus Matthias Anna Maria Mesters | Process for the manufacture of sulphide compounds |
WO2012144441A1 (ja) * | 2011-04-18 | 2012-10-26 | 昭和電工株式会社 | 硫化カルボニルの製造方法 |
JP2012224494A (ja) * | 2011-04-18 | 2012-11-15 | Showa Denko Kk | 硫化カルボニルの製造方法 |
JP2014020812A (ja) * | 2012-07-13 | 2014-02-03 | Taiyo Nippon Sanso Corp | ガス中の硫黄化合物の酸化方法及び硫黄化合物の分析装置 |
JP2018519414A (ja) * | 2015-04-16 | 2018-07-19 | サウジ アラビアン オイル カンパニーSaudi Arabian Oil Company | 二酸化炭素および硫化水素を共処理する方法 |
Non-Patent Citations (2)
Title |
---|
BEZUK STEVE J. ET AL.: "Reactions of carbonyl sulfide in a radio-frequency plasma", J.PHYS.CHEM., vol. 87, no. 1, January 1983 (1983-01-01), pages 131 - 136, XP055780958 * |
See also references of EP3992146A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024070744A1 (ja) * | 2022-09-28 | 2024-04-04 | 日本ゼオン株式会社 | 硫化カルボニルの製造方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3992146A4 (en) | 2023-07-19 |
JPWO2020262319A1 (ja) | 2020-12-30 |
TW202106621A (zh) | 2021-02-16 |
KR20220030938A (ko) | 2022-03-11 |
CN113811510A (zh) | 2021-12-17 |
EP3992146A1 (en) | 2022-05-04 |
US20220341044A1 (en) | 2022-10-27 |
TWI843866B (zh) | 2024-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220055901A1 (en) | Production of nitrogen oxides | |
EP2834208B1 (de) | Verfahren zur plasmatechnischen herstellung von acetylen | |
Bulychev et al. | Plasma discharge in liquid phase media under ultrasonic cavitation as a technique for synthesizing gaseous hydrogen | |
US20120090985A1 (en) | Non-equilibrium gliding arc plasma system for co2 dissociation | |
RU2011115430A (ru) | Способ получения углеродных нанотрубок и реактор (варианты) | |
WO2007010594A1 (ja) | 光触媒物質生成方法および光触媒物質生成装置 | |
JP7217056B2 (ja) | プラズマ相で対象ガス含有排出ガスを処理する方法及び装置 | |
WO2020262319A1 (ja) | 硫化カルボニルの製造方法 | |
WO2021241371A1 (ja) | モノフルオロメタンの製造方法 | |
Grooms et al. | Dual Tunability for Uncatalyzed N‐Alkylation of Primary Amines Enabled by Plasma‐Microdroplet Fusion | |
WO2016063302A2 (en) | Process for combustion of nitrogen for fertilizer production | |
US6326407B1 (en) | Hydrocarbon synthesis | |
TWI585040B (zh) | 製備純八氯三矽烷及十氯四矽烷之方法 | |
JP7516956B2 (ja) | 臭化水素の製造方法 | |
WO2024070744A1 (ja) | 硫化カルボニルの製造方法 | |
WO2012053656A1 (ja) | ポリクロロプロパンを製造するための連続バッチ反応方法 | |
JP5075899B2 (ja) | カルシウムシアナミドを含む粉体、該粉体の製造方法及びその装置 | |
WO2021241372A1 (ja) | モノフルオロメタンの製造方法 | |
JP2022184047A (ja) | フッ化炭化水素の製造方法 | |
JP6216733B2 (ja) | 有機酸の製造方法 | |
WO2022255120A1 (ja) | フッ化炭化水素の製造方法 | |
KR101489212B1 (ko) | 산화철(ⅲ) 촉매를 이용한 원자력 수소 생산공정으로부터 발생되는 삼산화황의 분해방법 | |
RU2588258C2 (ru) | Способ и устройство для производства ацетилена с использованием плазменной технологии | |
RU2177022C1 (ru) | Способ пиролиза природного газа в ацетилен энергией электрической дуги | |
RU2415185C1 (ru) | Способ получения металлического свинца |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20831279 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021526984 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2020831279 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2020831279 Country of ref document: EP Effective date: 20220127 |