WO2020262047A1 - 結晶化インジウムスズ複合酸化物膜、透明導電性フィルムおよびその製造方法 - Google Patents

結晶化インジウムスズ複合酸化物膜、透明導電性フィルムおよびその製造方法 Download PDF

Info

Publication number
WO2020262047A1
WO2020262047A1 PCT/JP2020/023276 JP2020023276W WO2020262047A1 WO 2020262047 A1 WO2020262047 A1 WO 2020262047A1 JP 2020023276 W JP2020023276 W JP 2020023276W WO 2020262047 A1 WO2020262047 A1 WO 2020262047A1
Authority
WO
WIPO (PCT)
Prior art keywords
indium tin
composite oxide
film
oxide film
transparent
Prior art date
Application number
PCT/JP2020/023276
Other languages
English (en)
French (fr)
Inventor
翔也 竹下
豪彦 安藤
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to JP2020552061A priority Critical patent/JP7509690B2/ja
Priority to KR1020217037014A priority patent/KR20220029549A/ko
Priority to CN202080046631.0A priority patent/CN114040842A/zh
Priority to TW109121069A priority patent/TW202105416A/zh
Publication of WO2020262047A1 publication Critical patent/WO2020262047A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/044Forming conductive coatings; Forming coatings having anti-static properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/06Coating with compositions not containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Definitions

  • the present invention relates to a crystallized indium tin oxide composite oxide film, a transparent conductive film and a method for producing the same, and more particularly to a crystallized indium tin oxide composite oxide film, a transparent conductive film including the same and a method for producing the same.
  • a transparent conductive film is provided with a transparent conductive film containing crystalline indium oxide as a main component on a transparent plastic film base material.
  • a crystalline transparent conductive film usually contains a plurality of crystal grains (grains).
  • a transparent conductive film having a thickness of 20 nm and an average crystal grain size (average grain size of grains) of 130 nm has been proposed (see, for example, Example 6 of Patent Document 1 below).
  • the transparent conductive film becomes thicker, the average crystal grain size becomes smaller. Then, there is a problem that the chemical resistance is lowered.
  • the present invention provides a transparent conductive film having low surface resistance and excellent chemical resistance, and a method for producing the same.
  • the present invention (1) includes a crystallized indium tin composite oxide film containing crystal grains having a thickness of 35 nm or more and an average particle size of 110 nm or more.
  • this crystallized indium tin composite oxide film has a thickness of 35 nm, it has a low surface resistance.
  • this crystallized indium tin composite oxide film contains crystal grains having a large average particle size of 110 nm or more, it is excellent in chemical resistance.
  • this crystallized indium tin composite oxide film has excellent chemical resistance while having low surface resistance.
  • the present invention (2) includes the crystallized indium tin composite oxide film according to (1), which includes a region in which the proportion of tin oxide is 8% by mass or more.
  • This crystallized indium tin composite oxide film can be lowered.
  • the present invention (3) is a transparent conductive film comprising a transparent film substrate and a crystallized indium tin composite oxide film according to (1) or (2), which is arranged on one surface in the thickness direction of the film substrate. Includes sex film.
  • this transparent conductive film includes the above-mentioned crystallized indium tin composite oxide film, it has excellent chemical resistance while having low surface resistance.
  • the present invention (4) includes the transparent conductive film according to (3), wherein one surface of the transparent film substrate in the thickness direction has an arithmetic mean roughness Ra of 1.0 nm or less.
  • the transparent conductive film since one side of the transparent film base material in the thickness direction has an arithmetic mean roughness Ra as small as 1.0 nm or less, amorphous indium is arranged on one side of the transparent film base material in the thickness direction. Inhibition of crystal growth can be suppressed in the tin composite oxide film. Therefore, it is possible to form crystal grains having a large average particle size in the crystallized indium tin composite oxide film. As a result, the crystallized indium tin composite oxide film of the transparent conductive film has excellent chemical resistance.
  • the present invention (5) is a method for producing a transparent conductive film according to (2) or (3), in which uncrystallized indium tin oxide is sputtered on one surface of the transparent film substrate in the thickness direction.
  • the first step of forming the composite oxide film and the second step of heating the non-crystallized indium tin composite oxide film to form the crystallized indium tin composite oxide film are provided.
  • a method for producing a transparent conductive film which comprises performing sputtering in the presence of an inert gas having a partial pressure of 0.4 Pa or more.
  • sputtering is performed in the presence of an inert gas having a high partial pressure of 0.4 Pa or more, so that crystal grains having a large average particle size can be formed.
  • an inert gas having a high partial pressure of 0.4 Pa or more so that crystal grains having a large average particle size can be formed.
  • the crystallized indium tin composite oxide film obtained by the production method of the present invention has low surface resistance and excellent chemical resistance.
  • FIG. 1 is a cross-sectional view of an embodiment of the crystallized indium tin composite oxide film and the transparent conductive film of the present invention.
  • FIG. 2 is a cross-sectional view of a modified example of the transparent conductive film shown in FIG. 3A to 3B are image processing diagrams of SEM photographs in the evaluation of Examples, FIG. 3A shows Example 1 and FIG. 3B shows Comparative Example 2.
  • This crystallized indium tin composite oxide film has one side and the other side facing each other in the thickness direction.
  • the crystallized indium tin composite oxide film has a film shape extending in the plane direction orthogonal to the thickness direction.
  • the thickness of the crystallized indium tin composite oxide film is 35 nm or more. If the thickness of the crystallized indium tin composite oxide film is less than the above lower limit, the surface resistance of the crystallized indium tin composite oxide film cannot be lowered.
  • the thickness of the crystallized indium tin composite oxide film is preferably 38 nm or more, more preferably 40 nm or more, still more preferably 45 nm or more, particularly preferably 50 nm or more, most preferably 55 nm or more, and further 60 nm. As mentioned above, 70 nm or more, 80 nm or more, 100 nm or more, 125 nm or more, and 150 nm or more are preferable. When the thickness of the crystallized indium tin composite oxide film is at least the above-mentioned lower limit, the surface resistance of the crystallized indium tin composite oxide film can be sufficiently lowered.
  • the upper limit of the thickness of the crystallized indium tin composite oxide film is not particularly limited from the viewpoint of reducing the surface resistance of the crystallized indium tin composite oxide film.
  • the thickness of the crystallized indium tin composite oxide film is usually 1000 nm or less, and 500 nm or less.
  • This crystallized indium tin composite oxide film contains crystal grains (grains).
  • a plurality of crystal grains are present in the crystallized indium tin composite oxide film. Further, the plurality of crystal grains are present, for example, over the entire plane direction and the entire thickness direction of the crystallized indium tin composite oxide film.
  • Each of the plurality of crystal grains is partitioned by a grain boundary (see reference numeral 10 in FIG. 3A).
  • the average particle size of the crystal grains is 110 nm or more.
  • the average grain size of the crystal grains is the average grain size of the crystal grains when one side of the crystallized indium tin composite oxide film in the thickness direction is observed by SEM, and the details of the measurement method will be described in the later Examples. Will be detailed in.
  • the occupancy rate of the crystal grain boundaries 10 in the crystallized indium tin composite oxide film 1 per unit area is excessively increased. Then, when one surface of the crystallized indium tin oxide composite oxide film 1 in the thickness direction is exposed to a liquid chemical and the grain boundary 10 described above becomes the entrance of the chemical invasion path, the occupancy of this inlet per unit area. Since the rate also increases, the chemical resistance is significantly reduced.
  • the average particle size of the crystal grains is preferably 130 nm or more, more preferably 150 nm or more, still more preferably 170 nm or more, particularly preferably 200 nm or more, most preferably 250 nm or more, further 300 nm or more, 400 nm or more. , 450 nm or more is preferable.
  • the average particle size of the crystal grains is at least the above lower limit, the decrease in chemical resistance of the crystallized indium tin composite oxide film can be sufficiently suppressed.
  • ITO crystalline indium tin oxide composite oxide
  • ITO is a composite oxide containing indium (In) and tin (Sn) as essential components. Specifically, ITO contains tin oxide (SnO 2 ) and indium oxide (In 2 O 3 ) as main components.
  • the content ratio of tin oxide is, for example, 0.5% by mass or more, preferably 3% by mass or more, more preferably 5% by mass or more, still more preferably 8 with respect to the total amount of tin oxide and indium oxide.
  • mass or more particularly preferably 9% by mass or more, and for example, 20% by mass or less, preferably 15% by mass or less.
  • the tin oxide content is equal to or higher than the above lower limit, the surface resistance of the crystallized indium tin composite oxide film can be lowered.
  • the content ratio of tin oxide is not more than the above upper limit, the crystallized indium tin composite oxide film is excellent in strength.
  • the content ratio of indium oxide is the balance of the content ratio of tin oxide in the above total amount.
  • ITO is an additional component other than the main component (essential component), specifically, Zn, Ga, Sb, Ti, Si, Zr, Mg, Al, Au, Ag, Cu, Pd, W, Fe, Pb. , Ni, Nb, Cr, Ga and the like can also be included.
  • the crystallized indium tin composite oxide film can include a region in which the proportion of tin oxide is 8% by mass or more.
  • the crystallized indium tin oxide composite oxide film contains a region in which the proportion of tin oxide is 8% by mass or more, the surface resistance of the crystallized indium tin oxide composite oxide film can be reduced.
  • the first region (see reference numeral 11) as an example of a region in which the proportion of tin oxide is 8% by mass or more, and tin oxide lower than the proportion of tin oxide in the first region.
  • a second region (see reference numeral 12), which is a ratio of the above, is included.
  • the crystallized indium tin composite oxide film sequentially includes a layered first region and a layered second region arranged on one surface in the thickness direction of the first region. It should be noted that the boundary between the first region and the second region is not confirmed by observation with a measuring device, and it is permissible that the boundary is unclear.
  • the crystallized indium tin oxide composite oxide film may have a concentration gradient in which the tin oxide concentration gradually increases from one surface in the thickness direction to the other surface.
  • a desired crystallization rate can be obtained by adjusting the ratio of that region.
  • the proportion of tin oxide in the first region is preferably 9% by mass or more, more preferably 10% by mass or more, and 20% by mass or less.
  • the ratio of the thickness of the first region to the thickness of the crystallized indium tin composite oxide film is, for example, more than 50%, preferably 70% or more, more preferably 80% or more, still more preferably 90% or more. ..
  • the ratio of the thickness of the first region is equal to or higher than the above lower limit, the ratio of tin oxide in the crystallized indium tin oxide composite oxide film can be increased, and therefore the surface resistance of the crystallized indium tin oxide composite oxide film is sufficiently low. it can.
  • the ratio of the thickness of the first region to the thickness of the crystallized indium tin composite oxide film is, for example, 99% or less, preferably 97% or less.
  • the proportion of tin oxide in the second region is, for example, less than 8% by mass, preferably 7% by mass or less, more preferably 5% by mass or less, still more preferably 4% by mass or less, and for example, 1. By mass or more, preferably 2% by mass or more, more preferably 3% by mass or more.
  • the ratio of the ratio of tin oxide in the first region to the ratio of tin oxide in the second region is, for example, 1.5 or more, preferably 1.5 or more. 2, 2 or more, more preferably 2.5 or more, and for example, 5 or less, preferably 4 or less.
  • the tin oxide concentration in each of the crystallized indium tin composite oxide film, the first region and the second region is measured by X-ray photoelectron spectroscopy.
  • the tin oxide content can be estimated from the target component (known) used when forming the amorphous indium tin composite oxide film by sputtering.
  • the surface resistance of the crystallized indium tin composite oxide film is, for example, 60 ⁇ / ⁇ or less, preferably 50 ⁇ / ⁇ or less, more preferably 45 ⁇ / ⁇ or less, still more preferably 40 ⁇ / ⁇ or less, and particularly preferably. It is 30 ⁇ / ⁇ or less, most preferably 20 ⁇ / ⁇ or less.
  • the lower limit of the surface resistance of the crystallized indium tin composite oxide film is not particularly limited.
  • the surface resistance of the crystallized indium tin composite oxide film is usually 0 ⁇ / ⁇ or more, and 1 ⁇ / ⁇ or more.
  • the surface resistance of the crystallized indium tin composite oxide layer 7 is measured by the four-terminal method.
  • the arithmetic mean roughness Ra of the other surface in the thickness direction of the crystallized indium tin oxide composite oxide film is such that the other surface in the thickness direction of the crystallized indium tin oxide composite oxide film is the thickness direction of the transparent film substrate described below. Since it closely follows the direction, it is the same as, for example, the arithmetic mean roughness Ra of the other surface in the thickness direction of the transparent film base material.
  • the arithmetic mean roughness Ra of the other surface of the crystallized indium tin composite oxide film in the thickness direction is, for example, 2 nm or less, preferably 1 nm or less, more preferably 0.75 nm or less, still more preferably. It is 0.5 nm or less, and is, for example, 0.001 nm or more.
  • the transparent conductive film 3 has a film shape extending in the plane direction.
  • the transparent conductive film 3 includes a transparent film base material 2 and a crystallized indium tin composite oxide film 1 in order toward one side in the thickness direction.
  • the transparent conductive film 3 includes a transparent film base material 2 and a crystallized indium tin composite oxide film 1 arranged on one surface in the thickness direction of the transparent film base material 2.
  • the transparent conductive film 3 includes only the transparent film base material 2 and the crystallized indium tin composite oxide film 1.
  • the transparent film base material 2 forms the outer shape of the transparent conductive film 3.
  • the transparent film base material 2 is transparent.
  • the transparent film base material 2 includes, for example, an anti-blocking layer 5, a transparent film 6, a hard coat layer 7, and an optical adjustment layer 8 in this order toward one side in the thickness direction.
  • the transparent film base material 2 includes an anti-blocking layer 5, a transparent film 6 arranged on one side in the thickness direction of the anti-blocking layer 5, a hard coat layer 7 arranged on one side in the thickness direction of the transparent film 6, and hard.
  • An optical adjustment layer 8 arranged on one surface in the thickness direction of the coat layer 7 is provided.
  • the transparent film substrate 2 includes only an anti-blocking layer 5, a transparent film 6, a hard coat layer 7, and an optical adjustment layer 8.
  • the anti-blocking layer 5 imparts blocking resistance to the respective surfaces of the plurality of transparent conductive films 3 in contact with each other when the transparent conductive films 3 are laminated in the thickness direction.
  • the material of the anti-blocking layer 5 is, for example, an anti-blocking composition.
  • the anti-blocking composition include the mixture described in JP-A-2016-179686.
  • the mixture contains, for example, a resin such as an acrylic resin (binder resin) and inorganic and / or organic particles (preferably organic particles such as polystyrene).
  • the thickness of the anti-blocking layer 5 is, for example, 0.1 ⁇ m or more, and for example, 10 ⁇ m or less.
  • the transparent film 6 is an essential layer in the transparent film base material 2.
  • the transparent film 6 is a transparent base material for ensuring the mechanical strength of the transparent conductive film 3.
  • the transparent film 6 has a film shape and extends in the plane direction.
  • the transparent film 6 is in contact with one surface of the anti-blocking layer 5 in the thickness direction.
  • the material of the transparent film 6 include resins such as cycloolefin resin (COP) and polyester resin (polyethylene terephthalate (PET) and the like).
  • COP cycloolefin resin
  • PET polyethylene terephthalate
  • the transparent film 6 has isotropic or birefringent properties.
  • the transparent film base material 2 preferably has isotropic properties.
  • the birefringence of the transparent film substrate 2 in the in-plane direction is, for example, 100 or less, preferably 50 or less, and 0 or more, for example.
  • the thickness of the transparent film 6 is, for example, 10 ⁇ m or more, and 100 ⁇ m or less, for example.
  • the hard coat layer 7 is a scratch protection layer for making it difficult for the transparent conductive film 3 to be scratched.
  • the hard coat layer 7 is in contact with one surface of the transparent film 6 in the thickness direction.
  • the material of the hard coat layer 7 is, for example, a hard coat composition.
  • Examples of the hard coat composition include the mixture described in JP-A-2016-179686.
  • the mixture contains, for example, a resin (binder resin) such as an acrylic resin or a urethane resin.
  • the thickness of the hard coat layer 3 is, for example, 0.1 ⁇ m or more, and for example, 10 ⁇ m or less.
  • the optical adjustment layer 8 is a layer that suppresses the visibility of the pattern formed from the crystallized indium tin composite oxide film 1 and adjusts the optical physical characteristics (specifically, the refractive index) of the transparent conductive film 3. ..
  • the optical adjustment layer 8 is in contact with one surface of the hard coat layer 7 in the thickness direction.
  • the material of the optical adjustment layer 8 is, for example, an optical adjustment composition.
  • Examples of the optical adjustment composition include the mixture described in JP-A-2016-179686.
  • the mixture contains, for example, a resin such as an acrylic resin (binder resin) and inorganic and / or organic particles (preferably inorganic particles such as zirconia).
  • the thickness of the optical adjustment layer 8 is, for example, 0.05 ⁇ m or more, and is, for example, 1 ⁇ m or less.
  • the arithmetic average roughness Ra of one surface of the optical adjustment layer 8 in the thickness direction is, for example, 2 nm or less, preferably 1 nm or less, more preferably 0.75 nm or less, still more preferably 0.5 nm or less, and also. For example, it is 0.001 nm or more.
  • the arithmetic mean roughness Ra of one surface of the optical adjustment layer 8 in the thickness direction is determined according to JIS B0681-6 (2017).
  • the thickness of the transparent film base material 2 is, for example, 10 ⁇ m or more, and for example, 100 ⁇ m or less.
  • the total light transmittance of the transparent film substrate 2 is, for example, 80% or more, preferably 90% or more, and 99% or less, for example.
  • the arithmetic average roughness Ra on one side of the transparent film base material 2 in the thickness direction is the same as the arithmetic average roughness Ra of the optical adjustment layer 8 described above.
  • the amorphous indium tin oxide composite oxide film is heated to form the crystallized indium tin oxide composite oxide film 1.
  • the surface of the transparent film base material 2 in contact with one surface in the thickness direction that is, the growth of crystal grains from the other surface in the thickness direction of the amorphous indium tin oxide composite oxide film to one side in the thickness direction is promoted. Can be done. Therefore, the average particle size of the crystal grains can be increased.
  • the crystallized indium tin composite oxide film 1 is in contact with one surface of the transparent film base material 2 in the thickness direction.
  • One surface of the crystallized indium tin composite oxide film 1 in the thickness direction is exposed toward one side in the thickness direction.
  • the other surface of the crystallized indium tin composite oxide film 1 in the thickness direction is in close contact (contact) with one surface of the transparent film base material 2 in the thickness direction.
  • the arithmetic mean roughness Ra on the other surface of the crystallized indium tin composite oxide film 1 in the thickness direction is, for example, 2 nm or less, preferably 1 nm or less, more preferably 0.75 nm or less, still more preferably. , 0.5 nm or less, and for example, 0.001 nm or more.
  • the thickness of the transparent conductive film 3 is, for example, 15 ⁇ m or more, and 120 ⁇ m or less, for example.
  • the total light transmittance of the transparent conductive film 3 is, for example, 80% or more, preferably 90% or more, and 99% or less, for example.
  • the method for producing the transparent conductive film 3 includes a first step of forming an uncrystallized indium tin oxide composite oxide film by sputtering on one surface of the transparent film base material 2 in the thickness direction, and a non-crystallized indium tin oxide composite oxidation. It includes a second step of heating the material film to form the crystallized indium tin oxide composite oxide film 1. Further, in this manufacturing method, each layer is arranged in order by, for example, a roll-to-roll method.
  • the transparent film base material 2 is prepared.
  • the hard coat layer 7, the anti-blocking layer 5, and the optical adjustment layer 8 are arranged on the transparent film 6.
  • each of the diluted solution of the hard coat composition and the diluted solution of the anti-blocking composition is applied to both sides of the transparent film 6 in the thickness direction, and after drying, the hard coat composition is irradiated with ultraviolet rays. And cure each of the anti-blocking compositions.
  • the hard coat layer 7 and the anti-blocking layer 5 are formed on both sides of the transparent film 6 in the thickness direction.
  • a diluted solution of the optical adjustment composition is applied to one surface of the hard coat layer 7 in the thickness direction, and after drying, the optical adjustment composition is cured by irradiation with ultraviolet rays.
  • the optical adjustment layer 8 is formed.
  • the transparent film base material 2 which is a laminated film including the anti-blocking layer 5, the transparent film 6, the hard coat layer 7, and the optical adjusting layer 8 in order toward one side in the thickness direction is prepared.
  • sputtering is performed on one surface of the transparent film base material 2 in the thickness direction.
  • a sputtering apparatus sputtering is performed in the presence of an inert gas while facing one side of the transparent film base material 2 in the thickness direction to a target made of an indium tin composite oxide.
  • a reactive gas such as oxygen may be present.
  • the inert gas examples include a rare gas such as argon.
  • the partial pressure of the inert gas in the sputtering apparatus is, for example, 0.1 Pa or more, preferably 0.3 Pa or more, more preferably 0.5 Pa or more, still more preferably 0.55 Pa or more, and for example. It is 10 Pa or less. If the partial pressure of the inert gas is equal to or greater than the above lower limit, the energy of the atoms of the inert gas in sputtering becomes low. Then, the amorphous indium tin composite oxide film can suppress the uptake of atoms of the inert gas. As a result, the growth of crystal grains can be promoted. As a result, the average particle size of the crystal grains can be increased.
  • the pressure in the sputtering apparatus is the total pressure of the partial pressure of the inert gas and the partial pressure of the reactive gas.
  • the first target and the second target having different tin oxide concentrations can be arranged in order in the sputtering apparatus along the transport direction of the transparent film base material 2.
  • the material of the first target is, for example, ITO (SnO 2 concentration: 8% by mass or more) in the above-mentioned first region.
  • the material of the second target is, for example, ITO (SnO 2 concentration: less than 8% by mass) in the above-mentioned second region.
  • an amorphous indium tin composite oxide film is formed on one surface of the transparent film base material 2 in the thickness direction.
  • the amorphous indium tin composite oxide films have tin oxide concentrations of each other.
  • Different first amorphous layers and second amorphous layers are provided in order toward one side in the thickness direction.
  • the materials of the first amorphous layer and the second amorphous layer are the same as the materials of the first target and the second target, respectively.
  • the SnO 2 concentration in ITO of the first amorphous layer is, for example, 8% by mass or more.
  • the SnO 2 concentration in ITO of the second amorphous layer is, for example, less than 8% by mass.
  • the ratio of the thickness of the first amorphous layer to the thickness of the amorphous indium tin composite oxide film is, for example, more than 50%, preferably 70% or more, more preferably 80% or more, still more preferably 90. % Or more.
  • the ratio of the thickness of the first amorphous layer to the thickness of the crystallized indium tin composite oxide film is, for example, 99% or less, preferably 97% or less.
  • This amorphous indium tin composite oxide film has not yet been crystallized, that is, it is not the crystallized indium tin composite oxide film of the present invention.
  • the amorphous indium tin oxide composite oxide film is a precursor film (intermediate material) for obtaining a crystallized indium tin oxide composite oxide film.
  • the amorphous laminated film is heated.
  • the amorphous indium tin composite oxide film is heated by a heating device such as an infrared heater or an oven.
  • the heating conditions are not particularly limited.
  • the heating temperature is, for example, 90 ° C. or higher, preferably 110 ° C. or higher, and for example, 160 ° C. or lower, preferably 140 ° C. or lower.
  • the heating time is, for example, 30 minutes or more, more preferably 60 minutes or more, and for example, 5 hours or less, preferably 3 hours or less.
  • the amorphous indium tin oxide composite oxide layer is crystallized, and the crystallized indium tin oxide composite oxide film 1 containing a plurality of crystal grains is formed.
  • the crystallized indium tin composite oxide film 1 includes the first amorphous layer and It includes a first layer 11 and a second region 12 corresponding to each of the second amorphous layers.
  • this crystallized indium tin composite oxide film 1 contains crystal grains having a thickness of 35 nm or more and an average particle size of 110 nm or more.
  • the transparent conductive film 3 provided with the transparent film base material 2 and the crystallized indium tin composite oxide film 1 is produced.
  • the transparent conductive film 3 is patterned with the crystallized indium tin composite oxide film 1 by, for example, etching.
  • the patterned crystallized indium tin composite oxide film 1 is used for electrodes such as touch panels (touch sensors).
  • this crystallized indium tin composite oxide film 1 has a thickness of 35 nm, it has a low surface resistance.
  • this crystallized indium tin composite oxide film contains crystal grains having a large average particle size of 110 nm or more, it is excellent in chemical resistance.
  • the crystallized indium tin composite oxide film 1 of the transparent conductive film 3 is excellent in chemical resistance.
  • the crystallized indium tin oxide composite oxide film 1 contains the first region 11 in which the proportion of tin oxide is 8% by mass or more, the surface resistance of the crystallized indium tin oxide composite oxide film 1 can be lowered.
  • the transparent conductive film 3 includes the crystallized indium tin composite oxide film 1 described above, it has excellent chemical resistance while having low surface resistance.
  • the transparent film base material 2 in the thickness direction has an arithmetic average roughness Ra as small as 1.0 nm or less, the transparent film base material 2 is arranged on one side in the thickness direction. It is possible to form crystal grains having a large average particle size in the crystallized indium tin oxide composite oxide film 1 by suppressing the inhibition of crystal growth of the amorphous indium tin oxide composite oxide film. As a result, the transparent conductive film has excellent chemical resistance.
  • the transparent conductive film 3 In the first step of the method for producing the transparent conductive film 3, if sputtering is performed in the presence of an inert gas having a high partial pressure of 0.4 Pa or more, the average particle size of the crystallized indium tin composite oxide film 1 is increased. Large crystal grains can be formed. As a result, the transparent conductive film 3 provided with the crystallized indium tin composite oxide film 1 having excellent chemical resistance can be produced.
  • the crystallized indium tin oxide composite oxide film does not include the second region in which the proportion of tin oxide is less than 8% by mass, and may include only the first region in which the proportion of tin oxide is 8% by mass or more.
  • the transparent film base material 2 is not particularly limited as long as it includes the transparent film 6.
  • the first aspect in which the transparent film base material 2 includes only the transparent film 6, for example, the transparent film base material 2 is a group consisting of the transparent film 6, an anti-blocking layer 5, a hard coat layer 7, and an optical adjustment layer 8.
  • a second aspect (total of two layers) including one layer selected from, for example, the transparent film base material 2 comprises a transparent film 6, an anti-blocking layer 5, a hard coat layer 7, and an optical adjustment layer 8.
  • a third aspect (all three layers) comprising two layers selected from the group is included in the present invention.
  • the transparent film base material 2 does not include the hard coat layer 7 (see FIG. 1), and has an anti-blocking layer 5, a transparent film 6, and optics. Only the adjusting layer 8 is provided.
  • Examples and comparative examples are shown below, and the present invention will be described in more detail.
  • the present invention is not limited to Examples and Comparative Examples.
  • specific numerical values such as the compounding ratio (content ratio), physical property values, and parameters used in the following description are the compounding ratios corresponding to those described in the above-mentioned "Form for carrying out the invention".
  • Content ratio can be replaced with the upper limit (numerical value defined as “less than or equal to” or “less than”) or lower limit (numerical value defined as "greater than or equal to” or “excess”). it can.
  • Example 1 First, a transparent film 6 made of a cycloolefin resin (COP film, thickness 40 ⁇ m, manufactured by Nippon Zeon Co., Ltd., “ZEONOR” (registered trademark), in-plane birefringence 0.0001) was prepared.
  • COP film thickness 40 ⁇ m, manufactured by Nippon Zeon Co., Ltd., “ZEONOR” (registered trademark), in-plane birefringence 0.0001
  • a diluent of a hard coat composition made of a binder resin (urethane polyfunctional polyacrylate, trade name "UNIDIC”, manufactured by DIC) is applied to one surface of the transparent film 6 in the thickness direction, and the thickness of the transparent film 6 is increased.
  • Binder resin (urethane polyfunctional polyacrylate, trade name "UNIDIC”, manufactured by DIC) and particles (crosslinked acrylic / styrene resin particles, trade name "SSX105", diameter 3 ⁇ m, manufactured by Sekisui Resin Co., Ltd.) are placed on the other side of the direction.
  • a diluted solution of the contained anti-blocking composition was applied, and then these were dried, and then ultraviolet rays were irradiated to both sides of the transparent film 6 in the thickness direction to cure the hard coat composition and the anti-blocking composition.
  • a hard coat layer 7 having a thickness of 1 ⁇ m was formed on one surface of the transparent film 6, and an anti-blocking layer 5 having a thickness of 1 ⁇ m was formed on the other surface of the transparent film 6 in the thickness direction.
  • an optical adjustment composition containing zirconia particles and an ultraviolet curable resin (acrylic resin) on one surface of the hard coat layer in the thickness direction (“Opstar Z7412”, manufactured by JSR Corporation, refractive index 1.62). was applied, dried at 80 ° C. for 3 minutes, and then irradiated with ultraviolet rays.
  • an optical adjustment layer 8 having a thickness of 0.1 ⁇ m was formed on one surface of the hard coat layer 7 in the thickness direction.
  • a laminated film composed of an anti-blocking layer 5, a transparent film 6, a hard coat layer 7, and an optical adjustment layer 8 was obtained as the transparent film base material 2.
  • an amorphous indium tin composite oxide layer 1 having a thickness of 39.7 nm was formed on one surface of the optical adjustment layer 8 in the thickness direction by sputtering.
  • a transparent film base material is provided with a first target made of ITO having a tin oxide concentration of 10% by weight and a second target made of ITO having a tin oxide concentration of 3.3% by weight in a sputtering apparatus. 2 was arranged in order from the upstream side to the downstream side in the transport direction. Then, the ratio of the thickness of the first amorphous layer and the ratio of the thickness of the second amorphous layer in the amorphous indium tin composite oxide film are 95% and 5%, respectively. , Sputtered.
  • the amorphous indium tin composite oxide film has a first amorphous layer (tin oxide concentration 10% by mass) and a second amorphous layer (tin oxide concentration 3.3% by mass) on one side in the thickness direction. Including in order toward.
  • the argon partial pressure in the sputtering apparatus was adjusted to 0.35 Pa by adjusting the argon flow rate during sputtering.
  • the pressure in the sputtering apparatus was 0.42 Pa.
  • an amorphous laminated film including an anti-blocking layer 5, a transparent film 6, a hard coat layer 7, an optical adjustment layer 8, and an amorphous indium tin composite oxide layer was produced in this order.
  • the amorphous laminated film was heated at 130 ° C. for 90 minutes to crystallize the amorphous indium tin oxide composite oxide layer to prepare a crystallized indium tin oxide composite oxide film 1.
  • a transparent conductive film 3 including an anti-blocking layer 5, a transparent film 6, a hard coat layer 7, an optical adjustment layer 8, and a crystallized indium tin composite oxide film 1 was produced.
  • the crystallized indium tin composite oxide film 1 contained the first region 11 and the second region 12 caused by the first amorphous layer and the second amorphous layer, respectively.
  • Comparative Example 1 to Comparative Example 2 The treatment was carried out in the same manner as in Example 1 except that the formulation was changed according to the description in Table 1.
  • Example 2 The treatment was carried out in the same manner as in Example 1 except that the optical adjustment layer 8 having a thickness of 0.7 ⁇ m was formed in place of the hard coat layer 7 and the optical adjustment layer 8 of Example 1.
  • the transparent film base material 2 does not include the hard coat layer 7, but includes the anti-blocking layer 5, the transparent film 6, and the optical adjustment layer 8 in this order.
  • the optical adjustment layer 8 is a diluted solution of an optical adjustment composition containing zirconia particles, silica particles and an ultraviolet curable resin (acrylic resin) (“TYZ72-A12” manufactured by Toyochem Co., Ltd., refractive index 1.72). was applied to one surface of the transparent film 6 in the thickness direction, dried at 80 ° C. for 3 minutes, and then irradiated with ultraviolet rays.
  • an ultraviolet curable resin acrylic resin
  • Example 3 to Example 6 The treatment was carried out in the same manner as in Example 2 except that the formulation was changed according to the description in Table 1.
  • Example 7 The sputtering apparatus was not provided with the second target, and the treatment was carried out in the same manner as in Example 2 except that the formulation was changed according to the description in Table 1.
  • the amorphous indium tin composite oxide film does not contain the second amorphous layer, but contains the first amorphous layer.
  • the crystallized indium tin composite oxide film 1 did not contain the second region 12, but contained the first region 11.
  • a plurality of polygonal particles recognized by SEM observation are defined as ITO crystal grains. Then, the area of each of the plurality of crystal grains was determined. The average value obtained by doubling the square root of the value obtained by dividing the area of each crystal grain by the circumference ratio ( ⁇ ) was calculated as the average particle size of the crystal grains.
  • the particle size is 20 nm or more, and a plurality of crystal grains that do not protrude from the visual field image (that is, the entire (all) of the crystal grains fit within the visual field image). Only the area and number of crystal grains were used in the calculation of the average value, and the average value obtained as a result was defined as the "average particle size of crystal grains".
  • the equipment and measurement conditions are as follows.
  • SEM device Scanning electron microscope SU8020 manufactured by Hitachi High-Technologies Acceleration voltage: 0.8kV
  • the image processing diagram of the SEM photograph of Example 1 is shown in FIG. 3A
  • the image processing diagram of the SEM photograph of Comparative Example 2 is shown in FIG. 3B.
  • the transparent conductive film 3 was immersed in a 16 mass% ammonium persulfate aqueous solution at 20 ° C. for 5 minutes. Then, it was immersed in a 3 mass% potassium hydroxide aqueous solution at 30 ° C. for 20 minutes.
  • the arithmetic mean roughness Ra of one side of the transparent conductive film 3, that is, the transparent film base material 2 in the thickness direction before forming the amorphous indium tin composite oxide film is determined according to JIS B0681-6 (2017). It was determined using an atomic force microscope (Nonoscape IV, manufactured by Digital Instruments). A range (field image) of 1 ⁇ m ⁇ 1 ⁇ m was observed with an atomic force microscope on one surface of the transparent film base material 2 in the thickness direction.
  • the content ratio of tin oxide in the uncrystallized indium tin oxide composite oxide film is assumed that there is no change in the tin oxide concentration in the conversion from the uncrystallized indium tin oxide composite oxide film to the crystallized indium tin oxide composite oxide film.
  • the crystallized indium tin composite oxide film is provided in the transparent conductive film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

結晶化インジウムスズ複合酸化物膜1は、35nm以上の厚みを有する。結晶化インジウムスズ複合酸化物膜1は、平均粒径が110nm以上である結晶粒を含有する。

Description

結晶化インジウムスズ複合酸化物膜、透明導電性フィルムおよびその製造方法
 本発明は、結晶化インジウムスズ複合酸化物膜、透明導電性フィルムおよびその製造方法に関し、詳しくは、結晶化インジウムスズ複合酸化物膜、それを備える透明導電性フィルムおよびその製造方法に関する。
 従来、透明導電性フィルムは、透明プラスチックフィルム基材の上に、結晶質の酸化インジウムを主成分とする透明導電膜を備えることが知られている。結晶質の透明導電膜は、通常、複数の結晶粒(グレイン)を含有する。
 例えば、厚みが20nm、平均結晶粒径(グレインの平均粒径)が130nmである透明導電膜が提案されている(例えば、下記特許文献1の実施例6参照。)。
特開2010-28275号公報
 近年、透明導電膜には、より低い表面抵抗が求められる。そのため、透明導電膜を厚くすることが試案される。
 しかし、透明導電膜が厚くなると、平均結晶粒径が小さくなる。そうすると、耐薬品性が低下するという不具合がある。
 本発明は、低い表面抵抗を有しながら、耐薬品性に優れる透明導電性フィルムおよびその製造方法を提供する。
 本発明(1)は、35nm以上の厚みを有し、平均粒径が110nm以上である結晶粒を含有する、結晶化インジウムスズ複合酸化物膜を含む。
 この結晶化インジウムスズ複合酸化物膜は、厚みが35nmと厚いので、低い表面抵抗を有する。
 また、この結晶化インジウムスズ複合酸化物膜は、110nm以上と大きい平均粒径である結晶粒を含有するので、耐薬品性に優れる。
 そのため、この結晶化インジウムスズ複合酸化物膜は、低い表面抵抗を有しながら、耐薬品性に優れる。
 本発明(2)は、酸化スズの割合が8質量%以上である領域を含む、(1)に記載の結晶化インジウムスズ複合酸化物膜を含む。
 この結晶化インジウムスズ複合酸化物膜の表面抵抗を低くできる。
 本発明(3)は、透明フィルム基材と、前記フィルム基材の厚み方向一方面に配置され、(1)または(2)に記載の結晶化インジウムスズ複合酸化物膜とを備える、透明導電性フィルムを含む。
 この透明導電性フィルムは、上記した結晶化インジウムスズ複合酸化物膜を備えるので、低い表面抵抗を有しながら、耐薬品性に優れる。
 本発明(4)は、前記透明フィルム基材の前記厚み方向一方面は、1.0nm以下の算術平均粗さRaを有する、(3)に記載の透明導電性フィルムを含む。
 この透明導電性フィルムでは、透明フィルム基材の厚み方向一方面が、1.0nm以下と小さい算術平均粗さRaを有するので、透明フィルム基材の厚み方向一方面に配置される非晶質インジウムスズ複合酸化物膜において結晶成長の阻害を抑制できる。そのため、結晶化インジウムスズ複合酸化物膜において平均粒径が大きい結晶粒を形成することができる。その結果、透明導電性フィルムの結晶化インジウムスズ複合酸化物膜は、耐薬品性に優れる。
 本発明(5)は、(2)または(3)に記載の透明導電性フィルムを製造する方法であり、前記透明フィルム基材の前記厚み方向一方面にスパッタリングすることにより、非晶化インジウムスズ複合酸化物膜を形成する第1工程と、前記非晶化インジウムスズ複合酸化物膜を加熱して、結晶化インジウムスズ複合酸化物膜を形成する第2工程とを備え、前記第1工程では、分圧0.4Pa以上の不活性ガスの存在下で、スパッタリングを実施する、透明導電性フィルムの製造方法を含む。
 この透明導電性フィルムの製造方法の第1工程では、0.4Pa以上と高い分圧の不活性ガスの存在下で、スパッタリングするので、平均粒径が大きい結晶粒を形成することができる。その結果、耐薬品性に優れる結晶化インジウムスズ複合酸化物膜を備える透明導電性フィルムを製造することができる。
 本発明の製造方法により得られる結晶化インジウムスズ複合酸化物膜は、低い表面抵抗を有しながら、耐薬品性に優れる。
図1は、本発明の結晶化インジウムスズ複合酸化物膜および透明導電性フィルムの一実施形態の断面図である。 図2は、図1に示す透明導電性フィルムの変形例の断面図である。 図3A~図3Bは、実施例の評価におけるSEM写真の画像処理図であり、図3Aが実施例1、図3Bが比較例2を示す。
 <一実施形態>
 [結晶化インジウムスズ複合酸化物膜]
 本発明の結晶化インジウムスズ複合酸化物膜の一実施形態を説明する。
 この結晶化インジウムスズ複合酸化物膜は、厚み方向に対向する一方面および他方面を有する。結晶化インジウムスズ複合酸化物膜は、厚み方向に直交する面方向に延びる膜形状を有する。
 結晶化インジウムスズ複合酸化物膜の厚みは、35nm以上である。結晶化インジウムスズ複合酸化物膜の厚みが上記下限を下回れば、結晶化インジウムスズ複合酸化物膜の表面抵抗を低くすることができない。
 結晶化インジウムスズ複合酸化物膜の厚みは、好ましくは、38nm以上、より好ましくは、40nm以上、さらに好ましくは、45nm以上、とりわけ好ましくは、50nm以上、最も好ましくは、55nm以上、さらには、60nm以上、70nm以上、80nm以上、100nm以上、125nm以上、150nm以上が好適である。結晶化インジウムスズ複合酸化物膜の厚みが上記した下限以上であれば、結晶化インジウムスズ複合酸化物膜の表面抵抗を十分に低くすることができる。
 なお、結晶化インジウムスズ複合酸化物膜の厚みの上限は、結晶化インジウムスズ複合酸化物膜の表面抵抗を低くする観点から、特に限定されない。結晶化インジウムスズ複合酸化物膜の厚みは、通常、1000nm以下であり、また、500nm以下である。
 この結晶化インジウムスズ複合酸化物膜は、結晶粒(グレイン)を含有する。結晶粒(図3Aにおける符号9参照)は、結晶化インジウムスズ複合酸化物膜中に、複数存在する。また、複数の結晶粒は、例えば、結晶化インジウムスズ複合酸化物膜の面方向全体および厚み方向全体にわたって存在する。複数の結晶粒のそれぞれは、結晶粒界(図3Aにおける符号10参照)によって、区画される。
 結晶粒の平均粒径は、110nm以上である。
 なお、結晶粒の平均粒径は、結晶化インジウムスズ複合酸化物膜の厚み方向一方面をSEM観察したときの結晶粒の平均粒径であって、その測定方法の詳細は、後の実施例で詳述される。
 図3Bが参照されるように、結晶粒9の平均粒径が上記下限を下回れば、結晶化インジウムスズ複合酸化物膜1における結晶粒界10の単位面積当たりの占有率が過度に増大する。そうすると、結晶化インジウムスズ複合酸化物膜1の厚み方向一方面が液状の薬品に暴露され、上記した結晶粒界10が薬品の侵入経路の入口となるときに、この入口の単位面積当たりの占有率も増大することから、耐薬品が顕著に低下する。
 結晶粒の平均粒径は、好ましくは、130nm以上、より好ましくは、150nm以上、さらに好ましくは、170nm以上、とりわけ好ましくは、200nm以上、最も好ましくは、250nm以上、さらには、300nm以上、400nm以上、450nm以上が好適である。結晶粒の平均粒径が上記した下限以上であれば、結晶化インジウムスズ複合酸化物膜の耐薬品の低下を十分に抑制できる。
 結晶化インジウムスズ複合酸化物膜の材料は、結晶質のインジウムスズ複合酸化物(ITO)である。ITOは、インジウム(In)とスズ(Sn)とを必須成分として含む複合酸化物である。具体的には、ITOは、酸化スズ(SnO)および酸化インジウム(In)を主成分として含有する。
 酸化スズの含有割合は、酸化スズおよび酸化インジウムの合計量に対して、例えば、0.5質量%以上、好ましくは、3質量%以上、より好ましくは、5質量%以上、さらに好ましくは、8質量%以上、とりわけ好ましくは、9質量%以上であり、また、例えば、20質量%以下、好ましくは、15質量%以下である。
 酸化スズの含有割合が上記した下限以上であれば、結晶化インジウムスズ複合酸化物膜の表面抵抗を低くできる。酸化スズの含有割合が上記した上限以下であれば、結晶化インジウムスズ複合酸化物膜は、強度に優れる。
 酸化インジウムの含有割合は、上記した合計量における酸化スズの含有割合の残部である。なお、ITOは、主成分(必須成分)以外の追加成分、具体的には、Zn、Ga、Sb、Ti、Si、Zr、Mg、Al、Au、Ag、Cu、Pd、W、Fe、Pb、Ni、Nb、Cr、Gaなどの追加成分を含むこともできる。
 また、結晶化インジウムスズ複合酸化物膜は、酸化スズの割合が8質量%以上である領域を含むことができる。結晶化インジウムスズ複合酸化物膜が酸化スズの割合が8質量%以上である領域を含む場合に場合には、結晶化インジウムスズ複合酸化物膜の表面抵抗を低することができる。
 例えば、結晶化インジウムスズ複合酸化物膜は、酸化スズの割合が8質量%以上である領域の一例としての第1領域(符号11参照)と、第1領域における酸化スズの割合より低い酸化スズの割合である第2領域(符号12参照)とを含む。具体的には、結晶化インジウムスズ複合酸化物膜は、層状の第1領域と、第1領域の厚み方向一方面に配置される層状の第2領域とを順に含む。なお、第1領域および第2領域の境界は、測定装置による観察で確認されず、不明瞭であることを許容される。なお、この結晶化インジウムスズ複合酸化物膜では、厚み方向一方面から他方面に向かって酸化スズ濃度が次第に高くなる濃度勾配を有してもよい。結晶化インジウムスズ複合酸化物膜が上記した第1領域に加え、第2領域を含む場合には、その領域の比率調整により所望の結晶化速度を得ることがすることができる。
 第1領域における酸化スズの割合は、好ましくは、9質量%以上、より好ましくは、10質量%以上であり、また、20質量%以下である。
 結晶化インジウムスズ複合酸化物膜の厚みにおける第1領域の厚みの割合は、例えば、50%超過、好ましくは、70%以上、より好ましくは、80%以上、さらに好ましくは、90%以上である。第1領域の厚みの割合が上記した下限以上であれば、結晶化インジウムスズ複合酸化物膜における酸化スズの割合を高くでき、そのため、結晶化インジウムスズ複合酸化物膜の表面抵抗を十分に低くできる。結晶化インジウムスズ複合酸化物膜の厚みにおける第1領域の厚みの割合は、例えば、99%以下、好ましくは、97%以下である。
 第2領域における酸化スズの割合は、例えば、8質量%未満、好ましくは、7質量%以下、より好ましくは、5質量%以下、さらに好ましくは、4質量%以下であり、また、例えば、1質量%以上、好ましくは、2質量%以上、より好ましくは、3質量%以上である。
 第2領域における酸化スズの割合に対する、第1領域における酸化スズの割合の比(第1領域における酸化スズの割合/第2領域における酸化スズの割合)は、例えば、1.5以上、好ましくは、2以上、より好ましくは、2.5以上であり、また、例えば、5以下、好ましくは、4以下である。
 結晶化インジウムスズ複合酸化物膜、第1領域および第2領域のそれぞれにおける酸化スズ濃度は、X線光電子分光法によって、測定される。または、酸化スズの含有割合は、非晶質インジウムスズ複合酸化物膜をスパッタリングで形成するときに用いられるターゲットの成分(既知)から推測することもできる。
 結晶化インジウムスズ複合酸化物膜の表面抵抗は、例えば、60Ω/□以下、好ましくは、50Ω/□以下、より好ましくは、45Ω/□以下、さらに好ましくは、40Ω/□以下、とりわけ好ましくは、30Ω/□以下、最も好ましくは、20Ω/□以下である。
結晶化インジウムスズ複合酸化物膜の表面抵抗が上記した上限以下であれば、結晶化インジウムスズ複合酸化物膜をパターンニングして電極として用いられるときに、優れた電気特性を発現できる。
 結晶化インジウムスズ複合酸化物膜の表面抵抗の下限は、特に限定されない。例えば、結晶化インジウムスズ複合酸化物膜の表面抵抗は、通常、0Ω/□超過、また、1Ω/□以上である。結晶化インジウムスズ複合酸化物層7の表面抵抗は、四端子法により測定される。
 なお、結晶化インジウムスズ複合酸化物膜の厚み方向他方面の算術平均粗さRaは、結晶化インジウムスズ複合酸化物膜の厚み方向他方面が、次に説明する透明フィルム基材の厚み方向一方面に密着して追従することから、例えば、透明フィルム基材の厚み方向他方面の算術平均粗さRaと同一である。具体的には、結晶化インジウムスズ複合酸化物膜の厚み方向他方面の算術平均粗さRaは、例えば、2nm以下、好ましくは、1nm以下、より好ましくは、0.75nm以下、さらに好ましくは、0.5nm以下であり、また、例えば、0.001nm以上である。
 [透明導電性フィルム]
 次に、上記した結晶化インジウムスズ複合酸化物膜を備える透明導電性フィルムを、図1を参照して説明する。
 透明導電性フィルム3は、面方向に延びるフィルム形状を有する。透明導電性フィルム3は、透明フィルム基材2と、結晶化インジウムスズ複合酸化物膜1とを、厚み方向一方側に向かって順に備える。透明導電性フィルム3は、透明フィルム基材2と、透明フィルム基材2の厚み方向一方面に配置される結晶化インジウムスズ複合酸化物膜1とを備える。好ましくは、透明導電性フィルム3は、透明フィルム基材2と、結晶化インジウムスズ複合酸化物膜1とのみを備える。
 透明フィルム基材2は、透明導電性フィルム3の外形形状を成す。透明フィルム基材2は、透明である。透明フィルム基材2は、例えば、アンチブロッキング層5と、透明フィルム6と、ハードコート層7と、光学調整層8とを、厚み方向一方側に向かって順に備える。透明フィルム基材2は、アンチブロッキング層5と、アンチブロッキング層5の厚み方向一方面に配置される透明フィルム6と、透明フィルム6の厚み方向一方面に配置されるハードコート層7と、ハードコート層7の厚み方向一方面に配置される光学調整層8とを備える。好ましくは、透明フィルム基材2は、アンチブロッキング層5と、透明フィルム6と、ハードコート層7と、光学調整層8とのみを備える。
 アンチブロッキング層5は、透明導電性フィルム3を厚み方向に積層した場合などに、互いに接触する複数の透明導電性フィルム3のそれぞれの表面に耐ブロッキング性を付与する。アンチブロッキング層5の材料は、例えば、アンチブロッキング組成物である。アンチブロッキング組成物としては、例えば、特開2016-179686号公報に記載の混合物などが挙げられる。混合物は、例えば、アクリル樹脂などの樹脂(バインダー樹脂)と、無機および/または有機の粒子(好ましくは、ポリスチレンなどの有機の粒子)とを含有する。アンチブロッキング層5の厚みは、例えば、0.1μm以上であり、また、例えば、10μm以下である。
 透明フィルム6は、透明フィルム基材2における必須の層である。透明フィルム6は、透明導電性フィルム3の機械強度を確保するための透明基材である。透明フィルム6は、フィルム形状を有しており、面方向に延びる。透明フィルム6は、アンチブロッキング層5の厚み方向一方面に接触している。透明フィルム6の材料としては、例えば、シクロオレフィン樹脂(COP)、ポリエステル樹脂(ポリエチレンテレフタレート(PET)など)などの樹脂が挙げられる。好ましくは、シクロオレフィン樹脂が挙げられる。また、透明フィルム6は、等方性または複屈折性を有する。透明フィルム基材2は、好ましくは、等方性を有する。透明フィルム基材2の面内方向の複屈折率は、例えば、100以下、好ましくは、50以下であり、また、例えば、0以上である。透明フィルム6の厚みは、例えば、10μm以上であり、また、例えば、100μm以下である。
 ハードコート層7は、透明導電性フィルム3に擦り傷を生じ難くするための擦傷保護層である。ハードコート層7は、透明フィルム6の厚み方向一方面に接触している。ハードコート層7の材料は、例えば、ハードコート組成物である。ハードコート組成物としては、例えば、特開2016-179686号公報に記載の混合物などが挙げられる。混合物は、例えば、アクリル樹脂、ウレタン樹脂などの樹脂(バインダー樹脂)を含有する。ハードコート層3の厚みは、例えば、0.1μm以上であり、また、例えば、10μm以下である。
 光学調整層8は、結晶化インジウムスズ複合酸化物膜1から形成されるパターンの視認を抑制して、透明導電性フィルム3の光学物性(具体的には、屈折率)を調整する層である。光学調整層8は、ハードコート層7の厚み方向一方面に接触している。光学調整層8の材料は、例えば、光学調整組成物である。光学調整組成物としては、例えば、特開2016-179686号公報に記載の混合物などが挙げられる。混合物は、例えば、アクリル樹脂などの樹脂(バインダー樹脂)と、無機および/または有機の粒子(好ましくは、ジルコニアなどの無機の粒子)とを含有する。光学調整層8の厚みは、例えば、0.05μm以上であり、また、例えば、1μm以下である。
 光学調整層8の厚み方向一方面の算術平均粗さRaは、例えば、2nm以下、好ましくは、1nm以下、より好ましくは、0.75nm以下、さらに好ましくは、0.5nm以下であり、また、例えば、0.001nm以上である。光学調整層8の厚み方向一方面の算術平均粗さRaは、JIS B0681-6(2017)に従って、求められる。
 透明フィルム基材2の厚みは、例えば、10μm以上であり、また、例えば、100μm以下である。透明フィルム基材2の全光線透過率は、例えば、80%以上、好ましくは、90%以上であり、また、例えば、99%以下である。
 透明フィルム基材2の厚み方向一方面の算術平均粗さRaは、上記した光学調整層8の算術平均粗さRaと同一である。
 透明フィルム基材2の厚み方向一方面の算術平均粗さRaが、上記した上限以下であれば、非晶質インジウムスズ複合酸化物膜を加熱して結晶化インジウムスズ複合酸化物膜1を形成するときに、透明フィルム基材2の厚み方向一方面に接触する面、すなわち、非晶質インジウムスズ複合酸化物膜の厚み方向他方面から厚み方向一方側に向かう結晶粒の成長を促進させることができる。そのため、結晶粒の平均粒径を大きくできる。
 結晶化インジウムスズ複合酸化物膜1は、透明フィルム基材2の厚み方向一方面に接触している。結晶化インジウムスズ複合酸化物膜1の厚み方向一方面は、厚み方向一方側に向かって露出する。結晶化インジウムスズ複合酸化物膜1の厚み方向他方面は、透明フィルム基材2の厚み方向一方面に密着(接触)する。結晶化インジウムスズ複合酸化物膜1の厚み方向他方面における算術平均粗さRaは、上記したように、例えば、2nm以下、好ましくは、1nm以下、より好ましくは、0.75nm以下、さらに好ましくは、0.5nm以下であり、また、例えば、0.001nm以上である。
 透明導電性フィルム3の厚みは、例えば、15μm以上であり、また、例えば、120μm以下である。透明導電性フィルム3の全光線透過率は、例えば、80%以上、好ましくは、90%以上であり、また、例えば、99%以下である。
[透明導電性フィルムの製造方法]
 次に、透明導電性フィルムの製造方法を説明する。
 透明導電性フィルム3の製造方法は、透明フィルム基材2の厚み方向一方面にスパッタリングすることにより、非晶化インジウムスズ複合酸化物膜を形成する第1工程と、非晶化インジウムスズ複合酸化物膜を加熱して、結晶化インジウムスズ複合酸化物膜1を形成する第2工程とを備える。また、この製造方法では、各層を、例えば、ロールトゥロール方式で、順に配置する。
 第1工程では、まず、透明フィルム基材2を用意する。
 例えば、透明フィルム6を用意する。続いて、透明フィルム6に対して、ハードコート層7、アンチブロッキング層5および光学調整層8を配置する。
 具体的には、まず、透明フィルム6の厚み方向両面のそれぞれに、ハードコート組成物の希釈液およびアンチブロッキング組成物の希釈液のそれぞれを塗布し、乾燥後、紫外線照射により、ハードコート組成物およびアンチブロッキング組成物のそれぞれを硬化させる。これにより、透明フィルム6の厚み方向両面のそれぞれに、ハードコート層7およびアンチブロッキング層5のそれぞれを形成する。その後、光学調整組成物の希釈液を、ハードコート層7の厚み方向一方面に塗布し、乾燥後、紫外線照射により、光学調整組成物を硬化させる。これにより、光学調整層8を形成する。これによって、アンチブロッキング層5、透明フィルム6、ハードコート層7および光学調整層8を厚み方向一方側に向かって順に備える積層フィルムである透明フィルム基材2を用意する。
 続いて、第1工程では、透明フィルム基材2の厚み方向一方面に対して、スパッタリングを実施する。具体的には、スパッタリング装置において、インジウムスズ複合酸化物からなるターゲットに、透明フィルム基材2の厚み方向一方面を対向させながら、不活性ガスの存在下、スパッタリングする。このとき、上記した不活性ガス以外に、例えば、酸素などの反応性ガスを存在させることもできる。
 不活性ガスとしては、例えば、アルゴンなどの希ガスなどが挙げられる。スパッタリング装置内における不活性ガスの分圧は、例えば、0.1Pa以上、好ましくは、0.3Pa以上、より好ましくは、0.5Pa以上、さらに好ましくは、0.55Pa以上であり、また、例えば、10Pa以下である。不活性ガスの分圧が、上記した下限以上であれば、スパッタリングにおける不活性ガスの原子のエネルギーが低くなる。そうすると、非晶質インジウムスズ複合酸化物膜が、不活性ガスの原子を取り込むことを抑制できる。その結果、結晶粒の成長を促進できる。これにより、結晶粒の平均粒径を大きくできる。
 スパッタリング装置内における圧力は、不活性ガスの分圧、および、反応性ガスの分圧の合計圧力である。
 なお、酸化スズ濃度が互いに異なる第1ターゲットおよび第2ターゲットを、スパッタリング装置において、透明フィルム基材2の搬送方向に沿って順に配置することもできる。第1ターゲットの材料は、例えば、上記した第1領域におけるITO(SnO濃度:8質量%以上)である。第2ターゲットの材料は、例えば、上記した第2領域におけるITO(SnO濃度:8質量%未満)である。
 上記のスパッタリングにより、非晶質インジウムスズ複合酸化物膜が、透明フィルム基材2の厚み方向一方面に形成される。
 なお、非晶質インジウムスズ複合酸化物膜が、上記した第1ターゲットおよび第2ターゲットを用いるスパッタリングにより形成されている場合には、非晶質インジウムスズ複合酸化物膜は、酸化スズ濃度が互いに異なる第1非晶質層および第2非晶質層を、厚み方向一方側に向かって順に備える。第1非晶質層および第2非晶質層のそれぞれの材料は、第1ターゲットおよび第2ターゲットの材料と同一である。具体的には、第1非晶質層のITOにおけるSnO濃度は、例えば、8質量%以上である。第2非晶質層のITOにおけるSnO濃度は、例えば、8質量%未満である。
 非晶質インジウムスズ複合酸化物膜の厚みにおける第1非晶質層の厚みの割合は、例えば、50%超過、好ましくは、70%以上、より好ましくは、80%以上、さらに好ましくは、90%以上である。結晶化インジウムスズ複合酸化物膜の厚みにおける第1非晶質層の厚みの割合は、例えば、99%以下、好ましくは、97%以下である。
 この、非晶質インジウムスズ複合酸化物膜は、まだ結晶化されておらず、つまり、本発明の結晶化インジウムスズ複合酸化物膜ではない。非晶質インジウムスズ複合酸化物膜は、結晶化インジウムスズ複合酸化物膜を得るための前駆体膜(中間材)である。
 これによって、透明フィルム基材2および非晶質インジウムスズ複合酸化物膜からなる非晶質積層フィルムを得る。
 その後、第2工程では、非晶質積層フィルムを加熱する。例えば、赤外線ヒーター、オーブンなどの加熱装置によって、非晶質インジウムスズ複合酸化物膜を加熱する。
 加熱条件は、特に限定されない。加熱温度が、例えば、90℃以上、好ましくは、110℃以上あり、また、例えば、160℃以下、好ましくは、140℃以下である。加熱時間は、例えば、30分間以上、より好ましくは、60分間以上であり、また、例えば、5時間以下、好ましくは、3時間以下である。
 これにより、図1に示すように、非晶質インジウムスズ複合酸化物層が結晶化され、複数の結晶粒を含む結晶化インジウムスズ複合酸化物膜1が形成される。
 なお、非晶質インジウムスズ複合酸化物膜が、第1非晶質層および第2非晶質層を含む場合には、結晶化インジウムスズ複合酸化物膜1は、第1非晶質層および第2非晶質層のそれぞれに対応する第1層11および第2領域12を含む。
 この結晶化インジウムスズ複合酸化物膜1は、上記したように、35nm以上の厚みを有し、また、平均粒径が110nm以上である結晶粒を含有する。
 これにより、透明フィルム基材2および結晶化インジウムスズ複合酸化物膜1を備える透明導電性フィルム3が製造される。
 その後、この透明導電性フィルム3は、例えば、エッチングなどによって、結晶化インジウムスズ複合酸化物膜1がパターンニングされる。パターンニングされた結晶化インジウムスズ複合酸化物膜1は、タッチパネル(タッチセンサ)などの電極に用いられる。
 そして、この結晶化インジウムスズ複合酸化物膜1は、厚みが35nmと厚いので、低い表面抵抗を有する。
 また、この結晶化インジウムスズ複合酸化物膜は、110nm以上と大きい平均粒径である結晶粒を含有するので、耐薬品性に優れる。
 そのため、この透明導電性フィルム3の結晶化インジウムスズ複合酸化物膜1は、耐薬品性に優れる。
 また、結晶化インジウムスズ複合酸化物膜1は、酸化スズの割合が8質量%以上である第1領域11を含むので、結晶化インジウムスズ複合酸化物膜1の表面抵抗を低くできる。
 また、この透明導電性フィルム3は、上記した結晶化インジウムスズ複合酸化物膜1を備えるので、低い表面抵抗を有しながら、耐薬品性に優れる。
 また、この透明導電性フィルム3では、透明フィルム基材2の厚み方向一方面が、1.0nm以下と小さい算術平均粗さRaを有すれば、透明フィルム基材2の厚み方向一方面に配置される非晶質インジウムスズ複合酸化物膜の結晶成長の阻害を抑制して、結晶化インジウムスズ複合酸化物膜1において、平均粒径が大きい結晶粒を形成することができる。その結果、透明導電性フィルムは、耐薬品性に優れる。
 この透明導電性フィルム3の製造方法の第1工程では、0.4Pa以上と高い分圧の不活性ガスの存在下で、スパッタリングすれば、結晶化インジウムスズ複合酸化物膜1において平均粒径が大きい結晶粒を形成することができる。その結果、耐薬品性に優れる結晶化インジウムスズ複合酸化物膜1を備える透明導電性フィルム3を製造することができる。
  変形例
 変形例において、一実施形態と同様の部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。また、変形例は、特記する以外、一実施形態と同様の作用効果を奏することができる。さらに、一実施形態およびその変形例を適宜組み合わせることができる。
 結晶化インジウムスズ複合酸化物膜は、酸化スズの割合が8質量%未満である第2領域を含まず、酸化スズの割合が8質量%以上である第1領域のみを含むこともできる。
 透明フィルム基材2は、透明フィルム6を備えていれば、特に限定されない。例えば、透明フィルム基材2が、透明フィルム6のみを備える第1態様、例えば、透明フィルム基材2が、透明フィルム6と、アンチブロッキング層5、ハードコート層7および光学調整層8からなる群から選択される1つの層とを備える第2態様(全2層構成)、例えば、透明フィルム基材2が、透明フィルム6と、アンチブロッキング層5、ハードコート層7および光学調整層8からなる群から選択される2つの層とを備える第3態様(全3層構成)が本発明に含まれる。
 第3態様(全3層構成)の一例として、図2に示すように、透明フィルム基材2は、ハードコート層7(図1参照)を備えず、アンチブロッキング層5、透明フィルム6および光学調整層8のみを備える。
 以下に実施例および比較例を示し、本発明をさらに具体的に説明する。なお、本発明は、何ら実施例および比較例に限定されない。また、以下の記載において用いられる配合割合(含有割合)、物性値、パラメータなどの具体的数値は、上記の「発明を実施するための形態」において記載されている、それらに対応する配合割合(含有割合)、物性値、パラメータなど該当記載の上限(「以下」、「未満」として定義されている数値)または下限(「以上」、「超過」として定義されている数値)に代替することができる。
  実施例1
 まず、シクロオレフィン樹脂からなる透明フィルム6(COPフィルム、厚み40μm、日本ゼオン社製、「ZEONOR」(登録商標)、面内の複屈折率0.0001)を用意した。
 次いで、透明フィルム6の厚み方向一方面に、バインダー樹脂(ウレタン多官能ポリアクリレート、商品名「UNIDIC」、DIC社製)からなるハードコート組成物の希釈液を塗布するとともに、透明フィルム6の厚み方向他方面に、バインダー樹脂(ウレタン多官能ポリアクリレート、商品名「UNIDIC」、DIC社製)と粒子(架橋アクリル・スチレン樹脂粒子、商品名「SSX105」、直径3μm、積水樹脂社製)とを含有するアンチブロッキング組成物の希釈液を塗布し、次いで、これらを乾燥した後、透明フィルム6の厚み方向両面のそれぞれに紫外線を照射し、ハードコート組成物およびアンチブロッキング組成物を硬化させた。これにより、透明フィルム6の一方面に、厚み1μmのハードコート層7を形成し、透明フィルム6の厚み方向他方面に、厚み1μmのアンチブロッキング層5を形成した。
 次いで、ハードコート層の厚み方向一方面に、ジルコニア粒子と紫外線硬化性樹脂(アクリル樹脂)とを含有する光学調整組成物の希釈液(「オプスターZ7412」、JSR社製、屈折率1.62)を塗布し、80℃で3分間乾燥した後、紫外線を照射した。これにより、ハードコート層7の厚み方向一方面に、厚み0.1μmの光学調整層8を形成した。これにより、アンチブロッキング層5、透明フィルム6、ハードコート層7および光学調整層8からなる積層フィルムを透明フィルム基材2として得た。
 その後、スパッタリングにより、光学調整層8の厚み方向一方面に、厚み39.7nmの非晶質インジウムスズ複合酸化物層1を形成した。
 詳しくは、まず、スパッタリング装置に、酸化スズ濃度が10重量%であるITOからなる第1ターゲットと、酸化スズ濃度が3.3重量%であるITOからなる第2ターゲットとを、透明フィルム基材2の搬送方向上流側から下流側に向かって順に配置した。そして、非晶質インジウムスズ複合酸化物膜における第1非晶質層の厚みの割合、および、第2非晶質層の厚みの割合が、それぞれ、95%、および、5%となるように、スパッタリングした。なお、非晶質インジウムスズ複合酸化物膜は、第1非晶質層(酸化スズ濃度10質量%)および第2非晶質層(酸化スズ濃度3.3質量%)を、厚み方向一方側に向かって順に含む。
 スパッタリング時のアルゴン流量を調整することによって、スパッタリング装置内のアルゴン分圧を0.35Paに調整した。なお、スパッタリング装置内の圧力は、0.42Paであった。
 これにより、アンチブロッキング層5、透明フィルム6、ハードコート層7、光学調整層8および非晶質インジウムスズ複合酸化物層を順に備える非晶質積層フィルムを製造した。
 その後、非晶質積層フィルムを、130℃、90分加熱して、非晶質インジウムスズ複合酸化物層を結晶化して、結晶化インジウムスズ複合酸化物膜1を調製した。
 これにより、図1に示すように、アンチブロッキング層5、透明フィルム6、ハードコート層7、光学調整層8および結晶化インジウムスズ複合酸化物膜1を備える透明導電性フィルム3を製造した。
 また、結晶化インジウムスズ複合酸化物膜1は、第1非晶質層および第2非晶質層のそれぞれに起因する第1領域11および第2領域12を含んでいた。
  比較例1~比較例2
 表1の記載に従って処方を変更した以外は、実施例1と同様に処理した。
  実施例2
 実施例1のハードコート層7および光学調整層8に代えて、厚み0.7μmの光学調整層8を形成した以外は、実施例1と同様に、処理した。
 つまり、図2に示すように、この透明フィルム基材2は、ハードコート層7を備えず、アンチブロッキング層5、透明フィルム6、光学調整層8を順に備える。
 なお、この光学調整層8は、ジルコニア粒子、シリカ粒子および紫外線硬化性樹脂(アクリル樹脂)とを含有する光学調整組成物の希釈液(「TYZ72-A12」トーヨーケム社製、屈折率1.72)を透明フィルム6の厚み方向一方面面に塗布し、80℃で3分間乾燥した後、紫外線を照射した。
  実施例3~実施例6
 表1の記載に従って処方を変更した以外は、実施例2と同様に処理した。
  実施例7
 スパッタリング装置に、第2ターゲットを備えず、表1に記載に従って処方を変更した以外は、実施例2と同様に処理した。
 非晶質インジウムスズ複合酸化物膜は、第2非晶質層を含まず、第1非晶質層を含を含む。結晶化インジウムスズ複合酸化物膜1は、第2領域12を含まず、第1領域11を含んでいた。
 <評価>
 下記の項目を評価した。それらの結果を表1に示す。
 [結晶粒の平均粒径]
 各実施例および各比較例における透明導電性フィルム3の結晶化インジウムスズ複合酸化物膜1の厚み方向一方面をSEM観察した。
 SEM観察で認められる複数の多角形状の粒子を、ITOの結晶粒と定義する。そして、複数の結晶粒のそれぞれの面積を求めた。各結晶粒の面積を円周率(π)で割った値の平方根を2倍した値の平均値を、結晶粒の平均粒径として算出した。
 SEM観察では、縦1500nm、横1500nmの視野像を取得した。この視野像中、結晶粒を仕切る粒界を特定した。これに基づいて、複数の結晶粒の面積を求めた。1つの結晶粒の面積を円周率(π)で割った値の平方根を2倍した値を1つの結晶粒の粒径として近似した。なお、粒径が20nm未満となった結晶粒を平均値の計算から除外した。
 つまり、粒径が20nm以上であり、上記した視野像で観察される結晶粒のうち、視野像からはみ出していない(すなわち、当該結晶粒の全体(全部)が視野像内に収まり切る)複数の結晶粒の面積および数のみを平均値の算出に用い、その結果、得られた平均値を「結晶粒の平均粒径」とした。
 装置および測定条件は以下のとおりである。
SEM装置:Hitachi High-Technologies製、走査電子顕微鏡SU8020
加速電圧:0.8kV
 実施例1のSEM写真の画像処理図を図3Aに、比較例2のSEM写真の画像処理図を図3Bに示す。
 [結晶化インジウムスズ複合酸化物膜の表面抵抗]
 各実施例および各比較例における透明導電性フィルム3の結晶化インジウムスズ複合酸化物膜1の表面抵抗を四端子法により測定した。下記の基準に基づいて、表面抵抗を評価した。
◎:表面抵抗が、40Ω/□以下であった。
○:表面抵抗が、60Ω/□以下、40Ω/□超過であった。
×:表面抵抗が、60Ω/□超過であった。
 [結晶化インジウムスズ複合酸化物膜の耐薬品性]
 各実施例および各比較例における透明導電性フィルム3の結晶化インジウムスズ複合酸化物膜1の厚み方向一方面に、カッターナイフで傷を付けた。
 その後、透明導電性フィルム3を、16質量%過硫酸アンモニウム水溶液に、20℃で5分間浸漬した。その後、3質量%水酸化カリウム水溶液に、30℃で、20分間浸漬した。
 その後、傷を光学顕微鏡で観察し、下記の基準に基づいて、耐薬品性を評価した。
×:傷から延びるひび割れ部分が多数認められた。
○:上記したひび割れ部分が、ごくわずかで認められた。
◎:上記したひび割れ部分が認められなかった。
 [透明フィルム基材の算術平均粗さRa]
 非晶質インジウムスズ複合酸化物膜を形成する前の透明導電性フィルム3、つまり、透明フィルム基材2の厚み方向一方面の算術平均粗さRaを、JIS B0681-6(2017)に従い、原子間力顕微鏡(Digital Instruments社製、Nonoscope IV)を用いて、求めた。透明フィルム基材2の厚み方向一方面において1μm×1μmの範囲(視野像)を原子間力顕微鏡で観察した。
 [結晶化インジウムスズ複合酸化物膜における酸化スズの含有割合]
 まず、第1ターゲットおよび第2ターゲットにおける酸化スズ濃度、非晶化インジウムスズ複合酸化物膜における第1非晶質層の厚みおよび第2非晶質層の厚みの割合から、非晶化インジウムスズ複合酸化物膜における酸化スズの含有割合を求めた。
 非晶化インジウムスズ複合酸化物膜から結晶化インジウムスズ複合酸化物膜への転化において、酸化スズ濃度の変動がないものと仮定し、非晶化インジウムスズ複合酸化物膜における酸化スズの含有割合を、結晶化インジウムスズ複合酸化物膜における酸化スズの含有割合として推定した。
Figure JPOXMLDOC01-appb-T000001
 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記請求の範囲に含まれる。
 結晶化インジウムスズ複合酸化物膜は、透明導電性フィルムに備えられる。
1 結晶化インジウムスズ複合酸化物膜
2 透明フィルム基材
3 透明導電性フィルム
9 結晶粒
11 第1領域

Claims (10)

  1.  35nm以上の厚みを有し、
     平均粒径が110nm以上である結晶粒を含有することを特徴とする、結晶化インジウムスズ複合酸化物膜。
  2.  酸化スズの割合が8質量%以上である領域を含むことを特徴とする、請求項1に記載の結晶化インジウムスズ複合酸化物膜。
  3.  透明フィルム基材と、
     前記フィルム基材の厚み方向一方面に配置され、請求項1に記載の結晶化インジウムスズ複合酸化物膜とを備えることを特徴とする、透明導電性フィルム。
  4.  透明フィルム基材と、
     前記フィルム基材の厚み方向一方面に配置され、請求項2に記載の結晶化インジウムスズ複合酸化物膜とを備えることを特徴とする、透明導電性フィルム。
  5.  前記透明フィルム基材の前記厚み方向一方面は、1.0nm以下の算術平均粗さRaを有することを特徴とする、請求項3に記載の透明導電性フィルム。
  6.  前記透明フィルム基材の前記厚み方向一方面は、1.0nm以下の算術平均粗さRaを有することを特徴とする、請求項4に記載の透明導電性フィルム。
  7.  請求項3に記載の透明導電性フィルムを製造する方法であり、
     前記透明フィルム基材の前記厚み方向一方面にスパッタリングすることにより、非晶化インジウムスズ複合酸化物膜を形成する第1工程と、
     前記非晶化インジウムスズ複合酸化物膜を加熱して、結晶化インジウムスズ複合酸化物膜を形成する第2工程とを備え、
     前記第1工程では、分圧0.4Pa以上の不活性ガスの存在下で、スパッタリングを実施することを特徴とする、透明導電性フィルムの製造方法。
  8.  請求項4に記載の透明導電性フィルムを製造する方法であり、
     前記透明フィルム基材の前記厚み方向一方面にスパッタリングすることにより、非晶化インジウムスズ複合酸化物膜を形成する第1工程と、
     前記非晶化インジウムスズ複合酸化物膜を加熱して、結晶化インジウムスズ複合酸化物膜を形成する第2工程とを備え、
     前記第1工程では、分圧0.4Pa以上の不活性ガスの存在下で、スパッタリングを実施することを特徴とする、透明導電性フィルムの製造方法。
  9.  請求項5に記載の透明導電性フィルムを製造する方法であり、
     前記透明フィルム基材の前記厚み方向一方面にスパッタリングすることにより、非晶化インジウムスズ複合酸化物膜を形成する第1工程と、
     前記非晶化インジウムスズ複合酸化物膜を加熱して、結晶化インジウムスズ複合酸化物膜を形成する第2工程とを備え、
     前記第1工程では、分圧0.4Pa以上の不活性ガスの存在下で、スパッタリングを実施することを特徴とする、透明導電性フィルムの製造方法。
  10.  請求項6に記載の透明導電性フィルムを製造する方法であり、
     前記透明フィルム基材の前記厚み方向一方面にスパッタリングすることにより、非晶化インジウムスズ複合酸化物膜を形成する第1工程と、
     前記非晶化インジウムスズ複合酸化物膜を加熱して、結晶化インジウムスズ複合酸化物膜を形成する第2工程とを備え、
     前記第1工程では、分圧0.4Pa以上の不活性ガスの存在下で、スパッタリングを実施することを特徴とする、透明導電性フィルムの製造方法。
PCT/JP2020/023276 2019-06-27 2020-06-12 結晶化インジウムスズ複合酸化物膜、透明導電性フィルムおよびその製造方法 WO2020262047A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020552061A JP7509690B2 (ja) 2019-06-27 2020-06-12 結晶化インジウムスズ複合酸化物膜、透明導電性フィルムおよびその製造方法
KR1020217037014A KR20220029549A (ko) 2019-06-27 2020-06-12 결정화 인듐주석 복합 산화물막, 투명 도전성 필름 및 그 제조 방법
CN202080046631.0A CN114040842A (zh) 2019-06-27 2020-06-12 结晶化铟锡复合氧化物膜、透明导电性薄膜及其制造方法
TW109121069A TW202105416A (zh) 2019-06-27 2020-06-22 結晶化銦錫複合氧化物膜、透明導電性膜及其製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019120185 2019-06-27
JP2019-120185 2019-06-27

Publications (1)

Publication Number Publication Date
WO2020262047A1 true WO2020262047A1 (ja) 2020-12-30

Family

ID=74061898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/023276 WO2020262047A1 (ja) 2019-06-27 2020-06-12 結晶化インジウムスズ複合酸化物膜、透明導電性フィルムおよびその製造方法

Country Status (4)

Country Link
KR (1) KR20220029549A (ja)
CN (1) CN114040842A (ja)
TW (1) TW202105416A (ja)
WO (1) WO2020262047A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011048996A1 (ja) * 2009-10-19 2011-04-28 東洋紡績株式会社 透明導電性フィルム
JP2011214043A (ja) * 2010-03-31 2011-10-27 Mitsubishi Materials Corp Ito透明導電膜の形成方法及びその形成装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5088256B2 (ja) 2008-07-16 2012-12-05 富士通株式会社 携帯型無線機および携帯型無線機のアンテナエレメント選択方法
JP5244950B2 (ja) * 2011-10-06 2013-07-24 日東電工株式会社 透明導電性フィルム
WO2014157312A1 (ja) * 2013-03-29 2014-10-02 株式会社カネカ 透明導電積層フィルムおよびその製造方法
JP6654865B2 (ja) * 2015-11-12 2020-02-26 日東電工株式会社 非晶質透明導電性フィルム、ならびに、結晶質透明導電性フィルムおよびその製造方法
JP6953204B2 (ja) * 2017-07-04 2021-10-27 日東電工株式会社 透明導電性フィルム及びタッチパネル
CN109267009B (zh) * 2018-08-31 2020-12-15 株洲火炬安泰新材料有限公司 一种抗低温高电阻率ito导电膜制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011048996A1 (ja) * 2009-10-19 2011-04-28 東洋紡績株式会社 透明導電性フィルム
JP2011214043A (ja) * 2010-03-31 2011-10-27 Mitsubishi Materials Corp Ito透明導電膜の形成方法及びその形成装置

Also Published As

Publication number Publication date
KR20220029549A (ko) 2022-03-08
CN114040842A (zh) 2022-02-11
JPWO2020262047A1 (ja) 2020-12-30
TW202105416A (zh) 2021-02-01

Similar Documents

Publication Publication Date Title
JP6873297B2 (ja) 保護フィルム付き透明導電性フィルム
KR101991545B1 (ko) 투명 도전성 필름 및 그 제조 방법
US9260777B2 (en) Transparent crystalline electrically-conductive thin film, method of production thereof, transparent electrically-conductive film, and touch panel
WO2012086484A1 (ja) 透明導電性フィルムおよびその製造方法
TWI716379B (zh) 透光性膜
WO2021187586A1 (ja) 透明導電性フィルム
KR101959712B1 (ko) 적외선 흡수층을 포함하는 광학 필름
WO2017170767A1 (ja) 液晶調光部材、光透過性導電フィルム、および液晶調光素子
KR20180048801A (ko) 투명 도전성 필름, 및 그것을 포함하는 터치 패널
JP7046497B2 (ja) 液晶調光部材、光透過性導電フィルム、および液晶調光素子
WO2020262047A1 (ja) 結晶化インジウムスズ複合酸化物膜、透明導電性フィルムおよびその製造方法
JP2018022634A (ja) 透明導電体
JP2019059170A (ja) 結晶化フィルム
JP7509690B2 (ja) 結晶化インジウムスズ複合酸化物膜、透明導電性フィルムおよびその製造方法
WO2016080246A1 (ja) 保護フィルム付き透明導電性フィルム
JP7492916B2 (ja) 透明導電性フィルム
JP2016115638A (ja) 透明導電膜およびその製造方法
WO2021187572A1 (ja) 透明導電性フィルムおよび透明導電性フィルムの製造方法
WO2019082815A1 (ja) 透明導電性フィルムおよびその製造方法
WO2023067899A1 (ja) 透明導電圧電フィルム、デバイス、および透明導電圧電フィルムの製造方法
JP2015056321A (ja) 金属層付き導電性フィルム、その製造方法及びそれを含有するタッチパネル

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020552061

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20830775

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20830775

Country of ref document: EP

Kind code of ref document: A1