WO2020261795A1 - ゼオライト膜複合体およびその製造方法、並びに流体分離方法 - Google Patents

ゼオライト膜複合体およびその製造方法、並びに流体分離方法 Download PDF

Info

Publication number
WO2020261795A1
WO2020261795A1 PCT/JP2020/019275 JP2020019275W WO2020261795A1 WO 2020261795 A1 WO2020261795 A1 WO 2020261795A1 JP 2020019275 W JP2020019275 W JP 2020019275W WO 2020261795 A1 WO2020261795 A1 WO 2020261795A1
Authority
WO
WIPO (PCT)
Prior art keywords
zeolite membrane
water
sio
zeolite
less
Prior art date
Application number
PCT/JP2020/019275
Other languages
English (en)
French (fr)
Inventor
波 柳
克則 余語
Original Assignee
公益財団法人地球環境産業技術研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公益財団法人地球環境産業技術研究機構 filed Critical 公益財団法人地球環境産業技術研究機構
Priority to US17/621,780 priority Critical patent/US20220241732A1/en
Priority to CN202080042363.5A priority patent/CN114007725A/zh
Priority to JP2021527463A priority patent/JP7321260B2/ja
Publication of WO2020261795A1 publication Critical patent/WO2020261795A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/36Pervaporation; Membrane distillation; Liquid permeation
    • B01D61/363Vapour permeation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/06Tubular membrane modules
    • B01D63/062Tubular membrane modules with membranes on a surface of a support tube
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0051Inorganic membrane manufacture by controlled crystallisation, e,.g. hydrothermal growth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/0215Silicon carbide; Silicon nitride; Silicon oxycarbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • B01D71/025Aluminium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • B01D71/027Silicium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/028Molecular sieves
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials

Definitions

  • the present invention relates to a zeolite membrane composite containing a zeolite membrane having an LTA type crystal structure.
  • an adsorption separation method As a technique for separating and purifying a gas and / or a liquid (hereinafter collectively referred to as a fluid), an adsorption separation method, an absorption separation method, a distillation separation method, a deep cold separation method, a membrane separation method and the like are known.
  • the membrane separation method is promising from the viewpoint of energy saving. According to the membrane separation method, molecules can be separated without phase change, and the device can be made compact.
  • Polymer membranes, organic-inorganic composite membranes, etc. have been developed as separation membranes used in the membrane separation method, but inorganic membranes are desirable because they are excellent in heat resistance, pressure resistance, and durability.
  • the zeolite membrane which is an inorganic membrane, has fine uniform pores, allows molecules smaller than the pore diameter to permeate, and inhibits the permeation of large molecules, so that it can be used as a molecular sieving membrane.
  • a general zeolite is known as a crystalline aluminosilicate, and is a porous material containing silica (silicon dioxide) and alumina (aluminum oxide) as main components and an alkali metal cation as charge compensation.
  • zeolites have various skeletal structures, and their properties differ depending on the structure. Therefore, the zeolite membrane exhibits different properties depending on the structure of the zeolite constituting the membrane.
  • a zeolite membrane having an LTA-type crystal structure has high water selectivity and water permeability, and is used for water separation.
  • Patent Document 1 proposes a liquid mixture separation membrane in which a zeolite membrane having an LTA-type crystal structure is formed on a porous support, and water and alcohols, water and ketones, and water and halogenated hydrocarbons. Water selective permeability in liquid mixtures such as is being investigated.
  • Patent Document 2 proposes a method for producing a dense and thin zeolite separation membrane by forming a layer of a precursor gel containing zeolite particles on a base material and heating in the presence of water vapor.
  • the zeolite separation membrane obtained by using LTA type zeolite particles the ability to separate water vapor from a mixed gas containing two or more kinds of gases including water vapor has been studied.
  • zeolite exhibits different properties not only depending on the skeleton structure but also on the atomic ratio of silicon element (Si) and aluminum element (Al) in aluminosilicate: Si / Al.
  • Si silicon element
  • Al aluminum element
  • Si / Al the smaller the Si / Al ratio, the higher the hydrophilicity.
  • Si / Al value the higher the thermal stability and acid resistance, and further, the higher the hydraulic stability at high temperature.
  • Non-Patent Document 1 reports that it has succeeded in synthesizing an LTA-type zeolite having an atomic ratio: Si / Al of 1.7 to 2.1.
  • the atomic ratio of silicon element (Si) and aluminum element (Al) contained in the zeolite membrane having an LTA type crystal structure: Si / Al is about 1.
  • Such a membrane is insufficient as a separation membrane in terms of thermal stability and hydrothermal stability.
  • the structure of the LTA-type zeolite becomes unstable, it has been difficult to obtain a desired zeolite membrane having a Si / Al ratio of more than 1.
  • Non-Patent Document 1 Although there is a report on the synthesis of LTA-type zeolite (powder) having a Si / Al ratio of 1.7 to 2.1 in Non-Patent Document 1, an LTA-type crystal having such a large Si / Al ratio is reported. No production example of a zeolite membrane having a structure has been reported so far.
  • One aspect of the present invention includes a porous base material and a zeolite membrane formed on the surface of the porous base material, and the zeolite membrane has an LTA type crystal structure and is contained in the zeolite membrane.
  • the first atomic ratio of the silicon element (Si) to the aluminum element (Al): Si / Al is 1.29 or more and 1.60 or less.
  • Another aspect of the present invention includes (i) a step of preparing a porous substrate having a first surface and a second surface and having pores communicating the first surface and the second surface. ii) A step of applying a seed crystal having an LTA type crystal structure to at least one of the first surface and the second surface, and (iii) silicon (Si), aluminum (Al), and zeolite ions. The step of preparing a gel solution containing (OH ⁇ ) and water (H 2 O) and (iv) the surface of the gel solution coated with the seed crystal of the porous substrate are brought into contact with each other and hydrothermally heated.
  • the step of growing a zeolite membrane having an LTA type crystal structure on the surface by synthesis is included, and the Si and the Al contained in the gel solution are all silicon dioxide (SiO 2 ) and aluminum oxide (Al 2). assuming that the O 3) is formed, the molar ratio of the Al 2 O 3 and the SiO 2 contained in the gel solution: SiO 2 / Al 2 O 3 is 3 or more, 9 or less There, the molar ratio of the between H 2 O the SiO 2: H 2 O / SiO 2 is larger than 10, 100 or less, the said SiO 2 OH - a molar ratio of: SiO 2 / OH - is , 1.3 or more and less than 2.5, relating to a method for producing a zeolite membrane composite.
  • Yet another aspect of the present invention is a fluid separation method for separating a specific component from a mixed fluid using the zeolite membrane composite, wherein (i) the pores on one of the first and second surfaces.
  • the present invention relates to a fluid separation method comprising a step of recovering a permeated fluid that has permeated the zeolite membrane from a second space communicating with the pores and recovering a non-permeable fluid from the first space.
  • a zeolite membrane having an LTA type crystal structure in which the atomic ratio of silicon element (Si) and aluminum element (Al): Si / Al is larger than 1.
  • FIG. 1 It is an enlarged sectional view conceptually showing an example of the structure of a zeolite membrane composite. It is a perspective view which shows an example of a tubular zeolite membrane composite conceptually.
  • 6 is a scanning electron micrograph (SEM image) of the seed crystal synthesized in Example 1.
  • 6 is an SEM image of the surface of the film produced in Example 1.
  • 6 is an SEM image of a cross section of the film produced in Example 1. It is an X-ray diffraction pattern of the seed crystal synthesized in Example 1 and the formed film.
  • SEM image scanning electron micrograph
  • 6 is an SEM image of the surface of the film produced in Example 1.
  • 6 is an SEM image of a cross section of the film produced in Example 1. It is an X-ray diffraction pattern of the seed crystal synthesized in Example 1 and the formed film.
  • It is a schematic diagram of the apparatus for evaluating the dehydration performance by osmotic vaporization separation. It is the schematic of the apparatus
  • the zeolite membrane composite according to the present invention comprises a porous base material and a zeolite membrane formed on the surface of the porous base material.
  • the zeolite membrane has an LTA-type crystal structure, and the first atomic ratio of the silicon element (Si) and the aluminum element (Al) contained in the zeolite membrane: Si / Al is 1.29 or more. It is 60 or less.
  • the zeolite membrane has a stable LTA-type crystal structure and can exhibit high thermal stability, acid resistance and hydrothermal stability.
  • a zeolite membrane having an LTA-type crystal structure in which the first atomic ratio satisfies the above range is excellent not only in high water selectivity and water permeability, but also in thermal stability, acid resistance and hydrothermal stability. Therefore, it can be applied to various fluid separation methods.
  • the first atomic ratio: Si / Al is preferably 1.45 or more, and more preferably 1.49 or more and 1.54 or less.
  • the first atomic ratio: Si / Al can be measured by, for example, a scanning electron microscope (SEM) -energy dispersive X-ray spectroscopy (EDX, energy-dispersive X-ray spectroscopy).
  • the first atomic ratio: Si / Al can be obtained from the composition of the silicon element (Si) and the aluminum element (Al) analyzed from the SEM image of the surface and the cross section of the film.
  • the LTA type representing the structure of zeolite is a code that defines the structure of zeolite defined by the International Zeolite Association (IZA).
  • the thickness of the zeolite membrane is not particularly limited, but from the viewpoint of achieving high permeance, it is preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less. Further, from the viewpoint of forming a film having small defects and realizing high selectivity, the thickness of the zeolite film is more preferably 2 ⁇ m or more.
  • the zeolite membrane formed on the surface of the porous base material usually has a composite layer of the porous base material and silica, alumina, or zeolite.
  • the preferable range of the thickness of the zeolite membrane is the range of the thickness when such a composite layer is excluded.
  • the thickness of the film is measured, for example, from the analytical data of a scanning electron micrograph.
  • the shape of the porous base material is not particularly limited, but usually has a first surface and a second surface, and also has pores that communicate the first surface and the second surface. At this time, it is sufficient that a zeolite membrane having an LTA-type crystal structure is formed on at least one of the first surface and the second surface.
  • the material of the porous base material is preferably an inorganic material, and is preferably a sintered porous body of ceramics or metal having breathability.
  • ceramics for example, metal oxides such as silica, alumina, mullite, zirconia, corderite, and titania can be used.
  • stainless steel metals such as copper, aluminum and titanium, nitrides such as silicon nitride, and carbides such as silicon carbide can also be used.
  • at least one selected from the group consisting of mullite, silica, alumina and stainless steel is preferable from the viewpoint of easy molding and easy availability at low cost. These may be used alone or in combination of two or more.
  • the average pore diameter of the porous substrate is not particularly limited, but from the viewpoint of durability and gas permeability, it may be, for example, 0.1 ⁇ m or more, and may be 10 ⁇ m or less.
  • the average pore size of the porous substrate can be measured, for example, by a mercury intrusion method.
  • the porosity of the porous base material is not particularly limited, but may be, for example, 30% or more, or 60% or less, from the viewpoint of durability and gas permeability.
  • the porosity of the porous substrate can be determined, for example, by a mercury intrusion method or density measurement.
  • FIG. 1 is a conceptual view of an enlarged cross-sectional view of a zeolite membrane composite 10 including a porous base material 13 having a first surface 11 and a second surface 12 and a zeolite membrane 14 formed on the first surface 11.
  • FIG. 2 is a conceptual diagram showing a perspective view of a zeolite membrane composite 10A including a tubular porous base material 13A and a zeolite membrane 14A formed on the outer peripheral surface thereof.
  • the zeolite membrane composite can be used as a fluid separation method for separating a specific component from a mixed fluid.
  • the fluid is supplied, either the first component or the second component preferentially passes through the pores of the zeolite membrane and the porous substrate.
  • the permeated fluid having a composition different from that of the mixed fluid supplied to the first space moves to the second space communicating with the pores of the porous substrate on the other of the first surface and the second surface.
  • the first component or the second component can be separated by recovering the permeated fluid and repeating the same operation as necessary.
  • the first component and the second component are not particularly limited, but water is used as the first component, and alcohols such as methanol, ethanol, isopropyl alcohol, isobutanol, and allyl alcohol are used as the second component; acetone and methyl isobutyl ketone. Ketones such as; ethers such as dioxane, tetrahydrofuran, dimethyl ether and the like.
  • the second component is at least one selected from the group consisting of methanol, ethanol and isopropyl alcohol, the zeolite membrane composite according to the present invention can exhibit particularly high resolution.
  • the zeolite membrane composite can be used, for example, to separate water from a mixed fluid containing acetic acid (second component) and water (first component) in the acetic acid production process, and ethanol (second component) and water (second component) in the bioethanol production process. Separation of water from mixed fluid containing (first component), separation of water from mixed fluid containing isopropyl alcohol (second component) and water (first component) used for semiconductor cleaning, bioisobutanol production process It can also be applied to various dehydration steps such as separation of water from a mixed fluid containing isobutanol (second component) and water (first component) in.
  • membrane reactor membrane reactor, Membrane Reactor
  • a membrane reactor membrane reactor, Membrane Reactor
  • the reaction for synthesizing methanol from carbon dioxide can be expressed by the following formula (1).
  • the zeolite membrane composite is placed in, for example, an aqueous methanol solution at 60 ° C. having a methanol concentration of 50% by mass, and when the supply side pressure is 0.1 MPa and the permeation side pressure is 1 kPa, the total permeation flux is 0. .5kg / m 2 ⁇ h or more, it may be less 1.0kg / m 2 ⁇ h.
  • the permeance of water can be, for example, 1 ⁇ 10-7 mol / m 2 ⁇ s ⁇ Pa or more and 5 ⁇ 10 -7 mol / m 2 ⁇ s ⁇ Pa or less.
  • the permeance of methanol can be 1 ⁇ 10 -10 mol / m 2 ⁇ s ⁇ Pa or more and 5 ⁇ 10 -10 mol / m 2 ⁇ s ⁇ Pa or less.
  • the water selectivity which is the ratio of the permeance of water to the permeance of methanol, can achieve 600 or more.
  • the production method includes (i) a step of preparing a porous substrate having a first surface and a second surface and having pores communicating the first surface and the second surface, and (ii) the first surface and A step of applying a seed crystal having an LTA type crystal structure to at least one selected from the second surface, and (iii) silicon (Si), aluminum (Al), hydroxide ion (OH ⁇ ) and water (H ⁇ ).
  • the step of preparing a gel solution containing O) and the surface of the (iv) gel solution coated with the seed crystal of the porous substrate are brought into contact with each other, and a zeolite having an LTA-type crystal structure on the surface is subjected to hydrothermal synthesis. Includes a step of growing the membrane.
  • a step (ii) of adhering a seed crystal prepared in advance to the surface of the porous substrate is important before performing the hydrothermal synthesis of the step (iv).
  • the seed crystal may be applied to at least one of the first surface and the second surface.
  • the gel solution to be brought into contact with the surface of the porous substrate to which the seed crystal is attached is a predetermined amount of silicon (Si), aluminum (Al), hydroxide ion (OH ⁇ ) and water (H). 2 O) is included.
  • the zeolite film obtained after hydrothermal synthesis becomes a film having a first atomic ratio of silicon element (Si) and aluminum element (Al): Si / Al larger than 1. That is, it is possible to obtain a zeolite membrane having high thermal stability, acid resistance and hydrothermal stability.
  • any zeolite powder having an LTA-type crystal structure can be used without particular limitation.
  • the second atomic ratio of the silicon element (Si) and the aluminum element (Al) of the seed crystal is obtained.
  • Si / Al is preferably 1.0 or more and 2.2 or less, and more preferably 2.0 or more and 2.2 or less.
  • the method for producing the zeolite powder having an LTA-type crystal structure used as a seed crystal is not particularly limited, and a known method can be used.
  • zeolite powder can be synthesized from a gel solution containing a silicon element (Si) source, an aluminum element (Al) source and a sodium element (Na) source as raw materials.
  • Si silicon element
  • Al aluminum element
  • Na sodium element
  • Examples of the silicon element (Si) source include silica colloid, sodium silicate, fumed silica, and a silicon compound having a hydrolyzable group (alkoxy group, etc.).
  • Examples of the aluminum element (Al) source include aluminum hydroxide, sodium aluminate, aluminum nitrate, an aluminum compound having a hydrolyzable group (alkoxy group, etc.), aluminum powder, and the like.
  • Examples of the sodium element (Na) source that acts as a structure-determining agent include sodium hydroxide and sodium aluminate.
  • Zeolite powder with a second atomic ratio: Si / Al of 1.0 or more and 2.2 or less can be synthesized by, for example, the following method.
  • sodium hydroxide (NaOH) and sodium aluminate (NaAlO 2 ) are added to water (H 2 O), and the mixture is stirred at room temperature.
  • sodium aluminate for example, sodium aluminate having a molar ratio of aluminum (Al) to sodium hydroxide (NaOH) of 0.6 to 1.0 (preferably 0.8) can be used.
  • a translucent gel solution is prepared by adding silica colloid (SiO 2 ) to the obtained solution and stirring at room temperature for 6 to 24 hours. At this time, the gel solution contains silicon (Si), aluminum (Al), hydroxide ion (OH ⁇ ) and water (H 2 O).
  • the molar ratio of SiO 2 to Al 2 O 3 : SiO 2 / Al 2 O 3 is preferably 3 or more and 10 or less, and more preferably 3 or more and 5 or less.
  • the molar ratio of H 2 O to SiO 2 in the gel solution: H 2 O / SiO 2 is preferably 5 or more, preferably 8 or more, from the viewpoint of producing zeolite efficiently and in high yield. Is more preferable. Further, in order to prevent the concentration of Si in the gel solution from becoming too low and slowing down the production rate of zeolite, the concentration is preferably 20 or less, and more preferably 10 or less.
  • the molar ratio of SiO 2 to OH ⁇ in the gel solution: SiO 2 / OH ⁇ is 1.3 or more and 2.5 or less, more preferably 1.3 or more and 2.0 or less.
  • the gel solution is weakly alkaline.
  • Zeolites obtained from such gel solutions have an LTA-type crystal structure and tend to have a second atomic ratio: Si / Al of 1.0 or more and 2.2 or less.
  • the molar ratio: SiO 2 / Al 2 O 3 , the molar ratio: H 2 O / SiO 2, and the molar ratio: SiO 2 / OH ⁇ are, for example, compositions calculated from the respective masses of the raw materials contained in the gel solution. Obtained by ratio.
  • the prepared gel solution is heated at 60 ° C. to 110 ° C. for 12 hours to 148 hours for hydrothermal synthesis to obtain a crystal product.
  • the crystal product is filtered, washed with water until neutral, and then dried at 60 ° C to 80 ° C to obtain a zeolite powder having an LTA-type crystal structure as a seed crystal. it can.
  • hydrothermal synthesis is generally a general term for synthetic reactions of substances performed in the presence of water at high temperature and high pressure, and is suitable as a method for producing zeolite.
  • Hydrothermal synthesis is usually carried out in an autoclave under the pressure of water vapor generated by heating.
  • the autoclave may be, for example, a sealed container made of fluororesin covered with a stainless steel exterior.
  • the pressure is usually 0.1 MPa to 3 MPa, preferably 0.4 MPa to 2 MPa.
  • the second atomic ratio of zeolite powder having an LTA-type crystal structure: Si / Al is measured by, for example, inductively coupled plasma emission spectrometry (ICP-OES, Inductively Coupled Plasma Optical Mission Spectrum) after dissolving the powder with an acid. Will be done.
  • ICP-OES inductively coupled plasma emission spectrometry
  • the zeolite powder may be pulverized to an average particle diameter of about 100 nm to 200 nm and then used as a seed crystal.
  • the average particle size is a median size in a volume-based particle size distribution, and can be measured by, for example, a laser diffraction type particle size distribution measuring device.
  • the method for applying the seed crystal to the porous substrate is not particularly limited. For example, it can be applied using a slurry coating method.
  • a zeolite membrane is formed by bringing the gel solution into contact with the surface of the porous substrate to which the seed crystals are attached.
  • the gel solution contains a silicon element (Si) source and an aluminum element (Al) source as raw materials. Further, a sodium element (Na) source that acts as a structure-determining agent in zeolite having an LTA-type crystal structure is also included as a raw material.
  • silicon element (Si) source aluminum element (Al) source, and sodium element (Na) source
  • Si silicon element
  • Al aluminum element
  • Na sodium element
  • the gel solution prepared contains silicon (Si), aluminum (Al), hydroxide ion (OH ⁇ ) and water (H 2 O). Assuming that Si and Al in the gel solution all form silicon dioxide (SiO 2 ) and aluminum oxide (Al 2 O 3 ), the SiO 2 and Al 2 O 3 contained in the gel solution Molar ratio: SiO 2 / Al 2 O 3 is 3 or more and 9 or less, preferably 4 or more and 7 or less, and more preferably 4 or more and 5 or less. As a result, a sufficient amount of silicon element (Si) and aluminum element (Al) are supplied to produce the LTA-type zeolite, and a highly crystalline LTA-type zeolite film can be produced.
  • Molar ratio of H 2 O to SiO 2 in the gel solution is greater than 10 and less than 100, preferably more than 20 and less than 60, more preferably more than 30 and less than 40. ..
  • the zeolite membrane is formed efficiently and in a high yield, and the Si concentration is not too low, so that the membrane formation rate is also high.
  • the molar ratio of SiO 2 to OH ⁇ in the gel solution: SiO 2 / OH ⁇ is 1.3 or more and less than 2.5, preferably 1.3 or more and 2.0 or less, and more preferably 1. 5 or more and 2.0 or less.
  • the gel solution is weakly alkaline.
  • the zeolite membrane obtained from such a gel solution has a stable LTA-type crystal structure and tends to have a high first atomic ratio: Si / Al.
  • the molar ratio: SiO 2 / Al 2 O 3 , the molar ratio: H 2 O / SiO 2, and the molar ratio: SiO 2 / OH ⁇ are, for example, compositions calculated from the respective masses of the raw materials contained in the gel solution. Obtained by ratio.
  • a zeolite membrane having an LTA-type crystal structure can be formed on the surface of a porous substrate by immersing a porous substrate coated with a seed crystal powder in a film-forming gel solution and performing hydrothermal synthesis. it can.
  • the conditions for hydrothermal synthesis are not particularly limited, but may be, for example, 80 ° C. or higher and 160 ° C. or lower, and 100 ° C. or higher and 130 ° C. or lower.
  • the hydrothermal synthesis time is, for example, 1 hour or more and 96 hours or less, and may be 24 hours or more and 72 hours or less.
  • the membrane product produced by hydrothermal synthesis is washed with water until it becomes neutral, and then dried at 60 ° C. to 80 ° C. for 6 hours to 24 hours to obtain a zeolite membrane having an LTA-type crystal structure.
  • a zeolite membrane complex containing the mixture can be obtained.
  • Example 1 [Preparation of zeolite membrane composite] Step (i) (Preparation of porous substrate) As a porous substrate having a first surface and a second surface and having pores that communicate the first surface and the second surface, the average pore diameter is 1.3 ⁇ m, the outer diameter is 12 mm, the inner diameter is 10 mm, and the porosity is about 30. %, An alumina tube having a length of 30 mm (manufactured by Nikkato Co., Ltd., hereinafter, alumina base material) was used. The alumina base material was used after boiling and washing with ultrapure water and then drying. The outer peripheral surface of the alumina base material corresponds to the first surface, and the inner peripheral surface corresponds to the second surface.
  • alumina base material manufactured by Nikkato Co., Ltd., hereinafter, alumina base material
  • Zeolite powder (seed crystal) having an LTA-type crystal structure synthesized in the following manner was applied to the outer peripheral surface (first surface) of the alumina base material by the slurry coating method, and dried at 80 ° C. for 2 hours.
  • the prepared gel solution contains silicon (Si), aluminum (Al), hydroxide ion (OH ⁇ ) and water (H 2 O). Assuming that Si and Al in the gel solution all form silicon dioxide (SiO 2 ) and aluminum oxide (Al 2 O 3 ), the molar ratio of SiO 2 to Al 2 O 3 in the gel solution. : SiO 2 / Al 2 O 3 is 4.6, H 2 O and SiO 2 molar ratio: H 2 O / SiO 2 is 9.6, SiO 2 and OH ⁇ molar ratio: SiO 2 / OH ⁇ Was 1.8.
  • the gel solution was placed in a stainless steel pressure-resistant container with a fluororesin inner cylinder and heated at 100 ° C. for 24 hours for hydrothermal synthesis.
  • the product was then filtered, washed with distilled water until neutral, and then dried at 80 ° C. overnight.
  • the average particle size of the obtained powder was about 0.5 ⁇ m. This powder was used as it was as a seed crystal.
  • silica colloid SiO 2 , LUDOX AS-40, 40 mass% aqueous suspension, manufactured by Sigma-Aldrich
  • the sodium aluminate solution described above was slowly added while stirring with a paddle mixer. At this time, it was aged at room temperature for 6 hours until a uniform gel was obtained so as not to cause unevenness.
  • the prepared gel solution contains silicon (Si), aluminum (Al), hydroxide ion (OH ⁇ ) and water (H 2 O).
  • SiO 2 / Al 2 O 3 is 4.6
  • H 2 O and SiO 2 molar ratio: H 2 O / SiO 2 is 38
  • SiO 2 and OH ⁇ is molar ratio: SiO 2 / OH ⁇ is 1. It was 8.8.
  • Process (iv) Formation of zeolite membrane
  • the gel solution obtained in the step (iii) was immersed in an alumina base material having a seed crystal coated on the first surface obtained in the step (iii), and heated at 120 ° C. for 48 hours for hydrothermal synthesis.
  • a zeolite membrane was grown on the first surface.
  • the membrane product containing the zeolite membrane was taken out from the gel solution and washed with pure water until it became neutral.
  • the zeolite membrane composite M1 was obtained by drying at 80 ° C. overnight.
  • Zeolite membrane composite M2 and zeolite membrane composite M3 were prepared in the same manner.
  • FIG. 3 shows an SEM image of the seed crystal
  • FIG. 4 shows an SEM image of the surface of the zeolite membrane
  • FIG. 5 is an SEM image of a crushed cross section of the zeolite membrane.
  • the zeolite membrane of M1 has a dense membrane structure. No pinholes or cracks were found in the film within the observation range.
  • the film thickness was 7 ⁇ m.
  • FIG. 6 is an X-ray diffraction pattern of a seed crystal (Si-rich LTA seed) and a formed film (Si-rich LTA member). It was confirmed that the diffraction pattern of the zeolite powder as the seed crystal and the membrane of the zeolite membrane composite M1 was consistent with the LTA type topology (Simulated LTA framework).
  • the second atomic ratio of the zeolite powder of the seed crystal: Si / Al was determined by inductively coupled plasma emission spectrometry (ICP-OES, Inductively Coupled Plasma Optical Emission Spectrum).
  • ICP-OES Inductively Coupled Plasma Optical Emission Spectrum
  • the sample used for the analysis was prepared as follows. First, an acid solution containing 0.1 g of seed crystal zeolite powder, 1.3 g of hydrofluoric acid (46 to 48% by mass, manufactured by Wako Pure Chemical Industries, Ltd.) and 10.0 ml of ultrapure water. was completely dissolved in, and the mixture was stirred at room temperature for 5 minutes.
  • Example 2 A zeolite membrane composite M4 was prepared in the same manner as in Example 1 except that the hydrothermal synthesis time in the step (iv) was 36 hours.
  • Example 3 A zeolite membrane composite M5 was prepared in the same manner as in Example 1 except that the molar ratio of SiO 2 to OH ⁇ in the gel solution prepared in step (iii) was set to 1.5: SiO 2 / OH ⁇ . did.
  • Example 4 A zeolite membrane composite M6 was prepared in the same manner as in Example 1 except that the molar ratio of H 2 O to SiO 2 in the gel solution prepared in step (iii) was 100: H 2 O / SiO 2. did.
  • Example 5 A zeolite membrane composite M7 was prepared in the same manner as in Example 1 except that the molar ratio of H 2 O to SiO 2 in the gel solution prepared in step (iii) was 20: H 2 O / SiO 2. did.
  • Comparative Example 1 The molar ratio of SiO 2 to OH ⁇ in the gel solution prepared in step (iii): SiO 2 / OH ⁇ was set to 1.0 to increase the alkalinity of the gel solution, but the same procedure as in Example 1 was carried out. A zeolite membrane composite was prepared.
  • Comparative Example 2 The same as in Example 1 except that the molar ratio of SiO 2 to OH ⁇ in the gel solution prepared in step (iii): SiO 2 / OH ⁇ was set to 1.25 to increase the alkalinity of the gel solution.
  • a zeolite membrane composite was prepared.
  • Comparative Example 3 The molar ratio of SiO 2 to OH ⁇ in the gel solution prepared in step (iii): SiO 2 / OH ⁇ was set to 2.5 to lower the alkalinity of the gel solution, but in the same manner as in Example 1. A zeolite membrane composite was prepared.
  • Comparative Example 4 The molar ratio of SiO 2 to OH ⁇ in the gel solution prepared in step (iii): SiO 2 / OH ⁇ was set to 3.0 to lower the alkalinity of the gel solution, but the same procedure as in Example 1 was carried out. A zeolite membrane composite was prepared.
  • Comparative Example 5 Zeolite membrane composite in the same manner as in Example 1 except that the molar ratio of SiO 2 to Al 2 O 3 in the gel solution prepared in step (iii): SiO 2 / Al 2 O 3 was set to 2.0. The body was made.
  • Comparative Example 6 The zeolite membrane composite was prepared in the same manner as in Example 1 except that the molar ratio of SiO 2 to Al 2 O 3 in the gel solution prepared in the step (iii): SiO 2 / Al 2 O 3 was set to 10. Made.
  • Comparative Example 7 The zeolite membrane composite was prepared in the same manner as in Example 1 except that the molar ratio of SiO 2 to Al 2 O 3 in the gel solution prepared in step (iii): SiO 2 / Al 2 O 3 was set to 15. Made.
  • Comparative Example 8 A zeolite membrane composite was prepared in the same manner as in Example 1 except that the molar ratio of H 2 O and SiO 2 in the gel solution prepared in step (iii) was 10: H 2 O / SiO 2 . ..
  • Comparative Example 9 The molar ratio of H 2 O to SiO 2 in the gel solution prepared in step (iii): H 2 O / SiO 2 was set to 10, and hydrothermal synthesis was carried out at 100 ° C. for 168 hours. In the same manner, a zeolite membrane composite was prepared.
  • the molar ratio of SiO 2 to Al 2 O 3 contained in the gel solution prepared in the step (iii): SiO 2 / Al 2 O 3 is 3 or more and 9 or less, and the molar ratio of H 2 O and SiO 2 is ratio: H 2 O / SiO 2 is larger than 10, 100 or less, SiO 2 and OH - the molar ratio of: SiO 2 / OH - is 1.3 or more and less than 2.5, example
  • the films of the zeolite membrane composites M1 to M7 obtained in 1 to 5 had an LTA type crystal structure, and the first atomic ratio: Si / Al was 1.29 to 1.60.
  • Comparative Example 1 and Comparative Example 2 in which the gel solution was highly alkaline a film having an LTA-type crystal structure could not be produced.
  • the film obtained in Comparative Example 3 in which the gel solution had low alkalinity had an LTA-type crystal structure, but had a high first atomic ratio: Si / Al of 1.70, and was a fragile film. .. Further, in Comparative Example 4 in which the alkalinity of the gel solution was low, no film was obtained and the gel solution was amorphous.
  • the device 100 includes a chamber 102 containing a water-alcohol mixed solution 101, a tubular zeolite membrane composite 103 immersed perpendicularly to the liquid level of the mixed solution 101 in the chamber 102, and a zeolite membrane composite 103.
  • the inside of the zeolite membrane composite 103 is depressurized via the pipe 104 into which steam is introduced from the hollow of the pipe 104, two cold traps 105 for cooling the steam introduced from the pipe 104, and the cold trap 105 and the pipe 104.
  • the vacuum pump 106 is provided.
  • the vacuum pump 106 is provided with a cold trap 107 for a vacuum pump in order to prevent the water-alcohol mixed solution 101 from being mixed.
  • the chamber 102 is installed in the constant temperature bath 109, and the constant temperature bath 109 is provided with a heating device 108 for controlling the temperature of the water-alcohol mixed solution 101.
  • the osmotic vaporization separation test was conducted as follows. First, the temperature of the water-alcohol mixed solution 101 was raised to a predetermined temperature by the heating device 108. Then, the hollow inside of the zeolite membrane composite 103 was depressurized by a vacuum pump 106 to allow steam to permeate from the outside to the inside of the zeolite membrane composite 103, and the permeated vapor was collected by either one of the cold trap 105.
  • the permeation flux (kg / m 2 h), which is the amount of recovery per unit time and unit area, was determined from the change in mass.
  • the recovered amount and the water concentration in the recovered material (water concentration on the permeation side, mass%) were measured, and the permeance of water (mol / (m 2 ⁇ s ⁇ Pa)) was calculated.
  • the water selectivity ⁇ which is the ratio of the permeance of water to the permeance of alcohol, was determined. The larger the value of ⁇ , the higher the water selectivity.
  • the composition of water and alcohol in the recovered product was measured using a gas chromatograph (GC3200, manufactured by GL Sciences Co., Ltd.).
  • the dehydration performance at 50 ° C., 60 ° C. or 75 ° C. in a water-methanol mixed solution, a water-ethanol mixed solution, and a water-isopropyl alcohol mixed solution was evaluated by an osmotic vaporization separation test.
  • the pressure on the outside of the zeolite membrane composite 103 was 0.1 MPa (normal pressure), and the pressure inside the hollow of the zeolite membrane composite 103 (permeation side pressure) was reduced to less than 1 kPa by the vacuum pump 106.
  • Table 2 The results are shown in Table 2.
  • test results of the LTA-type zeolite membrane described in Patent Document 1 Japanese Unexamined Patent Publication No. 7-185275
  • Reference Example 1 and the CHA described in Patent Document 3 International Publication No. 2015/159896
  • Reference Example 2 Reference Example 5 and Reference Example 8 for the test result of the type zeolite membrane
  • Reference Example 3 and Patent Document for the test result of the LTA type zeolite membrane described in Patent Document 4
  • Japanese Unexamined Patent Publication No. 2003-210950 Japanese Unexamined Patent Publication No.
  • Non-Patent Document 2 Japanese Patent Laid-Open No. 2010-247150
  • Table 2 also shows the test results of the membrane as Reference Example 9 and the test results of the MFI-type zeolite membrane described in Patent Document 7 (Japanese Unexamined Patent Publication No. 2012-50930) as Reference Example 10.
  • an alumina tube was used as the base material of the film.
  • the device 200 is a tubular zeolite membrane composite arranged so as to contact the chamber 202 containing the water-alcohol mixed solution 201 and the water-alcohol mixed vapor 210 generated from the water-alcohol mixed solution 201 in the chamber 202.
  • the two cold traps 205 that cool the steam introduced from 204, the vacuum pump 206 that decompresses the inside of the zeolite membrane composite 203 through the cold trap 205 and the pipe 204, and the zeolite membrane composite 203 are permeated. It is provided with a condenser 213 that cools the opaque vapor and returns the cooled solution 211 into the chamber 202.
  • the vacuum pump 206 is provided with a cold trap 207 for the vacuum pump in order to prevent the water-alcohol mixture 201 from being mixed.
  • the chamber 202 is installed in the mantle heater stirrer 214.
  • the vapor permeation separation test was carried out as follows.
  • the water-alcohol mixture 201 was poured into the chamber 202 and heated by the mantle heater stirrer 214 set to a predetermined temperature to boil the water-alcohol mixture 201 to generate the water-alcohol mixed steam 210.
  • the zeolite membrane composite 203 was set at a predetermined position, the steam generating portion was kept warm with aluminum foil, and the film surface temperature was waited to reach a predetermined temperature.
  • the inside of the zeolite membrane composite 203 is depressurized by the vacuum pump 206 to allow the water-alcohol mixed steam 210 to permeate from the outside to the inside of the zeolite membrane composite 203, and the permeated steam is permeated from the outside to the inside of the cold trap 205. Collected.
  • the dehydration performance of the zeolite membrane composites M1, M2, M3 and M4 at 105 ° C. in the water-methanol mixed solution was evaluated by a vapor permeation separation test.
  • M1 the dehydration performance up to 200 ° C. was further evaluated.
  • the water-alcohol mixture 201 in the chamber 202 was 800 ml, and the effective film area was 22.60 cm 2 .
  • the set temperature of the mantle heater stirrer 214 was set to 130 ° C.
  • the evaluation at 125 ° C., 150 ° C., 175 ° C. and 200 ° C. was carried out in the same manner as the evaluation at 105 ° C. except that the temperature of the mantle heater stirrer 214 was appropriately set.
  • the evaluation results are shown in Table 3.
  • the zeolite membrane complexes M1, M2, M3 and M4 prepared in Examples 1 and 2 are all water-methanol mixed solution, water-ethanol mixed solution and water-isopropyl alcohol mixed solution. Showed high water selectivity. It was also clarified that the water selectivity is high even at a high temperature of 105 ° C to 200 ° C.
  • the conventional zeolite membrane composite shown as a reference example it has been difficult to obtain high water selectivity, especially in a water-methanol mixed solution. Therefore, it was found that the zeolite membrane complexes M1, M2, M3 and M4 have excellent separation performance as compared with the conventional zeolite membrane composite shown as a reference example.
  • the horizontal axis is the atomic ratio of the zeolite membrane: Si / Al (Flamework Si / Aluminum), and the vertical axis is the relative strength (Reactive Intensity).
  • FIG. 10A the horizontal axis is the measurement time, and the vertical axis is the total permeated flux and the water concentration in the permeated fluid (Water content in permeate).
  • FIG. 10B the horizontal axis is the measurement time, and the vertical axis is the permeance and water selectivity of water and methanol.
  • a zeolite membrane having a low first atomic ratio: Si / Al may cause the zeolite layer to collapse under conditions of high water concentration (Li et al., J. Membr. Sci., 2007, 297, 10-15). It is considered that this is the reason why the relative strength of the commercially available LTA-type zeolite membrane composite m1 was lowered in the above-mentioned hydrothermal stability test. On the other hand, it is considered that the zeolite membrane composite having a high Si / Al ratio maintains a stable structure for a long period of time even in a high temperature solution having a high water concentration.
  • the horizontal axis is the measurement time, and the vertical axis is the total permeated flux and the water concentration in the permeated fluid (Water content in permeate).
  • the horizontal axis is the measurement time, and the vertical axis is the permeance and water selectivity of water and methanol.
  • the zeolite membrane composite having the LTA type crystal structure according to the present invention has an atomic ratio of silicon element (Si) to aluminum element (Al) of the membrane: Si / Al is larger than 1, so that it has water selectivity and water permeability. Not only is it excellent in thermal stability, acid resistance and hydrothermal stability. Therefore, it can be expected to be used in various fluid separation methods and separation and purification equipment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

多孔質基材と、多孔質基材の表面に形成されたゼオライト膜と、を具備し、ゼオライト膜が、LTA型結晶構造を有し、ゼオライト膜に含まれるシリコン元素(Si)とアルミニウム元素(Al)との第1原子比:Si/Alが、1.29以上、1.60以下である、ゼオライト膜複合体。

Description

ゼオライト膜複合体およびその製造方法、並びに流体分離方法
 本発明は、LTA型結晶構造を有するゼオライト膜を含むゼオライト膜複合体に関する。
 ガスおよび/または液体(以下、流体と総称する)を分離し、精製する技術として、吸着分離法、吸収分離法、蒸留分離法、深冷分離法、膜分離法などが知られている。これらの中では、膜分離法が、省エネルギーの観点から有望視されている。膜分離法によれば、相変化を伴わずに分子を分離でき、装置のコンパクト化も可能である。
 膜分離法で用いる分離膜として、高分子膜、有機無機複合膜なども開発されているが、耐熱性、耐圧性および耐久性に優れる点で無機膜が望ましい。
 無機膜であるゼオライト膜は、微小な均一細孔を有しており、細孔径よりも小さな分子を透過させ、大きな分子の透過を阻害するため、分子ふるい膜として利用できる。一般的なゼオライトは、結晶性アルミノシリケートとして知られており、シリカ(二酸化ケイ素)とアルミナ(酸化アルミニウム)を主成分とし、電荷補償としてアルカリ金属カチオンを含む多孔質材料である。
 ゼオライトには、種々の骨格構造があり、その構造により性質が異なる。そのため、ゼオライト膜は、膜を構成するゼオライトの構造によって異なる性質を示す。例えば、LTA型結晶構造を有するゼオライト膜は、高い水選択性および水透過性を有しており、水分離に用いられる。
 特許文献1では、多孔質支持体上にLTA型結晶構造を有するゼオライト膜を成膜した液体混合物分離膜が提案されており、水とアルコール類、水とケトン類、水とハロゲン化炭化水素類などの液体混合物における水選択透過性について検討されている。
 また、特許文献2では、基材上にゼオライト粒子を含む前駆体ゲルの層を形成し、水蒸気存在下で加熱することにより、緻密かつ薄いゼオライト分離膜を製造する方法が提案されている。LTA型のゼオライト粒子を用いて得られるゼオライト分離膜について、水蒸気を含む2種類以上の気体を含んだ混合ガスから水蒸気を分離する性能が検討されている。
 ところで、ゼオライトは、骨格構造だけでなく、アルミノシリケート中のシリコン元素(Si)とアルミニウム元素(Al)との原子比:Si/Alによっても異なる性質を示すことが知られている。例えば、Si/Al比が小さくなるほど親水性は高くなる。一方、Si/Alの値が大きくなるほど熱安定性および耐酸性は高くなり、さらには高温下での水熱安定性が高くなる。
 アルミノシリケート中の原子比:Si/Alの値がある程度大きくなるとLTA型ゼオライトは構造が不安定になるため、Si/Alの値が大きいLTA型ゼオライトの合成は困難であるとされていた。ただし、非特許文献1には、原子比:Si/Alが1.7~2.1のLTA型のゼオライトの合成に成功したことが報告されている。
特開平7-185275号公報 特開2018-38977号公報
Marlon T.Conato et al., Chem. Commun., 2015, 51, 269-272
 通常、LTA型結晶構造を有するゼオライト膜に含まれるシリコン元素(Si)とアルミニウム元素(Al)との原子比:Si/Alは約1である。このような膜は、分離膜としては、熱安定性および水熱安定性の点で不充分である。優れた性能を有する分離膜を得るためには、Si/Al比をより大きくすることが望ましい。しかし、LTA型ゼオライトの構造が不安定になるため、Si/Al比が1より大きい所望のゼオライト膜を得ることは困難であった。
 なお、非特許文献1において、Si/Al比が1.7~2.1のLTA型のゼオライト(粉体)の合成については報告があるものの、このようにSi/Al比が大きいLTA型結晶構造を有するゼオライト膜の製造例は、現在のところ報告されていない。
 本発明の一側面は、多孔質基材と、前記多孔質基材の表面に形成されたゼオライト膜と、を具備し、前記ゼオライト膜が、LTA型結晶構造を有し、前記ゼオライト膜に含まれるシリコン元素(Si)とアルミニウム元素(Al)との第1原子比:Si/Alが、1.29以上、1.60以下である、ゼオライト膜複合体に関する。
 本発明の他の側面は、(i)第1表面および第2表面を有するとともに、前記第1表面と前記第2表面とを連通させる細孔を有する多孔質基材を準備する工程と、(ii)前記第1表面および前記第2表面から選択される少なくとも一方に、LTA型結晶構造を有する種結晶を塗布する工程と、(iii)シリコン(Si)、アルミニウム(Al)、水酸化物イオン(OH)および水(HO)を含むゲル溶液を調製する工程と、(iv)前記ゲル溶液に、前記多孔質基材の前記種結晶が塗布された前記表面を接触させ、水熱合成により、前記表面にLTA型結晶構造を有するゼオライト膜を成長させる工程と、を含み、前記ゲル溶液中に含まれる前記Siおよび前記Alが、全て二酸化ケイ素(SiO)および酸化アルミニウム(Al)を形成していると仮定した場合に、前記ゲル溶液中に含まれる前記SiOと前記Alとのモル比:SiO/Alが、3以上、9以下であり、前記HOと前記SiOとのモル比:HO/SiOが、10より大きく、100以下であり、前記SiOと前記OHとのモル比:SiO/OHが、1.3以上、2.5未満である、ゼオライト膜複合体の製造方法に関する。
 本発明の更に他の側面は、上記ゼオライト膜複合体を用いて混合流体から特定成分を分離する流体分離方法であって、(i)前記第1表面および前記第2表面の一方で前記細孔と連通する第1空間に、前記ゼオライト膜に対するパーミアンスが互いに異なる第1成分と第2成分とを含む流体を供給する工程と、(ii)前記第1表面および前記第2表面の他方で前記細孔と連通する第2空間から、前記ゼオライト膜を透過した透過流体を回収し、前記第1空間から非透過流体を回収する工程と、を有する、流体分離方法に関する。
 本発明によれば、シリコン元素(Si)とアルミニウム元素(Al)との原子比:Si/Alが1より大きいLTA型結晶構造を有するゼオライト膜を提供することができる。
ゼオライト膜複合体の構造の一例を概念的に示す拡大断面図である。 筒状のゼオライト膜複合体の一例を概念的に示す斜視図である。 実施例1で合成した種結晶の走査型電子顕微鏡写真(SEM像)である。 実施例1で生成した膜の表面のSEM像である。 実施例1で生成した膜の断面のSEM像である。 実施例1で合成した種結晶および生成した膜のX線回折パターンである。 浸透気化分離による脱水性能評価を行うための装置の概略図である。 蒸気透過分離による脱水性能評価を行うための装置の概略図である。 膜の第1原子比:Si/Alと水熱安定性との関係を示す図である。 透過流束および透過流体中の水濃度の経時変化を示す図である。 水とメタノールのパーミアンスおよび水選択性の経時変化を示す図である。 高温下における透過流束および透過流体中の水濃度の経時変化を示す図である。 高温下における水とメタノールのパーミアンスおよび水選択性の経時変化を示す図である。
 本発明に係るゼオライト膜複合体は、多孔質基材と、多孔質基材の表面に形成されたゼオライト膜と、を具備する。ここで、ゼオライト膜は、LTA型結晶構造を有し、ゼオライト膜に含まれるシリコン元素(Si)とアルミニウム元素(Al)との第1原子比:Si/Alが、1.29以上、1.60以下である。このとき、ゼオライト膜は、安定なLTA型結晶構造を有し、高い熱安定性、耐酸性および水熱安定性を示し得る。すなわち、第1原子比が上記範囲を満たすLTA型結晶構造を有するゼオライト膜は、水選択性および水透過性が高いだけでなく、熱安定性、耐酸性および水熱安定性の点でも優れる。そのため、様々な流体分離方法に適用することができる。第1原子比:Si/Alは、1.45以上であることが好ましく、1.49以上、1.54以下であることがより好ましい。
 第1原子比:Si/Alは、例えば、走査型電子顕微鏡(SEM)-エネルギー分散型X線分光法(EDX、energy-dispersive X-ray spectroscopy)により測定することができる。膜の表面および断面のSEM画像から分析されるシリコン元素(Si)とアルミニウム元素(Al)との組成より、第1原子比:Si/Alが求められる。
 なお、ゼオライトの構造を表すLTA型とは、International Zeolite Association(IZA)が定めるゼオライトの構造を規定するコードである。
 ゼオライト膜の厚さは、特に限定されないが、高いパーミアンスを達成する観点からは、20μm以下、更には10μm以下であることが好ましい。また、欠陥の小さい膜を形成するとともに、高い選択性を実現する観点から、ゼオライト膜の厚さは、2μm以上であることがより好ましい。なお、多孔質基材の表面に形成されたゼオライト膜は、通常、多孔質基材とシリカもしくはアルミナもしくはゼオライトとの複合層を有する。ゼオライト膜の厚さの好ましい範囲は、このような複合層を除いた場合の厚さの範囲である。膜の厚さは、例えば、走査型電子顕微鏡写真の解析データから測定される。
 多孔質基材の形状は、特に限定されないが、通常、第1表面および第2表面を有するとともに、第1表面と第2表面とを連通させる細孔を有する。このとき、第1表面および第2表面の少なくとも一方に、LTA型結晶構造を有するゼオライト膜が形成されていればよい。
 多孔質基材の材質は、耐久性の観点から、無機材料であることが望ましく、通気性を有するセラミックスや金属の焼結多孔質体であることが好ましい。セラミックスとしては、例えば、シリカ、アルミナ、ムライト、ジルコニア、コージェライト、チタニアなどの金属酸化物を用いることができる。さらには、ステンレス鋼、銅、アルミニウム、チタンなどの金属、窒化ケイ素などの窒化物、炭化ケイ素などの炭化物も用いることができる。なかでも、成型が容易で安価に入手しやすいという観点から、ムライト、シリカ、アルミナおよびステンレス鋼からなる群より選択される少なくとも1種が好ましい。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 多孔質基材の平均細孔径は、特に限定されないが、耐久性とガス透過性の点から、例えば0.1μm以上であればよく、10μm以下であってもよい。多孔質基材の平均細孔径は、例えば、水銀圧入法により測定することができる。
 多孔質基材の気孔率は、特に限定されないが、耐久性とガス透過性の点から、例えば30%以上であればよく、60%以下であってもよい。多孔質基材の気孔率は、例えば、水銀圧入法や密度測定により求めることができる。
 図1に、第1表面11と第2表面12とを有する多孔質基材13と、第1表面11に形成されたゼオライト膜14と、を具備するゼオライト膜複合体10の拡大断面図を概念図で示す。図2には、筒状の多孔質基材13Aと、その外周面に形成されたゼオライト膜14Aと、を具備するゼオライト膜複合体10Aの斜視図を概念図で示す。
 ゼオライト膜複合体は、混合流体から特定成分を分離する流体分離方法に使用することができる。例えば、第1表面および第2表面の一方で多孔質基材の細孔と連通する第1空間に、ゼオライト膜に対するパーミアンス(流体透過速度)が互いに異なる第1成分と第2成分とを含む混合流体を供給すると、第1成分および第2成分のいずれかが優先的にゼオライト膜と多孔質基材の細孔を通過する。その結果、第1空間に供給された混合流体とは組成の異なる透過流体が、第1表面および第2表面の他方で多孔質基材の細孔と連通する第2空間に移動する。透過流体を回収し、必要に応じて、同様の操作を繰り返せば、第1成分または第2成分を分離することができる。
 第1成分および第2成分は、特に限定されないが、第1成分としては水が、第2成分としては、メタノール、エタノール、イソプロピルアルコール、イソブタノール、アリルアルコールなどのアルコール類;アセトン、メチルイソブチルケトンなどのケトン類;ジオキサン、テトラヒドロフラン、ジメチルエーテルなどのエーテル類などを挙げることができる。第2成分が、メタノール、エタノールおよびイソプロピルアルコールからなる群より選択される少なくとも1種であるとき、本発明に係るゼオライト膜複合体は特に高い分離能を発揮し得る。
 ゼオライト膜複合体は、例えば、酢酸製造工程における酢酸(第2成分)と水(第1成分)とを含む混合流体からの水の分離、バイオエタノール製造工程におけるエタノール(第2成分)と水(第1成分)とを含む混合流体からの水の分離、半導体洗浄に用いられるイソプロピルアルコール(第2成分)と水(第1成分)とを含む混合流体からの水の分離、バイオイソブタノール製造工程におけるイソブタノール(第2成分)と水(第1成分)とを含む混合流体からの水の分離など、様々な脱水工程にも適用できる。
 また、その他の用途としては、反応器内に膜を組み込んだ膜反応器(メンブレンリアクター、Membrane Reactor)などが挙げられる。例えば、二酸化炭素からメタノールを合成するメンブレンリアクターに適用することができる。二酸化炭素からメタノールを合成する反応は、次の式(1)で表すことができる。
   CO + 3H → CHOH + HO     (1)
 メンブレンリアクターに、水の選択性および透過性に優れた膜を用いることにより、反応系から水が選択的に効率良く除去される。したがって、反応の平衡が右に移動し、二酸化炭素と水素の転化率を向上させることが可能となる。
 ゼオライト膜複合体は、例えば、メタノール濃度が50質量%の60℃のメタノール水溶液中に配置され、供給側圧力を0.1MPaとし、透過側圧力を1kPaとしたとき、全透過流束が、0.5kg/m2・h以上、1.0kg/m2・h以下であり得る。このとき、水のパーミアンスは、例えば、1×10-7mol/m2・s・Pa以上、5×10-7mol/m2・s・Pa以下であり得る。また、メタノールのパーミアンスは、1×10-10mol/m2・s・Pa以上、5×10-10mol/m2・s・Pa以下であり得る。そして、水のパーミアンスとメタノールのパーミアンスとの比である水選択性は、600以上を達成し得る。
 次に、本発明に係るゼオライト膜複合体の製造方法について説明する。
 製造方法は、(i)第1表面および第2表面を有するとともに、第1表面と第2表面とを連通させる細孔を有する多孔質基材を準備する工程と、(ii)第1表面および第2表面から選択される少なくとも一方に、LTA型結晶構造を有する種結晶を塗布する工程と、(iii)シリコン(Si)、アルミニウム(Al)、水酸化物イオン(OH)および水(HO)を含むゲル溶液を調製する工程と、(iv)ゲル溶液に、多孔質基材の種結晶が塗布された表面を接触させ、水熱合成により、表面にLTA型結晶構造を有するゼオライト膜を成長させる工程と、を含む。
 LTA型結晶構造を有するゼオライト膜を多孔質基材に形成するには、液相側ではなく多孔質基材の表面で優先的に結晶を成長させる必要がある。そのためには、工程(iv)の水熱合成を行う前に、多孔質基材の表面に、予め調製しておいた種結晶を付着させる工程(ii)が重要である。種結晶は、第1表面および第2表面の少なくとも一方に塗布すればよい。
 工程(iv)において、種結晶を付着させた多孔質基材の表面に接触させるゲル溶液は、所定量のシリコン(Si)、アルミニウム(Al)、水酸化物イオン(OH)および水(HO)を含む。このようなゲル溶液を用いることにより、水熱合成後に得られるゼオライト膜は、シリコン元素(Si)とアルミニウム元素(Al)との第1原子比:Si/Alが1より大きい膜になる。すなわち、高い熱安定性、耐酸性および水熱安定性を有するゼオライト膜を得ることができる。
 以下、工程(ii)~(iv)について、詳細に説明する。
(種結晶)
 種結晶としては、LTA型結晶構造を有するゼオライト粉末であれば、特に限定されずに用いることができる。
 しかし、工程(iv)によって、高い熱安定性、耐酸性および水熱安定性を有するゼオライト膜を得るためには、種結晶のシリコン元素(Si)とアルミニウム元素(Al)との第2原子比:Si/Alは、1.0以上、2.2以下であることが好ましく、2.0以上、2.2以下であることがより好ましい。
(種結晶の合成) 
 種結晶として用いるLTA型結晶構造を有するゼオライト粉末の製造方法は、特に限定されず、公知の方法を利用することができる。例えば、ゼオライト粉末は、シリコン元素(Si)源、アルミニウム元素(Al)源およびナトリウム元素(Na)源を原料として含むゲル溶液から合成することができる。ここで、NaはLTA型結晶構造を有するゼオライトの構造規定剤として作用する。
 シリコン元素(Si)源としては、例えば、シリカコロイド、ケイ酸ナトリウム、フュームドシリカ、加水分解性基(アルコキシ基など)を有するケイ素化合物などが挙げられる。アルミニウム元素(Al)源としては、例えば、水酸化アルミニウム、アルミン酸ナトリウム、硝酸アルミニウム、加水分解性基(アルコキシ基など)を有するアルミニウム化合物、アルミニウム粉などが挙げられる。また、構造規定剤として作用するナトリウム元素(Na)源としては、例えば、水酸化ナトリウム、アルミン酸ナトリウムなどが挙げられる。
 第2原子比:Si/Alが1.0以上、2.2以下のゼオライト粉末は、例えば、以下の方法により合成することができる。
 まず、水(HO)に水酸化ナトリウム(NaOH)とアルミン酸ナトリウム(NaAlO)とを加えて、室温で攪拌する。アルミン酸ナトリウムとしては、例えば、アルミニウム(Al)と水酸化ナトリウム(NaOH)のモル比が0.6~1.0(好ましくは0.8)であるアルミン酸ナトリウムを用いることができる。
 得られる溶液に、シリカコロイド(SiO)を加え、室温下で6時間~24時間攪拌することにより、半透明のゲル溶液を調製する。このとき、ゲル溶液中には、シリコン(Si)、アルミニウム(Al)、水酸化物イオン(OH)および水(HO)が含まれる。
 ゲル溶液中のSiおよびAlが、全て二酸化ケイ素(SiO)および酸化アルミニウム(Al)を形成していると仮定した場合に、SiOとAlとのモル比:SiO/Alは、好ましくは3以上、10以下、より好ましくは3以上、5以下である。これにより、LTA型ゼオライトの生成に充分な量のシリコン元素(Si)とアルミニウム元素(Al)とが供給され、結晶性の高いLTA型ゼオライトを得ることができる。
 ゲル溶液中のHOとSiOとのモル比:HO/SiOは、ゼオライトを効率的かつ高収率で生成させる観点から、5以上であることが好ましく、8以上であることがより好ましい。また、ゲル溶液中のSiの濃度が低くなり過ぎてゼオライトの生成速度が遅くなることを防ぐために、20以下であることが好ましく、10以下であることがより好ましい。
 ゲル溶液中のSiOとOHとのモル比:SiO/OHは、1.3以上、2.5以下、より好ましくは、1.3以上、2.0以下である。この場合、ゲル溶液は弱アルカリ性を示す。このようなゲル溶液から得られるゼオライトは、LTA型結晶構造を有するとともに、第2原子比:Si/Alが1.0以上、2.2以下となりやすい。
 なお、モル比:SiO/Al、モル比:HO/SiOおよびモル比:SiO/OHは、例えば、ゲル溶液に含まれる原料のそれぞれの質量から計算される組成比により求められる。
 続いて、調製したゲル溶液を、例えば、60℃~110℃で12時間~148時間加熱して水熱合成することにより、結晶生成物を得る。水熱合成後、結晶生成物を濾過し、中性になるまで水で洗浄した後、60℃~80℃で乾燥させることにより、種結晶となるLTA型結晶構造を有するゼオライト粉末を得ることができる。
 ここで、水熱合成とは、一般に、高温かつ高圧下で、水の存在下で行われる物質の合成反応の総称であり、ゼオライトの製造方法として適している。水熱合成は、通常、オートクレーブ内で、加熱により生じる水蒸気の加圧下で行われる。オートクレーブは、例えば、ステンレス鋼の外装で覆われたフッ素樹脂製の密閉容器であればよい。圧力は、通常、0.1MPa~3MPa、好ましくは0.4MPa~2MPaである。
 LTA型結晶構造を有するゼオライト粉末の第2原子比:Si/Alは、例えば、粉末を酸で溶解した後、誘導結合プラズマ発光分析法(ICP-OES、Inductively Coupled Plasma Optical Emission Spectrometry)により、測定される。
 ゼオライト粉末は、平均粒子径100nm~200nm程度になるまで粉砕してから種結晶として用いても良い。
 ここで、平均粒子径とは、体積基準の粒度分布におけるメディアン径であり、例えばレーザ回折式の粒度分布測定装置により測定することができる。
(種結晶の塗布)
 種結晶の多孔質基材への塗布方法は、特に限定されない。例えば、スラリーコート法を用いて塗布することができる。
(膜生成用ゲル溶液の調製)
 工程(iv)において、種結晶を付着させた多孔質基材の表面にゲル溶液を接触させることにより、ゼオライト膜が生成する。ゲル溶液には、シリコン元素(Si)源およびアルミニウム元素(Al)源が原料として含まれる。さらに、LTA型結晶構造を有するゼオライトにおいて構造規定剤として作用するナトリウム元素(Na)源も原料として含まれる。
 シリコン元素(Si)源、アルミニウム元素(Al)源およびナトリウム元素(Na)源としては、例えば、種結晶の合成に使用される化合物と同様の化合物を用いることができる。Naの使用量も種結晶の合成に準じればよい。
 調製されるゲル溶液中には、シリコン(Si)、アルミニウム(Al)、水酸化物イオン(OH)および水(HO)が含まれる。ゲル溶液中のSiおよびAlが、全て二酸化ケイ素(SiO)および酸化アルミニウム(Al)を形成していると仮定した場合に、ゲル溶液中に含まれるSiOとAlとのモル比:SiO/Alは、3以上、9以下であり、好ましくは4以上、7以下、より好ましくは4以上、5以下である。これにより、LTA型ゼオライトの生成に充分な量のシリコン元素(Si)とアルミニウム元素(Al)とが供給され、結晶性の高いLTA型ゼオライトの膜を生成することができる。
 ゲル溶液中のHOとSiOとのモル比:HO/SiOは、10より大きく、100以下であり、好ましくは20以上、60以下、より好ましくは30以上、40以下である。この場合、ゼオライト膜が効率的かつ高収率で生成し、さらに、Siの濃度が低くなり過ぎないことから膜の生成速度も速くなる。
 ゲル溶液中のSiOとOHとのモル比:SiO/OHは、1.3以上、2.5未満であり、好ましくは1.3以上、2.0以下、より好ましくは1.5以上、2.0以下である。この場合、ゲル溶液は弱アルカリ性を示す。このようなゲル溶液から得られるゼオライト膜は、安定なLTA型結晶構造を有するとともに、第1原子比:Si/Alが高くなりやすい。
 なお、モル比:SiO/Al、モル比:HO/SiOおよびモル比:SiO/OHは、例えば、ゲル溶液に含まれる原料のそれぞれの質量から計算される組成比により求められる。
(LTA型結晶構造を有するゼオライト膜の形成) 
 膜生成用ゲル溶液に、種結晶粉末が塗布された多孔質基材を浸漬し、水熱合成を行うことにより、多孔質基材の表面にLTA型結晶構造を有するゼオライト膜を形成することができる。水熱合成の条件は、特に限定されないが、例えば、80℃以上、160℃以下で行われ、100℃以上、130℃以下で行ってもよい。水熱合成時間は、例えば、1時間以上、96時間以下であり、24時間以上、72時間以下であってもよい。
 水熱合成で生成する膜生成物を、水で中性になるまで洗浄した後、例えば、60℃~80℃で、6時間~24時間乾燥させることにより、LTA型結晶構造を有するゼオライト膜を含むゼオライト膜複合体を得ることができる。
[実施例]
 以下、本開示に係るゼオライト膜複合体を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
実施例1
[ゼオライト膜複合体の作製]
工程(i)
(多孔質基材の準備)
 第1表面および第2表面を有するとともに、第1表面と第2表面とを連通させる細孔を有する多孔質基材として、平均細孔径1.3μm、外径12mm、内径10mm、気孔率約30%、長さ30mmのアルミナ製チューブ((株)ニッカトー製、以下、アルミナ基材)を用いた。アルミナ基材は、超純水で煮沸洗浄後、乾燥して用いた。アルミナ基材の外周面は第1表面に、内周面は第2表面に対応する。
工程(ii)
 以下の要領で合成したLTA型結晶構造を有するゼオライト粉末(種結晶)を、アルミナ基材の外周面(第1表面)に、スラリーコート法で塗布し、80℃で2時間乾燥させた。
(種結晶の合成)
 ここでは、非特許文献1(Marlon T.Conato et al., Chem. Commun., 2015, 51, 269-272)に記載されている方法に準じて、種結晶となるLTA型結晶構造を有するゼオライトを合成した。
 ガラスビーカーに入れた30.4gの蒸留水に、0.21gの水酸化ナトリウム(97質量%、1級、和光純薬工業(株)製)とアルミン酸ナトリウム粉末(AlとNaOHとのモル比:Al/NaOH=0.80、和光純薬工業(株)製)とを加え、室温で20分間攪拌した。得られた溶液に、55.08gのシリカコロイド(SiO、LUDOX AS-40、40質量%水中懸濁液、シグマアルドリッチ社製)を加え、室温下で24時間攪拌しながら均一なゲル溶液になるまで熟成させた。調製したゲル溶液中には、シリコン(Si)、アルミニウム(Al)、水酸化物イオン(OH)および水(HO)が含まれる。ゲル溶液中のSiおよびAlが、全て二酸化ケイ素(SiO)および酸化アルミニウム(Al)を形成していると仮定した場合、ゲル溶液中のSiOとAlとのモル比:SiO/Alは4.6、HOとSiOとのモル比:HO/SiOは9.6、SiOとOHとのモル比:SiO/OHは1.8であった。
 ゲル溶液を、フッ素樹脂製内筒付きステンレス鋼製耐圧容器に入れ、100℃で24時間加熱して、水熱合成を行った。その後、生成物を濾過し、中性になるまで蒸留水で洗浄した後、80℃で一晩乾燥させた。
 得られた粉末の平均粒子径は0.5μm程度であった。この粉末をそのまま種結晶として用いた。
工程(iii)
(膜生成用ゲル溶液の調製)
 ガラスビーカーに入れた40.00gの蒸留水に、29.50gのアルミン酸ナトリウム粉末(AlとNaOHとのモル比:Al/NaOH=0.80、和光純薬工業(株)製)を加えた。室温で20分間攪拌し、アルミン酸ナトリウム溶液を得た。
 フッ素樹脂製容器に入れた416.34gの蒸留水に、113.74gのシリカコロイド(SiO、LUDOX AS-40、40質量%水中懸濁液、シグマアルドリッチ社製)を加えた。パドルミキサーで攪拌しながら前記したアルミン酸ナトリウム溶液をゆっくりと加えた。このとき、ムラができないよう、室温下で6時間攪拌しながら均一なゲルになるまで熟成させた。調製したゲル溶液中には、シリコン(Si)、アルミニウム(Al)、水酸化物イオン(OH)および水(HO)が含まれる。ゲル溶液中のSiおよびAlが、全て二酸化ケイ素(SiO)および酸化アルミニウム(Al)を形成していると仮定した場合、ゲル溶液中のSiOとAlとのモル比:SiO/Alは4.6、HOとSiOとのモル比:HO/SiOは38、SiOとOHとのモル比:SiO/OHは1.8であった。
工程(iv)
(ゼオライト膜の形成)
 工程(iii)で得られたゲル溶液に、工程(ii)で得られた第1表面に種結晶を塗布したアルミナ基材を浸漬させ、120℃で48時間加熱して水熱合成を行い、第1表面でゼオライト膜を成長させた。その後、ゼオライト膜を含む膜生成物をゲル溶液中から取り出し、純水で中性になるまで洗浄した。80℃で一晩乾燥させて、ゼオライト膜複合体M1を得た。同様の方法で、ゼオライト膜複合体M2およびゼオライト膜複合体M3を作製した。
[種結晶およびゼオライト膜複合体の構造の評価]
 合成した種結晶および作製したゼオライト膜複合体について、走査型電子顕微鏡(SU9000、日立ハイテク(株)製)、X線回折装置(RINT2000、(株)リガク製)および誘導結合プラズマ発光分析装置(Agilent 5110、アジレント・テクノロジー(株)製)を用いて構造を評価した。
(走査型電子顕微鏡観察)
 種結晶となるゼオライト粉末およびゼオライト膜複合体M1のゼオライト膜表面を、走査型電子顕微鏡(SEM)で観察した。また、ゼオライト膜については、破砕した断面についても観察した。図3に、種結晶のSEM像を、図4に、ゼオライト膜の表面のSEM像を示す。図5は、ゼオライト膜の破砕した断面のSEM像である。
 図4および図5より、M1のゼオライト膜は、緻密な膜構造を有していることがわかった。なお、観察範囲内では、膜にピンホールおよびクラックは確認されなかった。膜厚は7μmであった。
(X線回折測定)
 X線回折測定により、種結晶となるゼオライト粉末およびゼオライト膜複合体M1の膜の回折パターンを分析した。図6は、種結晶(Si-rich LTA seed)および生成した膜(Si-rich LTA membrane)のX線回折パターンである。種結晶となるゼオライト粉末およびゼオライト膜複合体M1の膜の回折パターンがLTA型トポロジー(Simulated LTA framework)と一致していることを確認した。
(走査型電子顕微鏡-エネルギー分散型X線分光法)
 走査型電子顕微鏡(SEM)-エネルギー分散型X線分光法(EDX、energy-dispersive X-ray spectroscopy)により、膜の表面および断面のSEM画像からシリコン元素(Si)とアルミニウム元素(Al)との組成を測定した。ゼオライト膜複合体M1、M2およびM3の膜の第1原子比:Si/Alは、M1が1.54、M2が1.52、M3が1.49であった。
(誘導結合プラズマ発光分析法)
 誘導結合プラズマ発光分析法(ICP-OES、Inductively Coupled Plasma Optical Emission Spectrometry)により、種結晶のゼオライト粉末の第2原子比:Si/Alを求めた。
 分析に用いる試料は、次のようにして調製した。まず、0.1gの種結晶のゼオライト粉末を、1.3gのフッ化水素酸(46~48質量%、和光純薬工業(株)製)および10.0mlの超純水を含有する酸溶液に完全に溶解させ、室温下で5分間撹拌した。次に、2.7gの塩酸(35~37質量%、和光純薬工業(株)製)を滴下して過剰のフッ化水素を反応させた。得られた透明溶液を100mlの標準ポリプロピレン(PP)容器に入れ、超純水を加えて100mlの希釈溶液を調製した。この希釈溶液を試料として分析したところ、種結晶のゼオライト粉末の第2原子比:Si/Alは2.0であった。
実施例2
 工程(iv)における水熱合成の時間を36時間とした以外は、実施例1と同様にして、ゼオライト膜複合体M4を作製した。
実施例3
 工程(iii)で調製するゲル溶液中のSiOとOHとのモル比:SiO/OHを1.5にした以外は、実施例1と同様にして、ゼオライト膜複合体M5を作製した。
実施例4
 工程(iii)で調製するゲル溶液中のHOとSiOとのモル比:HO/SiOを100にした以外は、実施例1と同様にして、ゼオライト膜複合体M6を作製した。
実施例5
 工程(iii)で調製するゲル溶液中のHOとSiOとのモル比:HO/SiOを20にした以外は、実施例1と同様にして、ゼオライト膜複合体M7を作製した。
比較例1
 工程(iii)で調製するゲル溶液中のSiOとOHとのモル比:SiO/OHを1.0にしてゲル溶液のアルカリ性を高くした以外は、実施例1と同様にして、ゼオライト膜複合体を作製した。
比較例2
 工程(iii)で調製するゲル溶液中のSiOとOHとのモル比:SiO/OHを1.25にしてゲル溶液のアルカリ性を高くした以外は、実施例1と同様にして、ゼオライト膜複合体を作製した。
比較例3
 工程(iii)で調製するゲル溶液中のSiOとOHとのモル比:SiO/OHを2.5にしてゲル溶液のアルカリ性を低くした以外は、実施例1と同様にして、ゼオライト膜複合体を作製した。
比較例4
 工程(iii)で調製するゲル溶液中のSiOとOHとのモル比:SiO/OHを3.0にしてゲル溶液のアルカリ性を低くした以外は、実施例1と同様にして、ゼオライト膜複合体を作製した。
比較例5
 工程(iii)で調製するゲル溶液中のSiOとAlとのモル比:SiO/Alを2.0にした以外は、実施例1と同様にして、ゼオライト膜複合体を作製した。
比較例6
 工程(iii)で調製するゲル溶液中のSiOとAlとのモル比:SiO/Alを10にした以外は、実施例1と同様にして、ゼオライト膜複合体を作製した。
比較例7
 工程(iii)で調製するゲル溶液中のSiOとAlとのモル比:SiO/Alを15にした以外は、実施例1と同様にして、ゼオライト膜複合体を作製した。
比較例8
 工程(iii)で調製するゲル溶液中のHOとSiOとのモル比:HO/SiOを10にした以外は、実施例1と同様にして、ゼオライト膜複合体を作製した。
比較例9
 工程(iii)で調製するゲル溶液中のHOとSiOとのモル比:HO/SiOを10にし、100℃で168時間水熱合成を行った以外は、実施例1と同様にして、ゼオライト膜複合体を作製した。
 実施例2~5および比較例1~9で作製したゼオライト膜複合体の構造についても、実施例1と同様にして評価した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 工程(iii)で調製するゲル溶液に含まれるSiOとAlとのモル比:SiO/Alが、3以上、9以下であり、HOとSiOとのモル比:HO/SiOが、10より大きく、100以下であり、SiOとOHとのモル比:SiO/OHが、1.3以上、2.5未満である、実施例1~5で得られたゼオライト膜複合体M1~M7の膜は、LTA型結晶構造を有し、第1原子比:Si/Alが1.29~1.60であった。
 ゲル溶液のアルカリ性が高い比較例1および比較例2では、LTA型結晶構造を有する膜を作製することができなかった。また、ゲル溶液のアルカリ性が低い比較例3で得られた膜は、LTA型結晶構造を有していたが、第1原子比:Si/Alが1.70と高く、脆弱な膜であった。さらにゲル溶液のアルカリ性が低い比較例4では膜が得られず、アモルファス状であった。
 SiOとAlとのモル比:SiO/Alの値が3未満と小さい比較例5と、9より大きい比較例6では、LTA型結晶構造を有する膜は作製できるものの第1原子比:Si/Alは1.29~1.60にはならなかった。SiO/Alの値が比較例6よりさらに大きい比較例7の膜は、LTA型結晶構造を有する部分と、アモルファス状の部分とが混在していた。
 HOとSiOとのモル比:HO/SiOの値が10以下と低い比較例8および比較例9においても、LTA型結晶構造を有する膜は作製できるものの脆弱であり、第1原子比:Si/Alも1.29~1.60にはならなかった。
[脱水性能評価]
 実施例1で作製したゼオライト膜複合体について、水(HO)-メタノール(MeOH)混合液、水(HO)-エタノール(EtOH)混合液、水(HO)-イソプロピルアルコール(IPA)混合液における膜の脱水性能を、浸透気化分離(PV:Pervaporation)および蒸気透過分離(VP:Vapor Permeation)により評価した。浸透気化分離にはゼオライト膜複合体M1を、蒸気透過分離にはゼオライト膜複合体M1、M2、M3およびM4を用いた。
(浸透気化分離)
 浸透気化分離試験を行う装置について、その一例の概略を示す図7を参照しながら説明する。装置100は、水-アルコール混合液101を収容するチャンバ102と、チャンバ102内の混合液101の液面に対して垂直に浸漬される筒状のゼオライト膜複合体103と、ゼオライト膜複合体103の中空から蒸気が導入されるパイプ104と、パイプ104から導入される蒸気を冷却する2つのコールドトラップ105と、コールドトラップ105とパイプ104を介して、ゼオライト膜複合体103の中空内を減圧する真空ポンプ106と、を具備する。真空ポンプ106には、水-アルコール混合液101の混入を防ぐために、真空ポンプ用コールドトラップ107が備えられている。チャンバ102は恒温槽109内に設置されており、恒温槽109には水-アルコール混合液101の温度を制御する加熱装置108が設けられている。
 浸透気化分離試験は、次のようにして行った。まず、水-アルコール混合液101の温度を、加熱装置108により所定温度にまで昇温した。その後、ゼオライト膜複合体103の中空内を真空ポンプ106で減圧し、蒸気をゼオライト膜複合体103の外側から内側に透過させ、透過蒸気をコールドトラップ105のいずれか一方で捕集した。
 単位時間・単位面積当たりの回収量である透過流束(kg/mh)を質量変化から求めた。また、回収量と回収物中の水濃度(透過側の水濃度、質量%)とを測定し、水のパーミアンス(mol/(m・s・Pa))を算出した。さらに、水のパーミアンスとアルコールのパーミアンスとの比である水選択性αを求めた。αの値が大きいほど、水選択性が高くなることを意味する。なお、回収物中の水とアルコールの組成は、ガスクロマトグラフ(GC3200、ジーエルサイエンス(株)製)を用いて測定した。
 浸透気化分離試験により、水-メタノール混合液、水-エタノール混合液、水-イソプロピルアルコール混合液における50℃、60℃または75℃での脱水性能を評価した。ゼオライト膜複合体103の外側の圧力(供給側圧力)は0.1MPa(常圧)とし、ゼオライト膜複合体103の中空内の圧力(透過側圧力)を真空ポンプ106によって1kPa未満に減圧した。有効膜面積は22.60cmとした。結果を、表2に示す。
 また、特許文献1(特開平7-185275号公報)に記載されているLTA型ゼオライト膜の試験結果を参考例1、特許文献3(国際公開第2015/159986号パンフレット)に記載されているCHA型ゼオライト膜の試験結果を参考例2、参考例5および参考例8、特許文献4(特開2003-210950号公報)に記載されているLTA型ゼオライト膜の試験結果を参考例3、特許文献5(特開2000-042387号公報)に記載されているT型ゼオライト膜の試験結果を参考例4、非特許文献2(Kita et al., J. Membr. Sci., 2004, 236, 17-27)に記載されているLTA型ゼオライト膜およびT型ゼオライト膜の試験結果を、それぞれ参考例6および参考例7、特許文献6(特開2010-247150号公報)に記載されているMOR型ゼオライト膜の試験結果を参考例9、特許文献7(特開2012-50930号公報)に記載されているMFI型ゼオライト膜の試験結果を参考例10として、これらも表2に示す。なお、これらの参考例では全て膜の基材としてアルミナ製チューブが使用されていた。
Figure JPOXMLDOC01-appb-T000002
(蒸気透過分離)
 蒸気透過分離試験を行う装置について、その一例の概略を示す図8を参照しながら説明する。装置200は、水-アルコール混合液201を収容するチャンバ202と、チャンバ202内の水-アルコール混合液201から発生する水-アルコール混合蒸気210に接触するように配置された筒状のゼオライト膜複合体203と、ゼオライト膜複合体203を加熱する加熱装置208と、チャンバ202および加熱装置208に取り付けられた熱電対212と、ゼオライト膜複合体203の中空から蒸気が導入されるパイプ204と、パイプ204から導入される蒸気を冷却する2つのコールドトラップ205と、コールドトラップ205とパイプ204を介して、ゼオライト膜複合体203の中空内を減圧する真空ポンプ206と、ゼオライト膜複合体203を透過しなかった未透過蒸気を冷却し、冷却後の溶液211をチャンバ202内に戻すコンデンサー213とを具備する。真空ポンプ206には、水-アルコール混合液201の混入を防ぐために、真空ポンプ用コールドトラップ207が備えられている。チャンバ202は、マントルヒータースターラー214内に設置されている。
 蒸気透過分離試験は、次のようにして行った。チャンバ202内に水-アルコール混合液201を注ぎ、所定温度に設定したマントルヒータースターラー214で加熱することにより水-アルコール混合液201を沸騰させ、水-アルコール混合蒸気210を発生させた。
 ゼオライト膜複合体203を所定の位置にセットし、蒸気発生部をアルミホイルで保温し、膜表面温度が所定の温度になるまで待った。その後、ゼオライト膜複合体203の内側を真空ポンプ206で減圧することにより、水-アルコール混合蒸気210をゼオライト膜複合体203の外側から内側に透過させ、透過蒸気をコールドトラップ205のいずれか一方で捕集した。
 透過流束(kg/mh)、水濃度(質量%)、水のパーミアンス(mol/(m・s・Pa))および水選択性αを、浸透気化分離試験の場合と同様にして求めた。
 蒸気透過分離試験により、水-メタノール混合液におけるゼオライト膜複合体M1、M2、M3およびM4の105℃での脱水性能を評価した。M1については、さらに200℃までの脱水性能を評価した。チャンバ202内の水-アルコール混合液201は800mlとし、有効膜面積は22.60cmとした。
 なお、105℃における脱水性能の評価で用いる水-メタノール混合液は、蒸気組成がHO/MeOH=10/90(質量比)になるように、HO/MeOH=24/76(質量比)に調製した。マントルヒータースターラー214の設定温度は130℃とした。
 125℃、150℃、175℃および200℃における評価も、マントルヒータースターラー214の温度を適宜設定した以外は、105℃での評価と同様にして行った。評価結果を、表3に示す。
 市販のLTA型ゼオライト膜複合体m1(Lot.1267-007、三井造船(株)製)を用いて同様の試験を行った。これらの結果も表3に示す。また、特許文献4(特開2003-210950号公報)に記載されているLTA型ゼオライト膜の試験結果を参考例11として示した。なお、これらのゼオライト膜複合体では、全て膜の基材としてアルミナ製チューブが使用されていた。
Figure JPOXMLDOC01-appb-T000003
 表2および表3より、実施例1および実施例2で作製したゼオライト膜複合体M1、M2、M3およびM4は、水-メタノール混合液、水-エタノール混合液、水-イソプロピルアルコール混合液の全てにおいて、高い水選択性を示した。また、105℃~200℃の高温下でも、水選択性が高くなることが明らかになった。一方、参考例として示した従来のゼオライト膜複合体は、特に水-メタノール混合液において、高い水選択性を得ることが困難であった。したがって、ゼオライト膜複合体M1、M2、M3およびM4は、参考例として示した従来のゼオライト膜複合体と比較しても、優れた分離性能を有することがわかった。
(水熱安定性)
 浸透気化分離装置を用いて、作製したゼオライト膜複合体M2、M5、M6およびM7と市販のLTA型ゼオライト膜複合体m1(Lot.1267-007、三井造船(株)製)の水熱安定性を評価した。
 水-メタノール混合液(水濃度50質量%)中にゼオライト膜複合体を配置し、60℃で2日間浸透気化分離試験を行った。X線回折測定により、試験前後の構造の変化を観察した。2θ=7.18°、10.16°、12.44°および16.10°におけるピーク強度の合計を、試験前後で測定し、試験前のピーク強度の合計を100%としたときの試験後のピーク強度の合計を相対強度(%)として求めた。結果を図9に示す。横軸は、ゼオライト膜の原子比:Si/Al(Framework Si/Al ratio)、縦軸は、相対強度(Relative Intensity)である。
 膜の第1原子比:Si/Alが高くなるほど、試験後にも構造が維持され、水熱安定性が高くなっていることがわかった。特にSi/Alが1.4から1.5付近で、顕著な結果が出た。
(長期水熱安定性)
 浸透気化分離装置を用いて、実施例1で作製したゼオライト膜複合体M1の長期水熱安定性を評価した。
 水-メタノール混合液(水濃度50質量%)中にゼオライト膜複合体を配置し、60℃で174時間浸透気化分離試験を行った。有効膜面積、供給側圧力および透過側圧力は脱水性能評価試験と同様にし、全透過流束(kg/mh)、水濃度(質量%)、水とメタノールのパーミアンス(mol/(m・s・Pa))および水選択性を求めた。
 結果を図10Aおよび図10Bに示す。図10Aにおいて、横軸は、測定時間(Measurement time)、縦軸は、全透過流束(Total flux)および透過流体中の水濃度(Water content in permeate)である。図10Bにおいて、横軸は、測定時間(Measurement time)、縦軸は、水とメタノールのパーミアンス(Permeance)および水選択性(Separation selectivity)である。
 図10Aおよび図10Bより、水透過性と水選択性がいずれも174時間一定に保たれていたことがわかった。これより、ゼオライト膜複合体M1は、長期にわたって高い水熱安定性を有することが確認された。
 第1原子比:Si/Alが低いゼオライト膜は、水濃度が高い条件においてゼオライト層が崩壊される可能性があると報告されている(Li et al., J. Membr. Sci., 2007, 297, 10-15)。上記した水熱安定性試験において、市販のLTA型ゼオライト膜複合体m1の相対強度が低くなったのも、そのためであると考えられる。
 一方、Si/Al比の高いゼオライト膜複合体は、水濃度の高い高温の溶液中でも安定な構造が長期間維持されるものと考えられる。
 次に、蒸気透過分離装置を用いて、実施例1で作製したゼオライト膜複合体M3の高温下での長期水熱安定性について評価した。
 水-メタノール混合蒸気(水濃度50モル%)中にゼオライト膜複合体を配置し、150℃で174時間蒸気透過分離試験を行った。有効膜面積、供給側圧力および透過側圧力は脱水性能評価試験と同様にし、全透過流束(kg/mh)、水濃度(質量%)、水とメタノールのパーミアンス(mol/(m・s・Pa))および水選択性を求めた。
 結果を図11Aおよび図11Bに示す。図11Aにおいて、横軸は、測定時間(Measurement time)、縦軸は、全透過流束(Total flux)および透過流体中の水濃度(Water content in permeate)である。図11Bにおいて、横軸は、測定時間(Measurement time)、縦軸は、水とメタノールのパーミアンス(Permeance)および水選択性(Separation selectivity)である。
 図11Aおよび図11Bより、水透過性と水選択性がいずれも174時間一定に保たれていたことがわかった。これより、ゼオライト膜複合体M3は、水濃度の高い高温蒸気混合物に対しても、高い水熱安定性および熱安定性を長期的に有することが確認された。Si/Al比の高いゼオライト膜複合体は、水濃度の高い高温蒸気混合物中でも安定な構造が長期間維持されるものと考えられる。
 本発明に係るLTA型結晶構造を有するゼオライト膜複合体は、膜のシリコン元素(Si)とアルミニウム元素(Al)との原子比:Si/Alが1より大きいため、水選択性および水透過性に優れるだけでなく、熱安定性、耐酸性および水熱安定性にも優れる。そのため、様々な流体分離方法および分離精製装置への利用が期待できる。
  10、10A ゼオライト膜複合体
  11 第1表面
  12 第2表面
  13、13A:多孔質基材
  14、14A:ゼオライト
  100 浸透気化分離装置
  101、201 水-アルコール混合液
  102、202 チャンバ
  103、203 ゼオライト膜複合体
  104、204 パイプ
  105、205 コールドトラップ
  106、206 真空ポンプ
  107、207 真空ポンプ用コールドトラップ
  108、208 加熱装置
  109 恒温槽
  200 蒸気透過分離装置
  210 水-アルコール混合蒸気
  211 冷却後の溶液
  212 熱電対
  213 コンデンサー
  214 マントルヒータースターラー

Claims (11)

  1.  多孔質基材と、
     前記多孔質基材の表面に形成されたゼオライト膜と、を具備し、
     前記ゼオライト膜が、LTA型結晶構造を有し、
     前記ゼオライト膜に含まれるシリコン元素(Si)とアルミニウム元素(Al)との第1原子比:Si/Alが、1.29以上、1.60以下である、ゼオライト膜複合体。
  2.  前記第1原子比:Si/Alが、1.45以上である、請求項1に記載のゼオライト膜複合体。
  3.  前記第1原子比:Si/Alが、1.49以上、1.54以下である、請求項1または2に記載のゼオライト膜複合体。
  4.  前記ゼオライト膜の厚さが、20μm以下である、請求項1~3のいずれか1項に記載のゼオライト膜複合体。
  5.  前記多孔質基材が、第1表面および第2表面を有するとともに、前記第1表面と前記第2表面とを連通させる細孔を有し、前記第1表面および前記第2表面から選択される少なくとも一方に、前記ゼオライト膜が形成されている、請求項1~4のいずれか1項に記載のゼオライト膜複合体。
  6.  前記多孔質基材の材質が、ムライト、シリカ、アルミナおよびステンレス鋼からなる群より選択される少なくとも1種である、請求項1~5のいずれか1項に記載のゼオライト膜複合体。
  7.  メタノール濃度が50質量%の60℃のメタノール水溶液中に前記ゼオライト膜複合体を配置し、供給側圧力を0.1MPaとし、透過側圧力を1kPaとしたとき、
     全透過流束が0.5kg/m2・h以上、1.0kg/m2・h以下であり、
     水のパーミアンスが1×10-7mol/m2・s・Pa以上、5×10-7mol/m2・s・Pa以下であり、
     メタノールのパーミアンスが1×10-10mol/m2・s・Pa以上、5×10-10mol/m2・s・Pa以下であり、
     水のパーミアンスとメタノールのパーミアンスとの比である水選択性が、600以上である、請求項1~6のいずれか1項に記載のゼオライト膜複合体。
  8.  (i)第1表面および第2表面を有するとともに、前記第1表面と前記第2表面とを連通させる細孔を有する多孔質基材を準備する工程と、
     (ii)前記第1表面および前記第2表面から選択される少なくとも一方に、LTA型結晶構造を有する種結晶を塗布する工程と、
     (iii)シリコン(Si)、アルミニウム(Al)、水酸化物イオン(OH)および水(HO)を含むゲル溶液を調製する工程と、
     (iv)前記ゲル溶液に、前記多孔質基材の前記種結晶が塗布された前記表面を接触させ、水熱合成により、前記表面にLTA型結晶構造を有するゼオライト膜を成長させる工程と、を含み、
     前記ゲル溶液中に含まれる前記Siおよび前記Alが、全て二酸化ケイ素(SiO)および酸化アルミニウム(Al)を形成していると仮定した場合に、
     前記ゲル溶液中に含まれる前記SiOと前記Alとのモル比:SiO/Alが、3以上、9以下であり、
     前記HOと前記SiOとのモル比:HO/SiOが、10より大きく、100以下であり、
     前記SiOと前記OHとのモル比:SiO/OHが、1.3以上、2.5未満である、ゼオライト膜複合体の製造方法。
  9.  前記種結晶が、シリコン元素(Si)とアルミニウム元素(Al)との第2原子比:Si/Alが、1.0以上、2.2以下のゼオライト骨格を有する、請求項8に記載のゼオライト膜複合体の製造方法。
  10.  請求項5に記載のゼオライト膜複合体を用いて混合流体から特定成分を分離する流体分離方法であって、
     (i)前記第1表面および前記第2表面の一方で前記細孔と連通する第1空間に、前記ゼオライト膜に対するパーミアンスが互いに異なる第1成分と第2成分とを含む流体を供給する工程と、
     (ii)前記第1表面および前記第2表面の他方で前記細孔と連通する第2空間から、前記ゼオライト膜を透過した透過流体を回収し、前記第1空間から非透過流体を回収する工程と、を有する、流体分離方法。
  11.  前記第1成分が、水であり、
     前記第2成分が、メタノール、エタノールおよびイソプロピルアルコールからなる群より選択される少なくとも1種である、請求項10に記載の流体分離方法。
PCT/JP2020/019275 2019-06-27 2020-05-14 ゼオライト膜複合体およびその製造方法、並びに流体分離方法 WO2020261795A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/621,780 US20220241732A1 (en) 2019-06-27 2020-05-14 Zeolite film composite body, method for producing same, and fluid separation method
CN202080042363.5A CN114007725A (zh) 2019-06-27 2020-05-14 沸石膜复合体及其制造方法、以及流体分离方法
JP2021527463A JP7321260B2 (ja) 2019-06-27 2020-05-14 ゼオライト膜複合体およびその製造方法、並びに流体分離方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-119548 2019-06-27
JP2019119548 2019-06-27

Publications (1)

Publication Number Publication Date
WO2020261795A1 true WO2020261795A1 (ja) 2020-12-30

Family

ID=74061371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/019275 WO2020261795A1 (ja) 2019-06-27 2020-05-14 ゼオライト膜複合体およびその製造方法、並びに流体分離方法

Country Status (4)

Country Link
US (1) US20220241732A1 (ja)
JP (1) JP7321260B2 (ja)
CN (1) CN114007725A (ja)
WO (1) WO2020261795A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023085371A1 (ja) * 2021-11-12 2023-05-19 日本碍子株式会社 ゼオライト膜複合体、膜反応装置およびゼオライト膜複合体の製造方法
WO2024203193A1 (ja) * 2023-03-30 2024-10-03 日本碍子株式会社 分離装置の運転方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112020007670A2 (pt) * 2017-10-30 2020-10-13 Dow Global Technologies Llc membranas de peneira molecular de carbono contendo um metal do grupo 13 e método para sua produção
CN118105852B (zh) * 2024-03-07 2024-09-20 江西师范大学 一种低成本富硅lta型分子筛膜的制备方法及在有机溶剂脱水中的应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3431973B2 (ja) * 1993-12-27 2003-07-28 三井造船株式会社 液体混合物分離膜の製造方法
JP2005263596A (ja) * 2004-03-22 2005-09-29 National Institute For Materials Science 層状複水酸化物/ゼオライト複合体及びその製造法
US20140050659A1 (en) * 2012-07-19 2014-02-20 University Of Houston System Methods of controlling polymorphism in organic-free synthesis of na-zeolites and zeolite crystals formed therefrom
JP2016522156A (ja) * 2013-08-05 2016-07-28 セカ・エス・アー 階層的多孔性を備えるゼオライト
JP2018038977A (ja) * 2016-09-08 2018-03-15 国立大学法人 東京大学 ゼオライト分離膜の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2006223412A1 (en) 2005-03-11 2006-09-21 Uop Llc High flux, microporous, sieving membranes and separators containing such membranes and processes using such membranes
JP5800566B2 (ja) * 2011-05-12 2015-10-28 日立造船株式会社 ゼオライト複合膜
US9375678B2 (en) 2012-05-25 2016-06-28 Georgia Tech Research Corporation Metal-organic framework supported on porous polymer
US10639594B2 (en) * 2014-07-10 2020-05-05 Hitachi Zosen Corporation Zeolite membrane, production method therefor, and separation method using same
WO2016077755A1 (en) 2014-11-13 2016-05-19 Ohio State Innovation Foundation Membranes for fluid separation
WO2016084846A1 (ja) * 2014-11-25 2016-06-02 日本碍子株式会社 ゼオライト膜構造体の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3431973B2 (ja) * 1993-12-27 2003-07-28 三井造船株式会社 液体混合物分離膜の製造方法
JP2005263596A (ja) * 2004-03-22 2005-09-29 National Institute For Materials Science 層状複水酸化物/ゼオライト複合体及びその製造法
US20140050659A1 (en) * 2012-07-19 2014-02-20 University Of Houston System Methods of controlling polymorphism in organic-free synthesis of na-zeolites and zeolite crystals formed therefrom
JP2016522156A (ja) * 2013-08-05 2016-07-28 セカ・エス・アー 階層的多孔性を備えるゼオライト
JP2018038977A (ja) * 2016-09-08 2018-03-15 国立大学法人 東京大学 ゼオライト分離膜の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023085371A1 (ja) * 2021-11-12 2023-05-19 日本碍子株式会社 ゼオライト膜複合体、膜反応装置およびゼオライト膜複合体の製造方法
DE112022004594T5 (de) 2021-11-12 2024-08-01 Ngk Insulators, Ltd. Zeolithmembrankomplex, Membranreaktor und Verfahren zur Herstellung eines Zeolithmembrankomplexes
WO2024203193A1 (ja) * 2023-03-30 2024-10-03 日本碍子株式会社 分離装置の運転方法

Also Published As

Publication number Publication date
JP7321260B2 (ja) 2023-08-04
JPWO2020261795A1 (ja) 2020-12-30
CN114007725A (zh) 2022-02-01
US20220241732A1 (en) 2022-08-04

Similar Documents

Publication Publication Date Title
WO2020261795A1 (ja) ゼオライト膜複合体およびその製造方法、並びに流体分離方法
CN106573204B (zh) 沸石膜、其制备方法及使用了该沸石膜的分离方法
EP3001819B1 (en) A method for producing a crystalline film of zeolite and/or zeolite like crystals on a porous substrate
JP5087644B2 (ja) Zsm−5型ゼオライト膜の製造方法
CA2278995C (en) A membrane for separating fluids
US11666867B2 (en) Zeolite separation membrane and production method therefor
Sato et al. Development of practically available up-scaled high-silica CHA-type zeolite membranes for industrial purpose in dehydration of N-methyl pyrrolidone solution
JP3670852B2 (ja) 混合物分離膜の製法
Kazemimoghadam New nanopore zeolite membranes for water treatment
JP6748104B2 (ja) 結晶性シリカ膜複合体およびその製造方法、並びに流体分離方法
Banihashemi et al. CO2 separation using PDMS/ZSM-5 zeolite composite membrane
JP2003144871A (ja) モルデナイト型ゼオライト膜複合体およびその製造方法並びにそれを用いた濃縮方法
JP4751996B2 (ja) Zsm−5型ゼオライト膜の製造方法
JP6511307B2 (ja) ゼオライト分離膜および分離モジュール
JP6637999B2 (ja) ゼオライト膜複合体およびその製造方法、並びにガス分離方法
WO2010110274A1 (ja) ゼオライト膜、分離膜、および成分分離方法
JP4554327B2 (ja) 化学反応分離法
JP2015066532A (ja) ゼオライト薄膜を有する複合膜およびその製造方法
Salomón et al. Synthesis of a mordenite/ZSM-5/chabazite hydrophilic membrane on a tubular support. Application to the separation of a water–propanol mixture
Hasegawa et al. Influence of the synthesis parameters on the morphology and dehydration performance of high-silica chabazite membranes
CN105013337A (zh) 快速合成y型分子筛膜的方法及其在生物醇水混合溶液分离中的应用
JPH10212117A (ja) NaX型ゼオライト膜の製膜法
Li et al. Organotemplate-free synthesis of ZSM-5 membrane for pervaporation dehydration of isopropanol
Xiao et al. A novel method to synthesize high performance silicalite-1 membrane
Kita Zeolite membranes for pervaporation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20833685

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021527463

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20833685

Country of ref document: EP

Kind code of ref document: A1