WO2020259002A1 - 晶体生长装置及其生长方法 - Google Patents

晶体生长装置及其生长方法 Download PDF

Info

Publication number
WO2020259002A1
WO2020259002A1 PCT/CN2020/084477 CN2020084477W WO2020259002A1 WO 2020259002 A1 WO2020259002 A1 WO 2020259002A1 CN 2020084477 W CN2020084477 W CN 2020084477W WO 2020259002 A1 WO2020259002 A1 WO 2020259002A1
Authority
WO
WIPO (PCT)
Prior art keywords
crucible
crystal
mold
rotation
melt
Prior art date
Application number
PCT/CN2020/084477
Other languages
English (en)
French (fr)
Inventor
罗平
徐军
王东海
李东振
吴锋
王庆国
唐慧丽
徐晓东
Original Assignee
南京同溧晶体材料研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京同溧晶体材料研究院有限公司 filed Critical 南京同溧晶体材料研究院有限公司
Publication of WO2020259002A1 publication Critical patent/WO2020259002A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/30Mechanisms for rotating or moving either the melt or the crystal
    • C30B15/305Stirring of the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/34Edge-defined film-fed crystal-growth using dies or slits

Definitions

  • the invention belongs to the technical field of crystal material preparation, and particularly relates to a novel crystal growth device and a growth method thereof, and particularly relates to a novel crystal growth device and a growth method for guided mode method.
  • the raw material melt has a large viscosity coefficient and is far from the boiling point, resulting in a slow flow rate, so that the gas and impurities in the melt cannot escape quickly, resulting in a large number of microbubbles and impurities in the crystal during the crystal growth process .
  • the seed crystal cannot penetrate into the melt due to the same melting temperature as the raw material, and the size of the seed crystal is too small, the rotation speed is slow, and it cannot cause strong convection of the melt. Effectively help the melt to expel bubbles.
  • the matrix needs to be doped with elements, and the doping elements are mostly dense high-temperature metal ions, it is more necessary to strengthen convection to help the element ions diffuse uniformly into the melt.
  • the shallower melt depth causes the axial and radial temperature gradients inside the crucible to become larger, which affects the crystal quality.
  • the guided mold method has an independent crystal forming mold, which can be used as an independent raw material stirring device.
  • the present invention hangs it above the crucible, and the relative position of the mold and the crucible can be adjusted by rising the crucible; The relative motion state of the crucible and the mold is introduced through the rotation of the crucible.
  • a new type of crystal growth device including a mold, a crucible, a tray, a pillar, and a motor; the mold is suspended above the crucible, and the outer diameter of the mold is smaller than the inner diameter of the crucible; the bottom of the crucible is fixedly connected with the pillar through the tray, and the pillar and the motor are driven
  • the shaft is fixedly connected, and the motor includes a lifting motor and a rotating motor, which are fixedly installed outside the furnace cavity of the equipment.
  • the crucible In the cold state, the crucible is filled with solid raw materials, and the bottom edge of the mold is on the upper edge of the crucible; the furnace door of the device is closed, vacuumed, and protective gas is filled; the temperature is heated until the solid raw materials are completely melted into a liquid state; the crucible is raised until the mold is inserted into the melt At the depth of 0.25—0.45 times of the body, the crucible starts to rotate clockwise and then counterclockwise; after rotating counterclockwise, it stays for 5-60 minutes, and the bubble discharge ends; the crucible continues to rise, and the height ratio of the raw material melt to the mold is always maintained ;
  • the crucible rotates at a speed of 1-10 round/min, and enters the equal diameter process; this rotation process continues until the raw material in the crucible is 8-11mm, the crucible rotation and rising function stop ;
  • the crucible rotation and rising function stop stop, and the temperature rises.
  • the crystal tail is automatically separated from the melt, hover over the mold for a period of time to start the cooling program and finally obtain the crystal.
  • step (1) when the crucible first rotates clockwise, the rotation speed is 1-10 round/min, and the rotation time is 5-120 min. When it is rotated counterclockwise, the rotation time is 5-120 min and the rotation speed is 1-10 round/min. min.
  • step (4) when the crucible is rotated, according to the needs of crystal growth, the process of crystal growth is always carried out while the crystal is grown while the crucible is slowly rotated; or the crucible is rotated at medium speed for a few minutes, the crucible is stopped, and the crystal grows for a period of time. Then the crystal growth is suspended, and the crucible is rotated at a medium speed for a few minutes, and then the crystal resumes growth, alternating interspersed crystal growth process.
  • the present invention provides a crystal growth device and growth method, which uses the action of the crucible relative to the mold to cause convection of the melt, overcome the problem that bubbles in the raw material melt are not easy to escape, and strengthen the convection of the melt by rotating
  • the distribution of doping elements is more uniform, and the axial and radial temperature gradients inside the crucible are adjusted to make the crystal shape more uniform.
  • the invention effectively solves the problems that the bubbles in the melt are not easy to escape and the distribution of doped elements is uneven, alleviates the influence caused by the excessive temperature gradient inside the crucible, and makes the crystal growth process more flexible and abundant to deal with different types of crystal materials need.
  • Figure 1 is a schematic structural view of the lifting state before entering the raw material melt in the mold of the present invention.
  • Fig. 2 is a schematic structural diagram of the rotating state after entering the raw material melt in the mold of the present invention.
  • a new type of crystal growth device including a mold 1, a crucible 3, a tray 4, a support 5, and a motor; the mold 1 is suspended above the crucible 3, and the outer diameter of the mold 1 is smaller than the inner diameter of the crucible 3; the bottom of the crucible 3 passes through the tray 4 It is fixedly connected with the pillar 5, and the pillar 5 is fixedly connected with the transmission shaft of the motor, wherein the motor includes a lifting motor and a rotating motor, and is fixedly installed outside the furnace cavity of the equipment.
  • the crucible 3 can perform upward and downward movement and clockwise and counterclockwise rotation under the drive of a motor.
  • the steps used to assist in the removal of bubbles (1) The crucible is filled with solid raw materials in the cold state, and the bottom edge of the mold is above the upper edge of the crucible; (2) The furnace door is closed, vacuumed, and protective gas is filled. And the characteristics of the thermal field are kept in a vacuum state; (3) Increase the temperature and heat until the raw materials are completely melted into a liquid state; (4) The crucible rises to two-fifths of the mold inserted into the melt, and the crucible starts to rotate clockwise at a speed of 1-10 round/ min, the rotation time is 5-120min. After that, rotate it counterclockwise for 5 to 120 minutes, and the speed is 1 to 10 round/min. (5) After rotating clockwise and counterclockwise, and staying for 5-60 minutes, crystal growth can proceed. This is the process of removing bubbles from the raw material melt.
  • the crucible can always be raised according to the amount of raw materials used for crystal growth to ensure that the liquid level of the raw material melt is relative to the mold the height of.
  • Seeding process The seed crystal is in contact with the mold and cuts into the edge of the mold. The temperature and state of the seed crystal can be judged by the load cell. In order to ensure the seeding quality and reduce the dislocation density, the high temperature seeding is possible.
  • the present invention effectively solves the problems that the bubbles in the melt are not easy to escape and the distribution of doped elements is uneven, and alleviates the influence caused by the excessive temperature gradient inside the crucible. This makes the crystal growth process more flexible and abundant to meet the needs of different types of crystal materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

提供一种晶体生长装置及生长方法,利用坩埚相对模具的动作,引起熔体的对流,克服原料熔体中气泡不易逸出的问题,并通过旋转加强熔体对流使得掺杂元素分布更加均匀,对坩埚内部的轴向及径向温度梯度进行了调和,可使得晶体外形更加均匀,缓解了坩埚内部温度梯度过大所导致的影响,使得长晶工艺更加灵活丰富以应对不同种类晶体材料的需要。

Description

[根据细则37.2由ISA制定的发明名称] 晶体生长装置及其生长方法 技术领域
本发明属于晶体材料制备技术领域,特别涉及一种新型晶体生长装置及其生长方法,特别涉及一种导模法用新型晶体生长装置及其生长方法。
背景技术
伴随人工晶体材料及器件的发展,大尺寸、高质量的人工晶体生长工艺得到越来越多的重视。其中EFG工艺由于具有晶体生长速度快,生长过程中晶体通过模具一次成形,后期加工成本低等诸多优点得到了广泛应用。但是如何减少EFG晶体中的微气泡,或者在有元素掺杂过程中,如何使掺杂元素均匀分布而得到高质量的晶体,成为了限制EFG方法的瓶颈。
目前原料熔体由于粘度系数很大,且距离沸点很远导致流动速度慢,致使熔体中的气体及杂质不能快速的逸出,导致在晶体生长过程中,晶体里有大量的微气泡和杂质。另外在传统晶体生长过程中(如Cz、Ky等),籽晶由于与原料融化温度一致,不可能深入熔体中,且籽晶尺寸过小,旋转速度慢,不能引起熔体强对流,不能有效帮助熔体排气泡。如果需要对基质进行元素掺杂,且掺杂元素多为密度较大的高温金属离子,则更需要加强对流帮助元素离子均匀扩散到熔体之中。同时由于坩埚内部原料越来越少,熔体深度变浅导致坩埚内部的轴向及径向温度梯度变大,对晶体质量产生了影响。
发明内容
为了克服上述现有技术存在的不足,导模法由于拥有独立的晶体成形模具,可作为独立的原料搅拌装置,本发明将其悬挂在坩埚上方,可通过坩埚上升调整模具与坩埚的相对位置;通过坩埚旋转引入坩埚与模具的相对运动状态。
一种新型晶体生长装置,包括模具、坩埚、托盘、支柱、电机;所述模具悬挂在坩埚上方,且模具外径小于坩埚内径;所述坩埚底部通过托盘与支柱固定连接,支柱与电机的传动轴固定连接,其中电机包括升降电机、旋转电机,固定安装在设备炉腔外侧。
同时,还提供了一种采用上述装置的生长方法,具体步骤为:
(一)助排气泡
冷态下坩埚内装满固态原料,模具底沿在坩埚上沿的上面;封闭设备炉门,抽真空,充保护气;升温加热至固态原料完全熔化成液态;将坩埚上升,至模具插入熔体0.25—0.45倍深度处,坩埚开始顺时针旋转,再逆时针旋转;顺逆时针旋转后,静止5—60min,排气泡结束;坩埚不断上升,且始终保持原料熔体相对模具的高度比;
(二)引晶过程
将籽晶与模具接触,切入模具刃口,通过称重传感器判读籽晶的温度及状态,进行高温引晶;
(三)放肩过程
引晶过程完成后保持当前状态10—30min,,然后缓慢进行放肩过程;
(四)等径过程
当放肩过程完成0.55—0.65倍进程时,坩埚进行旋转,转速为1—10round/min,进入等径过程;此旋转过程一直持续到坩埚内原料在8—11mm时,坩埚旋转及上升功能停止;
(五)收尾过程
晶体等径过程生长结束后,由于坩埚旋转及上升功能停止,温度上升,晶体尾部自动与熔体脱开后,在模具上方悬停一段时间,即可启动降温程序,最终获得晶体。
作为改进,步骤(一)中,坩埚先顺时针旋转时,转速为1—10round/min,旋转时间为5—120min,再逆时针旋转时,旋转时间为5—120min,转速为1—10round/min。
作为改进,步骤(四)中,坩埚旋转时为根据长晶需要,始终进行一边晶体生长一边坩埚慢速旋转的长晶过程;或者坩埚中速旋转几分钟,坩埚停转,晶体生长一段时间,然后晶体暂停生长,坩埚再中速旋转几分钟,然后晶体再恢复生长,交替穿插式的长晶过程。
有益效果:本发明中提供了一种晶体生长装置及生长方法,利用坩埚相对模具的动作,引起熔体的对流,克服原料熔体中气泡不易逸出的问题,并通过旋转加强熔体对流使得掺杂元素分布更加均匀,对坩埚内部的轴向及径向温度梯度进行了调和,可使得晶体外形更加均匀。
本发明有效的解决了熔体中气泡不易逸出及掺杂元素分布不均匀的问题,缓解了坩埚内部温度梯度过大所导致的影响,使得长晶工艺更加灵活丰富以应对不同种类的晶体材料需要。
附图说明
图1为本发明模具内进入原料熔体前升降状态的结构示意图。
图2为本发明模具内进入原料熔体后旋转状态的结构示意图。
具体实施方式
下面对本发明作出进一步说明。
一种新型晶体生长装置,包括模具1、坩埚3、托盘4、支柱5、电机;所述模具1悬挂在坩埚3上方,且模具1外径小于坩埚3内径;所述坩埚3底部通过托盘4与支柱5固定连接,支柱5与电机的传动轴固定连接,其中电机包括升降电机、旋转电机,固定安装在设备炉腔外侧。其中坩埚3在电机的带动下能够进行向上、向下的运动及顺时针、逆时针的旋转运动。
实施例1
采用的助排气泡步骤:(1)冷态下坩埚装满固态原料,此时模具底沿在坩埚上沿的上面;(2)封闭炉门,抽真空,充保护气,也可根据原料及热场的特性保持在真空状态;(3)升温加热至原料完全熔化成液态;(4)坩埚上升至模具插入熔体五分之二处,坩埚开始顺时针旋转,转速为1—10round/min,旋转时间为5—120min。此后再逆时针旋转5—120min,转速为1—10round/min。(5)顺逆时针旋转后,静止5—60min,即可进行晶体生长,此为原料熔体排气泡过程。
实施例2
采用的具体长晶助掺杂元素均匀分布步骤为:(1)在原料助排气泡步骤结束后,坩埚始终可根据晶体生长对原料的用量,进行坩埚上升,保证原料熔体液面相对模具的高度。
(2)引晶过程:籽晶与模具接触,切入模具刃口,可通过称重传感器判读籽晶的温度及状态,为保证引晶质量,减少位错密度,尽可能高温引晶。
(3)放肩过程:引晶动作完成后保持当前状态10—30min,有助于籽晶的应力释放并有助于籽晶与熔体的充分熔接,然后缓慢放肩。
(4)放肩及等径过程中的旋转功能:当放肩完成三分之二时,坩埚可进行旋转,转速为1—10round/min。可根据长晶需要,始终进行一边晶体生长一边坩埚慢速旋转。也可以坩埚中速旋转几分钟,坩埚停转,晶体生长一段时间,然后晶体暂停生长,坩埚再中速旋转几分钟,然后晶体再恢复生长,这种交替穿插式的长晶过程。这一步骤的坩埚旋转动作就是引入熔体强制对流,帮助掺杂元素在熔体中均匀扩散。同时旋转对坩埚内部的轴向及径向温度梯度进行了调和。此旋转过程一直持续到坩埚原料剩余10毫米高度时,坩埚旋转及上升功能停止。
(5)收尾过程:晶体等径过程生长结束后,由于坩埚旋转及上升功能停止,温度上升,晶体尾部自动与熔体脱开后,在模具上方悬停一段时间,即可启动降温程序,进而获得晶体。
与现有技术相比,本发明有效的解决了熔体中气泡不易逸出及掺杂元素分布不均匀的问题,缓解了坩埚内部温度梯度过大所导致的影响。使得长晶工艺更加灵活丰富以应对不同种类的晶体材料需要。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (4)

  1. 一种新型晶体生长装置,其特征在于:包括模具(1)、坩埚(3)、托盘(4)、支柱(5)、电机;所述模具(1)悬挂在坩埚(3)上方,且模具(1)外径小于坩埚(3)内径;所述坩埚(3)底部通过托盘(4)与支柱(5)固定连接,支柱(5)与电机的传动轴固定连接,其中电机包括升降电机、旋转电机,固定安装在设备炉腔外侧。
  2. 一种根据权利要求1所述装置的生长方法,其特征在于:具体步骤为:
    (一)助排气泡
    冷态下坩埚(3)内装满固态原料,模具(1)底沿在坩埚(3)上沿的上面;封闭设备炉门,抽真空,充保护气;升温加热至固态原料完全熔化成液态;将坩埚(3)上升,至模具(1)插入熔体0.25—0.45倍深度处,坩埚(3)开始顺时针旋转,再逆时针旋转;顺逆时针旋转后,静止5—60min,排气泡结束;坩埚(3)不断上升,且始终保持原料熔体相对模具(1)的高度比;
    (二)引晶过程
    将籽晶与模具(1)接触,切入模具(1)刃口,通过称重传感器判读籽晶的温度及状态,进行高温引晶;
    (三)放肩过程
    引晶过程完成后保持当前状态10—30min,,然后缓慢进行放肩过程;
    (四)等径过程
    当放肩过程完成0.55—0.65倍进程时,坩埚(3)进行旋转,转速为1—10round/min,进入等径过程;此旋转过程一直持续到坩埚(3)内原料在8—11mm时,坩埚(3)旋转及上升功能停止;
    (五)收尾
    晶体等径过程生长结束后,由于坩埚(3)旋转及上升功能停止,温度上升,晶体尾部自动与熔体脱开后,在模具(1)上方悬停一段时间,即可启动降温程序,最终获得晶体。
  3. 根据权利要求2所述生长方法,其特征在于:步骤(一)中,坩埚(3)先顺时针旋转时,转速为1—10round/min,旋转时间为5—120min,再逆时针旋转时,旋转时间为5—120min,转速为1—10round/min。
  4. 根据权利要求2所述生长方法,其特征在于:步骤(四)中,坩埚(3)旋转时为根据长晶需要,始终进行一边晶体生长一边坩埚慢速旋转的长晶过程;或者坩埚(3)中速旋转几分钟,坩埚停转,晶体生长一段时间,然后晶体暂停生长,坩埚再中速旋转几分钟,然后晶体再恢复生长,交替穿插式的长晶过程。
PCT/CN2020/084477 2019-06-27 2020-04-13 晶体生长装置及其生长方法 WO2020259002A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910567048.3A CN110318095A (zh) 2019-06-27 2019-06-27 一种新型晶体生长装置及其生长方法
CN201910567048.3 2019-06-27

Publications (1)

Publication Number Publication Date
WO2020259002A1 true WO2020259002A1 (zh) 2020-12-30

Family

ID=68121214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/084477 WO2020259002A1 (zh) 2019-06-27 2020-04-13 晶体生长装置及其生长方法

Country Status (2)

Country Link
CN (1) CN110318095A (zh)
WO (1) WO2020259002A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110318095A (zh) * 2019-06-27 2019-10-11 南京同溧晶体材料研究院有限公司 一种新型晶体生长装置及其生长方法
CN114197040A (zh) * 2021-12-21 2022-03-18 安徽科瑞思创晶体材料有限责任公司 一种离子掺杂晶体生产设备及其生产工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003171199A (ja) * 2001-11-30 2003-06-17 National Institute For Materials Science 大型高品質酸化物単結晶育成方法
CN101503823A (zh) * 2009-01-22 2009-08-12 暨南大学 掺镱四钼钨酸铋钠/钾激光晶体及其生长方法和应用
CN102383187A (zh) * 2011-11-28 2012-03-21 天通控股股份有限公司 一种蓝宝石单晶生长方法
CN206219710U (zh) * 2016-11-04 2017-06-06 中科钢研节能科技有限公司 一种导模法长晶炉
CN108411367A (zh) * 2018-03-06 2018-08-17 同济大学 流动气氛导模法多片蓝宝石长晶装置及方法
CN110318095A (zh) * 2019-06-27 2019-10-11 南京同溧晶体材料研究院有限公司 一种新型晶体生长装置及其生长方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102011178B (zh) * 2010-12-30 2012-10-03 宁晋晶兴电子材料有限公司 一种降低单晶硅内部气孔的生产方法
CN102560631A (zh) * 2012-01-20 2012-07-11 上海中电振华晶体技术有限公司 蓝宝石晶体的生长方法及设备
CN203960392U (zh) * 2014-07-31 2014-11-26 中国电子科技集团公司第二十六研究所 直接生长蓝宝石整流罩的设备
CN104088012B (zh) * 2014-07-31 2016-09-07 中国电子科技集团公司第二十六研究所 一种直接生长蓝宝石整流罩的设备
CN104088010B (zh) * 2014-07-31 2016-09-21 中国电子科技集团公司第二十六研究所 一种直接成型蓝宝石整流罩的方法
CN106498488B (zh) * 2016-10-28 2019-04-02 同济大学 同时生长多种掺杂CaF2晶体的装置及基于该装置的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003171199A (ja) * 2001-11-30 2003-06-17 National Institute For Materials Science 大型高品質酸化物単結晶育成方法
CN101503823A (zh) * 2009-01-22 2009-08-12 暨南大学 掺镱四钼钨酸铋钠/钾激光晶体及其生长方法和应用
CN102383187A (zh) * 2011-11-28 2012-03-21 天通控股股份有限公司 一种蓝宝石单晶生长方法
CN206219710U (zh) * 2016-11-04 2017-06-06 中科钢研节能科技有限公司 一种导模法长晶炉
CN108411367A (zh) * 2018-03-06 2018-08-17 同济大学 流动气氛导模法多片蓝宝石长晶装置及方法
CN110318095A (zh) * 2019-06-27 2019-10-11 南京同溧晶体材料研究院有限公司 一种新型晶体生长装置及其生长方法

Also Published As

Publication number Publication date
CN110318095A (zh) 2019-10-11

Similar Documents

Publication Publication Date Title
WO2020259002A1 (zh) 晶体生长装置及其生长方法
WO2009104532A1 (ja) シリコン単結晶成長方法
CN104372399B (zh) 一种单晶硅收尾方法及单晶硅制备方法
CN104726930B (zh) 一种在熔体区域具有搅拌环的直拉法单晶硅生长装置
CN105506731B (zh) 单晶硅生长氧含量控制方法
CN106637402A (zh) 单晶硅平收尾方法及制备方法
CN104583467A (zh) 单晶硅生长设备和生长单晶硅的方法
CN113061980A (zh) 一种生长氟化锂单晶的装置及生长方法
CN104099660B (zh) 大公斤数蓝宝石晶体的旋转扩肩稳定拉升法
TWI774174B (zh) 一種用於晶體生長的引晶方法
TW200305664A (en) Method for producing silicon single crystal and, silicon single crystal and silicon wafer
TW202113168A (zh) 一種矽單晶的生長方法
CN103422165A (zh) 一种多晶硅及其制备方法
JP3598972B2 (ja) シリコン単結晶の製造方法
CN109440183B (zh) 一种优化型大直径区熔硅单晶收尾方法
CN104480527A (zh) 一种多晶硅铸锭炉全功率控制铸锭工艺
CN214612842U (zh) 一种生长氟化锂单晶的装置
JPS6287489A (ja) るつぼの回収方法及び装置
KR101265154B1 (ko) 재사용이 가능한 실리콘 용융용 이중 도가니를 구비하는 단결정 실리콘 잉곳 성장 장치
CN103966660B (zh) 一种准单晶硅锭生长方法
KR101969648B1 (ko) 잉곳성장용 도가니 내의 잔존 불순물 실리콘용융액 제거방법
CN206616295U (zh) 一种硅单晶提拉炉
CN116607215B (zh) 一种铌酸锂晶体的生长方法及装置
KR101962175B1 (ko) 단결정 잉곳 성장을 위한 용융액을 형성하는 방법
CN117305987B (zh) 液相法碳化硅长晶过程消除气泡包裹的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20833065

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20833065

Country of ref document: EP

Kind code of ref document: A1