WO2020256394A1 - 복합재의 제조 방법 및 복합재 - Google Patents

복합재의 제조 방법 및 복합재 Download PDF

Info

Publication number
WO2020256394A1
WO2020256394A1 PCT/KR2020/007823 KR2020007823W WO2020256394A1 WO 2020256394 A1 WO2020256394 A1 WO 2020256394A1 KR 2020007823 W KR2020007823 W KR 2020007823W WO 2020256394 A1 WO2020256394 A1 WO 2020256394A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal foam
less
composite material
weight
present application
Prior art date
Application number
PCT/KR2020/007823
Other languages
English (en)
French (fr)
Inventor
이연수
유동우
이진규
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2021572011A priority Critical patent/JP7383871B2/ja
Priority to EP20827585.9A priority patent/EP3984727A4/en
Priority to US17/617,328 priority patent/US20220219233A1/en
Priority to CN202080043286.5A priority patent/CN114007852B/zh
Publication of WO2020256394A1 publication Critical patent/WO2020256394A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F3/26Impregnating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1121Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/88Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised primarily by possessing specific properties, e.g. electrically conductive or locally reinforced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1103Making porous workpieces or articles with particular physical characteristics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/114Making porous workpieces or articles the porous products being formed by impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1146After-treatment maintaining the porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/26Non-fibrous reinforcements only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
    • B22F2007/066Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts using impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0475Impregnated alloys

Definitions

  • the present application relates to a method of manufacturing a composite material and a composite material.
  • Metal foam has various useful properties such as light weight, energy absorption, heat insulation, fire resistance, or eco-friendliness. Therefore, metal foam can be applied to various fields such as lightweight structures, transport machinery, building materials, or energy absorbing devices. Metal foam has a high specific surface area and can improve the flow of electrons or fluids such as liquids and gases. Therefore, the metal foam may also be usefully used for a substrate for a heat exchange device, a catalyst, a sensor, an actuator, a secondary battery or a microfluidic flow controller. In particular, since the metal foam has a metal component showing high thermal conductivity and has an interconnected structure, it can be mainly applied as a heat radiation material.
  • the outermost surface of the metal foam is not flat. For this reason, when the metal foam is applied as a thermal interface material (TIM), the bonding area of the material in contact with the metal foam decreases, and accordingly, a problem of reducing the heat transfer efficiency of the material occurs.
  • TIM thermal interface material
  • One object of the present application is to manufacture a composite material having high heat conduction efficiency.
  • Another object of the present application is to manufacture a composite material capable of securing stability in an oxidizing and/or high-temperature atmosphere.
  • Another object of the present application is to manufacture a composite material capable of preventing the occurrence of peeling problems, etc., especially when applied as a heat dissipating material.
  • the present application relates to a method of manufacturing a composite material.
  • the manufacturing method of the composite material of the present application comprises the steps of preparing at least a metal foam (a); (B) preparing a mixture containing the metal foam and a curable polymer; And (c) obtaining a composite material by curing the curable polymer of the mixture.
  • the term “curable” may mean a property capable of crosslinking and/or curing by irradiation of light, application of heat, application of an external magnetic field, or the like. That is, the curable polymer may refer to a polymer exhibiting a property capable of being cured by external stimuli such as irradiation of light or application of heat.
  • metal foam refers to a porous structure containing a metal as a main component.
  • the ratio of the component is 55% by weight or more, 60% by weight or more, 65% by weight or more, 70% by weight or more, 75% by weight or more, 80% by weight based on the total weight.
  • the term “porosity” means that the porosity of the material is 10% or more, 20% or more, 30% or more, 40% or more, 50% or more, 60% or more, 70% or more, 75% or more Or it may mean a case of 80% or more.
  • the upper limit of the porosity is not particularly limited, for example, less than about 100%, less than about 99%, less than about 98%, less than about 95%, less than about 90%, less than about 85%, less than about 80%, or It may be about 75% or less.
  • the porosity can be calculated in a known manner by calculating the density of the metal foam.
  • the physical properties mentioned in the present application when the measured temperature affects the corresponding physical property, the physical properties are measured at room temperature unless otherwise specified.
  • room temperature may mean a natural temperature that is not heated or reduced, for example, any one temperature within the range of 10°C to 30°C, about 23°C or about 25°C.
  • the method of the present application further includes a planarization treatment step (d).
  • a planarization treatment step (d) by performing the planarization treatment, a composite material having lower surface roughness and improved thermal conductivity can be manufactured.
  • the pores inside the metal foam are formed somewhat irregularly. Therefore, the surface of the outer surface of the metal foam is not flat. For this reason, when the metal foam is applied as a thermal interface material (TIM) or a heat dissipating material, there is a problem that the heat conduction efficiency decreases. This is because the surface of the outer surface of the metal foam is not flat, so that the bonding area between the metal foam and the material in contact is reduced.
  • a method of adding plate-shaped inorganic nanoparticles such as nanoclay without applying a separate external force to the surface of the metal foam was considered.
  • there is a limitation in improving the heat transfer efficiency of the composite material including the metal foam and the polymer component there is a problem that the manufacturing process cost increases because the additional component is applied.
  • the inventors of the present invention have devised the present invention as a result of searching for a method capable of producing a smooth surface of a composite material while applying the existing metal foam as it is. Specifically, the present inventors confirmed that by flattening at least one of a precursor of a metal foam, a metal foam, a mixture of a metal foam and a curable polymer, and a composite material in the manufacturing process of a composite material, a composite material with high thermal conductivity can be obtained even with a simple process. And, the present invention was devised.
  • the term “flattening treatment” is used as a meaning including a series of treatment processes that so-called “smooth" the surface of the material to be treated.
  • the term “flattening treatment” may refer to a series of actions of treating a material to be treated so that the surface of the material to be treated does not have irregularities or, even if it exists, so that its existence ratio is extremely small.
  • the planarization treatment step (d) is performed at at least one point from before step (a) to after step (c). Specifically, in the method of the present application, the planarization treatment (d) is performed at at least one of the following points (1) to (4):
  • the planarization process may be performed.
  • the planarization treatment step may be advantageously performed on the metal foam.
  • a flattening treatment is performed in the manufacturing process of a metal foam
  • a problem in that the precursor of the metal foam is peeled off from a substrate supporting it may occur, and there may be a limit to the degree of planarization.
  • the metal foam and the curable polymer are mixed and planarized before curing, it may not be easy to stably perform the planarization treatment process because the curable polymer is a liquid component.
  • step (d) may be performed between steps (a) and (b). That is, an exemplary metal foam applied in the method of the present application may be a flattened metal foam.
  • the degree of progress may be further adjusted.
  • the porosity of the metal foam may be performed in a range of 30% to 60%. In another example, the porosity may be 35% or more or 40% or more, and may be 55% or less or 50% or less.
  • the method of the present application may proceed so that the surface roughness of the metal foam is 6 ⁇ m or less.
  • the term "surface roughness” may mean quantitatively indicating how smooth or rough the surface of a target material is.
  • measurement methods such as (1) center line average roughness (Ra), (2) maximum height roughness (Rmax), and (3) 10-point average roughness (Rz) are known.
  • the meaning of the surface roughness applied in the present application may mean that it is measured according to any one of the above methods.
  • the average roughness of the center line (Ra) was actually applied as the surface roughness, and the measurement method is the same as described in Examples to be described later.
  • the method of controlling the porosity and/or surface roughness of the metal foam achieved by the planarization treatment in the above is not particularly limited.
  • the porosity and/or surface roughness may be adjusted by appropriately adjusting a specific method of planarization treatment described later and conditions thereof.
  • the planarization treatment step may be performed by polishing or pressing.
  • polishing refers to a known treatment method of smoothing the surface by rubbing the surface of an object to be treated with the edge or surface of another object.
  • any known polishing method for example, a method of using an abrasive, a method of applying a polishing stone, etc. can be applied.
  • pressure molding may refer to a process of flattening the surface of the object by pressing the protruding portion from the object by applying pressure to the object to be treated.
  • the method of pressure molding is not particularly limited, and a known pressure molding method may be applied.
  • a hydraulic press or a roll press may be applied as a pressure molding method.
  • a roll press method From the viewpoint of thin-film formation of metal foam, it may be appropriate to apply a roll press method.
  • the metal foam may be press-molded by a roll press method.
  • the shape of the metal foam is not particularly limited, but in one example, the shape of the metal foam before the planarization treatment may be a film or sheet shape.
  • the metal foam formed by using a flattening treatment, specifically press molding, or more specifically using a roll press may exist in the form of a film or a sheet regardless of the form before the treatment.
  • the thickness or porosity of the metal foam can be reduced by pressure molding.
  • the thickness when the metal foam before the flattening treatment (specifically, press forming, more specifically press forming using a roll press) is in the form of a film or sheet, the thickness may be 2000 ⁇ m or less. In another example, 1900 ⁇ m or less, 1800 ⁇ m or less, 1700 ⁇ m or less, 1600 ⁇ m or less, 1500 ⁇ m or less, 1400 ⁇ m or less, 1300 ⁇ m or less, 1200 ⁇ m or less, 1100 ⁇ m or less or 1000 or less, may be 10 ⁇ m or more, 20 It may be ⁇ m or more, 30 ⁇ m or more, 40 ⁇ m or more, 50 ⁇ m or more, 60 ⁇ m or more, 70, ⁇ m or more, 80 ⁇ m or more, or 85 ⁇ m or more.
  • the thickness of a member may be calculated indirectly by directly measuring the member using a thickness gauge or analyzing a photograph of the member.
  • the thickness may be a maximum thickness, a minimum thickness, or an average thickness of the member.
  • the porosity of the metal foam before the planarization treatment may be 60% or more.
  • the porosity may be 61% or more, 62% or more, 63% or more, or 64% or more, in another example, and less than 100%, 95% or less, 90% or less, 85% or less, 80% or less, or It can be 75% or less.
  • the above-described method can be applied.
  • the thickness of the metal foam can be reduced according to the planarization treatment (specifically, pressure molding, more specifically, pressure molding using a roll press).
  • a ratio (TA/TB) of the thickness TB of the metal foam before the planarization treatment and the thickness TA of the metal foam after the planarization treatment may be 0.9 or less.
  • the ratio in another example, may be 0.87 or less, 0.86 or less, 0.85 or less, 0.84 or less, or 0.83 or less, and may be 0.05 or more, 0.1 or more, 0.15 or more, 0.2 or more, 0.25 or more, 0.3 or more, 0.35 or more, 0.4 or more, 0.45 It can be more than that.
  • the porosity of the metal foam can also be reduced according to the planarization treatment (specifically press molding, more specifically press molding using a roll press). Accordingly, in an example, the ratio (PA/PB) of the porosity (PB) of the metal foam before the planarization treatment and the porosity (PA) of the metal foam after the planarization treatment may be 0.95 or less.
  • the ratio in another example, may be 0.94 or less, 0.93 or less, 0.92 or less, 0.91 or less, or 0.9 or less, and 0.05 or more, 0.1 or more, 0.15 or more, 0.2 or more, 0.25 or more, 0.3 or more, 0.35 or more, 0.4 or more, 0.45 It may be greater than or equal to 0.5, greater than or equal to 0.55, or greater than or equal to 0.6.
  • the pore characteristics of the metal foam may be additionally controlled.
  • the metal foam may include pores such as approximately, spherical, needle-shaped, or amorphous.
  • the metal foam may have a maximum pore size of 50 ⁇ m or less, 45 ⁇ m or less, 40 ⁇ m or less, 35 ⁇ m or less, and 30 ⁇ m or less.
  • the maximum pore size is 2 ⁇ m or more, 4 ⁇ m or more, 6 ⁇ m or more, 8 ⁇ m or more, 10 ⁇ m or more, 12 ⁇ m or more, 14 ⁇ m or more, 16 ⁇ m or more, 18 ⁇ m or more, 20 ⁇ m or more, 22 It may be ⁇ m or more, 24 ⁇ m or more, or 26 ⁇ m or more.
  • 85% or more of the pores of the metal foam may have a size of 10 ⁇ m or less, and 65% or more of the pores may have a size of 5 ⁇ m or less.
  • the lower limit of the size of the pores having a pore size of 10 ⁇ m or less or 5 ⁇ m or less is not particularly limited, but in one example, more than 0 ⁇ m, 0.1 ⁇ m or more, 0.2 ⁇ m or more, 0.3 ⁇ m or more, 0.4 ⁇ m or more, 0.5 ⁇ m or more, 0.6 ⁇ m or more, 0.7 ⁇ m or more, 0.8 ⁇ m or more, 0.9 ⁇ m or more, 1 ⁇ m or more, 1.1 ⁇ m or more, 1.2 ⁇ m or more, 1.3 ⁇ m or more, 1.4 ⁇ m or more, 1.5 ⁇ m or more, 1.6 ⁇ m or more, 1.7 ⁇ m or more , 1.8 ⁇ m or more, 1.9 ⁇ m or more, or 2 ⁇
  • pores having a pore size of 10 ⁇ m or less in the above may be 100% or less, 95% or less, or 90% or less of the total pores, and the ratio of pores having a pore size of 5 ⁇ m or less is 100% of the total pores. It may be about 95% or less, 90% or less, 85% or less, 80% or less, 75% or less, or 70% or less.
  • a desired composite can be manufactured by such pore distribution or pore characteristics.
  • the pore distribution may be determined based on the long axis direction of the film, for example, when the composite material or metal foam is in the form of a film or sheet.
  • the metal foam is applied in the form of flattening treatment (specifically, press molding, more specifically press molding using a roll press)
  • the pore characteristics in the metal foam become more dense according to the planarization treatment.
  • the pores included in the flattened metal foam may include pores having a maximum pore size smaller than the pores included in the metal foam before the planarization treatment.
  • the ratio (SA/SB) of the maximum pore size (SB) of the metal foam before the planarization treatment and the maximum pore size (SA) of the metal foam after the planarization treatment may be 0.9 or less.
  • the ratio is, in another example, 0.85 or less, 0.8 or less, 0.75 or less, 0.7 or less, 0.65 or less. It may be 0.6 or less, 0.55 or less, or 0.5 or less.
  • the lower limit of the ratio is not particularly limited, but may be, for example, 0.05 or more, 0.1 or more, 0.15 or more, 0.2 or more, 0.25 or more, 0.3 or more, 0.35 or more, 0.4 or more, 0.45 or more.
  • the surface roughness of the metal foam before the planarization treatment may be 20 ⁇ m or less.
  • the value may be 19 ⁇ m or less, 18 ⁇ m or less, 17 ⁇ m or less, 16 ⁇ m or less, 15 ⁇ m or less, 14 ⁇ m or less, 13 ⁇ m or less, 12 ⁇ m or less, 11 ⁇ m or less, or 10 ⁇ m or less, and 5 It may be ⁇ m or more, 6 ⁇ m or more, 7 ⁇ m or more, or 7.5 ⁇ m or more.
  • a ratio (RA/RB) of the surface roughness (RB) of the metal foam before the planarization treatment and the surface roughness (RA) of the metal foam after the planarization treatment may be 0.9 or less.
  • the ratio may be 0.85 or less, 0.8 or less, 0.75 or less, or 0.7 or less, and may be 0.05 or more, 0.1 or more, 0.15 or more, 0.2 or more, 0.25 or more, 0.3 or more, 0.35 or more, or 0.4 or more.
  • the heat resistance of the metal foam affected by the surface roughness can also be reduced by the planarization treatment.
  • the heat resistance of the metal foam before the planarization treatment may be 2 Kin 2 /W or less.
  • the above value is 1.9 Kin 2 /W or less, 1.8 Kin 2 /W or less, 1.7 Kin 2 /W or less, 1.6 Kin 2 /W or less, 1.5 Kin 2 /W or less, 1.4 Kin 2 /W or less, 1.3
  • Kin 2 /W or less 1.2 Kin 2 /W or less, or 1.1 Kin 2 /W or less, 0.1 Kin 2 /W or more, 0.15 Kin 2 /W or more, 0.2 Kin 2 /W or more, 0.25 Kin 2 /W or more, It can be 0.3 Kin 2 /W or more, 0.35 Kin 2 /W or more, 0.4 Kin 2 /W or more, or 0.45 Kin 2 /W or more.
  • a ratio (KA/KB) of the heat resistance (KB) of the metal foam before the planarization treatment and the heat resistance (KA) of the metal foam after the planarization treatment may be 0.9 or less. In another example, the ratio may be 0.85 or less, 0.8 or less, or 0.75 or less, and may be 0.1 or more, 0.15 or more, 0.2 or more, 0.25 or more, 0.3 or more, 0.35 or more, 0.4 or more, or 0.45 or more.
  • the metal foam may be manufactured using a slurry.
  • the metal foam may be prepared by using a slurry containing at least a metal powder, a binder, and a dispersant.
  • the metal foam may be manufactured in a manner including at least a process (a1) of forming a green structure (a precursor of a metal foam) using the slurry and a process (a2) of sintering the green structure. That is, the method of the present application may proceed in a manner including the step (a) and the step (a1) and the step (a2).
  • the term "green structure” refers to a structure before undergoing a process performed to form a metal foam such as sintering, that is, a structure before generating a metal foam.
  • a metal foam such as sintering
  • the green structure is referred to as a porous metal foam precursor, it does not necessarily have to be porous by itself, and may be referred to as a porous metal foam precursor for convenience as long as it can finally form a metal foam that is a porous metal structure. .
  • the type of the metal powder is determined according to the purpose of application and is not particularly limited.
  • the metal powder is a group consisting of copper powder, phosphorus powder, molybdenum powder, zinc powder, manganese powder, chromium powder, indium powder, tin powder, silver powder, platinum powder, gold powder, aluminum powder, and magnesium powder. Any one selected from, a mixture of two or more of the above, or an alloy powder of two or more of the above may be applied.
  • the size of the metal powder may be selected in consideration of a desired porosity or pore size.
  • the average particle diameter of the metal powder may be in the range of 0.1 ⁇ m to 200 ⁇ m.
  • the average particle diameter may be 0.5 ⁇ m or more, 1 ⁇ m or more, 2 ⁇ m or more, 3 ⁇ m or more, 4 ⁇ m or more, 5 ⁇ m or more, 6 ⁇ m or more, 7 ⁇ m or more, or 8 ⁇ m or more, and 150 ⁇ m or less, It may be 100 ⁇ m or less, 90 ⁇ m or less, 80 ⁇ m or less, 70 ⁇ m or less, 60 ⁇ m or less, 50 ⁇ m or less, 40 ⁇ m or less, 30 ⁇ m or less, or 20 ⁇ m or less.
  • the average particle diameter may be adjusted to an appropriate range in consideration of the shape of the desired metal foam, for example, the thickness or porosity of the metal foam.
  • the average particle diameter of the metal powder can be measured by a known particle size analysis method.
  • the average particle diameter of the metal powder may be a so-called D50 particle diameter.
  • the proportion of the metal powder in the slurry is not particularly limited.
  • the slurry may contain 10% to 70% by weight of metal powder.
  • the ratio may be 15% by weight or more, 20% by weight or more, 25% by weight or more, 30% by weight or more, 35% by weight or more, 40% by weight or more, 45% by weight or more, or 50% by weight or more, and 65 It may be less than or equal to 60%, less than or equal to 55%, or less than or equal to 50% by weight.
  • alcohol may be used as the dispersant.
  • examples of the alcohol include a monohydric alcohol having 1 to 20 carbon atoms such as methanol, ethanol, propanol, butanol, pentanol, ethylene glycol, propylene glycol, glycerol, texanol, or terpineol;
  • dihydric alcohols having 1 to 20 carbon atoms or more polyhydric alcohols such as ethylene glycol, propylene glycol, hexanediol, octanediol, or pentanediol, may be used, but the type is not limited to the above examples.
  • the type of the binder is not particularly limited, and may be appropriately selected according to the type of metal component or dispersant to be applied when preparing the slurry.
  • the binder alkyl cellulose having an alkyl group having 1 to 8 carbon atoms such as methyl cellulose or ethyl cellulose; Polyalkylene carbonates having an alkylene unit having 1 to 8 carbon atoms such as polypropylene carbonate or polyethylene carbonate; Polyalkylene oxide having an alkylene unit having 1 to 8 carbon atoms such as polyethylene oxide or polypropylene oxide; Alternatively, a polyvinyl alcohol-based binder such as polyvinyl alcohol or polyvinyl acetate may be used.
  • the proportion of the components is not particularly limited.
  • the ratio may be adjusted in consideration of process efficiency such as coating property or moldability during the process of using the slurry.
  • the slurry may contain a binder in a ratio of 5 to 500 parts by weight based on 100 parts by weight of the metal powder.
  • the ratio in another example, may be 6 parts by weight or more or 7 parts by weight or more, and 450 parts by weight or less, 400 parts by weight or less, 350 parts by weight or less, 300 parts by weight or less, 250 parts by weight or less, 200 parts by weight or less, It may be 150 parts by weight or less, 100 parts by weight or less, 50 parts by weight or less, 30 parts by weight or less, 20 parts by weight or less, 15 parts by weight or less, or 10 parts by weight or less.
  • the slurry may include a dispersant in a ratio of 100 parts by weight to 2000 parts by weight based on 100 parts by weight of the binder.
  • the ratio is 150 parts by weight or more, 200 parts by weight or more, 250 parts by weight or more, 300 parts by weight or more, 350 parts by weight or more, 400 parts by weight or more, 450 parts by weight or more, 500 parts by weight or more, 550 parts by weight More than, 600 parts by weight or more, 650 parts by weight or more, 700 parts by weight or more, 750 parts by weight or more, 800 parts by weight or more, 850 parts by weight or more, 900 parts by weight or more, 950 parts by weight or more, 1000 parts by weight or more, 1050 parts by weight More than, 1100 parts by weight or more, 1150 parts by weight or more, 1200 parts by weight or more, 1250 parts by weight or more, or 1300 parts by weight or more, and may be 1800 parts by weight or less, 1600 parts by weight or less, 1400 parts by weight or less,
  • the unit "parts by weight” means a ratio of weight between each component, unless otherwise specified.
  • the slurry may further include a solvent to improve the foamability of the slurry.
  • a suitable solvent may be used in consideration of the solubility of the components of the slurry, for example, the metal powder and the binder.
  • the solvent one having a dielectric constant in the range of 10 to 120 may be used.
  • the dielectric constant in another example, may be about 20 or more, about 30 or more, about 40 or more, about 50 or more, about 60 or more, or about 70 or more, and may be about 100 or less, about 100 or less, or about 90 or less.
  • Alcohols having 1 to 8 carbon atoms such as ethanol, butanol or methanol; Alternatively, dimethyl sulfoxide (DMSO), dimethyl formamide (DMF), or N-methylpyrrolidone (NMP) may be used, but are not limited thereto.
  • DMSO dimethyl sulfoxide
  • DMF dimethyl formamide
  • NMP N-methylpyrrolidone
  • the slurry may include the solvent in a ratio of about 50 to 400 parts by weight based on 100 parts by weight of the binder.
  • the ratio is not limited thereto.
  • the slurry may additionally contain necessary known additives.
  • the method of forming the metal foam precursor using the above slurry is not particularly limited.
  • various methods for forming a metal foam precursor are known, and all of these methods can be applied in the present application.
  • the metal foam precursor may be formed by maintaining the slurry in an appropriate template, or coating the slurry in an appropriate manner and then drying it.
  • an appropriate drying process may be performed during the formation of the metal foam precursor.
  • a metal foam precursor may be formed by forming the slurry in the above-described manner and then drying the slurry for a predetermined period of time.
  • the drying conditions are not particularly limited, and, for example, a solvent contained in the slurry or a component such as moisture contained in a binder may be controlled at a level capable of removing to a desired level.
  • the drying may be performed by maintaining the formed slurry at a temperature in the range of 50°C to 250°C, 70°C to 180°C, or 90°C to 150°C for an appropriate time. Drying time can also be adjusted within an appropriate range.
  • Metal foam can be manufactured by sintering the metal foam precursor formed in the same manner as described above.
  • a method of performing sintering for manufacturing the metal foam is not particularly limited, and a known sintering method may be applied. That is, the sintering may be performed by applying an appropriate amount of heat to the metal foam precursor by an appropriate method.
  • the sintering may be performed by applying an external heat source to the metal foam precursor.
  • the temperature of the heat source may be in the range of 100 °C to 1200 °C.
  • the manufacturing method of the present application may prepare a mixture including the metal foam and the curable polymer in various ways in step (b). For example, (1) a mixture may be prepared by immersing the metal foam in a curable polymer present in the form of a composition, (2) a liquid or semi-solid curable polymer may be applied to the metal foam to prepare the mixture, or (3) The mixture may be prepared by injecting a curable polymer into the pores of the metal foam.
  • the mixture in step (b), in addition to the above-listed methods, the mixture may be prepared in a non-limiting manner in which a curable polymer may exist on the surface and/or pores of the metal foam.
  • the curable polymer when a mixture including a flattened metal foam and a curable polymer is prepared, the curable polymer may be present on the surface and/or inside of the flattened metal foam. Specifically, the curable polymer may be present by forming a surface layer on at least one surface of the flattened metal foam, or filling the voids inside the metal foam. In addition, the polymer component may be filled inside the metal foam while forming the surface layer in some cases. When the polymer component forms a surface layer, the polymer component may form a surface layer on at least one surface, a portion of the surface, or all surfaces of the metal foam.
  • the type of the curable polymer is not particularly limited.
  • the type of the polymer component may be selected in consideration of the processability, impact resistance, and insulation properties of the composite material.
  • known acrylic resins, silicone resins such as siloxane-based resins, epoxy resins, olefin resins such as PP (polypropylene) or PE (polyethylene), polyester resins such as PET (polyethylene terephthalate), and polyamide resins At least one of a urethane resin, an amino resin, and a phenol resin may be applied, but is not limited thereto.
  • the ratio of the metal foam and the curable polymer is not particularly limited.
  • the metal foam and the curable polymer may be mixed to the extent that the metal foam is sufficiently immersed in the curable polymer. That is, in the manufacturing method of the present application, a composite material may be manufactured by allowing the curable polymer to exist on the surface or inside of the metal foam, and then curing the curable polymer.
  • the ratio (MV/PV) of the volume (PV) of the curable composition and the volume (MV) of the flattened metal foam may be 10 or less.
  • the ratio in another example, may be 9 or less, 8 or less, 7 or less, 6 or less, 5 or less, 4 or less, 3 or less, 2 or less, 1 or less, or 0.5 or less, and may be 0.05 or more, 0.1 or more, or 0.3 or more have.
  • the ratio can be calculated through the weight of the curable polymer and the metal foam contained in the composite material manufactured by the above method and the density of the corresponding components.
  • the method and method of curing the curable polymer in the mixture are also not particularly limited. That is, the composite material can be prepared by curing the mixture through a known method.
  • the composition may be cured by applying an external heat source to the mixture. At this time, the temperature of the heat source may be in the range of 50 °C to 200 °C.
  • the temperature may be, in another example, 60°C or more, 70°C or more, 80°C or more, 90°C or more, 100°C or more, 110°C or more, or 120°C or more, and 190°C or less, 180°C or less, 170°C or less, It may be 160°C or less, 150°C or less, 140°C or less, 130°C or less, or 120°C or less.
  • the curing time can also be selected within an appropriate range.
  • the curing can be carried out for a time in the range of 1 minute to 10 hours.
  • Curing time in another example, may be in the range of 10 minutes to 5 hours, 10 minutes to 3 hours or 10 minutes to 1 hour.
  • the present application also relates to a composite material.
  • the composite material may be manufactured by the above-described method.
  • the composite material of the present application includes a metal foam and a polymer component.
  • the composite material of the present application has a smooth surface and high thermal conductivity (low thermal resistivity).
  • the composite material of the present application includes a metal foam and a component of a curable polymer present on the surface of the metal foam and in the pores of the metal foam.
  • the surface roughness of the composite material is 2 ⁇ m or less.
  • the definition of surface roughness, measurement method, and the like referred to in the present application have the same meaning as described above.
  • the surface roughness of the composite material in another example, may be 1.9 ⁇ m or less or 1.8 ⁇ m or less, and the lower limit is not particularly limited because it is advantageous as the lower limit is, but it may be 0.001 ⁇ m or more, 0.01 ⁇ m or more, 0.1 ⁇ m or more, or 1 ⁇ m or more. have.
  • the thermal resistance at 20 psi of the composite material is 0.5 Kin 2 /W or less.
  • the thermal resistance of the composite material may be 0.45 Kin 2 /W or less, 0.4 Kin 2 /W or less, 0.35 Kin 2 /W or less, or 0.33 Kin 2 /W or less, and the lower limit is particularly limited because it is advantageous. Although not, it may be 0.001 Kin 2 /W or more, 0.01 Kin 2 /W or more, or 0.05 Kin 2 /W or more.
  • the method of measuring the thermal resistance is not particularly limited, and a known measurement method may be applied. In one example, the heat resistance of the composite may be measured according to ASTM D5470 standards.
  • the contents of the metal foam and the polymer component applied to the composite material are as described above.
  • the porosity of the metal foam in the composite material may be in the range of 30% to 60%. In another example, the porosity of the metal foam may be 35% or more or 40% or more, and may be 55% or less or 50% or less.
  • a method of checking the porosity of the metal foam in the composite is not particularly limited. In general, by degreasing the polymer present in the composite material in the composite material, only the metal foam is left, and the porosity of the metal foam can be calculated through a known method by measuring the volume and density of the metal foam. Meanwhile, the degreasing of the polymer in the composite material may be performed through a heat treatment process in an oxidizing atmosphere (existence of an excessive amount of oxygen).
  • the metal constituting the metal foam may be affected, but the difference is insignificant. That is, the porosity may mean the porosity of the metal foam applied in the manufacturing process of the composite material, and may mean the porosity of the metal foam obtained after removing the polymer component from the previously prepared composite material.
  • the porosity of the metal foam in the composite material is in the range of 40% to 50%.
  • the composite material of the present application may also have a film or sheet form.
  • the thickness of the composite material may be 2000 ⁇ m or less.
  • 1900 ⁇ m or less, 1800 ⁇ m or less, 1700 ⁇ m or less, 1600 ⁇ m or less, 1500 ⁇ m or less, 1400 ⁇ m or less, 1300 ⁇ m or less, 1200 ⁇ m or less, 1100 ⁇ m or less or 1000 or less may be 10 ⁇ m or more, 20 It may be ⁇ m or more, 30 ⁇ m or more, 40 ⁇ m or more, 50 ⁇ m or more, 60 ⁇ m or more, 70, ⁇ m or more, 80 ⁇ m or more, or 85 ⁇ m or more.
  • the composite material includes a metal foam and a polymer component present on the surface or inside of the metal foam, and in such a composite, the ratio of the thickness (MT) of the metal foam and the total thickness of the composite material (T) (T/MT) Silver may be 2.5 or less. In another example, the ratio may be 2 or less, 1.9 or less, 1.8 or less, 1.7 or less, 1.6 or less, 1.5 or less, 1.4 or less, 1.3 or less, 1.2 or less, 1.15 or less, or 1.1 or less.
  • the lower limit of the ratio is not particularly limited, but may be about 1 or more, 1.01 or more, 1.02 or more, 1.03 or more, 1.04 or more, 1.05 or more, 1.06 or more, 1.07 or more, 1.08 or more, 1.09 or more, or 1.1 or more. Under such a thickness ratio, it is possible to provide a composite material having excellent thermal conductivity, workability, and impact resistance.
  • the composite material may have a high magnetic permeability due to multiple reflection and absorption due to the characteristic surface area and pore characteristics of the metal foam.
  • the composite material can secure excellent mechanical strength and flexibility by including the metal foam.
  • the composite material can secure stability against oxidation and high temperature, electrical insulation, and the like by appropriate compounding of a polymer component and a metal foam, and can solve peeling problems that occur when applied to various devices.
  • the composite material of the present application has low thermal resistance and low surface roughness, and is particularly suitable for a heat dissipation material or a heat conduction material.
  • the composite material of the present application includes a flattened metal foam, and since the flattened metal foam has a lower surface roughness than other metal foams, the same metal foam is applied, but heat conduction than the composite to which the non-flattened metal foam is applied. Is also excellent. That is, the composite material of the present application is manufactured under the same conditions, but has a lower thermal resistance than when a metal foam without planarization treatment is applied.
  • the present application also relates to the use of the composite material.
  • the present application relates to a heat radiation material including the composite material.
  • the heat dissipation material may be made only of the composite material.
  • the heat dissipation material includes the composite material, but may further include a known configuration or component required for the heat dissipation material.
  • the heat dissipation material may be in the form of a film or sheet, and in this case, a known structure of a film or sheet may be applied.
  • the material When the heat dissipating material is in the form of a film or a sheet, the material may include a substrate and a heat dissipating member provided on at least one surface of the substrate, and the heat dissipating member may include the composite material. Since the heat dissipating material is applied as it is to the composite material described above, the contents of the composite material and its manufacturing method may be applied as it is to the heat dissipating material in the form of a film or sheet. Since the heat dissipating material includes the composite material as a heat dissipating member, heat generated by a heat source adjacent to the heat dissipating material can be efficiently discharged to the outside. In addition, the heat dissipating material in the form of a film or sheet may additionally include a known element required to implement its function.
  • thermally conductive material comprising the composite material.
  • the thermally conductive material may be made only of the composite material.
  • the thermally conductive material includes the composite material, but may further include a known composition or component required for the thermally conductive material.
  • the composite material obtained in the present application may have high heat conduction efficiency.
  • the composite material obtained in the present application can secure stability and the like in an oxidizing and/or high-temperature atmosphere.
  • the composite material obtained in the present application has the advantage of preventing the occurrence of peeling problems, especially when applied as a heat dissipating material.
  • Example 5 is a laser microscope photograph of the composite material of Example 1 and the result of analyzing the surface shape thereof.
  • Example 6 is an SEM photograph of the composite material of Example 1.
  • Copper (Cu) powder having an average particle diameter (D50 particle diameter) of about 60 ⁇ m was used.
  • Texanol was used as a dispersant and ethyl celluose was used as a binder.
  • a solution obtained by dissolving ethyl cellulose to a concentration of about 7% by weight in texanol was mixed so that the weight ratio of copper powder was about 1:1 to prepare a slurry.
  • the slurry was coated in the form of a film having a thickness of about 250 ⁇ m, and dried at a temperature of about 120° C. for about 60 minutes to form a metal foam precursor. Thereafter, sintering was performed by applying an external heat source in an electric furnace to maintain the precursor at a temperature of about 1000° C. for about 2 hours in a hydrogen/argon atmosphere, and a metal foam was manufactured.
  • the thickness of the manufactured metal foam was about 85 ⁇ m, the porosity was about 64%, the surface roughness was about 7.5 ⁇ m, and the heat resistance was about 0.466 Kin 2 /W under the pressure condition of 20 psi.
  • Analysis Tech's TIM Tester 1300 was used as a measuring equipment for thermal resistance, and it was measured according to the manual of the equipment (this was used in the same manner below).
  • a metal foam was manufactured in the same manner as in Preparation Example 1, except that the slurry coating thickness was adjusted to about 300 ⁇ m.
  • the thickness of the manufactured metal foam was about 100 ⁇ m, the porosity was about 64%, the surface roughness was about 8 ⁇ m, and the heat resistance was about 0.496 Kin 2 /W under the pressure condition of 20 psi.
  • the SEM picture of the metal foam is shown in FIG. 2.
  • a metal foam was manufactured in the same manner as in Preparation Example 1, except that the slurry coating thickness was adjusted to about 1500 ⁇ m.
  • the thickness of the manufactured metal foam was about 500 ⁇ m, the porosity was about 70%, the surface roughness was about 9 ⁇ m, and the heat resistance was about 0.871 Kin 2 /W under the pressure condition of 20 psi.
  • a metal foam was manufactured in the same manner as in Preparation Example 1, except that the slurry coating thickness was adjusted to about 2500 ⁇ m.
  • the thickness of the manufactured metal foam was about 1000 ⁇ m, the porosity was about 75%, the surface roughness was about 10 ⁇ m, and the heat resistance was about 1.064 Kin 2 /W under a pressure condition of 20 psi.
  • the gap between the rolls of a roll press device (WCRP-1015G, Wellcos Corp) was set to 70 ⁇ m, and the metal foam of Preparation Example 1 was passed through the rolls of the device to prepare a press-molded metal foam.
  • the thickness of the press-molded metal foam was about 70 ⁇ m, the porosity was about 53%, the surface roughness was about 5.2 ⁇ m, and the heat resistance was about 0.335 Kin 2 /W under the pressure condition of 20 psi.
  • the laser micrograph of the metal foam of Preparation Example 5 and the analysis result of the surface shape thereof are shown in FIG. 3.
  • the gap between the rolls of a roll press device (WCRP-1015G, Wellcos Corp) was set to 80 ⁇ m, and the metal foam of Preparation Example 2 was passed through the rolls of the device to prepare a press-molded metal foam.
  • the thickness of the press-molded metal foam was about 80 ⁇ m, the porosity was about 57%, the surface roughness was about 4 ⁇ m, and the heat resistance was about 0.360 Kin 2 /W under the pressure condition of 20 psi.
  • a SEM photograph of the metal foam of Preparation Example 6 is shown in FIG. 4.
  • the gap between the rolls of a roll press device (WCRP-1015G, Wellcos Corp) was set to 300 ⁇ m, and the metal foam of Preparation Example 3 was passed through the rolls of the device to prepare a press-molded metal foam.
  • the thickness of the press-molded metal foam was about 300 ⁇ m, the porosity was about 55%, the surface roughness was about 5 ⁇ m, and the heat resistance was about 0.403 Kin 2 /W under the pressure condition of 20 psi.
  • the gap between the rolls of a roll press device (WCRP-1015G, Wellcos Corp) was set to 500 ⁇ m, and the metal foam of Preparation Example 4 was passed through the rolls of the device to prepare a press-molded metal foam.
  • the thickness of the press-molded metal foam was about 50 ⁇ m, the porosity was about 45%, the surface roughness was about 4 ⁇ m, and the heat resistance was about 0.527 Kin 2 /W under the pressure condition of 20 psi.
  • the metal foam surface is formed relatively smoothly according to pressure molding, and thus has a lower heat resistance than before molding.
  • the metal foam of Preparation Example 5 was immersed in a thermosetting silicone resin (polydimethylsiloxane, Sylgard 527 kit, Dow Corning), which is a curable polymer.
  • a thermosetting silicone resin polydimethylsiloxane, Sylgard 527 kit, Dow Corning
  • the excess amount of the silicone resin was removed using a film applicator so that the thickness of the curable polymer composition in which the metal foam was immersed was about 80 ⁇ m.
  • the polymer composition was cured by holding it in an oven maintained at 120° C. for about 10 minutes to prepare a film-shaped composite.
  • 5 is a laser micrograph of the composite material of Example 1 and the result of analyzing the surface shape thereof
  • FIG. 6 is an SEM image of the composite material of Example 1.
  • FIG. The surface roughness of the composite material was about 1.2 ⁇ m, and the heat resistance was about 0.098 Kin 2 /W under the pressure condition of 20 psi.
  • Example 6 Except that the metal foam of Preparation Example 6 was immersed instead of the metal foam of Preparation Example 5, and the excess of the silicone resin was removed using a film applicator so that the thickness of the curable polymer composition in which the metal foam was immersed was about 90 ⁇ m.
  • a composite material was prepared in the same manner as in Example 1. 7 is an SEM photograph of the composite material of Example 2. The surface roughness of the composite material was about 1.5 ⁇ m, and the heat resistance was about 0.102 Kin 2 /W under a pressure condition of 20 psi.
  • Example 7 Except that the metal foam of Preparation Example 7 was immersed instead of the metal foam of Preparation Example 5, and the excess of the silicone resin was removed using a film applicator so that the thickness of the curable polymer composition in which the metal foam was immersed was about 320 ⁇ m.
  • a composite material was manufactured in the same manner as in Example 1. The surface roughness of the composite material was about 1.6 ⁇ m, and the heat resistance was about 0.226 Kin 2 /W under the pressure condition of 20 psi.
  • Example 8 Except that the metal foam of Preparation Example 8 was immersed instead of the metal foam of Preparation Example 5, and the excess of the silicone resin was removed using a film applicator so that the thickness of the curable polymer composition in which the metal foam was immersed was about 525 ⁇ m.
  • a composite material was manufactured in the same manner as in Example 1. The surface roughness of the composite material was about 1.8 ⁇ m, and the heat resistance was about 0.315 Kin 2 /W under the pressure condition of 20 psi.
  • Example 1 Except that the metal foam of Preparation Example 1 was immersed instead of the metal foam of Preparation Example 5, and the excess of the silicone resin was removed using a film applicator so that the thickness of the curable polymer composition in which the metal foam was immersed was about 100 ⁇ m.
  • a composite material was prepared in the same manner as in Example 1. 8 is an SEM photograph of the composite material of Comparative Example 1. The surface roughness of the composite material was about 2.5 ⁇ m, and the heat resistance was about 0.203 Kin 2 /W under the pressure condition of 20 psi.
  • Example 2 Except that the metal foam of Preparation Example 2 was immersed instead of the metal foam of Preparation Example 5, and the excess of the silicone resin was removed using a film applicator so that the thickness of the curable polymer composition in which the metal foam was immersed was about 110 ⁇ m.
  • a composite material was manufactured in the same manner as in Example 1. 9 is a SEM photograph of the composite material of Comparative Example 2. The surface roughness of the composite material was about 2.4 ⁇ m, and the heat resistance was about 0.236 Kin 2 /W under the pressure condition of 20 psi.
  • Example 3 Except that the metal foam of Preparation Example 3 was immersed instead of the metal foam of Preparation Example 5, and the excess of the silicone resin was removed using a film applicator so that the thickness of the curable polymer composition in which the metal foam was immersed was about 530 ⁇ m.
  • a composite material was manufactured in the same manner as in Example 1. The surface roughness of the composite material was about 3.2 ⁇ m, and the heat resistance was about 0.652 Kin 2 /W under a pressure condition of 20 psi.
  • Example 4 Except that the metal foam of Preparation Example 4 was immersed instead of the metal foam of Preparation Example 5, and the excess of the silicone resin was removed using a film applicator so that the thickness of the curable polymer composition in which the metal foam was immersed was about 1050 ⁇ m.
  • a composite material was manufactured in the same manner as in Example 1. The surface roughness of the composite material was about 3.0 ⁇ m, and the heat resistance was about 0.783 Kin 2 /W under the pressure condition of 20 psi.
  • Example 1 Example 2
  • Example 3 Example 4 Applicable metal foam Manufacturing
  • Example 5 Manufacturing
  • Example 6 Manufacturing
  • Example 7 Manufacturing
  • Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Applicable metal foam Manufacturing Example 1 Manufacturing Example 2 Manufacturing Example 3 Manufacturing Example 4 Surface roughness 2.5 2.4 3.2 3.0 Heat resistance @20psi(Kin 2 /W) 0.203 0.236 0.652 0.783
  • the composite material manufactured through the planarization treatment specifically the composite material of Examples 1 to 4 manufactured using the metal foam formed by pressure, has a lower surface roughness compared to the thickness of the composite material of the comparative example , It can be confirmed that it has a reduced thermal resistance. Through this, it can be seen that when a composite material is manufactured with a planarization treatment as in the method of the present application, the surface roughness and thermal conductivity of the composite material can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Laminated Bodies (AREA)
  • Powder Metallurgy (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)

Abstract

본 출원은 복합재의 제조 방법 및 복합재에 관한 것이다. 본 출원에서 얻은 복합재는 높은 열전도 효율을 가질 수 있다. 본 출원에서 얻은 복합재는 산화 및/또는 고온 분위기에서 안정성 등을 확보할 수 있다. 본 출원에서 얻은 복합재는 특히 방열 소재 등으로 적용하였을 때, 박리 문제 등의 발생도 예방할 수 있는 이점이 있다.

Description

복합재의 제조 방법 및 복합재
본 출원은 2019년 6월 17일에 대한민국 특허청에 출원된 특허출원 제10-2019-0071483호의 우선일의 이익을 주장하며, 그 내용 전부는 본 출원에 포함된다.
본 출원은 복합재의 제조 방법 및 복합재에 관한 것이다.
금속폼(metal foam)은 경량성, 에너지 흡수성, 단열성, 내화성 또는 친환경성 등의 다양하고 유용한 특성을 구비한다. 따라서 경량 구조물, 수송 기계, 건축 자재 또는 에너지 흡수 장치 등의 다양한 분야에 금속폼을 적용할 수 있다. 금속폼은 높은 비표면적을 가지고 액체, 기체 등의 유체 또는 전자의 흐름을 향상시킬 수 있다. 그러므로, 열 교환 장치용 기판, 촉매, 센서, 액츄에이터, 2차 전지 또는 미세유체 흐름 제어기(microfluidic flow controller) 등에도 금속폼을 유용하게 사용할 수도 있다. 특히, 금속폼은 높은 열전도도를 나타내느 금속 성분을 가지고, 이들이 상호 연결된 구조를 가지기 때문에, 주로 방열(heat radiation) 재료로 적용될 수 있다.
그렇지만, 금속폼 내부의 기공은 다소 불규칙적으로 형성되어 있기 때문에, 금속폼의 최외곽 표면은 평탄하지 않다. 이러한 이유로, 금속폼을 열 전달 물질(thermal interface material, TIM)로 적용하면, 금속폼과 접하는 물질의 접합 면적이 감소하게 되고, 이에 따라서 해당 물질의 열전달 효율이 감소하는 문제가 발생하게 된다.
본 출원에서는 높은 열전도 효율을 가지는 복합재를 제조하는 것을 하나의 목적으로 한다.
본 출원에서는 산화 및/또는 고온 분위기에서 안정성 등을 확보할 수 있는 복합재를 제조하는 것을 다른 하나의 목적으로 한다.
본 출원에서는 특히 방열 소재 등으로 적용하였을 때, 박리 문제 등의 발생도 예방할 수 있는 복합재를 제조하는 것을 또 다른 하나의 목적으로 한다.
본 출원은 복합재의 제조 방법에 관한 것이다. 본 출원의 복합재의 제조 방법은 적어도 금속폼을 준비하는 단계(a); 상기 금속폼과 경화성 고분자를 포함하는 혼합물을 준비하는 단계(b); 및 상기 혼합물의 경화성 고분자를 경화시켜서 복합재를 얻는 단계(c)를 포함한다.
본 출원에서, 용어 “경화성”은 광의 조사, 열의 인가, 외부 자기장 인가 등으로 가교 및/또는 경화할 수 있는 성질을 의미할 수 있다. 즉 상기 경화성 고분자는 광의 조사, 열의 인가 등의 외부 자극에 의해 경화할 수 있는 성질을 나타내는 고분자를 의미할 수 있다.
본 출원에서, 용어 “금속폼”은, 금속을 주성분으로 포함하는 다공성 구조체를 의미한다.
상기에서, 어떤 성분을 주성분으로 포함한다고 함은, 전체 중량을 기준으로 그 성분의 비율이 55 중량% 이상, 60 중량% 이상, 65 중량% 이상, 70 중량% 이상, 75 중량% 이상, 80 중량% 이상, 85 중량% 이상, 90 중량% 이상 또는 90 중량% 이상이고, 100 중량% 이하, 99 중량% 이하 또는 98 중량% 이하 정도인 것을 의미할 수 있다.
본 출원에서, 용어 “다공성”은, 해당 물질의 기공도(porosity)가 10 % 이상, 20 % 이상, 30 % 이상, 40 % 이상, 50 % 이상, 60 % 이상, 70 % 이상, 75 % 이상 또는 80 % 이상인 경우를 의미할 수 있다. 상기 기공도의 상한은 특별히 제한되지 않으며, 예를 들면, 약 100 % 미만, 약 99 % 이하, 약 98 % 이하, 약 95 % 이하, 약 90 % 이하, 약 85 % 이하, 약 80 % 이하 또는 약 75 % 이하 정도 일 수 있다. 상기 기공도는 금속폼 등의 밀도를 계산함으로 해서 공지의 방식으로 산출할 수 있다.
본 출원에서 언급하는 물리적 성질 중에서, 그 측정 온도가 해당 물성에 영향을 미치는 경우에는, 특별히 다르게 규정하지 않는 한, 그 물리적 성질은 상온에서 측정한 것이다.
상기에서, 용어 “상온”은 가온 또는 감온되지 않은 자연 그대로의 온도, 예를 들어, 10 ℃ 내지 30 ℃의 범위 내의 어느 한 온도, 약 23 ℃ 또는 약 25 ℃ 정도의 온도를 의미할 수 있다.
본 출원의 방법은 평탄화 처리 단계(d)를 추가로 포함한다. 본 출원의 방법은 평탄화 처리를 진행함으로 해서, 보다 낮은 표면 조도를 가지면서 동시에 열전도율이 향상된 복합재를 제조할 수 있다.
일반적으로, 금속폼 내부의 기공은 다소 불규칙적으로 형성되어 있다. 따라서, 금속폼 외곽의 표면은 평탄하지 않다. 이러한 이유로, 금속폼을 열전달 재료(thermal interface material, TIM) 또는 방열 재료 등으로 적용하면, 열전도 효율이 감소하는 문제가 있다. 금속폼 외곽의 표면은 평탄하지 않아서 그 금속폼과 접하는 물질 간의 접합 면적이 감소하기 때문이다. 금속폼의 표면을 평탄하게 형성하기 위하여, 금속폼 표면에 별도의 외력을 가하지 않고, 나노클레이(nanoclay) 등의 판상의 무기 나노 입자를 첨가하는 방법이 고려되었다. 그렇지만, 상기 방법으로는 금속폼과 고분자 성분을 포함하는 복합재의 열전달 효율을 향상시키는데 한계가 있고, 추가의 성분을 적용하기 때문에 제조 공정 비용이 증가하는 문제가 있다.
이에, 본 발명자들은 기존의 금속폼을 그대로 적용하되, 복합재의 표면을 매끄럽게 제조할 수 있는 방법에 대해서 탐구한 결과, 본 발명을 고안하게 되었다. 구체적으로, 본 발명자들은 복합재의 제조 과정에서 금속폼의 전구체, 금속폼, 금속폼과 경화성 고분자의 혼합물 및 복합재 중 적어도 하나를 평탄화 처리하면, 간편한 공정으로도 열전도율이 높은 복합재를 얻을 수 있음을 확인하고, 본 발명을 고안하게 되었다.
본 출원에서 용어 “평탄화 처리”는 피처리 물질의 표면을 소위 “매끄럽게” 하는 일련의 처리 과정을 포함하는 의미로 사용된다. 구체적으로, 용어 “평탄화 처리”는 피처리 물질을 이의 표면에 요철부가 존재하지 않도록 혹은, 존재하더라도 그 존재 비율이 극히 적게 되도록 처리하는 일련의 행위를 의미할 수 있다.
본 출원의 방법에서는 상기 평탄화 처리 단계(d)를 상기 (a) 단계 이전부터 (c) 단계 이후 중 적어도 한 시점에 진행한다. 구체적으로, 본 출원의 방법에서는 상기 평탄화 처리(d) 단계를 다음 (1) 내지 (4)의 시점 중 적어도 한 시점에서 진행한다:
(1) 금속폼의 준비 전
(2) 금속폼의 준비 후
(3) 금속폼과 경화성 고분자를 포함하는 혼합물을 제조한 후
(4) 금속폼과 경화성 고분자를 포함하는 혼합물의 상기 경화성 고분자를 경화시킨 후
즉 본 출원의 방법에서는 (i) 금속폼의 제조 중, (ii) 금속폼의 제조 후 부터 경화성 고분자와의 혼합 전, (iii) 금속폼과 경화성 고분자를 혼합하는 중, (iv) 혼합물의 제조 후, (iv) 경화성 고분자의 경화 과정 중 및/또는 (v) 복합재의 제조 후에 평탄화 처리 과정을 진행할 수 있다.
한편, 평탄화 처리의 정도를 적절히 조절하고, 그 처리 정도에 따른 열전도 효율의 향상을 극대화하고자 하는 관점에서, 상기 평탄화 처리 단계는 금속폼에 대하여 진행되는 것이 유리할 수 있다. 예를 들어, 금속폼의 제조 과정에서 평탄화처리를 하면, 상기 금속폼의 전구체가 이를 지지하는 기재로부터 박리되는 문제가 발생할 수도 있고, 평탄화 정도에 한계가 있을 수 있다. 또한 금속폼과 경화성 고분자를 혼합시키고, 이를 경화하기 전에 평탄화 처리하게 되면, 대체로 경화성 고분자가 액상 성분이기 때문에, 평탄화 처리 공정을 안정적으로 진행하기 쉽지 않을 수 있다. 금속폼과 경화성 고분자를 혼합하고, 그 혼합물의 경화성 고분자를 경화시킨 후에 평탄화 처리하는 경우, 여전히 금속폼의 내부에 탄성을 띄는 경화성 고분자가 존재하기 때문에, 평탄화 정도를 향상시키는데 한계가 있을 수 밖에 없다. 즉 본 출원의 바람직한 실시 상태에서는, 내부의 기공이 비어있는 상태, 즉 금속폼에 대해서 평탄화 처리한 다음, 본 출원의 복합재의 제조 공정을 진행하는 것이 좋을 수 있다.
즉 본 출원의 방법은 일 예시에서, 상기 단계 (d)를 상기 (a) 단계와 (b) 단계 사이에 진행할 수 있다. 즉, 본 출원의 방법에서 적용되는 예시적인 금속폼은 평탄화 처리된 금속폼일 수 있다.
일 예시에서, 본 출원의 방법이 상기 평탄화 처리를 금속폼에 대해서 진행하는 경우, 그 진행의 정도도 추가로 조절될 수 있다. 예를 들어, 본 출원의 방법은 상기 평탄화 처리를 상기 금속폼에 대해서 진행하는 경우, 상기 금속폼의 기공도(porosity)가 30 % 내지 60 %의 범위 내에 있도록 진행할 수 있다. 상기 기공도는 다른 예시에서, 35 % 이상 또는 40 % 이상일 수 있고, 55 % 이하 또는 50 % 이하일 수 있다.
다른 예시에서, 본 출원의 방법은 상기 평탄화 처리를 상기 금속폼에 대해서 진행하는 경우, 상기 금속폼의 표면 조도(surface roughness)가 6 ㎛ 이하가 되도록 진행할 수 있다.
본 출원에서 용어 “표면 조도”는 대상 물질의 표면이 얼마나 매끄럽거나, 거친지를 정량적으로 나타낸 것을 의미할 수 있다. 표면 조도로는 (1) 중심선 평균 조도(Ra), (2) 최대 높이 조도(Rmax) 및 (3) 10점 평균 조도(Rz) 등의 측정 방식이 알려져 있다. 본 출원에서 적용되는 표면 조도의 의미는 상기 중 어느 하나의 방식에 따라 측정된 것을 의미할 수 있다. 본 출원에서는 실제로 표면 조도로, 중심선 평균 조도(Ra)를 적용하였으며, 그 측정방식은 후술하는 실시예에서 기술된 것과 같다.
상기에서 평탄화 처리에 따라 달성되는 금속폼의 기공도 및/또는 표면 조도를 조절하는 방식은 특별히 제한되지 않는다. 상기 기공도 및/또는 표면 조도는 후술하는 평탄화 처리의 구체적 방식과 이의 조건 등을 적절히 조절함으로 해서 조절될 수 있다.
예를 들어, 본 출원의 제조 방법은 상기 평탄화 처리 단계를 연마(polishing) 또는 가압 성형(pressing) 방식 등으로 진행할 수 있다.
상기에서, 연마는, 피처리 대상의 표면을 다른 물체의 모서리 또는 표면으로 문질러서 그 표면을 매끈하게 하는 공지의 처리 방식을 의미한다. 연마 방식으로는 공지의 연마 방식(예를 들어, 연마재를 이용하는 방식, 연마숫돌 등을 적용하는 방식)을 모두 적용할 수 있다.
상기에서, 가압 성형은 피처리 대상에 압력을 인가하여 피처리 대상에서 돌출된 부위를 눌러서 그 표면을 편평하게 하는 공정을 의미할 수 있다. 상기 가압 성형의 방식은 특별히 제한되지 않으며, 공지의 가압 성형 방식이 적용될 수 있다. 예를 들어, 가압 성형의 방식으로 유압 프레스(hydraulic press) 또는 롤 프레스(roll press) 등이 적용될 수 있다. 금속폼의 박막(thin-film)화 관점에서는 롤 프레스 방식을 적용하는 것이 적절할 수 있다. 예를 들어, 본 출원의 방법에서는 미리 제조된 금속폼을 프레스 장비에 구비된 두개의 롤 사이로 지나가게 함으로 해서, 금속폼을 롤 프레스 방식으로 가압 성형할 수 있다.
상기 금속폼의 형태는 특별히 제한되지 않으나, 일 예시에서, 평탄화 처리 전의 상기 금속폼의 형태는, 필름 또는 시트 형상일 수 있다. 또한, 평탄화 처리, 구체적으로 가압 성형, 보다 구체적으로 롤 프레스를 이용하여 가압 성형된 금속폼은 그 처러 전의 형태와 무관하게 필름 또는 시트 형태로 존재할 수 있다. 또한, 금속폼의 두께 또는 기공도 등은 가압 성형함으로 해서 감소할 수 있다.
일 예시에서, 평탄화 처리(구체적으로 가압 성형, 보다 구체적으로는 롤 프레스를 이용한 가압 성형) 전의 금속폼이 필름 또는 시트 형상인 경우, 그 두께는 2000 ㎛ 이하일 수 있다. 다른 예시에서, 1900 ㎛ 이하, 1800 ㎛ 이하, 1700 ㎛ 이하, 1600 ㎛ 이하, 1500 ㎛ 이하, 1400 ㎛ 이하, 1300 ㎛ 이하, 1200 ㎛ 이하, 1100 ㎛ 이하 또는 1000 이하일 수 있고, 10 ㎛ 이상, 20 ㎛ 이상, 30 ㎛ 이상, 40 ㎛ 이상, 50 ㎛ 이상, 60 ㎛ 이상, 70, ㎛ 이상 80 ㎛ 이상 또는 85 ㎛ 이상일 수 있다.
본 출원에서, 어떤 부재의 두께는 해당 부재를 두께 게이지(gauge)를 이용하여 직접 측정하거나, 해당 부재에 대한 사진을 분석하는 방식 등으로 간접적으로 산출할 수 있다. 또한, 해당 부재의 두께가 일정하지 않은 경우, 상기 두께는 상기 부재의 최대 두께, 최소 두께 또는 평균 두께일 수 있다.
일 예시에서, 평탄화 처리(구체적으로 가압 성형, 보다 구체적으로는 롤 프레스를 이용한 가압 성형) 전의 금속폼의 기공도는 60 % 이상일 수 있다. 다른 예시에서, 상기 기공도는 다른 예시에서, 61 % 이상, 62 % 이상, 63 % 이상 또는 64 % 이상일 수 있고, 100 % 미만, 95 % 이하, 90 % 이하, 85 % 이하, 80 % 이하 또는 75 % 이하일 수 있다. 기공도의 측정 방식으로는 전술한 방식을 적용할 수 있다.
전술한 것처럼, 평탄화 처리(구체적으로 가압 성형, 보다 구체적으로는 롤 프레스를 이용한 가압 성형)에 따라서 금속폼의 두께가 감소할 수 있다. 따라서, 일 예시에서, 평탄화 처리 전의 금속폼의 두께(TB)와 평탄화 처리 후의 금속폼의 두께(TA)의 비율(TA/TB)은 0.9 이하일 수 있다. 상기 비율은, 다른 예시에서, 0.87 이하, 0.86 이하, 0.85 이하, 0.84 이하 또는 0.83 이하일 수 있고, 0.05 이상, 0.1 이상, 0.15 이상, 0.2 이상, 0.25 이상, 0.3 이상, 0.35 이상, 0.4 이상, 0.45 이상일 수 있다.
평탄화 처리(구체적으로 가압 성형, 보다 구체적으로는 롤 프레스를 이용한 가압 성형)에 따라서 금속폼의 기공도 또한 감소할 수 있다. 따라서, 일 예시에서, 평탄화 처리 전의 금속폼의 기공도(PB)와 평탄화 처리 후의 금속폼의 기공도(PA)의 비율(PA/PB)은 0.95 이하일 수 있다. 상기 비율은, 다른 예시에서, 0.94 이하, 0.93 이하, 0.92 이하, 0.91 이하 또는 0.9 이하일 수 있고, 0.05 이상, 0.1 이상, 0.15 이상, 0.2 이상, 0.25 이상, 0.3 이상, 0.35 이상, 0.4 이상, 0.45 이상, 0.5 이상, 0.55 이상 또는 0.6 이상일 수 있다.
본 출원에서는, 적절한 열전도도 등을 확보하기 위하여, 상기 금속폼의 기공 특성을 추가로 제어할 수도 있다. 예를 들어, 상기 금속폼은 대략, 구형, 니들(needle)형, 또는 무정형 등의 기공을 포함할 수 있다. 예를 들어, 상기 금속폼은 최대 기공의 크기가 50 ㎛ 이하, 45 ㎛ 이하, 40 ㎛ 이하, 35 ㎛ 이하, 30 ㎛ 이하 정도일 수 있다. 상기 최대 기공 크기는 다른 예시에서, 2 ㎛ 이상, 4 ㎛ 이상, 6 ㎛ 이상, 8 ㎛ 이상, 10 ㎛ 이상, 12 ㎛ 이상, 14 ㎛ 이상, 16 ㎛ 이상, 18 ㎛ 이상, 20 ㎛ 이상, 22 ㎛ 이상, 24 ㎛ 이상 또는 26 ㎛ 이상일 수 있다.
일 예시에서, 상기 금속폼의 전체 기공 중에서 85 % 이상의 기공은 그 크기가 10 ㎛ 이하일 수 있고, 65 % 이상의 기공은 그 크기가 5 ㎛ 이하일 수 있다. 사이에서, 10 ㎛ 이하 또는 5 ㎛ 이하의 기공 크기를 가지는 기공의 크기의 하한은 특별히 제한되지 않지만, 일 예시에서 0 ㎛ 초과, 0.1 ㎛ 이상, 0.2 ㎛ 이상, 0.3 ㎛ 이상, 0.4 ㎛ 이상, 0.5 ㎛ 이상, 0.6 ㎛ 이상, 0.7 ㎛ 이상, 0.8 ㎛ 이상, 0.9 ㎛ 이상, 1 ㎛ 이상, 1.1 ㎛ 이상, 1.2 ㎛ 이상, 1.3 ㎛ 이상, 1.4 ㎛ 이상, 1.5 ㎛ 이상, 1.6 ㎛ 이상, 1.7 ㎛ 이상, 1.8 ㎛ 이상, 1.9 ㎛ 이상 또는 2 ㎛ 이상일 수 있다.
또한, 상기에서 10 ㎛ 이하의 기공 크기의 기공은, 전체 기공 중에서 100 % 이하, 95 % 이하 또는 90 % 이하 정도일 수 있고, 5 ㎛ 이하의 기공 크기를 가지는 기공의 비율은, 전체 기공 중에서 100 % 이하, 95 % 이하, 90 % 이하, 85 % 이하, 80 % 이하, 75 % 이하 또는 70 % 이하 정도일 수 있다.
이와 같은 기공 분포 내지 기공 특성에 의하여 목적하는 복합재를 제조할 수 있다. 상기 기공 분포는, 예를 들면, 복합재 또는 금속폼이 필름 또는 시트 형태인 경우에는 상기 필름의 장축 방향을 기준으로 정해지는 것일 수 있다.
또한, 본 출원에서는 상기 금속폼을 평탄화 처리(구체적으로 가압 성형, 보다 구체적으로는 롤 프레스를 이용한 가압 성형)한 형태로 적용하므로, 상기 금속폼 내의 기공 특성은 평탄화 처리에 따라 보다 조밀한 형태로 이루어질 수 있다. 예를 들면, 상기 평탄화 처리된 금속폼이 포함하는 기공은 평탄화 처리 전의 금속폼이 포함하는 기공보다 최대 기공 크기가 작은 기공을 포함할 수 있다.
예를 들어, 상기 평탄화 처리 전의 금속폼의 최대 기공 크기(SB)와 평탄화 처리 후의 금속폼의 최대 기공 크기(SA)의 비율(SA/SB)은 0.9 이하일 수 있다. 상기 비율은, 다른 예시에서, 0.85 이하, 0.8 이하, 0.75 이하, 0.7 이하, 0.65 이하. 0.6 이하, 0.55 이하 또는 0.5 이하일 수 있다. 또한, 상기 비율의 하한은 특별히 제한되지는 않지만, 예를 들어, 0.05 이상, 0.1 이상, 0.15 이상, 0.2 이상, 0.25 이상, 0.3 이상, 0.35 이상, 0.4 이상, 0.45 이상일 수 있다.
일 예시에서, 평탄화 처리 전의 금속폼의 표면 조도(surface roughness)는 20 ㎛ 이하일 수 있다. 상기 값은 다른 예시에서, 19 ㎛ 이하, 18 ㎛ 이하, 17 ㎛ 이하, 16 ㎛ 이하, 15 ㎛ 이하, 14 ㎛ 이하, 13 ㎛ 이하, 12 ㎛ 이하, 11 ㎛ 이하 또는 10 ㎛ 이하일 수 있고, 5 ㎛ 이상, 6 ㎛ 이상, 7 ㎛ 이상 또는 7.5 ㎛ 이상일 수 있다.
또한, 평탄화 처리에 의하여 상기 금속폼의 두께, 기공도 또는 최대 기공 크기 등이 감소하기 때문에, 금속폼의 표면 조도 또한 평탄화 처리에 의하여 감소할 수 있다. 일 예시에서, 상기 평탄화 처리 전의 금속폼의 표면 조도(RB)와 평탄화 처리 후의 금속폼의 표면 조도(RA)의 비율(RA/RB)은 0.9 이하일 수 있다. 상기 비율은, 다른 예시에서, 0.85 이하, 0.8 이하, 0.75 이하 또는 0.7 이하일 수 있고, 0.05 이상, 0.1 이상, 0.15 이상, 0.2 이상, 0.25 이상, 0.3 이상, 0.35 이상 또는 0.4 이상일 수 있다.
평탄화 처리에 의해서, 금속폼의 표면 조도가 감소하기 때문에, 표면 조도에 영향을 받는 금속폼의 열저항 또한 평탄화 처리에 의하여 감소할 수 있다.
일 예시에서, 평탄화 처리 전의 금속폼의 열저항은 2 Kin 2/W 이하일 수 있다. 상기 값은 다른 예시에서, 1.9 Kin 2/W 이하, 1.8 Kin 2/W 이하, 1.7 Kin 2/W 이하, 1.6 Kin 2/W 이하, 1.5 Kin 2/W 이하, 1.4 Kin 2/W 이하, 1.3 Kin 2/W 이하, 1.2 Kin 2/W 이하 또는 1.1 Kin 2/W 이하일 수 있고, 0.1 Kin 2/W 이상, 0.15 Kin 2/W 이상, 0.2 Kin 2/W 이상, 0.25 Kin 2/W 이상, 0.3 Kin 2/W 이상, 0.35 Kin 2/W 이상, 0.4 Kin 2/W 이상 또는 0.45 Kin 2/W 이상일 수 있다.
일 예시에서, 평탄화 처리 전의 금속폼의 열저항(KB)과 평탄화 처리 후의 금속폼의 열저항(KA)의 비율(KA/KB)은 0.9 이하일 수 있다. 상기 비율은, 다른 예시에서, 0.85 이하, 0.8 이하 또는 0.75 이하일 수 있고, 0.1 이상, 0.15 이상, 0.2 이상, 0.25 이상, 0.3 이상, 0.35 이상, 0.4 이상 또는 0.45 이상일 수 있다.
상기 금속폼을 제조하는 방법은 다양하게 공지되어 있다. 본 출원에서는 공지된 방식으로 제조한 금속폼을 적용할 수 있다.
일 예시에서, 상기 금속폼은 슬러리를 사용하여 제조할 수도 있다. 구체적으로, 상기 금속폼을 금속 분말, 바인더 및 분산제를 적어도 포함하는 슬러리를 사용하여 제조할 수도 있다. 구체적으로, 상기 금속폼은 상기 슬러리를 사용하여 그린 구조체(금속폼의 전구체)를 형성하는 과정(a1) 및 상기 그린 구조체를 소결하는 과정(a2)을 적어도 포함하는 방식으로 제조할 수 있다. 즉 본 출원의 방법은 상기 (a) 단계를 상기 (a1) 과정 및 (a2) 과정을 포함하는 방식으로 진행할 수 있다.
본 출원에서, 용어 “그린 구조체(green structure)”는 상기 소결 등과 같이 금속폼을 형성하기 위하여 수행하는 공정을 거치기 전의 구조체, 즉 금속폼을 생성하기 전의 구조체를 의미한다. 또한, 상기 그린 구조체를 다공성 금속폼 전구체로 호칭하더라도, 반드시 그 자체로 다공성일 필요는 없으며, 최종적으로 다공성의 금속 구조체인 금속폼을 형성할 수 있는 것이라면, 편의상 다공성 금속폼 전구체라고 호칭할 수도 있다.
일 예시에서, 상기 금속 분말(metal powder)의 종류는, 그 적용 목적에 따라 정해지는 것으로 특별히 제한되지 않는다. 예를 들면, 상기 금속 분말로는 구리 분말, 인 분말, 몰리브덴 분말, 아연 분말, 망간 분말, 크롬 분말, 인듐 분말, 주석 분말, 은 분말, 백금 분말, 금 분말, 알루미늄 분말 및 마그네슘 분말로 이루어진 군에서 선택된 어느 하나, 상기 중 2종 이상의 혼합 또는 상기 중 2종 이상의 합금 분말을 적용할 수 있다.
일 예시에서, 상기 금속 분말의 크기도 목적하는 기공도 혹은 기공 크기 등을 고려하여 선택할 수 있다. 예를 들면, 상기 금속 분말의 평균 입경은, 0.1 ㎛ 내지 200 ㎛ 의 범위 내에 있을 수 있다. 다른 예시에서, 상기 평균 입경은 0.5 ㎛ 이상, 1 ㎛ 이상, 2 ㎛ 이상, 3 ㎛ 이상, 4 ㎛ 이상, 5 ㎛ 이상, 6 ㎛ 이상, 7 ㎛ 이상 또는 8 ㎛ 이상일 수 있고, 150 ㎛ 이하, 100 ㎛ 이하, 90 ㎛ 이하, 80 ㎛ 이하, 70 ㎛ 이하, 60 ㎛ 이하, 50 ㎛ 이하, 40 ㎛ 이하, 30 ㎛ 이하 또는 20 ㎛ 이하일 수 있다. 상기 평균 입경은, 목적하는 금속폼의 형태, 예를 들면, 금속폼의 두께나 기공도 등을 고려하여 적절한 범위로 조절할 수 있다.
상기에서, 금속 분말의 평균 입경은, 공지의 입도 분석 방법에 의하여 측정할 수 있다. 예를 들면, 상기 금속 분말의 평균 입경은 소위 D50 입경일 수 있다.
상기 금속 분말의 슬러리 내에서의 비율은 특별히 제한되지는 않는다. 예를 들면, 슬러리는 10 중량% 내지 70 중량%의 금속 분말을 포함할 수 있다. 상기 비율은 다른 예시에서, 15 중량% 이상, 20 중량% 이상, 25 중량% 이상, 30 중량% 이상, 35 중량% 이상, 40 중량% 이상, 45 중량% 이상 또는 50 중량% 이상일 수 있고, 65 중량% 이하, 60 중량% 이하, 55 중량% 이하 또는 50 중량% 이하일 수 있다.
일 예시에서, 상기 분산제로는 알코올을 적용할 수 있다. 상기 알코올로는, 메탄올, 에탄올, 프로판올, 부탄올, 펜탄올, 에틸렌글리콜, 프로필렌글리콜, 글리세롤, 텍사놀(texanol) 또는 테르피네올(terpineol) 등과 같은 탄소수 1 내지 20의 1가 알코올; 또는 에틸렌글리콜, 프로필렌글리콜, 헥산디올, 옥탄디올 또는 펜탄디올 등과 같은 탄소수 1 내지 20의 2가 알코올 또는 그 이상의 다가 알코올 등을 사용할 수 있으나, 그 종류가 상기 예시에 제한되는 것은 아니다.
상기 바인더의 종류는 특별히 제한되지 않으며, 슬러리를 제조할 때에 적용하는 금속 성분이나 분산제 등의 종류에 따라 적절하게 선택할 수 있다. 예를 들어, 상기 바인더로는, 메틸 셀룰로오스 또는 에틸 셀룰로오스 등의 탄소수 1 내지 8의 알킬기를 가지는 알킬 셀룰로오스; 폴리프로필렌 카보네이트 또는 폴리에틸렌 카보네이트 등의 탄소수 1 내지 8의 알킬렌 단위를 가지는 폴리알킬렌 카보네이트; 폴리에틸렌 옥시드 또는 폴리프로필렌 옥시드 등의 탄소수 1 내지 8의 알킬렌 단위를 가지는 폴리알킬렌 옥시드; 또는 폴리비닐알코올 또는 폴리비닐아세테이트 등의 폴리비닐알코올계 바인더 등을 사용할 수 있다.
슬러리 내에서, 상기 성분들의 비율은 특별히 제한되지 않는다. 상기 비율은 슬러리를 사용하는 공정 시에 코팅성 또는 성형성 등의 공정 효율을 고려하여 조절할 수 있다.
일 예시에서, 슬러리는 바인더를 금속 분말 100 중량부 대비 5 내지 500 중량부의 비율로 포함할 수 있다. 상기 비율은, 다른 예시에서, 6 중량부 이상 또는 7 중량부 이상일 수 있고, 450 중량부 이하, 400 중량부 이하, 350 중량부 이하, 300 중량부 이하, 250 중량부 이하, 200 중량부 이하, 150 중량부 이하, 100 중량부 이하, 50 중량부 이하, 30 중량부 이하, 20 중량부 이하, 15 중량부 이하 또는 10 중량부 이하일 수 있다.
일 예시에서, 슬러리는 분산제를 상기 바인더 100 중량부 대비 100 중량부 내지 2000 중량부의 비율로 포함할 수 있다. 상기 비율은 다른 예시에서, 150 중량부 이상, 200 중량부 이상, 250 중량부 이상, 300 중량부 이상, 350 중량부 이상, 400 중량부 이상, 450 중량부 이상, 500 중량부 이상, 550 중량부 이상, 600 중량부 이상, 650 중량부 이상, 700 중량부 이상, 750 중량부 이상, 800 중량부 이상, 850 중량부 이상, 900 중량부 이상, 950 중량부 이상, 1000 중량부 이상, 1050 중량부 이상, 1100 중량부 이상, 1150 중량부 이상, 1200 중량부 이상, 1250 중량부 이상 또는 1300 중량부 이상일 수 있고, 1800 중량부 이하, 1600 중량부 이하, 1400 중량부 이하, 또는 1350 중량부 이하일 수 있다.
본 출원에서, 단위 “중량부”는 특별히 다르게 규정하지 않는 한, 각 성분 간의 중량의 비율을 의미한다.
상기 슬러리는 필요에 따라, 슬러리의 발포성 향상을 위하여 용매를 추가로 포함할 수도 있다. 용매로는 슬러리의 성분, 예를 들어, 상기 금속 분말, 바인더 등과의 용해성을 고려하여 적절한 것을 사용할 수 있다. 예를 들어, 용매로는, 유전 상수가 10 내지 120의 범위 내에 있는 것을 사용할 수 있다. 상기 유전 상수는, 다른 예시에서, 약 20 이상, 약 30 이상, 약 40 이상, 약 50 이상, 약 60 이상 또는 약 70 이상일 수 있고, 약 100 이하, 약 100 이하 또는 약 90 이하일 수 있다. 상기한 용매로는 물; 에탄올, 부탄올 또는 메탄올 등의 탄소수 1 내지 8의 알코올; 또는 DMSO(dimethyl sulfoxide), DMF(dimethyl formamide) 또는 NMP(N-methylpyrrolidone) 등을 사용할 수 있으나, 상기 예시로 제한하는 것은 아니다.
용매를 적용하는 경우에는, 슬러리는 상기 바인더 100 중량부 대비 약 50 내지 400 중량부의 비율로 상기 용매를 포함할 수 있다. 그렇지만, 상기 비율을 이에 제한하는 것은 아니다.
슬러리는 상기 언급한 성분 외에도, 추가적으로 필요한 공지의 첨가제를 포함할 수도 있다.
상기와 같은 슬러리를 사용하여 금속폼 전구체를 형성하는 방식은 특별히 제한하지 않는다. 금속폼의 제조 분야에서는 금속폼 전구체를 형성하기 위한 다양한 방식이 알려져 있고, 본 출원에서는 이와 같은 방식을 모두 적용할 수 있다. 예를 들어, 상기 금속폼 전구체는, 적정한 틀(template)에 상기 슬러리를 유지하거나, 또는 상기 슬러리를 적정한 방식으로 코팅한 다음 건조하는 방식 등으로 형성할 수 있다.
필요하다면, 상기 금속폼 전구체의 형성 과정에서 적절한 건조 공정을 수행할 수도 있다. 예를 들어, 상기한 방식으로 슬러리를 성형한 다음, 일정 시간 건조함으로써 금속폼 전구체를 형성할 수도 있다. 상기 건조의 조건은 특별히 제한하지 않으며, 예를 들어, 상기 슬러리 내에 포함된 용매 또는 바인더가 포함하는 수분 등의 성분을 목적 수준으로 제거할 수 있는 수준에서 제어할 수 있다. 예를 들어, 상기 건조는 성형된 슬러리를 50 ℃ 내지 250℃, 70 ℃ 내지 180 ℃ 또는 90 ℃ 내지 150 ℃의 범위 내의 온도에서 적정 시간 동안 유지하여 수행할 수 있다. 건조 시간 또한 적정 범위 내에서 조절할 수 있다.
상기와 같은 방식으로 형성된 금속폼 전구체를 소결함으로 해서 금속폼을 제조할 수 있다. 이와 같은 경우, 상기 금속폼을 제조하기 위한 소결을 수행하는 방식은 특별히 제한되지 않으며, 공지의 소결 방법을 적용할 수 있다. 즉, 적절한 방법으로 상기 금속폼 전구체에 적정한 양의 열을 인가하는 방식 등으로 상기 소결을 진행할 수 있다.
일 예시에서, 상기 소결은 금속폼 전구체에 외부의 열원을 인가하여 수행할 수도 있다. 이 경우, 상기 열원의 온도는 100 ℃ 내지 1200 ℃의 범위 내일 수 있다.
본 출원의 제조 방법은 상기 (b) 단계에서 다양한 방식으로 상기 금속폼과 경화성 고분자를 포함하는 혼합물을 준비할 수 있다. 예를 들어, (1) 조성물 형태로 존재하는 경화성 고분자에 상기 금속폼을 침지시켜서 혼합물을 제조할 수도 있고, (2) 금속폼에 액상 또는 반고상의 경화성 고분자를 발라서 상기 혼합물을 제조할 수도 있으며 또는 (3) 상기 금속폼의 기공 내에 경화성 고분자를 주입시켜서 상기 혼합물을 제조할 수도 있다. 본 출원의 방법은 상기 (b) 단계에서, 상기 열거된 방식 외에도 금속폼의 표면 및/또는 기공에 경화성 고분자가 존재할 수 있도록 하는 비제한적인 방식으로 상기 혼합물을 준비할 수 있다.
예를 들어, 평탄화 처리한 후의 금속폼과 경화성 고분자를 포함하는 혼합물을 제조한 경우, 상기 경화성 고분자는 평탄화 처리된 금속폼의 표면 및/또는 내부에 존재할 수 있다. 구체적으로 상기 경화성 고분자는, 상기 평탄화 처리된 금속폼의 적어도 하나의 표면 상에서 표면층을 형성하고 있거나, 금속폼 내부의 공극에 충전되어 존재할 수 있다. 또한, 상기 고분자 성분은, 경우에 따라서 상기 표면층을 형성하면서 동시에 금속폼의 내부에 충전되어 있을 수도 있다. 상기 고분자 성분이 표면층을 형성하는 경우에는, 상기 고분자 성분은 상기 금속폼의 표면 중에서 적어도 한 표면, 일부의 표면 또는 모든 표면에 대해서 표면층을 형성하고 있을 수 있다.
상기 경화성 고분자의 종류는 특별히 제한되지 않는다. 예를 들면, 복합재의 가공성이나 내충격성, 절연성 등을 고려하여 상기 고분자 성분의 종류를 선택할 수 있다. 상기 고분자 성분으로서, 공지의 아크릴 수지, 실록산 계열의 수지와 같은 실리콘 수지, 에폭시 수지, PP(polypropylene) 또는 PE(polyethylene) 등의 올레핀 수지, PET(polyethylene terephthalate) 등의 폴리에스테르 수지, 폴리아미드 수지, 우레탄 수지, 아미노 수지 및 페놀 수지 중 적어도 하나를 적용할 수 있지만, 이로 제한하는 것은 아니다.
상기 금속폼과 경화성 고분자를 포함하는 혼합물 내에서, 금속폼과 경화성 고분자의 비율은 특별히 제한되지 않는다. 예를 들면, 상기 경화성 고분자가 액상인 경우에는 상기 경화성 고분자에 금속폼이 충분히 침지될 수 있는 정도로 금속폼과 경화성 고분자를 혼합할 수도 있다. 즉, 본 출원의 제조 방법은, 금속폼의 표면 또는 내부에 경화성 고분자가 존재할 수 있도록 한 다음, 경화성 고분자를 경화함으로 해서 복합재를 제조할 수 있다.
일 예시에서, 상기 경화성 조성물의 부피(PV)와 평탄화 처리된 금속폼의 부피(MV)의 비율(MV/PV)은 10 이하일 수 있다. 상기 비율은, 다른 예시에서, 9 이하, 8 이하, 7 이하, 6 이하, 5 이하, 4 이하, 3 이하, 2 이하, 1 이하 또는 0.5 이하 일 수 있고, 0.05 이상, 0.1 이상 또는 0.3 이상일 수 있다. 상기 비율은 상기 방식에 의하여 제조한 복합재에 포함되는 경화성 고분자와 금속폼의 중량과 해당 성분 들의 밀도 등을 통하여 산출할 수 있다.
상기 혼합물 내의 경화성 고분자를 경화하는 방식 및 방법 등 또한 특별히 제한되지 않는다. 즉, 상기 혼합물을 공지의 방식을 통하여 경화함으로 해서 상기 복합재를 제조할 수 있다. 일 예시에서, 상기 혼합물에 외부 열원을 인가하여 상기 조성물을 경화할 수 있다. 이 때, 상기 열원의 온도는 50 ℃ 내지 200 ℃의 범위 내일 수 있다. 상기 온도는, 다른 예시에서, 60 ℃ 이상, 70 ℃ 이상, 80 ℃ 이상, 90 ℃ 이상, 100 ℃ 이상, 110 ℃ 이상 또는 120 ℃ 이상일 수 있고, 190 ℃ 이하, 180 ℃ 이하, 170 ℃ 이하, 160 ℃ 이하, 150 ℃ 이하, 140 ℃ 이하, 130 ℃ 이하 또는 120 ℃ 이하일 수 있다.
또한, 경화 시간도 적정 범위에서 선택할 수 있다. 예를 들어, 상기 경화는 1 분 내지 10 시간의 범위내의 시간 동안 수행할 수 있다. 경화 시간은, 다른 예시에서, 10 분 내지 5시간, 10분 내지 3시간 또는 10 분 내지 1시간의 범위 내일 수 있다.
본 출원은, 또한 복합재에 관한 것이다. 구체적으로, 상기 복합재는 전술한 방법으로 제조된 것일 수 있다.
본 출원의 복합재는 금속폼 및 고분자 성분을 포함한다. 또한 본 출원의 복합재는 표면이 매끄럽고, 열전도도가 높다(열저항률이 낮다). 따라서, 본 출원의 복합재는 금속폼 및 상기 금속폼의 표면 및 상기 금속폼의 기공에 존재하는 경화성 고분자의 성분을 포함한다.
상기 복합재의 표면 조도는 2 ㎛ 이하이다. 본 출원에서 언급하는 표면 조도의 정의, 측정 방식 등은 전술한 의미가 그대로 적용된다. 상기 복합재의 표면 조도는, 다른 예시에서, 1.9 ㎛ 이하 또는 1.8 ㎛ 이하일 수 있으며, 그 하한은 낮을 수록 유리하기 때문에 특별히 제한되지 않지만, 0.001 ㎛ 이상, 0.01 ㎛ 이상, 0.1 ㎛ 이상 또는 1 ㎛ 이상일 수 있다.
상기 복합재의 20 psi 에서의 열저항(thermal resistance)은 0.5 Kin 2/W 이하이다. 상기 복합재의 열저항은 다른 예시에서, 0.45 Kin 2/W 이하, 0.4 Kin 2/W 이하, 0.35 Kin 2/W 이하 또는 0.33 Kin 2/W 이하일 수 있고, 그 하한은 낮을 수록 유리하기 때문에 특별히 제한되지 않지만, 0.001 Kin 2/W 이상, 0.01 Kin 2/W 이상 또는 0.05 Kin 2/W 이상일 수 있다. 또한, 상기 열저항을 측정하는 방식은 특별히 제한되지 않으며, 공지의 측정 방법이 적용될 수 있다. 일 예시에서, 상기 복합재의 열저항은 ASTM D5470 규준에 의거하여 측정할 수 있다.
상기 복합재에서 적용하는 금속폼과, 고분자 성분에 대한 내용은 이미 기술한 바와 같다.
전술한 것처럼, 상기 복합재 내의 상기 금속폼의 기공도는 30 % 내지 60 %의 범위 내일 수 있다. 상기 금속폼의 기공도는 다른 예시에서, 35 % 이상 또는 40 % 이상일 수 있고, 55 % 이하 또는 50 % 이하일 수 있다. 상기 복합재 내에서 상기 금속폼의 기공도를 확인하는 방식은 특별히 제한되지 않는다. 보통, 상기 복합재에서 상기 복합재 내에 존재하는 고분자를 탈지하여 금속폼 만을 남겨두고, 그 금속폼의 부피와 밀도를 측정함으로 해서 공지의 방식을 통해 상기 금속폼의 기공도를 산출해낼 수 있다. 한편, 상기 복합재 내의 고분자의 탈지는 산화 분위기(산소의 과량 존재) 하에서 열처리 과정을 통해 진행될 수 있는데, 이 때 금속폼을 구성하는 금속에 영향을 주게 될 수도 있으나 그 차이는 미미하다. 즉, 상기 기공도는 복합재의 제조 과정에서 적용되는 금속폼의 기공도를 의미할 수 있고, 기 제조된 복합재에서 고분자 성분을 제거한 후에 수득한 금속폼의 기공도를 의미할 수도 있다.
상기의 열저항과 표면 조도를 갖는 복합재를 확보하는 관점에서는 상기 복합재 내의 금속폼의 기공도가 40 % 내지 50 %의 범위 내인 것이 유리할 수 있다.
상기 평탄화 처리에 따라 상기 금속폼이 필름 또는 시트 형태를 가질 수 있기 때문에, 본 출원의 복합재 또한 필름 또는 시트 형태를 가질 수 있다. 이 때 상기 복합재의 두께는 2000 ㎛ 이하일 수 있다. 다른 예시에서, 1900 ㎛ 이하, 1800 ㎛ 이하, 1700 ㎛ 이하, 1600 ㎛ 이하, 1500 ㎛ 이하, 1400 ㎛ 이하, 1300 ㎛ 이하, 1200 ㎛ 이하, 1100 ㎛ 이하 또는 1000 이하일 수 있고, 10 ㎛ 이상, 20 ㎛ 이상, 30 ㎛ 이상, 40 ㎛ 이상, 50 ㎛ 이상, 60 ㎛ 이상, 70, ㎛ 이상 80 ㎛ 이상 또는 85 ㎛ 이상일 수 있다.
일 예시에서, 복합재는 금속폼과 상기 금속폼의 표면 또는 내부에 존재하는 고분자 성분을 포함하는데, 이러한 복합재에서 상기 금속폼의 두께(MT)와 복합재 전체 두께(T)의 비율(T/MT)은, 2.5 이하일 수 있다. 상기 비율은 다른 예시에서, 2 이하, 1.9 이하, 1.8 이하, 1.7 이하, 1.6 이하, 1.5 이하, 1.4 이하, 1.3 이하, 1.2 이하, 1.15 이하 또는 1.1 이하일 수있다. 상기 비율의 하한은 특별히 제한하지 않으나, 약 1 이상, 1.01 이상, 1.02 이상, 1.03 이상, 1.04 이상, 1.05 이상, 1.06 이상, 1.07 이상, 1.08 이상, 1.09 이상 또는 1.1 이상일 수 있다. 이러한 두께 비율 하에서, 목적하는 열전도도와, 가공성, 내충격성 등의 우수한 복합재를 제공할 수 있다.
상기 복합재는 금속폼이 가지는 특유의 표면적 및 기공 특성에 의한 복합 반사(multiple reflection) 및 흡수(absorption) 등에 의하여 높은 투자율을 가질 수 있다. 또한, 상기 복합재는 금속폼을 포함함으로 해서 우수한 기계적 강도 및 유연성을 확보할 수 있다. 또한, 상기 복합재는 고분자 성분과 금속폼의 적절한 복합화에 의하여 산화 및 고온에 대한 안정성, 전기 절연성 등을 확보할 수 있고, 각종 장치에 적용하였을 때 발생하는 박리 문제 등도 해결할 수 있다. 본 출원의 복합재는 낮은 열저항 및 낮은 표면 조도 등을 가져서, 방열 재료 또는 열전도 재료 등에 특히 적합하다.
본 출원의 복합재는 평탄화 처리된 금속폼을 포함하고, 평탄화 처리된 금속폼이 그렇지 않은 금속폼 보다 낮은 표면 조도를 가지기 때문에, 같은 금속폼을 적용하되, 평탄화 처리되지 않은 금속폼을 적용한 복합재보다 열전도도 또한 우수하다. 즉, 본 출원의 복합재는 동일 조건 하에서 제조하되, 평탄화 처리를 하지 않은 금속폼을 적용하였을 때 보다 낮은 열저항을 가진다.
본 출원은 또한, 상기 복합재의 용도에 관한 것이다. 본 출원은 상기 복합재를 포함하는 방열 재료에 관한 것이다. 상기 방열 재료는 상기 복합재로만 이루어질 수도 있다. 다른 예시에서, 상기 방열 재료는 상기 복합재를 포함하되, 방열 재료에 필요한 공지의 구성, 혹은 성분 등을 추가로 포함할 수도 있다.
일 예시에서 상기 방열 재료는 필름 또는 시트 형태일 수 있고, 이 때 공지의 필름 또는 시트의 구조를 적용할 수 있다.
상기 방열 재료가 필름 또는 시트 형태인 경우, 그 재료는 기재 및 상기 기재의 적어도 일면에 구비된 방열 부재를 포함할 수 있고, 상기 방열 부재가 상기 복합재를 포함하는 형태일 수 있다. 상기 방열 재료는 전술한 복합재를 그대로 적용하기 떄문에, 상기 필름 또는 시트 형태의 방열 재료에 대해서도 전술한 복합재 및 이의 제조 방법에 관한 내용을 그대로 적용할 수 있다. 상기 방열 재료는 방열 부재로서 상기 복합재를 포함함으로 해서, 상기 방열 재료와 인접하는 열원이 발생하는 열을 효율적으로 외부로 방출할 수 있다. 또한, 상기 필름 또는 시트 형태의 방열 재료는 그 기능을 구현하는데 필요한 공지의 요소를 추가로 구비할 수도 있다.
다른 예시에서, 상기 복합재를 포함하는 열전도 재료에 관한 것이다. 상기 열전도 재료는 상기 복합재로만 이루어질 수도 있다. 다른 예시에서, 상기 열전도 재료는 상기 복합재를 포함하되, 열전도 재료에 필요한 공지의 구성, 혹은 성분 등을 추가로 포함할 수도 있다.
본 출원에서 얻은 복합재는 높은 열전도 효율을 가질 수 있다.
본 출원에서 얻은 복합재는 산화 및/또는 고온 분위기에서 안정성 등을 확보할 수 있다.
본 출원에서 얻은 복합재는 특히 방열 소재 등으로 적용하였을 때, 박리 문제 등의 발생도 예방할 수 있는 이점이 있다.
도 1은 제조예 1의 금속폼의 레이저 현미경 사진 및 이의 표면 형상 분석 결과이다.
도 2는 제조예 2의 금속폼의 SEM 사진이다.
도 3은 제조예 5의 금속폼의 레이저 현미경 사진 및 이의 표면 형상 분석 결과이다.
도 4는 제조예 6의 금속폼의 SEM 사진이다.
도 5는 실시예 1의 복합재의 레이저 현미경 사진 및 이의 표면 형상 분석 결과이다.
도 6은 실시예 1의 복합재의 SEM 사진이다.
도 7은 실시예 2의 복합재의 SEM 사진이다.
도 8은 비교예 1의 복합재의 SEM 사진이다.
도 9는 비교예 2의 복합재의 SEM 사진이다.
이하 실시예를 통하여 본 출원을 구체적으로 설명하지만, 본 출원의 범위가 하기 실시예에 의해 제한되는 것은 아니다.
제조예 1. 금속폼
평균 입경(D50 입경)이 약 60 ㎛ 정도인 구리(Cu) 분말을 사용하였다. 분산제로서 텍사놀(texanol), 바인더로서 에틸 셀룰로오스(ethyl celluose)를 사용하였다. 텍사놀에 에틸 셀룰로오스를 약 7 중량%의 농도가 되도록 용해한 용액과, 구리 분말의 중량 비율이 약 1:1이 되도록 혼합하여 슬러리를 제조하였다.
상기 슬러리를 약 250 ㎛ 두께의 필름 형태로 코팅하고, 약 120 ℃의 온도에서 약 60 분 정도 건조하여 금속폼 전구체를 형성하였다. 그 후, 상기 전구체를 수소/아르곤 분위기에서 약 1000 ℃의 온도에서 약 2시간 동안 유지하도록 전기로에서 외부 열원을 인가하여 소결을 진행하며, 금속폼을 제조하였다. 제조된 금속폼의 두께는 약 85 ㎛이고, 기공도는 약 64 %이며, 표면 조도는 약 7.5 ㎛ 정도였고, 열저항은 20 psi의 압력 조건에서 약 0.466 Kin 2/W였다. 열저항의 측정 장비로는 Analysis Tech사의 TIM Tester 1300을 사용하였으며, 장비의 매뉴얼에 따라 측정하였다(이는 이하에서도 동일하게 사용하였다).
제조예 1의 금속폼의 레이저 현미경 사진 및 이의 표면 형상 분석 결과를 도 1에 나타내었다.
제조예 2. 금속폼
슬러리 코팅 두께를 약 300 ㎛로 조절한 것을 제외하고는 제조예 1과 동일한 방법으로 금속폼을 제조하였다. 제조된 금속폼의 두께는 약 100 ㎛이고, 기공도는 약 64 %이며, 표면 조도는 약 8 ㎛ 정도였고, 열저항은 20 psi의 압력 조건에서 약 0.496 Kin 2/W였다. 상기 금속폼의 SEM 사진을 도 2에 나타내었다.
제조예 3. 금속폼
슬러리 코팅 두께를 약 1500 ㎛로 조절한 것을 제외하고는 제조예 1과 동일한 방법으로 금속폼을 제조하였다. 제조된 금속폼의 두께는 약 500 ㎛이고, 기공도는 약 70 %이며, 표면 조도는 약 9 ㎛ 정도였고, 열저항은 20 psi의 압력 조건에서 약 0.871 Kin 2/W였다.
제조예 4. 금속폼
슬러리 코팅 두께를 약 2500 ㎛로 조절한 것을 제외하고는 제조예 1과 동일한 방법으로 금속폼을 제조하였다. 제조된 금속폼의 두께는 약 1000 ㎛이고, 기공도는 약 75 %이며, 표면 조도는 약 10 ㎛ 정도였고, 열저항은 20 psi의 압력 조건에서 약 1.064 Kin 2/W였다.
제조예 5. 금속폼
롤 프레스 장치(WCRP-1015G, Wellcos Corp)의 롤 사이의 간격을 70 ㎛로 설정하고, 제조예 1의 금속폼을 상기 장치의 롤 사이로 통과시켜서, 가압 성형된 금속폼을 제조하였다. 가압 성형된 금속폼의 두께는 약 70 ㎛이고, 기공도는 약 53 % 이며, 표면 조도는 약 5.2 ㎛ 정도였고, 열저항은 20 psi의 압력 조건에서 약 0.335 Kin 2/W였다. 제조예 5의 금속폼의 레이저 현미경 사진 및 이의 표면 형상 분석 결과를 도 3에 도시하였다.
제조예 6. 금속폼
롤 프레스 장치(WCRP-1015G, Wellcos Corp)의 롤 사이의 간격을 80 ㎛로 설정하고, 제조예 2의 금속폼을 상기 장치의 롤 사이로 통과시켜서, 가압 성형된 금속폼을 제조하였다. 가압 성형된 금속폼의 두께는 약 80 ㎛이고, 기공도는 약 57 % 이며, 표면 조도는 약 4 ㎛ 정도였고, 열저항은 20 psi의 압력 조건에서 약 0.360 Kin 2/W였다. 제조예 6의 금속폼의 SEM 사진을 도 4에 도시하였다.
제조예 7. 금속폼
롤 프레스 장치(WCRP-1015G, Wellcos Corp)의 롤 사이의 간격을 300 ㎛로 설정하고, 제조예 3의 금속폼을 상기 장치의 롤 사이로 통과시켜서, 가압 성형된 금속폼을 제조하였다. 가압 성형된 금속폼의 두께는 약 300 ㎛이고, 기공도는 약 55 % 이며, 표면 조도는 약 5 ㎛ 정도였고, 열저항은 20 psi의 압력 조건에서 약 0.403 Kin 2/W였다.
제조예 8. 금속폼
롤 프레스 장치(WCRP-1015G, Wellcos Corp)의 롤 사이의 간격을 500 ㎛로 설정하고, 제조예 4의 금속폼을 상기 장치의 롤 사이로 통과시켜서, 가압 성형된 금속폼을 제조하였다. 가압 성형된 금속폼의 두께는 약 50 ㎛이고, 기공도는 약 45 % 이며, 표면 조도는 약 4 ㎛ 정도였고, 열저항은 20 psi의 압력 조건에서 약 0.527 Kin 2/W였다.
도 1 내지 도 4에 따르면, 가압 성형에 따라 금속폼 표면이 비교적 매끄럽게 성형되어서, 성형 전 보다 낮은 열저항을 가지는 것을 확인할 수 있다.
실시예 1. 복합재
경화성 고분자인 열경화성 실리콘 수지(폴리디메틸실록산, Sylgard 527 kit, 다우코닝)에 제조예 5의 금속폼을 침지하였다. 금속폼이 침지된 경화성 고분자 조성물의 두께가 약 80 ㎛가 되도록 필름 어플리케이터를 이용하여 실리콘 수지의 과량분을 제거하였다. 이어서, 상기 고분자 조성물을 120 ℃로 유지되는 오븐에서 약 10 분정도 유지하여 경화시킴으로써 필름 형태의 복합재를 제조하였다. 도 5는 실시예 1의 복합재의 레이저 현미경 사진 및 이의 표면 형상 분석 결과이고, 도 6은 실시예 1의 복합재의 SEM 사진이다. 복합재의 표면 조도는 약 1.2 ㎛이고, 열저항은 20 psi의 압력 조건에서 약 0.098 Kin 2/W였다.
실시예 2. 복합재
제조예 5의 금속폼 대신 제조예 6의 금속폼을 침지하고, 그 금속폼이 침지된 경화성 고분자 조성물의 두께가 약 90 ㎛가 되도록 필름 어플리케이터를 이용하여 실리콘 수지의 과량분을 제거한 것을 제외하고는 실시예 1과 동일한 방법으로 복합재를 제조하였다. 도 7은 실시예 2의 복합재의 SEM 사진이다. 복합재의 표면 조도는 약 1.5 ㎛이고, 열저항은 20 psi의 압력 조건에서 약 0.102 Kin 2/W였다.
실시예 3. 복합재
제조예 5의 금속폼 대신 제조예 7의 금속폼을 침지하고, 그 금속폼이 침지된 경화성 고분자 조성물의 두께가 약 320 ㎛가 되도록 필름 어플리케이터를 이용하여 실리콘 수지의 과량분을 제거한 것을 제외하고는 실시예 1과 동일한 방법으로 복합재를 제조하였다. 복합재의 표면 조도는 약 1.6 ㎛이고, 열저항은 20 psi의 압력 조건에서 약 0.226 Kin 2/W였다.
실시예 4. 복합재
제조예 5의 금속폼 대신 제조예 8의 금속폼을 침지하고, 그 금속폼이 침지된 경화성 고분자 조성물의 두께가 약 525 ㎛가 되도록 필름 어플리케이터를 이용하여 실리콘 수지의 과량분을 제거한 것을 제외하고는 실시예 1과 동일한 방법으로 복합재를 제조하였다. 복합재의 표면 조도는 약 1.8 ㎛이고, 열저항은 20 psi의 압력 조건에서 약 0.315 Kin 2/W였다.
비교예 1. 복합재
제조예 5의 금속폼 대신 제조예 1의 금속폼을 침지하고, 그 금속폼이 침지된 경화성 고분자 조성물의 두께가 약 100 ㎛가 되도록 필름 어플리케이터를 이용하여 실리콘 수지의 과량분을 제거한 것을 제외하고는 실시예 1과 동일한 방법으로 복합재를 제조하였다. 도 8은 비교예 1의 복합재의 SEM 사진이다. 복합재의 표면 조도는 약 2.5 ㎛이고, 열저항은 20 psi의 압력 조건에서 약 0.203 Kin 2/W였다.
비교예 2. 복합재
제조예 5의 금속폼 대신 제조예 2의 금속폼을 침지하고, 그 금속폼이 침지된 경화성 고분자 조성물의 두께가 약 110 ㎛가 되도록 필름 어플리케이터를 이용하여 실리콘 수지의 과량분을 제거한 것을 제외하고는 실시예 1과 동일한 방법으로 복합재를 제조하였다. 도 9는 비교예 2의 복합재의 SEM 사진이다. 복합재의 표면 조도는 약 2.4 ㎛이고, 열저항은 20 psi의 압력 조건에서 약 0.236 Kin 2/W였다.
비교예 3. 복합재
제조예 5의 금속폼 대신 제조예 3의 금속폼을 침지하고, 그 금속폼이 침지된 경화성 고분자 조성물의 두께가 약 530 ㎛가 되도록 필름 어플리케이터를 이용하여 실리콘 수지의 과량분을 제거한 것을 제외하고는 실시예 1과 동일한 방법으로 복합재를 제조하였다. 복합재의 표면 조도는 약 3.2 ㎛이고, 열저항은 20 psi의 압력 조건에서 약 0.652 Kin 2/W였다.
비교예 4. 복합재
제조예 5의 금속폼 대신 제조예 4의 금속폼을 침지하고, 그 금속폼이 침지된 경화성 고분자 조성물의 두께가 약 1050 ㎛가 되도록 필름 어플리케이터를 이용하여 실리콘 수지의 과량분을 제거한 것을 제외하고는 실시예 1과 동일한 방법으로 복합재를 제조하였다. 복합재의 표면 조도는 약 3.0 ㎛이고, 열저항은 20 psi의 압력 조건에서 약 0.783 Kin 2/W였다.
실시예 및 비교예의 복합재의 물성 분석 결과를 하기 표 1 및 표 2에 나타내었다.
실시예 1 실시예 2 실시예 3 실시예 4
적용 금속폼 제조예 5 제조예 6 제조예 7 제조예 8
표면 조도 1.2 1.5 1.6 1.8
열저항 @20psi(Kin 2/W) 0.098 0.102 0.226 0.315
비교예 1 비교예 2 비교예 3 비교예 4
적용 금속폼 제조예 1 제조예 2 제조예 3 제조예 4
표면 조도 2.5 2.4 3.2 3.0
열저항 @20psi(Kin 2/W) 0.203 0.236 0.652 0.783
표 1 및 표 2에 따르면, 평탄화 처리를 통해 제조된 복합재, 구체적으로 가압 성형된 금속폼을 이용하여 제조된 실시예 1 내지 실시예 4의 복합재가 비교예의 복합재보다 그 두께 대비 낮은 표면 조도를 가지고, 감소된 열저항을 가지는 점을 확인할 수 있다. 이를 통해 본 출원의 방법과 같이 평탄화처리를 수반하여 복합재를 제조하는 경우, 그 복합재의 표면 조도와 열전도율을 향상시킬 수 있음을 알 수 있다.

Claims (12)

  1. (a) 금속폼을 준비하는 단계;
    (b) 상기 금속폼과 경화성 고분자를 포함하는 혼합물을 준비하는 단계;
    (c) 상기 혼합물의 경화성 고분자를 경화시켜서 복합재를 얻는 단계; 및
    (d) 평탄화 처리 단계를 포함하고,
    상기 평탄화 처리 단계(d)를 상기 (a) 단계 이전부터 (c) 단계 이후 중 적어도 한 시점에 진행하는 복합재의 제조 방법.
  2. 제 1 항에 있어서, 상기 단계(d)를 상기 (a) 단계와 (b) 단계 사이에 진행하는 복합재의 제조 방법.
  3. 제 2 항에 있어서, 상기 단계(d)를 상기 금속폼의 기공도(porosity)가 30 % 내지 60 %의 범위 내에 있도록 진행하는 복합재의 제조 방법.
  4. 제 2 항에 있어서, 상기 단계(d)를 상기 금속폼의 표면 조도(surface roughness)가 6 ㎛ 이하가 되도록 진행하는 복합재의 제조 방법.
  5. 제 1 항에 있어서, 상기 단계(d)를 연마(polishing) 또는 가압 성형(pressing)으로 진행하는 복합재의 제조 방법.
  6. 제 5 항에 있어서, 상기 단계(d)에서 상기 가압 성형을 롤 프레스(roll press)로 진행하는 복합재의 제조 방법.
  7. 제 1 항에 있어서, (a1) 금속 분말, 바인더 및 분산제를 포함하는 슬러리를 사용하여 그린 구조체를 제조하는 과정 및 (a2) 상기 그린 구조체를 소결하는 과정을 포함하는 방식으로 상기 (a) 단계를 진행하는 복합재의 제조 방법.
  8. 금속폼 및 상기 금속폼의 표면 및 기공 중 적어도 하나의 부분에 존재하는 경화성 고분자의 성분을 포함하고,
    표면 조도(surface roughness)가 2 ㎛ 이하이며,
    20 psi에서의 열저항(thermal resistance)이 0.5 Kin 2/W 이하인 복합재.
  9. 제 8 항에 있어서, 상기 금속폼의 기공도는 30 % 내지 60 %의 범위 내인 복합재.
  10. 제 9 항에 있어서, 상기 금속폼의 기공도는 40 % 내지 50 %의 범위 내인 복합재.
  11. 제 8 항에 있어서, 필름 또는 시트 형태인 복합재.
  12. 제 11 항에 있어서, 두께가 2,000 ㎛ 이하인 필름 또는 시트 형태인 복합재.
PCT/KR2020/007823 2019-06-17 2020-06-17 복합재의 제조 방법 및 복합재 WO2020256394A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021572011A JP7383871B2 (ja) 2019-06-17 2020-06-17 複合材の製造方法及び複合材
EP20827585.9A EP3984727A4 (en) 2019-06-17 2020-06-17 METHOD FOR MANUFACTURING A COMPOSITE MATERIAL, AND COMPOSITE MATERIAL
US17/617,328 US20220219233A1 (en) 2019-06-17 2020-06-17 Method for manufacturing composite material, and composite material
CN202080043286.5A CN114007852B (zh) 2019-06-17 2020-06-17 用于制造复合材料的方法和复合材料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20190071483 2019-06-17
KR10-2019-0071483 2019-06-17

Publications (1)

Publication Number Publication Date
WO2020256394A1 true WO2020256394A1 (ko) 2020-12-24

Family

ID=74040223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/007823 WO2020256394A1 (ko) 2019-06-17 2020-06-17 복합재의 제조 방법 및 복합재

Country Status (6)

Country Link
US (1) US20220219233A1 (ko)
EP (1) EP3984727A4 (ko)
JP (1) JP7383871B2 (ko)
KR (1) KR102277768B1 (ko)
CN (1) CN114007852B (ko)
WO (1) WO2020256394A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220240365A1 (en) * 2021-01-22 2022-07-28 DTEN, Inc. Active thermal dissipating system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06103885A (ja) * 1992-09-18 1994-04-15 Toshiba Corp 多孔質焼結基体、その製造法および多孔質材料の気孔率評価法
JP2007216234A (ja) * 2006-02-14 2007-08-30 National Institute Of Advanced Industrial & Technology 金属製パネル部材及びその製造方法
JP2009249657A (ja) * 2008-04-02 2009-10-29 Sanyo Special Steel Co Ltd 薄膜成膜用金属焼結多孔質部材およびその製造方法。
KR20180062171A (ko) * 2016-11-30 2018-06-08 주식회사 엘지화학 금속폼의 제조 방법
KR20190033875A (ko) * 2017-09-22 2019-04-01 주식회사 엘지화학 복합재
KR20190071483A (ko) 2017-12-14 2019-06-24 주식회사 피디텍 진공 원심 주조장치

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE508051C2 (sv) * 1991-06-12 1998-08-17 Glasis Ab Kompositmaterial samt användning och förfarande för framställning därav
JP3259006B2 (ja) * 1994-07-27 2002-02-18 株式会社吹田屋 多孔質焼結体及びその製造方法と装置
KR970073821A (ko) * 1995-09-27 1997-12-10 아키모토 유미 다공질 소결금속판의 제조방법 및 제조장치
JP3166060B2 (ja) * 1995-12-11 2001-05-14 三菱マテリアル株式会社 放熱シート
JP2001329303A (ja) * 2000-05-17 2001-11-27 Suitaya:Kk 曲面を有する多孔質構造材とその成形法
DE60017352T2 (de) * 1999-07-05 2006-03-02 Suitaya Co., Ltd. Verfahren zur Bildung einer porösen Struktur
JP2002212309A (ja) * 2001-01-18 2002-07-31 Taiheiyo Cement Corp 樹脂複合体およびその製造方法
KR20040041813A (ko) * 2002-11-12 2004-05-20 최성조 다공질 소결판을 이용한 방향성 금속제품의 제조방법
KR100562043B1 (ko) * 2005-07-27 2006-03-17 한국화학연구원 금속 분리막의 제조방법
KR200409898Y1 (ko) 2005-12-19 2006-03-03 주식회사 이안메탈 온수 방열판
KR20060097091A (ko) 2006-08-23 2006-09-13 박순석 조립식 온수 판넬
RU2459687C2 (ru) * 2007-03-21 2012-08-27 Хеганес Аб (Пабл) Порошковые металлополимерные композиты
CN102917574B (zh) * 2012-10-24 2015-05-27 华为技术有限公司 导热垫、制造导热垫的方法、散热装置和电子设备
JP6021745B2 (ja) * 2013-06-10 2016-11-09 三菱電機株式会社 冷却部材および半導体装置
DE102015220504A1 (de) * 2015-10-21 2017-04-27 Robert Bosch Gmbh Verfahren zur Oberflächenbearbeitung eines Metallschaums, Metallschaum und dessen Verwendung
KR102040462B1 (ko) * 2016-04-01 2019-11-05 주식회사 엘지화학 금속폼의 제조 방법
WO2018087076A1 (de) * 2016-11-09 2018-05-17 Basf Se Metallschaum-kunststoff-komposite
KR102218854B1 (ko) * 2016-11-30 2021-02-23 주식회사 엘지화학 금속폼의 제조 방법
JP2018148053A (ja) * 2017-03-06 2018-09-20 三菱マテリアル株式会社 放熱シート
US12097562B2 (en) * 2017-05-16 2024-09-24 Lg Chem, Ltd. Preparation method for metal foam
DE102017121512A1 (de) * 2017-09-15 2019-03-21 Pohltec Metalfoam Gmbh Verfahren zum Schäumen von Metall mit Wärmekontakt
KR102191613B1 (ko) * 2017-09-15 2020-12-15 주식회사 엘지화학 복합재
KR102191614B1 (ko) * 2017-09-15 2020-12-15 주식회사 엘지화학 복합재

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06103885A (ja) * 1992-09-18 1994-04-15 Toshiba Corp 多孔質焼結基体、その製造法および多孔質材料の気孔率評価法
JP2007216234A (ja) * 2006-02-14 2007-08-30 National Institute Of Advanced Industrial & Technology 金属製パネル部材及びその製造方法
JP2009249657A (ja) * 2008-04-02 2009-10-29 Sanyo Special Steel Co Ltd 薄膜成膜用金属焼結多孔質部材およびその製造方法。
KR20180062171A (ko) * 2016-11-30 2018-06-08 주식회사 엘지화학 금속폼의 제조 방법
KR20190033875A (ko) * 2017-09-22 2019-04-01 주식회사 엘지화학 복합재
KR20190071483A (ko) 2017-12-14 2019-06-24 주식회사 피디텍 진공 원심 주조장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3984727A4

Also Published As

Publication number Publication date
KR102277768B1 (ko) 2021-07-15
EP3984727A4 (en) 2022-07-27
JP7383871B2 (ja) 2023-11-21
EP3984727A1 (en) 2022-04-20
KR20200144073A (ko) 2020-12-28
CN114007852B (zh) 2023-12-08
CN114007852A (zh) 2022-02-01
JP2022537022A (ja) 2022-08-23
US20220219233A1 (en) 2022-07-14

Similar Documents

Publication Publication Date Title
WO2015147449A1 (ko) 전자기파 차폐시트, 및 이의 제조방법
WO2015012427A1 (ko) 그래핀/흑연나노플레이트/카본나노튜브/나노금속 복합체를 이용한 방열시트 및 그 제조방법
US9902889B2 (en) Alumina composite ceramic composition and method of manufacturing the same
WO2011021824A2 (ko) 정전척 및 이의 제조 방법
WO2014030782A1 (ko) 탄화규소가 코팅된 탄소섬유 복합체 및 그 제조방법
WO2018021623A1 (en) Complex sheet for wireless charging and method for fabricating the same
US20110272027A1 (en) Solar photovoltaic devices and methods of making them
WO2020256394A1 (ko) 복합재의 제조 방법 및 복합재
WO2019212284A1 (ko) 전자파 차폐능 및 열전도도가 우수한 다층 그라파이트 시트 및 이의 제조방법
WO2020096267A1 (ko) 정전 척 및 그 제조 방법
WO2016163705A1 (ko) 전극 및 이의 제조방법
DE102018214641B4 (de) Vergussmasse, Verfahren zum elektrischen Isolieren eines elektrischen oder elektronischen Bauteils unter Verwendung der Vergussmasse, elektrisch isoliertes Bauteil, hergestellt über ein solches Verfahren und Verwendung der Vergussmasse
WO2020067743A1 (ko) 복합재
WO2018194366A1 (ko) 실란트로 실링된 정전척 및 이의 제조방법
WO2020122684A1 (ko) 마그네시아 및 그 제조 방법, 및 고열전도성 마그네시아 조성물, 이를 이용한 마그네시아 세라믹스
WO2018034422A1 (ko) 진공척용 복합체 및 그 제조방법
WO2023080349A1 (ko) 일액형 우레탄 방열 도료 조성물 및 이의 제조방법
WO2016048041A2 (ko) 이온전달 고분자 함유 복합막 및 이의 제조방법
WO2010143794A1 (ko) 도핑 기능을 갖는 에칭 페이스트 및 이를 이용한 태양전지의 선택적 에미터 형성방법
WO2018016855A1 (ko) 전기화학소자용 집전체 및 전극의 제조 방법
WO2020005014A1 (ko) 복합재
WO2018124319A1 (ko) 절연성 방열 무기재 테이프 및 이의 제조방법
CN105873414A (zh) 用于石墨导热散热贴片的制造工艺
WO2020076138A1 (ko) 복합 코팅액, 이를 이용하여 제조된 금속 기판 구조체, 및 그 제조 방법
WO2015005570A1 (ko) 고체산화물 연료전지 금속분리판 보호막용 세라믹 파우더, 이의 제조방법 및 이를 이용한 고체산화물 연료전지 금속분리판 보호막의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20827585

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021572011

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020827585

Country of ref document: EP

Effective date: 20220117